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 22 

Abstract Ecosystems are becoming vastly modified through disturbance. In coral reef 23 

ecosystems, the differential susceptibility of coral taxa to climate-driven bleaching is predicted 24 

to shift coral assemblages towards reefs with an increased relative abundance of taxa with high 25 

thermal tolerance. Many thermally tolerant coral species are characterised by low structural 26 

complexity, with reduced habitat niche space for the small-bodied coral reef fishes on which 27 

piscivorous mesopredators feed. This study used a patch reef array to investigate the potential 28 

impacts of climate-driven shifts in coral assemblages on the trophodynamics of reef 29 

mesopredators and their prey communities. The ‘tolerant’ reef treatment consisted only of coral 30 

taxa of low susceptibility to bleaching, while ‘vulnerable’ reefs included species of moderate 31 

to high thermal vulnerability. ‘Vulnerable’ reefs had higher structural complexity, and the fish 32 

assemblages that established on these reefs over 18 months had higher species diversity, 33 

abundance and biomass than those on ‘tolerant’ reefs. Fish assemblages on ‘tolerant’ reefs were 34 

also more strongly influenced by the introduction of a mesopredator (Cephalopholis boenak).  35 

Mesopredators on ‘tolerant’ reefs had lower lipid content in their muscle tissue by the end of 36 

the six-week experiment. Such sublethal energetic costs can compromise growth, fecundity 37 

and survivorship, resulting in unexpected population declines in long-lived mesopredators. 38 

This study provides valuable insight into the altered trophodynamics of future coral reef 39 

ecosystems, highlighting the potential increased vulnerability of reef fish assemblages to 40 

predation as reef structure declines, and the cost of changing prey availability on mesopredator 41 

condition.  42 



Introduction 43 

 Climate change is increasingly recognised as a key driver of ecosystem structure and 44 

trophic dynamics in marine and terrestrial ecosystems worldwide (Hoegh-Guldberg and 45 

Bruno 2010; Byrnes et al. 2011; Buitenwerf et al. 2012; Brandt et al. 2013; Wernberg et al. 46 

2016). Coral reefs are one of the most vulnerable ecosystems due to the high thermal 47 

sensitivity of habitat-forming scleractinian corals (e.g. Hoegh-Guldberg et al. 2007). Indeed, 48 

climate-driven increase in ocean temperature is emerging as the greatest driver of large scale 49 

disturbance and regime-shifts in these ecosystems, with mass coral bleaching events 50 

becoming more frequent, widespread and sustained (Hughes et al. 2017). The degree of 51 

vulnerability to bleaching, however, varies substantially among coral taxa (Marshall and 52 

Baird 2000; Loya et al. 2001; Grottoli et al. 2006; McClanahan et al. 2007). This differential 53 

susceptibility to bleaching is predicted to result in large-scale changes in the composition of 54 

coral assemblages, with an expected overall shift towards more thermally tolerant species 55 

(Riegl et al. 2009; Van Woesik et al. 2011; Pratchett et al. 2014). As the frequency and 56 

severity of bleaching increases, the composition of future coral assemblages will depend not 57 

only on the thermal tolerance of coral taxa, but also how they respond to changing 58 

disturbance regimes (Fabina et al. 2015), and their ability persist or to re-establish in the post-59 

disturbance environment (Darling et al. 2013; Graham et al. 2014). 60 

Many of the coral taxa predicted to have high thermal tolerance, and therefore likely 61 

to characterise many future coral reef assemblages, are also species with low structural 62 

complexity (Loya et al. 2001; DeMartini et al. 2010; Alvarez-Filip et al. 2013). Habitat 63 

structure is known to be a key determinant of coral reef fish species diversity, abundance, and 64 

biomass (Graham and Nash 2013; Darling et al. 2017), with a loss of complexity resulting in 65 

a decline in habitat niche space and refugia, leading to increased competition and predation 66 

(Beukers and Jones 1997; Holbrook and Schmitt 2002; Kok et al. 2016). The predicted 67 



changes in coral assemblages in response to ocean warming are therefore likely to lead to a 68 

shift in coral reef fish assemblage composition (Graham et al. 2014). 69 

Small-bodied species of fish are vulnerable to changes in the composition and 70 

structure of the coral reef benthos (e.g. Alvarez-Filip et al. 2011; Nash et al. 2013), 71 

particularly those species that are directly reliant on live coral for food or shelter (Munday et 72 

al. 2008; Coker et al. 2014). While these changes are expected to result in long term 73 

reductions in fisheries yields (Graham 2014; Rogers et al. 2014), there remains a lack of 74 

understanding of how these changes in the fish assemblage will affect piscivorous reef 75 

mesopredators. These larger bodied, more mobile species are less likely to be directly 76 

affected by changes in coral assemblages, but may be vulnerable through alterations in the 77 

fish assemblage on which they predate (Hempson et al. 2017). Due to the longevity of many 78 

piscivores, relative to their small-bodied prey, the impacts of changing prey availability may 79 

initially manifest at a sublethal level, resulting in a loss of condition due to reduced 80 

nutritional value (Pratchett et al. 2004; Berumen et al. 2005), or higher energetic demands 81 

associated with hunting alternate prey (Cohen et al. 2014). Reduced energy reserves can 82 

reduce resource allocation to important life history functions such as growth (Kokita and 83 

Nakazono 2001; Feary et al. 2009), fecundity (Jones and McCormick 2002), age of first 84 

reproduction (Jonsson et al. 2013) and survivorship, resulting in potential population decline 85 

in the long term (Graham et al. 2007). 86 

Change in the benthic composition of coral reefs therefore has the potential to have a 87 

substantial impact on reef mesopredator populations, yet there remains little known about 88 

how mesopredator trophodynamics will respond to climate-driven shifts coral assemblages. 89 

To address this knowledge gap, this study used an array of patch reefs with varying coral 90 

compositions that simulated both undisturbed and predicted climate altered configurations. 91 

This experimental setup was then used to investigate (1) the prey base among reefs in terms 92 



of diversity, abundance, and biomass, (2) the role of mesopredators in shaping these prey 93 

communities, and (3) the effect of differing reef compositions on the condition of 94 

mesopredators. 95 

 96 

Methods 97 

Study site and patch reefs 98 

This study was conducted at Lizard Island, a high continental island on the mid-shelf 99 

of the northern Great Barrier Reef (14°41'31.5"S 145°27'39.3"E), using a patch reef array 100 

positioned on the south-eastern side the island’s lagoon between October 2013 and July 2015. 101 

The experimental setup consisted of twenty large (1.5 m diameter) patch reefs, with two 102 

distinct coral assemblages (i.e., thermally tolerant and thermally sensitive or vulnerable) 103 

constructed in October 2013. The 10 x 2 array was built at a depth of 3 - 5 m on the sandy 104 

lagoon flat, parallel to the surrounding reef, with a distance of at least 15 m separating the 105 

patch reefs from each other and from the main reef. Each patch reef consisted of a coral 106 

rubble base, stabilised with nylon line, and populated with equal numbers of colonies of six 107 

local coral species collected from the reefs surrounding the lagoon. ‘Vulnerable’ reefs 108 

included coral taxa that are currently abundant on reefs across the full range of thermal 109 

tolerance, including those that are sensitive to increasing ocean temperatures and prone to 110 

coral bleaching (bottlebrush Acropora sp., branching Acropora sp., Porites cylindrica, 111 

Porites sp. massive, Stylophora pistulata, Turbinaria reniformis; Fig. 1a). ‘Tolerant’ reefs 112 

consisted only of coral taxa that have high thermal tolerance and low vulnerability to 113 

bleaching, to simulate predicted future coral assemblages (Fungia spp., Goniastrea 114 

retiformis, Goniopora sp., Porites sp. massive, Symphyllia radians, Turbinaria reniformis; 115 

Fig. 1b). Species were chosen based on the current best knowledge of their susceptibility to 116 



bleaching recorded during previous natural mass bleaching events in the Indo-Pacific (e.g. 117 

Marshall and Baird 2000, Loya et al. 2001, McClanahan et al. 2007). 118 

The same number of taxa was used in each treatment to exclude species diversity as a 119 

variable, the number and size of coral colonies kept as consistent as possible among reefs, 120 

and the distribution of treatments randomised within the array. Once built, the live coral 121 

cover, average height, and structural complexity of each patch reef was measured along three 122 

haphazard 1.5 m transects across the reef, passing through the centre. Percentage live coral 123 

cover was estimated by recording the benthos (live coral cover vs alternative substrate) at 12 124 

random points along each transect. Reef height was measured as the distance from the sand to 125 

the top of the coral at nine random points on each reef. Structural complexity was measured 126 

using a standard rugosity index for each transect, calculated as the ratio of the linear straight 127 

line distance across the reef, to the same diameter measured using a fine-linked (8 mm 128 

diameter) chain draped across the surface of the reef (Luckhurst and Luckhurst 1978). 129 

 130 

Fish assemblages 131 

Fish assemblages were allowed to establish on the patch reefs over the following 18 132 

months, which included two periods of peak settlement (2013 - 14, 2014 – 15), which occur 133 

annually between late October and late January at Lizard Island (Milicich and Doherty 1994). 134 

In April 2015, the composition of the fish assemblage resident on each reef was surveyed.  135 

Each reef was systematically searched and all fishes identified to species and their total 136 

length estimated to the nearest 0.5 cm. Length estimates were converted to biomass using 137 

published length-weight relationships for each species sourced from Fish Base (Froese and 138 

Pauly 2016) according to the formula:   139 

W = a × Lb 140 



where L is the visually estimated length recorded for an individual fish, W is 141 

individual fish biomass (g), and a and b are published species specific constants. 142 

 143 

Mesopredator caging experiment 144 

To examine the effect of the different fish assemblages from the two coral treatments 145 

on the trophodynamics of coral reef mesopredators, mesopredators were introduced in April 146 

2014. The chocolate grouper, Cephalopholis boenak, was selected as the study mesopredator 147 

species as it is both locally abundant on the Lizard Island reefs and predominantly 148 

piscivorous (Beukers-Stewart and Jones 2004). Fourteen grouper were collected from the 149 

reefs surrounding the lagoon using baited hook and line underwater, and placed in aquaria at 150 

the Lizard Island Research Station. Only adult fish (17.1 – 21.3 cm TL)  were collected to 151 

avoid any confounding effects of ontogenetic diet shifts (Chan and Sadovy 2002), and to 152 

ensure that there were minimal differences in the prey sizes available to the introduced 153 

mesopredators, as grouper are known to be limited by their gape size. 154 

Prior to the introduction of the C. boenak to the patch reefs, all mesopredators that 155 

had recruited naturally to the patch reefs were removed using a net and clove oil anaesthetic, 156 

and relocated to the reef habitat surrounding the lagoon. Using the same method, all members 157 

of the family Apogonidae were also removed, as these species tend to recruit to reefs in large 158 

clouds of hundreds of fish, that could confound measures of both fish assemblage 159 

composition and predation. The reefs were then enclosed using cages constructed from 2.5 160 

cm x 2.5 cm wire mesh attached to a 2 m x 2 m x 1.2 m frame of PVC piping. A skirt of 2.5 161 

cm mesh nylon netting was attached to the base of the cage, and weighted with metal chain 162 

that was buried in the sand to ensure that fish could not escape from the reefs, and to avoid 163 

burrowing predators like lizardfishes from gaining access to the prey in the cages. 164 



All mesopredators (C. boenak) were individually tagged with a unique subcutaneous 165 

fluorescent elastomer tag in their pectoral fins. Their total length (TL) and wet weight (WW) 166 

were recorded immediately before introducing them to the caged patch reefs. A single C. 167 

boenak was introduced to seven randomly selected reefs within each treatment, while the 168 

remaining six caged reefs (three for each coral treatment) were used as controls. The 169 

experiment was then allowed to run for six weeks before the mesopredators were removed. 170 

During this period, the cages were monitored daily and cleaned of algae and any other 171 

fouling organisms. Immediately prior to removing the C. boenak, the fish assemblage on each 172 

reef was again surveyed as per the start of the caging experiment.  173 

Mesopredators are physically limited in the prey they are able to consume by their 174 

gape size (Mumby et al. 2006). Therefore, to estimate the relative difference in prey biomass 175 

available to the C. boenak introduced to the patch reefs, their gape height (cm) was measured 176 

(mean  ± standard error; 3.68 ± 0.07 cm, max = 4.15 cm, min = 3.30 cm). A prey size cut-off 177 

of 5 cm (TL) was consequently used to calculate the prey biomass available to all 178 

mesopredators. This slightly longer size was based on the assumption that mesopredators will 179 

not always consume their prey side-on, but rather head or tail first. 180 

 181 

Mesopredator sampling 182 

After six weeks of enclosure, C. boenak were removed from the reefs using a net and 183 

clove oil anaesthetic, and then euthanised by immersion in ice water. Total wet weight 184 

(WW), gutted weight (GW), total length (TL), body height (H), gape height (GH) and liver 185 

weight (LW) were recorded for each fish. The livers were excised and fixed in 4% buffered 186 

formaldehyde for histological analysis. Samples of white muscle tissue (~ 2.5 cm3) were 187 

collected from between the lateral line and dorsal fin of each fish, and frozen for lipid 188 

analysis. 189 



 190 

Body condition indices 191 

Morphometric body measurements were used to calculate Fulton’s Condition Index 192 

(K; Bagenal and Tesch 1978), which is a commonly used measure of robustness or ‘well-193 

being’ of a fish, calculated according to the formula: 194 

K =
𝑊𝑊𝑊𝑊
𝑇𝑇𝑇𝑇3

 𝑥𝑥 100  195 

 Short-term changes in energy stores are often first detected in the liver (Ostaszewska 196 

et al. 2005), as this is both the primary site of lipid storage in fish (Stallings et al. 2010), and 197 

the tissue with the highest metabolic turnover rate (MacNeil et al. 2006).  Therefore, we 198 

examined the potential for a treatment effect in the livers of caged mesopredators using both 199 

the hepatosomatic index and density of liver vacuoles. The hepatosomatic index (Stevenson 200 

and Woods 2006) is the ratio of liver weight (LW) to gutted body weight (GW): 201 

HSI =  
𝑇𝑇𝑊𝑊
𝐺𝐺𝑊𝑊

 𝑥𝑥 100 202 

To examine the potential difference in glycogen stores in the livers of C. boenak more 203 

closely, the density of hepatocyte vacuoles in transverse liver sections were examined using 204 

histology. Preserved livers were embedded in paraffin wax, then cut into 5 μm sections and 205 

stained with eosin and Mayer’s haematoxylin. A Weibel eyepiece was then used to count 206 

vacuole densities at a magnification of 400x (Pratchett et al. 2001). 207 

Finally, total lipid content of white muscle tissue samples was quantified using a 208 

chloroform-methanol mixture to dissolve all lipids from the tissues (Bligh and Dyer 1959). 209 

The solvent was then evaporated off, and the total lipid mass weighed and expressed as a 210 

percentage of the total sample. 211 

 212 



Statistical Analyses 213 

Differences in the structural complexity of the benthic habitat between patch reef 214 

treatments (vulnerable vs tolerant) was tested using Welch’s t-test, which adjusts degrees of 215 

freedom to account for unequal variances between groups (Welch 1947). Similarly, 216 

differences in the diversity (Shannon-Weaver Index; H), abundance (fish.reef-1) and total 217 

biomass (g.reef-1) of the entire fish assemblage, as well as the available prey fish biomass 218 

(g.reef-1, based on a 5 cm body size cut off ), were compared between coral treatments. 219 

To examine how the fish assemblages on the patch reefs shifted in terms of their 220 

composition over the duration of the 6-week mesopredator caging experiment, a principal 221 

coordinates analysis (PCO) was used, based on a Bray-Curtis similarity matrix. Data were 222 

square root transformed to reduce the influence of highly abundant species. Eigenvectors of 223 

the species accounting for the largest separation in the fish assemblages (> 0.7 Pearson 224 

correlation co-efficient) were then overlaid to show the key distinguishing taxa. The change 225 

in species composition was measured in terms of the Bray-Curtis dissimilarity between the 226 

fish assemblage on each reef at the end of the caging experiment compared to the start. Based 227 

on the results of the PCO, the prey species, P. chrysurus, was identified as a potential driver 228 

the differences between treatments. To test this possibility, we reran the Bray-Curtis 229 

dissimilarity analysis without this species to see if there was a change in the results, or 230 

whether observed effects were community driven. A linear mixed effects model was then 231 

used to test for a difference in Bray-Curtis dissimilarity between reef treatments (vulnerable 232 

vs tolerant), with the predator treatment (control vs C. boenak) included as a random effect. 233 

We also tested whether there was a difference in the overall abundance (fish.reef-1) and 234 

biomass (g.reef-1) from the beginning to the end of the caging experiment, within each 235 

treatment, using a matched pair t-test (non-parametric Wilcoxon matched pair rank test) 236 



Differences in the condition of mesopredators caged on vulnerable and tolerant reefs 237 

in terms of Fulton’s condition index (K), hepatosomatic index (HSI) and the density of 238 

hepatocyte vacuoles in liver sections were all tested using notched boxplots and associated 239 

95% confidence intervals. To test for a difference in body condition in C. argus from the 240 

beginning to end of the experiment within each treatment, we used a matched pair t-test (non-241 

parametric Wilcoxon matched pair rank test). 242 

 243 

Results 244 

Benthic habitat and fish assemblage 245 

In April 2015, immediately prior to the introduction of the mesopredator caging 246 

experiment, patch reefs of the ‘tolerant’ treatment had significantly lower structural 247 

complexity than those of the ‘vulnerable’ treatment (RI; Vulnerable: 2.46 ± 0.14, Tolerant: 248 

1.87 ± 0.10, t11.72 = 4.154, p < 0.001, mean ± standard error; Fig. 2a). The reef fish 249 

assemblages that established over 18-month period differed significantly between treatments 250 

in terms of their Shannon-Weiner Diversity (H’; Vulnerable: 2.32 ± 0.12, Tolerant: 1.70 ± 251 

0.09, t17.48 = - 5.01, p < 0.001, Fig. 2b). Fish assemblages on vulnerable reef treatments also 252 

had higher overall abundance (fish.reef-1; Vulnerable: 47.45 ± 3.83, Tolerant: 29.4 ± 2.71, 253 

t17.64 = - 4.712, p < 0.001), and biomass (g.reef-1; Vulnerable: 340 ± 30, Tolerant: 200 ± 50, 254 

t16.10 = -3.27, p < 0.005) than those on tolerant reefs.  There was more available prey biomass 255 

(<5cm) on vulnerable patch reefs than on tolerant reefs (g.reef-1; Vulnerable: 54 ± 3, 256 

Tolerant: 30 ± 5, t13.03 = 4.87, p < 0.001; Fig. 2c). 257 

The PCO analysis showed a clear separation of fish assemblage composition between 258 

vulnerable versus tolerant reefs (Fig. 3a). Fish assemblages on vulnerable reefs were 259 

characterised by high abundances of Pomacentrus moluccensis, Dascyllus aruanus, 260 

Gobiodon ceramensis, and Halichoeres melanurus. Tolerant reef fish assemblages were 261 



distinguished by higher abundances of Canthigaster papua and Balistoides viridis, while 262 

Pomacentrus chrysurus was equally abundant across both treatments. 263 

 264 

Effect of mesopredators on fish assemblages 265 

A greater shift was evident in the composition of reef fish assemblages on tolerant 266 

reefs than vulnerable reefs following the introduction of the mesopredator (Fig. 3a). Bray-267 

Curtis dissimilarity of the fish assemblages between the start and end of the caging 268 

experiment was somewhat greater on tolerant reefs (Vulnerable: 12.40 [6.24, 18.56], 269 

Tolerant: 19.73 [13.57, 25.89]; Fig. 3b), an effect which did not change with the exclusion of 270 

P. chrysurus, indicating that this species is not responsible for driving the response. On 271 

vulnerable reefs, there was little difference in mean Bray-Curtis dissimilarity between control 272 

reefs and those with C. boenak introduced, while on tolerant reefs, mean Bray-Curtis 273 

dissimilarity in fish assemblage composition was higher for reefs with mesopredators than for 274 

controls (Fig. S1). Overall abundance and biomass in the fish communities in each treatment 275 

did not differ significantly from the beginning to the end of the experiment (Abundance; 276 

Vulnerable: W = -9 p = 0.438, Tolerant: W = 14, p = 0.281, Biomass; Vulnerable: W = -6 p = 277 

0.688, Tolerant: W = -4, p = 0.813). 278 

 279 

Effect of fish assemblages on mesopredators 280 

Fulton’s condition index (K) showed no difference in the robustness of C. boenak at 281 

the start of the experiment, prior to being introduced to the patch reefs (Vulnerable: 1.516 ± 282 

0.052, Tolerant: 1.602 ± 0.039, t13.98 = 1.719, p = 0.108). By the end of the 6-week 283 

mesopredator caging experiment, fish caged on vulnerable reefs showed no decrease in their 284 

Fulton’s condition (K), while those on tolerant reefs showed a significant loss of body 285 

condition (Vulnerable: W = -18, p = 0.156, Tolerant: W = -24, p = 0.047). 286 



The hepatosomatic index (HSI) showed no difference in the liver to body mass ratio 287 

in C. boenak between the two patch reef treatments (Fig. 4a). Similarly, the results of the 288 

liver histology analyses showed no significant difference in the hepatocyte densities in C. 289 

boenak caged on the two patch reef treatments (Fig. 4b).  However, there was a much higher 290 

variance in the density of hepatocyte vacuoles in the livers of mesopredators caged on 291 

tolerant reefs than those from vulnerable reefs (Variance; Vulnerable: 0.676, Tolerant = 292 

79.246). At a finer physiological scale, the results of the total lipid extraction showed a 293 

higher percentage lipid composition in the white muscle tissue of C. boenak caged on 294 

vulnerable reefs than those from tolerant reefs (Fig. 4c). 295 

  296 



Discussion 297 

Novel coral reef ecosystems emerging due to climate change are expected to vary 298 

substantially, in terms of both structure and function, from the structurally complex, diverse 299 

assemblages we associate with current day healthy coral reefs (Graham et al. 2014). This 300 

study suggests that these changes are likely to affect the trophodynamics between reef 301 

mesopredators and the reef fish assemblages on which they prey. Critically, it provides 302 

evidence that mesopredators could experience a loss of condition associated with decreased 303 

energy reserves. It also shows that the prey fish assemblages on which they feed on tolerant 304 

reefs are less diverse, and prone to greater impacts from piscivore predation. Disruption of 305 

trophodynamics on future reefs is thus likely to have repercussions for both mesopredators 306 

and their prey. 307 

Reduced lipid energy stores and body condition (K) in the C. boenak caged on 308 

tolerant reef treatments could be attributable to several factors, including altered prey species 309 

availability or reduced available prey biomass. Like many reef mesopredators, C. boenak are 310 

ambush predators, that rely on structure for shelter to hunt from (Shpigel and Fishelson 311 

1989). They may therefore need to expend more energy in hunting and capturing prey on 312 

tolerant reefs due to the decreased structural complexity. In this experiment, we excluded the 313 

effects of competition, by only including a single mesopredator on each reef. On a contiguous 314 

coral reef, it is possible that the depletion of lipid stores may be exacerbated as 315 

mesopredators experience increased competition for shelter and prey, both factors negatively 316 

affected by a loss of structural complexity (Hixon and Beets 1993; Beukers and Jones 1997; 317 

Syms and Jones 2000; Kerry and Bellwood 2012). The lack of statistical evidence for an 318 

effect in coarser measures of condition (HSI and hepatocyte vacuole density), is likely due to 319 

the short time period of this experiment. The overall pattern of decline in body condition 320 



across both treatments is likely due to the unavoidable stress of handling and caging on all C. 321 

boenak during the experiment. 322 

Sublethal effects, such as the loss of condition and energy reserves, in mesopredators 323 

can compromise not only their ability to withstand periods of stress (Jones and McCormick 324 

2002), but also the resources they are able to allocate to important life history components, 325 

such as growth, age of first reproduction and fecundity (Kokita and Nakazono 2001, Pratchett 326 

et al. 2006). This study was too short to empirically detect these effects, but previous field 327 

studies have shown that despite mesopredators being able to adapt their diets to a changing 328 

prey base, this altered trophic niche carried a cost to their condition (Berumen et al. 2005). 329 

Due to the relative longevity of many reef mesopredators, sublethal costs may not be easily 330 

detected in the short term, but may result in unexpected population crashes in the long term 331 

(Graham et al. 2007). This has implications for fisheries management, as mesopredators are 332 

often highly targeted species, and if catch rates are not managed when populations are 333 

stressed and experiencing reduced recruitment rates, fisheries could face severe declines. 334 

 Changes in the broader fish assemblage associated with predicted shifts in coral 335 

assemblages are also likely to have wide-ranging ecological and economic implications. This 336 

study suggests that the abundance and diversity of reef fish assemblages will decline as coral 337 

communities become dominated by taxa with higher thermal tolerance and low structural 338 

complexity. This is not surprising, as a reduction in structural complexity decreases available 339 

habitat niche space for fish species (Darling et al. 2017). The overall reduction in reef fish 340 

biomass also supports previous findings that biodiversity and biomass are closely related, 341 

with high biomass reefs supporting a high diversity of species (McClanahan et al. 2011), and 342 

biomass found to scale with biodiversity (Mora et al. 2011). Reduced diversity and biomass 343 

in coral reef fish assemblages would compromise the sustainability of multispecies reef 344 



fisheries, with severe repercussions for the food security of some of the world’s poorest 345 

coastal populations (Cinner et al. 2013). 346 

 High species diversity is frequently predicted to confer ecological stability to 347 

communities, by increasing the functional diversity represented among species (McCann 348 

2000; Gross et al. 2014; Duffy et al. 2016). Greater functional diversity can increase 349 

community resilience, allowing them to better respond to perturbation (e.g. Nash et al. 2016), 350 

an attribute which may become increasingly important in responding to new future 351 

disturbance regimes (Nyström et al. 2008). In this study, fish assemblages on tolerant patch 352 

reefs were both less diverse and more strongly affected by the introduction of a 353 

mesopredator, suggesting that they may be less resilient to predation than fish assemblages 354 

on vulnerable patch reefs. 355 

The species that distinguished fish assemblages on vulnerable reefs from those on 356 

tolerant reefs represent a variety of different functional groups (e.g. planktivores, coral 357 

dwellers, mixed-feeding mid-trophic level wrasses). These species also included habitat 358 

specialists that rely on complex live corals (Dascyllus aruanus, Gobiodon ceramensis) 359 

(Froese and Pauly 2016). Tolerant reefs were characterised by species of the order 360 

Tetraodontiformes (Canthigaster papua, Balistoides viridescens), which are known to 361 

associate with rubble bottoms as juveniles, and have broad habitat use (Froese and Pauly 362 

2016). Species that were ubiquitous between treatments were omnivorous habitat generalists 363 

(e.g. Pomacentrus chrysurus).  This suggests that degree of habitat specialisation likely to be 364 

a strong driver of future reef fish assemblages, with generalist species potentially emerging as 365 

the successful species on future novel reef assemblages due to their adaptability.  366 

 As atmospheric carbon concentrations continue to rise, it is improbable that coral reef 367 

ecosystems will return to their pre-disturbance state. It is therefore essential that we improve 368 

our understanding of how these novel configurations in future ecosystems are likely to 369 



function. While the findings presented here will need to be tested on contiguous natural reefs, 370 

this study provides insight into how the trophodynamics of piscivorous mesopredators and 371 

their prey communities could be affected as coral assemblages shift with rising ocean 372 

temperatures.  Predation is one of the fundamental ecological processes in food webs 373 

(Legović 1989), and therefore of key importance to understanding how ecosystem function 374 

may be disrupted or maintained in future reef ecosystems. Mesopredators are also important 375 

target species in many reef fisheries (Cinner et al. 2009; Mumby et al. 2012; GBRMPA 376 

2014). To ensure the best possible management of these ecologically and economically 377 

valuable species, is crucial that we improve our understanding of the probable effects of 378 

changing prey bases and habitats on mesopredators, to maintain ecological function and 379 

provision of ecosystem services. 380 

 381 
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Figure Legends 390 

Fig. 1 Photos illustrating the two reef treatments in the patch reef array immediately after 391 

construction in 2013, prior to recruitment of fish assemblages. All reefs were constructed on 392 

a 2 m diameter base of coral rubble, with live colonies of six coral taxa each. a. Vulnerable 393 

reefs were composed of coral taxa from the entire spectrum of predicted vulnerability to 394 

increasing ocean temperatures (bottlebrush Acropora sp., branching Acropora sp., Porites 395 

cylindrical, Porites sp. massive, Stylophora pistulata, Turbinaria reniformis). b. Tolerant 396 

reefs consisted only of coral taxa that are expected to have high thermal tolerance (Fungia 397 

spp., Goniastrea retiformis, Goniopora sp., Porites sp. massive, Symphyllia radians, 398 

Turbinaria reniformis). 399 

 400 

Fig. 2 Comparison of mean (± standard error) a benthic structural complexity, b Shannon 401 

Diversity (H’) of fish assemblages, and c prey fish biomass available to C. boenak between 402 

vulnerable and tolerant reef treatments at the start of the mesopredator caging experiment in 403 

March 2015.  404 

 405 

Fig. 3 a Principal Co-Ordinates Analysis of fish assemblages on patch reefs prior to 406 

Mesopredator introduction and after 6 weeks. b Bray-Curtis similarity between fish 407 

assemblages at the start and end of mesopredator caging experiment (mean ± standard error), 408 

based on square-root transformed species abundance. 409 

 410 

Fig. 4 Notched boxplots of a hepatosomatic index (HSI), b hepatocyte densities from liver 411 

tissue sections, and c. percentage total lipid content in white muscle tissue of Cephalopholis 412 

boenak after removal from mesopredator caging experiment on vulnerable and tolerant patch 413 

reef treatments. Bold centre line indicates the median, whiskers span maximum and 414 



minimum values, box height shows the interquartile range, and diagonal notches in the boxes 415 

illustrate the 95% confidence interval around the median.  416 
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