Mechanically robust cylindrical metal terahertz waveguides for cryogenic applications

Wallis, Robert and Degl'Innocenti, Riccardo and Mitrofanov, Oleg and Waldie, Joanna and Bledt, Carlos M. and Melzer, Jeffrey E. and Harrington, James A. and Beere, Harvey E. and Ritchie, David A. (2017) Mechanically robust cylindrical metal terahertz waveguides for cryogenic applications. Proceedings of SPIE, 10103: 1010307. ISSN 0277-786X

[thumbnail of Mitrofanov_Mechanically robust cylindrical metal terahertz waveguides for cryogenic applications]
Preview
PDF (Mitrofanov_Mechanically robust cylindrical metal terahertz waveguides for cryogenic applications)
Mitrofanov_Mechanically_robust_cylindrical_metal_terahertz_waveguides_for_cryogenic_applications.pdf - Published Version
Available under License Creative Commons Attribution-NonCommercial.

Download (1MB)

Abstract

As the ambition behind THz quantum cascade laser based applications continues to grow, abandoning free-space optics in favor of waveguided systems promises major improvements in targeted, easy to align, and robust radiation delivery. This is especially true in cryogenic environments, where illumination is traditionally challenging. Although the field of THz waveguides is rapidly developing, most designs have limitations in terms of mechanical stability at low temperatures, and are costly and complicated to fabricate to lengths > 1 m. In this work, we investigate readily available cylindrical metal waveguides which are suitable for effective power delivery in cryogenic environments, and explore the optimal dimensions and materials available. The materials chosen were extruded un-annealed and annealed copper, as well as stainless steel, with bore diameters of 1.75, 2.5, and 4.6 mm. Measurements were performed at three different frequencies, 2.0, 2.85 and 3.2 THz, with optimal transmission losses 1, and forms a comprehensive investigation of cryogenically compatible THz waveguides and optical couplers, paving the way for a new generation of systems to utilize THz QCLs for a host of low-temperature investigations.

Item Type:
Journal Article
Journal or Publication Title:
Proceedings of SPIE
Additional Information:
Robert Wallis, Riccardo Degl'Innocenti, Oleg Mitrofanov, Joanna Waldie, Carlos M. Bledt, Jeffrey E. Melzer, James A. Harrington, Harvey E. Beere, David A. Ritchie, "Mechanically robust cylindrical metal terahertz waveguides for cryogenic applications", Proc. SPIE 10103, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications X, 1010307 (24 February 2017); doi: 10.1117/12.2250530; http://dx.doi.org/10.1117/12.2250530 Copyright notice format: Copyright 2017 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. DOI abstract link format: http://dx.doi.org/10.1117/12.2250530
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2500/2504
Subjects:
?? beam shapingcryogenicsmode profileoptical componentsquantum cascade laserterahertz waveguideselectronic, optical and magnetic materialscondensed matter physicscomputer science applicationsapplied mathematicselectrical and electronic engineering ??
ID Code:
89269
Deposited By:
Deposited On:
11 Jan 2018 15:00
Refereed?:
Yes
Published?:
Published
Last Modified:
13 Sep 2024 14:25