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Abstract 

Tillage erosion on arable land is a very important process leading to a net downslope movement of 

soil and soil constitutes. Tillage erosion rates are commonly in the same order of magnitude as water 

erosion rates and can be even higher, especially under highly mechanized agricultural soil 

management. Despite its prevalence and magnitude, tillage erosion is still understudied compared to 

water erosion. The goal of this study was to bring together experts using different techniques to 

determine tillage erosion and use the different results to discuss and quantify uncertainties associated 

with tillage erosion measurements. The study was performed in northeastern Germany on a 10 m by 

50 m plot with a mean slope of 8%. Tillage erosion was determined after two sequences of seven 

tillage operations. Two different micro-tracers (magnetic iron oxide mixed with soil and fluorescent 

sand) and one macro-tracer (passive radio-frequency identification transponders (RFIDs), size: 4 x 22 

mm) were used to directly determine soil fluxes. Moreover, tillage induced changes in topography 

were measured for the entire plot with two different terrestrial laser scanners and an unmanned aerial 

system for structure from motion topography analysis. Based on these elevation differences, 

corresponding soil fluxes were calculated. The mean translocation distance of all techniques was 0.57 

m per tillage pass, with a relatively wide range of mean soil translocation distances ranging from 0.39 

to 0.72 m per pass. A benchmark technique could not be identified as all used techniques have 

individual error sources, which could not be quantified. However, the translocation distances of the 

macro-tracers used were consistently smaller than the translocation distances of the micro-tracers 

(mean difference = -26±12%), which questions the widely used assumption of non-selective soil 

transport via tillage operations. This study points out that tillage erosion measurements, carried out 

under almost optimal conditions, are subject to major uncertainties that are far from negligible. 
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1. Introduction 

Soil erosion, especially on arable land, is a major environmental threat (Pimentel, 2006; Montanarella 

et al., 2016) negatively affecting on-site soil properties and leading to substantial off-site damage 

(Pimentel and Burgess, 2013). Moreover, lateral soil fluxes due to soil erosion are important 

modulators of biogeochemical cycles within soils (Quinton et al., 2010; Doetterl et al., 2016) and also 

substantially affect carbon and nutrient cycling in inland waters (Battin et al., 2009; Tranvik et al., 

2009). Soil erosion is most commonly understood as a process driven by water and wind that 

redistributes soil within the terrestrial environment and transfers it to water courses. However, since 

the early 1990s there has been a growing awareness of tillage as another important agent of soil 

erosion and redistribution (Lindstrom et al., 1990; Govers et al., 1993; Lobb et al., 1995). Tillage on 

sloping land leads to a net downslope displacement of soil, even if upslope and downslope tillage 

directions are alternated (Govers et al., 1999). The major difference between tillage and water or wind 

erosion is: (i) that tillage erosion occurs on a regular basis and is not driven by rare extreme events; 

and (ii) that soil is redistributed entirely within fields and hence the process does not lead to off-site 

damage. Tillage erosion typically occurs on convex slopes while soil accumulation takes place in 

concavities (Govers et al., 1999). Hence, tillage and water erosion tends to take place at different 

landscape positions: tillage mobilizes soil from hilltops that are minimally affected by water erosion 

to the thalwegs where the highest rates of water erosion occur (Govers et al., 1994).  

Various authors have shown that tillage erosion rates on arable land are at least in the same order of 

magnitude as water erosion rates (Li et al., 1999; Van Oost et al., 2006) and might be even higher than 

water erosion rates in drier or less convective storm dominated areas (Sommer et al., 2008). Despite 

its prevalence and magnitude, tillage erosion is still understudied compared to water erosion: a Web-

of-Knowledge search for articles including the topic ‘water erosion’ or ‘tillage erosion’ resulted in 

roughly ten times more results for ‘water erosion’ (260 vs. 2222; May 2017). 

There are a variety of techniques presented in the literature for determining tillage erosion rates. 

These can be categorized as either tracer-based or those that determine topographic change or 
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directly determine the movement of soil. For tracing methods, tracers are either added before 

performing individual or a series of tillage operations, or are in-situ tracers (e.g., 137Cs, Van Oost et al., 

2006) used to estimate long-term (decades to centuries) erosion rates. Tracers added before tillage 

experiments have the advantage that tillage erosion can be isolated from long-term erosion, which is 

always a combination of different erosion processes. The added tracers can be subdivided into macro-

tracers (diameter > 2 mm) and micro-tracers (< 2 mm diameter soil particles or solutes absorbed by 

soil colloids; subsequently this size-related micro- and macro-tracer definition is used). Micro-tracers 

are applied as solutes sprayed onto soil, e.g., sodium chloride solution (Barneveld et al., 2009), or 

mixed with natural soil and applied in trenches within the experimental plots, e.g., magnetic particles 

(Zhang and Li, 2011) or chloride (often as KCL) (Lobb et al., 1999). The recovery of the tracer after the 

experiment is either performed via soil sampling and/or if possible (e.g., in case of magnetic tracers) 

with instruments measuring in-situ concentrations as used by Guzmán et al. (2013) at plot scale (but 

for water erosion). Typical macro-tracers are coloured stones (Turkelboom et al., 1997; Thapa et al., 

1999; Kietzer, 2007; Tiessen et al., 2007; Zhang and Li, 2011; Logsdon, 2013) and different types of 

metal, mostly aluminium cubes (Lindstrom et al., 1990; Van Oost et al., 2000b; Van Muysen et al., 

2002; De Alba et al., 2006; Barneveld et al., 2009), which are often individually numbered. In addition, 

approaches that attempt to mimic soil with the intention of more realistically simulating soil 

movement have been used (e.g., coloured aggregates, Dupin et al., 2009). The main advantage of 

these macro-tracers is that in most cases the movement of individual, numbered particles can be 

tracked. The main disadvantage is the very time-consuming application and especially the recovery of 

the particles from the tilled soil layer.  

The most widely used in-situ tracer to determine tillage (or total) erosion is 137Cs resulting from atom 

bomb testing in the 1950s and 1960s (Quine et al., 1994; Govers et al., 1996; Quine et al., 1996; Van 

Oost et al., 2003; Heckrath et al., 2005; Kietzer, 2007). Tillage erosion rates are estimated by 

comparing the 137Cs activities at different slope positions and soil depths with those of reference sites 

that should not be affected by any soil erosion or deposition. A similar approach is based on other 
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naturally occurring tracers, e.g., Jordanova et al. (2011) used the natural magnetism in different soil 

horizons to determine tillage erosion and deposition due to different depths of these horizons. The 

advantage of using these kinds of natural tracers is that they represent long-term (decades to 

centuries) erosion. Apart from technical issues with these techniques, their major disadvantage is that 

they do not only measure tillage erosion because the pattern of tracer redistribution results from the 

combination of various erosion types (Van Oost et al., 2006).  

Techniques to estimate tillage erosion from changes in topography vary widely regarding their spatial 

and temporal resolution. In several studies, the slight step in topography introduced by tillage at the 

upslope boundary allowed the translocation of soil material to be determined due to tillage at the 

upslope end of experimental plots (Turkelboom et al., 1997; Kimaro et al., 2005). This so-called step 

method has been combined with the installation of soil collecting trenches at the downslope end of 

the experimental plots (Turkelboom et al., 1997; Kimaro et al., 2005). Another method for the 

determination of elevation differences is the determination of the soil depth above a known reference 

point buried below the tillage depth, e.g., a concrete block as in Sadowski and Sorge (2005). 

Photogrammetry was used by Vandaele et al. (1996) to carry out a longer-term and larger-scale 

estimate of tillage erosion. They determined temporal patterns of elevation differences using 

sequential stereoscopic aerial photographs from the Belgium loess belt (1947-1996). Their findings 

underlined the importance of tillage erosion in the region, with the most severe surface lowering 

occurring on hilltops and on hillslope convexities (Vandaele et al., 1996). More recently, high-

resolution digital elevation models (DEMs) in combination with digital aerial photographs have 

improved long-term analysis of landscape changes (Deumlich et al., 2014) and recent advances in 

image acquisition and software have, over the past decades, made novel measurement techniques 

for geomorphological change detection affordable. Terrestrial laser scanners (TLS) and unmanned 

aerial systems (UAS) together with structure from motion (SfM) techniques have been utilized in 

several morphological change detection studies. On arable land the majority of these studies have 

focused on rill and gully erosion features (d'Oleire-Oltmanns et al., 2012; TLS: Eltner and Baumgart, 
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2015; UAS: Peter et al., 2014; Eltner et al., 2015; Vinci et al., 2015). A recent study by Pineux et al. 

(2017) investigated spatial elevation changes at the catchment scale, utilizing multi-temporal DEMs of 

difference (DoD) using UAS-based SfM (UAS/SfM). However, as with natural tracers, the changes in 

topography result from a combination of erosion processes, which need to be unravelled for tillage 

erosion to be studied.  

The results of tillage erosion studies (e.g., summarized in Van Oost et al., 2006) have been used to 

develop and parameterize a number of tillage erosion models of different complexity. The most widely 

used is a diffusion-type approach developed by Govers et al. (1994) that simulates tillage erosion as a 

function of local slope and a tillage transport coefficient ktill. The tillage transport coefficient 

generalizes several parameters (e.g., tillage speed, implement shape, soil physical properties) and 

needs to be determined experimentally (e.g., Van Muysen et al., 2000; Kosmas et al., 2001; Heckrath 

et al., 2006) or calculated from empirical relationships based on experiments (Van Muysen and 

Govers, 2002; Van Muysen et al., 2002). An overview of different ktill values for different soils, tillage 

depths, tillage directions, implements and speeds as well as plough layer bulk density is given in Van 

Oost et al. (2006). However, our knowledge of the changes in ktill for different tillage techniques is very 

limited (De Alba et al., 2004, 2006), and data regarding reduced tillage are especially rare (Van Oost 

et al., 2006). Apart from models using the diffusion-type approach (e.g., WaTEM-SEDEM or SPEROS-

C: Van Oost et al., 2000a; Van Rompaey et al., 2001; Fiener et al., 2015; Van Oost et al., 2005b) there 

are other, more complex models taking a larger number of parameters into account, e.g., tillage 

direction, on-field objects, or complex field boundary effects (TILDA: Quine and Zhang, 2004; CATT: 

Vanwalleghem et al., 2010; TELEM: Vieira and Dabney, 2011).  

All commonly used tillage erosion models are developed and tested against tillage erosion 

measurements. To represent individual tillage management practices, these models need to be 

parameterized using experimentally determined tillage erosion rates. As indicated above, there is still 

a lack in knowledge regarding model parameters, especially for the large number of different tillage 

implements (size, depths, shape, etc.). However, to establish a substantial database of model 
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parameters to simulate tillage erosion, we first need more information regarding the comparability of 

different methods to determine tillage erosion. Experimentation is critical for determining the 

parameters used to drive tillage erosion models. Therefore, it is vital to understand how the 

experimental technique deployed influences the derivation of the model parameters and how these 

differences translate into uncertainty surrounding predictions of tillage erosion. Here for the first time 

we directly compare a range of methodologies for determining tillage erosion simultaneously in the 

field. In addition, the work contributes new knowledge on the redistribution of soil in reduced tillage 

systems and the potential of new tracer methods and topographic change techniques to quantify 

tillage erosion rates. 

The main aims of the study are (i) to quantify and compare tillage-induced soil redistribution using 

different tracers and high-resolution topography measurements, and (ii) to quantify potential 

differences between tillage erosion measuring techniques and discuss corresponding uncertainties for 

soil erosion modelling resulting from different model parameters derived from different measuring 

techniques.  

2. Materials and Methods 

2.1. Test site and experimental design 

The experimental site was located near the village of Polßen (53.157° North; 13.962° East) about 

80 km northeast of Berlin, Germany. It represents the typical topography of previously glaciated, 

hummocky ground moraines. The soils in this region are strongly affected by landscape position. 

Extremely eroded Calcaric Regosols (IUSS, 2015) are often located at the hilltops, whereas moderately 

to strongly eroded Luvisols can be found along the slope, and colluvial, partly groundwater-influenced 

soils are located in closed depressions (Sommer et al., 2008; Gerke et al., 2010). The subcontinental 

climate in the area is characterized by a mean annual precipitation of approximately 500 mm a-1 and 

a mean annual air temperature of 8.9°C (CLINO-1981-2010 for the meteorological stations Gruenow 

and Angermuende). The region is intensively used for agricultural production with large fields (>20 ha) 

cultivated using heavy farming equipment since the early 1970s (Sommer et al., 2008). 
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The experiment was performed between 03/04/16 and 08/04/16 on a convex upslope, located within 

a large (~50 ha) field where winter wheat had been planted in autumn. Overall, an area of 15 m x 85 m 

was prepared with an inner plot of 10 m x 50 m where the tracers were placed (Fig. 1). To homogenize 

the soil and bury the germinated wheat on the test field, the plot was firstly tilled (03/04/16) with a 

mouldboard plough to a depth of 0.25 m and then smoothed with a roller. Subsequently, the time 

after initial plot preparation is referred to as t0. For the (reduced) tillage erosion experiment, two 

sequences of seven downslope tillage operations consisting of a combination of a cultivator and a 

roller were applied on 04/04/16 and 06/04/16. Subsequently, the time after the first and second 

tillage sequence is referred to as t1 and t2, respectively. The cultivator, a Tiger 4 AS (HORSCH 

Maschinen GmbH; Germany), consisted of a series of disks, tines and a roller, and tilled the soil to a 

depth of 0.15 m without inverting but disrupting and mixing the soil. The tillage width of the cultivator 

was 5 m, requiring three parallel downslope operations for one cultivation of the plot. The tractor 

speed during tillage was approximately 6 km h-1. The roller had a width of 7.5 m, hence only two passes 

were necessary for rolling the plot.  

To monitor potential bulk density changes between t0 and t2, it was measured at 20 locations within 

the inner plot (centre of 5 x 5 m rasters) at two depths (0.06 to 0.12 m and 0.18 to 0.24 m, respectively) 

using Kopecky cylinders with a diameter of 0.08 m (volume 3.0 x 10-4 m3; Table 1).  

2.2. Tracer techniques 

2.2.1. Micro-tracers 

Magnetic iron oxide mixed with soil:  A total of 312 kg of soil were mixed by serial dilutions 

with magnetic iron oxide (subsequently referred as magnetic tracer) to increase the average 

background concentration of soil by two orders of magnitude following the protocol of Guzmán et al. 

(2010). Magnetic iron oxide mainly binds to the fine particle fraction (clay and silt) of the soil. The 

mixture was applied at t0 in two trenches of 5.0 m x 0.35 m x 0.15 m (width perpendicular to slope, 

length along the slope, depth) on the upper and middle right side of the plot (Fig. 1). Volumetric 
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magnetic susceptibility at the beginning of the trial and after every tillage sequence (t1 and t2) was 

measured using a MS2 sensor and a MS2D field probe (Bartington Instruments, UK). The device 

penetrates the soil and integrates the signal with depth (10% of the signal is associated to a depth of 

response of 0.06 m). A 0.90 m x 2.50 m grid (X, Y) was set out, with a more dense measuring grid (Y 

distance: 1.25 m) at areas close to the initial tagged trenches. In order to calibrate the signal of the 

field probe and allow conversion of the volumetric magnetic susceptibility into the mass of tracer, a 

total of 18 random locations (including originally untagged areas and trenches) were sampled before 

and after the first seven tillage passes at different depths (0-0.05 m, 0.05-0.10 m, and 0.10-0.15 m). 

Their magnetic susceptibility was determined using a MS2B laboratory meter (Bartington®) as 

described by Guzmán et al. (2013, 2015). Additionally, samples below the tillage layer (interval 0.15-

0.20 m) were taken and analysed in the laboratory to evaluate and calibrate the field probe. 

Fluorescent sand:  The fluorescent tracer is commercially-available (Partrac Ltd; UK) and 

consists of natural quartz particles (D50 = 70 µm) coated with a green fluorescent pigment. A Panasonic 

Lumix GH4 camera was used with an orange 490 nm long pass filter (Knight Optical; UK) to enhance 

the contrast between the soil and the tracer. Images were taken during the night or under darkened 

conditions using an external LED light source (wavelength = 450 nm) with diffusing plates to produce 

the fluorescent response. An intensity-based method, similar to that of Hardy et al. (2016) was utilized 

to analyse the amount of tracer in the images. The intensity-based method used the numeric pixel 

values from the green colour channel in the camera and differentiates between the background 

intensity of the soil and the fluorescent tracer. Therefore, a reduction of the tracer concentration and 

corresponding soil flux can be derived. At t1 a trench (3.0 x 0.4 x 0.15 m; Fig. 1) was filled with the 

fluorescent tracer particles and the intensity-based method used to determine the tracer 

redistribution was used at t2. Therefore, the visible surface intensity was determined and the depth 

distribution of the tracer was measured in five 1.0 m x 0.2 m x 0.15 m trenches downslope from the 

tracer application trench (distance: 2.5, 5.0, 7.5, 10.0, and 12.5 m). 
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2.2.2. Macro-tracer 

Passive radio-frequency identification transponder:  Commercially-available passive radio 

frequency identification (RFID; HID Global, Germany) transponders were used together with a newly 

designed prototype detection antenna (diameter 0.2 m; TECTUS Transponder Technology, Germany) 

to tag soil movement along the inner plot. RIFD transponders (n=250), grouted in glass cylinders (4 

mm x 22 mm; density = 2.3-2.5 g cm-3), were inserted to a soil depth of 0.075 m (mid tillage depth) 

along five rows (spacing of rows and along slope 2 and 1 m, respectively; Fig. 1). At t1 and t2 the RIFD 

transponders were re-located with the detection antenna, and the new location of the transponders 

was determined with a total station (TS 06 plus R1000; Leica, Germany). Individual horizontal 

displacement distances of the RFID transponders were calculated, both along and perpendicular to 

the slope and tillage direction. 

2.3. Topographical techniques 

2.3.1. Flagstones 

Concrete flagstones (n=12; 0.25 m x 0.25 m x 0.03 m) were buried at t0 at different slope positions to 

a mean depth of 0.42 m (Fig. 1). To relocate the flagstones after the tillage sequences, 3M™ Full-Range 

Markers (3MTM, US; 0.38 m diameter) were buried underneath the flagstones. The markers allow for 

a precise relocation of the flagstones after the tillage sequences by using a 3M™ Dynatel™ Locator 

(detection range of about 2.5 m). The change in soil depths above the flagstones at the tillage 

sequences t1 and t2 were measured with a 0.8 m long soil probe (steel needle). Measurements at t1 

and t2 were corrected for changes in bulk density and hence surface elevation (see below). 

2.3.2. Terrestrial laser scanning 

Two different impulse wave terrestrial laser scanners (TLSs), a Leica (Scanstation C10; Leica, Germany) 

and a Faro (Focus 3D; FARO, US), were used during the experiment. The Leica TLS has a lower spatial 

resolution with a scanning range of ~300 m, while the Faro TLS has a higher spatial resolution with a 
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maximum scanning range of ~50 m. The Leica scans were performed from two locations at the upper 

and lower end of the plot, while the Faro scans were taken from eight locations (four on each side of 

the plot; Fig. 1). An average resolution depending on the distance between scanner and soil surface 

of 4.4 x 103 and 175 x 103 points per m2 was achieved for the Leica and Faro scanner, respectively. Each 

scan took about 60 min with the Leica and about 12 min per scan with the Faro. 

To georeference the scans, ten static black and white targets were equally distributed along plot 

borders (Fig. 1) and independently located for each time step (t0 – t2) with a total station (TS 06 plus 

R1000; Leica, Germany). The reference coordinates were used to register the TLS data into a single 

merged point cloud for t0, t1, and t2 using the Leica software Cyclone 9 (Leica, Germany). Digital 

elevation models of different grid size resolutions of the merged point clouds were processed in 

CloudCompare 2.6.2 (cloudcompare.org). Subsequently, DoDs were calculated using R for statistical 

computing 3.2.2 (R Development Core Team, Austria) and ArcGIS 10.4.1 (ESRI, US).  

2.3.3. UAS/SfM 

DEMs for the time steps t0 and t2 were calculated using the UAS/SfM technique. Therefore, a hybrid 

Sony α5000 camera with a 20.1 MP (5456 x 3064 pixel) resolution was mounted on a gyro-stabilised 

gimbal to a multirotor UAS platform. The UAS was a custom built hexacopter with a double rotor setup 

on three arms (RcTakeOff, Belgium). The images (t0: n=99 images; t2: n=88 images) were recorded 

from a nadir angle with a 16 mm focal length, f 3.5-5.6 OSS (equivalent 24 mm) and an average flight 

elevation of 15 m. The TLS black and white targets were also used for referencing the SfM approach. 

SfM calculations were carried out using PhotoScan Professional version 1.0.4 (Agisoft; Russia) and for 

further point cloud processing, the software CloudCompare 2.6.2 (cloudcompare.org) was used. The 

average point cloud density of the inner plot is 75 x 103 points per m2. 

2.3.4. Determining change in topography 

To calculate spatially distributed erosion and deposition from the different TLSs and UAS/SfM based 

DEMs at t0, t1 and t2, it was necessary to correct these DEMs for bulk density changes during the 
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experiment. Therefore, the measured changes in bulk density (t0 and t2; Table 1) were used to correct 

for the settling of the soil surface during the experiment. It was assumed that the increase in bulk 

density happened solely in the tillage layer between t0 and t1 as complete disruption was reached 

after seven tillage operations and soil loosened during the pre-experimental mouldboard ploughing 

to a depth of 0.25 m had settled. To validate this assumption, the mean elevation change over the 

entire area affected by tillage was detected using the LEICA TLS data. Between t0 to t1 the measured 

mean elevation difference was -20 mm, while between t1 and t2 the measured mean elevation 

difference was negligible (< 0.1 mm), indicating no change in bulk density after t1.  With this analysis 

in mind, we used the measured mean bulk density change from the 20 locations (Table 1) between t0 

and t2 to correct for the higher mean elevation of the plot at time t0, which resulted from lower bulk 

density after mouldboard ploughing. Overall, the initial DEM (t0) was lowered by -13.2 mm. 

2.4. Calculating downslope soil flux from tracer movement and topography changes 

To derive soil translocation distances and translocation rates from the different measuring techniques, 

two approaches were applied.  First, the soil translocation distance was derived directly from the 

measured translocation distance of the respective tracer. The underlying assumptions here are that 

the translocation distance of the tracer represents the translocation distance of the tilled soil layer, 

the transport distances of the tracer are normally distributed (and hence, the mean transport distance 

adequately represents its movement), and the tracers are more or less homogenously moved 

throughout the depth profile of the tillage layer. The distribution of the tracer movement was tested 

with all tracers and any depth dependence was tested according to depth profiles of the fluorescent 

tracer along the slope and point measurements of the magnetic tracer. For the RFIDs a mean or 

median translocation distance in the inner plot was calculated from the movement of all recovered 

individual RFIDs; non-recovered RFIDs were assumed to travel the mean distance determined from 

those that were recovered. Due to the large number of RFIDs distributed over the inner plot (Fig. 1), 

it was also possible to calculate movement parallel and perpendicular to the slope. Moreover, 
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movement at different slope positions could be determined between t0 and t1 as well as t1 and t2. In 

the case of the micro-tracers, the mean or median translocation distance was derived from the 

distribution of the measured tracer intensity (magnetic susceptibility and fluorescence) downslope 

the application trenches. It is important to note that in the case of magnetic susceptibility the bulk 

magnetic susceptibility of the plough layer is measured, while in case of fluorescence only the 

distribution of particles on the soil surface was determined. Compared to the RFIDs, it was only 

possible to determine tracer movements from one (fluorescent tracer) and two locations (magnetic 

tracer) and one time step. Based on the translocation distance, a mean soil translocation rate was 

calculated following Eq. (1), while using the measured mean bulk density (Table 1) and a mean tillage 

depths of 0.15 m (Van Oost et al., 2006): 

Qs = ρb ∙ d ∙ D        (1) 

where Qs is the rate of soil translocation (kg m-1); ρb is the soil bulk density (kg m-3); d is the tillage 

translocation distance (m), and D is the tillage depth (m). 

Second, based on 0.5 m x 0.5 m raster DEMs determined from the three different topographical 

techniques, the average translocation distance and soil translocation rate was calculated. The tillage 

translocation started at the upslope end of the plot where the plough was inserted to the soil (plot 

length location of about -12.5 m; Fig. 1). The calculation follows the conservation of mass and routes 

the soil movement (the slope is subdivided into 1 m segments) from the source area down to the 

lowest increment. Hence, even without a change in topography (in-flux equals out-flux), e.g., at a mid-

slope location, the soil translocation rate and distance can be derived using Eqs. (1) and (2).  The tillage 

translocation distance (d; m) at each 1 m segment i was calculated as: 

𝑑𝑖 =
𝑉𝑖

𝑊∙ 𝐷
         (2) 

where V is the volume of soil loss (m³) from the tillage implement insertion to segment i, D is the 

tillage depth (m), and W is the plot segment width (m).   
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3. Results 

3.1. Translocation of tracers 

All the tracers showed a substantial downslope movement after 7 and 14 tillage passes (Fig. 2), with 

a maximum movement of up to 18 m recorded for an individual RFID during one of the tillage 

sequences. Across all the tracers, mean translocation distances per tillage pass had a substantial range 

of 0.23 m to 0.71 m that depended on the tracer and slope position. Deriving a probability density 

function of the mean tracer movement per tillage pass of all RFIDs between t0 and t1 (recovery rate 

79%) as well as t1 and t2 (recovery rate 75%) indicates that a forward movement of RFIDs only 

occurred parallel to the slope, while perpendicular to the slope the mean movement was close to zero 

(Fig. 3). Hence, we subsequently only analysed the movement of tracers in the downslope direction.  

Comparing the movement of the RFIDs located around the micro-tracer trenches (maximum distance 

upslope and downslope of application trench ≤ 5 m) with the movement of the magnetic tracer (two 

trenches (Fig. 1); t0 to t1) and fluorescence tracer (one trench (Fig. 1); t1 to t2) indicates a substantial 

difference in movement between the micro-tracer and the macro-tracer (Fig. 4; Table 2). In all cases 

the micro-tracers exhibited a larger translocation distance, while their behaviour at different slope 

positons was consistent, e.g., at the upper and lower trench of the magnetic tracer (Fig. 4A vs. Fig. 4B). 

Larger transport distances were measured for all tracers on steeper slopes. The mean translocation 

distance per tillage pass was 26 ± 12% less for the RFIDs compared to the micro-tracers (Table 2).  

Measurements of the fluorescent tracer in five soil pits (0-0.15 m) downslope of the tracer application 

trench at distances of 2.5, 5.0, 7.5, 10.0 and 12.5 m indicate some soil disturbance along the soil profile 

(Fig. 5, Table 3) without an obvious systematic depth dependency. Hence, the surface luminescence 

corresponds to the total movement of the tillage layer. The surface measurements of the fluorescent 

tracer indicate that after seven tillage passes only 17% of the tracer was still located in the area above 

the first soil pit (2.5 m below application trench). Hence, it was assumed that the depth measurements 

represent 83% of all fluorescent material to be detected, while ignoring potentially small tracer 

amounts moved more than 15 m below the application trench. Under this assumption the relative 
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amount of the fluorescent tracer and its mean translocation distance in each of the 0.01 m soil layers 

could be calculated (Table 3). According to this calculation, no systematic depth dependency in 

amount and translocation distance ranging from 0.68 to 0.83 m per tillage pass (mean±sd = 0.76±0.05 

m) could be detected. This finding was corroborated through six magnetic tracer measurements at 

three depths (0-0.05 m, 0.05-0.10 m, 0.10-0.15 m) downslope of the tracer application trenches (1.25 

m, 2.5 m, 3.75 m, 5.0 m) that only showed slightly higher, but insignificant (p<0.05) values for the soil 

movement in the upper topsoil layer (0-0.05 m). Both the fluorescent and the magnetic tracer indicate 

that the different transport distances of the tracers cannot be explained from the different application 

depths of 0-0.15 m in the case of the micro-tracers and 0.075 m in the case of the RFIDs.  

3.2. Change in topography  

The DoDs between the start and the end of the experiment (t0 – t2) show good agreement in spatially 

distributed erosion and deposition patterns for all measuring techniques (Fig. 6). The absolute 

elevation differences between the TLS systems at the time t0 to t1 accurately match for both the 

flagstone positions and the gridded DEM data (Table 4). The TLS systems indicate a substantially lower 

loss for the tillage sequence t1 to t2 compared to t0 to t1. However, for tillage sequence t1 to t2 the 

Leica shows a lower soil loss than the Faro. In contrast to the TLS systems, the UAV/SfM show a net 

soil gain within the inner plot between t0 and t2 (Table 4). The flagstone point measurements for t0 

to t2 are in the same range as the TLS measurements, but show major deviations compared to the TLS 

systems for the individual tillage sequences (Table 4).  

3.3. Soil translocation distances and translocation rates  

Based on Eq. (1), the depth-independence of tracer movement (Table 3) and the close to normal 

distribution of tracer movement (Figs. 3 and 4), we calculated the mean soil translocation distance 

and rate per tillage pass for each original tracer location. For the florescent and the magnetic tracers 

soil translation was determined for the upper and lower trench locations at the tillage sequence t0-t1 

and t1-t2, respectively (Fig. 7). For the RFIDs, soil translocation was calculated for ten 5 m segments 

of the inner plot (Fig. 1) for both tillage sequences. Compared to the single trenches or segments along 
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the slope soil translocation was derived in 1 m segments from the DoDs of the TSL systems using Eq. 

(1) and Eq. (2). Soil translocation was not calculated for the UAS/SfM system, as the point of 

implement insertion was unfortunately not recorded. 

The soil translocation distances and rates from the different techniques showed some consistencies 

but also some substantial differences (Fig. 7). The Faro and the micro-tracer distances and rates were 

very similar and additionally the Faro translocation did not substantially change between t0-t1 and t1-

t2. In contrast, the Leica translocation showed some substantial difference between t0-t1 and t1-2, 

with a difference in mean translocation rates of 80.6 kg m-1 per pass (difference of t1-t2 relative to t0-

t1 is 47%). As expected from the tracer flux calculations, the RFID-based soil translocation distances 

and rates were substantially smaller than those of the micro-tracers, and were closest to the Leica 

derived data for the tillage sequence between t1-t2. Comparing all data (both tillage sequences) for 

the areas around the tracer trenches (between 7.5 m and 17.5 m and 32.5 m and 42.5 m) indicates, 

that the different techniques resulted in a substantial variability of derived soil translocation rates 

ranging from 105.6 to 170.4 kg m-1 per pass at the upper trench area and from 80.9 to 175.6 kg m-1 

per pass for the lower trench area. Even more extreme differences can be recognized for the 

downslope end of the inner plot where four-fold differences between RFID-based and Leica-based 

translocation rates were found (t0-t1; Fig. 7).  

4. Discussion 

4.1. Implications of measurement uncertainties  

A number of studies were performed over the last two decades reporting different soil translocation 

rates for different soils (properties, conditions) and tillage techniques (tillage speed, direction, depth, 

type of implement, etc.) determined from a variety of measurement techniques (e.g., Van Muysen et 

al., 2002; Van Oost and Govers, 2006; Kietzer, 2007; Tiessen et al., 2007; Barneveld et al., 2009; 

Logsdon, 2013). Van Oost et al. (2006) provide a comprehensive overview of results acquired until 

2006. From these data it is obvious that there are substantial differences for similar tillage categories 

(e.g., mouldboard tillage), which were mostly interpreted as differences resulting from differences in 
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soil properties (bulk density) and in tillage technique (especially tillage depths, tillage speed, and 

tillage direction; Lobb et al., 2001; Van Oost et al., 2006). However, uncertainties associated to 

different measuring techniques used in different studies were not systematically analysed.  

Assuming that the results of the individual techniques presented in this study, which were carried out 

under optimal conditions and the use of high precision equipment, are of comparable quality to those 

referred to by Van Oost et al. (2006), our work indicates that substantial uncertainties in estimated 

tillage erosion rates not only result from different experimental set-ups but also from the different 

techniques used. For those areas of the tested slope where the different techniques can be directly 

compared we could identify substantial differences in soil translocation rates per tillage pass (upper 

trench: 106-170 kg m-1 per pass, difference = 60%; lower trench: 81-176 kg m-1 per pass, difference = 

118%; Fig. 7). Comparing the mean translocation rate from six measuring techniques that represent 

three basic types of tillage erosion determination (micro-tracer, macro-tracer, topography) and two 

tillage sequences against the corresponding individual measurements, ranges from an 

underestimation of -32.8 kg m-1 (-21.6%) to an overestimation of 41.3 kg m-1 (33.6%). When using 

experimental results to parametrize tillage erosion models (Van Oost et al., 2005a; Dlugoß et al., 

2012), these measurement uncertainties need to be added to uncertainties based on the transfer of 

measured tillage erosion rates from one test site to another modelling region. The relevance of this 

uncertainty was recently illustrated by Wilken et al. (2017), who coupled a water and tillage erosion 

model and a soil organic carbon model to analyse erosion-induced carbon (C) fluxes in a small 

catchment. Varying tillage erosion by ±50% substantially changed the modelled erosion-induced C 

balance of the catchment, which was overall more important for the C balance than water erosion 

(Wilken et al., 2017). In general, it can be concluded that tillage erosion measurement uncertainties 

of the magnitude found in this study can substantially affect the results of studies dealing with erosion-

induced changes in soil properties of arable land.  

4.2. Specific uncertainties of different tillage erosion measuring techniques 
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Micro-tracer methods disturb the natural soil structure because a trench is filled with artificial or 

artificially manipulated soil material. This causes uncertainties regarding the transport and mixing 

properties of the tracer particles into the natural soil structure. If applied in a trench, the fluorescent 

tracer concentration can reach the detectable saturation level. As a consequence, the peak 

concentration might not be accurately determined and causes uncertainties in the translocation 

calculation, which is based on fluorescence intensity proportions. RFID macro-tracers enable fast 

tracking of individual particles at distinct slope positions without soil disturbance (e.g., soil sieving as 

applied to traditional macro-tracers). The experiment showed 26±12% lower translocation distances 

determined by the stone-sized RFID macro-tracers compared to soil-sized micro-tracers (Table 2). This 

calls the widely used assumption that tillage erosion is a non-selective process into question. A few 

studies already speculated about different transport distances between soil and stone sized tracers 

(Barneveld et al., 2009; Dupin et al., 2009; Logsdon, 2013), but did not investigate this in detail. 

Nevertheless, it is likely that a potential grain size selectivity of tillage erosion is affected by soil 

conditions and tillage implement type. Soil cohesiveness may control whether the soil is disrupted and 

selectively mixed or homogenously transported in large clods that encapsulate stone-sized particles. 

Due to a series of tillage operations under rather dry conditions, the soil was highly disrupted during 

the experiment, which might have supported selectivity compared to a single tillage operation and 

hence the 14 applied tillage operations are not identical to 14 yr of cultivation. Furthermore, a 

potential grain size selectivity of tillage translocation is likely to be tillage implement specific as some 

implements are designed to invert topsoil and not to disrupt and entirely mix it.  

High-resolution measurements of topography change can identify spatial movement of the tillage 

layer and are not affected by potential grain size selective transport. However, the technique needs 

to be corrected for elevation changes related to bulk density differences that are subject to spatial 

variations (Gifford and Roderick, 2003). Because TLS and UAS/SfM devices are based on optical 

techniques, information gaps occur behind objects that produce shaded areas. Due to soil surface 

roughness, the shaded areas become larger with increasing distance to the scan device as the 
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incidence angle of the laser beam becomes smaller (Fig. 8). Because of the linear interpolation of 

shaded areas, the TLS scanners systematically overestimate the elevation of remote scan positions. As 

illustrated in Fig. 8, this effect increases with increasing surface roughness. Owing to the smooth rolled 

soil surface (about 2.5 cm roughness height), the wheel tracks were the most problematic element in 

this study. This is especially true as the depths of the wheel tracks were deeper at t0 because of a very 

loose soil following the pre-experimental mouldboard ploughing and rolling. The consequence was 

that the long range scans with the Leica, from two positions only (Fig. 1), could only partly scan into 

the wheel tracks, and therefore potentially underestimates deposition in these wheel tracks between 

t0 and t1, and hence overestimates erosion rates. In general, an image acquisition from nadir that 

prevents flat incidence angles is a major advantage of the UAS/SfM technique (Fig. 8).  

To unify different TLS scenes or photogrammetric images, georeferenced ground control points (GCPs) 

are required. On arable land, plane surfaces or clear structures are not present and scene overlay 

depends on GCPs. As TLS devices operate from a static position on ground, fewer GCPs are required 

compared to the moving UAV/SfM. Hence, a dense network of GCPs is of key importance for an 

UAV/SfM approach on arable land to measure tillage erosion. In this experiment the UAS/SfM 

approach lead to similar patters but showed an elevation offset compared to the TLS measurements. 

This somewhat unsatisfactory result might be improved using more GCPs or by adding stable linear 

features along the measuring plot, which improved SfM processing. However, it was challenging to 

detect small (< 1 cm) changes in topography if these changes had not resulted from changes in linear 

features (e.g., erosion rills), which makes change detection easier. Similar problems in detecting 

changes on non-linear soil erosion features were shown in the UAS/SfM study of Pineux et al. (2017).  

Based on our experiment it was not possible to determine one measuring technique as benchmark 

because all applied techniques are subject to different technique-specific error sources. However, it 

is clear that using only one technique to determine tillage erosion, as done in the majority of studies, 

will lead to large uncertainties in calculated tillage erosion rates.  
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Apart from technical issues of determining tillage erosion, our experiment underlines the importance 

of tillage erosion as a driver of geomorphological dynamics. It needs to be emphasized that the applied 

tillage speed of 6 km h-1 and depth of 15 cm was substantially lower compared to the typical regional 

management practice with a tillage speed of 15 km h-1 and depth of 20 cm. Nevertheless, after 14 

applied tillage operations, substantial morphological differences of approximately ±10 cm (Fig. 6) were 

determined. Tillage erosion successively levels out the landscape morphology as convex hilltops are 

lowered and concave depressions are filled (Sommer et al., 2008). Therefore, tillage transports soil 

from convex areas with almost no water erosion (e.g., hilltops) to concave areas of concentrated flow 

and highest water erosion (Van Oost et al., 2006). Hence, on the one hand tillage removes features 

produced by water erosion like ephemeral gullies, but on the other hand actively supports sediment 

delivery by water erosion. In hummocky regions, long-term tillage erosion has an important impact 

on catchment topography, hydrology and soil properties.  

 

5. Conclusion 

Under controlled conditions, different tillage translocation measuring techniques (three tracers and 

three topographical methods) were applied in a macro-plot experiment with two tillage sequences 

each consisting of seven tillage operations. The different techniques produce a relatively wide range 

of soil translocation rates for the same slope positions, with deviations from the mean of all 

measurements between -32.8 kg m-1 (-21.6%) and 41.3 kg m-1 (33.6%). This large measurement-

induced variation indicates substantial uncertainties in determining tillage erosion, which points to 

the need to utilise more than one method in tillage erosion studies. This associated uncertainty should 

be taken into account especially when using the results of tillage erosion experiments to parameterize 

models.  

No benchmark result could be obtained because all of the techniques used have potential sources of 

error that could not be individually quantified. However, the consistently smaller translocation 

distances associated with the macro-tracers used, which were on average 26±12% smaller than the 
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translocation distance of the two micro-tracers, questions the widely held assumption of non-selective 

transport and homogenous movement of the tillage layer by management operations. At least under 

dry and disrupted soil conditions, as tested in this experiment, macro-tracers may not accurately 

represent the flux of soil-sized particles.  

Compared to water erosion, we still lack standardized measurements and the overall number of 

measurements for different management practices is relatively small, which makes a reasonable 

model parametrisation challenging. Overall, this study emphasizes that tillage erosion measurements, 

carried out under almost optimal conditions, are subject to major uncertainties that need to be 

carefully considered in soil erosion studies.  
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List of figures: 

Fig. 1. Topography of the test site, location of tracers at the beginning of the experiment (t0), TLS 

scan positions, and location of georeferenced targets for TLS and UAV/SfM measurements. 

Fig. 2. Translocation of individual RFIDs (t0 to t1 and t1 to t2); translocation of magnetic tracer mixed 

with soil from trenches 1 and 2 (t0 to t1) given as lines of equal magnetisation (mg mag m-3); 

translocation of fluorescent sand from trench 3 (t1 to t2) given as mosaic of colour images taken 

under an external light-source. 

Fig. 3. Mean and median translocation of all RIFDs per tillage pass (t0-t1 and t1-t2); in slope direction 

(A) and perpendicular to slope direction (B). 

Fig. 4. Comparison of mean translocation distance per tillage pass of different tracers. RFIDs vs. 

magnetic tracer translocation from upper (A) and lower trench (B) between t0 and t1. RIFDs vs. 

fluorescent tracer translocation from upper trench between t1 and t2; It is important to note that in 

case of the RFIDs slope segments (maximum distance upslope and downslope of micro-tracer 

application trenches ≤ 5 m) are compared against tracers distributed along small trenches (see Fig. 

1). The solid and dashed vertical line shows the average transport distance of the RFIDs and the 

corresponding micro-tracer, respectively. 

Fig. 5. Soil depth-dependent translocation distance of fluorescent sand during seven tillage passes; 

translocation from upper trench between t1 and t2.  

Fig. 6. Difference in topography between t2 and t0 for all measuring systems. High-resolution data 

degraded to 0.5 m x 0.5 m. Elevation differences derived from the flagstone technique are given in 

the mid (Faro) DoD map. 

Fig. 7. Average soil translocation distance and rate derived from the different methods used 

between t0 and t1 and t1 and t2; movement of tracers it is indicated at the location where the 

tracers were originally applied; it is important to note that the movement of RFIDs is calculated in 

5 m segments averages the mean movement of 4 to 31 RFIDs (mean n per segment = 20.8). 
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Fig. 8. Schematic figure of scan angle and shadowing effect of the laser scanners compared to 

UAV/SfM. 
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List of tables: 

Table 1. Bulk density and stone content measured after preparation of the plot with one-time 

ploughing to a depth of 0.25 m (t0) and at end of the experiment after 14-times tillage with the field 

cultivator to a depth of 0.15 cm (t2). 

Table 2. Mean tracer translocation at magnetic tracer trenches and at fluorescent trench according 

to probability density functions. 

Table 3. Mean soil translocation distance per tillage pass in different 1-cm soil layers and relative 

translocation amount in each of the 1-cm soil layer. 

Table 4. Comparison of changes in topography at the flagstone positons and for the TLS system and 

the UAS for the entire inner plot. 
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Figures 

 

Fig. 1. Topography of the test site, location of tracers at the beginning of the experiment (t0), TLS scan 

positions, and location of georeferenced targets for TLS and UAV/SfM measurements. 
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Fig. 2. Translocation of individual RFIDs (t0 to t1 and t1 to t2); translocation of magnetic tracer mixed with soil 

from trenches 1 and 2 (t0 to t1) given as lines of equal magnetisation (mg mag m-3); translocation of 

fluorescent sand from trench 3 (t1 to t2) given as mosaic of colour images taken under an external light-source. 
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Fig. 3. Mean and median translocation of all RIFDs 

per tillage pass (t0-t1 and t1-t2); in slope direction 

(A) and perpendicular to slope direction (B). 
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Fig. 4. Comparison of mean translocation distance per tillage pass of different tracers. RFIDs vs. magnetic 

tracer translocation from upper (A) and lower trench (B) between t0 and t1. RIFDs vs. fluorescent tracer 

translocation from upper trench between t1 and t2; It is important to note that in case of the RFIDs slope 

segments (max. distance upslope and downslope of micro-tracer application trenches ≤ 5 m) are compared 

against tracers distributed along small trenches (see Fig. 1). The solid and dashed vertical line shows the 

average transport distance of the RFIDs and the corresponding micro-tracer, respectively. 

 

  

original tracer
location

0.0

0.5

1.0

1.5 RFIDs

Magnetit

A

B

0.0

0.5

1.0

1.5 RFIDs

Magnetit

-0.5 0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

Distance fromoriginal location [m]

P
ro

b
a
b
ilt

y
d
e
n
si

ty

RFIDs

Fluorescent
C

Movement of tracers per year between t0 and t1 (A+B) and t1 and t2 (C);

A and C represent tracer movement froma upslope position (at 10 m) and

B froma downslope position (at 35 m); vertical lines are means.

Magnetit at t1 compared to mean magnetit of

different plot segments at t0



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

Fig. 5. Soil depths-dependent translocation distance of fluorescent sand during seven tillage passes; 

translocation from upper trench between t1 and t2.  
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Fig. 6. Difference in topography between t2 and t0 for all measuring systems. High-resolution data degraded 

to 0.5 m x 0.5 m. Elevation differences derived from the flagstone technique are given in the mid (Faro) DoD 

map. 
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Fig. 7. Average soil translocation distance and rate derived from the different methods used between t0 

and t1 and t1 and t2; movement of tracers it is indicated at the location where the tracers were originally 

applied; it is important to note that the movement of RFIDs is calculated in 5 m segments averages the 

mean movement of 4 to 31 RFIDs (mean n per segment = 20.8). 
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Fig. 8. Schematic figure of scan angle and shadowing effect of the laser scanners compared to UAV/SfM. 
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Tables 

 

Table 1. Bulk density and stone content measured after preparation of the 
plot with one-time ploughing to a depths of 0.25 m (t0) and at end of the 
experiment after 14-times tillage with the field cultivator to a depths of 0.15 
cm (t2). 

Parameter 
Soil depth 

(m) 
Time Mean 

Standard 
Dev. 

Min Max n 

Bulk density 
incl. stones  
(t m-3) 

0.06-0.12 t0 1.53 0.08 1.36 1.70 20 

0.18-0.24 t0 1.56 0.11 1.40 1.78 20 

0.06-0.12 t2 1.60 0.08 1.48 1.79 19 

0.18-0.24 t2 1.67 0.13 1.47 1.88 20 

Stone 
content 
(mass-%) 

0.06-0.12 t0 14 4.3 9 25 20 

0.18-0.24 t0 13 3.9 7 22 20 
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Table 2. Mean tracer translocation at magnetic 
tracer trenches and at fluorescent trench according 
to probability density functions. 

Tracer  
Tracer 
origin 

Time of 
measurement 

Mean 
translocation 
per tillage (m) 

Magnetic 
tracer Upper 

trench 
t1 

0.71 

RFIDs 0.44 

Magnetic 
tracer Lower 

trench 
t1 

0.59 

RFIDs 0.37 

Fluorescent 
tracer Upper 

trench 
t2 

 

0.70 

RFIDs 0.50 
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Table 3. Mean soil translocation distance per tillage pass in 
different 1-cm soil layers and relative translocation 
amount in each of the 1-cm soil layer. 

Soil depths 
(cm) 

Translocation  
distance (m) 

Relative amount 
transported per layer 

(%) 

Surface 0.69  

0...1 0.71 5.90 

1...2 0.81 6.81 

2...3 0.81 7.29 

3...4 0.79 7.06 

4...5 0.76 6.48 

5...6 0.77 6.64 

6...7 0.80 7.19 

7...8 0.83 7.61 

8...9 0.78 7.20 

9...10 0.74 6.90 

10...11 0.74 6.91 

11...12 0.71 6.55 

12...13 0.70 6.13 

13...14 0.68 5.52 

14...15 0.74 5.82 

0...15 0.76 100 
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Table 4. Comparison of changes in topography at the flagstone 
positons and for the TLS system and the UAS for the entire inner 
plot. 

 Δh t1-t0 (cm) Δh t2-t1 (cm) Δh t2-t0 (cm)  

 Mean SD Mean SD Mean SD n 

At flagstone positions 

Flagstones -2.4 3.3 1.1 2.7 -1.3 3.0 

12 
Leica -0.8 2.4 -0.4 3.1 -1.1 4.7 

Faro -0.9 2.6 -1.0 3.4 -1.9 5.0 

UAV     0.4 3.9 

0.5 x 0.5 raster inner plot  

Leica -0.8 3.0 -0.1 2.8 -0.8 3.7 

2000 Faro -0.6 2.9 -0.3 2.8 -0.9 3.8 

UAV         1.1 3.4 

 

 


