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ABSTRACT

Aims. We aim to present 70 spectra of 68 new high-redshift type Ia supernovae (SNe Ia) measured at ESO’s VLT during the final
two years of operation (2006-2008) of the Supernova Legacy Survey (SNLS). This new sample complements the VLT three year
spectral set. Altogether, these two data sets form the five year sample of SNLS SN Ia spectra measured at the VLT on which the final
SNLS cosmological analysis will partly be based. In the redshift range considered, this sample is unique in terms of homogeneity
and number of spectra. We use it to investigate the possibility of a spectral evolution of SNe Ia populations with redshift as well as
SNe Ia spectral properties as a function of lightcurve fit parameters and the mass of the host-galaxy.
Methods. Reduction and extraction are based on both IRAF standard tasks and our own reduction pipeline. Redshifts are estimated
from host-galaxy lines whenever possible or alternatively from supernova features. We used the spectro-photometric SN Ia model
SALT2 combined with a set of galaxy templates that model the host-galaxy contamination to assess the type Ia nature of the candidates.
Results. We identify 68 new SNe Ia with redshift ranging from z = 0.207 to z = 0.98 for an average redshift of z = 0.62. Each
spectrum is presented individually along with its best-fit SALT2 model. Adding this new sample to the three year VLT sample of
SNLS, the final dataset contains 209 spectra corresponding to 192 SNe Ia identified at the VLT. We also publish the redshifts of other
candidates (host galaxies or other transients) whose spectra were obtained at the same time as the spectra of live SNe Ia. This list
provides a new redshift catalog useful for upcoming galaxy surveys. Using the full VLT SNe Ia sample, we build composite spectra
around maximum light with cuts in color, the lightcurve shape parameter (’stretch’), host-galaxy mass and redshift. We find that
high-z SNe Ia are bluer, brighter and have weaker intermediate mass element absorption lines than their low-z counterparts at a level
consistent with what is expected from selection effects. We also find a flux excess in the range [3000-3400] Å for SNe Ia in low mass
host-galaxies (M < 1010 M�) or with locally blue U − V colors, and suggest that the UV flux (or local color) may be used in future
cosmological studies as a third standardization parameter in addition to stretch and color.

Key words. cosmology : observations - supernovae : general - methods : data analysis - techniques : spectroscopy

? Based on observations obtained with MegaPrime/MegaCam, a joint
project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii
Telescope (CFHT) which is operated by the National Research Council
(NRC) of Canada, the Institut National des Sciences de l’Univers of the
Centre National de la Recherche Scientifique (CNRS) of France, and the

University of Hawaii. This work is based in part on data products pro-
duced at TERAPIX and the Canadian Astronomy Data Centre as part
of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative
project of NRC and CNRS.
?? Based on observations obtained with FORS1 and FORS2 at the
Very Large Telescope on Cerro Paranal, operated by the European
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1. Introduction

The use of type Ia supernovae (SNe Ia) as standardisable candles
has led to the discovery of the acceleration of the universal ex-
pansion (Perlmutter et al. 1997, 1999; Riess et al. 1998; Schmidt
et al. 1998). This acceleration is usually attributed to a dark en-
ergy (DE) component that contributes 70% of the energy budget
of the Universe. Characterizing the nature of this component by
constraining its equation-of-state parameter w (the DE pressure
to energy density ratio) has become a major goal of observational
cosmology. For this purpose, a combination of various probes
has been used. Among those probes, the measurement of lumi-
nosity distances to SNe Ia provides the simplest and most direct
way of probing DE at low to intermediate redshifts (Astier et al.
2006; Wood-Vasey et al. 2007; Kowalski et al. 2008; Sullivan
et al. 2011; Suzuki et al. 2012; Campbell et al. 2013; Rest et al.
2014; Betoule et al. 2014).

Since the original Supernova Cosmology Project and High-z
team projects, new generations of observational programs have
been developed in order to fill the gaps in the Hubble diagram.
Among those, the Supernova Legacy Survey (SNLS), with its
427 spectroscopically confirmed SNe Ia in the range 0.15 < z <
1.1, is the largest supernova survey at high redshift to date.

SNLS was a five year experiment conducted as part of the
Deep Survey of the Canada-France-Hawaii Telescope Legacy
Survey (Sullivan et al. 2003). It is a spectro-photometric pro-
gram aiming at discovering and following SNe Ia at intermedi-
ate to high redshifts. Conducted from mid-2003 to late 2008, the
experiment was split into two surveys. A photometric program
at the Canada-France-Hawaii Telescope (CFHT) implemented
a rolling search technique that permitted the detection of new
SN Ia candidates as well as the follow-up of their lightcurves
in several photometric bands (mainly MegaCam gM , rM , iM and
zM; Boulade et al. 2003). Over the five years of operation, around
1000 SN Ia candidates with well sampled multi-band lightcurves
were obtained (Guy et al. 2010; Bazin et al. 2011). SNLS spec-
troscopic follow-up programs have been performed in parallel
on 8-10 meter diameter telescopes to secure the candidate type
and redshift. Spectra of about half of the SNLS SNe Ia have
been acquired at the ESO Very Large Telescope (VLT), while
the remaining spectra have been obtained at the Gemini-North
and South, Keck I and II telescopes.

Astier et al. (2006) published the first SNLS cosmologi-
cal analysis based on the first year data set consisting of 71
SNe Ia measured from August 2003 to July 2004. Photome-
try calibration and luminosity distances to 252 SNe Ia mea-
sured in the first three years of operation were presented in
Regnault et al. (2009) and Guy et al. (2010), respectively. The
corresponding spectra and redshifts were published in Howell
et al. (2005); Bronder et al. (2008); Balland et al. (2009); Walker
et al. (2011). Combining the SNLS three year SNe Ia with low-
redshift (z<0.1) SNe Ia from the literature (Hicken et al. 2009;
Contreras et al. 2010), intermediate redshift SNe Ia from the 1st
year of Sloan Digital Sky Survey SDSS-II Supernova Survey
(Holtzman et al. 2008; Kessler et al. 2009) and a dozen high-
redshift SNe Ia from the Hubble Space Telescope (HST) (Riess
et al. 2007), Conley et al. (2011) produced the most advanced
supernova Hubble diagram at the time, with 472 SNe Ia in total.
More recently, based on an combined flux calibration of SNLS
and SDSS (Betoule et al. 2013), Betoule et al. (2014) performed
a joint analysis of SNLS and SDSS-II supernova sets (the Joint

Southern Observatory, Chile (ESO Large Programs 171.A-0486 and
176.A-0589).
??? Contact author e-mail: balland@lpnhe.in2p3.fr

Lightcurve Analysis – JLA). Including external, non-SN datasets
in their cosmological analysis, such as the CMB measurements
from the Planck (Planck collaboration XV 2013) and WMAP
experiments (Bennett et al. 2013), and the Baryon Acoustic Os-
cillation (BAO) results (Beutler et al. 2011; Padmanabhan et al.
2012; Anderson et al. 2012), Betoule et al. (2014) obtain a value
of the equation of state w = −1.028 ± 0.055 (including both sys-
tematics and statistical uncertainties, assuming a flat universe),
the most precise measurement to date (see Aubourg et al. 2015;
Alam et al. 2017 for recent constraints with similar precision
based on BAO scale measurements from the Baryon Oscillation
Spectroscopic Survey (BOSS) experiment).

The present paper focuses on the description and analysis
of SNLS spectra taken at the VLT between August 2006 and
September 2008 (the final two years of SNLS). It complements
the analysis of the first three years SNLS-VLT spectra published
in Balland et al. (2009). Confirmed SNe Ia of the new sample
having sufficient photometric information will be included in
the SNLS 5yr Hubble diagram (Betoule et al. 2017, in prep).
Also published in this paper are the redshifts of other objects
(host galaxies or other transients) whose spectra were obtained
at the same time as the spectra of live SNe Ia through the use of
the multi-object spectroscopic (MOS) mode of the FORS instru-
ments at the VLT. This list provides a new redshift catalog useful
for upcoming galaxy surveys.

Spectroscopy is essential not only for securing the type and
redshift of the SN Ia candidates, but also because SNe Ia spec-
tra are a rich source of physical information about their ex-
plosion conditions and composition. Even though the signal-to-
noise (S/N) ratio of SNLS spectra is not ideal for detailed anal-
yses, and despite the fact that they are usually only obtained at
a single phase1 (most often around maximum light), they have
been used in several studies that search for empirical correla-
tions beetwen SNe Ia peak luminosity and spectroscopic features
in order to reduce the residual dispersion in the Hubble diagram.
Bronder et al. (2008) and Walker et al. (2011), using SNLS spec-
tra and low-redshift spectra compiled from the literature, show
the existence of a significant correlation between Hubble residu-
als and the equivalent width of Si ii (∼ 4130 Å) and Mg ii (∼ 4300
Å) absorptions, even though not at the level of the correlations
of Hubble residuals with photometric color and stretch used in
the standardization process. In the same spirit, using spectra of
SNe Ia at low and higher redshift, Nordin et al. (2011) find a
correlation between the SALT2 color and the pseudo-equivalent
width of Si iiλ4130 that could be used to improve cosmological
distance measurements with SNe Ia roughly at the level obtained
by the usual standardization procedure based on lightcurve shape
and color parameters. (We note, however, that this effect is not
seen by Chotard et al. 2011). More recently, Milne et al. (2015)
use SNLS-VLT three year spectra, among others, to explore the
spectral region producing UV/optical color differences seen in
SNe Ia populations.

Underlying cosmological analyses with SNe Ia, the hypoth-
esis that SNe Ia properties do not evolve with redshift statisti-
cally in a way that is not corrected for by the usual stretch- and
color-luminosity correction, can be assessed with spectral data.
Foley et al. (2008a), using various SNe Ia samples from Lick and
Keck observatories and from the ESSENCE program (Wood-
Vasey et al. 2007), make a comparison of composite spectra at
low and high redshift and show that once galaxy light contam-
ination is accounted for, the two samples are remarkably simi-

1 We define the spectrum phase φ as the restframe age of the supernova
in days with respect to the B-band maximum light, divided by stretch.
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lar. Although several minor localized deviations between the low
and high-redshift spectra are found, the difference constrains the
evolution of SN spectral features to be less than 10% in relative
flux in the optical rest-frame. Using the SNLS three year sam-
ple, Balland et al. (2009) compute a composite spectrum around
maximum light at z > 0.5 and compare it with its lower red-
shift counterpart. Absorption features due to intermediate mass
elements (IME) around 4000 Å are found to be shallower in the
high redshift spectrum. This is consistent with the SNe Ia ob-
served at higher redshift being more luminous, hence display-
ing hotter ejecta with a higher ionization level than at low red-
shift (Sullivan et al. 2009). Comparing SNe Ia spectra obtained
with the Hubble Space Telescope Imaging Spectrograph (HST-
STIS) with ground-based counterparts with similar stretches and
phases, Cooke et al. (2011) find a similar trend in the UV region
of the spectra. They interpret these discrepancies as represent-
ing compositional variations among their sample rather than be-
ing due to an evolutionary effect. Maguire et al. (2012) improve
over the Cooke et al. (2011) analysis by using 32 low redshift
(0.001 < z < 0.08) SNe Ia HST-STIS spectra and compare them
to the sample of Ellis et al. (2008). They find that their mean
low redshift near-UV spectrum has a depressed flux compared
to its intermediate redshift counterpart, consistent with evolu-
tion of the near-UV continum at the 3σ level. This is in quali-
tative agreement with Foley et al. (2012) who compare a sam-
ple of 17 Keck/SDSS high-quality spectra at intermediate red-
shift to a low-redshift sample with otherwise similar properties:
the Keck/SDSS SNe Ia have, on average, extremely similar rest-
frame optical spectra, but a UV flux excess with respect to the
low redshift sample. In this paper, we reassess the issue of super-
nova evolution with redshift in the light of our new sample. We
also look for spectral differences arising from splitting our sam-
ple by stretch or host-galaxy mass that go beyond mere selection
effects.

We describe the SNLS photometric survey and spectroscopic
programs in Sect. 2. In Sect. 3, we present the acquisition and
reduction of our new spectral data. We present our redshift es-
timate and SN Ia identification procedures in Sect. 4. Results
on individual SN Ia spectra are presented in Sect. 5, as well the
redshift catalog of other, non-SNe Ia. The average properties of
our SN Ia sample is discussed in Sect. 6. A comparison with the
VLT three year sample is also provided in that section. In Sect.
7, we build composite spectra below and above z = 0.6 (the av-
erage redshift of our sample) and discuss their differences in the
context of a possible redshift evolution of SNe Ia spectral prop-
erties. We also study spectral differences arising from splitting
our sample by stretch or host-galaxy stellar mass. We discuss
our findings and draw our conclusions in Sects. 8 and 9.

2. The SNLS experiment

2.1. The photometric survey

The SNLS survey is a Stage II Dark Energy experiment (Al-
brecht et al. 2006) aiming at constraining the DE equation of
state parameter at the 10 percent level using several hundreds of
precisely calibrated SNe Ia lightcurves sampled around the B-
band maximum luminosity. Detection and photometric follow-
up are made through an optical imaging survey using the Mega-
Cam camera on the 3.6m CFHT in Hawaii (Boulade et al. 2003).
The supernova candidates are detected thanks to their time-
varying luminosity in relation to a reference image in four 1
square degree fields (D1-D4) with low Galactic-extinction. The
fields have been observed every 3-5 nights (2-4 days in super-

nova restframe) during 5 to 6 lunations per year. This rolling
search technique permits simultaneous observations of a large
number of SN Ia candidates and the construction of multi-color
lightcurves over time.

2.2. The spectroscopic surveys

Spectroscopic follow-up is necessary to assess the SN Ia nature
of the candidates and estimate their redshift. Due to the faintness
of distant SNe Ia (rM ∼ 24 at z ∼ 1), the spectroscopic follow-up
is done with 8-10 meter class telescopes. Two large programs at
the VLT were allocated a total of 500h of observing time during
the first four years of SNLS. A similar amount of time was allo-
cated on the Gemini North and South telescopes. On the Keck I
and II telescopes, about four nights per semester were allocated
to SN followup during the five years of SNLS. Candidates were
selected for spectroscopy based on the quality of the first few
measured photometric points on their lightcurves (Sullivan et al.
2006a). Spectra of 755 candidates have been measured, amount-
ing to roughly half of the photometric SN Ia candidates.

High redshift candidates (z > 0.6) were preferentially ob-
served by the Gemini telescopes because of the improved sky
lines subtraction with the nod-and-shuffle mode available at
these telescopes (Glazebrook & Bland-Hawthorn 2001). More
than 200 candidates were observed on Gemini from August 2003
to May 2008, 150 of which have been identified as SNe Ia (How-
ell et al. 2005; Bronder et al. 2008; Walker et al. 2011).

Lower redshift targets were usually observed at the VLT us-
ing the visual and near UV spectrographs FORS1 and FORS2
(Appenzeller et al. 1998). Roughly 50% of the SNLS spectra
(321 out of 755) were obtained during the two VLT large pro-
grams (European Southern Observatory Large Programs 171.A-
0486 and 176.A-0589) from June 2003 to September 2007. 124
objects, observed between June 2003 and July 2006, have been
identified as SNe Ia (either SN Ia or SN Ia?, see our classifica-
tion Sect. 4.3). SNe Ia measured in long-slit spectroscopy mode
(LSS) during this period constitute the VLT three year SN Ia data
set from SNLS (Balland et al. 2009). This set is supplemented by
59 SNe Ia observed from August 2006 until September 2007 and
published in the present paper. We also add to the present sam-
ple 8 SNe Ia that were measured in MOS mode during the first 3
years of SNLS but not published in Balland et al. (2009) and one
that was identified as a SN Ia by Bazin et al. (2011) after a new
extraction (see Sect. 3.1). In total, the sample presented in this
paper thus contains 68 SNe Ia (see Sect. 3) whose redshift ranges
from 0.21 to 0.98. Besides SNe Ia, 28 SN II, 9 SN Ib/Ic and 12
AGN were identified in the full VLT spectral sample. Finally, the
identification was inconclusive for 89 (27%) candidates.

Several dozen candidates were observed at the Keck tele-
scopes, in particular objects in the northernmost SNLS field (D3)
that was not observable from the VLT. Around 150 SNLS can-
didate observations have been performed at Keck. A subset of
these Keck spectra with a substantially higher S/N than needed
purely for typing are presented in Ellis et al. (2008).

3. The SNe Ia spectral set

3.1. The SN Ia sample

The SNe Ia sample (SN Ia and SN Ia?) of the present anal-
ysis contains the SNe Ia spectra observed at VLT during the
last year and a half of the SNLS survey, namely from August,
1st 2006 up to the end of the survey mid-2008. As mentioned
above, we also publish the spectra of SN 05D1dx, SN 05D1hm,
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SN 05D1if, SN 05D2le, SN 06D2ag, SN 06D4ba, SN 06D4bo
and SN 06D4bw that were acquired in MOS mode before Au-
gust, 1st 2006 but were not included in the three year VLT spec-
tral sample (Balland et al. 2009) as the extraction pipeline used
for that analysis did not support MOS mode. For completeness,
we further add the spectrum of SN 06D2bo, a Type Ia super-
nova measured in LSS mode in February 2006 that was first
misclassified2 as a non-SN Ia object, then reclassified by Bazin
et al. (2011). Altogether, 107 spectra of 104 candidates have
been analyzed in the present study, 68 of which3 are identified
as SNe Ia (see Sect. 5).

3.2. Data acquisition and reduction

Up until the beginning of September 2005, all the real-time spec-
troscopic follow-up with FORS1 and FORS2 was done in long
slit mode. By that time, SNLS had been running for slightly more
than two years and was starting to accumulate a significant num-
ber of transients that lacked real-time spectroscopic follow-up.
From September 2005 onward we used the multi-object spectro-
scopic (MOS) mode of FORS1 and FORS2 to target live tran-
sients, the host-galaxy of any other transient that happened to
be within the FORS2 field of view and randomly selected field
galaxies (see Sect. 5.4).

The MOS mode consists of 38 movable blades that can be
used to make 19 slits anywhere in the FORS focal plane. The ad-
vantage of the MOS mode over precut masks (the MXU mode)
is that it allows one to configure the focal plane in a very short
amount of time. The MXU masks require at least one day to
manufacture and need to be inserted into the FORS mask ex-
change unit during the afternoon, which means that there is some
delay in targeting the live transient. Furthermore, the MXU mode
is available with FORS2 only. The disadvantage of the MOS
mode is that the length of the slits are fixed – the slit lengths
vary between 20′′ (even numbered slits) and 22′′ (odd numbered
slits). With respect to the MXU mode, this reduces the flexibil-
ity one has in selecting targets, and it usually means that only
one object (generally the SN) is observed in the center of the slit
(length wise). Some objects are observed close to the slit ends,
which complicates the processing of the data.

We used one of two setups with FORS. If the SN was likely
to be below z ∼ 0.7, we used the 300V grism with the GG435
order sorting filter. If it was likely to be at a higher redshift we
used the 300I grism with the OG590 order sorting filter. The slit
widths were set to 1′′. For all observations, we used the atmo-
spheric dispersion corrector (ADC) and set the position angle to
pass through the SN and the center of its host-galaxy. The FORS
data were reduced using a mixture of standard IRAF4 tasks and
our own routines that were specifically written to process MOS
data from FORS1 and FORS2. Each spectrum was calibrated
in wavelength and flux. For the purpose of flux calibration, we
produced a number of calibration curves from the observation
of spectro-photometric standard stars and updated them periodi-
cally for a given setup. Differential slit losses were partially cor-
rected by the ADC. Residual losses were taken into account with

2 For this supernova, the automatic extraction procedure failed at iden-
tifying the correct object in the crowded field in which it exploded and
a neighboring spectrum was extracted instead.
3 A release of the spectral set presented in this paper is available at
http://supernovae.in2p3.fr/Snls5VltRelease.
4 IRAF is distributed by the National Optical Astronomy Observato-
ries which are operated by the Association of Universities for Research
in Astronomy, Inc., under the cooperative agreement with the National
Science Foundation

the recalibration procedure described in Sect. 4.3. No correction
of telluric features was performed. For the SNe, we also com-
puted an error spectrum derived from Poisson noise in regions
of the 2D sky-subtracted spectrum that are free of objects.

4. Spectral analysis

4.1. Redshift estimates from host-galaxy lines (zhost)

Redshifts are estimated from strong spectral features when
present and are not corrected to the heliocentric reference frame.
The most commonly identified host-galaxy features in the spec-
tra are emission lines from the [O ii] unresolved λλ3727, 3729
doublet, Hβ λ4861, the [O iii] doublet λλ4959,5007, Hα λ6563
and absorption lines from higher order Balmer transitions, and
Ca ii H&K λλ3934, 3968. In some spectra, other host-galaxy
lines such as [Ne iii] λ3869, [N ii] λ6549, [N ii] λ6583 and [S ii]
λλ6716, 6730 are identified. To estimate the redshift, we per-
form a gaussian fit of each identified host-galaxy emission or
absorption line. Where possible, we preferentially use well de-
fined host-galaxy features located in the center of the spectral
range. We assign an error of δz ∼ 0.001 on the redshift derived
from the host-galaxy lines width, typical of the uncertainty ob-
tained on host-galaxy redshifts (Lidman et al. 2005; Hook et al.
2005; Howell et al. 2005; Balland et al. 2006, 2007; Baumont
et al. 2008). About 75% of the redshifts of our sample come
from host-galaxy spectral lines, the remaining 25% come from
SN features, because of insufficient or nonexistent host-galaxy
signal in the spectra.

4.2. Redshift estimates from SN features (zS N)

If there is no apparent host-galaxy line, the redshift is estimated
from the supernova features themselves. First, a rough estimate
is visually inferred from one of the large troughs characteristic
of SN Ia spectra (e.g., Ca ii or Si ii λ4130). Then, we perform
a combined fit of the observed lightcurves and spectrum of the
object using SALT2 (Guy et al. 2007, see Sect. 4.3 below) over
a grid of redshift values regularly spaced around the input value,
with a step of ∆z = 0.005. The redshift value is given by the
best-fit χ2. As the supernova features have widths larger than
those of host-galaxy lines, we assign an error of δz ∼ 0.01 on
the supernova redshifts and we consider this value as typical of
the error obtained from SN features. Indeed, the distribution of
zS N − zhost computed on a subset of candidates for which both
redshifts are available has a mean of -0.001 and a standard de-
viation σ ∼ 0.007. This supports the value of 0.01 adopted as
a typical error for zS N . In 20% of cases, the best-fit redshift is
further refined by visual inspection of the spectral fit, that is,
the redshift is slightly shifted from the best-fit value to visu-
ally ensure the best overall agreement between the model and
the spectrum. These cases usually correspond to noisy spectra
with S/N per wavelength bin . 1 and a high & 40 % fraction
of host galaxy contamination. As an independent check, we also
use SNID5 (Blondin & Tonry 2007; Blondin et al. 2011) to se-
cure our estimates.

4.3. SN identification

To assess the Ia nature of the candidates, we follow the proce-
dure described in Baumont et al. (2008) and extensively used in

5 SuperNova IDentification
http://www.oamp.fr/people/blondin/software/snid/index.html
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Balland et al. (2009). We perform a combined fit of observed
lightcurves and spectra with SALT2 using a χ2 minization pro-
cedure. Telluric absorptions present in the spectra are masked.
A galaxy component modeling the host-galaxy is added to the
SN model to take into account host-galaxy contamination. The
overall fraction of the host-galaxy in the full model is a free pa-
rameter that is adjusted during the fit. Host-galaxy models in-
clude PEGASE2 synthetic templates (Fioc & Rocca-Volmerange
1997, 1999) for elliptical (E), lenticular (S0), Sa, Sb, Sc and Sd
Hubble types at various ages. We also consider Kinney et al.
(1996) templates for the same types, excluding Sc and Sd. The
best-fit host-galaxy model is obtained by interpolation between
two contiguous types in the Kinney template sequence or two
contiguous galaxy ages in the PEGASE2 templates (see Bau-
mont et al. 2008; Balland et al. 2009 for more details). The final
supernova spectrum is obtained by subtracting the best fit host-
galaxy model from the full spectrum. We do not add host-galaxy
lines to the PEGASE2 templates and, consequently, line residu-
als often contaminate the final SN spectrum. This does not im-
pact the identification of the candidate type as these residuals are
localized and do not affect the overall spectral shape.

The best-fit SALT2 model is characterized by a SN color c
(defined as a color excess: c is the B − V color of the candidate
at maximum light minus the average color of the SALT2 train-
ing sample supernovae), a lightcurve width parameter x1 linked
to the stretch s (a s = 1 SN Ia has x1 = 0)6, the MJD date
of B-band maximum light and an overall normalization param-
eter x0

7. Imperfect flux calibration of the candidate spectrum
is taken into account by allowing the photometric model to be
recalibrated (twisted) to fit the spectrum using a recalibration
function parametrized as exp(

∑
γiλ̃

i). Here, the {γi} are a set of
recalibration coefficients and λ̃ is a pivot wavelength defined as
λ̃ = λ/4400 − 1 (see Guy et al. 2007 for further details). The
exponential function enforces positivity to avoid negative flux
values. In practice, two recalibration coefficient (an overall shift
and a tilt of the spectrum) are sufficient to account for imperfect
calibration.

The nature of the candidate is then assessed by visual inspec-
tion of the fit results. Following Balland et al. (2009), we classify
each spectrum in one of the following categories :

– SN Ia : the object is certainly a SN Ia. A candidate falls into
this category if at least one defining feature of SNe Ia is seen
(Si ii λ4130, Si ii λ6150 or the S ii W-shaped feature around
5600 Å) or if the spectral fit is good over a large spectral
range, the spectrum phase is earlier than 5 days past B-band
maximum light (to avoid possible confusion with type Ib/c,
see Hook et al. 2005; Howell et al. 2005) and no strong re-
calibration is needed (flux correction lower than 20% over
the whole spectral range, see Baumont et al. 2008).

– SN Ia? : the candidate is likely a SN Ia but other types can-
not be excluded given the S/N ratio and phase. The spectra
that fall into this category do not present clear SN Ia features.
They typically have a low S/N and/or a phase larger than +5
days and/or heavy host-galaxy contamination.

– SN? : a signal is visible on the spectrum. It is possibly a
supernova, but the type is unclear.

6 In this paper, we use alternatively the x1 parameter and the stretch s.
The latter is used in particular when we build composite spectra for the
sake of comparison with similar composites published in the litterature.
7 In SALT2, the SN flux as a function of phase φ and wavelength λ is
modeled by F(S N, φ, λ) = x0 ×

[
M0(φ, λ) + x1 M1(φ, λ)

]
× exp(cCL(λ)),

where M0 is the average spectral sequence and M1 describes the main
variability among the SNe Ia of the training sample. CL(λ) is the aver-
age color correction law.

– not SN Ia : candidates that fall into this category refer to two
different cases:
either 1) the spectrum is clearly not the one of a SN Ia but
rather falls into one of the following possibilities: SN II,
SN Ib, SN Ic or AGN. As SALT2 is a SN Ia model built
on a training sample that only contains SNe Ia, it does not
allow for a direct identification of these types. The final clas-
sification is made by eye, but the non-SN Ia nature of the
candidate appears through features badly reproduced and/or
a stronger than usual recalibration.
or 2) there is not enough signal for a clear identification. This
is usually the case for spectra with a heavy host-galaxy con-
tamination (fraction higher than 95%), as essentially no su-
pernova signal is left after host-galaxy subtraction.

– SN Ia-pec: the spectrum is peculiar and is likely to be
of the type of SN 1991T/SN 1999aa or SN 1991bg. We
found only one object (SN 07D1ah, see Sect. 6.1) of a pe-
culiar (SN 1991T like) type in the present sample. Peculiar
SNe Ia are discarded from the sample used for cosmology
fits in SNLS.

In the identification procedure outlined above, the values of
the photometric parameters are essentially not considered as we
want our classification to be based as much as possible on spec-
tral features. However, when in doubt, inspection of these param-
eters can add valuable information and help for the final deci-
sion. For example, a large value of the shape parameter x1 (typi-
cally |x1| > 2) can confirm some peculiarity seen in the spectrum.
A large color parameter c can be due to a dense dust environment
or a very red intrinsic color, but also be the signature of a SN Ic.
As in Balland et al. (2009), we have cross-checked our identifi-
cations using the superfit template fitting technique of Howell
et al. (2005), and in some cases, SNID. Putting together all the
tools and information at our disposal, convergence to a final type
is obtained in all cases with a low probability of misclassifica-
tion.

5. Results

Among the 104 SNe Ia candidates in the sample presented in this
paper (see Sect. 3.1 above), 51 have been classified as SN Ia, 16
as SN Ia?, 1 as SN Ia-pec, 12 as SN? and 24 as not SN Ia. In
this section, the spectra of the 68 identified SNe Ia, SNe Ia? and
SN Ia-pec are presented individually. In Sect. 5.4, we present, for
completeness, a catalog (redshift and type) of the other objects
(galaxies and other supernova types) observed over the course of
the survey.

5.1. Observing log

A listing of the objects identified as SN Ia, SN Ia? or SN Ia-pec
is provided in Table 1, together with a brief observing log. For
each spectrum, the coordinates (RA and Dec) of the object, the
UTC date of acquisition and the exposure time are presented in
columns 2, 3, 4 and 5, respectively. Observing conditions (me-
dian seeing and airmass) are given in columns 6 and 7, and
the observer frame iM-band magnitude at the date of acquisi-
tion (a posteriori interpolated from the lightcurve) is listed in
column 8. Two SNe have been observed twice: SN 05D1dx and
SN 06D1eb, so 70 spectra for 68 objects are presented in Table
1. All spectra have been obtained with the MOS mode except for
SN 06D1cm, SN 06D1du, SN 06D1ez, SN 06D1fd, SN 06D1ix,
SN 06D2bo, SN 06D4gs and SN 07D2aa which were acquired
in LSS mode. All but four spectra have been measured using the
300V grism + GG435 order sorting filter.
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5.2. Redshifts and types

Redshifts and identifications are presented in Table 2 for each of
the 68 SNe Ia candidates. The type (SN Ia, SN Ia? or SN Ia-
pec) and the redshift are given in columns 2 and 3. The redshift
source (H for host-galaxy; S for SN) is shown in column 4. Eigh-
teen redshifts out of 68 (27%) are estimated from supernova fea-
tures. Column 5 lists the spectrum phase8, while columns 6 and 7
present, for each spectrum, the best-fit host-galaxy model and the
overall fraction it amounts in the full SN + host-galaxy model.
We label the host-galaxy model with a letter for the Hubble type
followed by the age (in Gyrs) of the corresponding PEGASE2
template. For the Kinney templates, the two contiguous types
between which the best-fit host-galaxy model has been interpo-
lated is indicated. In some cases, the best-fit is obtained when
no galaxy component is added to the model. We indicate these
cases with the label NoGalaxy in column 6. An average S/N ra-
tio, <S/N>, computed in 5 Å bins over the full spectral range, is
shown in column 8.

5.3. Notes on individual spectra

The 70 spectra of the 68 SNe Ia are presented individually in
Fig. 20 - 89. In the left panel, the extracted spectrum is shown (in
gray). It is not corrected for telluric features. The SALT2 best-fit
model is overlayed, either with no recalibration (red dashed line)
or once recalibration is applied (red solid line). The best-fit host-
galaxy template is also plotted (blue solid line). The best-fit host-
galaxy model, redshift and spectrum phase are noted in the figure
captions. In the right panel, the host-galaxy subtracted spectrum,
that is the spectrum minus the blue solid line of the left panel, is
shown (in gray) with the SN model overlayed as a red solid line.
The latter SN model corresponds to the full model (red solid
curve) minus the host-galaxy model (blue solid curve). When
the best-fit is obtained for a model with no galaxy component
(the NoGalaxy cases), only the extracted spectrum (in gray) and
the best-fit model without (red dashed curve) and with (red solid
line) recalibration are presented.

In almost 90% of cases, the spectrum is well reproduced by
SALT2. However, we find 8 spectra in our certain SN Ia sample
for which the fit is not fully satisfying, at least in some wave-
length regions. They mostly correspond to spectra highly con-
taminated by the host-galaxy signal for which the host-galaxy
subtraction is difficult: SN 06D1dc ( fgal=77%), SN 06D1fx
(70%), SN 06D1jz (73%), SN 06D2hu (71%), SN 07D1ad
(69%) and SN 07D4dq (78%). Two spectra (SN 06D1dl and
SN 07D1ab) show a sharp drop in their flux in the reddest part,
hinting to a potential calibration problem beyond 9000 Å (ob-
server frame). Moreover, in the case of SN 06D1dl, one notes
quite narrow features similar to those found in SN 1991bg-like
supernovae, as well as a high velocity Ca ii absorption. However,
both its stretch and color are typical of a normal SN Ia. More
generally, all these spectra have been unambigusouly identified
as SN Ia.

Some spectra need quite a strong recalibration. This is the
case for SN 07D2ct (a very distant SN Ia? at z = 0.94), or for
one spectrum of SN 06D1eb (a SN Ia at z = 0.704). In this lat-
ter case, the phase is more than 5 days before maximum light,
and the strong recalibration could be at least partly explained
by the fact that the SALT2 model is not as well constrained for
early SNe Ia spectra because of the paucity of training data. In

8 The spectrum phase is computed from the best-fit date of maximum
light and the MJD date of the spectrum.

the case of SN 07D2fz, a SN Ia at z = 0.743 that needs sub-
stantial recalibration, the SALT2 color (c = −0.15) is bluer than
the average SNe Ia color at maximum light (< c >max= 0). The
spectrum is on the contrary quite red for a SN Ia slightly before
maximum. This mismatch of the spectrum and lightcurve colors
explains the level of recalibration incorporated in the SALT2 fit
and is at least partly due to the lack of constraining lightcurve
measurements.

5.4. Catalog of non SNe Ia MOS objects

The observations with FORS1 and FORS2 allowed us to target
up to 19 objects simultaneously. One of the slits was always
placed on the active supernova. The other 18 were placed on
a variety of targets, which included the host-galaxy galaxies of
SNLS supernovae that had faded from view, variable sources,
and randomly selected field galaxies. We list the redshifts of all
these targets in Table 3. We use the ID column to distinguish be-
tween host-galaxy galaxies that were targeted after the transient
had faded from view, live transients (using the labels SNIbc,
SNII, SNII? or ?), and random field galaxies. Most redshifts are
derived from two or more clearly identifiable spectral features.
Redshifts based on a single feature, usually [O ii], are marked
with an asterisk.

Also listed are the supernovae that were not SNe Ia. These
supernovae were predominantely Type II SNe. Interestingly
enough, two of these supernovae, SN 06D4eu and SN 07D2bv
were subsequently identified as superluminous supernovae in
Howell et al. (2013). The redshift of SN 06D4eu is derived from
the host-galaxy and was measured with X-Shooter (Howell et al.
2013), whereas the redshift of SN 07D2bv was measured from
the FORS spectrum.

About a sixth of the SNLS five year SN sample was observed
with the MOS mode of FORS1 and FORS2, leading us to spec-
ulate that other superluminous supernovae were observed spec-
troscopically with Gemini and Keck during the five years of the
SNLS. Indeed, Prajs et al. (2016) recently found a superlumi-
nous candidate observed at Keck.

6. Average properties of the VLT SNe Ia samples

In this section, we characterize the average properties of the
SN Ia and SN Ia? subsamples that result from the classifica-
tion decribed in Sect. 5. We compare those to the properties of
the same subsamples of the three year analysis (Balland et al.
2009). The new SN Ia and SN Ia? subsamples are fully inde-
pendent from those of the three year (no supernova in common
and different extraction procedures) and we expect their average
properties to be similar to those of their three year counterparts.
Studying the properties of the new subsamples thus provides a
good way to check that the conclusions drawn from the three
year samples are not biased.

6.1. Spectro-photometric properties of the new VLT sample

The average photometric and spectroscopic parameters of the
SN Ia and SN Ia? new subsamples are shown in Table 4. We
also compute the average properties of the combined SN Ia and
SN Ia? samples. For each parameter of interest, we indicate the
mean value and associated error. We further indicate in paren-
theses the 1σ dispersion around the mean values.

Figures 1 and 2 present the redshift, and phase distributions
of the two samples. The average redshift (row 1 of Table 4
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and Fig. 1) of the SN Ia? subsample (〈z〉S NIa? = 0.77 ± 0.03)
is significantly higher than the one of the SN Ia subsample
(〈z〉S NIa = 0.57 ± 0.03). This is expected as, given our obser-
vational strategy, spectra of distant supernovae are noisier and
thus more likely to be classified as SN Ia?. Indeed, as can be
seen from row 4 of Table 4, SN Ia spectra have a higher S/N per
5 Å bin on average (〈S/N〉S NIa = 5.5 ± 0.9) than SN Ia? spectra
(〈S/N〉S NIa? = 1.6 ± 0.2).

Another important parameter is the spectrum phase. As ex-
plained in Sect. 4.3, spectra observed more than 5 days past max-
imum are preferentially classified as a SN Ia? because confusion
with SN Ib/Ic is possible (although unlikely when lightcurve in-
formation is taken into account along with the spectrum, see end
of Sect. 4.3). Row 2 of Table 4 and Fig. 2 illustrate this ten-
dency : SN Ia spectra are marginally at a lower phase (〈Φ〉S NIa =
1.0± 0.7 days) than SN Ia? spectra (〈Φ〉S NIa? = 2.8± 0.9 days).
In particular, we note that there are no SN Ia? with phases lower
than -5 days.

In the 5th row of Table 4, we give the average values of the γ1
recalibration parameter. γ1 is marginally higher for SN Ia? than
for SN Ia (〈γ1〉S NIa? = 0.66 ± 0.39 vs 〈γ1〉S NIa = 0.42 ± 0.12).

As expected, the average host-galaxy fraction (third row
of Table 4) in the best-fit model for SN Ia? spectra is higher
(〈 fgal〉S NIa? = 0.61 ± 0.04) than for SN Ia spectra (〈 fgal〉S NIa? =
0.39 ± 0.03). We note that supernovae with a high host-galaxy
contamination are often high redshift objects, as the reduction
in the galaxy angular size of objects relative to the seeing with
redshift makes it difficult to extract the supernova candidate sep-
arately from the host-galaxy.

The apparent restframe B-band magnitude m∗B is given in row
6 of Table 4. Candidates classified as SN Ia? appear, on average,
fainter (〈m∗B〉S NIa? = 24.217 ± 0.086) than SN Ia (〈m∗B〉S NIa =
23.285 ± 0.127), as they are more distant on average than the
SN Ia.

We compute a distance corrected apparent magnitude as
m∗ c

B = m∗B − 5log(dLH0c−1) where dL is the luminosity dis-
tance which depends on redshift and on cosmology through
the parameter set {H0,ΩM ,ΩΛ}. We adopt the parameter val-
ues {70, 0.27, 0.73} (Conley et al. 2011). We find a similar av-
eraged value of m∗ c

B for the two subsamples : 〈m∗ c
B 〉S NIa =

23.965 ± 0.045 and 〈m∗ c
B 〉S NIa? = 23.981 ± 0.089. This is some-

what surprising as we expect intrinsically fainter objects to be
classified as SN Ia? rather than SN Ia, and it was indeed the
case in the three year analysis. It is possible that, given the rel-
atively small number of spectra entering the SN Ia? subsample
(16 objects), and given that other competing effects (later phase
or heavily host-galaxy contaminated spectra) are involved, this
tendency is subdominant in our new sample.

The SALT2 color and x1 distributions are presented in Figs.
3 and 4. Typically, a standard SN Ia/SN Ia? has its SALT2 color
in the range −0.2 ≤ c ≤ 0.2, and x1 in the range -2 to 2, corre-
sponding to a stretch factor 0.8 ≤ s ≤ 1.2. All our supernovae
fall into these ranges, except seven: SN 06D1kg, SN 07D1bs,
SN 07D2bi, and SN 07D4cy, which are redder (c > 0.2),
SN 07D4ed, which, on the contrary, is bluer (c < −0.2), and
SN 07D1ah and SN 07D1by, which have high x1 > 2 values. We
discuss each of these SNe Ia in more detail.

– SN 06D1kg (Fig. 43): this is a SN Ia at z = 0.32. Its spectrum
at ∼ +6 days is presented in Fig. 43. Its color (c = 0.265) is
the largest of the sample, while its stretch is standard (s =
1.1). The spectrum is redder than for a standard SN Ia at this
phase. Explosion occured far from the center of its early-
type host-galaxy and it is not clear whether its color is due

to the presence of dust in the line-of-sight (no clear sign of
host-galaxy Na d absorption in the spectrum). Si ii is clearly
visible both around restframe 4100 Å and 6150 Å, and S ii
is also seen. There is no sign of peculiarity in the spectrum
besides its reddening and it is hence classified as a SN Ia.

– SN 07D2bi (Fig. 74): this SN Ia at z = 0.551 is the second
reddest object of our sample (c = 0.233). Its lightcurve shape
is standard (s = 0.99). Its spectrum was taken slightly past
maximum light and is redder than normal at this phase (with
respect to color, it is more like a one-week past maximum
spectrum than a spectrum at maximum light). host-galaxy
Na d absorption falls off the spectral range at this redshift
and no sign of the presence of dust in the line-of-sight of this
supernova can be seen.

– SN 07D4cy (Fig. 83): as the two SNe Ia above, this SN Ia?
at z = 0.456 has a red color (c = 0.218) and a normal
stretch (s = 0.96). The spectrum at maximum is quite noisy
due to poor seeing conditions and the presence of thin cir-
rus. It is heavily host-galaxy contaminated, as the supernova
exploded right at the center of its host-galaxy (more than
90% host-galaxy subtraction is necessary to obtain the final
SN spectrum). The subtracted spectrum is unusally red for
a Type Ia supernova at maximum light, but this effect could
result from an imperfect host-galaxy subtraction.

– SN 07D1bs (Fig. 60): this SN Ia? at z = 0.617 has a red
color (c = 0.207) and a normal stretch (s = 1.04). Unlike
the cases discussed above, its maximum light spectrum is
quite standard and is not redder than usual at this phase. A
high host-galaxy fraction has been subtracted as the super-
nova exploded in the vicinity of the host-galaxy center.

– SN 07D4ed (Fig. 88): this SN Ia at z = 0.52 is slightly
bluer than usual (c = −0.209) but has a normal stretch (s =
1.01). No host-galaxy is visible on the reference image of
this supernova. The host-galaxy free -2 days spectrum shows
clear Si ii λ4130. It is bluer than standard in the restframe
UV. The SALT2 model in the absence of recalibration (red
dashed curve of Fig. 88) is even bluer and recalibration is
necessary to fit the spectrum.

– SN 07D1ah (Fig. 58): the stretch and color of this SN Ia at
z = 0.342 are s = 1.18 and c = −0.03 respectively. The
spectrum has an unusually weak Si ii λ 6150 absorption for
a SN Ia at maximum light, as well as a pronounced Ca ii
absorption trough. Moreover, no Si ii is seen aroung 4100 Å.
It is classified as a SN Ia-pec (see Sect. 4.3).

– SN 07D1by (Fig. 62): despite its slightly high stretch (s =

1.21) and a mediocre SALT2 fit around restframe 4000 Å,
SN 07D1by has a normal color c = 0.07 and its spectrum
appears normal, with a clearly visible Si ii λ4130 absorption.

We have run the SNID package (Blondin & Tonry 2007;
Blondin et al. 2011) on all the above potentially suspect spectra.
The best-fits are always obtained for a normal SN Ia template,
except for SN 07D1ah for which the best-fit is for the overlumi-
nous SN 1991T, confirming our identification.

The mean values of the SALT2 color and x1 parameters
are given respectively in rows 8 and 9 of Table 4. On aver-
age, we find no obvious difference in SN Ia colors (〈c〉S NIa =
−0.016 ± 0.014) with respect to SN Ia? colors (〈c〉S NIa? =
−0.045 ± 0.033). The same conclusion applies for the x1 param-
eter (or, equivalently, for the stretch s computed in row 10 from
the formula given in Guy et al. 2007) : for SN Ia, 〈x1〉S NIa =
0.215±0.109, while for SN Ia? 〈x1〉S NIa? = 0.065±0.226 (again,
quoted errors are errors on the mean), or 〈s〉S NIa = 1.001±0.010
for SN Ia and 〈s〉S NIa? = 0.988 ± 0.020 for SN Ia?.
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Finally, we compute the average properties of the NoGalaxy
SNe Ia (see Sect. 5.2), which we find very similar on average
to those of the full sample. The dispersions of their color and
stretch around the mean are also similar to those of the full sam-
ple.

We conclude from this study that the two subsamples have
very similar photometric properties, on average, which suggests
that the SN Ia? sample is not contaminated by non-Ia objects
with respect to the SN Ia sample.

6.2. Assessing the quality of host-galaxy subtraction

As it impacts the quality of the recovered supernova spectrum
and its subsequent identification, host-galaxy subtraction is a
challenging step in the spectral reduction. As explained Sect. 4.3
above, we use the SALT2 model in order to separate the host-
galaxy signal from the supernova. In this section we a posteriori
assess the quality of the subtraction by comparing a compos-
ite host-galaxy subtracted spectrum built from supernovae with
high contamination to the one made of low contamination super-
novae.

We use only SN Ia spectra (excluding SN Ia?) and ex-
clude the 8 spectra discussed in Sect. 5.3. A color cut is ap-
plied (−0.2 < c < 0.2) and the phase is chosen in the range
−4 < Φ < 4 restframe days to select spectra around maximum
light.

We split the resulting set into two subsamples, based on
the value of the fgal parameter. These contain 17 spectra with
fgal < 50% and 7 with fgal > 50%, respectively. Spectra are
put into the restframe and rebinned to 5 Å. The flux integral is
fixed to unity in the range 4000-4500 Å (restframe). The aver-
age weighted flux and its dispersion are then computed in each
wavelength bin and we obtain one average spectrum for each
subsample. These two spectra are overlapped in Fig. 5. A ±1σ
range around each spectrum is shown.

The two spectra are very similar, showing that the host-
galaxy subtraction is not grossly incorrect for the bulk of our
spectra. Residual host-galaxy lines are visible as we do not at-
tempt to subtract them (we do not model host-galaxy emission
lines in the galaxy model used in SALT2, see Sect. 4.3). These
are stronger in the higher contaminated sample, as expected. Ab-
sorption line residuals are also visible in the 3500 - 4500 Å re-
gion and might be due to a lack of spectral resolution in the host-
galaxy model. We note that the average signal-to-noise ratio is
poorer for the fgal > 50% spectrum, due to the small number of
spectra used for this subsample and to the systematic error asso-
ciated with the subtraction of the host-galaxy signal. We note a
slightly depressed flux of the fgal > 50% spectrum with respect
to the fgal < 50% one beyond restframe 4700 Å. This might hint
toward a slight tendency to oversubtract the host-galaxy signal
at higher wavelengths, but the poor S/N prevents us from draw-
ing a firm conclusion. Given that performing a clean host-galaxy
subtraction is notoriously difficult, we conclude that our tech-
nique is not grossly in error.

6.3. Comparison with the VLT three year data set

In this section, we compare the average properties of the new
SN Ia + SN Ia? sample with the VLT three year SN Ia +
SN Ia? sample. Results are presented in Table 5. Values for
the redshift, phase, host-galaxy fraction and S/N ratio of the
three year sample are directly taken from Balland et al. (2009),
whereas the photometric parameters (B-band magnitude with

or without distance correction, color, x1 and stretch) are re-
computed using the updated values of Guy et al. (2010).

From inspection of Table 5, it appears that the two VLT
SN Ia + SN Ia? samples have similar photometric properties.
It is also true for the spectroscopic parameters, except for the
phase (row 2) and the host-galaxy fraction (row 3). The phase
is indeed marginally different: the new VLT spectra have been
measured ∼ 1.5 days earlier, on average, than the VLT three
year spectra. This might be due to the fact that, as experience
built up along the course of the survey, SN Ia candidates were
more efficiently selected in their early phase, allowing spectra
to be observed closer to maximum light, on average, than dur-
ing the first years of the survey. This effect was already noted in
Balland et al. (2009).

The higher host-galaxy fraction of the new VLT sample can
be traced back to the change in observing mode, from LSS to
MOS, inducing a different extraction procedure for the two sam-
ples. For the three year sample, a photometric model of the host-
galaxy was built and, whenever possible, the two components
(host-galaxy and SN) were extracted at the same time9. For the
new sample, the host-galaxy-SN separation is performed during
the identification procedure by adding a host-galaxy component
to the SN model.

The fact that the two independent samples (the three year
and the final two years samples) have similar spectroscopic and
photometric properties shows that they are not biased (or they are
biased in the same way) against the inclusion of peculiar objects
or confusion with other SN types.

To illustrate this similarity, we use 47 VLT three year
SN Ia spectra and 24 SN Ia spectra from our new sample around
maximum light to build two average spectra using the procedure
described in Sect. 6.2. The two spectra are overlapped in Fig. 6.
They look remarkably similar over the studied spectral range.
We note a stronger [O ii] emission in the mean spectrum of the
new sample, as a consequence of not attempting to subtract host-
galaxy lines in the present analysis. Some local differences are
found around restframe 4000 Å and 4600 Å. The most strik-
ing difference resides in the depth of the absorption feature due
to Si ii λ5970 (blueshifted to 5750 Å). Indeed, the VLT three
year spectrum shows a deeper absorption than the spectrum of
the new sample. Given the relatively small number of spectra in
each subsample, such a difference could be due to the erroneous
inclusion of a non SN Ia object in one of them. For example, one
might argue that the inclusion of a SN 1991T like supernova in
the new sample might weaken the Si ii λ5970 absorption, but it
should also alter the Ca ii region, which is not seen. Inclusion of a
SN 1999aa like SN Ia could smooth the secondary λ5970 silicon
absorption, while preserving a strong Ca ii absorption (Garavini
et al. 2004), but the Si ii λ4100 would also be affected. Besides,
as discussed above, special care has been taken to eliminate pe-
culiar events in our samples, and it is unlikely that they are pol-
luted by such an event.

We thus confirm that the VLT three year and the new samples
are consistent on average. The two samples can then be com-
bined to build the final VLT five year spectral set, which contains
192 SNe Ia for a total of 209 spectra. This final VLT spectro-
scopic sample will be merged with the other SNe Ia spectra of
the SNLS (from Gemini and Keck telescopes) to produce the fi-
nal SNLS spectroscopic sample. The SNLS five year cosmolog-

9 A separate extraction was performed provided the distance between
the host-galaxy center and the SN center is larger than 2′′(Baumont et al.
2008)
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ical analysis will rely on this sample, once further photometric
cuts are made (Betoule et al. 2017, in prep).

7. Properties of SNLS SNe Ia from composite
spectra

In this section, we use the final VLT spectral set described above
to examine how the spectra depend on color, stretch and host-
galaxy mass, and to search for evolution with redshift. This anal-
ysis builds on previous works (Howell et al. 2007; Ellis et al.
2008; Foley et al. 2008a; Sullivan et al. 2009; Balland et al.
2009; Cooke et al. 2011; Foley et al. 2012; Maguire et al. 2012;
Milne et al. 2015). To build composite (average) spectra, we se-
lect from the full VLT sample spectra of SNe Ia which belong
to the SN Ia category (as opposed to the SN Ia? category) with
phase ranging between -4 and +4 days. This ensures that the
analysis benefits from the highest S/N of the sample. We follow
the method outline in Sect. 6.2 to build the composite spectra.
Both SNe with redshift estimated from host-galaxy features and
from template fitting are used. We first study the effect of color
correction (Sect. 7.1), then split the sample in redshift (Sect. 7.2),
stretch (Sect. 7.3) and host-galaxy mass (Sect. 7.4).

7.1. Color correction

We first divide the VLT final sample into two subsamples as a
function of color. We select 40 spectra with c < 0 and 31 with c ≥
0. The spectro-photometric properties of these two subsamples
are shown in Table 6. The subsamples have similar properties on
average, except for color and distance corrected magnitude.

We compute a composite spectrum for each subsample be-
fore and after color correction10. When a color correction is ap-
plied, either the SALT2 color law (Guy et al. 2010) or the CCM
color law (Cardelli et al. 1989) are used. host-galaxy residual
lines ([O ii] λλ3727, 3729 and Ca ii H&K) are removed by inter-
polating the continuum under the lines. The SALT2 color law is
derived during the training process of the SALT2 model (Guy
et al. 2010). It not only captures the effects of dust extinction by
the host-galaxy interstellar medium, but also at least partially the
intrinsic color scatter among SNe Ia. In contrast, the CCM law
is a standard dust reddening correction with the total to selective
extinction parameter RV = 3.1 (Cardelli et al. 1989). After color
correction using the SALT2 color law, the two average spectra
are overlapping nicely over the whole spectral range (see Fig. 7),
while using the CCM is less efficient, namely below λ ∼ 3700 Å.
This traces back to differences in the laws in this spectral region
(Guy et al. 2010). Local differences already existing before cor-
rection are still present (bluer and brighter SNe Ia have weaker
absorption features due to IMEs), as the color correction is re-
quired to be a smooth function of wavelength that cannot correct
for finer scale differences.

Similar comparisons of the effect of color laws on reddening
corrections of SNe Ia spectra have been performed by various
authors. Ellis et al. (2008), using a sample of 36 SNe Ia spectra
obtained at Keck within the SNLS, observe the same trend as
ours (see their Fig. 8). Based on a set of HST spectra, Maguire
et al. (2012) also find that the combination of the SALT2 law
and SALT2 colors derived from colors of the Sifto lightcurve fit-
ter (Conley et al. 2008) is more efficient at color correcting the
spectra than the CCM color law with Sifto colors. However, the
matching of the color corrected spectra is better in the latter case,
10 In order to estimate the impact of the sole color correction, no recal-
ibration is applied to the spectra at this stage.

while the SALT2 correction tends to overcorrect the spectra. We
do not see this trend in our analysis and we choose to color cor-
rect our spectra with the SALT2 law in the following.

7.2. Redshift evolution

We then divide the SN Ia VLT sample into two redshift sets.
We define a low redshift sample with z < 0.6 and a high red-
shift with z ≥ 0.611. They contain 30 low redshift spectra and
41 high redshift ones, respectively, with a similar phase distribu-
tion (see Table 7). The redshift, phase, color and stretch distri-
butions of these two subamples are shown in Fig. 8 to Fig. 11.
The mean spectra, built this time after applying recalibration and
color correction to individual spectra, are displayed in Fig. 12.
host-galaxy residual lines are removed using the technique of
Sect. 7.1. In Fig. 12, the two lower panels show the dispersion of
the mean spectra and the number of spectra used at each wave-
length bin, respectively. They help to assess reality of observed
spectral differences.

We note spectral differences between low and high redshift
spectra around the Ca ii H&K and Si ii λ4130 IME absorp-
tions. The low redshift spectrum has deeper IME absorptions
(EW(Ca ii)z<0.6 = 110 ± 3 Å and EW(Si ii)z<0.6 = 12 ± 3 Å)
than the high redshift spectrum (EW(Ca ii)z≥0.6 = 102 ± 3 Å and
EW(Si ii)z≥0.6 = 5 ± 3 Å).

To investigate whether these differences are significant, we
select a random number of spectra in each of the two subsamples
(between 15 and 30 for the low-z sample and between 20 and 41
for the high-z sample). We build the corresponding mean spec-
tra and compute their flux in spectral regions where the differ-
ences are most pronounced (between 3500-3900 Å for the Ca ii
H&K feature and between 3900-4100 Å for the Si ii λ4130 fea-
ture). We repeat this process 5000 times. Using this bootstrap
technique, we find that the flux is higher for the high-z mean
spectrum in 95.9% of cases (2σ) in the Ca ii H&K region and in
98.9% of cases (2.5σ) in the Si ii λ4130 region. The observed in-
crease of flux with redshift in the range [3300 - 3600] Å, due to
lessened line-blanketing from iron-group elements (IGEs) with
decreasing metallicity at high z, has been noted in all previous
similar studies using independent samples (e.g., Sullivan et al.
2009; Balland et al. 2009; Maguire et al. 2012; Foley et al. 2012)

We note an increase of the dispersion for λ < 3800 Å com-
pared to optical wavelengths for low redshift spectra (second plot
of Fig. 12). This tendency is also found in Ellis et al. (2008) and
Maguire et al. (2012). This SN Ia variability might be traced
back to the host-galaxy properties. Indeed, this spectral zone is
very sensitive to the chemical composition of the ejecta. Thanks
to the SN Ia spectral synthesis models of Walker et al. (2012),
Maguire et al. (2012) show that the UV dispersion is consistent
with metallicity variation in the SN population. For the high red-
shift spectrum, the dispersion is generally larger than that of the
low redshift one. No increase of the UV dispersion with respect
to the one at optical wavelengths is seen in the high redshift spec-
trum.

11 Splitting the sample at the average redshift insures a similar number
of spectra in the two redshift bins (as the average redshift is close to the
median redshift in our sample) and allows one for a direct comparison
with previous works doing a similar split.
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7.3. Split in stretch

From table 7, it can be seen that there is no significant difference
in stretch between the high and low redshift samples, given the
error on the mean, whereas previous studies (e.g., Howell et al.
2007; Sullivan et al. 2009) did find a change with redshift that
was consistent with a demographic evolution of SN Ia popula-
tions. This is expected as the redshift range considered in the
present work is much narrower, and the average star formation
rate, on which SN Ia properties depend (Sullivan et al. 2006b;
Howell et al. 2007), does not change much over this range. How-
ever, it is interesting to investigate the existence of spectral dif-
ferences in our sample that cannot be explained by mere selec-
tion effects. For this purpose, we split the VLT sample according
to the stretch values of the SNe Ia. We use s = 1.013, the mean
stretch value of the sample, as a cut. We obtain 34 low and 37
high stretch spectra whose properties are summarized in Table 8.
The two subsamples have similar properties on average, except
for their mean stretch by construction.

All individual spectra are color corrected (using the SALT2
color law), recalibrated and lines from the host galaxy removed.
We build composite spectra that are shown in Fig. 13. High
stretch spectra are brighter in the UV below 3800 Å and have
weaker absorption lines. In particular, the Ca ii H&K and Si ii
λ4130 absorption lines for the low stretch spectrum are deeper (<
EW > (Ca ii)s<1.013 = 119±3 Å and < EW > (Si ii)s<1.013 = 16±
3 Å) than for the high stretch spectrum (< EW > (Ca ii)s≥1.013 =

108 ± 3 Å and < EW > (Si ii)s≥1.013 = 6 ± 3 Å).
We compute the equivalent width of the Ca ii H&K and Si ii

λ4130 features, selecting now a subset of spectra with high S/N
for which these lines are well defined. We find a small anti-
correlation between the Si ii λ4130 equivalent width and the
stretch parameter (Fig. 14):

EW(Si ii) = (−139.3 ± 10.9) × s + (150.9 ± 10.8) Å (1)

In a similar analysis, Maguire et al. (2012) and Foley et al.
(2012) note ejecta velocity differences as a function of stretch,
high stretch SNe Ia spectra showing higher ejecta velocities on
average. In particular, a blueshift is seen in Ca ii H&K, Si ii
λ4130 (Maguire et al. 2012) or in Fe ii λ3250 absorption fea-
tures (Foley et al. 2012). This correlation between stretch and
Ca iiH&K expansion velocity is not observed in the present anal-
ysis12.

7.4. Split in host-galaxy mass

In this section, we investigate the impact of host-galaxy mass
(considered as a crude proxy for metallicity or age) on our
SNe Ia spectra. For each supernova in our sample, we derive
its host-galaxy properties from CFHT deep reference images.
Galaxy colors are fitted with a spectro-photometric code using
PEGASE2 (Fioc & Rocca-Volmerange 1997, 1999) templates
and trained on galaxies of the DEEP-2 survey (Davis et al. 2003,
2007). For each supernova, the host-galaxy is identified on SNLS
deep reference images and is fitted to derive its type and age,
yielding an estimate of the stellar mass Mstellar and specific star
formation rate (sSFR). Details on this method can be found in
Kronborg et al. (2010), Hardin, et al., (2017, in prep) and Ro-
man et al. (2017). Among the 71 spectra used in Sect. 7, 62 have
a reliable host-galaxy stellar mass. For the remaining 9 SNe Ia,

12 We note however a ∼ 25 Å blueshift in the Si ii absorption mimimum
in the high stretch spectrum with respect to its low stretch counterpart
at a level comparable to the one seen by Maguire et al. (2012)

either no host-galaxy could be associated with the SN on refer-
ence images or the spectro-photometric fit failed.

We compute the mean host-galaxy stellar mass for the two
redshift subsamples of Sect. 7.2 and for the two stretch sub-
samples of Sect. 7.3. Differences are marginal (at the 1σ level)
for the redshift subsamples (log (Mstellar)z<0.6 = 9.96 ± 0.14 M�
and log (Mstellar)z≥0.6 = 10.12 ± 0.11 M�) as well as for the
stretch subsamples (log (Mstellar)s<1.013 = 10.14 ± 0.12 M� and
log (Mstellar)s≥1.013 = 9.97±0.12 M�). These mass differences are
not significant and are not likely to be the cause of the differences
observed between low and high redshift or stretch SN Ia compos-
ite spectra.

Dividing now the SN Ia sample into two host-galaxy mass
bins using the average galaxy mass of the full sample as a cut
(log (Mstellar) = 10.06 M�), we end up with 27 spectra in the
low mass bin and 35 in the high mass bin. These two sub-
samples differ in host-galaxy stellar mass (by construction) and
stretch, all other parameters being equal on average (Table 9).
As before, color-correction (SALT2), recalibration and removal
of host-galaxy galaxy emission lines have been applied. The low
and high mass composite spectra are shown in Fig. 15. Spectral
differences between low and high stellar mass spectra are clearly
visible in particular in the bluest part of the spectra. The low
stellar mass spectrum has an excess of flux for λ < 3400 Å and
around the Si ii λ4130 absorption line. Contrary to what was ob-
served previously when spliting the sample in stretch or redshift,
the two mean spectra match around the Ca ii H&K feature.

The spectral differences between low and high stellar mass
average spectra might be at least partially explained by the mean
stretch difference of the two subsamples (0.031 ± 0.016, see Ta-
ble 9). Indeed, a stretch difference impacts the bluest parts of the
mean spectra as seen in Sect. 7.3. Hence, the difference observed
in the depth Si ii λ4130 absorption, which is shallower in the low
stellar mass spectrum (EW(Si ii)log (Mstellar)<10.06M� = 7±1 Å) than
in its high stellar mass counterpart (EW(Si ii)log (Mstellar)≥10.06M� =

14 ± 1 Å), might be due to stretch differences.
Selecting two new subsamples split in host-galaxy mass with

the constraint that the stretch (and other spectro-photometric pa-
rameters) of the two subsamples match on average (Table 10)
allows one to test the effect of the mass split alone. The re-
sulting composite specta are shown overlapping in Fig. 16.
The differences around the Si ii λ4130 feature are signifi-
cantly reduced and the equivalent widths are now similar
given the error (EW(Si ii)log (Mstellar)<10.06M� = 8 ± 1 Å and
EW(Si ii)log (Mstellar)≥10.06M� = 9 ± 2 Å), illustrating the impact of
the stretch parameter on spectral features. However, the differ-
ences at λ < 3400 Å are still significantly present and this can
be this time traced back to the difference in host-galaxy mass.
A similar result has been obtained by Milne et al. (2015) using
pairs of SNLS (and other survey) spectra. If confirmed, this UV
flux difference might be used as a third SNe Ia standardization
parameter beyond stretch and color (see Sect. 8.3 for discussion).

8. Discussion

8.1. Origin of the spectral differences with redshift

From Table 7, we note that the high redshift composite spectrum
of Sect. 7.2 is made of SNe Ia that are on average bluer than those
entering the low redshift spectrum, with a 2.7σ color difference
(∆c = −0.056 ± 0.021). This corresponds to a 2.9σ (distance
corrected) magnitude difference of ∆(m∗ c

B ) = 0.169 ± 0.059,
the higher redshift SNe Ia being brighter than their low redshift
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counterparts. We note that this color difference is fully consistent
with the color difference of ∆c = −0.05 expected in the SNLS
samples due to the spectroscopic selection of bluer and brighter
SNe Ia at higher redshift (Perrett et al. 2010). As stated in Sect.
7.3, average stretch values are similar in the two samples given
the error: ∆s = −0.008 ± 0.015.

Using {α , β} = {1.295 ± 0.112 , 3.181 ± 0.131} (Guy et al.
2010), where α and β are the slopes of the light curve shape - lu-
minosity and color - luminosity relationships used to standardize
SNe Ia in cosmological analyses (Astier et al. 2006), and given
the above differences in stretch and color, we expect an intrin-
sic magnitude difference between the two SN Ia subsamples of
|α∆s − β∆c| = 0.168 ± 0.070. This number is consistent with the
magnitude difference seen in the two samples (see Table 7).

We now build two new subsamples at low and high redshift
with the constraint that their color and stretch distributions are
similar (i.e., have consistent mean and variance values). For this
purpose, we identify pairs of spectra, one in each redshift bin,
with matching color and stretch. We obtain 14 low and 19 high
redshift spectra whose properties are shown in Table 11. The
corresponding mean spectra are presented in Fig. 17. The spec-
tral differences observed in Fig. 12 are now significantly reduced
and the equivalent widths of the IMEs are consistent within error
(EW(Ca ii)z<0.6 = 100 ± 4 Å and EW(Si ii)z<0.6 = 6 ± 3 Å com-
pared to EW(Ca ii)z≥0.6 = 105 ± 5 Å and EW(Si ii)z≥0.6 = 4 ± 2
Å).

Hence the differences previously observed tend to vanish
when two populations with matching photometric properties are
considered. This shows that the spectral differences observed can
be attributed to a difference in the mixture of populations present
in the sample at low and high redshifts, rather than to evolution
with redshift. This ’demographic’ bias can be entirely attributed
to the selection of bluer and brighter SNe Ia at higher redshift in
the SNLS spectroscopic sample.

Residual differences between the two composite spectra are
nevertheless observed in Fig. 17. Small velocity shifts are seen
in the Ca ii absorption, as well as for the two UV peaks blueward.
A flux excess is also noticeable between 4500 and 5000 Å in the
low redshift spectrum. Whether these differences are real or are
due to residual differences in the photometric parameters of the
two samples is unclear.

After selecting two subsamples with matching phase, color
and stretch distributions, Maguire et al. (2012) note modest but
significant differences between the low (z ∼ 0) and high (z ∼ 0.6)
redshift average spectra. Using a bootstrap technique, they show
that the low redshift spectrum has a depressed flux between 2900
and 3300 Å with respect to the high redshift one (a difference
at the 3.1σ level). Using the SN Ia spectral synthesis models
of Walker et al. (2012), they show that this difference could re-
sult from a metallicity evolution with redshift, the metallicity de-
creasing with increasing redshift. We look for comparable trends
in our sample. For this purpose, we use again the bootstrap tech-
nique described in Sect. 7.2 in the same wavelength regions, this
time with the two subsamples with similar photometric prop-
erties. We find that the high-redshift composite spectrum has a
lower flux in the UV than the low redshift counterpart in 10.1%
of cases (a significance of 1.6σ). We find that the high redshift
composite spectrum has a lower Ca ii H&K velocity in 13.1% of
cases (1.5σ). Thus, the spectra of our sample corresponding to
the same underlying supernova populations (having similar pho-
tometric parameter distributions) at low and high redshift show
less significant differences than in Maguire et al. (2012), includ-
ing in the UV region. This is not unexpected, as the difference

in lookback times involved between our low and high redshift
samples is much lower than the one in the Maguire et al. (2012)
samples.

In the low and intermediate redshift samples of Maguire et al.
(2012), the difference between the highest redshift of the low-z
sample and the lowest redshift of the high-z sample is ∆z ∼ 0.4.
This ’redshift gap’ is not present in our sample in which the red-
shift distribution is more uniform. In an attempt to understand
the effect of such a redshift gap and check the consistency of
the trends seen when splitting our sample by redshift, we re-
build composite spectra, excluding successively those spectra in
the range [0.55,0.65], [0.5,0.7], [0.45,0.75] and [0.4,0.8] (i.e., we
impose gaps of ∆z = 0.1, 0.2, 0.3 and 0.4 centered on z = 0.6).
The differences in spectro-photometric properties between the
low and high redshift subsamples are shown in Table 12 for each
value of the redshift gap considered. High redshift SNe Ia are
bluer (as well as brighter) with increasing gap value compared
to the low redshift SNe Ia. Again, the observed differences are
consistent with selecting brighter and bluer SNe Ia at higher red-
shift. For each gap value, we find an excess of UV flux in the
high redshift spectra. Every comparison between low and high
redshift spectra thus shows the same trends, independently of
the subsamples used.

8.2. Stretch evolution

When our sample is split acccording to stretch value, all other
parameters being equal on average, UV flux differences are ob-
served between low stretch and high stretch composite spec-
tra. Namely, we find a small anticorrelation between the mean
stretch of the sample and the depth of the Si ii λ4130 absorp-
tion, the latter being shallower when the stretch is higher (see
Sect. 7.3). This correlation has also been noticed in Arsenijevic
et al. (2008) and Walker et al. (2011). It originates as a con-
sequence of the width-luminosity relation of SNe Ia (the so-
called brigther-slower relation; Phillips 1993). More luminous
SNe Ia have higher ejecta temperatures, and Si ii is partially ion-
ized to Si iii (Nugent et al. 1995).

The kinetic energy of the explosion is higher for higher 56Ni
mass and a correlation between the expansion scale and stretch
is expected (see, e.g., Howell et al. 2006). As explained ear-
lier, Maguire et al. (2012) do observe such a correlation: the
Ca ii H&K velocity increases with stretch (see their Figs. 7 and
10) producing a spectral difference at the 3.4σ level in the cal-
cium region. However, neither the present work nor Foley et al.
(2012) find evidence for this effect. As noted by Maguire et al.
(2012), the absence of spectra with s > 1.05 in the Foley et al.
(2012) sample might be responsible for this, the higher stretch
spectra contributing the most to a shift in the ejecta velocity.
When the 17 HST spectra with s > 1.05 are excluded from the
Maguire et al. (2012) sample, the difference between the com-
posite spectra at low and high stretch in the Ca ii region is consid-
erably reduced and becomes statistically insignificant (less than
1σ significance). The observation of a stretch-velocity correla-
tion might thus be due to the large mean stretch difference in the
original Maguire et al. (2012) samples (∆ < s >∼ 0.12). This ar-
gument might explain as well why we do not see the effect in our
sample: the fraction of high stretch spectra in our sample (25%)
is indeed much lower than in Maguire et al. (2012)’s (41%).

To test this hypothesis, we create two new subsamples by ex-
cluding all spectra with stretches in the range 0.95 < s < 1.05
yielding a mean stretch difference comparable to the one of
Maguire et al. (2012). Figure 18 shows an overlap of the two
composite spectra computed from our new samples. The differ-
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ence in the IME absorption regions are stronger than before, il-
lustrating the impact of the mean stretch on the composite spec-
tra; however, no significant differences beyond the ones seen in
Fig. 13 (see Sect. 7.3) are observed in the velocities of IME
ejecta. This leaves us either with the possibility that the mean
stretch difference between our samples is not large enough or
that the effect is blurred by the IME peculiar velocities in spec-
tra for which the redshift has been estimated from SN features.
Indeed, in the construction of the mean spectra, we use both
SNe Ia whose redshift has been estimated from host-galaxy lines
and from our spectral template fitting. If there are subtle veloc-
ity effects in the spectra, they may be washed out by using the
template fitting. As about 25% of redshifts have been obtained
from this technique in the present sample, as opposed to 6% in
Maguire et al. (2012), this might be a non negligible effect and a
limitation to the present comparison.

A possible explanation of the spectral differences observed
as a function of stretch could be the existence of two (or more)
distinct SN Ia populations, with distinct stretch and spectral
properties. Based on the A+B model13 (Scannapieco & Bildsten
2005), Howell et al. (2007) identify in a sample of SNe Ia ob-
tained from various sources in the range 0.1 < z < 0.75 a de-
layed and a prompt component, with a mean stretch of s ∼ 0.95
and s ∼ 1.08, respectively. The mean stretch of our two subsam-
ples are indeed very similar to those values (∼ 0.96 and s ∼ 1.06,
see Table 8) and it is tempting to invoke the existence of these
two populations in our samples.

However, if such two populations coexist at different red-
shifts in proportions predicted by the A+B model (in agreement
with the ratios of prompt to delayed SNe Ia observed in SNfac-
tory (Aldering et al. 2002) data by Childress et al. 2013), one
would expect a stretch increase of the whole SN Ia population
of about 8% from z = 0 to 1.1 (Howell et al. 2007). Assum-
ing the increase is linear in cosmic time and provided that our
sample selection reflects the global properties of the underlying
SN Ia population, one expects a ∼ 2% increase in the stretch
of the spectra used to create composites (z = 0.47 to 0.73). We
find instead a moderate decrease of the mean stretch of . 1%
from z = 0.47 to 0.73. This tends to show that the differences
observed in our sample trace back to the selection effects of the
survey, rather than to a demographic shift in the SN Ia popula-
tions with redshift.

8.3. Spectral differences with host-galaxy properties

SNe Ia photometric properties correlate with their environment
(e.g., Sullivan et al. 2006b; Rigault et al. 2013; Childress et al.
2013). Brighter supernovae with higher stretch explode prefer-
entially in late-type star-forming spiral galaxies (e.g., Hamuy
et al. 1995, 2000; Sullivan et al. 2006b; Howell et al. 2007).
Moreover, once corrected for stretch and color, SNe Ia are 10%
brighter on average in massive later type galaxies, which also
tend to have higher metalicity (e.g. Sullivan et al. 2010; Lam-
peitl et al. 2010; Kelly et al. 2010). From Table 10, we see that
SNe Ia are marginally brighter in high mass host-galaxy galaxies
by 0.1 mag, in agreement with this trend.

In terms of spectral shape, we find that the high stretch and
low host-galaxy stellar mass SNe Ia have weaker Si ii λ4130 ab-
sorptions (Sect. 7.3), in agreement, for example, with Bronder

13 This model postulates the existence of two groups of SNe Ia:
a ’prompt’ population of intrinsically more luminous SNe Ia with
broad light curves and a ’delayed’ component of intrinsically fainter
SNe Ia with narrower light curves.

et al. (2008) who showed that SNe Ia in spiral galaxies have
weaker IME absorptions than those in elliptical galaxies. We also
find that SNe Ia with high stellar mass host-galaxies (all other pa-
rameters matching on average) have a significantly lower flux in
the 3000-3500 Å UV region of their spectra. Interestingly, this is
the region where Ellis et al. (2008) and Maguire et al. (2012) ob-
serve an increased dispersion in their spectral samples, whether
split in stretch or redshift. Part of this effect could be explained
by the diversity of host-galaxy properties of the SNe Ia entering
the composite spectra in these studies. However, while some the-
oretical studies have shown that UV spectra are indeed affected
by host-galaxy metallicity in a way that causes an increase in
SN Ia variability in this region of the spectrum (e.g., Hoeflich
et al. 1998; Lentz et al. 2000; Sauer et al. 2008), it cannot be to
such an extent as to account for the full increase in dispersion
observed, as noticed by Ellis et al. (2008) and Maguire et al.
(2012). Nevertheless, the analysis of the present VLT spectral
set supports the importance of host-galaxy parameters in under-
standing SNe Ia properties.

Recently, Roman et al. (2017) have estimated the host-galaxy
restframe U−V color at the location of the supernova explosion,
using a sample of 882 SNe Ia host-galaxies from the SNLS, the
SDSS and local surveys. They show that there is a significant dif-
ference between this local color and the global restframe U − V
color, the latter being bluer at all redshifts. Moreover, performing
a cosmological fit to the SNe Ia JLA data (Betoule et al. 2014),
they find the Hubble residuals to be more correlated with local
color than with the host-galaxy stellar mass or global color and
conclude that local color conveys more physical information on
the lightcurve properties than the host-galaxy stellar mass. Us-
ing the local color as a third lightcurve standardization variable
reduces the total dispersion in the Hubble diagram by ∼ 7 %
relative to using only stretch and color for standardization.

The Roman et al. (2017) analysis involves 397 SNLS
SNe Ia host galaxies. For a fraction of these, the supernova spec-
trum has been observed at the VLT and belongs to the sample
presented in this paper. We use these spectra along with the
measurement of the corresponding host-galaxy restframe U − V
local color provided by Roman et al. (2017) to compute two
composite spectra in two bins of local color. As before, the
split value is the sample average of the relevant variable (here
< U − V >local= 0.439) and only spectra with phases in the
range −4 < φ < +4 days are considered. Spectra are color cor-
rected and recalibrated individually. In Fig. 19, we show the two
spectra in the 2500-3500 Å region (top panel). For comparison,
we also show the spectra obtained in the same spectral region
when splitting our sample according to the host-galaxy mass
(bottom panel, see 7.4). The difference obtained with a cut in
local U − V is slightly more pronounced than the one with a cut
in host-galaxy mass. Chosing the sample median U − V rather
than the average value has basically no impact on the difference
seen. Moreover, excluding from the composites those spectra for
which the redshift has been obtained from the SN features rather
than from host-galaxy lines does not modify the result. This anal-
ysis supports the existence of a variation in the UV spectral prop-
erties of the SNe Ia populations linked to their environment. As
shown in Roman et al. (2017), this link can be exploited to fur-
ther standardize SNe Ia properties and reduce Hubble residuals.

9. Conclusion

The SNLS experiment benefited from exceptional spectroscopic
surveys, with a total of ∼ 1500 hours of observation on 8-10m
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class telescopes, including the VLT with two ESO large pro-
grams. Special attention was paid to assessing the type and deter-
mining the redshift of the SN Ia candidates using a combination
of SALT2 and visual inspection.

In the present paper, we publish for the first time the spectra
of the SNe Ia measured at the VLT during the last two years of
SNLS14. 51 SNe Ia were identified as SN Ia (certain SNe Ia),
16 as SN Ia? (probable SNe Ia) and one object was found to be
peculiar (SN 1991T like). These SNe Ia and SNe Ia? subsam-
ples have on average very similar photometric and spectroscopic
properties (color, stretch and B-band absolute magnitude at max-
imum light), which suggests that the SNe Ia? sample is not con-
taminated by non-Ia-objects. The host-galaxy subtraction is well
under control, spectra with low and high host-galaxy contamina-
tion being remarkably similar.

This new VLT sample completes the VLT three year spectral
data set which contains spectra of identified SNe Ia measured in
LSS mode at the VLT during the first three years of operation
of the survey (Balland et al. 2009). We find that the two VLT
samples have similar spectro-photometric properties and spectra
on average. Once combined to build the final VLT spectroscopic
sample of SNLS, there are 192 SNe Ia for a total of 209 spectra.
When Gemini and Keck spectra are added to the VLT spectral
set, the final SNLS spectroscopic sample contains 427 identified
SNe Ia and SNe Ia?. This is the largest intermediate to high
redshift SN Ia sample to date and the final SNLS cosmology
analysis will rely on it (Betoule et al. 2017, in prep).

With this exceptional sample in hand, we have studied
SNe Ia spectral and photometric properties at intermediate to
high redshift. We have reassesed the key question of a possible
evolution of SNe Ia properties with redshift in the light of this
new sample. Using color corrected VLT spectra around maxi-
mum light (−4 < Φ < 4 days), we find that:

1. the spectral comparison between low and high redshift
SNe Ia shows an increase of their UV flux with redshift.
Brighter and bluer SNe Ia are observed at higher redshift, in
full quantitative agreement with what one expects from the
spectroscopic selection process of SNLS (Perrett et al. 2010).
No definite sign of intrinsic evolution of the SNe Ia proper-
ties with redshift is seen in the present sample.

2. SNe Ia in more massive galaxies have a higher stretch on
average. Once this stretch difference is accounted for, a
residual flux excess is found in the [3000-3400] Å region
for SNe Ia with low mass host-galaxies. The same trend
is observed for SNe Ia with low local U − V color. If the
SNe Ia UV flux is indeed indexed on the host-galaxy stellar
mass or local color, this could open the way toward using
the latter as a third parameter beyond stretch and color in the
standardization process of SNe Ia (Roman et al. 2017).

The full VLT spectral set of the SNLS experiment is remarkable
for its size and homogeneity in the intermediate to high redshift
window. It will be combined with the other SNLS spectroscopic
samples from Gemini (Howell et al. 2005; Bronder et al. 2008;
Walker et al. 2011) and Keck (Ellis et al. 2008) and used in the
final SNLS cosmology analysis.
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Table 1. Observing log of the VLT SNe Ia of the last two years of SNLS. The iM
magnitude is the magnitude at observation time.

SN name RA (J2000) Dec (J2000) Spectrum date (UTC) Exp. time (s) Seeing (′′) Air Mass iM
05D1dxa 02:27:47.00 -04:01:57.1 2005-10-10 4 x 900 1.15 1.20 23.27
05D1dxa 02:27:47.00 -04:01:57.1 2005-11-12 4 x 900 0.89 1.08 23.32
05D1hma 02:27:46.19 -04:43:02.0 2005-11-29 4 x 900 0.86 1.19 23.51
05D1ifa 02:24:29.72 -04:34:13.0 2005-12-01 4 x 900 1.12 1.11 23.50
05D2lea 10:01:54.86 +02:05:34.8 2005-12-01 4 x 900 0.64 1.35 23.56
06D1bg 02:25:20.73 -04:06:58.2 2006-08-23 4 x 900 0.75 1.38 23.60
06D1bo 02:26:15.53 -04:20:58.6 2006-08-23 4 x 900 0.98 1.13 23.52

06D1cmb 02:25:01.91 -04:28:43.2 2006-09-04 8 x 900 0.63 1.18 23.53
06D1cx 02:26:02.59 -04:14:43.7 2006-09-01 4 x 900 1.48 1.08 23.67
06D1dc 02:25:09.01 -04:33:13.2 2006-09-22 4 x 900 0.98 1.14 23.38
06D1dl 02:27:38.39 -04:32:36.6 2006-09-22 4 x 900 1.08 1.08 22.97

06D1dub 02:25:40.88 -04:12:23.3 2006-09-20 3 x 750 0.76 1.07 20.80
06D1eb 02:25:03.05 -04:06:25.2 2006-09-26 6 x 900 0.74 1.08 23.45e

06D1eb 02:25:03.05 -04:06:25.2 2006-10-01 3 x 750 1.06 1.07 23.38e

06D1ezb 02:25:41.00 -04:14:49.3 2006-10-21 3 x 750 0.89 1.07 23.44
06D1fdb 02:25:54.43 -04:36:28.9 2006-10-27 3 x 750 0.65 1.27 22.37
06D1fx 02:27:41.89 -04:46:43.3 2006-11-14 4 x 900 0.99 1.07 22.75
06D1glc 02:26:53.28 -04:46:29.8 2006-11-18 9 x 900 1.06 1.08 24.06
06D1hi 02:24:30.50 -04:11:39.4 2006-11-25 4 x 900 0.93 1.08 23.24

06D1ixb 02:26:33.63 -03:59:03.8 2006-12-18 4 x 900 0.68 1.44 22.85
06D1jf 02:24:17.47 -04:25:52.5 2006-12-18 4 x 900 1.39 1.11 23.41
06D1jz 02:27:11.07 -04:26:25.8 2006-12-23 4 x 900 0.79 1.25 21.73
06D1kf 02:26:49.27 -04:10:10.1 2006-12-24 4 x 900 1.10 1.07 23.37
06D1kg 02:24:32.57 -04:15:02.0 2007-01-17 3 x 750 1.25 1.29 21.91

06D1khc 02:24:50.09 -04:42:30.6 2007-01-23 6 x 900 1.66 1.32 23.74
06D2aga 10:01:43.36 +01:51:37.3 2006-01-26 3 x 750 0.70 1.12 21.97

06D2bob,d 10:00:52.54 +02:03:22.9 2006-02-09 6 x 900 0.64 1.13 24.15
06D2hm 09:58:44.57 +02:19:58.7 2006-12-18 4 x 900 0.64 1.16 23.16
06D2hu 09:59:56.99 +02:08:03.3 2006-12-20 4 x 900 0.84 1.30 22.16

06D2jwc 09:59:37.59 +02:34:18.4 2006-12-27 6 x 900 0.82 1.26 24.13
06D4baa 22:15:35.72 -18:13:44.7 2006-07-04 4 x 900 0.77 1.16 23.58
06D4boa 22:15:28.12 -17:24:33.2 2006-07-04 4 x 900 0.71 1.03 22.73
06D4bwa 22:15:03.70 -17:53:00.2 2006-07-03 6 x 900 0.74 1.05 23.41
06D4gsb 22:15:14.80 -17:14:52.5 2006-09-20 3 x 750 0.84 1.28 21.59
06D4jh 22:15:31.24 -18:04:22.1 2006-11-14 4 x 900 0.59 1.09 23.02
06D4jt 22:14:45.52 -18:00:56.8 2006-11-19 4 x 900 1.13 1.39 22.96
07D1ab 02:26:44.88 -04:01:00.7 2007-01-23 4 x 900 -f 1.40 22.19
07D1ad 02:27:44.72 -04:57:42.3 2007-01-24 4 x 900 1.60 1.60 21.80
07D1ah 02:27:33.33 -04:06:54.3 2007-08-27 4 x 900 1.10 1.17 24.12
07D1bl 02:27:30.62 -04:40:21.2 2007-09-04 4 x 900 1.12 1.08 25.55
07D1bs 02:26:04.32 -04:54:27.6 2007-09-08 4 x 900 1.06 1.37 23.15e

07D1bu 02:27:00.37 -04:32:32.9 2007-09-08 4 x 900 1.59 1.14 22.93e

07D1by 02:24:05.44 -04:32:00.6 2007-09-12 4 x 900 0.91 1.07 23.44e

07D1ca 02:24:47.20 -04:50:56.0 2007-09-16 6 x 900 1.19 1.10 24.00e

07D1cc 02:25:16.94 -04:06:49.7 2007-09-16 6 x 900 0.81 1.09 24.14e

07D1cd 02:25:33.96 -04:45:06.5 2007-09-21 6 x 900 0.99 1.11 24.22e

07D1cf 02:26:34.20 -04:58:52.3 2007-09-20 4 x 900 2.24 1.08 25.30
07D2aab,c 10:02:05.50 +02:25:43.4 2007-01-27 6 x 900 0.52 1.13 24.11

07D2ae 10:01:50.58 +01:52:33.6 2007-01-25 4 x 900 0.60 1.13 22.84
07D2ag 10:00:09.01 +02:09:59.2 2007-01-25 4 x 900 0.73 1.16 21.48
07D2ah 09:59:58.16 +01:53:21.9 2007-01-26 4 x 900 0.64 1.22 23.49
07D2aw 10:02:21.66 +02:27:06.6 2007-02-24 4 x 900 0.82 1.23 23.94
07D2bd 09:58:38.09 +02:07:35.4 2007-02-19 4 x 900 0.88 1.12 23.15
07D2be 10:02:08.40 +02:40:00.6 2007-02-19 4 x 900 0.90 1.20 24.03
07D2bi 09:58:46.65 +02:40:29.9 2007-02-23 4 x 900 1.00 1.13 23.58
07D2bq 10:01:51.86 +02:00:48.4 2007-02-27 4 x 900 1.33 1.13 23.10
07D2cb 10:01:27.40 +01:55:47.7 2007-03-17 4 x 900 0.96 1.12 23.24
07D2cq 10:00:47.03 +01:52:04.1 2007-03-20 4 x 900 0.94 1.26 23.34
07D2ct 10:00:17.00 +02:17:13.8 2007-03-21 6 x 900 0.82 1.35 23.88
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Table 1. continued.

SN name RA (J2000) Dec (J2000) Spectrum date (UTC) Exp. time (s) Seeing (′′) Air Mass iM
07D2du 10:00:30.20 +01:51:30.4 2007-04-20 4 x 900 1.24 1.34 22.88
07D2fy 09:59:32.36 +02:18:00.9 2007-05-15 4 x 900 0.58 1.16 23.51
07D2fz 10:00:13.41 +02:24:16.9 2007-05-15 4 x 900 0.50 1.15 23.21
07D4aa 22:16:59.49 -17:52:03.3 2007-06-19 4 x 900 0.59 1.02 21.18
07D4cy 22:15:02.47 -17:37:43.2 2007-08-22 4 x 900 1.20 1.20 23.35e

07D4dp 22:14:33.80 -17:25:58.9 2007-09-10 4 x 900 0.82 1.23 23.28e

07D4dq 22:14:02.17 -17:48:43.4 2007-09-10 4 x 900 0.88 1.06 22.78e

07D4dr 22:14:43.06 -17:18:34.1 2007-09-10 4 x 900 1.12 1.01 23.10e

07D4ec 22:16:09.48 -18:02:18.8 2007-09-19 4 x 900 1.33 1.21 25.08
07D4ed 22:15:18.55 -18:09:52.5 2007-09-28 4 x 900 0.43 1.14 24.12
07D4ei 22:16:29.93 -17:32:05.1 2007-09-22 4 x 900 0.76 1.18 23.28e

Notes. (a) Spectrum measured in MOS mode during the first three years of SNLS. The SN is included in the SNLS three-year sample of Guy et al.
(2010) but the spectrum is not in the VLT three-year spectral set of Balland et al. (2009).
(b) Spectrum taken in LSS mode.
(c) Observed with Grism 300I and order sorting filter OG590.
(d) Identified as a SN Ia by Bazin et al. (2011) after a new extraction.
(e) Value obtained from online logs.
(f) Seeing not available for this object
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Table 2. Spectral properties of the VLT SNe Ia of the last two years of SNLS

SN name Type za z source Φ Host model Host fraction 〈S/N〉b

05D1dx SNIa 0.58 ± 0.01 S -8.5 S0(1) 0.21 3.2
05D1dx SNIa 0.58 ± 0.01 S 12.4 S0(12) 0.63 0.9
05D1hm SNIa 0.587 ± 0.001 H 4.5 E(1) 0.83 1.5
05D1if SNIa 0.763 ± 0.001 H -5.9 S0-Sa 0.54 1.0
05D2le SNIa 0.700 ± 0.001 H 5.9 NoGalaxy 0 1.2
06D1bg SNIa? 0.76 ± 0.01 S 8.0 S0(1) 0.39 1.6
06D1bo SNIa 0.62 ± 0.01 S -3.0 Sd(1) 0.2 2.4
06D1cm SNIa 0.619 ± 0.001 H 8.3 NoGalaxy 0 1.5
06D1cx SNIa 0.860 ± 0.001 H -4.2 NoGalaxy 0 1.5
06D1dc SNIa? 0.767 ± 0.001 H 3.8 E-S0 0.77 2.8
06D1dl SNIa 0.514 ± 0.001 H -5.2 E(1) 0.68 3.5
06D1du SNIa 0.24 ± 0.01 S -0.2 E(1) 0.04 23.3
06D1eb SNIa 0.704 ± 0.001 H -5.2 Sd(1) 0.42 4.8
06D1eb SNIa 0.704 ± 0.001 H -2.3 Sd(7) 0.49 2.6
06D1ez SNIa 0.692 ± 0.001 H 7.3 S0(1) 0.31 0.8
06D1fd SNIa 0.350 ± 0.001 H 4.9 Sd(13) 0.33 6.9
06D1fx SNIa 0.524 ± 0.001 H 6.8 Sa-Sb 0.7 5.3
06D1gl SNIa 0.98 ± 0.01 S 4.3 S0-Sa 0.31 2.3
06D1hi SNIa? 0.803 ± 0.001 H -3.3 E(4) 0.75 3.8
06D1ix SNIa 0.65 ± 0.01 S 3.8 Sd(1) 0.09 2.9
06D1jf SNIa 0.641 ± 0.001 H 1.5 Sc(4) 0.6 1.9
06D1jz SNIa 0.346 ± 0.001 H 3.3 S0(7) 0.73 23.6
06D1kf SNIa 0.561 ± 0.001 H -6.5 Sd(1) 0.26 2.3
06D1kg SNIa 0.32 ± 0.01 S 6.1 S0(2) 0.5 3.7
06D1kh SNIa? 0.882 ± 0.001 H 7.3 E(1) 0.37 1.1
06D2ag SNIa 0.310 ± 0.001 H 4.0 NoGalaxy 0 13.8
06D2bo SNIa? 0.82 ± 0.01 S 2.6 Sa(1) 0.54 0.6
06D2hm SNIa 0.56 ± 0.01 S 7.9 Sa(3) 0.02 4.9
06D2hu SNIa 0.342 ± 0.001 H 7.2 E-S0 0.71 16.1
06D2jw SNIa? 0.90 ± 0.01 S -0.1 E(1) 0.47 1.7
06D4ba SNIa 0.70 ± 0.01 S 9.2 Sd(2) 0.17 1.6
06D4bo SNIa 0.552 ± 0.001 H 1.0 S0-Sb 0.52 5.6
06D4bw SNIa 0.732 ± 0.001 H 5.8 Sa(1) 0.48 2.0
06D4gs SNIa 0.31 ± 0.01 S -4.2 E(1) 0.24 6.1
06D4jh SNIa 0.566 ± 0.001 H 3.7 Sd(2) 0.49 3.3
06D4jt SNIa? 0.76 ± 0.01 S 2.9 Sd(1) 0.44 1.4
07D1ab SNIa 0.328 ± 0.001 H -0.2 E(1) 0.51 8.0
07D1ad SNIa 0.297 ± 0.001 H 6.9 S0(12) 0.69 8.8
07D1ah SNIa-pec 0.342 ± 0.001 H -0.6 E(1) 0.26 7.6
07D1bl SNIa 0.636 ± 0.001 H 2.0 E(2) 0.50 4.3
07D1bs SNIa? 0.617 ± 0.001 H 0.7 Sa-Sb 0.8 1.6
07D1bu SNIa 0.626 ± 0.001 H -2.8 Sd(5) 0.47 4.7
07D1by SNIa 0.73 ± 0.01 S -0.5 Sd(1) 0.05 2.6
07D1ca SNIa? 0.835 ± 0.001 H 1.4 Sa(1) 0.42 2.0
07D1cc SNIa 0.853 ± 0.001 H 1.2 Sa-Sb 0.49 1.9
07D1cd SNIa? 0.873 ± 0.001 H 4.1 S0-Sa 0.88 0.6
07D1cf SNIa 0.500 ± 0.001 H -8.4 E(1) 0.33 3.1
07D2aa SNIa 0.899 ± 0.001 H -1.9 S0(12) 0.69 3.3
07D2ae SNIa 0.501 ± 0.001 H 1.7 S0(1) 0.43 7.9
07D2ag SNIa 0.25 ± 0.01 S -2.6 S0(5) 0.19 19.6
07D2ah SNIa 0.780 ± 0.001 H -0.6 S0(1) 0.32 3.9
07D2aw SNIa? 0.610 ± 0.001 H 10.0 E(1) 0.65 1.1
07D2bd SNIa 0.572 ± 0.001 H 2.1 Sa-Sb 0.66 3.5
07D2be SNIa? 0.793 ± 0.001 H 7.0 Sc(1) 0.54 1.3
07D2bi SNIa 0.551 ± 0.001 H 0.9 S0(1) 0.64 1.6
07D2bq SNIa 0.535 ± 0.001 H -3.5 E(1) 0.6 2.0
07D2cb SNIa 0.694 ± 0.001 H 1.8 Sd(1) 0.38 2.7
07D2cq SNIa? 0.746 ± 0.001 H 1.1 E(2) 0.62 2.6
07D2ct SNIa? 0.94 ± 0.01 S 1.9 Sa-Sb 0.63 0.6
07D2du SNIa 0.538 ± 0.001 H -1.4 E(1) 0.39 3.3
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Table 2. continued.

SN name Type za z source Φ Host model Host fraction 〈S/N〉b

07D2fy SNIa 0.72 ± 0.01 S 0.3 NoGalaxy 0 2.4
07D2fz SNIa 0.743 ± 0.001 H -1.4 E-S0(1.0) 0.18 4.7
07D4aa SNIa 0.207 ± 0.001 H 13.9 Sb-Sc 0.28 32.9
07D4cy SNIa? 0.456 ± 0.001 H -0.1 Sd(9) 0.9 0.6
07D4dp SNIa? 0.743 ± 0.001 H -1.8 Sd(11) 0.7 2.7
07D4dq SNIa 0.554 ± 0.001 H 1.9 E(3) 0.78 5.7
07D4dr SNIa 0.772 ± 0.001 H 2.2 E(4) 0.69 2.7
07D4ec SNIa 0.653 ± 0.001 H -4.0 Sa-Sb 0.76 2.0
07D4ed SNIa 0.52 ± 0.01 S -1.5 NoGalaxy 0 3.0
07D4ei SNIa 0.37 ± 0.01 S -6.7 S0(1) 0.39 1.5

Notes. (a) Not corrected to the heliocentric reference frame.
(b) Computed in 5Å bins.
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Table 3. Catalog of redshifts and identifications of the non-SN Ia objects mea-
sured in MOS mode at the VLT during the SNLS survey. We use the ID column to
distinguish between host galaxies that were targeted after the transient had faded
from view, live transients (using the labels SNIbc, SNII, SNII? or ?), and random
field galaxies. An asterisk next to a redshift value denotes a redshift obtained
from a single identified line.

Name RA (J2000) Dec (J2000) z ID
02:25:51.01 -04:38:38.6 0.996* Field Galaxy

05D1hb 02:24:28.93 -04:45:23.7 0.764 ?
22:16:44.39 -17:20:18.8 0.784 Field Galaxy

05D4jy 22:16:23.06 -17:47:01.6 0.869 ?
06D1aq 02:26:57.80 -04:03:43.6 0.332 ?

02:26:15.82 -04:20:49.9 0.178 Field Galaxy
02:25:09.01 -04:33:13.2 0.269* Field Galaxy
02:25:09.01 -04:33:13.2 0.767 Field Galaxy

06D1dv 02:26:36.85 -04:44:37.5 0.062 SNIbc
02:26:36.70 -04:44:33.7 0.700 Field Galaxy

06D1hc 02:24:48.25 -04:56:03.6 0.555* SNII?
06D1jd 02:27:36.19 -04:31:56.6 0.324 SNII
06D1jx 02:24:34.75 -04:57:51.7 0.14 SNII

10:01:43.28 +01:51:35.1 0.309 Field Galaxy
10:01:43.67 +01:51:37.3 0.794* Field Galaxy
10:01:43.74 +01:51:38.7 0.682* Field Galaxy

06D2bb 09:59:35.02 +02:17:10.1 0.313 SNII?
06D2bt 09:59:01.76 +02:36:59.1 0.079 SNII

09:59:57.22 +02:07:57.2 0.658* Field Galaxy
06D2iy 10:01:35.56 +02:26:46.8 0.392 SNII?
06D4eu 22:15:54.29 -18:10:45.6 1.588 SLSN
07D1bw 02:27:57.03 -04:37:27.6 0.286 SNII?
07D1cd 02:25:33.96 -04:45:06.5 0.873 ?
07D1ci 02:25:36.71 -04:43:26.0 0.319 SNII?

02:25:36.54 -04:43:26.9 0.319 Field Galaxy
07D2ab 10:02:25.74 +02:19:39.8 0.312 SNII
07D2an 10:00:08.93 +02:36:14.1 0.135 SNII
07D2at 10:02:15.70 +02:05:26.1 0.216 SNII?
07D2bv 10:00:06.63 +02:38:35.8 1.50 SLSN
07D2ca 09:58:49.62 +02:31:17.3 0.507 SNII?
07D2ge 10:01:28.26 +02:42:31.9 0.084 SNII
07D4af 22:16:23.34 -18:12:35.8 0.135 SNII
07D4ck 22:16:02.21 -17:39:42.4 0.581 SNII?

22:14:33.72 -17:25:57.7 0.743 Field Galaxy
07D4ds 22:15:54.73 -17:44:54.8 0.338 ?
07D4dt 22:13:50.13 -17:36:51.8 0.677 ?
07D4ee 22:15:29.69 -18:04:40.1 0.470 ?
03D1ad 02:27:32.66 -04:29:23.7 0.524 Host galaxy

02:27:32.66 -04:29:25.2 0.525 Field Galaxy
03D1af 02:24:12.67 -04:26:14.2 0.603 Host galaxy
03D1am 02:24:13.84 -04:26:02.0 0.556 Host galaxy

02:24:13.97 -04:25:53.1 0.958* Field Galaxy
03D1ap 02:26:35.46 -04:46:03.8 0.513 Host galaxy
03D1aq 02:25:03.08 -04:05:01.8 0.706 Host galaxy
03D1aw 02:24:14.72 -04:31:01.4 0.582 Host galaxy
03D1bc 02:27:38.48 -04:41:48.5 0.383 Host galaxy

02:27:37.97 -04:41:59.0 0.384 Field Galaxy
03D1bg 02:27:05.91 -04:47:34.4 0.512 Host galaxy
03D1by 02:27:54.03 -04:03:04.2 0.378 Host galaxy
03D1ch 02:24:29.12 -04:09:54.9 0.265 Host galaxy
03D1da 02:25:03.19 -04:05:39.3 0.785 Host galaxy, AGN

02:25:04.47 -04:05:34.4 0.172 Field Galaxy
03D1dg 02:25:19.84 -04:30:46.0 0.496 Host galaxy
03D1ea 02:27:50.37 -04:05:01.9 0.312 Host galaxy
03D1et 02:24:26.93 -04:47:54.4 0.855 Host galaxy
03D1ft 02:27:07.44 -04:04:38.7 0.491 Host galaxy
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Table 3. continued.

Name RA (J2000) Dec (J2000) z ID
03D1fy 02:27:16.05 -04:24:33.4 0.177 Host galaxy
03D1gi 02:25:18.13 -04:31:55.5 0.525* Host galaxy
03D1gl 02:27:27.82 -04:08:07.0 0.634 Host galaxy, AGN
03D4au 22:16:09.92 -18:04:39.0 0.468 Host galaxy
03D4az 22:15:47.78 -18:07:51.2 0.409* Host galaxy
03D4cb 22:15:41.48 -18:12:44.8 0.517 Host galaxy
03D4cl 22:15:38.20 -18:06:26.8 0.90* Host galaxy, AGN
03D4dl 22:13:35.29 -17:18:03.2 0.305 Host galaxy
03D4ec 22:14:43.72 -17:21:40.7 1.016* Host galaxy
03D4ed 22:16:19.76 -17:31:27.5 0.860* Host galaxy
03D4ev 22:16:51.40 -17:20:03.1 0.538 Host galaxy
03D4fb 22:14:27.22 -17:22:40.2 0.291 Host galaxy
03D4gj 22:16:01.40 -18:05:20.7 0.318 Host galaxy
04D1aa 02:26:06.22 -04:22:33.8 0.526 Host galaxy
04D1ab 02:25:37.75 -04:42:40.2 0.241 Host galaxy

02:25:37.85 -04:42:36.0 0.265 Field Galaxy

See online material for full table.
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Table 4. Mean properties of the VLT SN Ia and SN Ia? subsamples of the last two years of SNLS. < S/N > are computed in 5 Å bins. Errors are
1σ on the mean (dispersion is given in parentheses).

51 SNe Ia 16 SNe Ia? 67 SNe Ia + SNe Ia?
53 spectra 16 spectra 69 spectra

〈z〉 (σz) 0.57 ± 0.03 (0.18) 0.77 ± 0.03 (0.12) 0.62 ± 0.02 (0.19)
〈Φ〉 (σΦ) 1.0 ± 0.7 (5.1) 2.8 ± 0.9 (3.7) 1.4 ± 0.6 (4.9)
〈 fgal〉 (σ fgal ) 0.39 ± 0.03 (0.25) 0.61 ± 0.04 (0.17) 0.44 ± 0.03 (0.25)
〈S/N〉 (σS/N) 5.5 ± 0.9 (6.5) 1.6 ± 0.2 (0.9) 4.6 ± 0.7 (5.9)
〈γ1〉 (σγ1 ) 0.42 ± 0.12 (0.86) 0.66 ± 0.39 (1.57) 0.48 ± 0.13 (1.06)
〈m∗B〉 (σm∗B ) 23.285 ± 0.127 (0.895) 24.217 ± 0.086 (0.342) 23.511 ± 0.110 (0.890)
〈m∗ c

B 〉 (σm∗ c
B

) 23.965 ± 0.045 (0.319) 23.981 ± 0.089 (0.357) 23.969 ± 0.040 (0.326)
〈c〉 (σc) −0.016 ± 0.014 (0.101) −0.045 ± 0.033 (0.131) −0.023 ± 0.013 (0.109)
〈x1〉 (σx1 ) 0.215 ± 0.109 (0.772) 0.065 ± 0.226 (0.903) 0.180 ± 0.099 (0.801)
〈s〉 (σs) 1.001 ± 0.010 (0.070) 0.988 ± 0.020 (0.081) 0.998 ± 0.009 (0.072)

Table 5. Mean spectro-photometric properties of the SNLS - VLT SN Ia +SN Ia? subsamples. < S/N > are computed in 5 Å bins. Errors are 1σ
on the mean (dispersion is given in parentheses). The spectra of SNe Ia identified as SN Iapec (two SN in the first three years sample and one in the
final two years sample) have been discarded.

VLT (first 3 years) VLT (final 2 years) VLT (all 5 years)
122 SNe Ia + SNe Ia? 67 SNe Ia + SNe Ia? 189 SNe Ia + SNe Ia?

137 spectra 69 spectra 206 spectra
〈z〉 (σz) 0.64 ± 0.02 (0.21) 0.62 ± 0.02 (0.19) 0.63 ± 0.01 (0.20)
〈Φ〉 (σΦ) 2.9 ± 0.5 (5.6) 1.4 ± 0.6 (4.9) 2.4 ± 0.4 (5.4)
〈 fgal〉 (σ fgal ) 0.24 ± 0.02 (0.28) 0.44 ± 0.03 (0.25) 0.31 ± 0.02 (0.29)
〈S/N〉 (σS/N) 4.4 ± 0.4 (4.6) 4.6 ± 0.7 (5.9) 4.5 ± 0.4 (5.1)
〈m∗B〉 (σm∗B ) 23.621 ± 0.080 (0.832) 23.511 ± 0.110 (0.890) 23.582 ± 0.062 (0.852)
〈m∗ c

B 〉 (σm∗ c
B

) 24.005 ± 0.037 (0.407) 23.969 ± 0.040 (0.326) 23.992 ± 0.028 (0.380)
〈c〉 (σc) −0.016 ± 0.011 (0.121) −0.023 ± 0.013 (0.109) −0.019 ± 0.009 (0.117)
〈x1〉 (σx1 ) 0.390 ± 0.088 (0.968) 0.180 ± 0.099 (0.801) 0.315 ± 0.067 (0.916)
〈s〉 (σs) 1.018 ± 0.008 (0.087) 0.998 ± 0.009 (0.072) 1.011 ± 0.006 (0.083)

Table 6. Mean spectro-photometric properties of the blue (c < 0) and red (c ≥ 0) SNe Ia samples used to build the VLT five year composite
spectra. Errors are 1σ on the mean.

c < 0 c ≥ 0
Nb spec 40 31
〈z〉 0.66 ± 0.02 0.57 ± 0.03
〈Φ〉 0.3 ± 0.4 0.3 ± 0.4
〈c〉 −0.098 ± 0.008 0.056 ± 0.007
〈s〉 1.014 ± 0.010 1.013 ± 0.012
〈m∗ c

B 〉 23.796 ± 0.025 24.091 ± 0.046

Table 7. Mean spectro-photometric properties of the low (z < 0.6) and high (z ≥ 0.6) redshift SNe Ia samples used to build the VLT five year
composite spectra. Errors are 1σ on the mean.

z < 0.6 z ≥ 0.6
Nb spec 30 41
〈z〉 0.47 ± 0.02 0.73 ± 0.01
〈Φ〉 0.5 ± 0.4 0.1 ± 0.4
〈c〉 0.001 ± 0.015 −0.055 ± 0.014
〈s〉 1.018 ± 0.010 1.010 ± 0.011
〈m∗ c

B 〉 24.022 ± 0.048 23.853 ± 0.035
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Table 8. Mean spectro-photometric properties of the low (s < 1.013) and high (s ≥ 1.013) stretch SNe Ia samples used to build the VLT five year
composite spectra. Errors are 1σ on the mean.

s < 1.013 s ≥ 1.013
Nb spec 34 37
〈z〉 0.63 ± 0.03 0.61 ± 0.03
〈Φ〉 0.0 ± 0.4 0.6 ± 0.3
〈c〉 −0.033 ± 0.014 −0.029 ± 0.016
〈s〉 0.961 ± 0.007 1.061 ± 0.007
〈m∗ c

B 〉 23.948 ± 0.040 23.903 ± 0.044

Table 9. Mean spectro-photometric properties of the low (log (Mstellar) < 10.06 M�) and high (log (Mstellar) ≥ 10.06 M�) stellar mass SNe Ia sam-
ples used to build the VLT five year composite spectra. Errors are 1σ on the mean.

log (Mstellar) < 10.06 M� log (Mstellar) ≥ 10.06 M�
Nb spec 27 35
〈z〉 0.58 ± 0.03 0.64 ± 0.03
〈Φ〉 0.2 ± 0.4 0.3 ± 0.4
〈c〉 −0.035 ± 0.018 −0.030 ± 0.014
〈s〉 1.027 ± 0.011 0.996 ± 0.012
〈m∗ c

B 〉 23.940 ± 0.057 23.922 ± 0.039
〈log Mstellar〉 9.31 ± 0.10 M� 10.64 ± 0.06 M�

Table 10. Mean spectro-photometric properties of the low (log (Mstellar) < 10.06 M�) and high (log (Mstellar) ≥ 10.06 M�) stellar mass SNe Ia sam-
ples with matching photometric parameter distributions. Errors are 1σ on the mean.

log (Mstellar) < 10.06 M� log (Mstellar) ≥ 10.06 M�
Nb spec 18 18
〈z〉 0.59 ± 0.03 0.65 ± 0.03
〈Φ〉 −0.1 ± 0.6 0.6 ± 0.6
〈c〉 −0.038 ± 0.023 −0.036 ± 0.023
〈s〉 1.014 ± 0.013 1.014 ± 0.013
〈m∗ c

B 〉 23.994 ± 0.072 23.904 ± 0.054
〈log Mstellar〉 9.35 ± 0.11 M� 10.65 ± 0.08 M�

Table 11. Mean properties of the low (z < 0) and high (z ≥ 0.6) redshift SNe Ia samples with matching photometric parameter distribution. Errors
are 1σ on the mean.

z < 0.6 z ≥ 0.6
Nb spec 14 19
〈z〉 0.49 ± 0.03 0.73 ± 0.02
〈Φ〉 0.2 ± 0.7 0.1 ± 0.5
〈c〉 −0.073 ± 0.011 −0.087 ± 0.010
〈s〉 1.017 ± 0.013 1.015 ± 0.018
〈m∗ c

B 〉 23.824 ± 0.042 23.792 ± 0.030

Table 12. Differences in the mean spectro-photometric properties of the low and high redshift SNe Ia samples as a function of the redshift gap
introduced between the two subsamples (see text for details). Errors are 1σ on the mean.

z-gap 0.1 0.2 0.3 0.4
∆z 0.26 ± 0.02 0.40 ± 0.04 0.49 ± 0.04 0.60 ± 0.3
∆c −0.056 ± 0.021 −0.062 ± 0.028 −0.057 ± 0.033 −0.089 ± 0.044
∆s −0.008 ± 0.015 0.005 ± 0.022 0.029 ± 0.026 0.019 ± 0.038

∆m∗ c
B −0.169 ± 0.059 −0.190 ± 0.096 −0.218 ± 0.093 −0.363 ± 0.124
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Fig. 1. Redshift distribution of the VLT SNe Ia from the last two years of
SNLS. SN Ia are shown in dark blue, SN Ia + SN Ia? in light blue. The
mean redshift is 〈z〉S NIa = 0.57 ± 0.03 for the 51 SN Ia and 〈z〉S NIa? =
0.77 ± 0.03 for the 16 SN Ia?
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Fig. 2. Phase distribution of the VLT SNe Ia from the last two years of
SNLS. SN Ia are shown in dark blue, SN Ia + SN Ia? in light blue. The
mean phase is 〈Φ〉S NIa = 1.0 ± 0.7 days for the 51 SN Ia spectra and
〈Φ〉S NIa? = 2.8 ± 0.9 days for the 16 SN Ia? spectra
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Fig. 3. SALT2 color distribution of the VLT SNe Ia from the last two
years of SNLS. SN Ia are shown in dark blue, SN Ia + SN Ia? in light
blue. The mean color is 〈c〉S NIa = −0.016 ± 0.014 for the 51 SN Ia and
〈c〉S NIa? = −0.045 ± 0.033 for the 16 SN Ia?
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Fig. 4. SALT2 x1 distribution of the VLT SNe Ia from the last two years
of SNLS. SN Ia are shown in dark blue, SN Ia + SN Ia? in light blue.
The mean x1 is 〈x1〉S NIa = 0.215±0.109 for the 51 SN Ia and 〈x1〉S NIa? =
0.065 ± 0.226 for the 16 SN Ia?
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Fig. 5. Comparison of the composite spectra at maximum light built from the VLT SNe Ia of the last two years of SNLS as a function of
host-galaxy contamination : fgal < 50% (in red) et fgal ≥ 50% (in blue). A ±1σ range is plotted.
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Fig. 8. Redshift distribution of low (z < 0.6, in blue) and high (z ≥ 0.6,
in red) redshift SNe Ia subsamples used to build composite spectra. The
mean redshift is 〈z〉z<0.6 = 0.47 ± 0.02 for the 30 low-z SNe Ia and
〈z〉z≥0.6 = 0.73 ± 0.01 for the 41 high-z SNe Ia.
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Fig. 9. Phase distribution of low (z < 0.6, in blue) and high (z ≥ 0.6,
in red) redshift SNe Ia subsamples used to build composite spectra. The
mean phase is 〈Φ〉z<0.6 = 0.5 ± 0.4 days for the 30 low-z SNe Ia and
〈Φ〉z≥0.6 = 0.1 ± 0.4 days for the 41 high-z SNe Ia.
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Fig. 10. SALT2 color distribution of low (z < 0.6, in blue) and high
(z ≥ 0.6, in red) redshift SNe Ia subsamples used to build composite
spectra. The mean color is 〈c〉z<0.6 = 0.001 ± 0.015 for the 30 low-z
SNe Ia and 〈c〉z≥0.6 = −0.055 ± 0.014 for the 41 high-z SNe Ia.
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Fig. 11. SALT2 stretch distribution of low (z < 0.6, in blue) and high
(z ≥ 0.6, in red) redshift SNe Ia subsamples used to build composite
spectra. The mean stretch is 〈s〉z<0.6 = 1.018 ± 0.010 for the 30 low-z
SNe Ia and 〈s〉z≥0.6 = 1.010 ± 0.011 for the 41 high-z SNe Ia
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Fig. 12. Top panel : Low (z < 0.6, in blue) and high (z ≥ 0.6, in red) redshift composite spectra around maximum light built from the VLT five year
sample. A ±1σ range is plotted. Individual spectra are color corrected (using SALT2 color law) and recalibrated. Residual host-galaxy lines have
been removed. Middle panel : dispersion of the low (blue) and high (red) redshift composite spectra. Bottom panel : number of spectra entering
the low (blue) and high (red) redshift composite spectra.
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Fig. 13. Comparison of composite spectra from the full VLT five year sample split in stretch. The red spectrum is for s < 1.013 and the blue
spectrum for s ≥ 1.013. Individual spectra have been color corrected using the SALT2 color law and recalibrated. Residual host-galaxy lines have
been removed.
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Fig. 14. Correlation between EW Si ii λ4130 and stretch measured for high S/N SNe Ia of the full VLT five year sample. The best-fit relation is
EW(Si ii) = (−139.3 ± 10.9) × s + (150, 9 ± 10.8). The low stretch (s < 1.013) and high stretch (s ≥ 1.013) SNe Ia are shown as red filled circles
and blue triangles, respectively.
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Fig. 15. Comparison of composite spectra at maximum light from the full VLT five year sample host-galaxy split in stellar mass. A ±1σ range is
plotted. Individual spectra have been color corrected using the SALT2 color law and recalibrated. Residual host-galaxy lines have been removed.
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Fig. 16. Same as Fig. 15, with composite spectra built from two subsamples with the constraint that the stretch and other spectro-photometric
parameter distributions of the two subsamples match.
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Fig. 17. Same as Fig. 12 with composite spectra built from two subsamples split with matching spectro-photometric parameter distributions. Top
panel : low (z < 0.6, in blue) and high (z ≥ 0.6, in red) redshift composite spectra. Middle panel : dispersion of the low (blue) and high (red)
redshift composite spectra. Bottom panel : number of spectra entering the low (blue) and high (red) redshift composite spectra.
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Fig. 18. Comparison of composite spectra from the full VLT five year sample split by stretch while imposing a stretch gap (no spectra) between
0.95 and 1.05 in order to exacerbate the effects due to the stretch. Individual spectra have been color corrected using the SALT2 color law and
recalibrated. Residual host-galaxy lines have been removed.
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are made at the sample average value.
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Fig. 20. The SNIa 05D1dx_1013 spectrum measured at z = 0.58 with a phase of -8.5 days. A S0(1) host model has been subtracted.
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Fig. 21. The SNIa 05D1dx_1046 spectrum measured at z = 0.58 with a phase of 12.4 days. A S0(12) host model has been subtracted.
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Fig. 22. The SNIa 05D1hm_1063 spectrum measured at z = 0.587 with a phase of 4.5 days. A E(1) host model has been subtracted.
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Fig. 23. The SNIa 05D1if_1065 spectrum measured at z = 0.763 with a phase of -5.9 days. A S0-Sa host model has been subtracted.
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Fig. 24. The SNIa 05D2le_1065 spectrum measured at z = 0.700 with a phase of 5.9 days. Best fit is obtained without galactic component.
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Fig. 25. The SNIa? 06D1bg_1330 spectrum measured at z = 0.76 with a phase of 8.0 days. A S0(1) host model has been subtracted.

Article number, page 33 of 55



A&A proofs: manuscript no. balland_final_editor

)ÅObserved wavelength (
4000 5000 6000 7000 8000 9000

)
Å/2

 e
rg

/s
/c

m
­1

8
F

lu
x 

(1
0

­0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

)ÅRest­frame wavelength (
2500 3000 3500 4000 4500 5000 5500

)ÅObserved wavelength (
4000 5000 6000 7000 8000 9000

)
Å/2

 e
rg

/s
/c

m
­1

8
F

lu
x 

(1
0

­0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

)ÅRest­frame wavelength (
2500 3000 3500 4000 4500 5000 5500

Fig. 26. The SNIa 06D1bo_1330 spectrum measured at z = 0.62 with a phase of -3.0 days. A Sd(1) host model has been subtracted.
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Fig. 27. The SNIa 06D1cm_1342 spectrum measured at z = 0.619 with a phase of 8.3 days. Best fit is obtained without galactic component.
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Fig. 28. The SNIa 06D1cx_1339 spectrum measured at z = 0.860 with a phase of -4.2 days. Best fit is obtained without galactic component.
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Fig. 29. The SNIa? 06D1dc_1360 spectrum measured at z = 0.767 with a phase of 3.8 days. A E-S0 host model has been subtracted.
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Fig. 30. The SNIa 06D1dl_1360 spectrum measured at z = 0.514 with a phase of -5.2 days. A E(1) host model has been subtracted.
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Fig. 31. The SNIa 06D1du_1358 spectrum measured at z = 0.24 with a phase of -0.2 days. A E(1) host model has been subtracted.
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Fig. 32. The SNIa 06D1eb_1364 spectrum measured at z = 0.704 with a phase of -5.2 days. A Sd(1) host model has been subtracted.
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Fig. 33. The SNIa 06D1eb_1369 spectrum measured at z = 0.704 with a phase of -2.3 days. A Sd7 host model has been subtracted.
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Fig. 34. The SNIa 06D1ez_1389 spectrum measured at z = 0.692 with a phase of 7.6 days. A S01 host model has been subtracted.
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Fig. 35. The SNIa 06D1fd_1395 spectrum measured at z = 0.350 with a phase of 4.9 days. A Sd(13) host model has been subtracted.

)ÅObserved wavelength (
4000 5000 6000 7000 8000

)
Å/2

 e
rg

/s
/c

m
­1

8
F

lu
x 

(1
0

0

1

2

3

4

5

)ÅRest­frame wavelength (
3000 3500 4000 4500 5000 5500

)ÅObserved wavelength (
4000 5000 6000 7000 8000

)
Å/2

 e
rg

/s
/c

m
­1

8
F

lu
x 

(1
0

­0.5

0

0.5

1

1.5

2

2.5

3

)ÅRest­frame wavelength (
3000 3500 4000 4500 5000 5500

Fig. 36. The SNIa 06D1fx_1413 spectrum measured at z = 0.524 with a phase of 6.8 days. A Sa-Sb host model has been subtracted.
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Fig. 37. The SNIa 06D1gl_1417 spectrum measured at z = 0.98 with a phase of 4.3 days. A S0-Sa host model has been subtracted.
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Fig. 38. The SNIa? 06D1hi_1424 spectrum measured at z = 0.803 with a phase of -3.3 days. A E(4) host model has been subtracted.
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Fig. 39. The SNIa 06D1ix_1447 spectrum measured at z = 0.65 with a phase of 3.8 days. A Sd(1) host model has been subtracted.
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Fig. 40. The SNIa 06D1jf_1447 spectrum measured at z = 0.641 with a phase of 1.5 days. A Sc(4) host model has been subtracted.
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Fig. 41. The SNIa 06D1jz_1452 spectrum measured at z = 0.346 with a phase of 3.3 days. A S0(7) host model has been subtracted.
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Fig. 42. The SNIa 06D1kf_1453 spectrum measured at z = 0.561 with a phase of -6.5 days. A Sd(1) host model has been subtracted.
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Fig. 43. The SNIa 06D1kg_1477 spectrum measured at z = 0.32 with a phase of 6.1 days. A S0(2) host model has been subtracted.
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Fig. 44. The SNIa? 06D1kh_1483 spectrum measured at z = 0.882 with a phase of 7.3 days. A E(1) host model has been subtracted.
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Fig. 45. The SNIa 06D2ag_1121 spectrum measured at z = 0.310 with a phase of 4.0 days. A Best fit is obtained without galactic component.
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Fig. 46. The SNIa? 06D2bo_1134 spectrum measured at z = 0.82 with a phase of 2.6 days. A Sa(1) host model has been subtracted.
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Fig. 47. The SNIa 06D2hm_1447 spectrum measured at z = 0.56 with a phase of 7.9 days. A Sa(3) host model has been subtracted.
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Fig. 48. The SNIa 06D2hu_1449 spectrum measured at z = 0.342 with a phase of 7.2 days. A E-S0 host model has been subtracted.
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Fig. 49. The SNIa? 06D2jw_1456 spectrum measured at z = 0.90 with a phase of -0.1 days. A E(1) host model has been subtracted.
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Fig. 50. The SNIa 06D4ba_1280 spectrum measured at z = 0.70 with a phase of 9.2 days. A Sd(2) host model has been subtracted.
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Fig. 51. The SNIa 06D4bo_1280 spectrum measured at z = 0.552 with a phase of 1.0 days. A S0-Sb host model has been subtracted.
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Fig. 52. The SNIa 06D4bw_1279 spectrum measured at z = 0.732 with a phase of 5.8 days. A Sa(1) host model has been subtracted.
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Fig. 53. The SNIa 06D4gs_1358 spectrum measured at z = 0.31 with a phase of -4.2 days. A E(1) host model has been subtracted.
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Fig. 54. The SNIa 06D4jh_1413 spectrum measured at z = 0.566 with a phase of 3.7 days. A Sd(2) host model has been subtracted.
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Fig. 55. The SNIa? 06D4jt_1418 spectrum measured at z = 0.76 with a phase of 2.9 days. A Sd(1) host model has been subtracted.
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Fig. 56. The SNIa 07D1ab_1483 spectrum measured at z = 0.328 with a phase of -0.2 days. A E(1) host model has been subtracted.
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Fig. 57. The SNIa 07D1ad_1484 spectrum measured at z = 0.297 with a phase of 6.9 days. A S0(12) host model has been subtracted.
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Fig. 58. The SNIa-pec 07D1ah_1699 spectrum measured at z = 0.342 with a phase of -0.6 days. A E(1) host model has been subtracted.
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Fig. 59. The SNIa 07D1bl_1707 spectrum measured at z = 0.636 with a phase of 2.0 days. A E(2) host model has been subtracted.
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Fig. 60. The SNIa? 07D1bs_1711 spectrum measured at z = 0.617 with a phase of 0.7 days. A Sa-Sb host model has been subtracted.
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Fig. 61. The SNIa 07D1bu_1711 spectrum measured at z = 0.626 with a phase of -2.8 days. A Sd(5) host model has been subtracted.
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Fig. 62. The SNIa 07D1by_1715 spectrum measured at z = 0.73 with a phase of -0.5 days. A Sd(1) host model has been subtracted.
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Fig. 63. The SNIa? 07D1ca_1719 spectrum measured at z = 0.835 with a phase of 1.4 days. A Sa(1) host model has been subtracted.
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Fig. 64. The SNIa 07D1cc_1719 spectrum measured at z = 0.853 with a phase of 1.2 days. A Sa-Sb host model has been subtracted.
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Fig. 65. The SNIa? 07D1cd_1724 spectrum measured at z = 0.873 with a phase of 4.1 days. A S0-Sa host model has been subtracted.
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Fig. 66. The SNIa 07D1cf_1723 spectrum measured at z = 0.500 with a phase of -8.4 days. A E(1) host model has been subtracted.
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Fig. 67. The SNIa 07D2aa_1487 spectrum measured at z = 0.899 with a phase of -1.9 days. A S0(12) host model has been subtracted.
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Fig. 68. The SNIa 07D2ae_1485 spectrum measured at z = 0.501 with a phase of 1.7 days. A S0(1) host model has been subtracted.
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Fig. 69. The SNIa 07D2ag_1485 spectrum measured at z = 0.25 with a phase of -2.6 days. A S0(5) host model has been subtracted.
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Fig. 70. The SNIa 07D2ah_1486 spectrum measured at z = 0.780 with a phase of -3.8 days. A S0(1) host model has been subtracted.
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Fig. 71. The SNIa? 07D2aw_1515 spectrum measured at z = 0.610 with a phase of 10.0 days. A E(1) host model has been subtracted.
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Fig. 72. The SNIa 07D2bd_1510 spectrum measured at z = 0.572 with a phase of 2.1 days. A Sa-Sb host model has been subtracted.
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Fig. 73. The SNIa? 07D2be_1510 spectrum measured at z = 0.793 with a phase of 7.0 days. A Sc(1) host model has been subtracted.
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Fig. 74. The SNIa 07D2bi_1514 spectrum measured at z = 0.551 with a phase of 0.9 days. A S0(1) host model has been subtracted.
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Fig. 75. The SNIa 07D2bq_1518 spectrum measured at z = 0.535 with a phase of -3.5 days. A E(1) host model has been subtracted.
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Fig. 76. The SNIa 07D2cb_1536 spectrum measured at z = 0.694 with a phase of 1.8 days. A Sd(1) host model has been subtracted.
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Fig. 77. The SNIa? 07D2cq_1539 spectrum measured at z = 0.746 with a phase of 1.1 days. A E(2) host model has been subtracted.
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Fig. 78. The SNIa? 07D2ct_1540 spectrum measured at z = 0.94 with a phase of 1.9 days. A Sa-Sb host model has been subtracted.
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Fig. 79. The SNIa 07D2du_1570 spectrum measured at z = 0.538 with a phase of -1.4 days. A E(1) host model has been subtracted.
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Fig. 80. The SNIa 07D2fy_1596 spectrum measured at z = 0.72 with a phase of 0.3 days. Best fit is obtained without galactic component.
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Fig. 81. The SNIa 07D2fz_1596 spectrum measured at z = 0.743 with a phase of -1.4 days. A E-S0 host model has been subtracted.
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Fig. 82. The SNIa 07D4aa_1630 spectrum measured at z = 0.207 with a phase of 13.9 days. A Sb-Sc host model has been subtracted.
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Fig. 83. The SNIa? 07D4cy_1694 spectrum measured at z = 0.456 with a phase of -0.1 days. A Sd(9) host model has been subtracted.
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Fig. 84. The SNIa? 07D4dp_1713 spectrum measured at z = 0.743 with a phase of -1.8 days. A Sd(11) host model has been subtracted.
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Fig. 85. The SNIa 07D4dq_1713 spectrum measured at z = 0.554 with a phase of 1.9 days. A E(3) host model has been subtracted.
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Fig. 86. The SNIa 07D4dr_1713 spectrum measured at z = 0.772 with a phase of 2.2 days. A E(4) host model has been subtracted.
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Fig. 87. The SNIa 07D4ec_1722 spectrum measured at z = 0.653 with a phase of -4.0 days. A Sa-Sb host model has been subtracted.
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Fig. 88. The SNIa 07D4ed_1731 spectrum measured at z = 0.52 with a phase of -1.5 days. A Best fit is obtained without galactic component.
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Fig. 89. The SNIa 07D4ei_1725 spectrum measured at z = 0.37 with a phase of -6.7 days. A S0(1) host model has been subtracted.
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