Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion

Glendell, Miriam and McShane, Gareth and Farrow, Luke and James, Michael and Quinton, John and Anderson, Karen and Evans, Martin and Benaud, Pia and Rawlins, Barry and Morgan, David and Jones, Lee and Kirkham, Matthew and DeBell, Leon and Quine, Timothy A. and Lark, Murray and Rickson, Jane and Brazier, Richard E. (2017) Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion. Earth Surface Processes and Landforms, 42 (12). pp. 1860-1871. ISSN 0197-9337

[img]
Preview
PDF (Testing the utility of structure from motion photogrammetry)
Testing_the_utility_of_structure_from_motion_photogrammetry.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.

Download (952kB)

Abstract

Quantifying the extent of soil erosion at a fine spatial resolution can be time consuming and costly; however, proximal remote sensing approaches to collect topographic data present an emerging alternative for quantifying soil volumes lost via erosion. Herein we compare terrestrial laser scanning (TLS), and both unmanned aerial vehicle (UAV) and ground photography (GP) structure-from-motion (SfM) derived topography. We compare the cost-effectiveness and accuracy of both SfM techniques to TLS for erosion gully surveying in upland landscapes, treating TLS as a benchmark. Further, we quantify volumetric soil loss estimates from upland gullies using digital surface models derived by each technique and subtracted from an interpolated pre-erosion surface. Soil loss estimates from UAV and GP SfM reconstructions were comparable to those from TLS, whereby the slopes of the relationship between all three techniques were not significantly different from 1:1 line. Only for the TLS to GP comparison was the intercept significantly different from zero, showing that GP is more capable of measuring the volumes of very small erosion features. In terms of cost-effectiveness in data collection and processing time, both UAV and GP were comparable with the TLS on a per-site basis (13.4 and 8.2 person-hours versus 13.4 for TLS); however, GP was less suitable for surveying larger areas (127 person-hours per ha(-1) versus 4.5 for UAV and 3.9 for TLS). Annual repeat surveys using GP were capable of detecting mean vertical erosion change on peaty soils. These first published estimates of whole gully erosion rates (0.077 m a(-1)) suggest that combined erosion rates on gully floors and walls are around three times the value of previous estimates, which largely characterize wind and rainsplash erosion of gully walls. Copyright (c) 2017 John Wiley & Sons, Ltd.

Item Type:
Journal Article
Journal or Publication Title:
Earth Surface Processes and Landforms
Additional Information:
This is the peer reviewed version of the following article: Glendell, M., McShane, G., Farrow, L., James, M. R., Quinton, J., Anderson, K., Evans, M., Benaud, P., Rawlins, B., Morgan, D., Jones, L., Kirkham, M., DeBell, L., Quine, T. A., Lark, M., Rickson, J., and Brazier, R. E. (2017) Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion. Earth Surf. Process. Landforms, 42: 1860–1871. doi: 10.1002/esp.4142 which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/esp.4142/abstract This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3300/3305
Subjects:
ID Code:
89180
Deposited By:
Deposited On:
03 Jan 2018 09:22
Refereed?:
Yes
Published?:
Published
Last Modified:
06 Jun 2020 05:14