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Abstract
In Pharmacokinetic (PK) studies, inference is made on the absorption, dis-

tribution, metabolism and excretion (ADME) of an externally administered com-

pound within the body. This is done by measuring the concentration of the

compound in some form of bodily tissue (such as whole blood or plasma) at a

number of time points after administration. There are two approaches to PK

analysis, modelling and non-compartmental (NCA). The modelling approach

uses assumptions of the behaviour of the compound in the body to fit models to

the data in order to approximate the concentration versus time curve. Whereas

in NCA, no such assumptions are made, and numerical methods are used to ap-

proximate this curve. The PK behaviour is summarised by PK parameters that

are derived from this approximation, such as the area under the curve (AUC),

the maximum concentration (Cmax) and the time at which this maximum occurs

(tmax).

In this thesis, three separate topics in the area of PK studies are explored.

The first two are motivated by the new blood sampling method of microsam-

pling, which requires a smaller sample volume than traditionally used. Firstly,

a methodology is introduced for comparing microsampling to traditional sam-

pling using the derived PK parameters from PK modelling, to find evidence of

equivalence of the two sampling methods. The next topic establishes an algo-

rithm for choosing an optimal sparse sampling scheme for PK studies that use

microsampling using NCA, developing a two-stage procedure that minimizes

bias and variance of the PK parameter estimates. The final topic concerns how
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PK analysis can be conducted when some measurements are too low to be re-

liably detected, again using NCA. Seven methods are explored, with the intro-

duced method of using kernel density estimation to impute values onto cen-

sored responses using an iterative procedure showing
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Background
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1.1 Introduction
In order to ensure the protection of human subjects in clinical trials and

future human patients, it is necessary to use laboratory animals in pre-clinical

research. However, a balance must be established between the desire to cure

disease in humans and the ethical considerations of the use of animals to achieve

this.

These ethical considerations of using animals in drug development are en-

capsulated by the 3 R principles: replacement, reduction and refinement.65 Re-

placement involves finding different means of collecting the data that does not

include the use of conscious living vertebrates. One option is absolute replace-

ment, where no animals are used at all. The other option is relative replace-

ment, where animals that are not conscious living vertebrates are used. Relative

replacement can be performed using, for example, in vitro methodologies or

invertebrates such as nematode worms or fruit flies.

The second R of reduction is quite straightforwardly reducing the number

of animals that are needed to take part in the study in order to still obtain the

same quality and validity of results. Alternatively, by using the same number of

animals to obtain additional information, one can reduce the number of future

animals needed for such studies. This can be achieved by developing new exper-

imental design and statistical analysis, in addition to better sharing of resources

and data.

The third R of refinement refers to the improvement of laboratory proce-

dures and care of the laboratory animals in order to minimize the exposure of the

animals to any potential distress, pain or lasting harm. This ensures that where

there is no alternative but to use laboratory animals in a study, the welfare of the

animals is considered of the highest priority. Refinement can be implemented

by using non invasive or less invasive techniques to test the animals, and the en-
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richment of the animals’ living environments in order to provide best for both

their physical and behavioural needs.

A fourth R, responsibility,8 is also considered by some. This is the respon-

sibility of those working with animals in pre-clinical research. The nature of this

slightly overlaps with the third R of refinement, as the responsibility of the re-

searchers to treat the laboratory animals with respect and to care for the welfare

of the animals is partly encompassed by the criteria of refinement.

One of the most recent developments in laboratory techniques to improve

the outlook for laboratory animals is the novel blood sampling method of mi-

crosampling (discussed in Section 1.2). This new sampling technique, which

requires a reduced volume per sample, is the main motivation behind this re-

search, covering considerations in the issues of reduction and refinement, and

of course responsibility. The area of application of this technique that we focus

on in this research is for pharmacokinetic (PK) studies in pre-clinical research

(discussed in Section 1.3).

Microsampling is an important step forward for pre-clinical research, hence

for it to be more widely used, there must be clear evidence that it gives equiv-

alent results to previous sampling methods used, the subject of the first paper

in this thesis (Chapter 3). It must also be ensured that the PK studies collect

the most accurate information they can, this is done by controlling the sampling

times to construct an optimal design, the subject of the second paper in this the-

sis (Chapter 4). The subject of the third paper is considering how to deal with

concentration values that are too low to be reliably detected in such PK studies

(Chapter 5).

To provide background on this area, the following sections give an overview

of microsampling, PK studies and their analysis, multiple comparison tests, the

theory of optimal trial designs and the current methods for dealing with con-

centration measurements that are too low to be reliably detected.
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1.2 Microsampling
The term microsampling covers many laboratory techniques such as dried

blood spots, that involve taking samples of considerably less blood than tradi-

tional methods. Generally traditional sampling involves taking samples with

volume around 500 µL per sample, whereas microsampling requires up to only

10% of this. To extract the large volume of blood required for traditional sam-

pling, the animals must first be warmed in a hot box to increase their blood flow.

This puts the animals under stress, which is undesirable not only for the welfare

of the animals, but it may also alter some of the characteristics under study. The

large volume of blood taken also puts restrictions on the frequency of samples

so that animals do not suffer significant blood loss and are not put under unnec-

essary repeated stress. Microsampling was developed to address these issues,

as well as improving the practicability and economic factors related to taking

these samples. This relates to the reduction and responsibility principles of the

4 R’s of research discussed earlier, as more frequent sampling may lead to re-

duced animal numbers but also if this stress on animals is avoidable or can be

reduced without loss of information from the study, then it is the responsibility

of the researchers to take this action. The main two methods of microsampling

are dried blood spot (DBS) microsampling and capillary microsampling (CMS).

DBS involves a blood sample being spotted onto pretreated filter paper

(known as DBS cards) before being dried, shipped to the laboratory and ana-

lyzed using Liquid Chromatography - Tandem Mass Spectrometry (LC-MS/MS).

This procedure can be time consuming and costly,21 as the process of spotting

and drying involves manual intervention and organization. For the appropri-

ateness of using DBS in various settings, it is noted that it is particularly useful

in large clinical trials when samples that previously had to be shipped on dry

ice could now be kept at room temperature and hence costs were reduced by
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tens of thousands of euros.24 The blood : plasma ratio and whether the hemat-

ocrit, blood cell partitioning and unbound fraction in plasma are constant were

all found to affect the appropriateness of the use of DBS.

CMS uses a predefined low volume of sample collected in a glass capillary

micropipette from, for example, the tail vein of a rat. This volume ranges from

8- 25 µL for whole blood and 32 or 64 µL for plasma collection.21 The process in-

volves filling the glass capillary end to end with capillary force, then placing the

capillary in a sample tube before washing out the sample by mixing with water

or internal standard (IS) solution and leaving the capillary in the tube.48 This

diluted sample can then be handled in the same way, with the same laboratory

apparatus, as standard plasma samples are dealt with currently. The appropri-

ateness of CMS is more vast than DBS and hence its potential usefulness is more

widespread, so it may be used in a wider range of studies than DBS. This is be-

cause it offers handling of samples of blood, plasma and other biofluids in the

liquid state.56

In May 2013 the NC3Rs held a workshop in central London titled ’Over-

coming the barriers for uptake of microsampling techniques in regulatory toxi-

cology’. This comprised of representatives from pharmaceutical companies and

regulatory bodies to share knowledge and information on microsampling and

what the barriers were for further implementation. It was found that there were

two main aspects contributing to the barrier: (i) functional and clinical pathol-

ogy evaluation and (ii) approaches to bioanalysis and toxicokinetics (TK). This

illustrates the reluctance of companies to embrace the use of microsampling, and

suggests further evidence is needed to support its usage.

Despite this, many advantages to using microsampling over traditional

sampling techniques have been established. The reduction in volume of the sam-

ples taken addresses the refinement area of the 4 R’s. The smaller volumes of

sample reduce the suffering of the animal, and do not require the animals to be
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warmed prior to sampling to increase the blood flow, as they did for traditional

methods.48 As well as this, the time that the animals have to be restrained is re-

duced. This all reduces the stress that the animals are under and hence aids the

refinement of the study procedure. The use of capillary microsampling makes

use of current laboratory apparatus and procedure for analysis and hence only

the sampling procedure changes which reduces retraining needed.

However, one of the main potential benefits of microsampling is the pos-

sible reduction of number of animals needed in such studies. Currently, two

separate groups of animals are often needed for pre-clinical and toxicokinetic

studies, the main study animals in which the pharmacodynamics (therapeutic

or adverse effects) are measured, and the satellite animals in which the pharma-

cokinetic (PK) or toxicokinetic effects are measured. This is because the large

blood volume of the sample taken for PK or TK analysis can cause anemia or

other secondary effects such as bone marrow or haematological changes that

could potentially confound the interpretation of the primary endpoints of the

study.16 For example, in a typical repeated oral dose 4 week rat study with 10

study animals per dose group of each sex, an additional 3 to 9 satellite animals

per sex are required.

The use of satellite animals also means that there is no way to correlate the

drug action directly with the level of drug in the blood because they are mea-

sured in different groups of animals. It is reported that there has been a lack of

specific data to demonstrate the magnitude of effect of different blood sampling

regimes on critical toxicology endpoints, which has hampered the adoption of

toxicokinetic monitoring of main test rats on toxicology studies.58 When 1.2 mL

of blood was collected at the beginning and end of a 14 day study in adult rats,

all clinical pathology parameters remained within background range. It was

also found that 6× 32 µL sampling regimes are toxicologically benign in groups

of adult rats, hence unlikely to interfere with the interpretation of toxicologi-



7

cal endpoints in a regulatory repeated dose toxicity study of at least two weeks

length.58 These results suggest that the use of microsampling may facilitate the

elimination of the use of satellite animals.

Microsampling has already started to be implemented by some compa-

nies in the drug development process. Anecdotal evidence exists for its use in

non good laboratory practice (non-GLP), it has not been widely practiced and

extended to good laboratory practice (GLP), which must adhere to a strict set

of principles regarding such factors as consistency and reproducibility.58 It is

hoped that more research and development in the area of microsampling will

provide evidence that will help extend its usage and contribute to reduction and

refinement in pre-clinical studies.

1.3 Pharmacokinetic (PK) Studies
This section provides some background to the basic concepts of pharma-

cokinetics. Since the contents of this section are largely well known and estab-

lished concepts in pharmacokinetics, many of the individual ideas and formula-

tions are not referenced. The background information is largely based on books

by Källén,49 Gibaldi32 and Jambhekar & Breen.45

Pharmacokinetics is the study of the movement of drugs over time through-

out the body. That is, it is concerned with the effect the body has on the drug.

This is split into four main categories:

• Absorption- how drugs move from the site of administration (oral, in-

halation, etc) to the blood. This does not apply to drugs given by intra-

venous pathways, as the drug is directly administered to the blood in

that case, and there is no need for it to be absorbed;

• Distribution- how drugs move from the blood to other parts of the body

(tissues, organs, etc);
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• Metabolism- how drugs are transformed or broken down by the body

into smaller molecules, which may or may not be pharmacologically ac-

tive or toxic;

• Excretion- how drugs are removed from the body.

These four aspects are often referred to as the ADME process.

Typically one can only measure the concentration of the drug in some com-

partment such as whole blood serum or plasma, and do so at specific predefined

time points. The aim of pharmacokinetic studies is to then derive as much in-

formation as possible about how the body handles the drug from only these

measurements.

Some common PK parameters of interest that are estimated from this are:

• Cmax - the maximum plasma concentration of the drug;

• tmax - the time the maximum plasma concentration of the drug is reached;

• AUC - the area under the concentration versus time curve, a measure of

exposure to the drug;

• t 1
2

- elimination half life, the time taken for the plasma concentration to

fall to half its maximum value.

These are illustrated in Figure 1.1 with the bottom graph on a semi-logarithmic

scale for the elimination phase. That is, using a linear scale on the x-axis and

logarithmic scale on the y-axis.

There are two approaches to measuring PK: (i) modelling and (ii) non-

compartmental analysis. In the modelling approach, the body is pictured as be-

ing made up of compartments and the flow of the compound is modelled using

kinetic models involving differential equations. These models are fitted to the

data in order to estimate the PK parameters. In non-compartmental analysis, no
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Figure 1.1: An illustration of some common PK parameters

models are fitted to the data, but PK parameters are estimated using numerical

methods. The most popular of which is a linear interpolation between responses

at consecutive time points.
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1.3.1 Modelling Approach

In the modelling approach, the concentration of the drug in the blood

plasma is described by a mathematical model. Often these models are derived

from assumptions that involve a simplification of the body by breaking it down

into compartments, and modelling the diffusion of the drug between these com-

partments. The more compartments considered, the more complex the PK model.

The choice of model depends on the distribution characteristics of the drug

following its administration. The general rule is that the slower the distribution

of the drug in the body, the more compartments are required to characterize

the concentration versus time curve. Therefore for drugs that are rapidly dis-

tributed, a one-compartmental model will adequately describe the plasma con-

centration over time.

The model is also dependent on the route of administration of the drug.

Drugs can be administered in two main ways: oral administration and intra-

venous (IV) administration. IV administration involves delivering the drug di-

rectly into the bloodstream. This can be as an infusion, with a slow increase in

concentration, or as a bolus dose, with a very rapid increase in concentration.

Oral administration involves ingesting the drug through the digestive system,

and hence the absorption of the drug into the bloodstream must be modelled.

When fitting a PK model C(t) to data y(t), it is assumed that the data is re-

lated to the PK model by an error model e(t), either additively (1.1) or multiplica-

tively (1.2). Realizations from the error model e(t) are assumed to be normally

distributed with 0 mean.

Additive Error Model:

y(t) = C(t) + e(t) (1.1)

Multiplicative Error Model:

y(t) = C(t) exp(e(t)) (1.2)



11

What follows are four of the main PK models generally used (although

many others are used in practice):

1.3.1.1 Intravenous bolus administration, one compartmental model

In this case the body is modelled as one compartment, with the bolus dose

administered directly to this compartment. Therefore the model is solely de-

scribed by the elimination of the drug from this compartment, as there is no

absorption phase. Figure 1.2 shows a diagram of this system.

Figure 1.2: Diagram of intravenous bolus administration, one compartmental
model

The differential equation used to describe the rate of change of plasma con-

centration is given in equation 1.3. The integrated equation for this model is

given in equation 1.4 where C(t) is the plasma drug concentration at time t , C0

is the plasma concentration at time 0 and ke is the elimination rate constant.

dX1

dt
= −ke ·X1 (1.3)

C(t) = C0e
−ket (1.4)

Figure 1.3 shows an example of data from a one-compartmental IV bolus

dose model, plotted on a semi-logarithmic scale. This plot shows a linear rela-

tionship, evidence that the distribution of the drug is instantaneous, so the drug

is very rapidly distributed in the body, and there is a single phase of elimination.
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Figure 1.3: Illustration of intravenous bolus administration, one compartmental
model on a semi-logarithmic scale

1.3.1.2 Intravenous bolus administration, two compartmental model

Here the body is modelled as two compartments, a central compartment

(blood, liver, kidneys) and a peripheral compartment (fat, bone, skin). Again,

the bolus dose is administered directly to the central compartment, so there is no

absorption phase. However since there are two compartments, the rates of dif-

fusion between the compartments must be taken into account. Figure 1.4 shows

a diagram of these compartments.

Figure 1.4: Diagram of intravenous bolus administration, two compartmental
model

The differential equation to describe the rate of change of plasma concen-

tration in the central compartment is given in equation 1.5, where k12 is the rate

of diffusion from the central compartment to the peripheral compartment, and

k21 is the rate of diffusion from the peripheral compartment to the central com-
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partment. The integrated equation for this model is given by equation 1.6.

dX1

dt
= −ke ·X1− k12 ·X1 + k21 ·X2 (1.5)

C(t) = Ae−αt +Be−βt (1.6)

Figure 1.5 shows a graphical illustration of such a model, with the two

phases: distribution and post-distribution.

Figure 1.5: Illustration of intravenous bolus administration, two compartmental
model on a semi-logarithmic scale

1.3.1.3 Oral administration, one compartmental model

When the drug is administered orally, the plasma concentration depends

on the absorption from the gastro-intestinal (GI) tract to the compartment as

well as the elimination from the compartment. Figure 1.6 shows a diagram of

this process.

The differential equation to describe the rate of change of plasma concen-

tration is given in equation 1.7, where ka is the absorption rate from the GI tract,

and ke is the elimination rate. The integrated equation is given in equation 1.8,

with F the absorbable fraction of the drug, D the dose and V the volume of dis-

tribution. Figure 1.7 shows an illustration of this model on a semi-logarithmic
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Figure 1.6: Diagram of oral administration, one compartmental model

scale.

dX1

dt
= ka ·Xg − ke ·X1 (1.7)

C(t) =
kaFD

V (ka − ke)
(e−ket − e−kat) (1.8)

Figure 1.7: Illustration of oral administration, one compartmental model on a
semi-logarithmic scale

1.3.1.4 Oral administration, two compartmental model

Here, the concentration in the central compartment depends on four rates

of diffusion, the rate from the GI tract to the central compartment, the rate from

the central compartment to the peripheral, the rate from the peripheral to the
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central, and the rate of elimination from the central compartment. Figure 1.9

shows a diagram of this flow between compartments.

Figure 1.8: Diagram of oral administration, two compartmental model

The differential equation to describe the rate of change of concentration in

the central compartment is given in 1.9, with the integrated equation given in

equation 1.10.

dX1

dt
= ka ·Xg + k21 ·X2− (k12 + ke) ·X1 (1.9)

C(t) = Ae−αt +Be−βt + Ce−kat (1.10)

Figure 1.9 shows the graphical representation of how the log plasma con-

centration changes over time, with the α and β phases labelled.

Figure 1.9: Illustration of oral administration, two compartmental model on a
semi-logarithmic scale
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1.3.1.5 Calculation of PK Parameters

Once the corresponding model has been fitted to the data and model pa-

rameters calculated, the PK parameters can be estimated as functions of these

parameters. For example, for the one-compartmental oral dose model, tmax can

be calculated by differentiating the concentration versus time model with re-

spect to t, setting equal to 0 and solving. This gives:

tmax =
log ka − log ke

ka − ke
.

The maximum concentration, Cmax, is then given by substituting in t = tmax to

the model:

Cmax =
kaFD

V (ka − ke)
(e−ketmax − e−katmax).

The AUCT (Area under the concentration versus time curve until time T ) can

be calculated by integrating the concentration versus time model over t between

t = 0 and t = T , giving:

AUCT =
kaFD

V (ka − ke)

((
exp(−kaT )− 1

ka

)
−
(

exp(−keT )− 1

ke

))
.

Then in the limit as T →∞, we obtain:

AUC∞ =
kaFD

V (ka − ke)

((
1

ka

)
−
(

1

ke

))
.

The variances of these estimates can be approximated using the variance-covariance

matrix of the model parameters from the model fitting, and the delta method

(covered in Chapter 3).

1.3.1.6 Non-Linear Mixed Effects Models

So far, the models considered have only been concerned with fixed effects.

That is, given a dataset and a model, the point estimate and variance are cal-

culated for each of the model parameters. However, when considering a pop-

ulation, as often is the case in PK studies, it is generally more appropriate to
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consider each subject in the population having their own individual model pa-

rameters.

Take for example the volume of distribution parameter in the one compart-

mental oral dose PK model. It may be assumed that the parameter has additive

random effects Vi = Ṽ + ηi or exponential random effects Vi = Ṽ exp ηi, where

Ṽ is the population parameter, Vi is the individual parameter and ηi ∼ N(0, σ2)

for some variance σ2. If more than one model parameter has mixed effects then

there may also be a correlation between the random effects. In this framework,

individual PK parameters can be estimated as well as population PK parameters.

1.3.2 Non-compartmental Analysis (NCA)

In this approach, no assumptions are made on the processes within the

body that control the ADME process and hence no models are fitted to the data

in the analysis. This offers the obvious advantage that with fewer assumptions,

there is less room for error due to mis-specification of the model, and also avoids

any complication that may arise in model fitting if the data is not harmonious

with the model.

Since no model is fitted in the analysis, an approximation to the concentra-

tions versus time curve must be made by some other means. The most preva-

lent method uses a linear approximation between measurements, as illustrated

in Figure 1.10.

The non-compartmental estimate to theAUC for an individual subject can

then be calculated using the trapezium rule as follows:

ÂUC =
J∑
j=1

ωjCj, (1.11)

where sampling times are labelled tj for j = 1, . . . , J , Cj = C(tj) equals the
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Figure 1.10: Illustration of linear interpolation between responses used in NCA.

concentration at time tj and ωj are weights defined as:

ωj =
tj+1 − tj−1

2
for j = 1, 2, . . . , (J − 1),

=
tJ − tj−1

2
for j = J.

For a population estimate, one may instead use the mean concentration

observed at each time tj .

1.3.3 Sparse Sampling Schemes

In many scenarios, it is not possible to sample from every subject at ev-

ery time point, and hence a sparse sampling scheme must be used. There are a

number of different types of sparse sampling scheme, illustrated in Figure 1.11.

The most simple is the serial sacrifice design, where each subject is sampled only

once. In the illustration, only one subject is sampled per timepoint, but in larger

studies this is extended to allow multiple subjects to be sampled per timepoint.

The second type of sparse sampling scheme considered is the batch sampling

design. The timepoints are split into disjoint batches so that these batches parti-

tion the full set of timepoints and each subject is assigned to a batch. This means

that at each time point, only one batch of subjects is sampled and no other batch

may also be sampled at that time point. Flexible sampling designs also allow
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for subjects to be sampled at multiple timepoints but do not place the restriction

on the timepoints that they must be split into disjoint batches. The designs are

restricted however by the rule that for each set of timepoints that a subject is

sampled at, at least two subjects must be sampled at these timepoints. This can

result in unbalanced designs, i.e. different numbers of subjects sampled at each

timepoint. The final type of sparse sampling design considered is the alternative

sampling design. Here there is no restriction on when each subject can be sam-

pled, although in the example in Figure 1.11 the number of subjects sampled at

each timepoint has been restricted in order to make the design balanced.

Figure 1.11: Examples of different types of sparse sampling scheme

From a modelling perspective, the estimation of the PK parameter esti-

mates and their variance does not rely on the sampling scheme. However, for

NCA, the point estimate of the PK parameter is not affected but the variance of

this estimate is. Methods for approximating the variance of the ÂUC have been

explored for serial sacrifice designs with multiple subjects sampled at each time
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point6,44, 55, 71 and for batch sampling designs.37,41, 75 The basis of these methods

is that the variance of the total AUC can be estimated based on the sample vari-

ance of the individual partial AUCs for each batch. The variance of the ÂUC

until the last observed timepoint tJ is calculated by the following.

Letting Jb ⊆ {1, . . . , J} be the indices of time points investigated in batch

b = 1, . . . , B, nb the number of subjects in batch b andXitj the observed response

of subject i at time tj . The approximation of the variance is given by:

V̂ (ÂUC) =
B∑
b=1

s2
b

nb
, (1.12)

where

s2
b =

1

nb − 1

nb∑
i=1

(∑
j∈Jb

ωjXitj −
1

nb

nb∑
k=1

∑
j∈Jb

ωjXktj

)2

.

Full sampling designs and serial sampling designs are special cases of the

batch design. Full sampling considers one batch of subjects, with all timepoints

investigated for that batch. Serial sampling considers J batches, each batch with

only one timepoint investigated.

For the flexible sampling designs, the method for approximating the vari-

ance of the ÂUC is more complex.43 Again, the variance of the total AUC is

estimated based on the sample variance of the individual partial AUCs for each

schedule. Let Njk be the number of subjects sampled at both time points tj and

tk, NJ the number of subjects sampled at time tj , Js ⊆ {1, . . . , J} be the indices

of time points investigated in schedule s, ns the number of subjects on schedule

s, X̄j the mean of observed concentrations at time tj and δsj = ns

Nj
(that is the

proportion of samples at time tj that come from subjects on schedule s). The

variance is then approximated as follows:

V̂ (ÂUC) =
S∑
s=1

1

ns

∑
j∈Js

∑
k∈Js

δsjδ
s
kωjωkσ̂j,k, (1.13)
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where

σ̂j,k =

Njk∑
i=1

(
Xitj − X̄j

) (
Xitk − X̄k

)
(Njk − 1) +

(
1− Njk

Nj

)(
1− Njk

Nk

) .
For all such types of design, the R package PK42 can be used to approximate

the variance of the AUC estimate in the NCA framework.

For the alternative sampling design, there is no analytic form of the vari-

ance of the AUC. This is due to no requirements for repeated schedules. How-

ever in practice, these designs are used and hence must be considered.

1.4 Model Selection, Model Averaging and Simulta-

neous Inference for Multiple Parameters
This section provides background to the issues of model selection, model

averaging, and simultaneous inference for multiple parameters, as these are rel-

evant for the work completed in Chapter 3.

1.4.1 Model Selection

In statistical inferences, including PK studies, the process of model selec-

tion is an important one. The aim of the model selection process is to find the

best model out of a set of proposed models. There are various established meth-

ods to do such.

For nested models, one may construct pairwise comparisons of models us-

ing the Likelihood Ratio Test. This involves, say for model A with likelihood LA

and pA parameters nested inside model B with likelihood LB and pB parame-

ters, constructing a null hypothesis that model A is adequate, and an alternative

hypothesis that the more complex model B is required. Then the test statistic

Q = 2 log(LB

LA
) is calculated and the null hypothesis is rejected if Q is greater

than the critical value of the Chi-squared distribution with pB − pA degrees of

freedom.
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However more versatile and easier to implement methods are often pre-

ferred, which make use of an information criterion in the form of a penalized

likelihood function:

I = −2 log(L) + q, (1.14)

where L is the likelihood and q is a penalty function. Akaike’s Information crite-

rion (AIC) uses the penalty function q = 2p, where p is the number of parameters

in the model,2 and Bayes information criterion (BIC) uses the penalty function

q = 2p log n where n is the number of observations. AICc is also often used,

which has penalty function q = 2p + 2k(k+1)
n−k−1

. This gives more of a penalty for

extra parameters than the AIC, and as n gets very large, approaches the value

of the AIC. The model with the smallest value of I is deemed to be the best ap-

proximating model.

Using one of these criteria, it is often the case that once the best model is

chosen, then all further inference is conditional on the chosen model being the

truth, which of course may not be the case. This provides the motivation for the

use of model averaging, discussed in the following sections.

1.4.2 Model Averaging

Model averaging deviates from choosing one best model, instead includ-

ing the variability in the model selection process in the estimation of parameter

uncertainty.12,17 The main idea is to give weights wk to each model Mk that are

then incorporated into the value and variance of the estimator of the parame-

ter of interest. These weights are scaled such that
∑K

k=1 wk = 1. The parameter

common to all models, θ can then be estimated by:

θ̂ =
∑
k

wkθ̂k, (1.15)

where θ̂k is the estimate of θ under model Mk.
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This poses two obvious questions, the first being how to estimate the weights

and the second how to incorporate them in the value and variance of the esti-

mator.

To consider how to estimate the weights wk, suppose there are K models

with information criterion Ik = −2 log(Lk) + qk for model k , Buckland et al.12

consider the ratio:
Li exp(−qi/2)

Lj exp(−qj/2)
=

exp(−Ii/2)

exp(−Ij/2)
, (1.16)

to compare model i with model j. If qi = qj , i.e. the penalties are the same for

each model then this is simply the ratio of likelihoods, which is the Bayes Factor

for comparing simple models. If the prior odds ratio is 1, then this represents

the value of the posterior odds ratio. Therefore a sensible choice of wk12 is:

wk =
exp(Ik/2)∑K

i=1 exp(−Ik/2)
, k = 1, . . . , K. (1.17)

This ensures that two models with the same value of I are given the same weight.

The method of bootstrapping23 can also be used to estimate the weights.

Resampling with replacement gives the bootstrap resamples that are then used

to calculate the weights. The weightwk is the proportion of times in the bootstrap

resamples that model Mk is chosen to be the best approximating model. This

bootstrap method has the feature that if two models have identical likelihoods,

the method will always choose one model over the other, even if that choice

is random. Then the sum of the weights of the two models is the same as the

weight of one of the models would have been, were the other model to have been

omitted.

1.4.3 Simultaneous Inference for Multiple Parameters

In order to make the comparison between the previous method and the

new method of microsampling, simultaneous inference on multiple derived pa-

rameters must be made. The simultaneous inference of multiple parameters is
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a topic that has been of much discussion, especially in the context of clinical tri-

als where there are multiple endpoints. This is due to the complications caused

by attempting to compute the simultaneous comparisons, especially in terms of

controlling the type I error rate.3 Attempting to carry out each test as if it were

the only one, at the same type I error rate, will lead to misleading results and in

fact invalidate the hypothesis tests.

One method of carrying out the comparison is adjusting p-values for these

simultaneous hypothesis tests, building on the basic and widely used Bonfer-

roni adjustment. The adjusted p-value is defined as, for a particular hypothesis

within the many being tested, ‘the smallest overall (i.e., “experimentwise”) signif-

icance level at which the particular hypothesis would be rejected’73 . Therefore this

adjusted p-value may be directly compared to a given significance level α, the

null hypothesis is rejected if the adjusted p-value is less than or equal to α.

The Bonferroni adjustment alters the significance level used for each test.

Say k null hypotheses H1, H2, . . . , Hk are being tested at an experimentwise sig-

nificance level of α. Then hypothesis Hi is tested individually at significance

level αi such that
∑k

i=1 αi = α. It is standard for each αi = α
k
, although it is

possible for the allocations to be uneven. Therefore in terms of p-values, if pi

is the unadjusted p-value for testing Hi, then using the equal allocation of indi-

vidual significance levels as described above, Hi is rejected when kpi ≤ α. The

Bonferroni adjusted p-value is therefore pBonf = kpi.

Holm38 suggests an improvement on this adjustment by proposing a se-

quential procedure for rejecting the hypotheses, a more powerful adjustment

called Holm’s procedure. Consider again the situation with k null hypotheses

as above. This method still has the experimentwise error rate of α but is less

conservative. The unadjusted p-values are ordered so that p1 ≤ p2 ≤ . . . ≤ pk.

For each hypothesis test, pi is compared to α
n−i+1

as opposed to α
n
. The adjusted

p-value to be compared to α is not necessarily (n − i + 1)pi however, due to the
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sequential nature of the procedure. The hypothesis associated with the smallest

p-value is tested first, followed by the next largest and so on. The procedure is

stopped when a non-significant result is found, and all other tests are consid-

ered non-significant. That is, Hi is rejected if (n − i + 1)pi ≤ α provided that

(n− j + 1)pj ≤ α ∀ j < i .

A similar approach to Holm’s procedure is Hochberg’s procedure,36 which

is essentially the reverse of Holm’s, in that the hypothesis associated with the

largest p-value is tested first. The same level of significance α
n−i+1

is used for each

test of hypothesis Hi, and testing continues until a significant result is obtained,

then all further untested hypotheses are considered significant. Hi is therefore

rejected if (n− j + 1)pj ≤ α ∀ j ≥ i.

For all hypotheses in a set of hypotheses, Simes68 introduced the following

global test: Reject H0 = {H1, H2, . . . , Hn} if pi ≤ ( iα
n

) for at least one pi, where

the pi are the ordered unadjusted p-values. It was proven by Simes that when

the tests are independent, this global test has level α. For dependent tests, Simes

provided simulations to show that the test also has level α apart from in excep-

tional circumstances. The p-value for this global Simes test is simply the smallest

of the npi
i

values, since H0 is rejected if any npi
i
≤ α. This test is used as part of

Hommel’s procedure.39,40

Both Holm and Hommel’s test are based around the closed test procedure

principle52 that is as follows. Suppose we have a collection of n hypotheses:

H1, H2, . . . , Hn. Let all possible combinations of subsets of these hypotheses be

defined as HI =
⋂
{Hi : i ∈ I} for all I ∈ K, where K is the set of all non-empty

subsets of {1, 2, . . . , n}. For each HI , let there exist a test based on statistic TI .

Define J ∈ K and J ⊇ I , so that subset I is included in subset J . For any given

α, HI is rejected if every HJ is rejected at level α by the corresponding TJ . The

probability of wrongly rejecting at least one hypothesis when testing all ofHI is

at most α.
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To carry out the procedure, one starts with the global testHI =
⋂
{Hi : i =

1, . . . , n}. Then if this test is rejected at level α then continue to test at level α

each subset of n− 1 hypotheses. This process continues until either a test is not

rejected at the level α, or eventually all tests, including those of subset size 1 are

rejected. If the test statistic is from a Bonferroni test, then the resulting closed test

procedure is Holm’s procedure. If the test statistic is from Sime’s test, then the

closed test procedure is Hommel’s procedure. In terms of adjusted p-values, let

pI be the unadjusted p-values for hypothesis HI and test TI . If pJ ≤ α ∀ HJ :

J ⊇ I then reject HI . The adjusted p-value for HI is therefore the largest of the

pJ ’s. This of course unfortunately means conducting tests for each of the possible

combinations of subsets, which is
∑n

i=1

(
n
i

)
= 2n − 1, which will obviously get

very large very quickly. In some cases, however, shortcuts exist so that all of the

tests need not be calculated.

These methods all stand alone for the simultaneous inference of multiple

parameters, which provides a benchmark for future methods. However for the

purpose of this research, this inference must also incorporate the model aver-

aging discussed previously. Jensen & Ritz47 discuss simultaneous inference for

model averaging of derived parameters, specifically for the use of finding the de-

rived parameters Bench Mark Dose (BMD) and the lower limit of the confidence

interval for this (BMDL) in non-linear dose response modelling. This is a spe-

cial kind of effective dose estimation in toxicology that includes additional prior

information available. This procedure involves calculating simultaneous confi-

dence intervals for the multiple comparison procedure; the adjusted quantiles

for these intervals (corresponding to the theory of adjusting p-values discussed

previously) are based on correlation estimates between the multiple parameter

estimates.

The setup of the procedure is as follows. n independent observationsY1, . . . , Yn
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are assumed to follow a semi-parametric model, for example :

Yi ∼ N (µi(τ0), σ2), (1.18)

for some known linear or non-linear mean function µi that depends on an un-

known parameter vector τ0.

The model-averaged estimate used is similar to that considered by Buck-

land et al.,12 that is the weighted average of parameter estimates. In this con-

text, consider K candidate models that may or may not be mutually nested are

parametrized by parameters (τ1, . . . , τK) of dimensions (p1, . . . , pK). Then for

model k = 1, . . . , K, there areL derived parameters of interest : θ1, . . . , θL. These

are differentiable functions of the model parameters, so that θ1k = g1k(τk), . . . ,

θLk = gLk(τk). Therefore the model averaged estimate of the parameter θl (l =

1, . . . , L) is the weighted mean of the estimates θ̂l1, . . . , θ̂lK from all K models:

θ̂l,MA =
K∑
k=1

wkθ̂lk =
K∑
k=1

wkglk(τ̂k), (1.19)

where the wk’s are the model specific weights such that
∑K

k=1 wk = 1. It is noted

that for these methods, the specification of the particular weights is not required,

although one may use the methods suggested by Buckland et al.12

The simultaneous inference is based on the methods of Pipper et al.,57 and

depends on the pk-dimensional asymptotic expansion of the maximum likeli-

hood estimator τ̂k for each of the K models :

n
1
2 (τ̂k − τk) = n−

1
2

n∑
i=1

(I−1
k )Ψ̃ki + oP (1) (1.20)

= n−
1
2

n∑
i=1

Ψki + oP (1), (1.21)

where I−1
k is the inverse Fisher information matrix for model k and Ψ̃ki is the

score function for observation i of model k, both evaluated at the parameter

value τk.
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The key idea exploited by Pipper et al.57 is that the asymptotic representa-

tion is retained for stacked parameter estimates. That is, the following
∑K

k=1 pK-

dimensional asymptotic expansion:

n
1
2 (τ̂ − τ ) = n−

1
2

n∑
i=1

Ψi + oP (1), (1.22)

where τ̂ = (τ̂1, . . . , τ̂K), τ = (τ1, . . . , τK) and Ψi = Ψ1i, . . . ,ΨKi. Since the

standardized score vectors, the Ψi’s, are independent and identically distributed

random variables with mean zero and finite variance, application of the central

limit theorem gives asymptotic normality, that is:

n
1
2 (τ̂ − τ )

D→MVNK(0,Σ) as n→∞, (1.23)

where the variance-covariance matrix Σ is defined as the limit in probability of

n−1
∑n

i=1 ΨT
i Ψi as a consequence of the law of large numbers. By substituting in

parameter estimates, a consistent estimator of the variance-covariance matrix is

obtained: Σ̂ = n−1
∑n

i=1 Ψ̂T
i Ψ̂i. Hence one can obtain estimates of the correla-

tions between the different parameter estimates from different model fits to the

same data.

An asymptotic approximation for a single model-averaged estimate may be

obtained by use of the delta method,70 a method which uses a Taylor expansion

to approximate a vector. This approximation is given by47 to be:

n
1
2 (θ̂l,MA − θ0) = wT

(
dglk
dτ

)T
n

1
2 (τ̂ − τ ) + oP (1), (1.24)

where w = (w1, . . . , wk) and dglk
dτ

is the K × p matrix
(
d
dτ
glk(τ̂1)T , . . . , (τ̂K)T

)
for

l = 1, . . . , L. The variance of the model-averaged estimate, θ̂l,MA, may be ap-

proximated using the previous asymptotic results to be:

var(θ̂l,MA) ≈ n−1

{(
dglk
dτ

)
w

}T
Σ̂

(
dglk
dτ

)
w, (1.25)

where both within and between model variability is captured in terms of the

diagonal and off-diagonal elements of Σ̂ respectively.
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The combined asymptotic representation of the vector of the L model-

averaged estimates is then written by Jensen & Ritz47 as:

n
1
2 (θ̂lMA − θ0) = (IL ⊗ w) · dg

dτ
n

1
2 (τ̂ − τ ) + oP (1), (1.26)

where IL is the L × L identity matrix and dg
dτ

is the KL × p matrix obtained by

stacking the matrices dg1k
dτ
, . . . , dgLk

dτ
.

A simulation study was carried out by Jensen & Ritz47 alongside appli-

cation to example datasets from the literature in order to explore the coverage

properties of this asymptotic approach. Performance is compared to various

other methods, for example those of Buckland et al,12 Wu et al,74 the unadjusted

Bonferroni and methods using a single model. Results from these studies show

that using a single model can result in confidence intervals too narrow, as they

do not include model uncertainty. Other methods show conservative coverage,

especially in cases with high correlations.

The method introduced by Jensen & Ritz is the focus to build on for the

work in Chapter 3, bearing in mind the improvement it offers over the other

methods previously discussed.

1.5 Optimal Design Theory
When designing any trial in a clinical or pre-clinical context, the choice

of sampling schedule is a very important one. The number of samples taken

and the time that they are taken will have a great impact on the accuracy of the

estimates of the PK parameters. Clearly it is desirable to have the most accurate

estimates, and thus lower variability. How to measure this and how to optimize

it under constraints of PK trials is one of much discussion in the literature. This

section discusses the general types of optimality and their application to PK/PD

studies.



30

1.5.1 Model Based Optimality

When considering optimal designs from a PK modelling approach, there

are different types of optimality criteria. These are all based on the assumed PK

model. This requires some initial notation to be defined. Observations {yij} are

assumed to satisfy:

yij = η(x,θ) + εij, i = 1, 2, . . . , n; j = 1, . . . , ri;
n∑
i=1

ri = N, (1.27)

where η(x,θ) is the response function ofmunknown parametersθ = (θ1, . . . , θm)

and design variables x. Consider a linear model, η(x,θ) = θTf(xi) where

f(x) = [f1(x), f2(x), . . . , fm(x)]T is a vector of known “basis” functions. The

εij are uncorrelated random variables with zero mean and constant variance.

The design of the experiment is denoted as the collection:

ξN =

x1, . . . ,xn

p1, . . . , pn

 = {xi, pi}n1 , where pi = ri/N. (1.28)

The xi are the design points, the ri are the number of samples taken at point xi

for i = 1, . . . , n and N is the total number of observations.

The information matrixM (ξN) of the design is given by the sum of infor-

mation matrices corresponding to individual observations::

M(ξN) =
n∑
i=1

riµ(xi), where µ(x) = σ−2f(x)fT (x), (1.29)

such that

M (ξN)θ = Y , (1.30)

where

Y = σ−2

n∑
i=1

ri yif(xi). (1.31)

It can be proved for large samples that under certain regulatory assumptions,

the variance-covariance matrix of the MLE θ̂N is approximated by the inverse of
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the information matrix:

Var[θ] = D(ξN ,θ) ≈M−1(ξN ,θ). (1.32)

The equation:

(θ − θ̂N)TM(ξN)(θ − θ̂N) = R2, (1.33)

defines an ellipsoid of concentration, which generates confidence regions for

normal linear models.59 Therefore the “larger” the matrixM(ξN) (equivalent to

the “smaller” the matrix D(ξN)) is, the“smaller” the ellipsoid of concentration

will be. Hence in order to optimize the precision of the estimator θ̂N , one wishes

to “maximize” the matrixM(ξN) or equivalently “minimize” the matrixD(ξN).

This relationship can be shown by considering the following argument.

In the case of a single parameter θ, one can construct an estimator θ̂N which is

approximately normal with mean θt and variance VN . The ratio θ̂N−θt√
VN

is approx-

imately standard normal and hence the approximate confidence interval with

coverage probability 1− α is:

CI1−α =

{
θ :
|θ − θN |√

VN
≤ zα/2

}
, (1.34)

with zα/2 representing the 100(1−α/2) percentile of the standard normal distri-

bution. So in the case of:

yi = θt + εi, εi ∼ N (0, σ2), (1.35)

with σ2 known, the sample mean θ̂N =
∑N

1=1
yi
N
∼ N (θt,

σ2

N
) has that:

CI1−α,norm =

{
θ :
|θ − θN |
σ/
√
N
≤ zα/2

}
. (1.36)

Since the square of the standard normal random variable is equivalent to χ2
1,

z2
α/2 = χ2

1,α where χ2
1,α is the 100(1−α) percentile of the χ2

1 distribution. Hence:

(θ − θ̂N)2

σ2/N
= N M (θ − θ̂N)2 ∼ χ2

1, (1.37)
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where M = σ−2 is the Fisher information of the random variable yi. Therefore

an equivalent confidence interval to that of (1.36) is:

CI1−α,χ2 =
{
θ : N M (θ − θ̂N)2 ≤ χ2

1,α

}
. (1.38)

Extending to the case of an m-dimensional parameter θ, the direct analog of

(1.38) is:

CI1−α,χ2 =
{
θ : (θ − θ̂N)TM (ξN)(θ − θ̂N) ≤ χ2

m,α

}
, (1.39)

with χ2
m,α representing the 100(1 − α) percentile of the χ2 distribution with m

degrees of freedom. Thus the ellipsoid of concentration is defined by the bound-

aries of this confidence region.

The general optimization problem is defined as finding the solution:

ξ∗N = {x∗i , p∗i }n
∗

1 = arg min
xi,pi,n

Ψ [M({xi, pi}n1 )] , (1.40)

where Ψ is a scalar known as the criterion of optimality . The possible solutions

are any combinations of n support points out of the available choices (xi ∈ X

) and the number of replications ri at xi such that
∑n

i=1 ri = N and n ≤ N .

Thus this is a discrete optimization problem with respect to the frequencies ri

or equivalently the weights pi = ri/N

The most popular types of optimality criteria are described by Fedorov &

Leonov28 as the following:

• D-optimality:

Ψ = |D| = |M |−1 . (1.41)

Often called the generalized variance criterion, this D-criterion seems

a reasonable measure of the “size” of the ellipsoid of concentration de-

fined in (1.33 ) because |D|
1
2 is proportional to the volume of the ellip-

soid:

Volume = V (m)Rm |D|
1
2 , where V (m) =

π
m
2

Γ(m
2

+ 1)
, (1.42)

with R defined in (1.33) and Γ(u) defined as the Gamma function.
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• E-optimality:

Ψ = λ−1
min [M ] = λmax [D] , (1.43)

where λmin [B] and λmax [B] are minimal and maximal eigenvalues of the

matrix B respectively. The length of the principal axis of the ellipsoid

of concentration is 2λ
1
2max [D], hence minimization of thisE-criterion also

leads to the reduction of the linear “size” of the ellipsoid.

• A- or linear optimality:

Ψ = tr[AD], (1.44)

where A is an m × n non-negative definite matrix known as a utility

matrix and tr[B] is the trace of the matrixB. For example ifA = m−1Im

where Im is the m×m identity matrix, then the A-criterion is based on

the average variance of the parameter estimates:

Ψ = m−1tr[D] = m−1tr[M−1] = m−1

m∑
i=1

Var(θ̂i). (1.45)

D-optimality tends to be the most popular criterion used by theoretical and ap-

plied researchers since D-optimal designs are invariant with respect to nonde-

generate transformations of parameters, e.g. changes in the parameter scale.

Also, they perform well according to other optimality criteria.27

In order to compare two designs, one can use their relative D-efficiency:5

EffD(ξN,1, ξN,2) =

[
|M(ξN,1)|
|M(ξN,2)|

]1/m

. (1.46)

IfM is a diagonal matrix andD = M−1 then

|M |−1/m =

(
m∏
i=1

mii

)−1/m

=

(
m∏
i=1

dii

)1/m

, (1.47)

wheremii and dii are the ith diagonal elements of the matricesM andD respec-

tively. Then |M |−1/m is the geometric mean of parameter variances. The further

the relativeD efficiency is from one, the more the loss of precision of parameters

from the better design to the other.
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1.5.2 Cost-based Designs

It is often the case that there is an associated cost with a given design.

When the costs are different for the set of designs considered, this can be in-

cluded in the following way.

The general optimization problem denoted in (1.40) may be viewed as an

approximation to the following optimization problem:

ξ∗N = arg min
ξN

Ψ [NM(ξN)] , (1.48)

subject to
n∑
i=1

ri = N ≤ N∗, (1.49)

It is described by Fedorov & Leonov28 that when measurements at a point x are

associated with some penalty or cost denoted as φ(x), the constraint of (1.49)

may be replaced by:

Φ(ξN) =
n∑
i=1

riφ(xi) ≤ Φ∗, (1.50)

where Φ∗ is the constraint on the total cost. Equivalently in the continuous set-

ting of the pi’s:

NΦ(ξN) ≤ Φ∗, where Φ(ξN) =
n∑
i=1

piφ(x1). (1.51)

This optimization problem, due to the monotonicity and homogeneity of criteria

Φ, can therefore be written as:

ξ∗ = arg min
ξ

Φ

[
Φ∗

Φ(ξ)
M(ξ)

]
= arg min

ξ
Φ

[
M(ξ)

Φ(ξ)

]
. (1.52)

1.5.3 Application to PK/PD Studies

The standard model, slightly adapting the previous notation introduced in

(1.27), used for observations in PK sampling is

yij = η(xij,γi) + εij, i = 1, . . . , N ; j = 1, . . . , ki, (1.53)
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where xij is the jth sampling time for subject i, ki is the total number of mea-

surements for subject i. γi is the vector of individual parameters for subject i. N

is the total number of subjects in the study. The εij are the measurement errors

with zero mean.

In the model based approach to finding sampling sequences such as that

described by Gagnon & Leonov,30 the key is to find a closed form expression or

approximation to the information matrix for a single multidimensional point xi,

that is the (ki×1) vector of responses for subject i. A design regionXmust be de-

fined, and then the construction of optimal designs is relatively straightforward

using for example D-optimality.

As an illustration, Gagnon & Leonov30 use the design region X formed by

the combinations of r sampling times from a sampling sequence of 16 choices,

and the cost function given by:

φ(xk) = Cv + Csk, (1.54)

where k is the number of samples taken (the length of the sampling sequence),Cs

is the cost of collecting/analysing a single sample and Cv is the cost of enrolling

a single subject. Gagnon & Leonov30 show that when Cs > 0 then it is possible

for the sequences with smaller samples to become optimal. It is also noted that

optimal designs may comprise of a mixture of sequences with different numbers

of samples. It is important to realise that although this cost function refers to

monetary cost, that is not necessarily the definition of the cost function. The

‘cost’ may be in terms of time, or stress to the animals, or even a statistical concept

such as bias that is wished to be penalized.

It is often the case in early stages of drug development that non-compartmental

analysis is preferred to the model based compartmental approach. This means

that PK parameters such asAUC,Cmax and tmax are estimated using an empirical

approach. Fedorov & Leonov26 use the model based approach as a benchmark

to compare proposed empirical methods to in terms of choosing a sampling se-
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The simplest case is considered first, in which all subjects have the same

sampling schedule. That is, xij ≡ xj and ki ≡ k for all i = 1, . . . , N . Two types

of empirical approaches are discussed by Fedorov & Leonov:26

• Type I: Method E1 For each subject, find the individual tmax (T̂i) and

Cmax (Ĉi) :

T̂i = xj∗(i) , where j∗(i) = arg max
j
yij, Ĉi = yi,j∗(i). (1.55)

To find ÂUCi, numerical methods are used, then averaged over all sub-

jects in the study, either using arithmetic or geometric means to obtain

populations estimators ÂUCE1, T̂E1 and ĈE1. (The subscriptE stands for

empirical). It is noted that for large N this method will produce reason-

able estimators, however in the case of sparse sampling, the next method

may be more appropriate.

• Type II: Method E2 At each time point, average the response over all

patients:

η̂j = η̂jN =
1

N

N∑
i=1

yij, j = 0, 1, . . . , k, (1.56)

and build estimators for the population curve {η̂j}:

T̂E2 = xj∗ , ĈE2 = η̂j∗ , where j∗ = arg max
j
η̂j. (1.57)

Note that geometric means may also be used in place of these arithmetic

means. Then numerical integration algorithms must be used to estimate

AUC:

ÂUCE2 =
k∑
j=1

∫ xj

xj−1

g(x,aj)dx, (1.58)

where g is an interpolating function with parameters aj chosen such

that g passes exactly through η̂j−1 and η̂j . These are expected to provide

good estimators for the parameters for large N , but also applicable in

the case of sparse sampling.
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Figure 1.12: Two different sampling grids: Uniform with respect to response
(left) and uniform with respect to AUC (right).26

The choice of sampling grid, that is the possible time points that samples

can be taken, is often influenced by prior estimates of the plasma concentration

curve. It is often the case that more samples are taken towards the start of the

sampling interval and then the frequency of sampling decreases after the antici-

pated tmax. Two types of sampling grid are proposed by Fedorov & Leonov,26 as

shown in Figure 1.12. The left hand panel shows a uniform grid on the vertical

axis with respect to values of the response function, and then points are pro-

jected onto the horizontal axis for sampling times. The right hand panel shows

a uniform grid on the vertical axis with respect to the accumulated AUC value,

and then points are projected onto the horizontal axis for sampling times.

Of course this requires preliminary knowledge of the plasma concentra-

tion curve, but it is noted that so do traditional sampling schemes. It is espe-

cially common, as previously mentioned, to have a higher frequency of samples

around the anticipated tmax, which may be different for different trials.

Fedorov & Leonov26 conduct simulation studies to compare the model

based approach, the empirical approach and an approach using splines to ap-
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proximate the plasma concentration curve. This comparison is in terms of bias

and variability of the three PK parameters previously discussed. The model

based approach is found to perform best although the empirical approach also

performs well.

A splitting of the sampling grid is also suggested, for example:

• Denote the single grid with 2k sampling points as {xj : j = 1, 2, . . . , 2k}.

• Collect samples for the first N/2 subjects at times {x2j−1 : j = 1, . . . , k}.

• Collect samples from the second half of the study cohort at {x2j : j =

1, . . . , k}.

• Using the method E2 for the estimation of AUC2, average the responses

from each half of the cohort separately and then combine the series to

obtain a population curve {η̂j} and estimate the AUC using (1.58).

Again, simulations are conducted and it is found that the split-grid approach

results in a rather small loss of precision compared to the single grid approach.

The mean squared error (MSE) of the estimate of AUC for the single and

split grids are compared using the empirical approach with the trapezium rule.

In this case the response is approximated by the 2nd order polynomial with

random intercept:

η(xj,γi) = γ0i + γ1xj + γ2x
2
j , (1.59)

where γi = (γ0i, γ1, γ2), E(γ0i) = γ0 and Var(γ0i) = u2. Let the MSE of the

ˆAUCE2 for the single grid be MSE1 and for the split grid be MSE2. Let Biasr

and V arr be the corresponding bias and variance terms in the following expres-

sion for MSEr:

MSEr = Bias2
r + V arr, r = 1, 2. (1.60)

Assume a uniform grid {xj = jT/(2k), j = 0, 1, . . . 2k} and without loss of gen-

erality assume T = 1. It is shown by Fedorov & Leonov26 that for the single grid,
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if the εij are assumed to have variance σ2:

Bias1 =
γ2

6

1

4k2
, V ar1 =

1

N

[
σ2(2k − 0.5)

4k2
+ u2

]
∼ σ2

2Nk
+
u2

N
, (1.61)

and for the split grid:

Bias2 ≡ Bias1, V ar2 =
(2k − 1.5)2σ2

4k2N
+
u2

N

(
1− 1

2k2

)
∼ σ2

Nk
+
u2

N
. (1.62)

It follows from this that the measurement variability for the split grid is double

that of the single grid, unsurprising since the number of samples taken is halved.

However, the population component in the variance and the bias are the same for

both grids. Hence when the population variance u2 dominates the measurement

variance σ2, then MSE1 ≈ MSE2, and this is in spite the number of samples

being halved. However the single gird will always be better, and this difference

depends on the values of η′′, σ2 and u2. If costs are introduced however, this may

not be the case.

Continue the notation introduced in (1.54) for costs, and let Ctotal be the

upper bound for the study budget. Then the overall costs are expressed as:

2kNCs +NCv ≤ Ctotal for the single grid, (1.63)

kNCs +NCv ≤ Ctotal for the split grid. (1.64)

This may be approached by either selecting N and finding the maximal admis-

sible k = k(N,Ctotal), or to select k and find the maximal N = N(k, Ctotal). Note

that the values of k andN are not independent. A simulation study is conducted

by Fedorov & Leonov,26 with the MSE of the estimate of AUC from this study

plotted in Figure 1.13, showing that the split grid may outperform the single

grid in terms of this MSE.

These results highlight the importance of considering split sampling grids.

Although this work primarily focused on batch designs, (see Section 1.3.3), the
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Figure 1.13: MSE as a function of N and k for u = 2.4, σ = 9 and 25 ≤ N ≤ 4026

principles discussed can be extended to both flexible and alternative sparse sam-

pling schemes. Using the optimality criteria of theMSE is one way of including

both the bias and the variance of the estimator of the AUC in the choice of opti-

mal design. It does however raise questions concerning the optimal way to split

the sampling grid. In fact, since in many PK studies, the total number of subjects

N is fixed, the choice of sampling times and the flexibility for different subjects

to be on different schedules gives rise to more complexity than can be incor-

porated in the analytical form of the MSE previously given. An advantage of

this approach however is that it considers individual subjects having individual

parameters. The following section also builds upon this assumption, although

allowing for more flexible designs. This is however at the cost of using the PK

modelling framework for estimation of PK parameters.



41

1.5.4 D-Optimality for multiple response non-linear mixed ef-

fect models

Since D-optimality is one of the most popular choices for optimality, much

has been done in the area of development of methods for its application. One of

the most notable perhaps, is the approximation of the Fisher Information Matrix

for non-linear mixed effect models for use in PK/PD optimal trial designs by

Retout et al.62,63 This can be applied in the software package PFIM,9 the theory

behind which is explained in this section.

As this is within the PK modelling framework, a model must be assumed:

yi = f(θi, ξi) + εi,

where:

• yi is the ni-vector of observations of the ith individual amongst N .

• f is the known function describing the non-linear structural model.

• ξi = (ti1, ti2, . . . , tini
)T is the ni vector of sampling times for individual i.

• θi is the p-vector of individual parameters.

• εi is the ni-vector of random errors with εi ∼ N(0,Σi)

• Σi are assumed to be ni × ni diagonal matrices.

• The model for the variance of the jth observation of individual i is ei-

ther a constant variance model var (εij) = σ2 or a constant coefficient of

variation model var (εij) = σ2f 2(θi, tij).

For the mixed effects, let bi be the p-vector of random effects for individ-

ual i, and β be the p-vector of fixed effects. Then the expression for the inter-

individual variability is given by θi = β + bi if the modelization of random

effects is additive, or θi = βebi if the modelization is exponential.
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Then we can rewrite f(θi, ξ) as f(β, bi, ξ). The random effects bi are as-

sumed to be distributed bi ∼ N(0,Ω), with Ω a p × p diagonal matrix, each

diagonal element ωk the variance of the kth component of the random effects

vector. The εi|bi for i = 1, . . . , N are assumed to be independent from one sub-

ject to another, and for each subject, εi and bi are independent. The vector of

population parameter is then given as ΨT = (βT , ω1, . . . , ωk, σ
2).

1.5.4.1 Individual Designs

Firstly, the expression for the elementary Fisher Information Matrix is de-

veloped, which corresponds to one individual with a vector of sampling times

ξ. The index i is therefore dropped in the following. The Fisher Information

Matrix is defined as:

MF (Ψ, ξ) = E

(
−∂

2`(Ψ;y)

∂Ψ∂ΨT

)
where `(Ψ;y) is the log-likelihood of the vector of observation y for the popu-

lation parameters Ψ.

The first case considered is the constant residual error variance model. Be-

cause of the non-linearity of the structural model f with respect to θ in PK set-

tings, there is no analytical expression for `(Ψ;y). Therefore a first order Taylor

approximation of the structural model f(β, bi, ξ) around 0 (the expectation of

b) may be used:

y = f(β, b, ξ) + ε ∼= f(β,0, ξ) +
∂fT (β,0, ξ)

∂b
b+ ε.

So that

E(y) ∼= f(β,0, ξ)

var (y) = V ∼=
∂fT (β,0, ξ)

∂b
ω
∂f(β,0, ξ)

∂b
+ σ2In,

where In is the n× n identity matrix.
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The log-likelihood is then approximated by:

`(Ψ;y) ∼= −
1

2

(
n log(2π) + log |V |+ (y − f(β,0, ξ))TV −1(y − f(β,0, ξ))

)
,

since b and ε are assumed to be normally distributed.

For the further notation, the population parameters are partitioned into

mean and variance parameters, denoting the variance parametersλ = (ω1, ω2, . . . , ωp, σ
2),

hence ΨT = (βT ,λT ). It is assumed that V is independent of β, and using the

following:

∂ log |V |
∂λk

= tr
(
V −1 ∂V

∂λk

)
and ∂V −1

∂λk
= −V −1 ∂V

∂λk
V −1,

Second derivatives of minus twice the log-likelihoods can then be approximated.

E

(
∂2(−2`(Ψ;y))

∂β∂βT

)
∼= 2

∂fT (β, 0, ξ)

∂β
V −1∂f(β, 0, ξ)

∂β
.

E

(
∂2(−2`(Ψ;y))

∂β∂λk

)
∼= 0 for k in {1, . . . , p+ 1}.

E

(
∂2(−2`(Ψ;y))

∂λk∂λj

)
∼= tr

(
V −1 ∂V

∂λj
V −1 ∂V

∂λk

)
for k and j in {1, . . . , p+ 1}.

The elementary Fisher Information Matrix is thus approximated by a block di-

agonal matrix as follows:

MF (Ψ, ξ) ∼=

∂fT (β,0,ξ)
∂β

V −1 ∂f(β,0,ξ)
∂β

0

0 1
2
F

 (1.65)

=

A 0

0 B

 , (1.66)

where the elements of F are defined as:

Fjk =

(
V −1∂V

∂λj
V −1 ∂V

∂λk

)
.
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The blockA is the p×p symmetric matrix for fixed effects, and the blockB = 1
2
F

is a (p+ 1)× (p+ 1) symmetric matrix for the variances. The elements of F may

be simplified as: (i) for j and k in {1, . . . , p}:

Fjk =

(
∂fT (β,0, ξ)

∂bj
V −1∂f(β,0, ξ)

∂bk

)2

(ii) for k in {1, . . . , p}:

F(p+1)k =

(
∂fT (β,0, ξ)

∂bk
V −2∂f(β,0, ξ)

∂bk

)2

(iii)

F(p+1)(p+1) = tr(V −2)

When considering the case where the variance of the εi has a constant coefficient

of variation, it can be approximated to a constant variance error using the log of

the observations and of the model. In calculations this leads to the replacement

of
∂fT (β,0, ξ)

∂β
by ∂fT (β,0, ξ)

∂β
× 1

fT (β,0, ξ)
,

and
∂fT (β,0, ξ)

∂bj
by ∂fT (β,0, ξ)

∂bj
× 1

fT (β,0, ξ)
.

These are equivalent to:

∂ log fT (β,0, ξ)

∂β
and ∂ log fT (β,0, ξ)

∂bj
for j = {1, . . . , p+ 1}.

1.5.4.2 Population Designs

So far, these approximations have been for an individual design. For a

population design Ξ = {ξ1, . . . , ξN}, the Fisher Information Matrix MF (Ψ,Ξ)

is the sum of the N elementary Fisher Information Matrices MF (Ψ, ξi) for each

subject i with design ξi:

MF (Ψ,Ξ) =
N∑
i=1

MF (Ψ, ξi). (1.67)
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The population design is usually composed of a limited number of Q groups of

elementary designs. Each of these designs q is composed of a set ξq of nq sam-

pling times and is performed inNq subjects. The elementary Fisher Information

Matrices are identical for all subjects in a given design group q. Then the Fisher

Information Matrix for this population design Ξ is:

MF (Ψ,Ξ) =

Q∑
q=1

NqMF (Ψ, ξq). (1.68)

Then the expected values of the standard errors for each population parame-

ter are computed as the square root of the diagonal elements of the inverse of

MF (Ψ,Ξ). These values are the lower bound of the standard errors of parameter

estimation from the Cramer-Rao inequality.

A population design Ξ isD-optimal for a given population parameter value

Ψ0 if it minimizes the inverse of the determinant of the Fisher Information Ma-

trix:

ΞD = arg min
Ξ

1

|MF (Ψ0,Ξ)|
.

1.5.4.3 Comparing Efficiency Between Designs

In order to compare efficiency between designs, a criterion, φ, the determi-

nant standardized by the dimension of the vector Ψ0:

φ(Ξ) = |MF (Ψ0,Ξ)|1/dim(Ψ0).

Then the efficiency of a population design Ξ1 with respect to another population

design Ξ2 is:
φ(Ξ1)

φ(Ξ2)
. (1.69)

If this ratio is greater than 1, it indicates Ξ1 is more efficient Ξ2. This ratio is the

factor of mean estimation of variance decrease of using Ξ1 instead of Ξ2.

It is also the case that if Ξ1 and Ξ2 are identical apart from the number of

subjects in each group of Ξ2 is multiplied by a constant p, then the ratio in 1.69

is equal to 1
p
, indicating design Ξ2 is p times more efficient than Ξ1.



46

It is this approach by Retout et al62,63 to which we compare the method in

Chapter 4, since this is a well established procedure for finding optimal designs

for PK studies.

1.6 Measurements that Cannot be Reliably Detected
Any analytic procedure for measuring the concentration of an analyte in

a sample of bodily tissue has limitations. The main limitation is that samples

of low concentration cannot be reliably detected. The following section details

definitions associated with these limitations and methods for dealing with them.

1.6.1 Definitions

There are three defined limits of at what level a low concentration is too

low to be reliably detected:

• Limit of Blank (LOB),

• Limit of Detection (LOD),

• Limit of Quantification (LOQ).

These limits are defined based on calibration of the measurement process

using blank samples and low concentration samples.4,19 Figure 1.14 shows the

relationship between these limits and how they are calculated. When replicate

blank samples (samples containing no analyte) are tested, they can produce sig-

nals that indicate there is a low concentration of analyte in the sample. Since

equipment will not output a negative value, there is an artificially increased fre-

quency of samples at 0 concentration. The mean and standard deviation of these

results is calculated and the LOB is then defined as:

LOB = meanblank + 1.645 ∗ (SDblank).
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This is set to control the type I error (α) at 5%. Therefore under the assumption

of a Gaussian distribution of raw analytical signals from blank samples, this limit

represents 95% of the observed values. The other 5% produce a signal that could

be produced by a sample of low concentration analyte. This is turn affects the

type II error (β), the proportion of low concentration samples that will falsely

be reported as blank.

Replicate samples that truly contain a known low concentration of analyte

are used to calibrate for the LOD. The mean and standard deviation of the re-

sults from these replicates are used in the following way to provide a provisional

LOD:

LOD = LOB + 1.645 ∗ (SDlowconcentrationsample).

With this definition, 95% of the low concentration replicates exceed the previ-

ously defined LOB, and 5% below the LOB. Once this provisional LOD is es-

tablished, this value may be confirmed using samples with a known concentra-

tion equal to the provisional LOD. No more than 5% of these samples should

give measurements below the LOB. If more than 5% are below this value then

the LOD is too low and must be re-estimated by testing samples that contain a

higher concentration of the analyte.

The LOQ is set to be the lowest concentration that the true concentration

of the analyte can be reliably detected and also at a level that the predefined

goals of bias and precision are achieved. The value of the LOQ may be more

than or equal to the LOD. If the observed levels of bias and imprecision meet

the predefined goals at he LOD then the value of LOQ equals that of the LOD.

If these measurements do not meet the specific requirements for the total error,

then samples with higher concentration of analyte must be used to determine

the LOQ.
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Figure 1.14: An illustration of the relationship between LOB, LOD, and LOQ, in-
dicating relative frequencies of raw analytical signals at varying concentrations.
The black line represents results from a blank sample. The red line represents
the imprecision of results from a sample with a prespecified low concentration.
The blue line represents the distribution of results for a specimen of low concen-
tration meeting the target for total error (bias and imprecision).

1.6.2 Methods

Since any sample with a resulting measure of concentration below the limit

of quantification will be reported as ”BLOQ”, and no numerical result given,

methods must be established for the case when these BLOQ values are observed.

Beal10 compares seven methods for dealing with BLOQ measurements in PK

studies that use PK modelling as the method of analysis. Hing et al35 also tackle

the subject of dealing with BLOQ values from a PK modelling perspective, with

applications in NONMEM. Further to these, Byon et al.14 and Ahn et al.1 look

at the impact on the PK model that using likelihood based methods has for sce-

narios with BLOQ responses. For each of these methods to be used, a PK model

must be specified beforehand in order for it to be fitted. The seven methods

proposed by Beal are as follows:

• Method 1: Discard BLOQ observations and apply extended least squares

to the remaining observations.
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• Method 2: Discard BLOQ observations and apply method of maximum

conditional likelihood to the remaining observations.

• Method 3: Maximise the likelihood for all the data treating BLOQ data

as censored.

• Method 4: As Method 4, but the likelihoods for data above and below

the LOQ are conditioned on the observations being greater than 0.

• Method 5: Replace BLOQ observations withLOQ/2 and apply extended

least squares estimation.

• Method 6: Replace the first BLOQ observation with LOQ/2 and discard

the rest of them as in Method 1.

• Method 7: Replace the first BLOQ observation with 0 and discard the

rest of them as in Method 1.

When applied to simulated data from a one-compartmental oral dose model

in both single subject and population studies, it was found that Method 7 per-

formed poorly and hence is not recommended for practical use10 . Method 1 is

suggested as a simple method for situations with low frequencies of BLOQ re-

sponses, however for larger frequencies in the single subject case , Method 5 is

preferable. Methods 2, 3 and 4, whilst more sophisticated than Methods 5 and

6, do not show improvement on the the simpler alternatives that Methods 5 and

6 offer. In fact, Beal suggests that there is little difference between the first four

methods and hence propose simply using Method 1.

Whilst the procedure of discarding BLOQ observations may be the most

favourable choice in this case, PK studies generally consider groups of subjects

with different levels of dosing. Subjects with a lower dose are more likely to

have higher frequencies of BLOQ observations and hence more values being

discarded. Discarding a larger number of values will not only lead to biased
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estimates of parameter, but also a vast overestimation of any variances. This is

even more accentuated in the case of studies with smaller sample sizes, those

tending to use NCA as opposed to PK modelling. Therefore the focus of Chap-

ter 5 is on methods of dealing with BLOQ values in PK studies that use non-

compartmental methods.



CHAPTER 2

Thesis Summary
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This thesis concerns three separate but related research topics. These are

developed in three academic papers labelled Paper A, B and C that comprise

Chapters 3, 4 and 5 respectively. These three topics are all in the setting of PK

studies, with the overall incentive of improving the accuracy of the PK outcome

measures. Motivated by the novel blood sampling method of microsampling

discussed in Section 1.2, these research topics also address the issues of the three

Rs, focussing on refinement and reduction.

The first two papers are directly motivated by microsampling: the first pa-

per developing a statistical method to detect equivalence between microsam-

pling and traditional sampling in PK studies, and the second paper establishing

a method for designing sparse sampling schedules in studies that use microsam-

pling. The third paper introduces a method for dealing with BLOQ responses

using kernel density estimation. The contents of each paper are summarized

below.

Paper A: Comparing sampling methods for pharmacokinetic studies us-

ing model averaged derived parameters. Pharmacokinetic (PK) studies aim

to study how a compound is absorbed, distributed, metabolised and excreted

(ADME). The concentration of the compound in the blood or plasma is mea-

sured at different time points after administration and pharmacokinetic param-

eters such as the area under the curve (AUC) or maximum concentration (Cmax)

are derived from the resulting concentration time profile. In this paper we want

to compare different methods for collecting concentration measurements (tradi-

tional sampling versus microsampling) on the basis of these derived parameters.

We adjust and evaluate an existing method for testing superiority of multiple de-

rived parameters that accounts for model uncertainty. We subsequently extend

the approach to allow testing for equivalence. We motivate the methods through

an illustrative example and evaluate the performance using simulations. The

extensions show promising results for application to the desired setting. (Ap-
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pendices A - E supplement Paper A.)

Paper B: Optimal Designs for Non-Compartmental Analysis of Pharma-

cokinetic Studies. In traditional toxicology trials, pharmacokinetics (PK) is in-

vestigated in the satellite group of animals, and the pharmacodynamics (PD) is

investigated in the study group of animals. The new blood sampling method

of microsampling opens up the opportunity to investigate both PK and PD in

the same animals. To avoid excessive burden on the animals from the required

blood sampling, sparse sampling schemes are typically utilized. Motivated by

this application, this paper introduces a procedure to choose an optimal sparse

sampling scheme and sampling time points using non-compartmental methods

but which can be applied to further settings beyond this. We discuss how robust

designs can be obtained and we apply and evaluate the approach to a range of

scenarios to give an example of how it may be implemented. The results are

compared to optimal designs for model based PK. (Appendices F - G supplement

Paper B.)

Paper C: Methods for Non-Compartmental Pharmacokinetic Analysis

with Observations below the Limit of Quantification. Pharmacokinetic (PK)

studies are conducted to learn about the absorption, distribution, metabolism

and excretion (ADME) processes of an externally administered compound by

measuring its concentration in bodily tissue at a number of time points after ad-

ministration. Two methods are available for this analysis, modelling and non-

compartmental (NCA). When concentrations of the compound are low, they may

be reported as below the limit of quantification (BLOQ). This paper compares

seven methods for dealing with BLOQ responses in the NCA framework for

estimating the area under the concentrations versus time curve (AUC). These

include simple imputations that are currently used, maximum likelihood meth-

ods, and introducing an algorithm that uses kernel density estimation to impute

values onto BLOQ responses. Performance is evaluated using simulations for a
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range of scenarios. We find that the kernel based method performs well for most

situations.(Appendix H supplements Paper C.)



CHAPTER 3

Paper A: Comparing sampling methods for pharmacokinetic studies using
model averaged derived parameters
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3.1 Introduction
The purpose of this paper is to construct a method for comparing the tra-

ditional method of collecting concentration samples in pharmacokinetic (PK)

studies and the recently developed method of microsampling.16 The two blood

sampling methods differ in both the volume of blood collected and the method

of analysis. The use of microsampling offers many economic and ethical ad-

vantages. The reduction in blood volume of samples not only allows for the

possibility of elimination of satellite subjects in toxicokinetic studies, but also

the opportunity to redesign the sampling scheme to further reduce the num-

ber of subjects needed in both these and pharmacokinetic/pharmacodynamic

(PK/PD) studies. The nature of the comparison considered is both superiority

and equivalence. While both approaches are possible, testing for equivalence is

preferred for a study to provide evidence to support microsampling as a valid

blood sampling method.

Since PK studies measure the absorption, distribution, metabolism and ex-

cretion (ADME) processes over time using multiple parameters derived from the

estimated functional relationship, a simultaneous comparison of these multiple

derived parameters between the two sampling methods will provide a compar-

ison between the two methods themselves.

These parameters may be estimated using non-compartmental analysis42,43

or using compartmental methods such as fitting non-linear mixed effects mod-

els.20 However, in the latter approach there may be uncertainty in the choice of

model and hence the use of model averaging is an apt idea to incorporate this.

Since there are multiple parameters to compare simultaneously, a multiplicity

adjustment must be made. In addition, the variance of the derived parameter

estimates in many cases cannot be directly calculated so we must rely on approx-

imations. In order to incorporate these properties, we use the method described
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by Jensen & Ritz47 as a starting point. We then investigate and improve the per-

formance of the method when testing for superiority before we adapt it for the

more suitable case for our question of testing for equivalence. In this case, test-

ing for equivalence is more relevant in order to give opportunity to find evidence

that the two sampling methods give equivalent results.

The motivation behind such a procedure is to conduct a study compar-

ing the two sampling methods, such as the following example. This study con-

ducted by Janssen Pharmaceutica examines the PK profile a novel compound

that is administered intravenously. Plasma concentrations are taken from the

same 5 rats at 3 time points using both microsampling and traditional sampling,

a total of 30 observations (Figure 3.1). Blood sampling and analysis was under-

taken by the same analyst and all animals entered the study on the same day.

Figure 3.1: Example dataset with individual concentrations (left) and spaghetti
plot (right).

3.2 Superiority Testing

3.2.1 Baseline Method

Jensen & Ritz47 discuss simultaneous inference after model averaging pa-

rameters derived from a parametric function, specifically for the use of finding

the derived parameters Bench Mark Dose (BMD) and the lower limit of the con-

fidence interval for this (BMDL) in non-linear dose response modelling. A brief
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outline of the method is as follows: A set of candidate models is fitted to the data

and (approximate) estimates and variances of the derived parameters of interest

are calculated. These are combined using model averaging12 in order to account

for uncertainty in the choice of model and simultaneous confidence intervals

are calculated.57 The purpose of using model averaging is to include multiple

candidate models, thus taking into account model uncertainty and reducing the

possibility of model mis-specification. Of course this introduces the implication

that some of the set of candidate models must be incorrect, but we vastly im-

prove our chances of including a good model by considering many candidates.

More specifically, let the K candidate models be parametrized by τ =

(τ1, . . . , τK) of dimensions (p1, . . . , pK) with p =
∑K

k=1 pk. Consider the case

where for model k = 1, . . . , K L derived parameters are of interest: θ1k, . . . , θLk.

It is assumed these are differentiable functions of the model parameters, so that

θ1k = f1k(τk), . . . , θLk = fLk(τk). To obtain an overall estimator across theK mod-

els, the following weighted average of parameter estimates from each of the K

candidate models is used47 :

θ̂l,MA =
K∑
k=1

wkθ̂lk =
K∑
k=1

wkflk(τ̂k),

where the wk’s are the model specific weights such that
∑K

k=1wk = 1. Buckland

et al.12 suggest to use:

wk =
exp(−Ik/2)∑K
k=1 exp(−Ik/2)

,

where Ik is some information criterion based on model fit for candidate model k.

For the following applications, we use these weights with information criterion

AICc,13 although the method is valid for any reasonable specification of weights.

To conduct a test of superiority the multiple null hypotheses of interest are:

H01 : θ1,MA = κ1, . . . , H0l : θl,MA = κl, . . . , H0L : θL,MA = κL,

where κ1, . . . , κL are the values the parameters are tested against. If κl is in
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each corresponding confidence interval with simultaneous error rate α, we fail

to reject the null hypothesis at simultaneous level α. If at least one κl is not in

its corresponding interval, then the null hypothesis can be rejected. Hence the

alternative hypothesis of this two-sided superiority test is that at least one of the

θl,MA is not equal to the corresponding κl.

In order to calculate simultaneous confidence intervals for the multiple de-

rived parameters with simultaneous coverage 1 − α, the methods of Pipper et

al.,57 described below, which depends on the pk-dimensional asymptotic expan-

sion of the maximum likelihood estimator τ̂k for each of the K models is used.

An asymptotic approximation for a single model-averaged estimate may be

obtained by use of the delta method which uses a first order Taylor expansion

to approximate the estimate for the model averaged parameter and its variance.

The variance of the model-averaged estimate, θ̂l,MA, is approximated as47 :

var(θ̂l,MA) ≈ n−1

{(
dflk
dτ

)
w

}T
Σ̂

(
dflk
dτ

)
w,

where w = (w1, . . . , wk) and dflk
dτ

is the K × p matrix
(
d
dτ
fl1(τ̂1)T , . . . , d

dτ
flK(τ̂K)T

)
for l = 1, . . . , L and n is the number of observations. The covariance matrix Σ̂ =

n−1
∑n

i=1 Ψ̂T
i Ψ̂i where the Ψ̂i are estimates of Ψi = Ψ1i, . . . ,ΨKi. Ψki = (I−1

k )Ψ̃ki

with I−1
k being the inverse Fisher information matrix for model k and Ψ̃ki the

score function for observation i of model k, both evaluated at the parameter

value τk.

To obtain 1−α simultaneous confidence intervals for all of the derived pa-

rameters, intervals of the form θ̂l,MA±Q
√

var(θ̂l,MA) are used. The quantileQ is

calculated so that an L-dimensional random vector X with standard multivari-

ate z distribution with correlation structure the same as the parameter estimates’

satisfies:

P(
L⋂
l=1

(−Q ≤ Xl ≤ Q)) = 1− α,
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for a 100(1− α)% confidence interval.

Jensen & Ritz47 use a Normal distribution is used to calculate the quantiles

for the simultaneous intervals, although the t-distribution may be more appro-

priate for the smaller sample sizes and estimations of variance using these small

samples. This relies on an estimate of the degrees of freedom associated with

the parameter estimators, which can be obtained from the residual degrees of

freedom when fitting the model to the data; an estimate that depends on the

number of data points and parameters in the fitted model.

3.2.1.1 Example

To illustrate the performance of the approach described above we begin by

estimating PK parameters of interest, t 1
2
, the time taken for the concentration to

reach half its initial value and Cmax, the maximum concentration, in this exam-

ple, for both sampling methods in the example study data shown in Figure 3.1.

For this dataset we will model the concentrations in a single model to ensure

that the residual error variance is the same for both methods:

E(Yt) = (1− IM)E(g(τS, t)) + IME(g(τM, t)),

where IM is the indicator variable for the use of microsampling, τS and τM are

the model parameters for standard sampling and microsampling respectively, t

is time and g is the PK model, the same for standard and microsampling. Note,

however, that such an assumption is not necessary in order to apply the method

and one could equally use two separate models instead. An example using two

separate models is discussed later.

To account for the uncertainty about the models form we consider the fol-

lowing two candidate models:

Candidate Model 3.1: Log Linear

g(τ, t) = β′0exp(β1t) + ε. (3.1)
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Candidate Model 3.2: Log Log Linear

g(τ, t) = exp(β′0exp(β1t)) + ε. (3.2)

We assume ε ∼ N(0, σ2) for model fitting. Based on these models we can

then derive the analytical form of the PK parameters of interest as functions of

the model parameters (See Appendix A for the full details). In order to compare

the sampling methods, we are then interested in the differences between each

parameter when using microsampling and standard sampling. These difference

may be expressed as t 1
2

(S)− t 1
2

(M) and Cmax(S)−Cmax(M) where the superscripts

S and M indicate standard sampling and microsampling respectively. For both

candidate models, these derived parameters can be expressed as differentiable

functions of the respective model parameters, and importantly have the same

interpretation for each model. In this case, candidate model 1 has weight 0.461

and candidate model 2 has weight 0.539.

For this particular example, applying the method described by Jensen &

Ritz47 gives the 95% model averaged confidence intervals as (-38.2 , 37.1) and (-

33.2 , 27.3) for t 1
2

(S)− t 1
2

(M) and Cmax(S)−Cmax(M) respectively. Since 0 is in both

intervals, both fail to reject the null hypothesis suggesting that the two methods

are similar. It is clear however that this does not show equivalence of the meth-

ods and it is perhaps worth observing that these intervals are rather wide, likely

due to the small sample size of the study.

3.2.1.2 Simulation Studies

For a first evaluation of the performance of the method, we find the empir-

ical overall type I error rate by simulating 10,000 datasets under the null hypoth-

esis. The same derived parameters of interest and candidate models as used in

the previous example are considered in these simulation studies. Data are gener-

ated from the same data generating model for both sampling methods, standard

and microsampling. The data generating model used is the best model fit to the
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example data as judged by the AICc13 which corresponds to model 3.2 and pa-

rameter values β′0 = 4.436733, β1 = −0.006318. An additive normally distributed

error with σ = 5 is used in order to replicate the variation seen in the example

dataset. For simplicity, we assume independent subjects at each time point for

the time being, and return to longitudinal data at a later point.

Different numbers of subjects, n = 5, 10, 100, 1000, are simulated indepen-

dently at each time point. The smaller sample sizes are more realistic in terms

of conducting these studies but the larger sample sizes show the asymptotic be-

haviour of the method. Between 3 and 10 timepoints (see Table B.1 in Appendix

B for details) are considered. For a true coverage of 95%, the estimate of fami-

lywise type I error rate is expected to be between 0.0457 and 0.0543 due to sim-

ulation error. Figure 3.2 shows how the number of time points and number

of subjects affects the coverage of the simultaneous confidence intervals based

on normal and t-quantiles. It is apparent that the method is conservative when

small sample sizes are used while inflated type I error rates are observed for large

sample sizes (and a large number of time points). The use of t quantile results

in type I errors closer to target, but even there conservatism for small sample

sizes and anticonservatism is seen for a large number of data points, as seen in

Figure 3.2. In terms of bias of the model averaged derived parameters (shown in

Table D.1 in Appendix D ), we see as expected, larger bias for the smaller sample

sizes and smaller number of time points. For example, we see an average bias of

-0.06 for Cmax for 1000 subjects at 10 time points, but an average bias of -0.32 for

5 subjects at 3 time points. Please refer to Table D.1 in Appendix D for the full

range of values. All things considered, this amount of bias is not too concerning

for the procedure.
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Figure 3.2: Comparison of observed type I error rate for varying number of time
points and subjects for use of z and t quantile. Horizontal dotted lines show error
bounds for 10,000 simulations

3.2.2 Extension

Based on the brief simulations above we are now interested in evaluating

if a better approximation of the variance, the current method uses a first order

delta method, can be used to improve the results of the method. To do so we con-

sider a second order Taylor approximation to estimate the variance of a function

of parameter estimates which can be found as follows: τ is a vector of model

parameters with τ̂ the estimates from the model; µ = E[τ̂ ], a vector of the expec-

tations; θ̂ = f(τ̂), the derived parameter estimates as a differentiable function of

the model parameter estimates (including the weights from the model averag-

ing step); Σ̂(τ̂) is the covariance matrix of τ̂ ; D = ∂τf(τ̂) is the gradient of f(τ)

evaluated at µ and H = ∂2
τf(τ̂) is the Hessian of f(τ) evaluated at µ.

Then a second order Taylor approximation of f is given by:

f(τ̂) ≈ f(µ) + DT (τ̂ − µ) +
1

2
(τ̂ − µ)TH(τ̂ − µ)
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This gives as approximations of the expectation and variance of f :

E[f(τ̂)] ≈ f(µ) +
1

2
tr{HΣ̂(τ̂)}. (3.3)

and

Var[f(τ̂)] ≈ DT Σ̂(τ̂)D +
1

2
tr{(HΣ̂(τ̂))2}.

See Appendix C for the full derivations.

3.2.2.1 Example revisited

When applied to the example dataset, the use of the second order approx-

imation yields the new intervals (-44.1 , 43.2) for t 1
2

(S) − t 1
2

(M) and (-33.3 , 27.4)

for Cmax(S)−Cmax(M) compared to the previous (-38.2 , 37.1) and (-33.2 , 27.3) re-

spectively. The interval for the t 1
2

difference is noticeably wider for the use of the

second order approximation, and the interval for the Cmax difference is slightly

wider. Since they both still contain 0, we remain with the same conclusion with

this modification, there is no evidence of a difference between the two methods.

3.2.2.2 Simulations

To explore the difference in the confidence intervals based on first and sec-

ond order approximations a small simulation trial is conducted. The confidence

intervals for the half-life difference t 1
2

(S) − t 1
2

(M), one of the derived parameters

considered previously, are considered. The introduction of the second order

term increases the estimate of the variance, and so the width of the intervals is

increasing from the use of first to second order approximation for all simulation

runs. Note that the introduction of the second order term also slightly changes

the actual point estimate due to the second term in (3.3).

The implications of these changes can be seen in Figure 3.3 that shows the

difference between type I error rate when using the first and second order ap-

proximation and a t quantile. We find that the type I error rate is closer to the



65

target level for small sample sizes when using the second order approximation

(grey lines) compared to the first order approximation (black lines), while the

difference is negligible for large sample sizes. Most notable, the trend of in-

creasing observed type I error rate for increasing number of time points is still

apparent. This suggests that, while the use of the second order approximation

of the variance and the estimate is an improvement, it does not remove the type

I error inflation for large sample sizes. For typical PK studies, it is the smaller

sample sizes that are of primary interest. Note also, that the calculation of the

second derivatives Hessian matrix for each simulation increased the computa-

tional cost of the method.

Figure 3.3: Comparison of observed type I error for varying number of time
points and subjects for use of 1st and 2nd order approximation. Horizontal dot-
ted lines show error bounds for 10,000 simulations.

3.3 Equivalence Testing
After this initial exploration of the properties of the procedure by Jensen

& Ritz,47 we now focus on the main setting of interest. In the application for

the comparison of traditional and microsampling, we are in fact interested in
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evidence of equivalence of the two sampling methods rather than superiority.

This changes the nature of the tests we conduct, an overview of the differences

is explored by Schuirmann.66 The null hypotheses now state that the difference

between parameters are at least as big as some given limit. Therefore the multi-

ple test procedure breaks down into the following multiple two one sided null

hypotheses:

H011 : θ1 ≤ γ1 or H021 : θ1 ≥ γ2,

...

H01l : θl ≤ γ1 or H02l : θl ≥ γ2,

...

H01L : θL ≤ γ1 or H02L : θL ≥ γ2,

where γ2 > γ1 are the equivalence margins.

The main difference in the method proposed required for this setting is

how confidence intervals are constructed and more specifically how the family-

wise type I error rate is controlled. We will use the method proposed by Quan

et al.60 for assessment of equivalence of multiple correlated endpoints which

uses the following adjustment. Assuming the endpoints, or in this case, derived

parameter estimates θ̂ have a multivariate normal distribution with mean θ and

variance Σ, with σl =
√

Σll, where Σll is the variance of the lth derived param-

eter estimate. Then for L derived parameter estimates, since we are considering

two one-sided hypotheses, we require for 100(1− 2α)% simultaneous intervals

P

(
L⋂
l=1

(−γ ≤ θ̂l ±Qσl ≤ γ) | H0

)
= α,

which is equivalent to

P

(
L⋂
l=1

(Qσl − γ ≤ θ̂l ≤ γ −Qσl) | H0

)
= α.

Therefore replacing the unknown Σ with its estimate Σ̂, then we find C such
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that

P

(
L⋂
l=1

(−C ≤ θ̂l ≤ C) | H0

)
= α.

In order to control the familywise type I error, find the maximum of the Ql =

γ−C
σ̂l

to give the adjusted quantile Q. With that adjustment in place we may now

apply the standard procedure for equivalence testing: If all intervals fall within

the previously stated bounds then we reject the null, there is evidence of equiv-

alence. If at least one interval falls outside the specified range then we fail to

reject.

3.3.1 Example revisited

Since the equivalence margins must be prespecified, a sensible approach

is to follow a standard setup of a test for bio-equivalence such as that described

by.18 We calculate the log of the ratio of the two parameters, in this case we con-

sider log(Cmax
(S)) − log(Cmax

(M)) and log(t 1
2

(S)) − log(t 1
2

(M)) as the derived pa-

rameters of interest. The approximations of the estimates and their variances are

calculated using the same methods previously discussed for superiority testing

and simultaneous confidence intervals are calculated using this and the adjusted

quantile Q. We then observe whether the entire confidence interval for this lies

between γ1 = log(0.8) and γ2 = log(1.25), the standard bio-equivalence margins.

Although testing for equivalence between two sampling methods is of course

different to testing for bio-equivalence, it suffices to use the same equivalence

margins as a basis for analysis. Should one wish to be harsher or more lenient

with one’s definition of equivalence, then alternative equivalence margins may

be used (with the possibility of taking γ1 6= −γ2), however this would not affect

any conclusions drawn from simulation results.

The equivalence test is applied to the example dataset using the same can-

didate models as used previously in the superiority test. The simultaneous

confidence intervals of the log of the ratio of derived parameters are (-0.421



68

,0.387) and (-0.135,0.066) for t 1
2

and Cmax respectively. The first is clearly outside

(log(0.8),log(1.25))=±0.223. Hence there is insufficient evidence to reject the null

hypothesis, there is no evidence of equivalence. Although this is possibly due

to the small sample size being used in the trial.

3.3.2 Simulation Studies

To evaluate the method for testing equivalence more formally, we still wish

to simulate data under the null hypothesis in order to evaluate the type I error

rate. To do so we must consider a difference between the parameters and there-

fore generate data for each sampling method from the same models but differ-

ing parameter values such that the ratio of one pair of parameters is equal to

0.8, (log(t 1
2

(S)) − log(t 1
2

(M)) = log(0.8)), and the other equal to 1, (log(Cmax
(S)) −

log(Cmax
(M)) = 1). In order to observe the maximal type I error, we use the sit-

uation under the null that is closest to the alternative - that is only one ratio is

outside equivalence and that it is on the border.

Identical candidate and data generating models (Models 3.1 and 3.2) are

used as previously when testing for superiority. In order to extend the applica-

tion of the method, we have also evaluated the procedure under the assumption

of a multiplicative error framework. Therefore in addition to the additive error

framework we have previously assumed, we repeat the simulations under the

assumption of a multiplicative error framework using the following two candi-

date models:

Candidate Model 3.4: Log Log Linear with Multiplicative Error

g(τ, t) = exp(β′0exp(β1t))ε, (3.4)

Candidate Model 3.5: Log Linear with Multiplicative Error

g(τ, t) = β′0exp(β1t)ε, (3.5)
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where log(ε) ∼ N(0, σ2). Model 3.4 is used in the data generation with

σ = 0.05.

Using the new rejection criteria, we can observe the coverage. That is we

observe the percentage of cases in our simulation that all intervals do not fall

within the equivalence margins. Since this is a two one-sided test procedure,

constructing a 95% confidence interval and assessing its position is equivalent

to each one sided test having nominal level of 2.5%. Therefore since we are only

simulating from one side of the null interval, we now expect a type I error of

2.5% instead of the previous 5%.

Figure 3.4: Comparison of observed type I error for varying number of time
points and subjects for equivalence testing. Horizontal dotted lines show error
bounds for 10,000 simulations.

Figure 3.4 shows the observed type I error rate using the 2nd order approx-

imation and z quantile for both the additive and multiplicative error structure.

A similar trend presents itself here to previously, with smaller type I error rate

for the smaller numbers of subjects for the case of the additive error structure.

For the multiplicative error structure, only for the small number of subjects and
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time points does the type I error rate fall below the simulation error interval.

It is also important to consider the power of the procedure to detect equiva-

lence when the underlying ratio of parameters is within the equivalence bounds.

As an illustration of the difference in power curve of the procedure between

the differing sample sizes when varying the underlying ratio to different values

within the equivalence bounds, Figure 3.5 shows the curve for 5, 20 and 100 sub-

jects at each time point. For the larger sample sizes the procedure shows high

power in detecting equivalence, however for the smaller numbers of subjects,

the power is noticeably lower.

Figure 3.5: Power of procedure for equivalence testing with 5, 20 and 100 subjects
at 3 time points.

In order to evaluate further this method for testing for equivalence between

the two blood sampling methods, simulations are also conducted under the as-

sumption of an oral administration of a compound.

For candidate models, the following standard one-compartmental oral dose

model is used with two different error structures:
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Candidate Model 3.6: Oral Dose with Multiplicative Error

g(τ, t) =

(
kaFD

V (ka − ke)
(e−ket − e−kat)

)
ε, (3.6)

with ε ∼ N(0, σ2).

Candidate Model 3.7: Oral Dose with Additive Error

g(τ, t) =
kaFD

V (ka − ke)
(e−ket − e−kat) + ε, (3.7)

with log(ε) ∼ N(0, σ2).

Candidate model 3.6 is used for data generation where we take ke = 0.0693,

ka = 0.231, V = 10, D = 500 and F = 1 as described by Gibaldi & Perrier,32

assuming the log(ε) ∼ N(0, σ2) with σ = 0.05. σ is chosen larger than that con-

sidered by Lunn & Aarons51 and identical to one example evaluated by Tod et

al.69 We believe that this is a reasonable standard deviation to use in the simula-

tions to ensure the models of the two sampling methods are well separated. A

larger standard deviation would mean the models were less well separated and

although the procedure still works with differing values, this level of variation

balances between separating the models well, and being realistic in terms of the

variation expected between subjects at these concentrations.

Possible PK parameters to consider are Cmax, tmax and AUC24 and simul-

taneous inference is performed on all combinations of pairs of these parameters

and all three. See Appendix A for the form of these parameters. In the same

process as previously, simulations are conducted to investigate the type I error

rate and power of the procedure. In order to simulate under the null hypothesis,

as previously, we generate the data so that the true log ratio of one PK parame-

ter for the two sampling methods is equal to 0.8 and all others are equal to 1. In

these simulations, the scenario with three time points has been omitted due to

insufficient data to fit the more complex model. For the simulations to investi-

gate the power of the procedure, the true log ratio of one PK parameter for the
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two sampling methods is varied between 0.8 and 1, and the scenario with seven

time points is considered.

Results show that type I error rate is controlled well for all combinations

of these PK parameters, see Tables E.1 and E.2 in Appendix E. The power is also

sufficient for a reasonable sample size. Figure 3.6 shows the power of the pro-

cedure, indicating that even with only 5 subjects per time point, an adequate

power is achieved. For this case, the multiplicative error candidate model has

average weight 0.9 over the 10,000 simulations and the additive error candidate

model had average weight of 0.1. Around 18% of the simulations resulted in

weights between 0.1 and 0.9 for both models, so it is clear that we are not consis-

tently in the situation where we have weights 1 and 0, supporting the need for

the model averaging in the procedure.

Figure 3.6: Power of procedure for equivalence testing with 5, 20 and 100 subjects
at 7 time points for an oral administration of a compound.

Therefore for the purpose of our comparison between microsampling and

traditional sampling, the proposed method for equivalence testing is applica-

ble. Although in some cases conservative for the smaller sample sizes, the type
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I error rate is controlled, with expected asymptotic behaviour for the larger

sample sizes. An adequate power is achievable for a sample size that is man-

ageable for a one-off study to confirm equivalence between the two sampling

methods. Hence the suggested procedure provides an effective approach to the

considered problem of providing a comparison between microsampling and tra-

ditional sampling.

3.3.3 Extension to Longitudinal Data

Although in these previous studies it is assumed that different subjects are

sampled at each time point, extending to longitudinal data and fitting non lin-

ear mixed-effects models can be done without further complication. The deriva-

tions for this extension are not too dissimilar to those for the previous method

and therefore are not included here. The ingredients are essentially the same; we

use the estimates and variance matrix for the fixed effects from the fitted model

For the interested reader, we refer you to further details.46,64 We now consider

the same subjects to be sampled at each time point, which may help somewhat

to reduce the sample size needed for a realistic power to detect superiority or

equivalence. In this section, sample size now refers to the total number of sub-

jects in the study. This is an important extension in order to be able to conduct a

study with fewer overall subjects to confirm equivalence between the sampling

methods.

One may also wish to use separate models for the two sampling methods

instead of combining them in a single model. This removes the restriction on the

residual variances. This is implemented in the following simulations. However,

fitting non linear mixed effects models greatly increases the computational in-

tensity required to conduct simulations and therefore the number of simulations

has been reduced to 1000. For this same reason, the scenario with 1000 subjects

has been eliminated from these simulations. A reduced range of time points is
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also considered.

The population model used is identical to that used in previous simula-

tions for an oral administration of a compound for both the data generating

model and the candidate models. Normally distributive additive random effects

are assigned to V , ke and ka identically for the two sampling methods, with the

ratio of the underlying population PK parameters of interest for each sampling

method (AUC and Cmax in this case) fixed as previously.

Figure 3.7: Type I error rate for varying numbers of time points for 5, 10 and 100
total subjects considering AUC and Cmax as PK parameters for an oral admin-
istration of a compound. Horizontal dotted lines show error bounds for 1000
simulations. (Equivalence testing)

It is clear from Figure 3.7 that the Type I error rate is within simulation er-

ror bounds for 100 subjects, and is conservative when 5 and 10 total subjects are

used. Figure 3.8 shows that even for 5 and 10 total subjects, we achieve a reason-

able power for underlying ratios between 0.9 and 1. Therefore this extension,

if physically feasible to collect such samples, provides a framework that could

indeed be used to detect equivalence between the two blood sampling methods

for a small sample size.
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Figure 3.8: Power of procedure for equivalence testing for 5 time points for 5
and 10 total subjects considering AUC and Cmax as PK parameters for an oral
administration of a compound.

3.4 Discussion
The method by Jensen & Ritz47 showed varying performance in terms of

coverage in the simulation studies conducted in the application of comparison

of PK parameters. It is noted that these methods47 do need adjustment in order

to be applied to our desired setting. However since our choice of designs are dif-

ferent to those discussed47 then of course it is expected to be necessary to make

such adjustments. The simulation studies are conducted in order to evaluate

the power and type I error rate of varying designs so that we are able to make

recommendations for such a study needed to detect equivalence of the sampling

methods. Some noteworthy relationships between the coverage and the number

of time points and the size of the sample emerged in this analysis.

The use of the second order delta approximation instead of the first order

delta approximation showed coverage closer to 95% in the simulations, and in

spite of the increase in computational cost, would be preferred over the first or-
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der approximation. For the smaller sample sizes that are more representative

of the type of studies this methodology is aimed at, the second order approxi-

mation does offer an improvement. For the larger sample sizes, it does not offer

much improvement. However since the smaller sample sizes are typical of such

studies, we have continued to recommend the use of second order approxima-

tion.

The extension to equivalence testing gives promising results that this could

be applied in the desired setting. The method can be applied to different error

structures and can even be used to account for uncertainty in the error structure.

It can be applied to both simple and complex models, with both giving encourag-

ing results. The simulations also give strong indications of the required sample

size for such studies to have the power to detect equivalence between the two

blood sampling methods.

When applied to the example dataset, neither the superiority or equiva-

lence test found evidence to reject the null hypothesis. Hence with this partic-

ular example results were inconclusive, due to the small sample size. However,

if a study were designed for this purpose with the power to detect equivalence,

then it is hoped that results will be useful for the comparison of the two sam-

pling methods. Thus the method developed to detect equivalence is an advan-

tageous tool in this practical application of comparison between microsampling

and standard sampling.

The extension to longitudinal data shows great promise to reduce the total

sample size needed for such a study. However there may be physical restrictions

on the collection of such samples using traditional methods, since the total vol-

ume of blood needed for the collection of multiple samples form the same sub-

ject may exceed protocols dictating the total volume of blood allowed to be taken

within a certain time period. Therefore one may want to introduce a sparse sam-

pling scheme, where not all subjects are sampled at each time point. This may
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provide some middle ground between the two scenarios previously considered,

balancing between a practical total sample size and a practical sampling sched-

ule for each subject in terms of blood volume sampled.

The equivalence margins used are standard for testing for population bioe-

quivalence of a test formulation of a drug against a reference formulation. How-

ever one may want to be more stringent when comparing sampling methods in

order to reduce compounding of error. As a possible extension, one may also

want to consider following the procedure for testing for individual bioequiv-

alence as opposed to population bioequivalence. This may also enforce stricter

conditions on claiming equivalence, which for practical reasons ought to be con-

sidered.
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Paper B: Optimal Designs for Non-Compartmental Analysis of
Pharmacokinetic Studies
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4.1 Introduction
Investigating pharmacokinetics (PK) is an indispensable task in drug de-

velopment in order to understand how externally administered compounds are

absorbed, distributed, metabolised and excreted by an organism. PK behaviour

is typically assessed by measuring the substance’s concentration in blood, plasma

or other tissues at a number of time points after administration. Based on the

resulting concentration-time profile, a variety of pharmacokinetic parameters

such as the area under the concentration versus time curve (AUC) are consid-

ered. Two strategies, the non-compartmental approach15,32 or a modelling ap-

proach,11,20 are available for estimating PK parameters, describing the under-

lying exposure. Modelling allows for unstructured sampling schemes, which

comes at the cost of uncertainty about the correct model to use, and technical

difficulties in model fitting may arise. The non-compartmental approach on the

other hand uses minimal assumptions about the data-generating process. The

drawback is, however, that a more structured sampling design and some ap-

proximation (usually linear) of the curve between two observed time points is

necessary.

The recent introduction of the new blood sampling method microsampling

has led rise to the potential superfluity of satellite animals in such PK studies.

The practice of microsampling involves taking a much reduced volume of blood

per sample due to improvement in the sensitivity of bioanalytical techniques

which mean that analysis can be conducted with smaller samples. Whereas pre-

viously volumes ≥ 200 µL were needed per sample, the practice of microsam-

pling requires only approximately 25 - 30 µL per sample.16 As a consequence

of the high volume drawn previously, the PK had to be studied in a group of

animals called the satellite group and the pharmacodynamics (PD) was stud-

ied in a group called the study group due to the blood volume needed for both
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measurements to ensure blood sampling did not adversely affect PD measure-

ments. The extra subjects required for a satellite group are now superfluous as

the smaller volume of blood taken in the sample means that we can sample both

requirements from the same study animals. This is a big advantage in terms

of the Reduction principle of the 3 R’s of non-clinical research.65 Since a rat can

provide up to 250 µL in total over 24 hours,53 the physical and time restrictions of

the scientists performing the sampling are stricter than the ethical and physical

restrictions on the amount of blood provided by a rat. One must also consider

that the PD outcomes must not be influenced by this sampling. The number of

samples taken per timepoint remain constant as previously, but there is now a

larger pool of subjects to sample from, hence all animals cannot be sampled at all

timepoints. Therefore what previously was a full sampling scheme in the satel-

lite group results in a sparse sampling scheme in the study animals. There are

of course many other instances, such as sampling from human babies and chil-

dren, in which sparse sampling schemes are used. One proposed scheme (Table

4.1) that has arisen from discussion of the implementation of microsampling is

the example introduced by Chapman et al.16

This example is just one of many possible sparse sampling schemes. The

question is then, out of all possible schemes, how does one choose the best?

Much literature on optimal designs presents methods from a PK modelling

perspective, with much focus on optimality criteria based on the Fisher Informa-

tion Matrix.62,63, 69 The most popular of which is D-optimality, minimizing the

determinant of the inverse of the Fisher Information Matrix. The application

of this9 is widely used for optimal sparse sampling schemes. For serial sam-

pling, Gagnon & Leonov30 discuss the process of finding such optimal designs.

A large range of procedures for choosing optimal designs is explored by Fedorov

& Leonov.28

Since, due to regulatory requirements, such studies primarily make use of
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Table 4.1: Sparse Sampling Scheme as suggested by Chapman et al.16 All main
study animals are sampled, with 10 animals per sex per group. A total of 30
samples per sex per group are taken, with 3 per each of the 10 animals and 5 per
each of the 6 timepoints.

Animal number Sampling timepoint

#1 #2 #3 #4 #5 #6

1 7 7 7

2 7 7 7

3 7 7 7

4 7 7 7

5 7 7 7

6 7 7 7

7 7 7 7

8 7 7 7

9 7 7 7

10 7 7 7

n=5 n=5 n=5 n=5 n=5 n=5

non

-compartmental methods (NCA) in their analysis,29,61 we will focus on optimal

designs for non-compartmental methods here. The traditional approach using

the Fisher Information Matrix is not applicable here, since this requires the spec-

ification of a PK model. We also ensure robustness across possible scenarios by

applying a minimax procedure.

Depending on the type of sampling, non-compartmental theory presents

different methods for estimation of PK parameters and their variance. The area

under the concentration versus time curve (AUC) is the most explored in liter-

ature, but others such as the maximum concentration (Cmax), the time the max-

imum concentration occurs (tmax) and the time taken for the concentration to

decrease to half its value (t 1
2
) are also important in describing a population PK

profile.

A standard method for estimating the AUC is the simple trapezoidal rule,
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which uses linear interpolation between observed concentration measurements

to approximate the concentration versus time curve. This is explored in depth in

the literature.7,25, 50 There have been many suggested extensions building upon

this, such as the hyperbolic trapezoidal rule54 and the log trapezoidal rule31 for

destructively obtained measurements.

Whilst the estimation of point estimates of PK parameters do not depend

on the sampling scheme, estimation of the variability of the estimator does.

There are different types of sparse sampling schemes that can be used in such

studies, with NCA methods available for calculating this variability. For serial

sampling, where one blood sample is taken per subject, there are various meth-

ods for calculating the variance of the AUC estimator6,44, 55, 71 depending on the

scenario. Alternative approaches exist for batch designs,37,41, 75 where each ani-

mal is measured at multiple (but not all) time points. The animals are divided

into batches with each batch of animals all sampled at the same time points. No

other animals are sampled at any of these time points and hence the time points

for each batch form a partition of the set of all time points. For more flexible

designs, where the animals are not separated into disjoint batches by their time

points, methods described by Jaki & Wolfsegger43 can be applied. However for

each individual set of sampling times, there must be at least two animals follow-

ing this. For all such types of design, the R package PK42 can be used.

For other PK metrics, Fedorov & Leonov26 compare the empirical estima-

tors based on numerical integration methods to the model based estimators us-

ing a measure of MSE as the comparator. Wolfsegger & Jaki72 also investigate

non-compartmental estimates for PK parameters, but focus on serial sampling

designs.

Although reporting various advantages and disadvantages for their re-

spective methods, it is made clear by all authors that the approach for estimat-

ing the PK parameters and their variances must be appropriate for the sampling
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trial design. For each of the methods discussed, there are certain criteria that

the sampling scheme must satisfy, for example the partitioning of schedules in

batch designs or repeats on individual schedules in flexible designs. The exam-

ple sparse sampling scheme16 however does not satisfy these criteria and hence

these methods for estimating the variances are not appropriate. Therefore in

the following, rather simple non-compartmental metrics are used since they are

appropriate for such small sparse sampling designs, with variances estimated

using simulations although exact variance estimators can be used if available

for the class of designs of interest.

In this work we develop a general procedure for determining the optimal

sparse sampling scheme for a given optimality criterion. We consider fixed time

points as well as optimizing time points and discuss robust designs.

4.2 Method
The following procedure uses simulations (labelled i = 1, . . . ,M for very

large M ) to choose the optimal sparse design. We start by choosing designs

assuming fixed time points, then will later move on to optimizing these time

points. In order to define the set of all feasible designs S, we consider designs

with J time points: tj for j = 1, . . . , J andN subjects n = 1, . . . , N . Each scheme

is labelledSk for k = 1, . . . , K whereK is the total number of schemes that satisfy

our design constraints. We introduce an indicator variable, γjn,Sk
, which takes

the value 1 if subject n is sampled at time tj in sparse scheme Sk, and 0 otherwise,

with constraints on these γjn,Sk
introduced. To choose the optimal design from

the set of feasible designs, the optimality criterion used can be written as Ψ =

f(θ̂) where θ̂ is an M -vector of the PK parameter estimates of interest across all

simulations, that is the vector is made up of a parameter estimate from each of

the M simulations.

The approach is outlined as follows:



84

Algorithm 1:

(1) Define the set of all feasible sparse designs S.

(2) Assume an underlying PK model, correlation and variance structure.

(3) Using the model in step 2, generate M complete datasets and extract

data according to each feasible sparse design.

(4) Compute the optimality criterion for each feasible design S.

(5) Select the best sparse design based on chosen optimality criterion.

By feasibility of a sparse design, we mean that it satisfies any constraints

given by the user. We will later go on to specify particular constraints that we

consider in our simulations, but at this point we keep the algorithm as general

as possible in order to keep its range of applicability open.

In fact, we are not only able to select the best scheme, but can rank the

sparse designs based on the chosen optimality criterion Ψ (examples below),

with rank 1 given to the best design. Although this Ψ may relate to any PK pa-

rameter, we only consider using NCA as alternative approaches to find optimal

designs for model based estimation exist (see28).

In order to choose the optimal sparse sampling scheme out of the set of Sk,

we use a measure of variability of the PK parameter of interest θ.

For example we may take

Ψ(Sk) = var
(
θ̂Sk

)
,

where var
(
θ̂Sk

)
is the variance of the estimator of the θ̂Sk

for scheme Sk. We

then rank the designs from 1 to K by their value of Ψ(Sk). The best design has

the smallest value of Ψ(Sk) and rank 1.

We use M simulated full datasets (observations from N subjects all at J

time points). These datasets are indexed i = 1, . . . ,M . We estimate this variance
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of the PK parameter estimate for each scheme Sk by taking the variance of the

estimates θ̂Sk
over i = 1, . . . ,M as follows. A non-compartmental estimate of θ is

calculated for each scheme for each dataset, θ̂Sk,i. With θSk
= 1

M

∑M
i=1 θ̂Sk,i, then:

Ψ(Sk) =
1

M − 1

M∑
i=1

(
θ̂Sk,i − θSk

)2

= var
(
θ̂Sk

)
is our (unbiased) sample variance of the θ estimate for scheme Sk.

By standard results, this sample variance is an unbiased and consistent es-

timator of the true variance σ2
Sk

(Lemma 4.2.1), a fact we can use to show that the

above procedure will lead to the optimal ranking as the number of simulations

increases.

Lemma 4.2.1. For ε > 0:

P
(
| var

(
θ̂Sk

)
− σ2

Sk
| ≥ ε

)
→ 0 as M →∞

for each k = 1, . . . , K.

Hence by using a sufficiently large M, our sample variance converges to

the true variance.

Lemma 4.2.2. The true ranking depends on the differences between variances, i.e. σ2
Sk
−

σ2
Sk′

> 0 implies scheme Sk is ranked lower (worse) than Sk′ , σ2
Sk
− σ2

Sk′
< 0 implies

scheme Sk is ranked higher (better) than Sk′ , σ2
Sk
−σ2

Sk′
= 0 implies scheme Sk is ranked

equally to Sk′ . Therefore as a consequence of Lemma 4.2.1:

var
(
θ̂Sk

)
− var

(
θ̂Sk′

)
→ σ2

Sk
− σ2

Sk′
as M →∞,

for all schemes Sk, Sk′ ∈ S.

Hence the rankings based on our estimates will approach the true rankings

as M →∞.
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4.3 Results

4.3.1 Set Up

In order to apply the procedure, we consider schemes based on the ex-

ample given by Chapman et al.16 We construct our sparse sampling designs by

introducing constraints on the γjn,Sk
. Following the example by Chapman et al,16

we use the following:

J∑
j=1

γjn,Sk
= T ≤ J for all n = 1, . . . , N,

that is, each subject is sampled at exactly T time points, and

N∑
n=1

γjn,Sk
= U ≤ N for all j = 1, . . . , J,

stipulating that U measurements need to be available at each time point. These

constraints help keep the number of viable schemes small, but may be relaxed if

one wishes to increase the amount of viable schemes K.

There are H =
(
J
T

)
possible individual subject schemes that we label sh

for h = 1, . . . , H . Therefore each group sampling scheme Sk can be thought

of as a unique collection of N out of the H individual subject schemes sh. The

constraints on the γjn,Sk
obviously reduce this. We represent the group scheme

Sk by aN×J matrix of 1’s and 0’s. Permutations of rows do not alter the structure

of the scheme.

We use N = 10 subjects and J = 6 time points restricted to sampling ex-

actly U = 5 subjects at each time point and each subject being sampled at exactly

T = 3 time points. For this situation there are K = 1044 feasible sparse sam-

pling schemes. We do not allow for repeated individual schemes sh and place

no other restrictions on sampling schemes, although it is possible to do so (for

example one may want to disallow sampling the same subject for 3 consecutive

time points).
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Our assumed PK model is a one-compartmental first order kinetics with

oral administration:

Yjn =
kanFD

Vn(kan − ken)
(e−kentj − e−kantj) + εjn,

with mixed effects implemented as follows. The values of F and D are fixed at

F = 1 and D = 100. The other three parameters, V , ka and ke have exponential

random effects (Vn, kan, ken) = β exp(bn) where (Vn, kan, ken) is the individual

parameter vector for subject n, β is the fixed effect and bn is the random effect

for individual n, with bn ∼ N(0,Ω). Ω is defined as a diagonal matrix of the

variances of the random effects for each of the three parameters, Vn, kan, ken. We

assume values for the fixed effects, β = (15, 2, 0.25) and the variances for the

random effects var (bn) = (0.1, 1, 0.25). The εjn are Normally distributed with

constant coefficient of variation 0.15. The time points used are (0.5, 1, 2, 4, 9, 12).

This follows an example described by Bazzoli et al.9 Figure 4.1 shows the pop-

ulation PK model with the time points considered. We generate M=100,000 full

datasets of N = 10 subjects sampled at J = 6 timepoints in order to apply the

method.

4.3.2 Initial Results

Using the θ = AUC calculated using the trapezoidal rule as the PK pa-

rameter of interest, we see the results for the top 10 ranking designs in Table

4.2. Schemes are referred to by their reference number (from 1 to 1044) through-

out the results as it is not possible to provide the actual design for each choice.

Although there may be little difference between the optimality criterion value

for these top designs, the worst ranking designs have variances over 15% larger

than the best design. This provides evidence that out of the set S, there is vast

differences between the designs Sk. The example design by Chapman et al16 is

ranked 84 out of 1044, with a variance of 6.856, not one of the worst designs but
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Figure 4.1: An illustration of the population PK model described and the sam-
pling time points.

by no means the best, with over a 4% increase in variance over the best design.

Table 4.2: The top 10 and bottom 10 ranking designs according to the minimiza-
tion of variance of the AUC estimate

Rank Scheme # AUC Var Rank Scheme # AUC Var
1 1003 6.583 1035 73 7.527
2 1001 6.655 1036 20 7.532
3 775 6.661 1037 6 7.548
4 746 6.663 1038 236 7.553
5 809 6.680 1039 52 7.570
6 1026 6.696 1040 19 7.574
7 993 6.711 1041 44 7.580
8 764 6.714 1042 270 7.592
9 1018 6.730 1043 299 7.602
10 750 6.731 1044 42 7.656

It is natural to be curious about how this ranking differs to that which

would be obtained using Ψ(Sk) = MSE(θ̂Sk
) = bias(θ̂Sk

)2 + var
(
θ̂Sk

)
as op-

timality criterion, as we have so far ignored the bias of the estimate of the PK

parameter. It has already been established that sparse sampling schemes pro-

duce unbiased estimators for PK parameters43 and hence it is unsurprising that
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the rankings based on the MSE and the variance alone are very similar (see Fig-

ure 4.2). Consequently we will not consider the bias when choosing the sparse

sampling scheme in our subsequent illustrations, but instead reserve this for our

revisit when considering the choice of time points discussed later.

Figure 4.2: The relationship between ranks given to schemes using MSE vs vari-
ance of the AUC estimate as optimality criterion.

It is also worth noting that although we have considered only sampling

schemes that do not include repeated schemes, it is possible to do so. For illus-

trative purposes we have included results for such a scenario, where individual

scheme are allowed to be repeated once. That is, any one of the 20 individual

schemes that we consider can appear up to a maximum of twice in the sampling

scheme, which results in a total of 10374 possible schemes. This yields slight im-

provement in the value the optimality criterion for the top design, reducing the

variance by nearly 2%. However for simplicity and computational time we illus-

trate further examples without considering replication of individual designs.

However in such trials, more than one PK parameter is typically of interest.

Most commonly, AUC and Cmax are used together to describe the PK profile.

Therefore it seems appropriate to use an optimality criterion that incorporates
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the variation of both parameters. We suggest the following:

Ψ = w1 var
(
ÂUC

)∗
+ w2 var

(
Ĉmax

)∗
Where w1 and w2 are prespecified weights assigned based on the impor-

tance of the relevant PK parameter, and ∗ indicates the variances are scaled from

0 to 1 by dividing the variance by the maximum variance across all schemes.

The scaled variances are used as opposed to the actual variances as the PK pa-

rameters themselves are on very different scales, and so for the weights to have

a meaningful interpretation they must be on the same scale. The choice of these

weights is left to the user so that the level of interest in that particular PK pa-

rameter can be taken into account. In all further examples we use the weights

w1 = w2 = 0.5.

Further evidence to support this criterion is the relationship between rank-

ings given to the set S when using the variances of the individual PK parameter

estimates shown in Figure 4.3. We see a slight positive relationship, in that the

best designs tend to be shared by both criteria and likewise for the worst de-

signs. However in the middle rankings there is a lot of discrepancy between the

two criteria. The zoomed in figure makes it clear that from the top 50 schemes

according the AUC ranking are mainly ranked in the top half by Cmax, and in

fact many are ranked in the top 50.

Table 4.3 shows the results using this criterion, including the ranks and

efficiency measures given to each of the top designs when using the variance of

the individual parameter estimates as the optimality criterion. This suggests that

designs that perform well according to both measures, such as 1018, are more

desirable than those which perform better for one and not for the other. The

efficiency measure also highlights how even though the top design, 1003, has

rank 81 in the Cmax measure, it is still close to the best value, with an efficiency

measure of 1.012. This is in fact the same as the efficiency of the 4th best scheme
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Figure 4.3: The relationship between ranks given to all schemes using the vari-
ances of ÂUC and Ĉmax (top). The relationship between ranks given to schemes
using the variances of ÂUC and Ĉmax for the top 50 schemes according to the
AUC ranks. Horizontal dashed line represents the top half of the ranks, dotted
line represents rank 50 (bottom).

according to the AUC criterion alone.

4.3.3 Comparison to Model Based Optimal Designs

The proposed methods described for finding an optimal sparse sampling

scheme made as few assumptions on the underlying model as possible, making
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Table 4.3: The top 10 ranking designs according to the minimization of variance
of Ψ = w1 var

(
ÂUC

)∗
+w2 var

(
Ĉmax

)∗
with w1 = w2 = 0.5. Efficiency Measure

for a given scheme is the ratio between the variance for that scheme and the best
scheme, the larger the value, the less efficient the scheme.

AC Rank Scheme # AUC Rank AUC Eff. Measure Cmax Rank Cmax Eff. Measure Ψ

1 1003 1 1.000 81 1.012 0.914
2 1026 6 1.017 17 1.005 0.918
3 1018 9 1.022 8 1.004 0.919
4 1039 11 1.023 15 1.005 0.920
5 1001 2 1.011 212 1.017 0.920
6 746 4 1.012 186 1.016 0.921
7 1006 15 1.024 19 1.006 0.921
8 1035 21 1.029 7 1.004 0.922
9 1025 14 1.024 54 1.010 0.923
10 1027 19 1.027 30 1.008 0.923

use of non-compartmental methods as optimality criterion. One of the funda-

mental assumptions used, however, is the underlying data generating model and

hence it is natural to compare this to the model based criterion. This method is

proposed as an alternative to model based methods, which use some measure

of the Fisher Information Matrix for a particular model to judge the suitability

of a sampling scheme. One of the most popular model based optimality criteria

is D-optimality, which seeks to minimize the inverse of the determinant of the

Fisher Information Matrix.

In order to compare the proposed non-compartmental method to the model

based method, we use the approximation to the Fisher Information Matrix for

non linear mixed effects models described by Retout et al.63 The model used

to generate data in the previous simulations is assumed as the model, with the

same parameter values. The Fisher Information Matrix under this model is cal-

culated for each of the 1044 sparse sampling schemes.

Figure 4.4 shows the relationship between the ranks given using our pro-

posed non-compartmental methods and those given using D-optimality. We

see that there is no real relationship between the two sets of ranks, unsurprising

since they optimize two very different criteria. However this does highlight the
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Figure 4.4: The relationship between ranks given to schemes using the weighted
sum of scaled variances of ÂUC and Ĉmax, and D-optimality.

importance of using optimality criteria that are relevant to the measured out-

come of the trial the scheme is applied to.

4.3.4 Application of Minimax Criterion

So far we have considered just one scenario, i.e. one underlying PK model

with one set of parameters. However it is most likely that there is substantial un-

certainty over the model. It is desired that the chosen scheme will be robust over

this uncertainty, hence we consider a worst case scenario - our chosen scheme

should perform well over all scenarios considered. We prefer a scheme that has

reasonable results for all scenarios than one that has excellent results for some

and poor results for others. Hence we use the minimax criterion.

Given p = 1, . . . , P different scenarios, each scenario could be different

correlation structure or models etc. Each of these scenarios will give a ranking

of the K sparse schemes. Let Rs be defined as Rs(Sk, p), the rank of Sk for the
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pth scenario. Then our robust choice of optimal design is the solution to:

arg min
Sk

max
p
Rs(Sk, p).

In particular, there is generally uncertainty over the variance associated

with the random effects of the parameters. Hence to apply the minimax pro-

cedure, for each of the three model parameters that we have assigned random

effects to, we consider a high (H) and low (L) variance. All combinations of these

give the 8 scenarios with details given in Appendix F. Of course one may choose

for example to consider different values for the fixed effects across scenarios if it

is believed that there is a potential for this to be apparent in the study of interest.

Figure 4.5: Top 5 overall schemes according to minimax criterion applied to
equally weighted scaled sum. Ranks for each of the eight scenarios are plotted.

Table G.1 in Appendix G and Figure 4.5 show the results of the application

of the minimax procedure. We see that the overall best scheme is chosen to be

scheme 1001, although interestingly it is never chosen to be the best scheme in

any scenario. Scheme 1003 is a close second, ranking 1st in half of the scenar-

ios, but overall performs worse across the board. The variation across scenarios

increases for overall lower ranking designs, thus the higher ranking designs are
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also more consistent in their rankings than lower ranking designs.

It is also worth considering how these choices would change were we to

consider the efficiencies of the schemes, rather than the ranks, in the minimax

procedure. Table G.2 in Appendix G shows these results. The top choices of

scheme are indeed very similar, although with some permutation in the overall

position. This is due to the small differences in the efficiency measure between

scenarios. For example, the 7th ranking design in scenario 2 is less efficient than

the 9th ranking design in scenario 2. Hence by using the efficiency measure we

obtain slightly different results to using the ranks. However, for this particular

example, the difference is not so great and a good overall design would be picked

regardless of the use of the efficiency measure or rank. The ranks are used for

the remainder of the examples, however the extension to using efficiencies is

simple if it is required by the user.

4.4 Choice of Time Points
So far we have assumed a fixed set of time points available for blood sam-

pling: (0.5, 1, 2, 4, 9, 12). We now extend to the case where the choice of these

time points is possible. To include the choice of time points, we suggest two

approaches. Ideally, we extend the set of feasible schemes to include the oppor-

tunity for different sampling time points, but the rest of the approach is identical

to Algorithm 1. The challenge with this approach (formalized as Algorithm 2) is

that the number of feasible schemes becomes so large that it is computationally

intractable to find the optimal design. Therefore the second approach (Algo-

rithm 3) breaks this down into a two stage procedure, which is less computa-

tionally intensive and will approximate the results of Algorithm 2. We provide

a toy example to illustrate the application of Algorithm 2, then further evaluate

Algorithm 3 in a manner it could be used in practice.
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Algorithm 2:

(1) Define the set of all feasible sparse designs applied to feasible time choices

S(τ).

(2) Assume an underlying PK model, correlation and variance structure.

(3) Using the model in step 2, generate M complete datasets and extract

data according to each feasible sparse design evaluated at feasible time

choices.

(4) Compute the optimality criterion for each S(τ).

(5) Select the best sparse design and time choices based on chosen optimal-

ity criterion.

In order to apply this, we consider the same set of sparse schemes as pre-

viously, applied to the following four possible time point choices:

(1) (0.5, 1, 2, 4, 9, 12)

(2) (0.5, 1.5, 2, 4, 9, 12)

(3) (0.5, 1, 2.5, 4, 9, 12)

(4) (0.5, 1.5, 2.5, 4, 9, 12)

The results of this application to the toy example are shown in Table 4.4, us-

ing the variance of the AUC as optimality criterion. The underlying PK model

used is identical to that used in scenario 1. It can be seen that we can indeed

improve upon the previous best design by 2.5% by altering the time points. In-

terestingly, for this particular example, the top ranking scheme is the same, but

the choice of time points is changed in order to reduce the variance. It is also

worth noting the bottom ranking designs are using time point choice 1 (that is

the original time points: 0.5,1,2,4,9,12h); a further indication of how important
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it is to include the choice of time points in our design instead of choosing them

arbitrarily.

Table 4.4: Top 10 rankings of sparse schemes with choice of time points

Rank Time Points # Scheme # AUC Var
1 3 1003 25.67
2 3 809 25.79
3 2 1003 25.86
4 3 775 25.91
5 3 1039 25.94
6 3 746 25.98
7 3 1001 26.04
8 1 1003 26.05
9 3 750 26.05
10 3 1026 26.10

Table 4.5: Top 10 rankings of sparse schemes with choice of time points by Ψ =

w1 var
(
ÂUC

)∗
+ w2 var

(
Ĉmax

)∗
with w1 = w2 = 0.5.

Rank Time Points # Scheme # Ψ
1 3 1003 1.744
2 3 809 1.746
3 3 775 1.751
4 3 1039 1.754
5 3 750 1.754
6 3 796 1.757
7 3 746 1.758
8 3 805 1.759
9 3 1001 1.760
10 3 1026 1.760

We see that when using the same criteria Ψ = w1 var
(
ÂUC

)∗
+w2 var

(
Ĉmax

)∗
as previously discussed withw1 = w2 = 0.5, the results in Table 4.5 are obtained.

From this we see that the choice 3 out of the 4 time points dominates the top 10

schemes chosen.

In order to compute this within any reasonable time, only a small set of

possible time points can be used. Ideally, we would want to consider a larger

range of time point choices and so in order to approximate this, we reduce the
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approach to a two stage procedure. First, choose the optimal set of time points

at which to sample. Then using these time points as fixed, we apply Algorithm 1

to find the optimal sparse sampling scheme. It is crucial to emphasize again the

importance of using non-compartmental methods in these algorithms as they

are specifically designed for trials which use non-compartmental analysis.

We follow the same outline of procedure as previously, using a large num-

ber of simulations. Since we can now consider a larger range of time point

choices, we refer to this set as the set of feasible time point choices.

Algorithm 3:

(1) Define the set of feasible time choices {tj}.

(2) Assume an underlying PK model, correlation and variance structure.

(3) Using the model in step 2, generate M complete datasets and extract

data according to each time point choice.

(4) Compute the optimality criterion for each time choice {tj}.

(5) Select the best choice of time points based on chosen optimality criterion.

(6) Taking these time points as fixed, apply Algorithm 1.

To define the set of feasible time choices {tj} we must first define the set

of feasible sampling time points T. In order to ensure that we have enough

sampling points in the appropriate times to approximate the time versus con-

centration curve well, we partition the sampling grid T into Z ”zones” Tz for

z = 1, 2, . . . , Z such that

|T| =
Z∑
z=1

|Tz|.

Restrictions are placed on the number of time points that can be taken in

each zone, with τz ≤ |Tz| denoting the number of sampling points to be picked

from zone Tz, with
∑Z

z=1 τz = J where J is the total number of time points
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in the trial. We then generate all possible combinations that adhere to these

restrictions, the number of which is Υ =
∏Z

z=1

(|Tz |
τz

)
In order to choose the best time points {tj}υ out of the possible Υ choices,

we must choose an optimality criterion. Since the variance criterion used pre-

viously is not particularly useful for choosing time points independently of the

sparse scheme, we instead use a measure of closeness to the population PK pro-

file as optimality criterion. To measure the closeness to the population PK curve

using non-compartmental methods, we essentially divide the time range into a

very fine grid of G points. At each time point on the grid g, we measure the

distance between the linearly interpolated population PK profile given by simu-

lated data under the given scenario, and the underlying population PK profile.

We call this distance dg,i for simulated dataset i. Figure 4.6 shows an illustration

of measuring such distances for an example dataset and {tj}υ.

Figure 4.6: Measuring the difference between the true population curve and the
simulated data at chosen time points.

For a given choice of time points {tj}υ, we average the absolute values of
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these distances

Ψ({tj}υ) =
1

M

M∑
i=1

G∑
g=1

|dg,i,υ|

The highest ranking of time point choice is therefore the choice that mini-

mizes Ψ. For very largeM , this will give us the choice of {tj}υ that is on average

closest to the population curve.

For example, if we take T to be times at half hourly intervals from 0.5 to

12 hours, then we may take the following zones and restrictions: T1 = {0.5}, T2

={1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}, T3 = {4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0,

9.5, 10.0, 10.5, 11.0, 11.5} and T4 ={12.0} with τ1 = 1, τ2 = 3, τ3 = 1 and τ4 = 1.

This gives a total of 525 feasible choices of time points.

Figure 4.7: Optimal Sampling Time Points

Table G.3 in Appendix G gives the results for the application of this pro-

cedure in the same scenarios as previously considered. Given that there are

roughly half as many choices as in the previous procedure, it is surprising that

the ranks we see in the results are larger here. This suggests that the choice of

time points is much less consistent over different scenarios than the choices of
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sparse scheme. In terms of the {tj}υ themselves, the top five time point choices

are all very similar:

(1) 225: (0.5, 1.0, 3.5, 4.0, 7.5, 12.0)

(2) 260: (0.5, 1.0, 3.5, 4.0, 8.0, 12.0)

(3) 235: (0.5, 1.5, 3.5, 4.0, 7.5, 12.0)

(4) 224: (0.5, 1.0, 6.0, 4.0, 7.5, 12.0)

(5) 234: (0.5, 1.5, 3.0, 4.0, 7.5, 12.0)

Figure 4.7 shows the graphical representation of these optimally chosen

time points with respect to the underlying population profile.

Table G.4 in Appendix G and Figure 4.8 show the results for the full proce-

dure, applying our method for choosing the sparse sampling scheme with our

chosen optimal time points. Table 4.6 shows the final resulting optimal sparse

sampling scheme which shows improvement, for example from the initial time

points and optimal design of 6% for the variance of the AUC and 10% from the

initial time points and scheme from Chapman et al.16
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Figure 4.8: Top 5 overall schemes according to minimax criterion applied to
equally weighted scaled sum for optimal time points. Ranks for each of the eight
scenarios are plotted.

Table 4.6: Optimal Sparse Sampling Scheme with sampling time points (0.5, 1.0,
3.5, 4.0, 7.5, 12.0). 7 indicates that the individual subject scheme is shared by
the scheme from Chapman et al16 and ◦ indicates that it is not.

Animal number Sampling timepoint

#1 #2 #3 #4 #5 #6

1 ◦ ◦ ◦

2 ◦ ◦ ◦

3 ◦ ◦ ◦

4 7 7 7

5 ◦ ◦ ◦

6 7 7 7

7 7 7 7

8 7 7 7

9 7 7 7

10 7 7 7

n=5 n=5 n=5 n=5 n=5 n=5
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4.5 Discussion
The proposed method of producing optimal designs for non-compartmental

analysis of pharmacokinetic studies provides a solution to the problem of de-

sign for studies using microsampling. It offers a robust approach using non-

compartmental methods to consider a worst case scenario situation covering

multiple different settings. The obvious advantages to this are that it limits the

assumptions made on the underlying model, error and variance structure as it

takes into account the possibility of different scenarios for each. The minimax

procedure also provides the robustness required, and the non-compartmental

methods of analysis fall in line with the analysis methods used in such studies

currently. It is critical to use the corresponding method of analysis for the opti-

mality criterion to ensure that the chosen design is indeed optimal for purpose.

The importance of this is highlighted in the difference in results for the

comparison of NCA optimality and model based optimality clear to see from

Figure 4.4. The use of D-optimality may indeed be useful for trials that use PK

modelling, but for those using non-compartmental analysis, it is clear to see that

these choices would be sub-optimal. This importance continues to the choice

of sampling time points using non-compartmental methods. The optimal time

points chosen may seem counter intuitive from a modelling perspective, but are

actually desirable for non-compartmental analysis. Without the assumptions

that accompany model based methods, our interpretations are solely from the

profile extracted from interpolating between measurements. This means that

we miss any relevant information between the scheduled sampling times, in-

formation that can be filled using modelling assumptions if we were using that

approach. For example in the scenarios explored previously, one might expect

that in the optimal choice of time points, a sampling time at 2 hours may be

more appropriate than at 3.5 hours for the second choice in zone 2. However
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if we consider the linear interpolation between the measurements, we must be

able to estimate the Cmax as well as the elimination phase with some accuracy

as we cannot rely on modelling assumptions such as that of exponential decay.

Although we implement the procedure based on the example sparse sam-

pling scheme by Chapman et al,16 it is straightforward to apply to a number of

other circumstances. For example, relaxing constraints on the number of sub-

jects required to be sampled at each time point to be an interval rather than a

fixed value is simple. In fact any alteration of these constraints is only limited

by the computational power to generate and store the schemes and of course the

physical feasibility of carrying out the designs. This may also be extended for

instance to trials that implement multiple dosing schedules simply by altering

the underlying model assumptions in the simulation stage. An advantage of this

procedure is that it is able to incorporate multiple PK parameters in its optimal-

ity criterion, so even in the case of multiple dosing where there may be more

PK parameters that must be estimated, the procedure can still be implemented

successfully.



CHAPTER 5

Paper C: Methods for Non-Compartmental Pharmacokinetic Analysis with
Observations below the Limit of Quantification
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5.1 Introduction
In pharmacokinetic (PK) studies, the objective is to learn about the absorp-

tion, distribution, metabolism and excretion (ADME) processes of an externally

administered compound by measuring the concentration in bodily tissue such

as blood or plasma at a number of time points after administration. However,

some of these concentrations are reported as below the limit of quantification

of the assay. The limit of quantification (LOQ) is defined as ”The lowest con-

centration at which the analyte can not only be reliably detected, but at which

some predefined goals for bias and imprecision are met”.4 These observations

are often referred to as ”BLOQ” or ”BQL” and require special attention in the

data analysis.

Dealing with BLOQ observations when modelling is used has been vastly

explored in the literature. The most notable of which is the contribution from

Beal,10 describing seven key methods for fitting PK models when BLOQ obser-

vations are present. However, due to regulatory requirements,29,61 many PK

studies use non-compartmental analysis (NCA) yet statistical methods for deal-

ing with BLOQ observations in NCA are very much lacking.

The two strategies of PK analysis, modelling11,20 and NCA15,32, 43 differ in

their approach on a number of levels. Whilst the modelling approach offers

the advantage of unstructured sampling schemes (i.e. fewer restrictions on the

sparsity and structure of the sampling schedule), this comes at the cost of un-

certainty over the model choice and potential technical difficulties in fitting the

PK model. Many of the methods discussed by Beal10 involve either discarding

BLOQ observations, replacing them with LOQ/2 or replacing them with 0 be-

fore proceeding to fit a PK model using such methods as maximum likelihood

or least squares regression. Assumptions must be made about the underlying

ADME process in order to use these approaches, and each of the approaches
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is appropriate for different settings and require different assumptions. In NCA

however, no such assumptions must be made, although some kind of approxi-

mation, usually linear, of the concentrations between observed time points must

be made. The purpose of both approaches is to estimate PK parameters such as

the area under the concentration versus time curve (AUC), a measure of total

exposure of the compound, or the maximum concentration of the compound

(Cmax).

Figure 5.1: A motivating example, the red numbers indicate the number of ob-
servations that are BLOQ for that time point.

Figure 5.1 shows an illustration of a motivating example, with black points

indicating observed responses, dashed red lines the levels in between which

concentrations cannot be reliably detected and red number the number of re-

sponses in that region at a given time point. This data is generated from a one-

compartmental IV bolus dose model with mixed effects, such as that described

by Beal.10 With a large number of responses below the limit of quantification,

and those responses that are above have low concentration values, the contri-

bution of the BLOQ responses will vastly affect any estimate of the AUC and

its variance; this is the PK parameter that is most affected by how BLOQ re-

sponses are dealt with. In the following, we introduce seven methods for in-

cluding BLOQ observations in NCA for PK studies, and hence make as few as-
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sumptions on the data as possible.

5.2 Methods
We introduce seven methods for comparison, focusing on how each of the

methods impacts the ÂUC and its variance. We also focus on full sampling de-

signs in our evaluations, although the methods may be extended to sparse sam-

pling schemes without further complication. The first two methods are simple

imputations, replacing the BLOQ observations with 0 and LOQ/2 and proceed-

ing with the NCA approach. These are the current approaches applied in prac-

tice35 and hence the benchmark upon which we wish to improve on. The remain-

ing five methods use varying techniques to either impute values onto BLOQ

responses or to approximate the summary statistics of the non-compartmental

approximation of the concentration versus time curve.

For all methods, two different error structures, additive and multiplicative

are considered. We assume concentrations from n subjects, labelled i = 1, . . . , n,

are observed at J timepoints tj for j = 1, . . . , J .

Additive Error Model:

The additive error model is defined as:

yij = µj + εij

where yij is the observed response for subject i at the jth timepoint. The µj

represents the population mean response at the jth timepoint. The εij are the

differences between the yij and µj and are assumed to be normally distributed.

In this case we use the arithmetic mean ȳj = 1
n

∑n
i=1 yij as the basis for estimating

the AUC. Assuming all observations were above the LOQ, the estimate of the

population AUC is written as:

ÂUC
(A)

=
J∑
j=1

ωj ȳj, (5.1)



109

where ȳj is defined as above and ωj are weights defined as:

ωj =
tj+1 − tj−1

2
for j = 1, 2, . . . , (J − 1),

=
tJ − tj−1

2
for j = J.

The variance approximation of the ÂUC for batch designs can be used:

var

(
ÂUC

(A)
)

=
B∑
b=1

s2
b

nb
, (5.2)

where

s2
b =

1

nb − 1

nb∑
i=1

(∑
j∈Jb

ωjyij −
1

nb

nb∑
k=1

∑
j∈Jb

ωjykj

)2

.

with Jb ⊆ {1, . . . , J} the indices of time points investigated in batch b = 1, . . . , B

and nb the number of subjects in batch b. This generalized form of the variance

approximation can then be used in the case of complete and serial sampling,

which are special cases of batch sampling.

Multiplicative Error Model:

It is often more typical for the assumption on the errors to be multiplicative. In

this scenario the arithmetic mean for the data is no longer a satisfactory measure

of central tendency of the concentration at each time point, since it does not con-

form with the error model. Instead, we will use the geometric mean31 defined

for time tj with n observations as (
∏n

i=1 xij)
1
n or equivalently e 1

n

∑n
i=1 log xij . The

model is then:

yij = µje
εij

which we can rewrite as:

log yij = log µj + εij

where yij is the observed response for subject i at the jth timepoint. The µj

represent the population mean response at the jth timepoint. The εij are the

differences between the log yij and log µj and the εij are assumed to be normally

distributed. Letting cij = log yij , we have the geometric mean of the observations
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per time point ec̄j where c̄j = 1
n

∑n
i=1 cij and use this as our mean estimate of the

response per timepoint when estimating AUC. Assuming all observations are

above the LOQ, the estimate of the population AUC is:

ÂUC
(G)

=
J∑
j=1

ωje
c̄j , (5.3)

with ωj and c̄j defined as previously. Using the variance approximation of the

ÂUC for batch designs and a first order Taylor approximation results in:

var

(
ÂUC

(G)
)

=
B∑
b=1

s2
b

(G)
, (5.4)

where

s2
b

(G)
= (ωbe

c̄b)T V̂b(ωbe
c̄b), (5.5)

where ωbec̄b is a vector of length |Jb|with the jth element equaling ωjec̄j and V̂b

is the variance-covariance matrix of observed log transformed data cij for j ∈ Jb.

The denominator of nb is not included in this form of (5.4) compared to (5.2) as

the population estimate s2
b

(G) (as opposed to the individual estimate s2
b previ-

ously) includes this multiplicative factor.

5.2.1 Method 1: Replace BLOQ values with 0

An easy strategy that is currently used is to replace any value below the

limit of quantification by 035 and proceed with traditional NCA methods on the

augmented data. When considering geometric means this method is infeasible

for calculating any estimate of variance, as this involves estimating the variance

of log-transformed data, therefore any log-transformed BLOQ values are unde-

fined.

5.2.2 Method 2: Replace BLOQ values with LOQ
2

Similar to Method 1; any value below the limit of quantification is replaced

by LOQ/2 and traditional analysis methods are used.
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5.2.3 Method 3: Regression on Order Statistics (ROS) Imputa-

tion

Regression on Order Statistics34 is a semi-parametric method of dealing

with censored data and has its origins in environmental statistics. It involves

replacing the censored values with different values, i.e. for a dataset with more

than one BLOQ response, different values are imputed onto these multiple re-

sponses, as opposed to methods 1 and 2 which replace all BLOQ values with the

same value. In order to apply this method, we consider each time point in turn,

starting with the earliest time point where a BLOQ value is observed. If the error

model is multiplicative, transform the data by cij = log yij . The premise of this

method is to calculate plotting positions for both observed and censored obser-

vations, similar to a QQ plot, then using a linear regression to impute values on

the BLOQ observations. The method proceeds in detail as follows:

(1) Identify BLOQ values

(2) Start at the earliest time point for which a BLOQ value is observed, la-

belled the jth timepoint. Define n − m as the number of detected re-

sponses above or equal to the previously defined LOQ, and m the num-

ber of BLOQ values at this time point. From this, we estimate the em-

pirical exceedance probability by the proportion of the sample greater

than or equal to the LOQ:

pe =
m

n
.

(3) We then calculate the plotting positions for each of the n −m (ordered

from lowest to highest) detected values:

pdj = (1− pe) +

(
kd

n−m+ 1

)
pe for kd = 1, . . . , n−m.
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(4) We also calculate the plotting positions for each of them censoredBLOQ

values:

pcj =

(
kc

m+ 1

)
(1− pe) for kc = 1, . . . ,m.

(5) Compute a normal quantile for each value of pdkd and pckc as:

zdkd = Φ−1(pdkd), zckc = Φ−1(pckc)

(6) Construct a simple linear regression on the zdkd and the (ordered from

lowest to highest) ykd .

E(ykd) = α̂ + β̂zdkd .

(7) Then we calculate imputed values for the BLOQ values:

yckc = α̂ + β̂zckc .

These are ordered by the ordering at the previous timepoint, i.e. the

highest imputed value is assigned to the subject that has the highest re-

sponse value on the previous time point.

(8) This continues to the next time point until all BLOQ values are imputed.

(9) We transform back onto the observation scale if necessary and compute

the PK parameter on the augmented data.

Figure 5.2.3 shows an example of the application of this method for a single

time point. Proceed with NCA methods using equations 5.1 - 5.4.

5.2.4 Method 4: Maximum Likelihood per timepoint (Summary)

This method does not impute values for the BLOQ observations, but in-

stead provides summary statistics for the concentration at each timepoint under

the assumption that each time point is independent. For the jth timepoint, we



113

Figure 5.2: Regression on Order Statistics example illustrates how imputed val-
ues are calculated.

consider a censored likelihood of:

L(µj
(A), σ

(A)
j

2
) =

(
Φ

(
LOQ− µj(A)

σ
(A)
j

))m n−m∏
i=1

1

σ
(A)
j

√
2π

exp

−(yij − µj(A))2

2σ
(A)
j

2

 ,

for the assumption of additive errors, and

L(µj
(G), σ

(G)
j

2
) =

(
Φ

(
logLOQ− µj(G)

σ
(G)
j

))m n−m∏
i=1

1

ecijσ
(G)
j

√
2π

exp

−(cij − µj(G))2

2σ
(G)
j

2

 ,

for the assumption of multiplicative error. We maximize over µj and σ2
j to obtain

estimates µ̂j and σ̂j
2 for each timepoint tj . These estimates are then used in the

calculation of the point estimate of the AUC and its variance.

5.2.5 Method 5: Maximum Likelihood per timepoint (Imputa-

tion)

This method is, in essence, a hybrid of methods 3 and 4. It combines the

superior estimation of the mean and variance per time point that censored max-

imum likelihood brings,14 and retains the structure of the between time point

relationship that the imputation methods uses. It begins with using maximum

likelihood to obtain values of µ̂j and σ̂2
j for each timepoint in the same manner
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as Method 4 and subsequently uses these estimates to impute values onto the

BLOQ responses.

Additive Error:

Estimate the probability of a response being BLOQ :

pBLOQ = P (Yj < LOQ) = Φ

(
LOQ− µ̂(A)

j

σ̂j
(A)

)
,

where Φ is the cumulative distribution function of the standard Normal distri-

bution.

pkc =
kc

m+ 1
pBLOQ for kc = 1, . . . ,m.

Transform to response scale using the inverse Normal cumulative distribution

function (Φ−1).

yckc = µ̂
(A)
j + σ̂j

(A)Φ−1(pkc).

These imputed values are ordered in the same way as in M3.

Multiplicative Error:

Estimate the probability of a response being BLOQ:

pBLOQ = P (Yj < logLOQ) = Φ

(
logLOQ− µ̂(G)

j

σ̂j
(G)

)
,

where Fj is the cumulative distribution function of the Normal distribution with

parameters µ̂(G)
j and σ̂

(G)
j

2
. We then equally space the probabilities for the cen-

sored observations

pkc =
kc

m+ 1
pBLOQ for kc = 1, . . . ,m.

Transform to response scale using the inverse Normal cumulative distribution

function (Φ−1) and exponentiate.

yckc = eµ̂
(G)
j +σ̂j

(G)Φ−1(pkc ).

These imputed values are ordered in the same way as in M3. Proceed with NCA

methods using equations 5.1 - 5.4.
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5.2.6 Method 6: Full Likelihood

This method takes into account correlation between responses at different

timepoints by considering all timepoints together. In this approach we estimate

the covariance matrix of observations assuming a multivariate Normal or Log-

normal distribution.

We consider that the data are n independent and identically distributed

observations from a MVNJ(µ,Σ) distribution. Our objective is to estimate µ̂ &

Σ̂, the maximum likelihood estimates for the mean and variance of the obser-

vations assuming a multivariate normal distribution. From these we can then

calculate the ÂUC and its variance. For each subject i = 1, . . . , n, we partition

into censored and non-censored observations:

y
(c)
i = yi,{j:γij=1}

y
(−c)
i = yi,{j:γij=0}

where γij is an indicator, taking the value 1 if the observation is censored

and 0 otherwise.

We then partition our parameters µ and Σ, with superscripts (c) for cen-

sored parameters and (−c) for uncensored, with Σ(c)(−c) the censored/uncensored

covariance matrix.

Then the conditional (on the uncensored values) distribution of the cen-

sored observations following Eaton22 is:

MVN(µ(c)+Σ(c)(c)(Σ(−c)(−c))
−1

(y(−c)−µ(−c)),Σ(c)(c)−Σ(c)(−c)Σ(−c)(−c)−1
Σ(c)(−c)T )

and the log likelihood can be found as:

n∑
i=1

(
log
(
F (µ(c),Σ(c), LOQ)

)
+ log

(
f(µ(−c),Σ(−c),y

(−c)
i )

))
,
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where F and f are the cdf and pdf of the multivariate normal distribution

respectively. This is maximized over µ and Σ to give MLE µ̂ and Σ̂. The point

estimate and variance of the AUC can be estimated from this as follows:

ÂUC
(A)

= ωT µ̂

var

(
ÂUC

(A)
)

= ωT Σ̂ω

Similarly, one may construct exactly the same log likelihood but with the

log-normal distribution. Here the parameter estimates µ̂ and Σ̂ represent the

mean vector and covariance matrix of the log-transformed data. The point esti-

mate and variance of the AUC can be estimated from this as follows:

ÂUC
(G)

= ωT eµ̂

var

(
ÂUC

(G)
)

= (ωeµ̂)T Σ̂(ωeµ̂)

5.2.7 Method 7: Kernel Density Imputation

This methods differs from the previous ones in that it does not assume a

specific error distribution, but estimates it from the data. We do still however

consider the two cases, using arithmetic (comparable to additive error assump-

tions) and geometric (comparable to multiplicative error assumptions) means of

the responses to estimate the AUC and its variance. The basis of this method

uses kernel density estimation,67 which, given Yi and a kernel function K, esti-

mates the density of the Yi as follows:

f̂(y) =
1

nh

n∑
i=1

K

(
y − Yi
h

)
,

where h is a parameter known as the bandwidth, which can be prespecified or

optimized over. In the following, we use a Gaussian Kernel, K(t) = 1√
2π
e−(1/2)t2 ,
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and use Silverman’s ’Rule of Thumb’67 to calculate the bandwidth parameter,

h = 1.06σ̂n
1
5 . This h is calculated each time the density f̂ is re-estimated, so that

each f̂ has a recalculated bandwidth h.

Figure 5.3: A graphical illustration of the KD algorithm. Blue crosses indicate
a new ki calculated based on the current f̂i. Green crosses indicate previous ki
values. The red line indicates the LOQ.
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For each timepoint with BLOQ observations:

(1) Calculate f̂0 based on uncensored data y(−c).

(2) Compute k0 = Ef̂0(Y |Y < LOQ).

(3) Initialize i = 1.

(4) Append ki−1 to the uncensored data y(−c) and recalculate f̂i.

(5) Compute ki = Ef̂i(Y |Y < LOQ)

(6) Let i = i+ 1

(7) Repeat steps 4-6 until |ki − ki−1| < ε for some very small prespecified

value ε. This ki is the value to be imputed.

This process is repeated as many times as needed to get m imputed val-

ues for this timepoint. Figure 5.3 shows an example of the application of this

method. Proceed with NCA methods using equations 5.1 - 5.4.

5.2.8 Example Application

Table 5.1 shows how the ÂUC and its variance are affected by the choice

of method of dealing with BLOQ values for the motivating example introduced

in Figure 5.1.

There is a wide range of values for ÂUC and its variance, all for the same

dataset. In both the cases of assumptions of arithmetic and geometric mean,

Method 1 unsurprisingly has the lowest ÂUC. In the case of using geometric

means, this is severely lower than all other methods. Method 4 has the lowest

variance in each case, as expected. When assuming an additive error model,

Method 6 failed to produce any results as the assumptions deviated too far from

the characteristics of the dataset.
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Table 5.1: The application of the seven methods to the motivating example illus-
trated in Figure 5.1.

Additive Error Model / Arithmetic Means Multiplicative Error Model / Geometric Means
ÂUC var

(
ÂUC

)
ÂUC var

(
ÂUC

)
Truth 0.6008 0.0275 0.5704 0.0321

Method 1 0.5623 0.0453 0.2778 NA
Method 2 0.5889 0.0322 0.5481 0.0399
Method 3 0.6012 0.0276 0.5861 0.0267
Method 4 0.6008 0.0062 0.5800 0.0067
Method 5 0.6027 0.0272 0.5817 0.0286
Method 6 NA NA 0.6011 0.0090
Method 7 0.5963 0.0288 0.5636 0.0337

5.3 Results
In order to evaluate the performance of the seven methods previously dis-

cussed, they are all applied to simulated data. Following an example from Beal,10

the following model is used to generate data at time t:

y(t) = C(t) exp(e(t)),

where C(t) is the PK model and e(t) is the error model. The PK model is a one

compartmental IV dose model:

C(t) =
dose

Vd
exp(CL · t).

The error model is Normally distributed e(t) ∼ N(0, h(t)) with

h(t) = 0.03 + 0.165
C(t)−1

C(1.5)−1 + C(t)−1
.

Data are generated at times 0.5, 1, 1.5, 2, 2.5, 3 hours. Two scenarios are consid-

ered, using fixed effects and using mixed effects. For fixed effects, the param-

eters take values CL = 0.693, Vd = 1 and dose = 1 while for mixed effects,

CL = C̃L exp(η1) and Vd = Ṽd exp(η2), with C̃L = 0.693, Ṽd = 1, η1 ∼ N(0, ω2
1)

and η2 ∼ N(0, ω2
2), corr(η1, η2) = 0 and ω1 = ω2 = 0.2. An example of such

a dataset is illustrated in Figure 5.4 A case with a smaller clearance and dose
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(CL = 0.231, dose = 0.25) is also considered, where the contributions to the

AUC will be more affected by how the BLOQ observations are dealt with, an

example of this is illustrated in Figure 5.5. Many more responses are BLOQ for

this second example, with one subject having all observed responses BLOQ.

Figure 5.4: Illustration of Example from Beal,10 the red numbers indicate the
number of observations that are BLOQ for that time point.

When applying Method 6, we must constrict the dimensionality of the pa-

rameter space in order for it to be feasible to realistically used. For example,

for this particular set up with six time points considered, there are 27 free pa-

rameters to optimize over. This means that optimizing over the multivariate

normal log likelihood takes a very long time and is often unsuccessful or unsta-

ble. When performing the maximum likelihood procedure, we therefore now

restrict the elements of the variance matrix Σ to be 0 for all of the covariances
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Figure 5.5: Illustration of Example extended from Beal,10 with smaller clearance
and dose. The red numbers indicate the number of observations that are BLOQ
for that time point.

that are not for consecutive time points.

Σ =



var1 cov12 0 0 0 0

cov12 var2 cov23 0 0 0

0 cov23 var3 cov34 0 0

0 0 cov34 var4 cov45 0

0 0 0 cov45 var5 cov56

0 0 0 0 cov56 var6


In terms of suitability, Methods 1, 3 and 6 are not applicable to all datasets and

hence are less useful. Method 1 cannot compute any estimates when using geo-

metric means as summaries due to non-finite values resulting from taking logs.

Method 3 requires fitting a linear regression on responses per timepoint and

hence is infeasible in scenarios with high levels of censoring that can result in

only only response above the LOQ for a given time point. In the simulations,

around 1% of the simulated datasets did not result in an estimate. Method 6

is even more unstable, not giving results at all when assumptions on the distri-
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bution of the responses is incorrectly specified, and even when the distribution

is correctly assumed, up to 3% of simulated datasets do not give results for the

fixed effects model and as much as 24% when using mixed effects.

It is desirable for a method to approximate the non-compartmental point

estimate and variance of the ÂUC as closely as possible to that which we would

estimate were we to know the true concentration for every response, regardless

of a limit of quantification. Therefore as a measure of performance of the meth-

ods, we use closeness to the full non-compartmental estimates of these values,

ÂUCBLOQ−ÂUCT and var
(
ÂUCBLOQ

)
− var

(
ÂUCT

)
, where subscriptBLOQ

indicates one of the methods of dealing with BLOQ values has been used, and

subscript T indicates the estimate has been calculated as if we knew all observed

values, regardless of LOQ.

The results for comparison of the seven methods are presented graphically

in two ways: box plots and colour plots. Summary tables of more detailed re-

sults can be seen in Appendix H. The performance measures are plotted over

1000 simulations, with standard deviations plotted as opposed to variance for

consistency in units. The box plots (Figures 5.6 and 5.7 ) show the spread of

these measures over the simulations. For the most appropriate methods, the

colour plots (Figure 5.8) then show the relationship between the deviation from

the point estimate and the deviation from the standard deviation over all simu-

lations.

For many methods, Figures 5.6 and 5.7 show the estimate of the ÂUC un-

derestimates the true non-compartmental estimate. Although Method 5 shows

promising performance averaging over the simulations, there is a wider spread

over the simulations reaching above and below the truth. Methods 2, 3, 5 and 7

show the most promising results, and are therefore compared using the colour

plots. The colour plots in Figure 5.8 are a clear and direct comparison between

the four best performing of seven methods, with Method 7 a clear front runner.
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Figure 5.6: Results showing deviation from the non-compartmental ÂUC and
its variance with data generated from models with higher dose and clearance.
Results over 1000 simulations. (10 subjects, 6 timepoints) (F)=Data generated
using fixed effects model. (M)=Data generated using mixed effects model.
(A)=Analysed using arithmetic means. (G)=Analysed using geometric means.
M1: Replace BLOQ values with 0, M2: Replace BLOQ values with LOQ/2, M3:
ROS Imputation, M4: ML per timepoint Means, M5: ML per timepoint Imputa-
tion, M7: Kernel Density Imputation.

It gives the most consistent results across all simulations and these differences

are closest to zero.

As expected, Method 1 underestimates the non-compartmental ÂUC. One
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Figure 5.7: Results showing deviation from the non-compartmental ÂUC and
its variance with data generated from models with lower dose and clearance.
Results over 1000 simulations. (10 subjects, 6 timepoints) (F)=Data generated
using fixed effects model. (M)=Data generated using mixed effects model.
(A)=Analysed using arithmetic means. (G)=Analysed using geometric means.
M1: Replace BLOQ values with 0, M2: Replace BLOQ values with LOQ/2, M3:
ROS Imputation, M4: ML per timepoint Means, M5: ML per timepoint Imputa-
tion, M7: Kernel Density Imputation.

may expect that by imputing the same value onto all BLOQ responses, the es-

timate of the variance would be underestimated. However, when applied to

datasets generated using the mixed effects models, this method overestimates
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Figure 5.8: Results showing deviation from the non-compartmental ÂUC and
its variance with data generated from both models. Results over 1000 simula-
tions. (10 subjects, 6 timepoints) (F)=Data generated using fixed effects model.
(M)=Data generated using mixed effects model. (A)=Analysed using arithmetic
means. (G)=Analysed using geometric means. M2: Replace BLOQ values with
LOQ/2, M3: ROS Imputation, M5: ML per timepoint Imputation, M7: Kernel
Density Imputation.

the variance of the ÂUC. The more the point estimate is underestimated, the

more the variance is overestimated. This is because as the imputed values draw
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the point estimate of the ÂUC towards 0, they also increase the deviations of

the individual observations from the mean value. This method, as pointed out

earlier, is unsuitable when considering the geometric means as methods of sum-

mary.

Method 2 shows reasonable results, however still underestimating the ÂUC

and overestimating the variance, especially when the data is analysed using ge-

ometric means. This is to be expected as the imputation of LOQ/2 is based on

assumptions consistent with analysis using arithmetic means.

We see a similar trend as with Method 1 with Method 3 in the case of using

arithmetic means, but in an even more extreme way. This method underesti-

mates the ÂUC and overestimates the variance even more, especially when the

data is generated using the mixed effects model. This method assumes a normal

distribution of concentrations per timepoint when analysing using arithmetic

means. This is a significant deviation from the assumptions from the model

used in data generation. Although this method performs well for data generated

using a fixed effects model and analysed using geometric means - that is when

the assumptions of the method are valid. However, when we deviate from these

assumptions, the method performs poorly.

When applied to datasets generated using fixed effects models, Method 4

generally performs well. However, when applied to datasets generated using

mixed effects, this method severely underestimates the variance of the ÂUC.

This is because this method assumes independence between timepoints, hence

the covariance of responses across timepoints is assumed to be zero. Since these

are in fact positively correlated, treating the responses at timepoints as indepen-

dent will underestimate the variance of the ÂUC. This gives this method very

poor coverage.

Method 5 performs reasonably well when data is generated using the fixed

effects model, and using the original parameter values from Beal,10 even when



127

deviating from assumptions on the distribution of concentrations per timepoint.

However, for datasets generated using mixed effects models, this method does

not perform as well, underestimating the ÂUC and overestimating the variance

- with a similar performance for the adjusted model dose and clearance.

Although on a theoretical level Method 6 should perform well, it shows

sporadic results. As well as being significantly more computationally intensive

than all of the other methods, it does not always give an output and when it does

the values are often questionable. Even with the restrictions imposed on the

covariance matrix, the high number of free parameters makes the optimization

unstable, and when there are deviations from assumptions, the optimization

often fails. This method is therefore unsuitable for any realistic use.

Method 7 consistently performs well across all scenarios. The estimates

of ÂUC and its variance are very close to those which they would be without

censoring on BLOQ values. This is because this method does not make assump-

tions on the distributions, however does use information from the uncensored

observations to impute different values onto the BLOQ responses. It is com-

putationally efficient and can be applied to datasets even with high levels of

censoring. We therefore recommend this method as the most appropriate non-

compartmental analysis method of dealing with BLOQ responses.

5.4 Discussion
In this paper we have evaluated the performance of seven different non-

compartmental approaches to dealing with some data below the limit of quan-

tification. The simple imputations of Methods 1 and 2, those currently used in

practice, are compared to five alternative methods in a number of different sce-

narios. Using the models used by Beal10 and that with lower dose and clearance.

The results have shown that the simple imputation methods perform poorly,

especially in scenarios with a large proportion of BLOQ responses. Methods that



128

use maximum likelihood also fail to estimate the ÂUC and its variance well. It

is clear that the method of kernel density imputation is the best performing out

of all the methods considered and is hence is the preferred method for dealing

with BLOQ responses in NCA.

The limitations of the method include the issue from which all methods

apart from simple imputation of a single value suffer - the scenario where all

responses at a given time point are reported as BLOQ. In this case, since the

only information on responses at that time point is that they all lie between 0

and LOQ, nothing is known about the distribution of the responses and hence

no kernel density estimation can be calculated.

Although in this paper we have only looked at studies that have full sam-

pling schemes, the kernel density imputation method can easily be applied to

sparse sampling schemes. The imputation values are calculated in exactly the

same way, it is only the process of ordering of these values that will differ.

For serial sampling, where one blood sample is taken per subject, the order-

ing at any given time point is of no concern and hence can be assigned randomly.

In batch designs, the subjects are divided into batches with each batch of sub-

jects all sampled at the same time points with no other subjects sampled at any

of these time points (hence the time points for each batch form a partition of the

set of all time points). Here the ordering can be based on the previous time point

that the specific batch was sampled at, instead of the previous time point. For

more flexible designs, the subjects are not separated into disjoint batches by their

time points, but for each individual set of sampling times, there must be at least

two subjects following this in order for the variance of the non-compartmental

estimate of the ÂUC to be calculated. If all subjects with BLOQ responses are

on the same set of sampling times, the ordering will be based on the responses

at previous time point from those sampling times. If all subjects are not on the

same set of sampling times then one may choose the allocation will be random or
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by some other rule, for example one based on gradients of linear interpolations

between responses at different time points.

This method is by no means limited to PK studies. It can also be further

extended to other scenarios where left-censored values are present but no model

fitting takes place. The scope of the application of kernel density imputation is

wide, and the potential to extend to further more complicated settings is promis-

ing.



CHAPTER 6

Thesis Conclusions, Limitations and Further Work

130



6.1 Overview
This thesis has covered three separate albeit related research topics in the

area of pharmacokinetics. Although mostly motivated by the blood sampling

method of microsampling, these topics also stand alone in their methodologies

to be applied to numerous different settings. This chapter provides an overview

of the conclusions obtained from each of the topics for research, the limitations

in the approaches and further work that can stem from these.

6.2 Conclusions
Firstly, the multiple comparison procedure discussed in Chapter 3 is a real

step forward in the process of providing evidence for the use of microsampling

in GLP studies. The modelling approach is used in this instance and hence the

correlation between the PK parameters can be estimated using the Fisher Infor-

mation Matrix as a result from the model fitting process. Using model aver-

aging over a set of candidate models ensures that the uncertainty in the model

selection process is included in the estimate of the PK parameters and their vari-

ance, hence eliminating some of the disadvantages of PK modelling compared

to NCA. The extension to equivalence testing for longitudinal data makes this

procedure an excellent choice for the application of comparing microsampling

to traditional sampling in PK studies. The type I error rate and power of the

procedure indicate a promising opportunity for opening up the application of

microsampling.

Secondly, the algorithm for selecting an optimal sparse sampling scheme

for PK studies using NCA introduced in Chapter 4 is not only extremely use-

ful in the context of PK studies using microsampling, but can also be extended

to other scenarios where sparse sampling is required, e.g. in studies in infants.

This method allows for a very high level of flexibility in the design of the sparse
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sampling scheme as there is no specification on the individual schemes that re-

quires an analytic form of the variance of PK parameter estimates. This is as

well as the flexibility from allowing for deviations from any assumed model via

use of the minimax procedure. The scope for inclusion of multiple PK param-

eters with user defined importance weights is a necessary aspect to ensure that

the chosen designs are suitable for purpose. The two stages of the procedure

give the opportunity for minimizing both the bias and the variance of the PK

parameter estimates over the conditions that are most appropriate to the crite-

ria. Simulation results have shown that use of this algorithm can considerably

reduce the variance of PK parameter estimates, a very promising outcome. This

methodology is soon to be available in the R package ’PKdesign’, also with an R

shiny app so that scientists may use this in practice.

Finally, the kernel density imputation approach to dealing with BLOQ ob-

servations proposed in Chapter 5 is a novel method for non-parametric censor-

ing that has possibility for application extending above and beyond PK studies.

The obvious advantage of not needing to specify not only a PK model but also

an error model places this method on an assumptional par with the simple im-

putation methods currently used. It does however rise above these methods in

the use of uncensored data to calculate the imputed values and of course the

superiority of imputing different values onto censored responses for different

subjects. The results from simulations reflect these notable improvements over

other methods, even when the stricter assumptions of other methods are indeed

valid. The kernel density imputation method gives point estimates and variance

of the ÂUC close to that which we would see were there to be no censoring, the

main objective of any imputation method. There is no doubt that this method

would be extremely useful in situations where both high and low levels of cen-

soring occur and distributional assumptions are to be kept to a minimum.
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6.3 Limitations
As with any methodology, the approaches introduced in this thesis have

limitations in their application, both in a practical sense and in the assumptions

that they require.

Considering the method introduced in Chapter 3 for testing the equiva-

lence of blood sampling methods in PK studies using model averaged derived

PK parameters, as with any approach that requires model fitting, there may be

setbacks and complexities when fitting the model. This is especially relevant

in the case of using the more complex PK models with mixed effects. It is also

worth noting that the assumptions that are required for this method e.g. asymp-

totic normality of the derived PK parameter estimates place limitations on the

appropriateness of the approach, potentially restricting the validity of results if

applied to settings where these assumptions are violated.

Although the two stage algorithm proposed in Chapter 4 to find optimal

sparse sampling schemes for PK studies offers the advantages of using non-

compartmental methods, it still requires some prior knowledge of the assumed

underlying PK model. This limitation is partly managed by the use of the mini-

max criteria to include uncertainty over these assumptions. However, the use of

NCA then requires simulations to be used, and hence the computational cost of

the algorithm is more than that of a model based approach to optimal designs

for PK studies. The use of simulations also comes at the expense that due to

simulation error, the optimization is only an approximation, albeit a good ap-

proximation due to the large number of simulations.

The novel kernel density imputation approach to dealing with BLOQ ob-

servations in non-compartmental analysis of PK studies that is introduced in

Chapter 5 has much fewer limitations than other methods available for such an

application. One limitation is however that it offers no solution to the possible
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scenario where all responses at a single time point are below the limit of quan-

tification, as no kernel density estimation may be calculated to approximate the

distribution of observations if there are no numerical responses observed. A

further limitation is in the choice of bandwidth. Currently, the bandwidth is

recalculated at each iteration of the algorithm where kernel density estimation

is applied using Silverman’s ’Rule of Thumb’ for simplicity. There are of course

potentially other more complex approaches to calculating the bandwidth pa-

rameter, which may improve the accuracy of the density estimation and hence

the performance of the algorithm. A final limitation comes in the way that the

values are imputed, by using the ordering of responses at previous timepoints.

This is possibly inducing further correlation between responses at time points

which in turn may be affecting the variance of the PK parameter estimates.

6.4 Further Work
A possible extension to the work discussed in Chapter 3 is to consider the

specification of equivalence margins. Stricter margins that are more harmonious

with tests for individual bioequivalence may be used instead of those in line with

testing for population equivalence. Further investigation may be needed to fine

tune these margins for any practical application.

There are many possibilities in terms of expanding on the methodology

introduced in Chapter 4. The main opportunity for this is in the application to a

wider variety of settings, for example multiple dosing schemes. Here, the speci-

fication of the underlying model would be altered to accommodate this change,

and consideration would have to be given to the first stage of the procedure for

choosing the timepoints. One may also wish to relax the restrictions on the sam-

pling schemes in order to extend the approach to allow for unbalanced designs.

These extensions are mainly straightforward and require no changes to the pro-

cesses of the methodology itself, only to the application. Another consideration
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for extension is in the choice of the optimality criterion itself. One approach

could be to use likelihood based criteria, indeed related to the maximum like-

lihood methods in Chapter 5. As already established, the non-compartmental

estimate of theAUC and its variance can be written as a function of the mean and

variance of responses across timepoints, for which we can construct a likelihood

based on certain distributional assumptions, such as a Lognormal distribution of

responses at a given timepoint. One may then use this to minimize some func-

tion of the Fisher Information Matrix, similar to the approach in model based

optimality, however still without the specification of the PK model in the opti-

mality criterion. It would be interesting to see how this approach compares to

that of Chapter 4 as it requires more distributional assumptions than this ap-

proach, but fewer than using traditional model based optimality.

For the kernel density imputation method for dealing with BLOQ values,

only full sampling schemes are evaluated in the results in Chapter 5, however it

would be an interesting extension to also apply this to sparse sampling schemes.

The algorithm for calculating the imputed can be applied in the same way, how-

ever further exploration into the ordering of the allocation of the imputed values

to different subjects would be required. In order to address the limitation of this

method in terms of correlation between responses at multiple time points, a pos-

sible extension would be to use multivariate kernel density estimation to account

for this correlation. This would need further attention to detail in the process of

imputing values so that the increase in dimensionality does not adversely affect

the convergence or indeed the performance of the algorithm.
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A.1 For Candidate Model 3.1

t 1
2

= − log(2)

B1

Cmax = B0

A.2 For Candidate Model 3.2

t 1
2

=
1

B1

log(
B0 − log(2)

B0

)

Cmax = exp(B0)

A.3 For Candidate Models 3.6 and 3.7

AUC24 =
kaFD

V (ka − ke)

((
exp(−24ka)− 1

ka

)
−
(

exp(−24ke)− 1

ke

))

tmax =
log(ke)− log(ka)

ke − ka

Cmax =
kaFD

V (ka − ke)

((
ka
ke

)( ke
ke−ka

)
−
(
ka
ke

)( ka
ke−ka

)
)
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Table B.1: Sampling Time Points Used in Simulation Studies

Number of Time Points Time Points

3 (1, 10, 24)
4 (1, 8, 18, 36)
5 (1, 7, 14, 21, 36)
6 (1, 6, 12, 18, 24, 36)
7 (1, 4, 8, 12, 18, 24, 36)
8 (1, 3 ,6, 8, 12, 18, 24, 36)
9 (1, 2, 4, 6, 8, 12, 18, 24, 36)
10 (1, 2, 3, 4, 6, 8, 12, 18, 24, 36)
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Using the notation defined in Section 3.2.2, a first order Taylor approxima-

tion of f is given by:

f(τ̂) ≈ f(µ) + DT (τ̂ − µ)

Hence we may approximate the variance of f by:

Var[f(τ̂)] ≈ Var[f(µ) + DT (τ̂ − µ)]

= Var[DT (τ̂ − µ)]

= DTV ar[(τ̂ − µ)]D

= DT Σ̂(τ̂)D

A second order Taylor approximation of f is given by:

f(τ̂) ≈ f(µ) + DT (τ̂ − µ) +
1

2
(τ̂ − µ)TH(τ̂ − µ)

Since taking the variance of this is not as straightforward as in the first order

case, we use that Var[f(τ̂)] = E[f 2(τ̂)]− E2[f(τ̂)] so need to calculate f 2(τ̂) and

E[f(τ̂)]. Firstly, f 2(τ̂) :

f 2(τ̂) ≈
(
f(µ) + DT (τ̂ − µ) +

1

2
(τ̂ − µ)TH(τ̂ − µ)

)2

=f 2(µ) + DT (τ̂ − µ)(τ̂ − µ)TD +
1

4
(τ̂ − µ)TH(τ̂ − µ)(τ̂ − µ)TH(τ̂ − µ)

+ 2f(µ)DT (τ̂ − µ) + f(µ)(τ̂ − µ)TH(τ̂ − µ) + DT (τ̂ − µ)(τ̂ − µ)TH(τ̂ − µ).

Hence

E2[f(τ̂)] ≈ E

 f 2(µ) + DT (τ̂ − µ)(τ̂ − µ)TD + 1
4
(τ̂ − µ)TH(τ̂ − µ)(τ̂ − µ)TH(τ̂ − µ)

+2f(µ)DT (τ̂ − µ) + f(µ)(τ̂ − µ)TH(τ̂ − µ) + DT (τ̂ − µ)(τ̂ − µ)TH(τ̂ − µ).


(C.1)

= f 2(µ) + DT Σ̂(τ̂)D +
1

4
E[(τ̂ − µ)TH(τ̂ − µ)(τ̂ − µ)TH(τ̂ − µ)] + f(µ)tr{HΣ̂(τ̂)}

(C.2)

= f 2(µ) + DT Σ̂(τ̂)D +
1

4

(
tr{HΣ̂(τ̂)}

)2

+
1

2
tr{(HΣ̂(τ̂))2}+ f(µ)tr{HΣ̂(τ̂)}.

(C.3)
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Where (C.2) follows from (C.1) since the expectations of first and third order

moments of normal random variables with mean 0 is 0 (the fourth and last terms

disappear). By Theorem 10.9.10 from Graybill,33 which states:

Theorem. Let x be an n × 1 vector with distribution N(x : 0,V); let A, B and C be

symmetric matrices of constants. Then

(1) E[(xTAx)(xTBx)] = [tr(AV)][tr(BV)] + 2tr(AVBV),

(2) Cov[xTAx,xTBx] = 2tr(AVBV),

(3) Var[xTAx] = 2tr(AV)2.

along with the fact that for these conditions, E[xTAx] = tr(AV), the fifth

term from (C.1 )to (C.2) follows. The above theorem provides reasoning for (C.2)

to (C.3). Now we calculate E[f(τ̂)]:

E[f(τ̂)] ≈ E[f(µ) + DT (τ̂ − µ) +
1

2
(τ̂ − µ)TH(τ̂ − µ)]

= f(µ) + DTE[(τ̂ − µ)] +
1

2
E[(τ̂ − µ)TH(τ̂ − µ)]

= f(µ) +
1

2
tr{HΣ̂(τ̂)}.

Now combining the above:

Var[f(τ̂)] =E[f 2(τ̂)]− E2[f(τ̂)]

≈f 2(µ) + DT Σ̂(τ̂)D +
1

4

(
tr{HΣ̂(τ̂)}

)2

+
1

2
tr{
(
HΣ̂(τ̂)

)2

}

+ f(µ)tr{HΣ̂(τ̂)} − (f(µ) +
1

2
tr{HΣ̂(τ̂)})2

=f 2(µ) + DT Σ̂(τ̂)D +
1

4

(
tr{HΣ̂(τ̂)}

)2

+
1

2
tr{
(
HΣ̂(τ̂)

)2

}

+ f(µ)tr{HΣ̂(τ̂)} − f 2(µ) + f 2(µ)tr{HΣ̂(τ̂)} − 1

4

(
tr{HΣ̂(τ̂)}

)2

=DT Σ̂(τ̂)D +
1

2
tr{(HΣ̂(τ̂))2}.

The first part is recognizable as the estimate of the variance for the first order

Taylor approximation, and the second part is therefore the second order part of

the approximation.
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Table D.1: The average bias of the estimate of the PK parameters. The true values
are t 1

2
= 42.80264 and Cmax = 110.9412

# Subjects

5 10 100 1000

# Time Points t 1
2

Cmax t 1
2

Cmax t 1
2

Cmax t 1
2

Cmax

3 0.913 -0.317 0.132 -0.203 -0.591 -0.149 -0.573 -0.0937
4 0.348 -0.211 -0.0657 -0.218 -0.291 -0.192 -0.141 -0.0987
5 0.481 -0.338 0.0809 -0.326 -0.268 -0.233 -0.136 -0.0933
6 0.398 -0.341 -0.0164 -0.279 -0.296 -0.239 -0.150 -0.0856
7 0.157 -0.270 -0.0918 -0.290 -0.327 -0.216 -0.138 -0.0847
8 0.128 -0.272 -0.121 -0.291 -0.333 -0.202 -0.141 -0.0789
9 0.0625 -0.235 -0.143 -0.261 -0.354 -0.182 -0.138 -0.0671
10 0.0128 -0.212 -0.263 -0.196 -0.374 -0.168 -0.149 -0.058
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Table E.1: Type I error rate for varying numbers of time points and combinations
of PK parameters for an oral administration of a compound. Error bounds for
10,000 simulations are 2.214 and 2.806 for equivalence testing.

Parameter Combination / # Subjects

AUC24 & Cmax AUC24 & tmax

# Time Points 5 10 100 1000 5 10 100 1000

4 3.01 2.55 2.28 2.48 2.73 2.75 2.57 2.66
5 2.71 2.59 2.61 2.68 2.76 2.63 2.63 2.65
6 2.93 2.49 2.36 2.51 2.96 2.47 2.47 2.28
7 2.47 2.50 2.50 2.30 2.65 2.63 2.63 2.31
8 2.53 2.33 2.80 2.67 2.87 2.60 2.60 2.54
9 2.88 2.59 2.51 2.64 2.41 2.39 2.39 2.45
10 2.98 2.58 2.36 2.51 2.50 2.65 2.65 2.27

Table E.2: Type I error rate for varying numbers of time points and combinations
of PK parameters for an oral administration of a compound. Error bounds for
10,000 simulations are 2.214 and 2.806 for equivalence testing.

Parameter Combination / # Subjects

tmax & Cmax AUC24, Cmax & tmax

# Time Points 5 10 100 1000 5 10 100 1000

4 2.53 2.51 2.59 2.15 2.78 2.66 2.32 2.60
5 2.81 2.38 2.53 2.65 2.48 2.67 2.43 2.55
6 2.85 2.59 2.55 2.35 2.67 2.58 2.58 2.68
7 2.60 2.50 2.69 2.84 2.44 2.39 2.60 2.25
8 2.57 2.57 2.23 2.53 2.58 2.51 2.48 2.92
9 2.37 2.40 2.26 2.54 2.34 2.54 2.65 2.47
10 2.73 2.30 2.80 2.60 2.40 2.40 2.24 2.16
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The 8 scenarios with combinations of high (H) and low (L) variance for

( var (V ) , var (ke) , var (ka)) are as follows:

(1) LLL;

(2) LLH;

(3) LHL;

(4) HLL;

(5) LHH;

(6) HHL;

(7) HLH;

(8) HHH.
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Table G.1: Top 5 overall schemes using time points (0.5, 1.0, 2.0, 4.0, 9.0, 12.0) ac-
cording to minimax criteria applied to equally weighted scaled sum ofAUC and
Cmax variance: Ranks in the 8 scenarios, maximum rank, and total sum rank. (*
indicates the maximum rank for that scheme)

Top 5 Schemes
1001 1003 1026 993 1039

1 (LLL) 5 1 2 11 4
2 (LLH) 7* 1 2 17* 3
3 (LHL) 3 1 2 7 5
4 (HLL) 3 9* 11 4 15
5 (LHH) 5 1 2 12 3
6 (HHL) 2 8 16* 3 17*
7 (HLH) 3 5 8 1 7

8 Scenarios

8 (HHH) 2 5 9 1 8
Max 7 9 16 17 17
Total 30 31 52 56 62

Table G.2: Top 5 overall schemes using time points (0.5, 1.0, 2.0, 4.0, 9.0, 12.0) ac-
cording to minimax criteria applied to equally weighted scaled sum of AUC
and Cmax variance: Efficiency measure in the 8 scenarios, maximum efficiency
measure, and total sum efficiency measure. (* indicates the maximum efficiency
measure for that scheme)

Top 5 Schemes
1003 1001 1026 1039 746

1 (LLL) 1.000 1.008 1.005 1.007 1.008
2 (LLH) 1.000 1.009* 1.006 1.007 1.008
3 (LHL) 1.00 1.006 1.005 1.007 1.009
4 (HLL) 1.007 1.001 1.008 1.009 1.012
5 (LHH) 1.000 1.007 1.006 1.007 1.008
6 (HHL) 1.007* 1.001 1.010* 1.010* 1.012*
7 (HLH) 1.003 1.001 1.005 1.005 1.005

8 Scenarios

8 (HHH) 1.003 1.001 1.007 1.006 1.006
Max 1.007 1.009 1.010 1.010 1.012
Total 8.021 8.033 8.051 8.058 8.068
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Table G.3: Optimal Time Point Choices Top 5 overall time point choices accord-
ing to minimax criteria: Ranks in the 8 scenarios, maximum rank, and total sum
rank. (* indicates the maximum rank for that time point choice)

Top 5 Time Choices
225 260 235 224 234

8 Scenarios

1 (LLL) 21 24 13 16 18
2 (LLH) 13 12 22 20 27
3 (LHL) 39 35 22 28 21
4 (HLL) 32 36 45 42 52
5 (LHH) 40* 30 29 36 41
6 (HHL) 26 31 40 38 42
7 (HLH) 34 40* 50* 51* 55*
8 (HHH) 27 33 40 41 44

Max 40 40 50 51 55
Total 232 241 261 272 300

Table G.4: Top 5 overall schemes using optimal time points (0.5, 1.0, 3.5, 4.0,
7.5, 12.0) according to minimax criteria applied to equally weighted scaled sum
of AUC and Cmax variance: Ranks in the 8 scenarios, maximum rank, and total
sum rank. (* indicates the maximum rank for that scheme)

Top 5 Schemes
811 810 1006 788 1001

8 Scenarios

1 (LLL) 7 12 29 67 81
2 (LLH) 5 14 34 70 66
3 (LHL) 7 14 34 80 83*
4 (HLL) 4 10 20 44 7
5 (LHH) 8* 16* 38* 81* 65
6 (HHL) 4 11 35 51 7
7 (HLH) 2 3 11 19 4
8 (HHH) 2 4 20 29 3

Max 8 16 38 81 83
Total 39 84 221 441 316
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Â
U
C

.M
1:

Re
pl

ac
e

BL
O

Q
va

lu
es

w
ith

0,
M

2:
Re

pl
ac

e
BL

O
Q

va
lu

es
w

ith
LO

Q
/2

,M
3:

RO
S

Im
pu

ta
tio

n,
M

4:
M

L
pe

rt
im

ep
oi

nt
M

ea
ns

,M
5:

M
L

pe
rt

im
ep

oi
nt

Im
pu

ta
tio

n,
M

7:
K

er
ne

lD
en

si
ty

Im
pu

ta
tio

n.
*i

nd
ic

at
es

no
ta

ll
an

al
ys

es
w

er
e

su
cc

es
sf

ul
.

M
ea

n
(A

)
Va

r(
A

)
C

vg
95

%
(A

,N
)

C
vg

95
%

(A
,L

)
M

ea
n

(G
)

Va
r(

G
)

C
vg

95
%

(G
,N

)
C

vg
95

%
(G

,L
)

(T
ru

th
0.

50
65

0.
00

56
96

.6
96

.8
0.

48
16

0.
00

48
96

.4
96

.1
)

M
1

-0
.0

57
6

0.
00

52
63

.8
70

.1
-0

.3
30

2
N

A
N

A
N

A
M

2
-0

.0
22

1
0.

00
16

88
.2

90
.5

-0
.0

36
7

0.
00

23
79

.2
83

.6
M

3
-0

.0
23

7*
0.

00
33

*
90

.7
*

92
.9

*
-0

.0
02

9*
0.

00
05

*
95

.2
95

.2
*

M
4

-0
.0

12
8

-0
.0

00
7

95
.0

95
.6

-0
.0

01
9

-0
.0

00
3

96
.8

96
.6

M
5

-0
.0

10
0

0.
00

15
96

.6
97

.2
0.

00
04

0.
00

03
95

.8
95

.6
M

6
N

A
N

A
N

A
N

A
0.

01
15

*
0.

00
18

*
92

.4
*

91
.5

*
M

7
-0

.0
05

7
0.

00
04

96
.1

96
.7

-0
.0

08
4

0.
00

06
95

.6
96

.1



163

Ta
bl

e
H

.4
:R

es
ul

ts
sh

ow
in

g
av

er
ag

e
de

vi
at

io
n

fr
om

th
e

no
n-

co
m

pa
rt

m
en

ta
lÂ
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