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Abstract 

Antigenic variation on the cell surface of the T. brucei is essential for the survival of the 

parasite in the host immune system. Finding mechanisms to stop variant surface 

glycoprotein (VSG) switching, and hence the parasites ability to evade the host immune 

system provides a promising opportunity to treat the infection. Holliday junctions are an 

essential part of homologous recombination, which is used for DNA repair and for the 

crossover of DNA. Identifying T. brucei proteins which act as Holliday junction resolvases 

are potential candidate targets for inhibiting VSG switching. 

In this project, bioinformatics methods were used to identify proteins with homology to 

human GEN1, a known Holliday junction resolvase. Purification of homologous proteins 

were carried out from the expression of bacterial cell lines. Parasite cell lines were created 

for the investigation of the homologous protein localisation and a BioID analysis to 

interrogate protein-protein interactions. 

Bioinformatics analyses identified two proteins with homology to human GEN1, TbFEN1 and 

TbRAD2. Of these two proteins, TbFEN1 underwent large scale purification and was used 

for the production of polyclonal antisera, where TbRAD2 was found to require stringent 

denaturing conditions for purification. Both proteins were seen to localise within the nucleus 

of the procyclic parasite. Finally, BioID analysis showed protein-protein interactions with 

TbFEN1 were found within the nucleus and a complex banding pattern of proteins observed. 

This work has been able to identify two proteins which potentially act as Holliday junction 

resolvases in the T. brucei. Further investigation of their function and protein interactions will 

be important to understand whether these provide functional targets for VSG switching. 
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1 Literature Review 

Trypanosoma are a genus of disease causing protozoan parasite. Trypanosoma brucei 

(T. brucei), which is the focus of this work, is the cause of two diseases, Human African 

Trypanosomiasis (HAT) and Nagana. The disease HAT is classed as a neglected 

tropical disease, where it is commonly referred to as sleeping sickness given the main 

symptom of the disease (Kennedy, 2013). Conversely, Nagana infects animals and is a 

wasting disease in livestock, including cattle (Wells, 1972). Both of these diseases 

cause severe health and socioeconomic problems for countries circling the equatorial 

line of Africa. These are some of the poorest and most rural countries in the world 

(Rutto et al., 2013). Despite evolutionary advances in ape-like mammals to protect 

against T. brucei, the parasites remain resilient to the host immune system, and have 

evolved to evade these mechanisms (Stijlemans et al., 2016). Understanding the 

molecular biology of Trypanosoma, and the mechanisms used to evade the host 

immune system, is of paramount importance as we come closer to the World Health 

Organisation’s (WHO) goal for elimination of HAT by 2020 (Franco et al., 2017).  

This introduction will give an overview of the epidemiology of T. brucei, how it infects 

and interacts with its host, including the molecular mechanisms used, and finally the 

current understanding of homologous recombination and the use of Holliday junctions 

(HJ) for host immune system evasion. 

1.1 An introduction to Trypanosoma brucei 

T. brucei are protozoan parasites that cause human and veterinary diseases, such as 

Human African trypanosomiasis (HAT), bovine trypanosomiasis (Nagana) and Chagas’ 

disease (Englund et al., 1982). The T. brucei species that cause Nagana and HAT are 

prevalent in central and southern Africa, (see Figure 1.1). The vector for transmission 

of T. brucei is the tsetse fly, endemic to this region (Kennedy, 2013). Not only do these 

diseases occur in the poorest and most rural areas, the burden of disease affects those 

mainly of productive age. This consequently decreases a family’s ability to generate 

income, as well as costly medical treatment and a stigmatism for the disease leading to 

the potential abandonment of those afflicted (Franco et al., 2014); worsening an already 

desperate economic situation. 

There are three sub-species of the T. brucei parasite prevalent within 36 sub-Saharan 

countries in Africa. These species are morphologically identical, yet their genetics, 

virulence and choice of host vary (WHO, 2016, Englund et al., 1982). Trypanosoma 

brucei gambiense (T. b. gambiense) and Trypanosoma brucei rhodesiense (T. b. 
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rhodesiense) are both capable of causing disease in humans. However, the two 

parasites cause symptomatically distinct illnesses, and hence the disease diagnosis are 

called gambiense HAT and rhodosiense HAT respectively. T.b gambiense is only 

capable of causing disease in humans. The main causes of the Nagana infection in 

livestock are Trypanosoma brucei brucei (T. b. brucei) and T.b.rhodesiense (Cordon-

Obras et al., 2015). These are zoonotic parasites with reservoirs in wild and 

domesticated animals. Infection of T. b. rhodosiense in humans is therefore considered 

accidental, with relatively low levels of human infection. Gambiense HAT is an 

anthroponotic disease and subsequently has a large human reservoir (Anderson et al., 

2011, Franco et al., 2014). 

Sub-species of T. brucei are transmitted by the salivary glands of certain species of the 

Glossina genus of the Tsetse fly (Kennedy, 2013). Tsetse flies are the definitive host of 

these protozoan parasites. With some rare exceptions, trypanosomiasis is only seen 

where the tsetse fly is present in 36 Sub-Saharan African countries; known as the 

tsetse belt, where the climate is optimal for Glossina survival (Robinson et al., 1997). 

Gambiense HAT is the West and Central African variant of trypanosomiasis and is 

responsible for roughly 97-98% of HAT cases (Franco et al., 2014). The disease caused 

is less virulent than its East Rhodesiense HAT counterpart. Without treatment both 

diseases are considered to have a case fatality rate close to 100%, although there have 

been some reported cases of HAT survivors (Kennedy, 2013). Consequently, the WHO 

set the target to eliminate Gambiense HAT as a health problem by 2020, which has 

been developed to a more realistic target of complete interruption of transmission by 

2030 (Franco et al., 2017). Annual surveillance of the disease predicts the rate of 

infection to have decreased by 73% from 25,000 to 7,000 between 2000 and 2012 

(Simarro et al., 2015, Simarro et al., 2014). Figure 1.1 illustrates the prediction and 

distribution of these cases. It is estimated, however, that for every reported case of HAT 

there are two cases that go undetected therefore there are estimated to be 20,000 

actual cases of HAT annually (WHO, 2013). The rate of infection is relatively low, as 

there are roughly 70 million people at risk of becoming infected. An estimated 82.2% of 

these individuals are at risk of being infected with Gambiense HAT in 24 countries and 

17.8% at risk of being infected with Rhodesiense HAT in 12 countries (Simarro et al., 

2012, WHO, 2016). There is a certain uncertainty to these estimates due to the 

communities at risk living in highly rural and inaccessible areas. 

Nagana plays its own role at debilitating the economic and social potential of these at 

risk countries. It has been difficult for previous studies to determine the exact infection 
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rate of Nagana in domesticated and individual animals, because the communities 

affected are difficult to set up sufficient surveillance systems given their localities. 

Despite this, the Food and Agriculture Organization (FAO) of the United Nations states 

that there is a risk of infection to around 50 million heads of cattle, with the risk of 

around 3 million deaths per year. The economic loss in cattle alone is estimated at US$ 

1.0 – 1.2 billion per year, taking into consideration lower birth rates, decrease in milk 

production and animals being too weak to work. It has been estimated that in tsetse 

infested lands there is a loss in total agricultural domestic product of US$ 4.75 billion 

per year (Connor, 1994, FAO, 2016). 
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Figure 1.1. Map of HAT distribution. A map to show the representation of T.b.gambiense 
and T.b.rhodosiense distribution of infection in Africa, data recorded between 2000 – 2009 
following the resolution of the WHO to commit itself to supporting HAT-endemic countries. Taken 
from (Simarro et al., 2010). 
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1.2 Cell Structure, Cell Division and Cell Cycle of Trypanosoma brucei 

The T. brucei cell includes, but is not limited to, a single flagellum, nucleus, basal body, 

an elongated mitochondrion, a kinetoplast that contains the mitochondrial genome and 

a series of specialised microtubules associated with the flagellum attachment zone 

(FAZ). As with all eukaryotes, to ensure that viable daughter cells are produced 

following cytokinesis, these organelles must be replicated and segregated with fidelity 

(Hammarton et al., 2007, Kohl and Gull, 1998).  

The T. brucei cell division cycle is illustrated in Figure 1.2. This figure shows how the 

division develops from the FAZ to the division of a new kinetoplast, the subsequent 

replication of a new nucleus and finally the segregation of the daughter cell’s organelles 

(Hammarton et al., 2007). Understanding the cell cycle and the structure of the parasite 

as it divides will be of importance for knowing which stage the cell is in under 

microscopy.  

During its life cycle, T. brucei undergo structural and morphological changes allowing 

them to survive and propagate within their hosts. Figure 1.3 shows this progression of 

the T. brucei life cycle between the Tsetse fly and human host. This life cycle shows the 

Tsetse fly as the definitive host, as this is where the parasite reproduces and reaches 

maturity (Gibson et al., 2008). The human is the intermediate or reservoir host, where a 

small section of the life cycle is completed and the T. brucei is rapidly ready for 

transmission into a new Tsetse fly. From this figure we can see how the parasite moves 

from different life cycle stages, its localisation within its hosts and prepares for infection.  

Tsetse flies inject the metacyclic form of the T. brucei during a blood meal. Following 

injection, the parasites migrate to the lymphatic system and pass into the bloodstream 

of the host. Here they transform into the slender bloodstream form, once the parasites 

reach a certain population number they then differentiate into the stumpy form. The 

stumpy form is initiated by quorum sensing of the stumpy induction factor (Zimmermann 

et al., 2017). The parasites move from the spinal fluid and migrate across the blood 

brain barrier (BBB), although the mechanism for this depends on the species of 

Trypanosoma. The life cycle is continued through a second blood meal by an uninfected 

Tsetse fly, where the fly ingests the bloodstream form of the parasite. In the fly the 

parasites transform into the procyclic form and migrate through the midgut to the 

salivary gland, where the parasite is ready to infect again as the metacyclic form 

(Englund et al., 1982, CDC, 2015).  

  



Literature Review 

19 
 

 

Figure 1.2 Cell structure and division of T. brucei. A graphic showing the process of the 
cell cycle for the parasite T. brucei. Comparing the top and bottom panels illustrate the process 
of change to the organelles and the cell throughout the different stages. Cell cycle stages G1 
and G2: Gap phases, SN and SK: Synthesis for nucleus and kinetoplast, D: Division of 
kinetoplast, M: Mitosis of nucleus, A: Kinetoplast segregation and C: Cleavage of the cell. Cell 
organelles N: Nucleus, K: Kinetoplast, F: Flagellum and G: Golgi, where the number states how 
many of that organelle is present within the cell. Taken from (Hammarton et al., 2007). 
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Figure 1.3. Life cycle of T. brucei. An illustration to show the life cycle of the parasite T. 

brucei as it migrates between hosts. Stage 1 shows the mammal intermediate host being 
infected by the metacyclic trypomastigote during a blood meal. In subsequent stages 2-4 the 
parasite transforms in the bloodstream form and migrates to different areas of the body including 
the blood, lymph and spinal fluid. In the blood the parasite undergoes replication and can infect 
new Tsetse flies through a blood meal (stage 5). Stages 6-8 show the parasite undergoing 
different transformations, here the parasite reaches maturity (Gibson et al., 2008). After 3 weeks, 
the parasite transforms into the metacyclic form and present in the flies salivary gland ready to 
infect new mammals. Taken from (CDC, 2015). 
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1.3 Immune Evasion by Trypanosoma brucei 

Within the host, T. brucei are continually in contact with the host’s immune system, 

leading to a constant arms race between immunity and evasion. The constant threat 

from both the innate and adaptive immune response of the host has led to the evolution 

of evasion techniques by the parasite. 

 

1.3.1 Host Innate Immune Response 

Many species of primate, including humans, have evolved to have trypanosome lytic 

factors (TLFs), a type of high density lipoprotein, which acts as part of the innate 

immune response. TLFs work by using a haptoglobin (Hp)-related protein to help bind 

to haemoglobin (Hb), a food source for the parasite found within the bloodstream. T. 

brucei are able to ingest Hb from the blood. As TLFs are bound to the Hb, the 

trypanosome also ingests TLFs with the Hb food source (Bishop et al., 2001, 

Samanovic et al., 2009, Thomson et al., 2009). TLFs contains apolipoprotein L1 

(ApoL1), which is suggested to be the lytic factor. Where it forms pores in the T. brucei 

lysosome membrane, resulting in the depolarization of the lysosome. These osmotic 

changes are proposed as the cause of the parasite lysis (Perez-Morga et al., 2005, 

Shiflett et al., 2005). Of the three species of trypanosome being discussed in this report 

T.b.gambiense and T.b.rhodesiense have evolved to evade this method of immunity; 

leaving only T.b.brucei susceptive to TLFs (Thomson et al., 2009). 

 

1.3.2 VSG Function 

To protect the parasite from both the host’s acquired and innate immune responses T. 

brucei sub-species have a variant surface glycoprotein (VSG) coat. This coat contains a 

variable surface and also protects the invariant surface proteins (Ziegelbauer and 

Overath, 1993).  

VSGs are able to protect the parasite in multiple ways, largely as a result of their 

structure. The structure allows for tight packaging of the proteins on the surface coat, 

maximizing the number of them. VSGs are expressed mono-allegically and carry out 

coat cleansing and VSG switching to alter the VSG expressed (Horn, 2014). 
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1.3.3 VSG Structure 

The VSG has a characteristic structure containing an N-terminal variable region, a large 

variable region, a conserved region and a C-terminus GPI-anchor. Both the N-terminal 

signal sequence and the C-terminal GPI anchor have around 20 amino acids, the 

variable region has approximately 360 amino acids and the conserved region has 

approximately 100 amino acids (Baral, 2010).  

The N-terminal variable region of the VSG is made up of two antiparallel α-helices, 

considered to be the variable region. It is this variable region which helps to protect the 

protein from the acquired immune response, through antigenic variation. The conserved 

region of the protein allows for the dense packing of the VSGs on the surface coat 

(Rudenko, 2005). 

There are several possibilities for why the parasite has a GPI-anchor; they may allow 

for a higher packing density on the cell surface, the trafficking of VSGs, for recycling of 

the VSG coat or for the shedding of the VSG coat which requires GPI specific 

phospholipase C (Lillico et al., 2003). 

On the surface of each parasite at least 95% of the external exposed cell consists of 

VSGs, where there are estimated to be about 107 VSGs (Auffret and Turner, 1981) 

forming a densely packed layer on the parasite. This layer protects the parasites 

invariant surface proteins from the acquired immune response, as they stand slightly 

lower than the VSG particles. These invariant proteins have been found to have a 

similar tertiary structure to the larger VSG, allowing the proteins to pack tightly on the 

surface (Carrington and Boothroyd, 1996); permitting the parasite to defend against the 

innate complement pathway immune response (Rudenko, 2005).  

 

1.3.4 Surface Coat Cleansing 

Trypanosomes are able to carry out a ‘coat cleaning mechanism’, which is the process 

in which its VSGs are endocytosed by the flagellar pocket (FP) and then completely 

replaced. Endocytosis is facilitated by the GPI specific phospholipase C and 

hydrodynamic flow. Hydrodynamic flow enables the surface coat cleansing mechanism 

by creating a directional movement of the VSGs bound with host immune products 

towards the flagellar pocket for removal (Engstler et al., 2004). 

By endocytosing the VSGs the parasite is able to remove any host bound proteins, the 

host proteins are lysed in the cytoplasm. Such host proteins to be lysed are the anti-
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VSG antibodies. Once the host has mounted an acquired immune response to the 

presented VSGs, the parasite will be attacked by anti-VSG antibodies. Bloodstream 

surface VSGs are believed to have an entire population turnover every 12 minutes 

(Engstler et al., 2004). Through the process of ‘coat cleaning’ the parasite is able to 

defend itself against a low concentration of anti-VSGs, this occurs until a threshold 

concentration is reached where the parasite succumbs to the immune response (Russo 

et al., 1993, Engstler et al., 2007). Therefore, allowing for the specific VSG presented to 

have an increased lifespan. 

 

1.3.5 Monoallelic VSG Presentation 

Trypanosomes are monoallelic for VSG presentation, where the trypanosome itself will 

only express one specific VSG sequence in the variable region at any one time. This 

limits the number of VSG sequences the host immune system has a response for. To 

ensure this method works, the majority of the trypanosome population presents the 

same specific VSG sequence. By most of the population expressing one VSG 

sequence, the small population that may present an alternate VSG sequence will be 

protected through the ‘herd’ effect (Munoz-Jordan et al., 1996). Once the host immune 

system has been able to raise an effective response to the major VSG presented the 

trypanosome population will fall. Those trypanosomes presenting the minority VSG 

sequence will be unaffected by this immune response and will survive to allow for their 

specific VSG sequence to become the next major sequence presented (Landeira et al., 

2009). The hosts acquired immune system will be forced to begin the process once 

again for the new major sequence being presented, without ever fully eliminating the 

parasite population. 

Through this allelic exclusion resulting in one major VSG sequence being expressed at 

a time, the parasite population is able to survive multiple acquired immune responses. It 

is understood that trypanosomes have a library of over 2,000 different VSG sequences 

that they are able to present (Horn, 2014).  

 

1.3.6 VSG Switching 

The major VSG sequence being presented switches as the parasite population rises 

and then falls in response to the host mounting an acquired immune response. This 

method allows for extended evasion of the host immune response (Mugnier et al., 

2015).  
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The extensive library of VSG sequences originates from the trypanosome genomic 

organisation. When the VSG sequence is prepared for expression, it must first be 

present in the active expression site (ES) as one of the expression site associated 

genes (ESAGs) (Horn, 2014).  

The ES and VSG sequences are held on the telomeric arrays of the parasite 

chromosomes, allowing for ease of switching of the VSG sequence into the ES. To 

move into the ES, the VSGs are switched through the process of Homologous 

Recombination (HR) (Conway et al., 2002). Homologous recombination allows 

crossover of sections of DNA sequences, allowing a DNA sequence to ‘jump’ to another 

chromosome and hence switch. This process usually occurs near the telomeric arrays 

of chromosomes (Shinohara and Ogawa, 1995).  

The trypanosome parasite has a karyotype of 11 megabase chromosomes, three to five 

intermediate chromosomes and approximately 100 mini-chromosomes (Ogbadoyi et al., 

2000). It is the megabase chromosomes and the intermediate chromosomes which hold 

silent VSGs along with the ES for the VSG sequences (Marcello and Barry, 2007). 

There are approximately 20 VSG expression sites per trypanosome genome (Hertz-

Fowler et al., 2008). The mini-chromosomes do not hold any ES for the VSG 

sequences, but hold 150-250 silent VSG sequences (Alsford et al., 2009).  

Trypanosome populations use three different methods to switch which particular VSG is 

being transcribed. The most limited mechanism is transcriptional switching, this is 

where a different ES is activated as the ES to be transcribed. This will only use the 

VSGs which are currently present in the ESAGs (Rudenko, 1999). To access the VSGs 

present on other chromosomes the parasite carries out telomere exchange, where by 

recombination the silent VSGs can be moved into the ES by recombination. For the 

greatest range of VSG sequences, the parasite can undergo homologous 

recombination of different VSG sequences to create pseudo-VSG sequences (Horn and 

Barry, 2005), as depicted in Figure 1.4. 
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Figure 1.4. Illustration showing the switching of VSGs in the genome. Graphic 

showing how different VSG genes can be moved from telomeric sites on a chromosome into an 
expression site of a different chromosome. Pseudo genes made up of multiple different VSG 
sequence can be made and also added to expression sites. The dotted arrow lines represent 
homologous recombination. 
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1.4 Introduction to Homologous Recombination and Holliday Junctions 

Homologous recombination is a method of genetic recombination at two identical or 

nearly identical DNA strands, such as those between homologous chromosomes or 

more commonly, sister chromatids. Homologous recombination has a critical role in 

maintaining genome integrity and provides a mechanism to generate diversity. The 

process is mainly initiated at double strand breaks (DSB) by a meiosis specific 

endonuclease. Homologous recombination can have specific functions between 

species, such as VSG switching in T. brucei for immune evasion (Heyer et al., 2010, 

Conway et al., 2002). 

The recombination pathway consists of four main stages: 1) homologous pairing 2) 

exchange of DNA strands 3) template DNA synthesis 4) product generation. The first 

stage, homologous pairing happens when two chromosomes, one with a DSB, enter 

close proximity to each other, where one has DSB in the DNA. This allows for exchange 

of the DNA between participating DNA strands. The chromosome with the double stand 

break carries out strand invasion of the homologous chromosome. The DNA strands 

can then be used as a template for DNA synthesis, which is carried out by DNA 

polymerase. Finally, either dissolution (non-crossover) or resolution (crossover and non-

crossover) of the recombination intermediates to generate the DNA repair or a DNA 

crossover product (Capecchi, 1989, Camerini-Otero and Hsieh, 1995).  

The process of HR is initiated when a DSB occurs in the DNA sequence. The 

chromosome containing the DSB moves into close proximity with a whole homologous 

chromosome. Resection of the DNA sequence occurs, depending on the organism the 

DNA resection will either occur at the 5’ or 3’ end of the DNA. As resection occurs at 

only one end of the DNA strand, this leaves a single strand DNA overhang.  

The single strand DNA overhang invades the whole homologous chromosome DNA. As 

the DNA strand invades, it displaces the previously bound DNA strand creating a 

displacement loop. The newly invaded DNA strand can now undergo synthesis with 

DNA polymerase using the homologous chromosome as a template DNA strand. 

Following DNA synthesis, the invasion strand realigns back onto its chromosome in 

second end capture.  

Following second end capture either one or two HJs are formed. Holliday junctions are 

cross-stranded sections of DNA composed of four interacting stands, first proposed by 

Robin Holliday. This structure has been widely accepted to represent the intermediate 

structure of recombination (Holliday, 1964). To complete the process of HR the HJs 

need to be resolved, from Figure 1.5 resolution can occur in different ways.  
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In (a) the DNA strands undergo dissolution, here the displacement loop collapses 

forming a non-crossover product. Dissolution is the common method used in eukaryotes 

to create non-crossover products (Wyatt and West, 2014).  

Process (b) shows two different methods of resolution. Cleavage of the HJs are 

catalysed by endonucleases called HJ resolvases, this cleavage causes two 

unconnected DNA duplexes, which can rapidly be re-ligated using DNA ligase. 

Resolvases work by creating two almost simultaneous nicks in the DNA, which can 

occur symmetrically or asymmetrically (Wyatt and West, 2014). Depending how the 

DNA strands of the HJ are resolved, depends on whether a crossover or non-crossover 

product is formed.  

Figure 1.6 depicts the process of symmetrical resolution for a single HJ structure. In 

this example by cutting vertically a recombinant product is formed, showing the 

crossover of DNA between chromosomes. Such a crossover of DNA between 

chromosomes can move different genes between chromosomes. This example of 

resolving horizontally forms a non-recombinant product, showing non-crossover of DNA 

between different chromosomes. Non-crossover of DNA between chromosomes can be 

used as a process of DNA repair (Kowalczykowski et al., 1994).  

The process of resolution can produce the products of both crossover and non-

crossover products. Humans have two HJ resolvases which have been characterized 

within the cells, the SLX1-SLX4-MUS81-EME1 (SLX-MUS) protein complex and GEN1 

(Sarbajna and West, 2014). 
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Figure 1.5. Homologous recombination. Schematic showing the process of HR initiated 

by a double strand break of the DNA. Strand invasion occurs by the resected DNA to form a joint 
module and a displaced loop. Branch migration of the invaded strand occurs between the two 
chromosomes, where the displaced loop can anneal to the non-invading resected strand by a 
process of second end capture. Here the invading strand can replace the donor strand to form a 
single Holliday junction structure (not shown), or can anneal back to its original damaged DNA to 
form a double Holliday junction structure. Box (a) shows the process of dissolution, where box 
(b) shows the process of resolution of the Holliday junctions. Image taken from (Wyatt and West, 
2014) 
.  
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Figure 1.6. Resolution of Holliday junctions. Cartoon to show how the two types of 

symmetrical resolution forms the crossover recombinant product and the non-crossover non-
recombinant product. A process carried out by the HJ resolvase proteins E. coli RuvC and 
H.sapien GEN1. Adapted from (Kowalczykowski et al., 1994).  
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1.5 Endonuclease XPG/RAD2 family of proteins 

The XPG/RAD2 protein family is a single stranded structure specific endonuclease 

functional in nucleotide excision repair (NER) of damage to the DNA from UV radiation 

(O'Donovan et al., 1994, McCready et al., 2000). The naming of the family comes from 

the two member proteins Human Xeroderma pigmentosum complementation group G 

and the yeast Saccharomyces cerevisiae (S. cerevisiae) RAD2. This protein family 

shares three specific domains; an N-terminal XPG nuclease, an internal XPG nuclease 

and a helix-hairpin-helix domain (Lieber, 1997). Figure 1.7 shows the structure 

similarity between these proteins. XPG has been identified in humans, however RAD2 

has not yet been characterised in humans. 

XPG acts in the NER pathway in two ways. Firstly, it acts to stabilise the transcription 

factor II H (TFIIH), which co-localises with XPG to the site of DNA damage. Secondly, it 

cuts the 3’ side of DNA damage, working with the XPF-ERCC1 protein, which cuts 5’ 

the side of DNA damage, to remove the damaged section of DNA (Evans et al., 1997). 

RAD2 acts in a similar manner in yeast, where it cleaves DNA on the 3’ side of the 

damage in the NER pathway (Prakash and Prakash, 2000). Figure 1.8 illustrates the 

pathway for XPG, where XPG can be seen bind to the 3’ side of the DNA lesion bubble, 

cleaving the DNA at the 3’ junction. The damaged DNA is excised when ERCC1 

cleaves at the 5’ side, and XPG is no longer required. The single strand of DNA is then 

repaired with DNA polymerase to form dsDNA with no damaged lesions (Barakat and 

Tuszynski, 2013).  

GEN1 is a human HJ resolvase protein, which was first identified in 2008. It is a 

member of the XPG/RAD2 family of endonucleases. The function of Human GEN1 is 

characterised in Figure 1.6, GEN1 dimerises at the Holliday junctions where it near 

simultaneously carries out two symmetrical nicks to produce either a recombinant or 

non-recombinant product (Ip et al., 2008, Rass et al., 2010). As well as being a HJ 

resolvase, Human GEN1 shares a function of 5’ flap endonuclease activity similar to 

FEN1 (Rass et al., 2010).  
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Figure 1.7. XPG/RAD2 domains. Cartoon to show the presence of the three XPG/RAD2 
domains of the member proteins S. cerevisiae RAD2, Human XPG, Human GEN1 and Human 
FEN1. Domains are displayed green and red for the N-terminal and internal XPG nucleases and 
blue for the helix-hairpin-helix motif. Taken from (Ip et al., 2008).  
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Figure 1.8. Schematic to show the process of Nucleotide Excision Repair. Figure 

showing the involvement of the XPG protein during nucleotide excision repair. Once the DNA 
has been unwound XPG and TFIIH bind to the DNA lesion bubble, the TFIIH complex recruits 
ERCC1. XPG can be seen to nick the 3’ side of the DNA lesion bubble where ERCC1 nicks the 
5’ side. Figure taken from (Barakat and Tuszynski, 2013). 
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Flap endonuclease protein (FEN1), a member of the XPG/RAD2 family, acts as a 5’ flap 

endonuclease. Flap endonucleases remove single stranded DNA flap structures, such 

as those from Okazaki fragments created during lag strand DNA replication (Liu et al., 

2004). As seen in Figure 1.9, DNA polymerase δ or ε displaces the 5’ RNA primer 

during DNA replication. For replication to continue the 5’ RNA flap is removed by FEN1 

nicking the DNA next to the single-stand overhang to remove the initiator RNA and a 

portion of DNA (Lieber, 1997, Kao and Bambara, 2003). 

Currently there are no proteins which have been characterised to carry out HJ 

resolvase in the T. brucei parasites. If HJ resolvases were found in T. brucei parasites, 

given the functional similarity to human GEN1 we would also expect structural 

similarities. Through characterisation of orthologs of human GEN1, a HJ resolvase 

protein may be found in the T. brucei and therefore potentially a protein involved in the 

process of VSG switching.  
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Figure 1.9. Endonuclease activity of FEN1 during DNA replication. Diagram showing 

the process of DNA replication, where the DNA polymerase displaces the RNA primer to form an 
RNA-DNA single strand flap. To remove the DNA flap FEN1 nicks the junction of the flap. Taken 
from (Liu and Wilson, 2012).  
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1.6 Project Aims 

The primary aim of this project is to find proteins within the T. brucei parasite which 

show potential homology to the protein human GEN1. We will carry out a bioinformatic 

analysis of the proteins to analyse the sequence structures of the trypanosome proteins 

and compare with human GEN1, a known HJ resolvase protein in humans. 

Following identification of trypanosome proteins with homology to the Holliday junction 

resolvase, human GEN1, sequences will be processed and expressed in bacterial cells 

for purification. Purified homologous proteins can then be prepared for future 

experimentation, such as assays to interrogate biochemical function.  

Parasite cell lines with tagged homologous proteins will be created to investigate 

localisation of the proteins within the parasite. 

Further parasite cell lines will be produced with a biotinylating marker added to the 

homologous proteins to investigate potential protein-protein interactions.  
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2 Materials and Methods 

2.1 Buffers, Solutions and Ingredient Providers 

2.1.1 Buffers and Solutions 

Buffers and media were made using Milli-Q water.  

Buffer/Solution Ingredients 

Agarose Gel Agarose low EEO, used at 0.8% w/v with 1x TAE 

Ammonium Persulphate 10% w/v 

Biotin 1mM Stock made into cell media, added at 50 µM to    

5 x 105 cells/ml 

Dialysis Buffer 8 M Urea, 0.02% Triton-X, 20 mM Tris, 500 mM 

Sodium chloride, 10% Glycerol 

Dithiothreitol (DTT) Stock solution made at 1M 

DNA Loading Buffer (6x) 0.15% Orange G, 30% Glycerol 

Immunoblot BSA Blocking 

Buffer 

1 x PBS, 0.05% Tween 20, 1% w/v BSA 

Immunoblot Milk Blocking 

Buffer 

1 x PBS, 0.05% Tween 20, 5% Skimmed Milk Powder 

Immunoblot Transfer Buffer 

(1x) 

48mM Tris(hydroxymethyl)amino methane (Tris-HCL), 

39 mM Glycine, 0.037% Sodium dodecyl sulphate 

(SDS), 20% Methanol 

Immunoblot Washing Buffer 1 x PBS, 0.025% Tween-20 

Immunofluorescence Slide 

Blocking Buffer 

1 x PBS, 0.05% Tween-20, 1% w/v BSA 

Immunofluorescence Slide 

Washing Buffer 

1 x PBS, 0.05% Tween-20 

Isopropyl β-D-1 

thiogalactopyranoside (IPTG) 

Stock solution made at 1 M 

Lysogeny Broth (LB) Low Salt 

Agar 

15 g per 500 ml 

LB Broth 1.25 g per 50 ml 

10x Phosphate Buffered Saline 

(PBS) 

1.37 M Sodium chloride, 27 mM Potassium chloride, 

101 mM Disodium hydrogen phosphate, 18 mM 

Potassium dihydrogen phosphate, pH 7.4 

PEME 1% NP40 1% Nonident-P40 in 0.1 M piperazine-N,N’-bis(2-
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ethanesulphonic acid) (PIPES), 2 mM ethylene glycol 

tetraacetic acid (EGTA), 1 mM magnesium sulphate, 

0.1 M ethylenediaminetetraacetic acid (EDTA), pH6.9 

Protein Purification Native - 

Immobilised-metal Affinity 

Chromatography (IMAC) 

Native Lysis Buffer 

0.001% Benzonase, 0.01% Lysozyme in Native Lysis 

Buffer 

Native Binding Buffer 2x 

0.04% Triton-X, 40 mM Tris-HCL (pH 8), 1 M Sodium 

chloride, 40 mM Imidazole, 20% Glycerol 

Native Binding Buffer (Wash) 

0.02% Triton-X, 20 mM Tris-HCL (pH 8), 500 mM 

Sodium chloride, 20 mM Imidazole, 10% Glycerol 

Native Elution Buffer 

0.02% Triton-X, 20 mM Tris-HCL (pH 8), 500 mM 

Sodium chloride, 500 mM Imidazole, 10% Glycerol 

Protein Purification Denaturing 

- IMAC 

Denaturing Binding Buffer 

8 M Urea, 0.02% Triton-X, 20 mM Tris-HCL (pH 8), 500 

mM Sodium chloride, 20 mM Imidazole, 10% Glycerol 

Refolding Buffer (Wash) 

3M Urea, 0.02% Triton-X, 20mM Tris-HCL (pH 8), 

500mM Sodium chloride, 20mM Imidazole, 10% 

Glycerol 

Refolding Elution Buffer 

3 M Urea, 0.02% Triton-X, 20 mM Tris-HCL (pH 8), 

500mM Sodium chloride, 500 mM Imidazole, 10% 

Glycerol 

Protein Purification Denaturing 

Guanidine - IMAC 

Guanidine Denaturing Buffer 

6 M Guanidine-Hydrochloride, 0.02% Triton-X, 20 mM 

Tris-HCL (pH 8), 500 mM Sodium chloride, 10% 

Glycerol 

High Urea Denaturing Wash Buffer 

8 M Urea, 0.02% Triton-X, 20 mM Tris-HCL (pH 8) 500 

mM Sodium chloride, 20 mM Imidazole, 10% Glycerol 

High Urea Denaturing Elution Buffer 

8 M Urea, 0.02% Triton-X, 20 mM Tris-HCL (pH 8), 500 

mM Sodium chloride, 500 mM Imidazole, 10% Glycerol 
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Protein Purification – Ion-

exchange Chromatography 

(IEX) 

Low Salt Buffer 

20 mM Tris-HCL (pH 8.5), 1 mM EDTA, 10% Glycerol 

High Salt Buffer 

20 mM Tris-HCL (pH 8.5), 1 mM EDTA, 10% Glycerol, 

500 mM Sodium chloride 

Semi-Defined Medium-79 

(SDM-79 Media) (5L) 

SDM-79 powder (5L), 23.8 mM Sodium bicarbonate, 

pH 7.3.  

Supplemented with 10% Heat innactivated foetal 

bovine serum (FBS) and 0.008 M Hemin 

Sodium Dodecyl Sulphate 

Polyacrylamide Gel 

Electrophoresis (SDS-PAGE) – 

8% and 10% Resolving Gel 

1.5 M Tris-HCL (pH 8.8), 30% Acrylamide mix, 10% 

SDS, 10% Ammonium persulphate, 0.1% N,N,N’, N’, - 

tetramethylethylenediamine (TEMED) 

SDS Loading Buffer 100 mM Tris-HCL (pH 6.8), 4% SDS, 0.2% 

Bromophenol blue, 20% Glycerol, 200 mM DTT 

SDS-PAGE 5% Stacking Gel 1 M Tris-HCL (pH 6.8), 30% Acrylamide mix, 10% 

Ammonium persulphate, 0.1% TEMED 

SDS-PAGE Running Buffer 

(10x) 

250 mM Tris-base, 1.92 M Glycine, 35 mM SDS 

Tris-Acetic acid EDTA (TAE) 

Buffer (50x) 

2 M Tris, 1M Acetate, 50 mM EDTA, pH 8.6 

ZMG Buffer 132 mM Sodium chloride, 8 mM Potassium chloride, 8 

mM Disodium hydrogen phosphate, 1.5 mM Potassium 

dihydrogen phosphate, 0.775 mM Magnesium acetate, 

0.063 mM Calcium acetate, pH 7.5 
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2.1.2 Ingredient Supplier 

Ingredient Provider 

30% Acrylamide mix Sigma-Aldrich 

Agarose Low EEO l Melford 

Amersham Hybond-P PVDF 

Membrane 

GE Healthcare 

Ammonium Persulphate Sigma-Aldrich 

Biotin Sigma-Aldrich, Cat – B4639 

Bovine Serum Albumin (BSA) Lyophilised powder – Sigma Aldrich – Cat – A9418 

Molecular biology grade solution (conc) – 

ThermoScientific 

Elution Buffer ThermoScientific – R1263  

Dialysis Cassette Slide-A-Lyzer™ Dialysis Cassette, 3.5K MWCO 0.1ml-

0.5ml – ThermoScientific, Cat - 88400 

Dimethyl Sulfoxide (DMSO) Sigma-Aldrich 

Dithiothreitol (DTT) Melford 

DNA Loading Buffer (6x) Acros Organics 

Doxycycline Melford 

Ethanol Absolute – FisherScientific 

10% Foetal Bovine Serum (FBS) BioSera  

15% FBS Sigma-Aldrich 

GelRed™ 10,000x – ThermoScientific 

Gene Pulsar® Electroporation 

Cuvette 

BioRad 

GeneJET PCR Purification Kit ThermoScientific – K0701 

GeneJET Plasmid Miniprep Kit ThermoScientific – K0502 

GeneRuler™ 1kb DNA Ladder ThermoScientific 

1x Glutamax Gibco Life Sciences 

Glycerol Melford 

Hemin Sigma-Aldrich 

HiTrap™ 1 ml Chelating Column GE Healthcare – Cat – 17-09203-03 

Immobilon™ Western 

Chemiluminescent HRP 

Substrate 

Millipore 

InstantBlue™ Expedeon 

Isopropyl β-D-1 Melford 
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thiogalactopyranoside (IPTG) 

Ligation Buffer 2x Rapid Ligation Buffer (Promega) 

10x Ligation Buffer (Promega) 

Lysogeny Broth (LB) Low Salt 

Agar 

Melford 

LB Broth Melford 

Methanol FisherScientific 

Mono Q™ 5/50 GL GE Healthcare – Cat – 17-5166-01 

0.1% N,N,N’, N’, - 

tetramethylethylenediamine 

(TEMED) 

Sigma-Aldrich 

PageRuler™ Plus Prestained 

Protein Ladder (10 – 250 kDa) 

ThermoScientific 

Paraformaldehyde (PFA) 1x PBS Sigma 

Precision Plus™ Protein All Blue 

Prestained Protein Standards 

(10-250 kDa 

BioRad 

1x Penicillin-Streptomycin Gibco Life Sciences 

Phosphate Buffered Saline (PBS) (10xPBS) – Melford 

(20xPBS) – Sigma-Aldrich 

 

Native Lysis Buffer Qiagen 

 

Ni-NTA Spin Column Qiagen – Cat 1011712 

Semi-Defined Medium (SDM)-79 

Powder 

Gibco Life Sciences 

 

Super Optimal Broth (SOC) ThermoScientific 

T4 Ligase Promega 

Tuner™ (DE3) pLacI Competent Novagen 

Vectashield® Mounting Medium 

with DAPI 

VectorLabs 

XL1-Supercompetent Cells Agilent Technologies 
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2.2 Antibiotic, Drug Stocks and E. coli strains 

2.2.1 Antibiotic and Drug Stocks  

Antibiotic/Drug Concentration/Provider 

Ampicillin Stock solution made at 100 mg/ml diluted in Milli-Q, Sigma-

Aldrich, Cat – A0166. Used at 100 µg/ml in LB agar and broth 

Blasticidin Stock solution made at 10 mg/ml diluted in Milli-Q, Millipore, 

Cat – 203350. Used at in 10 µg/ml in trypanosome media.  

Chloramphenicol Stock solution made at 25 mg/ml diluted in absolute Ethanol, 

Sigma-Aldrich, Cat – C0378. Used at 25 µg/ml in LB Agar and 

12.5 µg/ml in LB Broth. 

Hygromycin Stock solution made at 25 mg/ml diluted in Milli-Q, Sigma-

Aldrich, Cat – H3274. Used at 25 µg/ml in trypanosome media.  

Kanamycin Stock solution made at 30 mg/ml diluted in Milli-Q, Sigma-

Aldrich, Cat – K1377. Used at 30 µg/ml in LB agar and broth 

Phleomycin Stock solution made at 25 mg/ml diluted in Milli-Q, Sigma-

Aldrich, Cat – P9654. Used at 7.5 µg/ml in trypanosome media. 

Puromycin Stock solution made at 10 mg/ml diluted in Milli-Q, Sigma-

Aldrich, Cat – P8833. Used at 3 µg/ml in trypanosome media. 
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2.2.2 E. coli stains  

Strain Name Full Genotype 

Tuner™ (DE3) pLacI F– ompT hsdSB (rB– mB–) gal dcm lacY1(DE3) pLysS 

(CamR)  

XL-1 Blue Competent  recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 

[F´ proAB lacIq Z∆M15 Tn10 (Tetr )] 
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2.3 Vector Maps 

pGEM-T Easy 

 

 

pDEX-377 –– Wickstead Lab 

 

  

A. 

B. 
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pPOT Vector 

 

 

pET24a - Novagen 

 

 

Figure 2.1. Vector Maps. (A) pGEM®-T Easy vector map. This vector was used for the 

cloning of amplified PCR products, Promega. (B) pDEX377 vector map. Derivatives of this vector 
were used as a biotinylating and MYC vector, and a GAFSINPAM (GSP) epitope tag vector, 
(Kelly et al., 2007). (C) PCR only tagging (pPOT) vector v2 vector map. The pPOTv2 vector was 
used to tag target proteins with a N-terminus YFP tag, (Dean et al., 2015). (D) pET24a(+) vector 
map. This vector was used for the expression of hexa-histidine tagged proteins, Novagen. 
 

C. 

D. 
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2.4 Antibodies and Affinity Proteins Used 

Antibody Epitope Published/Company Dilution Blocking Buffer 

Anti c-myc mouse monoclonal Myc Ab 18185, Abcam WB – 1:1,000 

IF – 1:200 

WB – Milk 

IF – BSA 

Anti 6x-His tag mouse 

monoclonal HRP conjugate 

6xHis Thermo Fisher, 

4E3D10H/E3 

 

WB – 1:10,000 WB – Milk 

Anti KMX-1 mouse monoclonal β-Tubulin Courtesy of Dr K. Gull WB – 1:1,000 WB – Milk 

Anti-TDP-43, clone DB9, mouse 

monoclonal 

GAFSINPAM Millipore WB – 1:10,000 

IF – 1:200 

WB – Milk 

IF – BSA 

Rabbit 308 pre-immune bleed, 

TbFEN1 rabbit polyclonal 

TbFEN1  Eurogentec WB – 1:1,000 

IF – 1:1,000 

WB – Milk 

IF – BSA 

Rabbit 308 final bleed, TbFEN1 

rabbit polyclonal 

TbFEN1 Eurogentec WB – Range 

IF – Range 

WB – Milk 

IF – BSA 

Rabbit 309 pre-immune bleed, 

TbFEN1 rabbit polyclonal 

TbFEN1 Eurogentec WB – 1:1,000 

IF – 1:1,000 

WB – Milk 

IF – BSA 

Rabbit 309 final bleed, TbFEN1 

rabbit polyclonal 

TbFEN1 Eurogentec WB – Range 

IF – Range 

WB – Milk 

IF – BSA 

Table 2.1. Primary Antibodies. WB - western blotting (immunoblot) and IF immunofluorescence. 
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Antibody Epitope Published/Company Dilution Blocking Buffer 

Goat Anti-mouse IgG HRP 

conjugate 

 12-349, Millipore WB – 1:80,000 WB – Milk 

Anti-mouse IgG, Rhodamine 

(TRITC) conjugated 

 AP124R, Millipore IF – 1:200 IF – BSA 

Anti-rabbit HRP conjugate  P 0217, 

DakoCytomation 

WB – 1:1,700 WB – Milk 

Goat anti-rabbit IgG, Alexa 

Fluor® 568 conjugate 

 A11036, Invitrogen IF – 1:1,000 IF – BSA 

Table 2.2. Secondary Antibodies. WB western blot (immunoblot) and IF immunofluorescence.  

 

 

Protein Epitope Company  Dilution Blocking Buffer 

Streptavidin HRP 

conjugate 

Biotin Ab-7403, Abcam WB – 1:10,000 WB – BSA 

Streptavidin TRTIC 

conjugate 

Biotin Ab 136223, Abcam IF – 1:200 IF – BSA 

Table 2.3. Affinity Protein. WB western blot (immunoblot) and IF immunofluorescence.   
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2.5 Polymerase Chain Reaction Primers 

Primer ID Use Sequence 

TbFEN1 HindIII F PCR 5’ AGA AGC TTA TGG GTG TTC TTG GCC TTT CGA AAC TTC 3’ 

TbFEN1 XhoI R PCR 5’ AGC TCG AGC TTT TTG ACA GCC TTT TTG TGT 3’ 

TbRAD2 HindIII F PCR 5’ AGA AGC TTA TGG GTG TCC ATG GAC TGT G 3’ 

TbRAD2 NdeI F PCR 5’ AGC ATA TGG GTG TCC ATG GAC TGT G 3’ 

TbRAD2 XhoI R PCR 5’ AGC TCG AGC GGA TCA CCC CTG GCT GC 3’ 

TbRAD2 Muta F Mutagenesis 5’ GCC ATC GAC GCA AGC ATC TGG ATA GCG CAG 3’ 

TbRAD2 Muta R Mutagenesis 5’ CTG CGC TAT CCA GAT GCT TGC GTC GAT GGC 3’ 

pPOT Tb830 F pPOT Tag 5’ ATG TCA CAG TTT TTG CTA CTG CCT TTC CTC ACA ATT CTT TCC GGA AAG TCT TTC GTT GAT 3’ 

pPOT Tb830 R pPOT Tag 5’ AAA TAA ACT TTC AGC TCT TGT TCC TTA ATG GCG CCA GGA GTT CTG TCG TAC AGA AGC TTC 3’ 

pPOT Tb11760 F pPOT Tag 5’ ATA TAC ACA AAT GCA TAT GTG CCG AAG GAG TCA CTT TGA ATG ACT TCT TAT TCG CTT TTT 3’ 

pPOT Tb11760 R pPOT Tag 5’ ACG CGT TTG CCT TTC CAA TCG GCG GGT TGC GTA ACC TCA CCG AAG GTG TCG AGG AGG 

CGC 3’ 

Table 2.4. Primers. Underlined sequences represent restriction sites, red bases represent bases which will be altered via mutagenesis in the 

target gene. F and R in primer ID, represent Forward and Reverse primers respectively.  
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2.6 Equipment Used 

Equipment/Company Uses 

AKTA™ Prime Plus, GE Healthcare Large scale protein purification by IMAC 

AKTA™ Purifier HPLC Large scale protein purification by IEX 

ChemiDoc™ MP, Bio-Rad Imaging of coomassie stained SDS-PAGE and 

chemifluorescence of immunoblots 

Gel Doc™ EZ System, Bio-Rad Imaging of Gel Red agarose gels and coomassie 

stained SDS-PAGE 

Deltavision™ Elite, GE Healthcare Fluorescent image capture and deconvolution of 

immunofluorescence slides 

NanoDrop 2000 Spectrophotometer, 

ThermoScientific  

Measuring the concentration of dsDNA (260 nm) 

and purified protein (280 nm)  
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2.7 Parasite Cell Biology  

2.7.1 Parasite Cell Counts 

All cell densities were calculated using a haemocytometer and recorded at regular intervals 

based on the length of the experiment.  

 

2.7.2 Procyclic T. brucei Cell Culture 

Trypanosome cell cultures underwent passage regularly to maintain the cells in the log 

phase of growth. Cells were grown to a density of ~1 x 107 cells/ml and diluted to 2 x 105 – 5 

x 105 cells/ml. Procyclic cell lines were cultured using SDM-79 composition media in cell 

culture flasks with standard non-filter screw tops, at 28°C. 

 

2.7.3 Ethanol Precipitation of DNA for Transfection 

Plasmids were ethanol precipitated prior to transfection into T. brucei. Plasmid vector 

linearised by digestion with NotI (Methods 2.9.11) and 3 M sodium acetate (pH 5.2) was 

added at 1 in 10 of the original digest volume, absolute ethanol was then added at 2.5x of 

the total volume of digest and sodium acetate. The solution was mixed and DNA left to 

precipitate at -80°C for 1 - 16 hours. 

Precipitated DNA was pelleted at 22,000 x g for 50 minutes at 4°C. Supernatant was 

removed and remaining ethanol allowed to evaporate off inside Class II Microbiology safety 

cabinet. Once confident all ethanol had evaporated the DNA pellet was washed with 70% 

ethanol centrifuged to a pellet, dried and then re-suspended in 50 µl sterile elution buffer. 

 

2.7.4 Transfection of procyclic T. brucei  

For transfection, 3 x 107 cells of the cell line to be transfected were pelleted at 400 x g for 10 

minutes; the supernatant was removed, cells re-suspended in 0.5 ml sterile ZMG buffer, and 

transferred to a Gene Pulsar® Electroporation Cuvette. Plasmid DNA (3 – 10 µg) was added 

to the cell suspension and mixed. The cell-DNA suspension was then electroporated using a 

BTX electroporator (3 pulses 1,700 mV for 100 µs with pulse intervals of 200 µs). Cells were 

allowed to recover overnight in media without drugs, before being diluted to a cell density of 

5 x 105 - 1 x 106 cells/ml with appropriate drug selection.  
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2.7.5 Parasite Population Induction 

Before beginning an experiment, trypanosomes were cultured in drug free SDM-79 

composition media for 48 hours and passed back to a concentration of 5x105 cells/ml. 

Transgenic cells were then induced with the addition of 1µg/ml doxycycline.  

 

2.7.6 Fluorescence Microscopy 

To prepare slides for fluorescence microscopy trypanosome cells were grown in SDM-79 

composition media to a density of 1 x 107 cells/ml. From the culture, 1 x 107 cells were 

collected and centrifuged at 2,400 x g for 3 minutes and the media supernatant removed. 

The cells were then washed twice by re-suspending the pellet in 1 ml of 1 x PBS and 

centrifuged at 2,400 x g for 3 minutes to pellet the cells. After the final wash, the cells were 

re-suspended in 1 x PBS at a final concentration of 1 x 107 cells/ml and 50 - 100 µl added to 

wells created on slides with hydrophobic pen. Procyclic cells were left for 15 minutes to allow 

cells to settle on to the slide before being fixed in ice-cold absolute methanol.  

Cytoskeletons were prepared by detergent-extraction by the addition of 1% PEME NP-40 for 

25 seconds before fixing in methanol. 

For bloodstream cells, a minimum of 2x106 cells were added per slide, with an additional 

fixing step of 2% PFA for 15 minutes before being added to ice-cold methanol.  

Prepared slides were stored in ice-cold methanol at -20°C for a minimum of 10 minutes 

before probing.  

 

2.7.7 Probing Slides for Fluorescence Microscopy 

Cells were re-hydrated in 1 x PBS for 10 minutes, and then incubated for 1 hour in 

immunofluorescence blocking buffer within a humidified chamber. Once blocking buffer was 

removed from the slide, primary antibody diluted in blocking buffer (Table 2.1) was added at 

50 µl per slide, and incubated for a further hour in the humidified chamber. The primary 

antibody was removed by washing slides three times in immunofluorescence wash buffer, 

for 5 minutes on each occasion, before addition of secondary antibody diluted in blocking 

buffer (Table 2.2), and incubated for a further hour in the humidified chamber. The 

secondary antibody was removed by following the same washing procedure as described 

previously.  
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A single drop of Vectashield® Mounting Medium with DAPI, was added before a cover slip 

was placed onto the slide and sealed with nail varnish. Slides were enclosed in foil and 

stored at 4°C.  

 

2.7.8 Preparation of T. brucei Proteins for Immunoblot Analysis 

For immunoblot assays, 5 x 106 cells were required per lane. The required quantity of cells 

were pelleted at 400 x g for 10 minutes to remove the media supernatant. Cells were then 

washed twice in 1 x PBS with centrifugation at 2,400 x g for 3 minutes. The washed pellet 

was re-suspended in SDS-loading buffer at a concentration of 5 x 105 cells/µl boiled at 

100°C for 10 minutes and stored at -80°C. 

 

2.7.9 Preparation of Cell Stabilates 

Cell lines were grown to a density of 5 x 106 - 1 x 107 cells/ml and glycerol added to a final 

concentration of 10% v/v. Stabilates were collected as 1ml aliquots in twist cap cryogenic 

tubes and initially stored at -80°C overnight before being moved for long term storage under 

liquid nitrogen.  

Stabilate cells were revived 1:10 in SDM-79 media and cultured under normal conditions. 

Cells were allowed to recover for at least one subculture, before antibiotics were added for 

selection.  
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2.8 Molecular Biology Techniques 

2.8.1 Oligonucleotide Primers 

Oligonucleotide primers (Table 2.4) were designed by Dr Benson and ordered from 

Invitrogen Life Technologies. Primers were reconstituted to form a stock concentration of 

100 µM and stored at -20°C. For use in PCR reactions the stock solutions were diluted in 

sterile autoclaved Milli-Q water to form a working concentration of 10 µM. 

 

2.8.2 PCR Amplification of Target Genes 

High Fidelity PCR was used for the amplification of target genes. Reactions contained 

Primers       125 ng  

DMSO       256 mM 

T. brucei 927 gDNA     50 – 100 ng 

PCR nucleotide mix      200 µM (of each dNTP) 

Expand™ High Fidelity Polymerase 3.5 U/µl  3.5 U 

10X Expand™ High Fidelity Buffer with Magnesium Chloride  

The PCR reaction conditions: 

Cycle Number Temperature (°C) Length 

(Min:Secs) 

Cycle Process 

1 94 05:00 Initial Denaturing Repeat 

X30 2 94 00:30 Denature 

3 55 - 62 00:30 Annealing 

4 72 01:30 Elongation 

5 72 05:00 Final Elongation 

Table 2.5. Table showing conditions used for standard PCR reactions. Annealing 

temperature variance is dependent on the melting point of the primers used.  

 

2.8.3 PCR only Tagging (pPOT) 

The process of pPOT tagging by PCR follows the same protocol as methods 2.9.2, instead 

the pPOT vector replaces the gDNA as the template used with a shorter final elongation of 2 

minutes.  

 



Materials and Methods 

53 
 

2.8.4 Purification of PCR products 

Purification of the PCR products was carried out using GeneJET™ Purification Kit. Purified 

products were eluted in 30 - 50 µl of elution buffer and stored at -20°C.  

 

2.8.5 Ligation of PCR products into cloning/expression vectors 

PCR products were ligated into linearised cloning/expression vectors Figure 2.1 A and D, 

using rapid ligation buffer, 1 - 3 U T4 Ligase, 50 ng vector and PCR product. The amount of 

DNA insert was calculated to give a 1:3 vector to insert ratio. Ligations were incubated at 

room temperature for an hour, before being incubated overnight at 16°C.  

 

2.8.6 Transformation into E. coli  

All transformations used 50 µl of competent E. coli strains as received from provider, the E. 

coli cells were slowly thawed on ice. Once thawed 1 µl of the ligation product was added and 

the mixture left to incubate for 20 minutes on ice. Cells were then heat-shocked at 42°C for 

45 seconds and returned to ice for 2 minutes. After 2 minutes on ice, 200 µl of prewarmed 

LB broth was added. The cells were then incubated at 37°C for 20 minutes and agitated at 

200 – 250 rpm, this allowed for recovery prior to plating on antibiotic supplemented LB agar 

for selection. 

After the 2 minutes on ice for E. coli strains XL1-Blue supercompetent cells and Tuner™ 

(DE3) pLacI competent cells, they were instead added to pre-warmed SOC medium and 

allowed to recover for 90 minutes.  

Plates were incubated overnight at 37°C and resistant colonies streaked on new 

supplemented LB agar to isolate single colonies. 

 

2.8.7 Colony PCR 

Transformants were picked using sterile tips, spotted onto labelled LB agar and then used to 

inoculate a 100 µl aliquot of Milli-Q water. To lyse the E. coli, the Milli-Q mix was boiled for 

10 minutes and then centrifuged at 11,000 x g for 10 minutes. The supernatant, which 

contains the plasmid of interest, was added to a standard PCR reaction Table 2.5, in place 

of the gDNA.  
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2.8.8 Purification of plasmid DNA  

E. coli colonies were individually picked and inoculated in 5 ml LB broth supplemented with 

appropriate antibiotics. The bacterial suspension was incubated overnight at 37°C at 200-

250 rpm, and cells then pelleted at 2,000 x g for 10 minutes. Plasmid DNA was purified 

using the GeneJet™ Plasmid Miniprep Kit and purified DNA stored at -20°C. 

 

2.8.9 Oligonucleotide Sequencing 

Purified recombinant pGEM-T Easy plasmids were sent to Source BioScience at 100 ng/µl 

for sequencing using standard M13F and M13R primers. For gene Tb927.9.11760 internal 

primers were also required. 

 

2.8.10 Site-directed Mutagenesis  

Site directed mutagenesis was used to change one of the nucleotides within the sequence, 

whilst ensuring that the amino acid sequence was un-changed. For mutagenesis the 

QuickChange II Site-Directed Mutagenesis kit was used with 20 ng dsDNA plasmid and the 

E. coli XL1-Blue Supercompetent cells.  

 

2.8.11 Restriction Enzyme Digests 

Digests were carried out according to suppliers (Roche) instructions. For double digests, the 

buffer that was most efficient for both enzymes was used. 

 

2.8.12 Analytical Agarose Gel Electrophoresis 

Agarose gels (0.8% w/v in 1 x TAE) containing 1x GelRed™, were cast and placed into gel 

tanks containing 1 x TAE buffer. DNA samples were mixed with 1x DNA loading buffer and 

Milli-Q water, and resolved. GeneRuler™ 1kb DNA ladder was used at 0.5 µg as 

recommended by supplier (ThermoScientific) 

 

2.8.13 Preparative Agarose Gels and Gel Extraction 

DNA was loaded onto 0.8% w/v agarose gels which did not include GelRed™. The DNA was 

resolved by electrophoresis. GeneRuler™ 1kb DNA ladder was used at 0.5 µg as 
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recommended by supplier (ThermoScientific).Once DNA had been resolved, samples were 

post stained with GelRed™ for 20-30 minutes under agitation and viewed with UV light. DNA 

bands were excised from the gel and purified using the GeneJet™ Gel Extraction Kit. 

Purified DNA was stored at -20°C.  

 

2.8.14 SDS-PAGE  

Acrylamide resolving gels (8% or 10%) were cast with a 5% acrylamide stacking gel 

(Sambrook et al., 1989). Protein samples were mixed with SDS loading buffer and heated to 

100°C for 10 minutes. Samples were loaded into wells and resolved at 140 V until the lower 

MW bands of the PageRuler™ Plus Prestained Protein Ladder (10 – 250 kDa) or Precision 

Plus™ All Blue Prestained Protein Ladder (10 – 250 kDa), began to run off the gel. Resolved 

gels, unless being used for immunoblotting, were stained using InstantBlue™. 

 

2.8.15 Transfer of Proteins to Blotting Membrane 

Proteins resolved by SDS-PAGE were transferred onto Amersham Hybond-P PVDF 

Membrane. Firstly, membranes were permeabilised in absolute methanol for 10 seconds, 

rinsed and soaked with Milli-Q water for 5 minutes, then soaked for a further 5 minutes in 

western transfer buffer. The membrane, SDS-PAGE, blotting papers and sponges were then 

loaded into BioRad™ cassettes, and completely submerged in transfer buffer and proteins 

transferred at 100 V for 60 minutes. If membranes were not to be used straight away they 

were air dried on blotting paper and stored at 4°C. 

 

2.8.16 Immunoblotting 

Membranes that had been stored at 4°C were re-permeabilised in absolute methanol for 10 

seconds, and then rinsed and washed in Milli-Q water for 5 minutes, washed twice for 5 

minutes in 1 x PBS and then incubated in immunoblot blocking buffer for 1 hour at room 

temperature or overnight at 4°C under gentle agitation. Primary antibodies were diluted in 

blocking buffer (see Table 2.1), added to the membranes and incubated for an hour at room 

temperature, or overnight at 4°C, under gentle agitation. After incubation with primary 

antibody the membrane was washed 3 times for 10 minutes with immunoblot washing buffer. 

Appropriate secondary antibody was diluted in its appropriate blocking buffer (Table 2.2), 

and the membrane incubated for an hour at room temperature under gentle agitation before 

being washed 3 times for 10 minutes with immunoblot washing buffer. Blots were developed 
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using Immobilon™ western chemiluminescent HRP substrate according to manufacturer’s 

instructions (Millipore). 

 

2.8.17 Exposing of Immunoblots 

Signals from the chemiluminescent HRP substrate were exposed using the ChemiDoc™ 

system. The ChemiDoc™ allowed for prolonged time-period of exposure, along with ‘live’ 

visualisation of the exposure.  
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2.9 Protein Expression and Purification  

2.9.1 Small Scale Inductions, Temperature and IPTG Concentration Tests 

Small scale expression cultures of 20 – 25 ml LB broth, containing chloramphenicol and 

kanamycin, were inoculated with 0.2 ml of a fresh overnight culture of the relevant bacterial 

strain. Cultures were incubated at 37°C with agitation of 150 – 200 rpm, and growth followed 

by monitoring OD600 until the culture had an absorbance of 0.4 - 0.6, indicative of mid-log 

growth phase.  

Protein expression was induced with 1 mM IPTG, incubation was continued at 37°C with 

agitation for a further 3 hours. Samples of 1 ml, were taken prior to addition of IPTG and at 

intervals of one hour. These samples were centrifuged at 1,000 x g for 4 minutes, 

supernatants removed, and the pellets re-suspended in 100 µl SDS-loading buffer ready for 

SDS-PAGE, Methods 2.8.14. Following the 3 hour incubation period, the remaining bacterial 

culture was centrifuged at 1,000 x g for 10 minutes at 4°C, the supernatant removed and the 

pellet stored at -80°C. 

Different experimental variables were used for the temperature and IPTG concentration. 

Temperatures 30°C and 37°C were used against 1 mM and 0.1 mM IPTG. 

 

2.9.2 Large scale inductions 

As in Methods 2.9.1, overnight cultures were prepared and the suspension inoculated in 

400 ml fresh LB broth with drugs. Suspensions were incubated at 37°C under agitation and 

cultured until the bacteria had reached mid-log growth, expression was then induced with 0.1 

mM IPTG and cultured for a further 3 hours at 30°C. The resulting bacterial culture was then 

centrifuged at 1,000 x g for 20 minutes at 4°C, supernatant removed and the pellet stored at 

-80°C. 

 

2.9.3 Small scale lysis under native conditions 

Pellets from small scale inductions (Methods 2.9.1) were defrosted on ice and 1ml cold 

native lysis buffer was added. The solution was mixed by pipetting and incubated on ice for 

20 minutes. Insoluble material was pelleted by centrifugation at >11,000 x g for 15 minutes, 

the supernatant removed and diluted 1:1 with 2x native binding buffer ready for purification 

by IMAC 
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2.9.4  Small scale lysis under denaturing conditions 

Pellets from small scale inductions (Methods 2.9.1) were defrosted on ice and lysed by 

addition of 1ml of denaturing buffer (containing either 8 M urea or 6 M guanidine 

hydrochloride). The solution was mixed, incubated on ice for 20 minutes and then sonicated 

for 3 x 15 seconds. The lysate was then centrifuged at >11,000 x g for 15 minutes and the 

supernatant diluted 1:1 in the respective denaturing buffer, ready for purification of induced 

protein. 

 

2.9.5 Large scale lysis under native conditions 

Pellets from large scale inductions (Methods 2.9.2) were lysed in 16ml native lysis buffer 

containing 1% protease inhibitor cocktail (EDTA free. The solution was mixed and incubated 

on ice for 30 minutes, followed by sonication for 3 x 20 seconds. Insoluble material was then 

pelleted by centrifugation at 66,200 x g for an hour at 4°C, the supernatant passed through a 

0.45 µm syringe filter and the soluble supernatant diluted 1:1 in 2x native binding buffer. 

 

2.9.6 Spin Column IMAC 

Recombinant proteins expressed in small scale inductions were purified using Ni-NTA spin 

column. These spin columns were used for purification under both native and denaturing 

lysis methods, with different solutions used for the washing and elution.  

Spin columns were equilibrated with binding/denaturing buffer prior to addition of 600 µl of 

the diluted supernatant obtained from lysis and centrifuged at 260 x g for 2 minutes. Material 

flowing through column was collected and retained for analysis. Spin columns were washed 

with three 600 µl aliquots of wash buffer, in each case centrifuging at 260 x g for 2 minutes, 

and washes collected and retained for analysis. Bound proteins were then eluted from the 

columns with three 200 µl aliquots of elution buffer, and eluates collected.  

 

2.9.7 HiTrap™ IMAC 

Recombinant proteins expressed in large scale inductions were purified using 1 ml HiTrap™ 

chelating column, using native buffer conditions at 4°C. Columns were primed with 0.1 M 

nickel sulphate and excess nickel sulphate remove by washing with Milli-Q water. Columns 

were then equilibrated with binding buffer and soluble protein injected on to the column. 

Unbound proteins were removed by washing with an excess of wash buffer. Protein was 
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then eluted with a gradient of 0 - 100% elution buffer (30 – 500 mM imidazole), collecting 1 

ml fractions throughout. 

 

2.9.8 Mono Q™ GL IEX 

Recombinant protein were further purified from contaminants by using a Mono Q™ 5/50 GL, 

anion exchange column. Fractions from IMAC Methods 2.9.7 which contained the highest 

concentrations of target protein, were collected and the salt concentration was decreased by 

diluting 1:10 with low salt IEX buffer. Once the column was equilibrated with binding buffer 

the diluted protein solution was injected onto the column. Bound proteins were eluted, using 

a gradient of 0 - 100% high salt IEX buffer (0 – 500 mM NaCl). The flow rate was 1 ml/min, 

where the flow through was carried out over 38 minutes and the gradient carried out over 25 

minutes. The eluate was collected into 1 ml fractions.  
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3 Identification of Trypanosoma brucei proteins with homology to human 

Holliday junction resolvase protein GEN1 

3.1 Chapter Synopsis 

To identify putative T. brucei orthologues of the human Holliday junction resolvase 

GEN1bioinformatics analysis was undertaken. This involved comparing the amino acid 

sequences, secondary and tertiary structures of human GEN1 protein with putative T. brucei 

orthologues. 

 

3.2 Bioinformatic Interrogation of TbFEN1, TbRAD2 and Human GEN1 Proteins 

Using the 906 amino-acid sequence of the Human GEN1 protein, a BLASTP search was 

carried out. The search was performed against the non-redundant protein sequence 

database for Trypanosoma brucei brucei TREU927 (taxid 185431). This search identified 

four T. brucei proteins with various degrees and sequence similarity to human GEN1 (Table 

3.1). 

Protein description Query Cover (%) E Value Identification (%) 

Putative Flap Endonuclease 

FEN1, Tb927.3.830 – TbFEN1 

22 5x10-17 28 

Putative DNA Repair Protein 

RAD2, Tb927.9.11760 – TbRAD2 

22 2x10-11 41 

Exonuclease 24 0.002 20 

Hypothetical Protein (accession 

no XM_818129.1) 

9 3.2 31 

Table 3.1. BLASTP results. Table showing top hit T. brucei proteins identified by the Human 

GEN1 sequence. E value depicts the random background hits to be expected. 
 

Of the four proteins identified, the proteins annotated as TbFEN1 and TbRAD2 were 

selected for further analysis. The literature review identified that both of these proteins are 

likely members of the XPG/RAD2 family and may potentially be involved in homologous 

recombination, hence this decision was deemed appropriate. The exonuclease and 

hypothetic protein were disregarded because the E values were of low significance 

indicating their identification may be due to chance. The amino acid sequences of Human 

GEN1, TbFEN1 and TbRAD2 protein were aligned using the Clustal Omega programme 

(Figure 3.1)  
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GEN1        ------------------------------------------------------------ 0 

TbFEN1      MGVLGLSKLLYDRTPGAIKEQELKVYFGRRIAIDASMAVYQFVIAMKGFQEGQSVELTNE 60 

TbRAD2      MGVHGLWRLLDTFG--E--VTQPADWKGKRVAIDASIWIAQFRSSC---EPGESV----- 48 

                                                                         

 

GEN1        ------------------------------------------------------------ 0 

TbFEN1      AGDVTSHLSGIFFRTLRMIDEGLRPIYVFDGKPPTLKASELESRRQRAEDAKHE------ 114 

TbRAD2      ---EERILEGFFMRILKLLFYGIEPIFVFDGPSTMSKRAEQRRRAQHREALEQAMVTRHA 105 

                                                                         

 

GEN1        ------------------------------------------------------------ 0 

TbFEN1      ------------------------------------------------------------ 114 

TbRAD2      RRLIAAQMSAGLLDVHSLPRKYRSPGSGKKLQKPLRQSLPPTDLLHDVDEDVGESCVETG 165 

                                                                         

 

GEN1        ------------------------------------------------------------ 0 

TbFEN1      ------------------------------------------------------------ 114 

TbRAD2      TILLQPKGRKKRTREVCLAPEVVSRSLTHSFLSEAEIFLEQRKTFEKFHENNRLAYTSTS 225 

                                                                         

 

GEN1        ------------------------------------------------------------ 0 

TbFEN1      ------------------------------------------------------------ 114 

TbRAD2      IFMGPRRVAEEVSRALGGATRGEAESIQGSSAGNSSSSSVLVEGVGSAAIVVEEECGDSV 285 

                                                                         

 

GEN1        -----------------------------------------------MGVNDLWQILEPV 13 

TbFEN1      ------------------------------------------------------------ 114 

TbRAD2      CEILSSSSCSVIVVDNAIKTDPHAVDAFHHNVSFGKEEESTSDEVEVLSSGDYWSCADND 345 

                                                                         

 

GEN1        KQHIPLRNL----GGKTIAVDLSLWVCEAQTVKK-------------------------- 43 

TbFEN1      ------------------------------------------------------------ 114 

TbRAD2      CDDLLSLAASDRTPDTQCNDSTHLWYPGTQLLGGLGSADDGGIVDESRDNCTETSCGLSE 405 

                                                                         

 

GEN1        --MMGSVMKP------HLRNLFFRISYLTQMDVKLVFVMEGEPPKLKADVISKRNQSRYG 95 

TbFEN1      ---------------------F---------E---KAKEEGDDEAM--EKMSK------- 132 

TbRAD2      FNPFGGVVVPSGNLRKDEKEVLLNTSVITSSE---TLETTGIPLKV--PSVSR------- 453 

                                 :         :        *    :    :*:        

 

GEN1        SSGKSWSQKTGRSHFKSVLRECLHMLECLGIPWVQAAGEAEAMCAYLNAGGHVDGCLTND 155 

TbFEN1      ------RMV---RVGRDQMEEVKTLLRLMGIPVVQAPSEAEAQCAELVKKNKAWAVGTED 183 

TbRAD2      ------EHVREKQVVPFELLGIVELLDCCGIPYVLSPNEADAQCAFLNEQRVVDAVFTED 507 

                              :     :*   *** * :  **:* ** *     . .  *:* 

 

GEN1        GDTFLYGAQTVYRNFTMN-TKDPHVDCYTMSSIKSKLGLDRDALVGLAILLGCDYLPKGV 214 

TbFEN1      MDALAFGSRVMLRHLTYGEAKKRPIAEYHLDEILEASGFSMQQFIDLCILLGCDYVP-RI 242 

TbRAD2      SDVIVHGAPVVLRGFFS---KGRHVVAYRQSDL-LACGVDKVVLVALALLLGCDYAE-GV 562 

             *.: .*: .: * :     *   :  *  ..:    *..   :: *.:******    : 

 

GEN1        PGVGKEQALKLIQILKGQSLLQRFNRWNETSCNS--SPQLLVTKKLAHCSVCSHPGSPKD 272 

TbFEN1      SGIGPHKAWEGIKK-----------Y---------GS-------LEAFIESLDGTRYVVP 275 

TbRAD2      NGLSLLESLHVIAA-----------TWRQTTNSVEGGAEQVRDMLSSWCSAVRRRRIPWG 611 

             *:.  :: . *                        .         :  .           

 

GEN1        HERNGCRLCKSDKYCEPHDYEYCCPCEWHRTEHDRQLSEVENNIKKKACCCEGFPFHEVI 332 

TbFEN1      EE-----------------FNYK---DARNFFLE-----------------PEVTPGEEI 298 

TbRAD2      ED-------------VPLTRFYRNYVKWSTLQLA-----------------DSFPESHVV 641 

            .:                   *    .                          .   . : 

 

GEN1        QEFLLNKDKLVKVIRYQRPDLLLFQRFTLEKMEWPNHYACEKLLVLLTHYDMIERKL-GS 391 

TbFEN1      DIQFRE------------PDEEGLIKFLVDEKLFSKERVLKGIQR------L-------- 332 

TbRAD2      DAYFNP------------TVNTDTRPFVCAAPDWTKLRLFASMHG------ILNKKYCGE 683 

            :  :                      *      : :      :        :         
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GEN1        RNSNQLQPIRIVKTRIRNGVHCFEIEWEKPEHYAMEDKQ----HGEFALLTIEEESLFEA 447 

TbFEN1      -------------------------------RDALTKKTQGRLDQFFTITKPQKQVNSEA 361 

TbRAD2      RLENAQ-------------RECQ---RRQPPSGDPADSAQRRLTDFFSPLPNRERVIFRK 727 

                                                ..        *:    .:.   .  

 

GEN1        AYPEIVAVYQKQKLEIKGKKQKRIKPKENNLPEPDEVMSFQSHMTLKPTCEIFHKQNSKL 507 

TbFEN1      STAGTKRNR--GAVALPGVLQRKSS-----SGHKKAVKK--------------------- 393 

TbRAD2      QPPKF---S--E--ALS---YLRAA-----RGDP-------------------------- 746 

                           :      :         .                            

 

GEN1        NSGISPDPTLPQESISASLNSLLLPKNTPCLNAQEQFMSSLRPLAIQQIKAVSKSLISES 567 

TbFEN1      ------------------------------------------------------------ 393 

TbRAD2      ------------------------------------------------------------ 746 

                                                                         

 

GEN1        SQPNTSSHNISVIADLHLSTIDWEGTSFSNSPAIQRNTFSHDLKSEVESELSAIPDGFEN 627 

TbFEN1      ------------------------------------------------------------ 393 

TbRAD2      ------------------------------------------------------------ 746 

                                                                         

 

GEN1        IPEQLSCESERYTANIKKVLDEDSDGISPEEHLLSGITDLCLQDLPLKERIFTKLSYPQD 687 

TbFEN1      ------------------------------------------------------------ 393 

TbRAD2      ------------------------------------------------------------ 746 

                                                                         

 

GEN1        NLQPDVNLKTLSILSVKESCIANSGSDCTSHLSKDLPGIPLQNESRDSKILKGDQLLQED 747 

TbFEN1      ------------------------------------------------------------ 393 

TbRAD2      ------------------------------------------------------------ 746 

                                                                         

 

GEN1        YKVNTSVPYSVSNTVVKTCNVRPPNTALDHSRKVDMQTTRKILMKKSVCLDRHSSDEQSA 807 

TbFEN1      ------------------------------------------------------------ 393 

TbRAD2      ------------------------------------------------------------ 746 

                                                                         

 

GEN1        PVFGKAKYTTQRMKHSSQKHNSSHFKESGHNKLSSPKIHIKETEQCVRSYETAENEESCF 867 

TbFEN1      ------------------------------------------------------------ 393 

TbRAD2      ------------------------------------------------------------ 746 

                                                                         

 

GEN1        PDSTKSSLSSLQCHKKENNSGTCLDSPLPLRQRLKLRFQST 908 

TbFEN1      ----------------------------------------- 393 

TbRAD2      ----------------------------------------- 746 

                                                      

Figure 3.1. Multiple sequence alignment. Sequence alignment of Human GEN1, TbFEN1 and 

TbRAD2 to show the basic similarity in sequence between the three protein sequences. Result 
obtained by EMBL-EBI Clustal Omega (Goujon et al., 2010, Sievers et al., 2011, McWilliam et al., 
2013) 
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As discussed in Chapter 1.5, and shown in Figure 1.7, human GEN 1, FEN1 and RAD2 

have three conserved domains that are characteristic of the XPG/RAD2 family. To confirm 

identity and explore in greater detail the sequence similarity between the T. brucei and 

human protein sequences, a reciprocal BLASTP analysis was undertaken using the T. 

brucei proteins as the query sequence. 

As seen in Figure 3.2, it was confirmed that GEN1 and TbFEN1 have highly-conserved 

regions at the N-terminus of the protein sequence, between 1-350 aa for both proteins. 

Contrastingly, TbRAD2 has two discrete regions of domain structure at 1-125aa and 450-

700aa. From the figure, it appears that both GEN1 and TbFEN1 proteins have their active 

sites near the N-terminus. Along with these active sites there are DNA and metal binding 

sites. Therefore, it can be inferred that interaction with the DNA and the proteins functions 

with DNA occurs here. In contract, TbRAD2’s DNA and metal binding sites appear closer to 

the C-terminus, indicating the location of the active sites is at the opposite terminus to 

TbFEN1.  

The BLASTP identified DNA and metal binding sites in both the human GEN1 and TbFEN1 

at similar positions in the protein. The similarity between the human and T. brucei proteins 

indicate potential conserved functional regions between the two proteins. In both T. brucei 

proteins, putative binding sites were identified in the Helix-3 turn-Helix (H-3TH) regions, 

suggesting a potential functional role at this region. To explore these relationships further a 

more rigorous pairwise alignment tool Matcher EMBOSS was used to compare the amino 

acid sequence of the two trypanosome proteins directly to human GEN1.  

The Matcher software found one region of partially conserved sequence alignment between 

each of the trypanosome genes and human GEN1 (Figure 3.3). Matcher EMBOSS identified 

the amino acid region 52-222 in human GEN1 as conferring the greatest sequence similarity 

with the amino acid region 67-250 in TbFEN1, at 44.9% sequence similarity. When 

comparing human GEN1 with TbRAD2, the analysis identified the amino acid region 118-

226 in human GEN1 as having the greatest sequence similarity (59.6%) with the region 470-

574 in TbRAD2.  

These results support the output from BLASTP in Figure 3.2, where the regions of similarity 

are evident before and at the beginning of the H-3TH domain region. This further supports 

the suggestion of functional similarity being related to this region. The H-3TH region is part 

of the secondary structure of the proteins. As a result of these analyses, it was important to 

investigate the secondary protein structure. 
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Figure 3.2. Conserved amino-acid regions. Schematics showing the conserved regions of the proteins of interest (A) human GEN1, (B) TbFEN1 and 

(C) TbRAD2. Results obtained by BLASTP using NCBI Conserved Domain tool (Marchler-Bauer and Bryant, 2004, Marchler-Bauer et al., 2009, Marchler-
Bauer et al., 2011, Marchler-Bauer et al., 2015)

A. 

B. 

C. 
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GEN1-TbFEN1 

GEN1              52 HLRNLFFRISYLTQMDVKLVFVMEGEPPKLKADVISKRNQS------RYG     95 

                     ||..:|||...:....::.::|.:|:||.|||..:..|.|.      .:. 

TbFEN1            67 HLSGIFFRTLRMIDEGLRPIYVFDGKPPTLKASELESRRQRAEDAKHEFE    116 

 

GEN1              96 SSGKSWSQKTGRSHFKSVLR-------ECLHMLECLGIPWVQAAGEAEAM    138 

                     .:.:....:......|.::|       |...:|..:|||.|||..||||. 

TbFEN1           117 KAKEEGDDEAMEKMSKRMVRVGRDQMEEVKTLLRLMGIPVVQAPSEAEAQ    166 

 

GEN1             139 CAYLNAGGHVDGCLTNDGDTFLYGAQTVYRNFTMN-TKDPHVDCYTMSSI    187 

                     ||.|..........|.|.|...:|::.:.|:.|.. .|...:..|.:..| 

TbFEN1           167 CAELVKKNKAWAVGTEDMDALAFGSRVMLRHLTYGEAKKRPIAEYHLDEI    216 

 

GEN1             188 KSKLGLDRDALVGLAILLGCDYLPKGVPGVGKEQA    222 

                     ....|......:.|.|||||||:|: :.|:|..:| 

TbFEN1           217 LEASGFSMQQFIDLCILLGCDYVPR-ISGIGPHKA    250 

 

GEN1-TbRAD2 

GEN1             118 LHMLECLGIPWVQAAGEAEAMCAYLNAGGHVDGCLTNDGDTFLYGAQTVY    167 

                     :.:|:|.|||:|.:..||:|.||:||....||...|.|.|..::||..|. 

TbRAD2           470 VELLDCCGIPYVLSPNEADAQCAFLNEQRVVDAVFTEDSDVIVHGAPVVL    519 

 

GEN1             168 RNFTMNTKDPHVDCYTMSSIKSKLGLDRDALVGLAILLGCDYLPKGVPGV    217 

                     |.|.  :|..||..|..|.:.: .|:|:..||.||:||||||. :||.|: 

TbRAD2           520 RGFF--SKGRHVVAYRQSDLLA-CGVDKVVLVALALLLGCDYA-EGVNGL    565 

 

GEN1             218 GKEQALKLI    226 

                     ...::|.:| 

TbRAD2           566 SLLESLHVI    574 

 

Sequence 

to GEN1 

Length Identity (%) Similarity 

(%) 

Gaps (%) Score 

TbFEN1 185 28.6 44.9 8.1 149 

TbRAD2 109 41.3 59.6 3.7 184 

Figure 3.3. Pairwise sequence alignment. A sequence alignment using the more rigorous 

alignment tool Matcher, which identifies local similarities based on the Lalign tool. Results obtained 
from EMBL-EBI and EMBOSS tool Matcher, (Rice et al., 2000, McWilliam et al., 2013, Li et al., 
2015). From the Matcher analysis only partial sequences were found to be of similar alignment.  
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3.3 Secondary Structure Comparisons 

To gain a greater confidence that the proteins of interest may be GEN1 orthologues, the 

secondary structures were predicted. The sections observed were part-sequences which 

showed conserved domains, as seen in Figures 3.2 and 3.3. 

Structures were predicted using PHYRE2, which produces structural models of the proteins 

of interest based on their alignment to known protein sequences/structures (Kelley et al., 

2015). Figures 3.4 and 3.5 show the predictions of the secondary structures human GEN1 

against TbFEN1 and TbRAD2 respectively.  

Comparing the predicted secondary structures of human GEN1 to TbFEN1, it can be 

observed that there is clearly structural similarity, with the only section of difference 

between the proteins’ being in the region of amino acids 83-124 and 98-154 of the human 

GEN1 and TbFEN1 sequences respectively. For human GEN1, there is one long helix, 

whereas for TbFEN1 this same section is split into three. At the C-terminus of the three 

helices in the stated region there is an area of weakened ‘SS confidence’, suggesting a 

lack in confidence of the three apparent helices. These three helices could be associated 

with gaps seen in the matched sequence shown in Figure 3.3, which occur between amino 

acids 108-113 and 137-143 in the TbFEN1 sequence. Comparing directly to the secondary 

structures, 108-113aa is part of a helix where 137-143aa is part turn and part helix.  

At the end of both sequences in Figure 3.4, the conserved amino acid domains appear in a 

pattern of 6 conserved regions, followed by another 6 regions, finally followed by 4 

conserved regions, at 204-223aa and 324-351aa for human GEN1 and TbFEN1 

respectively. This is consistent with Figure 3.2 in location and in pattern, where figure B 

identifies a conserved region at the end of the sequence, where the regions are close 

together with two of equal size followed by a slightly shorter region, likely another 6-6-4 

pattern. Appearing as putative DNA binding sites with an alternative domain, the alternative 

domain in human GEN1 appears as a metal binding site as shown in Figure 3.2. 

Trypanosome FEN1 protein instead shows this alternative domain to be a putative 5’ 

ssDNA interaction site instead of the metal binding site as expected from Figure 3.2.  

Figure 3.5 compares the predicted secondary structures for human GEN1 and TbRAD2. It 

can be seen from the figure that the two secondary structure sequences are almost 

identical. Where only the predicted conserved domains do not appear to match. As 

described previously, human GEN1’s has a 6-6-4 pattern of amino acid domains, whereas 
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TbRAD2 shows a conserved sequence of 2-1-3-1 amino acid domains. For TbRAD2 these 

domains match Figure 3.2 where the majority are DNA binding sites and one metal binding 

site. Therefore, the expected domain roles for TbRAD2 match the human GEN1 domains 

although they do not appear in the same pattern.  

The matching secondary structures from Figures 3.4 and 3.5 provide a greater confidence 

that the trypanosome proteins may potentially have a similar function or role as that of 

human GEN1.  

Although the predicted secondary structures appear to be similar, further analysis was 

carried out to predict the tertiary structures. Sections of the secondary structures not 

considered in this analysis, and different amino acid sequences, may cause the 

trypanosome proteins to have different tertiary structures.  
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A. Human GEN1, Covering protein sequence 50 – 230. 

 

B. TbFEN1, Covering protein sequence 61 - 260 

 

Figure 3.4. Predicted secondary structures of human GEN1 and TbFEN1. Comparison 

of secondary structures predicted within the area of interest found by Matcher, with ranging 
confidence and predictions of conserved domains. Results obtained with PHYRE

2
 (Kelley et al., 

2015).  
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A. Human GEN1, Covering protein sequence 110 - 230 

 

B. TbRAD2, Covering protein sequence 468 – 580 

 

Figure 3.5. Predicted secondary structures of human GEN1 and TbRAD2. Comparison 

of secondary structures predicted within the area of interest found by Matcher, with ranging 
confidence and predictions of conserved domains. Results obtained with PHYRE

2
 (Kelley et al., 

2015). 
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3.4 Tertiary Structure Comparisons 

Tertiary structures were predicted to analyse how the interactions of the underlying amino 

acids and changes in the secondary structures might affect the proteins 3-dimensional 

character. Although this analysis does not specifically tell us about the functionality of the 

protein, similar predicted structures to the GEN1 protein support evidence that they may be 

orthologues. 

As well as predicting secondary structures, PHYRE2 can also be used to predict a potential 

tertiary structure for the protein of interest. PHYRE2 has both Normal and Intensive 

prediction parameters; normal prediction parameters compare hidden Markov modelling 

(HMM) of the sequence of interest against HMM of known proteins to find areas of 

homology; Intensive prediction parameters use these results to build a tertiary structure ab 

initio based on the confidence of this HMM-HMM comparison. The method of ab initio 

comparison can be highly inaccurate so these intensive models can only be taken as a 

guide of what the protein may look like. 

For the human GEN1 protein sequence PHYRE2  was unable to predict a viable tertiary 

structure. The structure predicted simply showed few secondary structures and only turns. 

Therefore, it could not be meaningfully used to compare against the trypanosome proteins. 

Instead the programme was able to search for already resolved GEN1 protein structures. 

This identified the crystal structure of the eukaryotic Chaetomium thermophilum (C. 

thermophilum) GEN1 bound to DNA to be found at a resolution of 2.5 Å; as seen in Figure 

3.6 A and B. To view the comparison of the tertiary structures of GEN1 to the T. brucei 

proteins of interest, the fungal eukaryotic GEN1 was used. The programme also found the 

resolved crystal structure for human FEN1 shown in C of Figure 3.6, however no resolved 

protein structure for RAD2 was identified to be used for comparison purposes. 

Figure A shows how the fungal GEN1 interacts with DNA in a pair like manner. This 

suggests that GEN1, acts in a pair when carrying out Homologous Recombination. To 

understand this interaction further it was important to look at how the protein and DNA bind 

together. 

Figure B and Figure C focus on how the different proteins interact and bind with DNA. By 

comparing the two figures, it can be seen that the fungal GEN1 and human FEN1 proteins 

bind with DNA slightly differently. From these figures, it appears that the human FEN1 

protein binds in a more physical manner than the fungal GEN1. This is seen by the way the 
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FEN1 wraps round the DNA double helix, relative to the GEN1 which binds to the side. This 

difference could potentially be due to FEN1’s smaller size or that it acts singularly. The 

wrapping of the protein may also affect its function with the DNA relative to GEN1. 

Figures D and E show the predicted tertiary structures of the trypanosome proteins 

TbFEN1 and TbRAD2. The TbFEN1 structure shares similar morphology to the human 

FEN1 structure, which can easily be seen from Figure C. Although the predicted version 

appears to contain longer turns between the helices and beta-strands. The similar 

structures suggest TbFEN1 would interact with DNA in a similar manner to human FEN1.  
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A. C. thermophilum GEN1 Chains A and B bound to DNA 

 
 

B. C. thermophilum GEN1 Chain A bound to DNA 
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C. Human FEN1 bound with DNA 

 

 

D. TbFEN1 Predicted Structure 
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E. TbRAD2 Predicted Structure 

 

Figure 3.6. Tertiary structures. Ribbon models of tertiary structures for (A) C. thermophilum 

GEN1 Chains A and B, PDB: 5CO8. (Liu et al., 2015) (B) C. thermophilum GEN1 Chain A, PDB: 
5CNQ. (Liu et al., 2015) (C) human FEN1, PDB: 3Q8L. (Tsutakawa et al., 2011) (D) TbFEN1, 
PHYRE

2
 predicted. (Kelley et al., 2015) (E) TbRAD2, PHYRE

2
 predicted. (Kelley et al., 2015). 

Images A, B and C show proteins bound to a DNA molecule, shown by the colour magenta. 
Rainbow coloured images B, C, D and E show the protein sequence from the N-terminus to the C-
terminus, by the changing from blue to red. Molecular graphics and analyses were performed with 
the UCSF Chimera package. Chimera is developed by the Resource for Biocomputing, 
Visualization, and Informatics at the University of California, San Francisco (supported by NIGMS 
P41-GM103311). (Pettersen et al., 2004).  
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To obtain a clearer visual impression of the similarity between the tertiary structures, the T. 

brucei proteins were superimposed on to the fungal GEN1 protein. To superimpose the 

proteins the UCSF Chimera MatchMaker tool was used; shown in Figure 3.7 for TbFEN1 

and TbRAD2 respectively.  

From Figure 3.7 A, it can clearly be seen that there is more structural similarity between 

the fungal GEN1 and TbFEN1 than could originally been interpreted from Figure 3.6. This 

is seen by the many overlapping helices, strands and turns. Where the fungal GEN1 is 

shown bound to DNA, the predicted trypanosome structures are not based on being bound 

to DNA. As expected from the individual tertiary structures, there is a distinct difference 

between structures at the point where the TbFEN1 would wrap around the DNA. It can be 

assumed that upon TbFEN1 binding to DNA the two structures could have a closer 

resemblance due to conformational change.  

In Figure 3.7 B, it can clearly be seen that it is the C-terminus of the protein which has 

structural similarity to the fungal GEN1, seen by the overlapping helices and strands. From 

this information, it appears that it is the C-terminus of the protein which interacts with DNA. 

From this comparison, it can now be seen that the protein appears as if it will wrap around 

the DNA in an equivalent manner as the TbFEN1 would.  

The superimposed images, provides clearer evidence that all three proteins have structural 

homology, although it cannot provide a clear answer as to whether these proteins have a 

similar function in homologous recombination to GEN1 it may suggest an orthologous 

relationship.  
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A. Chain A C. thermophilum GEN1 with TbFEN1 

 

B. Chain A C. thermophilum GEN1 with TbRAD2 

 

Figure 3.7. Superimposed tertiary structures. Predicted Ribbon tertiary structures (A) 
TbFEN1 (light blue) and (B) TbRAD2 (light blue) (Kelley et al., 2015), superimposed on C. 
thermophilum GEN1 (beige) chain A, PDB: 5CNQ (Liu et al., 2015). Both images show GEN1 bound 
to DNA, coloured in magenta. Made using UCSF Chimera MatchMaker tool, Molecular graphics and 
analyses were performed with the UCSF Chimera package. Chimera is developed by the Resource 
for Biocomputing, Visualization, and Informatics at the University of California, San Francisco 
(supported by NIGMS P41-GM103311). (Pettersen et al., 2004).  
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3.5. Chapter Summary  

The results reported in this chapter identify two T. brucei proteins with similar sequence 

and structure to the human GEN1 protein. A comparison of the amino acid sequences, 

domain architectures, as well as predicted secondary and tertiary structures, were used to 

predict whether these proteins were potential orthologues of the human protein.  

From this bioinformatics analysis, it was observed that both T. brucei proteins show a high 

degree of similarity to the human GEN1 in their primary amino acid sequence, along with 

similar observed secondary and tertiary structures sequences and the domain 

architectures. 

Given the structural similarities of the trypanosome proteins, and that the human GEN1 

protein is a member of this XPG/RAD2 family, the trypanosome proteins are likely 

candidates for also being members of this family.  

The structural similarities suggest the T. brucei proteins may function in a similar manner to 

the human GEN1, where direct experimental analysis of the T. brucei proteins is carried in 

future chapters to explore this.   
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4 Expression and Purification of T. brucei Holliday Junction Resolvase-

like Proteins 

4.1 Chapter Synopsis 

For any future biochemical experimentation, the TbFEN1 and TbRAD2 proteins would need 

to be expressed and purified. Therefore, to see whether these proteins could be expressed 

as recombinant fusion proteins, E. coli exploratory expression and purification experiments 

were carried out.  

 

4.2 Large Scale Purification of His-Tagged TbFEN1 

So that the TbFEN1 purified protein could be meaningfully used for potential future 

experiments, a large amount of the protein would be required.  

The plasmid used was pJGO4 (Jennifer Owen, unpublished) and is a derivative of pET24a 

in which the TbFEN1 open reading frame has been inserted via NdeI and XhoI sites to 

generate a recombinant plasmid in which TbFEN1 is expressed with a C-terminal 6xHis 

tag. Expression and purification conditions had previously been optimised (McAllister, 

unpublished). 

Bacteria containing recombinant plasmid pJGO4 were induced using the optimum 

expression conditions determined in previous small scale purification (0.1 mM IPTG at 

30°C). Bacteria were lysed under native buffer conditions and the insoluble material 

removed by centrifugation. 

Soluble proteins were injected into a Hi-Trap™ Ni-NTA column, using an AKTA Prime Plus 

system unbound proteins were removed by washing with a low imidazole buffer, and bound 

proteins eluted with a 20 mM to 500 mM imidazole gradient in binding buffer. The 

absorbance of material eluting from the column was monitored by the system, and fractions 

with elevated absorbance (indicative of proteins in eluate) were analysed by SDS-PAGE.  

Figure 4.1 shows SDS-PAGE analysis of the purification fractions from IMAC purification, 

the SDS-PAGE results indicate that the 48 kDa TbFEN1 protein is present in fractions 18-

27, at 150-300 mM imidazole concentrations. Where the fractions 21-25 contained the 

highest concentration of TbFEN1 protein, at 200-275 mM. Further analysis indicates the 



Expression and Purification of T. brucei Holliday Junction Resolvase-like Proteins 

79 
 

presence of a range of other E. coli proteins that remain as contaminants at this stage of 

the purification.  

Elution fractions shown in Figure 4.1 were visually assessed to identify which fractions 

contained the greatest amount of TbFEN1 protein, in combination with the least amount of 

contaminants present. From this it was decided to use take fractions 23-25 forward for IEX 

purification. These samples were pooled and diluted with IEX binding buffer to reduce the 

salt concentration and then injected onto the Mono-Q™ column. Using the the AKTA 

Purifier the unbound proteins were washed away with a low salt buffer, and the bound 

proteins eluted with a 0 mM to 500 mM salt gradient.  

Figure 4.3 shows SDS-PAGE analysis of the fractions obtained following IEX purification. 

Analysis of elution fractions indicates the presence of the 48kDa TbFEN1 protein in 

fractions 4-13, at 125-350 mM sodium chloride. With the highest concentration of the 

TbFEN1 protein in fractions 6-8, at 175-225 mM sodium chloride.  

From fraction 8 onwards, additional protein bands are visible, indicating the presence of 

contaminating E. coli proteins in these fractions. From this analysis, the TbFEN1 was 

determined to be most pure in fractions 4-7, and present in the highest concentration in 

fractions 6 and 7. Fractions 6 and 7 were retained and used in further experiments.  
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Figure 4.1. SDS-PAGE analysis of fractions obtained following purification by IMAC. 
12% SDS-PAGEs showing the eluted fractions of IMAC purification as imidazole concentration was 
increased. (a) Shows the lysate, soluble, flow through and TbFEN1 reference fractions for 
comparison against elutes 15-19, (b) Shows elutes 20-28. The fractions eluted correspond with the 
fractions in Figure 4.2. Ladder used – Precision plus protein™ All blue prestained proteins 
standards 10-250kDa protein ladder, BioRad.  

A. 

B. 
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Figure 4.2. UV Absorbance of Large Scale TbFEN1 IMAC Purification Curves. Graphs 

to show the rate of protein elution against the concentration imidazole with time recorded. A more 
precise ‘red’ graph was used to show the protein peak and points at which eluted fractions were 
collected, these fractions correspond with those in Figure 4.1.  
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Figure 4.3. SDS-PAGE analysis of fractions obtained following purification TbFEN1 
on a Mono-Q anion-exchange column. 12% SDS-PAGEs to show the eluted fractions 

collected in IEX purification as NaCl concentration was increased. (a) shows the reference TbFEN1 
protein for comparison against the elutes 1-8, (B) shows the elutes 9-10. The fractions collected 
correspond with those collected in Figure 4.4. Ladder used – Precision plus protein™ All blue 
prestained proteins standards 10-250kDa protein ladder, BioRad.  

A. 

B. 
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Figure 4.4. UV absorbance trace of eluate from Mono-Q column loaded with pooled 
fractions (23-25) from IMAC. Graphs to show the rate of protein elution against the 

concentration NaCl with time recorded. A more precise ‘red’ graph was used to show the protein 
peaks and points at which eluted fractions were collected, these fractions correspond with those in 
Figure 4.3. 
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4.3 Generation of pET24a::TbRAD2 clone 

The TbRAD2 gene was PCR amplified from T. brucei 427 genomic DNA and purified for 

ligation into the cloning vector pGEM-T Easy.  

Figure 4.5 compares the TbRAD2 PCR product to NdeI/XhoI digested putative pGEM-T 

Easy TbRAD2 positive plasmids (lanes 3, 5, 7 and 8), to ensure an insert was present prior 

to sequencing. The figure also shows that the PCR product is marginally larger than the 

DNA inserts released from recombinant plasmids. This was expected as the TbRAD2 

sequence contained an internal NdeI site (at bp 96-101).  

DNA from two recombinant plasmids (lanes 3 and 5 in Figure 4.5) were selected and sent 

for nucleotide sequencing. The resulting nucleotide sequences were conceptually 

translated into amino acid sequence and compared to TbRAD2 sequence from T. brucei 

strains 427 and 927. Homologous sequences were identified in both strains, however, the 

427 strain did not have a complete sequence for TbRAD2 at the time of my analysis amino 

acids which were not defined are annotated by an X in Appendix 1.  

The sub-cloning strategy for the TbRAD2 is to incorporate the full TbRAD2 open reading 

frame (ORF) into the pET24a vector, so that a 6xHis tag can be added to the C-terminus of 

the protein. For the sequence to be inserted into this vector unidirectionally, the 5’ NdeI and 

3’ XhoI restriction sites have been added to the ORF. As there is an internal NdeI site this 

causes the ORF to be digested and therefore needed to be removed by single-site 

mutagenesis. The aim of the single-site mutagenesis, was to change the sequence coding 

for the NdeI site but maintain the amino acid coded for. Therefore, the adenine residue 

within the restriction site was replaced with cytosine. This meant the codon sequence was 

mutated from an ATA to ATC; this codon still coded for isoleucine, but the recognition 

sequence for NdeI was removed from within the gene. 

To ensure the NdeI site within the gene had been successfully removed, the TbRAD2 gene 

was released from the pGEM-T Easy vector by digestion with NdeI and XhoI and resolved 

on an agarose gel (Figure 4.6). This DNA insert was larger than that derived from the 

original plasmid, indicating that the internal NdeI site had been successfully removed. This 

was confirmed by nucleotide sequencing  

The mutated TbRAD2 sequence was digested form the pGEM-T Easy vector using NdeI 

and XhoI, the DNA insert was then isolated and ligated into the pET24a vector. The 

pET24a vector was transformed into supercompetent E. coli, where kanamycin resistant 
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transformants were selected. Following ligation into pET24a and transformation into E. coli, 

plasmid DNA was prepared from representative transformants and digested with NdeI and 

XhoI as seen in Figure 4.7. From this figure, it is evident that a DNA band is visible at 

approximately 2,200bp in both the TbRAD2 PCR product lane and the digested 

pET24a::TbRAD2 plasmid lane; indicating that TbRAD2 had inserted correctly into the 

pET24a vector. This recombinant plasmid will now be referred to as pAJ100 throughout.  
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Figure 4.5. Agarose gel analysis of putative pGEM-T Easy TbRAD2 recombinant 
plasmids. A 0.8% agarose gel showing six putative pGEM-T Easy RAD2 clones digested with 

NdeI and XhoI. The amplified PCR product TbRAD2, Lane 2, for digest comparison. Ladder used – 
GeneRuler™ 1kb DNA ladder, ThermoScientific. 
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Figure 4.6. Agarose gel analysis of mutated putative pGEM-T EasyTbRAD2 
recombinant plasmids. A 0.8% agarose gel showing four mutated putative pGEM-T Easy RAD2 
clones digested with NdeI and XhoI. With a non-mutated version of the vector for comparison, Lane 
2. Ladder used – GeneRuler™ 1kb DNA ladder, ThermoScientific. 
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Figure 4.7. Agarose gel analysis of putative pET24a::TbRAD2 recombinant plasmid. 
A 0.8% agarose gel showing pET24a::TbRAD2 digested with digested with NdeI and XhoI. 
Resolved with the PCR product putative TbRAD2 and the pre-linearised pET24a for comparison, 
lanes 2 and 3 respectively. Ladder used – GeneRuler™ 1kb DNA ladder, ThermoScientific. 
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4.4 Optimisation of Conditions for Expression of His-tagged TbRAD2 

Prior to expression, the pAJ100 recombinant vector was transformed into the Tuner™ 

pLacI bacterial strain. Tuner™ bacterial strains are a mutant of BL21 with a lacZY deletion. 

With this deletion, the bacterial population will carry out a uniform entry of IPTG, which 

allows for a concentration dependent level of induction. Therefore, the concentration of 

IPTG can be adjusted to view how this affects protein expression, where the best 

conditions for the production for 6xHis-tagged TbRAD2 were optimised.  

The level of expression for TbRAD2 protein was checked under the conditions of 0.1mM or 

1mM IPTG at 30°C or 37°C. Figure 4.8 shows the resolved proteins expressed in the 

Tuner™ pLacI strain under these conditions. Under all conditions, but most clearly at 37°C, 

there was a visible band at 110 kDa that increased in intensity over the expression period 

(lanes 2-5 and 7-10).  

This suggests the induced protein has an apparent molecular weight of 110 kDa on SDS-

PAGE, compared with a molecular weight of 83.2 kDa predicted on the basis of the primary 

amino acid sequence using the ExPASy pI/Mw tool.  

Further analysis of the TbRAD2 expression results were carried out using an anti-His 

antibody and visualised using an immunoblot. The 6xHis tag added to the C-terminus of the 

TbRAD2 protein, by the pET24a vector, is detected by the antibody and is visualised in 

Figure 4.9. Both A and B show the presence of only one band which is expressed at 110 

kDa, over the period of induction (lanes 2-5 and 7-10) the 110 kDa band increases in 

intensity. This complements the results seen in Figure 4.8 and provides greater certainty 

that the band is representing the protein TbRAD2, as only the TbRAD2 gene present in the 

pET24a vector should be being expressed with a 6xHis tag following induction of the cell 

line.  

In both figures, it can clearly be seen that there is a greater level of expression of the 

TbRAD2 protein at 37°C (B) than at 30°C (A), shown by the thicker bands at 110 kDa. In 

Figure 4.8 A, at 30° the 110 kDa banding appears to be stronger for induction with 1 mM 

IPTG (lanes 7-10) than induction with 0.1 mM (lanes 2-4), this pattern is replicated in B at 

37°C. For the immunoblots seen in Figure 4.9 A, for the 0.1 mM induction the His-tagged 

band can only be seen in lane 5 following a three hour induction period. For the 1 mM 

induction, the band can be seen in lanes 8 and 9 following incubation for two hours, for the 

third hour the band disappears which appears to be a blotting error. However, in Figure 4.9 
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B there is clear banding in all induction lanes, where induction with 1 mM IPTG (lanes 7-

10) appears thicker than induction with 0.1 mM.  

From these results, the optimum induction conditions for the expression of TbRAD2 were 

found to be 1 mM IPTG at 37°C. These conditions were taken forward for the preparation 

of the pAJ100 cell line for TbRAD2 purification.  
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Figure 4.8. SDS-PAGE analysis of expression of TbRAD2 Protein under Different 
Conditions. Resolved 8% SDS-PAGE to show the amount of increased protein expression under 

different induction conditions, (A) incubated at 30°C after induction and (B) incubated at 37°C once 
induced. Ladder used – PageRuler™ Plus pre-stained 10-250kDa protein ladder, ThermoScientific. 

  

A. 

B. 
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Figure 4.9. Anti-His TbRAD2 Induction Immunoblot. A resolved 8% SDS-PAGE transferred 

and immunoblotted with antibody Anti-His, showing the amount of expression under different 
induction conditions. (A) incubated at 30°C after induction and (B) incubated at 37°C once induced. 
Exposure for (A) was 450 seconds and (B) for 484 seconds. Imaging of the ladder was merged with 
the immunoblot for reference, ladder used – PageRuler™ Plus pre-stained 10-250kDa protein 
ladder, ThermoScientific.   

A. 

B. 
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4.5 Purification of His-Tagged TbRAD2 

Following the identification of the optimum expression conditions for pAJ100 the 6xHis-

tagged TbRAD2 was purified using a Ni-NTA spin column to remove E. coli contaminants. 

The TbRAD2 was initially purified under native conditions, however, as seen in lane 3 of 

Figure 4.10 there was insufficient soluble protein to purify. This preliminary data showed 

that the His-tagged TbRAD2 was insoluble under native conditions.  

A further purification experiment was carried out using 8 M urea denaturing conditions. As 

seen in Figure 4.11 there is a large level of protein at 110 kDa present in the lysate 

fraction, but this again appears to be lost in the soluble fraction. This indicates that the 

induced protein was predominantly insoluble in 8 M urea. Therefore, a stronger 6 M 

guanidine hydrochloride denaturing condition was used to lyse the induced pAJ100 E. coli 

cell line. 

Figure 4.12 shows the purification results of TbRAD2 under 6 M guanidine hydrochloride 

denaturing lysis conditions. The 6 M guanidine hydrochloride is a very strong denaturant 

which breaks the internal bonds of the protein and causes solubility of hydrophobic 

molecules of the protein. It can be seen that the induced 110 kDa protein is present in the 

soluble fraction. Therefore, the 6 M guanidine hydrochloride lysis buffer was able solubilise 

the protein. The 110 kDa protein appears to become purified in the eluate fractions 

following the use of the IMAC column, these bands appear with a weak intensity which may 

be due to some of the 110 kDa protein being lost in the flow through fraction.  

Once the small scale purifications were complete, larger scale purifications could be 

planned. However, due to the stringent denaturing conditions required for TbRAD2. It was 

decided it would be unsuitable to carry out large scale purification.  
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Figure 4.10. SDS-PAGE analysis if native purification of TbRAD2. Resolved 8% SDS-
PAGE showing the purification of TbRAD2 by Ni-NTA spin column under native conditions. Ladder 
used – PageRuler™ Plus pre-stained 10-250kDa protein ladder, ThermoScientific. 
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Figure 4.11. SDS-PAGE to Show 8M Urea Denaturing Purification TbRAD2. Resolved 

8% SDS-PAGE showing the purification of TbRAD2 by Ni-NTA spin column, under 8M Urea 

denaturing conditions. Ladder used – PageRuler™ Plus pre-stained 10-250kDa protein ladder, 

ThermoScientific.  
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Figure 4.12. SDS-PAGE to Show 6M Guanidine Chloride Denaturing Purification of 
TbRAD2. Resolved 8% SDS-PAGE showing the purification of TbRAD2 by Ni-NTA spin column, 

under 6M guanidine hydrochloride denaturing conditions. Ladder used – PageRuler™ Plus pre-
stained 10-250kDa protein ladder, ThermoScientific. 
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4.6 Anti-TbFEN1 Antibody Production 

In order to generate antibodies to TbFEN1, an aliquot of protein purified from a large scale 

purification, was used to generate polyclonal antibodies.  

The protein was sent to Eurogentec for anti-sera production using their ‘Speedy 28-day 

Polyclonal Antibody Programme’. Two rabbits were used for antisera production, each was 

injected with approximately 200 µg of recombinant TbFEN1 0, 7, 10 and 18 days following 

commencement of the procedure. Three bleeds were collected, including a pre-inoculation 

bleed prior to exposure to the TbFEN1 antigen, and further bleeds at 18 and 28 days post 

exposure.  

 

4.7 Characterisation of anti-TbFEN1 antisera 

Polyclonal antisera were raised against TbFEN1, the antisera was raised to investigate 

interactions between co-expressed proteins in E. coli as well as to investigate the 

expression and localisation of the protein in procyclic and bloodstream trypanosome cells.  

In order to characterize the polyclonal antibodies raised against the TbFEN1 protein, a 

series of immunoblot experiments were carried out to test specificity and sensitivity of 

antisera. These tests were carried out against E. coli extracts containing expressed 

TbFEN1 and purified TbFEN1 protein. Parallel experiments were performed with pre-

inoculation antisera. A range of concentrations were used for both the E. coli extract and 

recombinant protein immunoblots.  

Specificity of the antisera was investigated using an immunoblot of the extracts prepared 

from the induction of TbFEN1 in E. coli. Fractions were obtained from IMAC purification of 

the His-tagged TbFEN1. An SDS-PAGE of small scale TbFEN1 purification is seen in 

Figure 4.13, it can clearly be seen that a band at 48 kDa is purified from the other proteins. 

Where all contaminant proteins are seen in the cell lysate, soluble and flow-through 

fractions, and the 48 kDa band can be seen to be mostly purified in the lanes showing the 

eluates. It is expected that this is the His-tagged TbFEN1 protein as it has been purified 

using the nickel column and is similar to the predicted 6xHis-tagged weight of 45.1 kDa, as 

calculated using the ExPASY pl/Mw tool.  

Figure 4.14 shows the 1:5,000 of the final bleed antisera immunoblots for rabbit 308 (A) 

and 309 (B) against extracts taken during the purification of His-tagged TbFEN1 from 
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induced E. coli. For both gels it can clearly be seen that there is a band at 48 kDa being 

purified from the cell lysate to the eluates, as seen in Figure 4.13. Although the detection 

of the 48 kDa band does not prove that the antisera has direct specificity to TbFEN1, it 

does show that both rabbit antisera are able to detect the TbFEN1 protein.  

Along with the detection of the 48 kDa band in Figure 4.14, there is also clear detection of 

smaller bands than 48 kDa in lanes 2, 3, 4 and 8. For the whole cell lysate fraction in lane 

2, there is greatest complex banding pattern, it is likely that these smaller bands are 

insoluble degradation products of the recombinant protein.  
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Figure 4.13. SDS-PAGE analysis of native IMAC purification of TbFEN1 Resolved 12% 
SDS-PAGE showing the purification of TbFEN1 by Ni-NTA spin column under native conditions. 
Ladder used – Precision plus protein™ All blue prestained proteins standards 10-250kDa protein 
ladder, BioRad. 
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Figure 4.14. Immunoblot identification of rabbit 308 and 309 antisera against 
fractions collected during purification of TbFEN1. Developed immunoblots using the 

1:5,000 final bleed polyclonal anti-sera immunisation rabbit 308 (a) and rabbit 309 (b). Immunoblots 
were resolved with fractions from the small scale purification of the TbFEN1 protein from induced E. 
coli extract. Blots were developed for 10 and 11 seconds respectively. Ladder used – PageRuler™ 
Plus pre-stained 10-250kDa protein ladder, ThermoScientific.  

A. 

B. 
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Figure 4.15 shows the 1:5000 final bleed antisera immunoblot against different 

concentrations of the purified recombinant protein, for rabbits 308 and 309. In the figure, it 

can be seen that there is recognition of a protein at 48 kDa from 5 µg to 10 ng. Therefore, 

from this result both antisera have a detection limit of 10 ng of TbFEN1 presence, on an 

immunoblot. 

Again, in Figure 4.15 bands can be seen at a smaller size than 48 kDa. In comparison 

Figure 4.14, these cannot be due to insoluble degradation as the recombinant protein was 

originally purified from a soluble extract. These degradation products are generated in the 

latter stages of purification or as biproduct of storage. 
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Figure 4.15. Immunoblot to show rabbit 308 and 309 antisera against different 
concentrations of recombinant TbFEN1 Developed immunoblots using the 1:5,000 final bleed 

polyclonal antisera immunisation of rabbit 308 (a) and rabbit 309 (b), against different concentrations 

of the recombinant protein TbFEN1. Immunoblots were resolved with the purified recombinant 

protein at the concentrations 5µg, 1µg, 0.5µg, 0.1µg, 50ng, 10ng, 5ng, 1ng and 0.5ng. These blots 

were developed for 6 seconds and 3 seconds respectively. Ladder used – PageRuler™ Plus pre-

stained 10-250kDa protein ladder, ThermoScientific.  

A. 

B. 
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4.8 Chapter Summary 

In this chapter the optimum expression conditions for TbFEN1 and TbRAD2 were used to 

express the protein ready for purification. The TbFEN1 protein was purified under native 

conditions, where TbRAD2 was found to be purified under stringent denaturing conditions. 

As a result, large scale purification was carried out for TbFEN1 only.  

Polyclonal antisera was produced for TbFEN1, ready for localisation experiments. 

Immunoblots were used to interrogate the specificity and sensitivity of the antisera to 

TbFEN1. The antisera was able to detect the TbFEN1 protein amongst bacterial 

contaminants and detect the recombinant protein to an amount of 10 ng.  
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5 Localisation of TbFEN1 and TbRAD2 in T. brucei 

5.1 Chapter Synopsis 

The intracellular localisation of TbFEN1 and TbRAD2 in T. brucei was investigated using 

multiple approaches; (i) expression of TbFEN1::YFP and TbRAD2::YFP fusion proteins 

from endogenous gene loci, (ii) inducible over-expression of TbFEN1 and TbRAD2 fused to 

a small epitope tag; GSP, and (iii) polyclonal antisera specific for TbFEN1.  

 

5.2 Localisation of YFP-Tagged TbFEN1 and TbRAD2 

To investigate the localisation of TbFEN1 and TbRAD2, the open reading frames (ORF) 

encoding the two proteins were tagged using a PCR only tagging (pPOT) approach.  

As seen in Figure 5.1 the DNA sequence encoding YFP and a blasticidin cassette were 

PCR amplified from the pPOT vector using long (~100bp) primers that incorporated a 5’ 

overhang of 80 nucleotides with homology to the target gene and its adjacent untranslated 

region (UTR). The resulting amplicon was then used to transfect T. brucei, the amplicon 

combines into the genome in such a way that the YFP tag is fused in frame with the target 

gene. Recombinant cells were then selected using blasticidin.  

For N-terminal tagging of genes, the forward primer is complementary to the last 80bp of 

the 5’ untranslated region (UTR) of the gene, where the reverse primer is complementary 

to the first 80bp of the ORF of the reverse complement (Dean et al., 2015).  
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Figure 5.1. Process of pPOT Tagging. Schematic showing the process of pPOT tagging of 

target genes in the trypanosome genome. Based on (Dean et al., 2015). 
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Fluorescence microscopy was used to investigate the localisation of YFP-tagged TbFEN1 

and TbRAD2. Figures 5.2 and 5.3 show the results of this specific YFP tagging, and how 

the localisations of the fusion proteins change over the course of the cell cycle.  

TbFEN1: YFP::TbFEN1 can be clearly visualised within the nucleus throughout the cell 

cycle. The intensity of the signal is not uniform throughout the nucleus and appears to have 

a specific point of intensity (Figure 5.2). The YFP::TbFEN1 signal appears to elongate as 

the cells move from 1N1K to late 1N2K. As the T. brucei cells come to the end of the 

telophase stage of replication, a ‘strand' of YFP::TbFEN1 fluorescence can be seen 

connecting the two nuclei together. As the YFP-tagged TbFEN1 signal elongates during 

mitosis there is a clear connecting strand between the two nuclei, TbFEN1 appears to be 

associating with DNA that is being segregated along the mitotic spindles. 

TbRAD2: The YFP::TbRAD2 fluorescence signal is much weaker (Figure 5.3) than that 

observed for YFP::TbFEN1. Despite the weaker signal, the YFP tagged TbRAD2 protein 

appears to be present throughout the cell cycle and can be observed within both the 

nucleus and a distinct foci within the cytoplasm positioned between the nucleus and 

kinetoplast. Similar to TbFEN1, the nuclear YFP::TbRAD2 fluorescence signal becomes 

elongated as the cell prepares for mitosis. The presence of the YFP::TbRAD2 protein in 

both the nuclei and cytoplasm suggests that the recombinant protein may not be being 

correctly targeted within the cell.  
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Figure 5.2. Localisation of YFP::TbFEN1 in T. brucei. Fluorescent microscopy images of 
procyclic cells expressing YFP::TbFEN1 protein at different stages of the cell cycle. Captured using 
Deltavison Denconvolution microscopy. Scale bar - 10µm.  
.  
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Figure 5.3. Localisation of YFP::TbRAD2 in T. brucei. Fluorescent microscopy images of 

procyclic cells expressing YFP::TbRAD2 protein at different stages of the cell cycle. Captured using 
Deltavison Denconvolution microscopy. Scale bar - 10µm.  
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5.3 Localisation of GSP epitope tagged TbFEN1 and TbRAD2   

Further analysis of the localisation of the parasite proteins was carried out by expressing 

both proteins fused to a small epitope tag (a nine amino acid sequence coding for the 

amino acids GAFSIMPAM (GSP)) at the C-terminus. The epitope can be detected using 

anti-GSP monoclonal antibody DB9.  

A small epitope tag was used as it could potentially present a more native localisation 

pattern, compared to the localisation observed for the larger YFP tagged proteins used 

previously. The epitope tag was also encoded at the C-terminus instead of the N-terminus 

(as was the case for the YFP tagged proteins), allowing for investigation into how this may 

also affect targeting of the proteins within the cell. It was hoped that that the TbRAD2::GSP 

fusion protein may be targeted to a more precise location within the cell than that observed 

for the YFP tagged protein. The fusion proteins were also over-expressed by induction, 

whereas the YFP tagged proteins were expressed from endogenous loci. It was anticipated 

that by over-expressing the proteins a stronger fluorescence pattern would be seen.  

To create the GSP fusion proteins, TbFEN1 and TbRAD2 ORFs were amplified by PCR 

(Figure 5.4 A and B); the primers used added a 5’ HindIII and 3’ XhoI restriction site to 

facilitate cloning of the ORFs into the T. brucei expression vector pDEX377. The PCR 

products were initially ligated into the vector pGEM-T Easy and positive transformants 

identified by restriction digestion with HindIII and XhoI; an example of positive pGEMT 

Easy clones for both TbFEN1 and TbRAD2 are shown in Figure 5.4 C and D. These 

plasmids were sent for nucleotide sequence analysis and the conceptual translation of both 

sequences compared to wild type sequences available at GeneDB (Figure 5.5). The 

alignment of the cloned sequences with the wild type sequence reveals that the TbFEN1 

sequence is identical to the Tb 927 genome reference strain (A) sequence, however, the 

TbRAD2 sequence in the pGEMT clone differed from both Tb 927 and Tb 427 

sequences(B and C).  

DNA sequences encoding both TbFEN1 and TbRAD2 were digested from the pGEM-T 

Easy plasmids and subcloned into pDEX377_GSP in which the ORFs were fused in frame 

to the nine amino acid sequence GSP tag. Positive transformants were again identified by 

restriction digestion, with the excised fragments migrating with the predicted molecular 

sizes for TbFEN1 and TbRAD2 (~1,182bp and ~2,241 respectively) (Figure 5.4 F).  
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The resulting plasmids were prepared for transfection into T. brucei by linearising with NotI. 

It can be seen in Figure 5.4 G that the recombinant vectors were completely digested and 

as expected the TbRAD2::GSP DNA fragment was larger than TbFEN1::GSP. Digests 

were ethanol precipitated and transfected into T. brucei and drug resistant cell lines 

established. Cells were then induced with doxycycline to enable expression of 

TbFEN1::GSP and TbRAD2::GSP fusion proteins production and cells prepared for 

immunofluorescence microscopy. Figure 5.6 and 5.7 show the localisation of 

TbFEN1::GSP and TbRAD2::GSP respectively. 

The inducible expression of TbFEN1::GSP in procyclic cells (Figure 5.6) identified a similar 

nuclear localisation pattern to that observed for YFP::TbFEN1. TbFEN1::GSP localisation 

was restricted to the nucleus and during mitosis exhibited the same elongated localisation 

along the axis of the mitotic spindle between dividing nuclei. However, in comparison to 

YFP::TbFEN1, which exhibited consistent level of expression during the cell cycle, 

TbFEN1::GSP expression appeared to be elevated in nuclei during mitosis. The increased 

level of fluorescence of the TbFEN1 protein in the nucleus during mitosis, indicates that the 

protein is being recruited and therefore may have a functional role during nuclear 

replication. 

Localisation of the TbRAD2::GSP fusion protein (Figure 5.7) failed to provide consistent 

results, with only weak signal detected in the nucleus. Although there was evidence for 

weak expression of TbRAD2::GSP in the cell lines, the protein appeared to be diffusely 

present throughout the cytoplasm. This suggests that even following over-expression 

targeting of the protein was inefficient. 
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Figure 5.4. Agarose gels showing TbFEN1::GSP and TbRAD2::GSP preparation for 
transfection. Resolved 0.8% agarose gels showing different stages of preparation for the 
transfection of TbFEN1::GSP and TbRAD2::GSP into T. brucei. (A) Shows the size the amplified 
PCR product TbFEN1 with a 5’ HindIII and 3; XhoI, (B) Shows the size of the amplified PCR product 
TbRAD2 with a 5’ HindIII and a 3’ XhoI, (C) TbFEN1 PCR product compared to digested (Dig) 
pGEM-T Easy::TbFEN1 with HindIII and XhoI of the pGEM-T Easy vector, (D) pGEM-T 
Easy::TbRAD2 digested with HindIII and XhoI (E) Preparation of the GSP vector for ligation, with 
digestion by HindIII and XhoI (F) Comparison of PCR product with the trypanosome gene and GSP 
ligated recombinant vector, (G) Complete linearisation of recombinant vector with NotI compared to 
UD. Ladder used – GeneRuler™ 1kb DNA ladder, ThermoScientific. 
  

A. B. C. D. 

E. F. G. 
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A. Tb927.3.830 – Putative FEN1, Trypanosoma brucei TREU927 
 

TbFEN1      MGVLGLSKLLYDRTPGAIKEQELKVYFGRRIAIDASMAVYQFVIAMKGFQEGQSVELTNE  60 

            MGVLGLSKLLYDRTPGAIKEQELKVYFGRRIAIDASMAVYQFVIAMKGFQEGQSVELTNE 

927 FEN1    MGVLGLSKLLYDRTPGAIKEQELKVYFGRRIAIDASMAVYQFVIAMKGFQEGQSVELTNE  60 

 

TbFEN1      AGDVTSHLSGIFFRTLRMIDEGLRPIYVFDGKPPTLKASELESRRQRAEDAKHEFEKAKE  120 

            AGDVTSHLSGIFFRTLRMIDEGLRPIYVFDGKPPTLKASELESRRQRAEDAKHEFEKAKE 

927 FEN1    AGDVTSHLSGIFFRTLRMIDEGLRPIYVFDGKPPTLKASELESRRQRAEDAKHEFEKAKE  120 

 

TbFEN1      EGDDEAMEKMSKRMVRVGRDQMEEVKTLLRLMGIPVVQAPSEAEAQCAELVKKNKAWAVG  180 

            EGDDEAMEKMSKRMVRVGRDQMEEVKTLLRLMGIPVVQAPSEAEAQCAELVKKNKAWAVG 

927 FEN1    EGDDEAMEKMSKRMVRVGRDQMEEVKTLLRLMGIPVVQAPSEAEAQCAELVKKNKAWAVG  180 

 

TbFEN1      TEDMDALAFGSRVMLRHLTYGEAKKRPIAEYHLDEILEASGFSMQQFIDLCILLGCDYVP  240 

            TEDMDALAFGSRVMLRHLTYGEAKKRPIAEYHLDEILEASGFSMQQFIDLCILLGCDYVP 

927 FEN1    TEDMDALAFGSRVMLRHLTYGEAKKRPIAEYHLDEILEASGFSMQQFIDLCILLGCDYVP  240 

 

TbFEN1      RISGIGPHKAWEGIKKYGSLEAFIESLDGTRYVVPEEFNYKDARNFFLEPEVTPGEEIDI  300 

            RISGIGPHKAWEGIKKYGSLEAFIESLDGTRYVVPEEFNYKDARNFFLEPEVTPGEEIDI 

927 FEN1    RISGIGPHKAWEGIKKYGSLEAFIESLDGTRYVVPEEFNYKDARNFFLEPEVTPGEEIDI  300 

 

TbFEN1      QFREPDEEGLIKFLVDEKLFSKERVLKGIQRLRDALTKKTQGRLDQFFTITKPQKQVNSE  360 

            QFREPDEEGLIKFLVDEKLFSKERVLKGIQRLRDALTKKTQGRLDQFFTITKPQKQVNSE 

927 FEN1    QFREPDEEGLIKFLVDEKLFSKERVLKGIQRLRDALTKKTQGRLDQFFTITKPQKQVNSE  360 

 

TbFEN1      ASTAGTKRNRGAVALPGVLQRKSSSGHKKAVKK  393 

            ASTAGTKRNRGAVALPGVLQRKSSSGHKKAVKK 

927 FEN1    ASTAGTKRNRGAVALPGVLQRKSSSGHKKAVKK  393 
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B. Tb427tmp.211.2870 – Putative 5’HindIII RAD2, Trypanosoma brucei Lister strain 
427  

 

TbRad2      MGVHGLWRLLDTFGEVTQPADWKGKRVAIDASIWIAQFRSSCEPGESVEERILEGFFMRI  60 

            MGVHGLWRLLDTFGEVTQPADWKGKRVAIDASIWIAQFRSSCEPGESVEERILEGFFMRI 

427 Rad2    MGVHGLWRLLDTFGEVTQPADWKGKRVAIDASIWIAQFRSSCEPGESVEERILEGFFMRI  60 

 

TbRad2      LKLLFYGIEPIFVFDGPSTMSKRAEQRRRAQHREALEQAMVTRHARRLIAAQMSAGLLDV  120 

            LKLLFYGIEPIFVFDGPSTMSKRAEQRRRAQHREALEQAMVTRHARRLIAAQMSAGLLDV 

427 Rad2    LKLLFYGIEPIFVFDGPSTMSKRAEQRRRAQHREALEQAMVTRHARRLIAAQMSAGLLDV  120 

 

TbRad2      HSLPRKYRSPGSGKKLQKPLRQSLPPTDLLHDVDEDVGESCVETGTILLQPKGRKKRTRE  180 

            HSLPRKYRSPGSGKKLQKPLRQSLPPTDLLHDVDEDVGESCVETGTILLQPKGRKKR RE 

427 Rad2    HSLPRKYRSPGSGKKLQKPLRQSLPPTDLLHDVDEDVGESCVETGTILLQPKGRKKRXRE  180 

 

TbRad2      VCLAPEVVSRSLTHSFLSEAEIFLEQRKTFEKFHENNRLAYTSTSIFMGPRRVAEEVSRA  240 

            VCLAPEVVSRSLTHSFLSEAEIFLEQRKTFEKFHENNRLAYTSTSIFMGPRRVAEEVSRA 

427 Rad2    VCLAPEVVSRSLTHSFLSEAEIFLEQRKTFEKFHENNRLAYTSTSIFMGPRRVAEEVSRA  240 

 

TbRad2      LGGATRGEAESIQGSSAGNSSSSSVLVEGVGSAAIVVEEECGDSVCEILSSSSCSVIVVD  300 

            LGGATRGEAESIQGSSAGNSSSSSVLVEGVGSAAIVVEEECGDSVCEILSSSSCSVIVVD 

427 Rad2    LGGATRGEAESIQGSSAGNSSSSSVLVEGVGSAAIVVEEECGDSVCEILSSSSCSVIVVD  300 

 

TbRad2      NAIKSDPHTVDAFHHNVSFGKEEESTSDEVEVLSRGDYWSCADNDCDDLLSLAASDRTPD  360 

            NAIK DPHTVDAFHHNVSFGKEEESTSDEVEVLSRGDYWSCADNDCDDLLSLAASDRTPD 

427 Rad2    NAIKXDPHTVDAFHHNVSFGKEEESTSDEVEVLSRGDYWSCADNDCDDLLSLAASDRTPD  360 

 

TbRad2      TQCNDSTHLWYPGTQLLGGLGSADDGGIVDESRDNCTETSCGLSEFNPFGGVVVPSGNLR  420 

            TQCNDSTHLWYPGTQLLGGLGSADDGGIVDESRDNCTETSCGLSEFNPFGGVVVPSGNLR 

427 Rad2    TQCNDSTHLWYPGTQLLGGLGSADDGGIVDESRDNCTETSCGLSEFNPFGGVVVPSGNLR  420 

 

TbRad2      KDEKEVLLNTSVITSSETLETTGIPLKVPSVSREHVREKQVVPFELLGIVELLDCCGIPY  480 

            KDEKEVLLNTSVITSSETLETTGIPLKVPSVSREHVREKQVVPFELLGIVELLDCCGIPY 

427 Rad2    KDEKEVLLNTSVITSSETLETTGIPLKVPSVSREHVREKQVVPFELLGIVELLDCCGIPY  480 

 

TbRad2      VLSPNEADAQCAFLNEQRVVDAVFTEDSDVIVHGAPVVLRGFFSKGRHVVAYRQSDLLAC  540 

            VLSPNEADAQCAFLNEQRVVDAVFTEDSDVIVHGAPVVLRGFFSKGRHVVAYRQSDLLAC 

427 Rad2    VLSPNEADAQCAFLNEQRVVDAVFTEDSDVIVHGAPVVLRGFFSKGRHVVAYRQSDLLAC  540 

 

TbRad2      GVDKVVLVALALLLGCDYAEGVNGLSLLESLHVIAATWRQTTNSVEGGAEQVRDMLSSWC  600 

            GVDKVVLVALALLLGCDYAEGVNGLSLLESLHVIAATWRQTTNSVEGGAEQVRDMLSSWC 

427 Rad2    GVDKVVLVALALLLGCDYAEGVNGLSLLESLHVIAATWRQTTNSVEGGAEQVRDMLSSWC  600 

 

TbRad2      SAVRRRRIPWGEDVPLTRFYRNYVKWSTLQLADSFPESHVVDAYFNPTVNTDTRPFVCAA  660 

            SAVRRRRIPWGEDVPLTRFYRNYVKWSTLQLADSFPESHVVDAYFNPTVNTDTRPFVCA  

427 Rad2    SAVRRRRIPWGEDVPLTRFYRNYVKWSTLQLADSFPESHVVDAYFNPTVNTDTRPFVCAX  660 

 

TbRad2      PDWTKLRLFASMHGILNKKYCGERLENAQRECQRRQPPSGDPADSAQRRLTDFFSPLPNR  720 

            PDWTKLRLFASMHGILNKKYCGERLENAQRECQRRQPPSGDPADSAQRRLTDFFSPLPNR 

427 Rad2    PDWTKLRLFASMHGILNKKYCGERLENAQRECQRRQPPSGDPADSAQRRLTDFFSPLPNR  720 

 

TbRad2      ERVIFRKQPPKFSEALSYLRAARGDP  746 

            ERVIFRKQPPKFSEALSYLRAARGDP 

427 Rad2    ERVIFRKQPPKFSEALSYLRAARGDP  746 
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C. Tb927.9.11760 – Putative 5’HindIII RAD2, Trypanosoma brucei TREU927  
 

TbRad2      MGVHGLWRLLDTFGEVTQPADWKGKRVAIDASIWIAQFRSSCEPGESVEERILEGFFMRI  60 

            MGVHGLWRLLDTFGEVTQPADWKGKRVAIDASIWIAQFRSSCEPGESVEERILEGFFMRI 

927 Rad2    MGVHGLWRLLDTFGEVTQPADWKGKRVAIDASIWIAQFRSSCEPGESVEERILEGFFMRI  60 

 

TbRad2      LKLLFYGIEPIFVFDGPSTMSKRAEQRRRAQHREALEQAMVTRHARRLIAAQMSAGLLDV  120 

            LKLLFYGIEPIFVFDGPSTMSKRAEQRRRAQHREALEQAMVTRHARRLIAAQMSAGLLDV 

927 Rad2    LKLLFYGIEPIFVFDGPSTMSKRAEQRRRAQHREALEQAMVTRHARRLIAAQMSAGLLDV  120 

 

TbRad2      HSLPRKYRSPGSGKKLQKPLRQSLPPTDLLHDVDEDVGESCVETGTILLQPKGRKKRTRE  180 

            HSLPRKYRSPGSGKKLQKPLRQSLPPTDLLHDVDEDVGESCVETGTILLQPKGRKKRTRE 

927 Rad2    HSLPRKYRSPGSGKKLQKPLRQSLPPTDLLHDVDEDVGESCVETGTILLQPKGRKKRTRE  180 

 

TbRad2      VCLAPEVVSRSLTHSFLSEAEIFLEQRKTFEKFHENNRLAYTSTSIFMGPRRVAEEVSRA  240 

            VCLAPEVVSRSLTHSFLSEAEIFLEQRKTFEKFHENNRLAYTSTSIFMGPRRVAEEVSRA 

927 Rad2    VCLAPEVVSRSLTHSFLSEAEIFLEQRKTFEKFHENNRLAYTSTSIFMGPRRVAEEVSRA  240 

 

TbRad2      LGGATRGEAESIQGSSAGNSSSSSVLVEGVGSAAIVVEEECGDSVCEILSSSSCSVIVVD  300 

            LGGATRGEAESIQGSSAGNSSSSSVLVEGVGSAAIVVEEECGDSVCEILSSSSCSVIVVD 

927 Rad2    LGGATRGEAESIQGSSAGNSSSSSVLVEGVGSAAIVVEEECGDSVCEILSSSSCSVIVVD  300 

 

TbRad2      NAIKSDPHTVDAFHHNVSFGKEEESTSDEVEVLSRGDYWSCADNDCDDLLSLAASDRTPD  360 

            NAIK+DPH VDAFHHNVSFGKEEESTSDEVEVLS GDYWSCADNDCDDLLSLAASDRTPD 

927 Rad2    NAIKTDPHAVDAFHHNVSFGKEEESTSDEVEVLSSGDYWSCADNDCDDLLSLAASDRTPD  360 

 

TbRad2      TQCNDSTHLWYPGTQLLGGLGSADDGGIVDESRDNCTETSCGLSEFNPFGGVVVPSGNLR  420 

            TQCNDSTHLWYPGTQLLGGLGSADDGGIVDESRDNCTETSCGLSEFNPFGGVVVPSGNLR 

927 Rad2    TQCNDSTHLWYPGTQLLGGLGSADDGGIVDESRDNCTETSCGLSEFNPFGGVVVPSGNLR  420 

 

TbRad2      KDEKEVLLNTSVITSSETLETTGIPLKVPSVSREHVREKQVVPFELLGIVELLDCCGIPY  480 

            KDEKEVLLNTSVITSSETLETTGIPLKVPSVSREHVREKQVVPFELLGIVELLDCCGIPY 

927 Rad2    KDEKEVLLNTSVITSSETLETTGIPLKVPSVSREHVREKQVVPFELLGIVELLDCCGIPY  480 

 

TbRad2      VLSPNEADAQCAFLNEQRVVDAVFTEDSDVIVHGAPVVLRGFFSKGRHVVAYRQSDLLAC  540 

            VLSPNEADAQCAFLNEQRVVDAVFTEDSDVIVHGAPVVLRGFFSKGRHVVAYRQSDLLAC 

927 Rad2    VLSPNEADAQCAFLNEQRVVDAVFTEDSDVIVHGAPVVLRGFFSKGRHVVAYRQSDLLAC  540 

 

TbRad2      GVDKVVLVALALLLGCDYAEGVNGLSLLESLHVIAATWRQTTNSVEGGAEQVRDMLSSWC  600 

            GVDKVVLVALALLLGCDYAEGVNGLSLLESLHVIAATWRQTTNSVEGGAEQVRDMLSSWC 

927 Rad2    GVDKVVLVALALLLGCDYAEGVNGLSLLESLHVIAATWRQTTNSVEGGAEQVRDMLSSWC  600 

 

TbRad2      SAVRRRRIPWGEDVPLTRFYRNYVKWSTLQLADSFPESHVVDAYFNPTVNTDTRPFVCAA  660 

            SAVRRRRIPWGEDVPLTRFYRNYVKWSTLQLADSFPESHVVDAYFNPTVNTDTRPFVCAA 

927 Rad2    SAVRRRRIPWGEDVPLTRFYRNYVKWSTLQLADSFPESHVVDAYFNPTVNTDTRPFVCAA  660 

 

TbRad2      PDWTKLRLFASMHGILNKKYCGERLENAQRECQRRQPPSGDPADSAQRRLTDFFSPLPNR  720 

            PDWTKLRLFASMHGILNKKYCGERLENAQRECQRRQPPSGDPADSAQRRLTDFFSPLPNR 

927 Rad2    PDWTKLRLFASMHGILNKKYCGERLENAQRECQRRQPPSGDPADSAQRRLTDFFSPLPNR  720 

 

TbRad2      ERVIFRKQPPKFSEALSYLRAARGDP  746 

            ERVIFRKQPPKFSEALSYLRAARGDP 

927 Rad2    ERVIFRKQPPKFSEALSYLRAARGDP  746 

Figure 5.5. Amplified Sequence Comparison of TbFEN1 and TbRAD2. Alignment results 
of the sequenced TbFEN1 and TbRAD2 protein against known sequences (A) T. brucei TREU 927 
(B) T. brucei lister strain 427 and (C) T. brucei TREU 927. Where red amino-acids are not the same 
between the two compared sequences, green amino-acids are the same between the compared 
sequences but not between alignments B and C. The X symbol shows were the amino-acid is not 
specific in the known sequence. Results obtained by EMBL-EBI’s Clustal Omega (Goujon et al., 
2010, Sievers et al., 2011, McWilliam et al., 2013). 
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Figure 5.6. Localisation of TbFEN1::GSP in procyclic T. brucei. Fluorescent microscopy 

images of TbFEN1::GSP protein at different stages of the cell cycle. The anti-GSP antibody DB9 
and rhodamine conjugated anti-mouse IgG secondary antibody were used to detect TbFEN1::GSP 
protein, images were captured using the Deltavison Denconvolution microscopy. Scale bar - 10µm.  
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Figure 5.7. Localisation of TbRAD2::GSP in T. brucei. Fluorescent microscopy images of 
the labelled TbRAD2::GSP protein at different stages of the cell cycle. The anti-GSP antibody DB9 
and rhodamine conjugated anti-mouse IgG secondary antibody were used to detect TbRAD2::GSP 
protein, images were captured using the Deltavison Denconvolution microscopy. Scale bar - 10µm. 
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5.4 Validation of the anti-TbFEN1 polyclonal antibody  

The TbFEN1 antibody described in Chapter 4 was used to examine T. brucei cells prior to 

carrying out immunofluorescence experiments, immunoblot analysis was carried out to 

investigate the antibody’s specificity to native TbFEN1 in parasite cell lines.  

Figures 5.8 and 5.9 show the immunoblot results for rabbits 308 and 309 respectively, 

using immunoblots resolved with different strains of T. brucei. Strains used were procyclic 

427, PTP and cells expressing TbFEN1::GSP and also bloodstream 427 cells. The 308 

pre-immune antiserum produced a non-specific complex pattern of interaction with parasite 

proteins for each T. brucei strain. In the final bleed at both dilutions of 1:1,000 and 1:5,000, 

the non-specific banding pattern was reduced and a band corresponding to the TbFEN1 

protein was clearly detected. In contrast to antiserum from rabbit 308, the 309 pre-immune 

antiserum showed no non-specific reactivity to T. brucei proteins. However, the final bleed 

at both 1:1,000 and 1:5,000 also showed strong reactivity to a protein band of the predicted 

MW for TbFEN1, along with proteins of larger molecular mass. Although detection of native 

TbFEN1 was weak, final bleed antisera from both rabbits showed strong reactivity towards 

over-expressed epitope tagged TbFEN1::GSP protein.  

Having demonstrated that the polyclonal antiserum could detect both native TbFEN1 and 

TbFEN1::GSP in parasite lysates, the anti-sera was used to localise native and over-

expressed TbFEN1::GSP by immunofluorescence microscopy.  
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Figure 5.8. Rabbit 308 Parasite Protein Immunoblot. Developed immunoblots using the 
polyclonal anti-sera immunisation against the protein TbFEN1 in Rabbit 308, immunoblots were 
resolved with the parasitic proteins from the T. brucei strains procyclic 427, procyclic PTPs, induced 
TbFEN1 and bloodstream 427. Blots (A) used the rabbit pre-immune sera, (B) diluted 1:1,000 final 
bleed sera and (C) diluted 1:5,000 final bleed, blots were developed for 200 seconds, 100 seconds 
and 300 seconds respectively. Ladder used – PageRuler™ Plus pre-stained 10-250kDa protein 
ladder, ThermoScientific. 

  

A. B. 

C. 
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Figure 5.9. Rabbit 309 Parasite Protein Immunoblot. Developed immunoblots using the 
polyclonal anti-sera immunisation against the protein TbFEN1 in Rabbit 309, immunoblots were 
resolved with the parasitic proteins from the T. brucei strains procyclic 427, procyclic PTPs, induced 
TbFEN1 and bloodstream 427. Blots (A) used the rabbit pre-immune sera, (B) diluted 1:1,000 final 
bleed sera and (C) diluted 1:5,000 final bleed, blots were developed for 200 seconds, 100 seconds 
and 500 seconds respectively. Ladder used – PageRuler™ Plus pre-stained 10-250kDa protein 
ladder, ThermoScientific. 

  

A. B. 

C. 
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5.5 Localisation of TbFEN1 using anti-TbFEN1 antiserum 

The localisation of TbFEN1 was investigated using anti-TbFEN1 antibodies, and as a 

control the antisera was also used to probe cells that were overexpressing TbFEN1::GSP.  

Since the immunoblotting analysis had shown that rabbit 308 showed a high degree of non-

specific recognition against T. brucei proteins, experiments were undertaken to optimise 

the dilution of the antisera used in the immunofluorescence experiments. As the antisera is 

diluted it is expected that non-specific reactivity in the serum will be reduced and that the 

stronger antigen specific reactivity will be seen.  

Figures 5.10 and 5.11 show the immunofluorescence results for rabbits 308 and 309 

against procyclic 427 cells, where pre-immune sera was used at 1:1,000 dilution and 

antisera from the final bleed at 1:5,000. The results of additional dilutions are presented in 

the Appendix 2-5.  

As seen in Figure 5.10 and Figure 5.11, the 308 and 309 pre-immune bleeds don’t provide 

a clear localisation pattern to any parasitic proteins. For both 308 and 309 final bleed 

antisera there was again no clear specific reactivity to the parasite proteins, indicating the 

expression of TbFEN1 is below the level of detection for both antisera. In the Appendix 2 

and 4 both dilutions at 1:200 show final bleed reactivity for both rabbits, however, there is 

no distinct specificity. 
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Figure 5.10. Immunofluorescence microscopy images for rabbit 308 pre-bleed and 
final bleed anti-sera against native TbFEN1 in the 427 parasite cell line. Fluorescent 

microscopy panels showing the affinity of the pre-immune and post immunisation final bleed anti-
sera of rabbit 308 against the native T. brucei protein FEN1, in the procyclic 427 parasite strain. The 
pre-bleed anti-sera was used at a concentration of 1:1,000, where the final bleed was used at a 
concentration of 1:5,000 and was detected using the anti-rabbit 568 secondary to interact with 
TRITC excitation and emission wavelengths. Images were captured using the Deltavison 
Denconvolution microscopy. Scale bar - 10µm.  
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Figure 5.11. Immunofluorescence microscopy images for rabbit 309 pre-bleed and 
final bleed anti-sera against native TbFEN1 in the 427 parasite cell line. Fluorescent 

microscopy panels showing the affinity of the pre-immune and post immunisation final bleed anti-
sera of rabbit 309 against the native T. brucei protein FEN1, in the procyclic 427 parasite strain. The 
pre-bleed anti-sera was used at a concentration of 1:1,000, where the final bleed was used at a 
concentration of 1:5,000 and was detected using the anti-rabbit 568 secondary to interact with 
TRITC excitation and emission wavelengths. Images were captured using the Deltavison 
Denconvolution microscopy. Scale bar - 10µm.  
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As the anti-TbFEN1 antisera had failed to convincingly detect the expression or localisation 

of native TbFEN1 protein, the cell line over-expressing TbFEN1::GSP was analysed. From 

Figure 5.12 and 5.13 it can be seen that the 308 and 309 pre-immune anti-sera do not 

provide any detection to the parasite proteins.   

However, TbFEN1::GSP expression was clearly detected by both the 308 and 309 

antisera. As anticipated (based on previous immunofluorescence results using the anti-

GSP monoclonal antibody) TbFEN1::GSP was localised to the nucleus and the signal 

appeared to elongate during mitosis.  

The detection and nuclear localisation of TbFEN1::GSP confirmed that antisera from both 

rabbits could detect TbFEN1 and that lack of detection of native protein reflected an issue 

of sensitivity, i.e. the polyclonal antisera could only detect TbFEN1 once the level of 

expression of the protein had been dramatically increased. 

Despite the unconvincing immunoblot results observed in Figures 5.10 and 5.11, 

immunofluorescence analysis was also undertaken on bloodstream cells but as seen in 

Appendix 6-13 both rabbit 308 and 309 antisera only gave non-specific binding within 

bloodstream form cells. 
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Figure 5.12. Immunofluorescence microscopy images for rabbit 308 pre-bleed and 
final bleed anti-sera against TbFEN1 in the overexpressed TbFEN1::GSP cell line. 
Fluorescent microscopy panels showing the affinity of the pre-immune and post immunisation final 
bleed anti-sera of rabbit 308 against the 24 hour induced TbFEN1::GSP cell line. The pre-immune 
anti-sera was used at a concentration of 1:1,000 where the final bleed was used at a concentration 
of 1:5,000 and was detected using the anti-rabbit 568 secondary to interact with TRITC excitation 
and emission wavelengths. Images were captured using the Deltavison Denconvolution microscopy. 
Scale bar - 10µm.  
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Figure 5.13. Immunofluorescence microscopy images for rabbit 309 pre-bleed and 
final bleed anti-sera against TbFEN1 in the overexpressed TbFEN1::GSP cell line. 
Fluorescent microscopy panels showing the affinity of the pre-immune and post immunisation final 
bleed anti-sera of rabbit 309 against the 24 hour induced TbFEN1::GSP cell line. The pre-immune 
anti-sera was used at a concentration of 1:1,000 where the final bleed was used at a concentration 
of 1:5,000 and was detected using the anti-rabbit 568 secondary to interact with TRITC excitation 
and emission wavelengths. Images were captured using the Deltavison Denconvolution microscopy. 
Scale bar - 10µm.  
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5.5 Chapter Summary 

The results presented in this chapter demonstrate that TbFEN1 localises to nucleus of 

procyclic T. brucei. This was most clearly demonstrated by the localisation of the 

YFP::TbFEN1 and TbFEN1::GSP tagged proteins. Although anti-TbFEN1 polyclonal anti-

sera clearly recognises TbFEN1 in cells overexpressing TbFEN1::GSP protein, the antisera 

was unable to detect native TbFEN1 protein in immunofluorescence experiment. 

The YFP::TbRAD2 was weakly detected within the nucleus, but predominantly appears as 

a discrete focus within the cytoplasm. Expression of TbRAD2 as a C-terminal GSP fusion 

also failed to convincingly, show any specific localisation within the cell and so no further 

experimentation was carried out on TbRAD2 in this project. 
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6 Use of BioID to investigate TbFEN1 Protein-Protein Interactions  

6.1 Chapter Synopsis 

To investigate proteins that might interact with, or come into close proximity to, TbFEN1 a 

procyclic cell line was established to express TbFEN1 fused to the bacterial biotin ligase 

BirA (TbFEN1::MYC::BirA*). This approach (referred to as BioID) enables the proteins 

which are biotinylated by the fusion protein to be identified using streptavidin. The intention 

here was to visualise the interacting proteins.  

 

6.2 Generation of a procyclic cell line expressing TbFEN1::MYC::BirA* 

The TbFEN1 ORF was amplified by PCR (Figure 5.4 A) ligated into pGEMT and the DNA 

insert sequenced. Following verification of the wild type sequence the ORF was subcloned 

into the pDEX377::MYC::BirA* vector and transfected into the procyclic PTP cell line. The 

resulting cell line was induced to express TbFEN1::MYC::BirA* and cell density monitored 

to establish if over-expression of the fusion protein affected cell growth (Figure 6.1). Over 

120 hours of induction and biotinylation there was no observable effect on cell growth in 

induced cells compared to the uninduced cell line. It can be assumed therefore that the 

induction of TbFEN::MYC::BirA* does not cause a dominant negative phenotype.  

Cells were prepared for immunofluorescence microscopy 24 hours post-induction. The 

cells were probed with anti-myc antibody to detect the expression and localisation of the 

TbFEN1::MYC::BirA* protein and probed with FITC conjugated streptavidin to visualise 

biotinylated proteins within the cells (Figure 6.3)  

Figure 6.3 shows the localisation of the TbFEN1::MYC::BirA* protein and resulting 

biotinylated proteins over the course of the cell cycle. Similarly to previous localisation 

results, it can be seen that the TbFEN1::MYC::BirA* protein localises to the nucleus. As 

expected, biotinylated proteins also localise within the nucleus throughout the cell cycle. 

The MYC-tagged protein shows distinct segregation to either side of the nucleus prior to 

mitosis in the 1N2K stage, with less obvious spindle microtubule localisation during mitosis. 

The biotinylated proteins do not appear to show any mitotic spindle localisation.  

Immunoblots were carried out on lysates prepared from TbFEN1::MYC::BirA* expressing 

cells and the parental non-transfected PTP cell line (Figure 6.4). The addition of 

MYC::BirA* to the TbFEN1 protein increases the size of the protein to 80.1 kDa; a protein 
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of this approximate size was detected using anti-myc monoclonal (Figure 6.4A). In Figure 

6.4B the streptavidin was used to reveal the complexity of biotinylated proteins that were 

induced following induction of TbFEN1::MYC::BirA* .  
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Figure 6.1. Growth Curve of the TbFEN1::MYC::BirA* Induced and Uninduced Cell 
Lines. Graph to compare the growth rates of the induced and uninduced TbFEN1::MYC::BirA* cell 

lines, where 48 and 96 hours show point of passage back. The induced cell line was induced with 
doxycyline and biotin at 0 hours. Cell population is shown in a log10 format for graph simplicity. 
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Figure 6.2. Recombinant Plasmid TbFEN1::MYC::BirA* HindIII and XhoI Digest. An 
overloaded 0.8% gel for the digested recombinant plasmid TbFEN1::MYC::BirA*. The plasmid was 
digested with the restriction enzymes HindIII and XhoI to show the separation of the TbFEN1 ~ 
1,200bp and the vector ~8,000bp. Ladder used – GeneRuler™ 1kb DNA ladder, ThermoScientific. 
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Figure 6.3. Localisation Microscopy After 24 Hours Induction and Biotinylation of TbFEN1::MYC::BirA*. Fluorescent microscopy 

to show localisation of the TbFEN1 protein with a MYC tag and the localisation of biotinylated interacting proteins using streptavidin, shown by the 
Myc and Strep sections respectively. Cells were prepared for microscopy after 24 hours of induction and biotinylation. Images were taken using 
the Deltavision Deconvolution Microscopy. 
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B. 
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Figure 6.4. Immunoblots of PTPs and Transfected TbFEN1::MYC::BirA* PTPs. Resolved 

0.8% immunoblots to compare induced and biotinylated non-transfected PTPs to uninduced and 
induced TbFEN1::MYC::BirA*. (A) Uses anti c-myc to observe the appearance of the induced protein 
over 0 to 24 hours, (B) Used the antibody streptavidin to show the appearance of biotinylated proteins 
over 0 to 24 hours, (C) Is a positive control using the antibody KMX-1 to bind to β-tubulin. Numbers 
show the time the cell line was cultured for in hours, where the + sign shows whether the cell line was 
induced and biotinylated at 0 hours. Ladder used – PageRuler™ Plus pre-stained 10-250kDa protein 
ladder, ThermoScientific. 

  

C. 
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6.3 Chapter Summary 

Indirect immunofluorescence assays demonstrated nuclear localisation for the 

TbFEN1::MYC::BirA* fusion protein. This also further indicates that expression of TbFEN1 

as a fusion to BirA* results in the biotinylation of nuclear proteins. Western blotting confirmed 

this and also showed that a number of T. brucei proteins are biotinylated by 

TbFEN1::MYC::BirA*. The molecular identity of these proteins was not resolved during this 

project. 
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7 Discussion 

7.1 What has been achieved by this study? 

This study fully or partially accomplished four main objectives in relation to two proteins that 

are potential T. brucei homologs of the human GEN1 protein.  

Bioinformatics analysis demonstrated that two proteins encoded in the T. brucei genome had 

sequence and structural homology to human GEN1.  

The TbFEN1 protein was expressed and purified on a large scale and TbFEN1 specific 

polyclonal antisera produced. AlthoughTbRAD2 was expressed, and could be purified under 

strong denaturing conditions, a large scale purification of this protein was not achieved. 

Intracellular localisation experiments of both YFP and GSP-tagged versions of TbFEN1 

identified localisation to the nucleus. Although TbFEN1 specific polyclonal antisera was 

unable detect native TbFEN1 expression it was able to detect overexpressed TbFEN1::GSP 

and confirmed a nuclear localisation. However, the localisation of tagged versions of the 

TbRAD2 protein were unconvincing.  

A cell line was generated to allow identification of TbFEN1 interacting/proximal proteins. A 

procyclic cell line expressing TbFEN1::BirA* was established and following induction of this 

BirA* tagged protein a complex banding pattern was detected on immunoblots using FITC 

conjugated streptavidin, suggesting biotinylation of TbFEN1 interacting/near neighbour 

proteins. These biotinylated proteins were also shown to be present within the nucleus, as 

predicted from previous localisation of tagged versions of the TbFEN1protein.  

 

7.2 Relevance to antigenic variation  

One of the key questions that needs to be answered to develop treatments for HAT, is 

understanding the process of antigenic switching and its subsequent effects on the 

trypanosome surface. Antigenic variation is carried out by activating different expression 

sites, or by switching of the VSG sequences on chromosome telomeres to expression sites. 

Switching is known to occur by homologous recombination (Horn, 2014). As described 

previously, human GEN1 is a protein known to be involved in homologous recombination, by 

acting as a HJ resolvase (Ip et al., 2008). The process of homologous recombination is 

important for gene conversion events, which allows switching to take place. 

Bioinformatic analysis identified that T. brucei encodes two proteins with sequence and 

structural homology to human GEN1. These proteins were annotated in GeneDB as TbFEN1 
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and TbRAD2. These designations were based on their potential function as a flap 

endonuclease for TbFEN1, and as a member of the DNA repair protein superfamily 

XPG/RAD2 for TbRAD2. However, there is currently no biochemical characterisation to 

support these designations. As such, these are only primary indications for the protein 

designations. It cannot be certain these designations are correct until appropriate 

biochemical assays have been carried out. 

The structural homology of T. brucei proteins identified in the bioinformatic analysis leads to 

the suggestion that these proteins likely share functionality, to the human GEN1. Although 

this was not covered in the scope of this project it provides an opportunity for future analysis. 

If these proteins are shown to be of functional importance in homologous recombination, and 

thus antigenic switching, this provides a potential therapeutic target. 

Our project was able to investigate the localisation of the proteins in the parasite. Identifying 

localisation of the T. brucei proteins to the nucleus provides further reassurances that the 

proteins are involved in DNA-associated processes, such as homologous recombination. 

Inhibitors of human FEN1 have been identified previously in relation to cancer biology 

(Deshmukh et al., 2017). In this case, the inhibitors interacted directly with the human FEN1 

protein, rather than the DNA, resulting in anti-proliferative activity. The structural homology 

identified in bioinformatic analysis of the human and T. brucei proteins mean it may be 

possible to repurpose these inhibitors to act on the T. brucei proteins. This would rely on the 

active sites of the inhibitors having close to 100% homology to one another. Although, the 

structural analysis presented here, and work on the TcFEN1 protein in Trypanosoma cruzi 

(T. cruzi) have identified differences in sequence homology to FEN1 proteins, 100% 

homology may not be possible (Ponce et al., 2017). However, if the active sites did share 

sequence homology and if further experimentation could identify functional similarities, the 

re-purposing of the inhibitors may result in the same anti-proliferative activity of the T. brucei 

cell line, and halt cellular replication. If inhibition is replicated, further analysis could 

investigate whether the inhibitors affect localisation, repeating the localisation analysis in 

Chapter 5 with the addition of inhibitors. 

Work has recently been carried out investigating similar questions of the FEN1 protein in T. 

Cruzi species (Ponce et al., 2017). This study identified nuclear localisation of the TcFEN1 

protein, indicative of involvement in DNA activity, as identified here with the TbFEN1 protein. 

As part of this study, TcFEN1 was attributed as being crucial in repairing damage caused by 

oxidative stress. In addition to targeting the TbFEN1 protein to halt antigenic switching, this 

suggests inhibiting TbFEN1 may reduce the parasites ability to repair DNA damage caused 

by oxidative stress. When in the hosts bloodstream, the T. brucei parasites are susceptible 



Discussion 

137 
 

to high levels of reactive oxygen species, released from neutrophils as part of the host 

immune response, and thus the induction of oxidative stress and DNA damage (van Eeden 

et al., 1999). Being able to replicate these TcFEN1 results in the TbFEN1 protein will be 

important for understanding whether this is a possible downstream effect of targeting 

TbFEN1. The YFP and GSP tagged cell lines generated could be used to visualise inhibition.  

The native presence of the protein TbFEN1 seems to decrease when the parasite cell is in 

the bloodstream phase in comparison to the procyclic stage of the cell cycle. If the protein 

were to be involved in the switching of VSGs to evade the host, it would be expected that 

this protein would be highly expressed in the bloodstream form comparative to the procyclic 

form. As it is the bloodstream form which presents VSGs to the host and subsequently is 

able to switch using HR. It is possible, this result in Chapter 5, is due to a blotting error or 

investigative error. The TbFEN1 anti-sera may not have been evenly spread across the 

immunoblot membrane, making it look like there is less TbFEN1 in this cell line. It would be 

important to replicate this analysis to identify whether this reduced concentration is true or 

due to error.  

The process of hydrodynamic flow is crucial to the survival of T. brucei in the bloodstream, 

working in conjunction with VSG switching. Hydrodynamic flow allows the parasite to 

endocytose the external VSG proteins through the flagellar pocket, inside the cytoplasm any 

attached host antibodies will become removed and lysed. The VSGs are then presented 

back on the surface, antibody free. As identified in Markus Engstler’s work on hydrodynamic 

flow, there is a threshold concentration of anti-VSG immunoglobulins the host immune 

system needs to reach to overcome the parasite (Engstler et al., 2007). The parasite is only 

capable of recycling the VSG-Ig complexes at low concentrations of immunoglobulins. If 

TbFEN1 is identified to have a functional role in the homologous recombination, and 

subsequently VSG switching, inhibiting TbFEN1 will limit T. brucei’s ability to undergo VSG 

switching. Both mechanisms must work in conjunction with one another for prolonged 

evasion of the host immune system. By blocking antigenic switching, the T. brucei will no 

longer have a repertoire of a few thousand VSGs, meaning the host will need to mount fewer 

immune responses as the remaining VSG repertoire is exhausted.  

 

7.3 Localisation and Protein-protein interactions  

Understanding where a protein localised throughout the cell cycle is important but does not 

provide insight into its potential function. Human GEN1 has previously been observed to 

interact with centrosomes and microtubules in mammalian cells where the protein also acts 

as a control for centrosome copy number, a process which acts separately to Holliday 
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junction resolvase function (Gao et al., 2012). Conversely, the human FEN1 appears to only 

localise in the nucleus of mammalian cells at replication forks for DNA repair and replication 

(Guo et al., 2008). From the localisation results in chapter 5, there is an indication of 

interaction of TbFEN1 with the microtubules, where fluorescence of TbFEN1 appears to 

show a strand between the two nuclei at the end of mitosis. However, this may be due to 

interaction with the nuclear DNA, where the cell lines should be compared to antibodies 

which are known to interact with the microtubules. 

Recruitment of the protein during the cell cycle can also provide understanding of the 

potential protein function. Human GEN1 protein is functional during S/G2 phase of the cell 

cycle, where most dissolution of HJs occurs; with a peak accumulation in the M-phase, for 

centrosome interaction and mitotic stability (Matos and West, 2014, Matos et al., 2011). 

However, in the human FEN1 protein there should be degradation after the S phase has 

been complete, this process of degradation is considered crucial for the progression of the 

cells’ cycle (Guo et al., 2012). For the localisation to the nucleus of YFP::TbFEN1and 

TbFEN1::GSP there are no distinctive fluctuations in recruitment of the protein throughout 

the cell cycle. We would expect protein accumulation signals for TbFEN1 in either late 1N1K 

to mitosis for a protein like GEN1, or a large decrease in protein signal after early 1N2K for a 

protein like FEN1. Greater recruitment at cell cycle phases would indicate greater activity of 

the protein, furthering our understanding of its function.   

The BioID analysis in Chapter 6 was unable to definitively identify any protein-protein 

interactions of the TbFEN1 protein. Given knowledge of human FEN1 interaction with PCNA 

and the identification of it in T. brucei interactions would be expected to occur (Sakurai et al., 

2005). PCNA is crucial to the DNA replication, acting with DNA polymerases, including 

FEN1. In humans, PCNA interacts with FEN1 at branched flaps and nicked substrates, 

stimulating FEN1 activity (Li et al., 1995, Craggs et al., 2014).  

PCNA has previously been characterised in T. brucei (Kaufmann et al., 2012), where it is 

clearly detected in the S-phase of the cell cycle; the same phase PCNA is active in human 

DNA replication (Kirsten and Ulrich, 2002). In T. brucei, PCNA has been identified to be 

about 32 kDa in size. Regulation of TbPCNA is crucial for normal proliferation and replication 

of the bloodstream T. brucei, where overexpression stops proliferation providing 

opportunities for targeted interventions (Valenciano et al., 2015). Protein-protein Interaction 

experiments of TbFEN1 identified a band at approximately 30 kDa on the immunoblots. It is 

possible this band is identifying TbFEN1 interaction with TbPCNA. The bioinformatics 

analysis completed in this project identified a FEN1-PCNA interface as part of the conserved 

domains in the TbFEN1 gene, adding further support for suggested PCNA interaction. 
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However, our analysis does not provide confirmation of this interaction, which would require 

experimental confirmation. This could be carried out by purifying biotinylated proteins and 

carrying out SDS-PAGE and an immunoblot probe with anti-PCNA antibodies. If the anti-

PCNA detects the presence of the TbPCNA protein then it would indicate a TbPCNA-

TbFEN1 interaction. 

Intervening on PCNA to disrupt the cell cycle has previously been proposed in cancer 

biology in humans, as well as in T. brucei as a therapeutic target (Müller et al., 2013, 

Valenciano et al., 2015). If future studies confirmed the TbFEN1 gene forms interactions with 

TbPCNA, this could provide a potential future target which may disrupt the cell cycle.  

 

7.4 TbRAD2 protein 

Much of the work presented here focusses on TbFEN1 due to difficulties in denaturing the 

much larger protein, TbRAD2. This does not mean however, that TbRAD2 may not be of 

functional importance in VSG switching. The protein TbRAD2 shared greater sequence 

similarity to the human GEN1 protein than the TbFEN1 protein. Through visual comparisons 

of the sections of the secondary structures, the human GEN1 and TbRAD2 shared almost 

100% homology. There is also evidence of human GEN1 being difficult to solubilise (Rass et 

al., 2010), as experienced with the TbRAD2. This additional sequence similarity suggests 

TbRAD2 may share greater functional similarity with human GEN1, and hence as a HJ 

resolvase, than TbFEN1. 

 

7.5 Critique of methods and results 

7.5.1 Protein expression 

Localisation experiments with the TbFEN1 polyclonal anti-sera were completed with native 

expression levels of the parasite protein and were unable to provide specificity at the range 

of concentrations used. This indicates that although the anti-sera can detect TbFEN1 as low 

as 10 ng on an immunoblot, native expression within the parasite is below the detectable 

limit for the sensitivity of the protein. The overexpressed GSP cell line was able to be 

detected by the antisera.  

When considering the tagged proteins, the YFP tag was added in sequence to the 

endogenous loci, though it is possible that this may not have been a native level of 

expression. For both YFP tagged proteins the level of expression was constant throughout 
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the cell cycle, where TbFEN1 was strong and TbRAD2 weak. Placing the tag on the C-

terminus of TbRAD2 may provide stronger expression. 

GSP experiments were carried out using a vector requiring an induction process, this 

process would have overexpressed the trypanosome protein, therefore the localisation may 

not be native to the protein. Despite this overexpression, protein expression of TbRAD::GSP 

remained weak. Conversely, for TbFEN1 the level of expression appeared to increase during 

cell replication. The GSP sequence was added to the C-terminus and would have 

subsequently lost 3’UTR control, where the level of expression would not have been 

controlled. It would be important to carry out experiments to investigate whether N-terminal 

tagging of GSP causes the level of protein expression to change. 

7.5.2 YFP and GSP tag location in T. brucei proteins 

For the TbFEN1 protein, clear localisation was seen in the nucleus in tagging experiments 

with YFP and GSP.  

When considering the TbRAD2 protein, there was weak evidence of the protein being 

localised to the nucleus using YFP tagging, but no specific localisation of the GSP tagged 

TbRAD2 protein. The YFP tag was added to the N-terminus, conversely the GSP epitope 

was present on the C-terminus. It is possible, the difference in visualisation is due to these 

tag locations. A GSP tag was used because it is a smaller 9 amino acid epitope, which 

would be expected to affect localisation less than the larger YFP tag. A potential future 

experiment would be to place GSP at the N-terminus and look again at localisation patterns. 

This would identify whether it was the different tags or different locations of the tags which 

affected expression and/or localisation.  

7.5.3 Expression of TbRAD2  

Although TbRAD2 had to be purified under stringent denaturing conditions, it would have still 

been possible to carry out large scale purification. However, purifying a denatured protein 

may be of little use if the protein could not be refolded to a functional state. As a result, any 

antibodies created to the protein, could be detected on an immunoblot, but may not be 

detected within the parasite. Alternatively, the use of different vectors and/or E. coli bacterial 

strains could be investigated to produce a soluble protein suitable for biochemical studies.  

7.5.4 Identification of TbFEN1 interacting proteins  

Although preliminary experiments demonstrated that induction of TbFEN1::BirA* led to the 

biotinylation of a number of proteins within the nucleus of T. brucei, the identity of these 

proteins was not established. When investigating protein-protein interactions of TbFEN1, 

only a banding pattern of interacting proteins and the localisation of these interactions were 
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investigated. The banding pattern produced provides little information as to what the proteins 

are. Whilst it is possible to compare the sizes of the banding patterns with known T. brucei 

proteins, it does not specifically identify the protein. Further experimentation to interrogate 

these bands is therefore important for understanding what protein-protein interactions are 

being identified.  

 

7.6 Suggestions for Future Work 

7.6.1 Biochemical characterisation of TbFEN1 

Activity of the purified TbFEN1 can be detected by endonuclease assay. The TbFEN1 is 

expected to carry out nuclease activity, such as the HJ resolvase activity seen in human 

GEN1. Assays would need to be carried out to investigate the nuclease activity of TbFEN1 

with branched oligonucleotides. Firstly, the oligonucleotides would need to be produced 

using partially complementary sequence to produce branched DNA substrate. The nuclease 

assay involves incubating the TbFEN1 protein with the produced synthetic substrates. 

Nuclease activity can be detected by the protein which will remove the branched chains, 

which can be detected as by the change in weight of the DNA. Following this, the proteins 

optimum conditions will need to be found along with the proteins Michealis constant and 

turnover number. Further experimentation against a wide range of oligonucleotide structures 

can then be carried out; such as HJ, replication forks and 5’ flaps at different protein 

concentrations. This will provide information to whether the protein is interacting with the 

structure due to saturation. By finding different types of structures the protein is able to 

interact with, a picture of the TbFEN1’s functions can begin to be put together (Wright et al., 

2011). 

7.6.2 Antisera affinity purification 

From the purified TbFEN1, polyclonal antisera was produced. The native localisation 

experiments identified that the antisera did not have the specificity to TbFEN1 at high 

antisera concentrations as it interacted with other parasite proteins. At low antisera 

concentration, the antisera did not have the sensitivity to the low-level expression of native 

TbFEN1. To view the native level of expression of TbFEN1, the anti-TbFEN1 antibody in the 

antisera will need to be purified out. This can be done by using the previously purified 

TbFEN1 protein to carry out affinity purification to increase the antisera sensitivity and 

specificity. 
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7.6.3 Future experiments for anti-TbRAD2  

Cell lines expressing TbRAD2 with YFP and GSP tags were created. These could be used 

to investigate localisation with a TbRAD2 antibody, should effective purification of the protein 

be carried out and a TbRAD2 antisera be produced. This would provide support for future 

functionality experiments if this protein is found to localise to the nucleus. 

7.6.4 RNAi experiments 

The TbFEN1 antibody and YFP-tagged protein cell line could be used to investigate RNAi 

induced depletion of TbFEN1. It would not be possible to use the GSP cell line because it 

will require induction of the cell line to express the tagged protein. It is possible to create 

RNAi sequences specific to TbFEN1 which would neutralize TbFEN1 mRNA (Wang et al., 

2000), and hence production of the protein. Using the YFP cell line the depletion of the 

TbFEN1 protein can be observed over time. If it is observed that the TbFEN1 protein is 

decreasing in the YFP tagged cell line, both the wild type and YFP tagged cell line could be 

observed for a negative phenotype. If the TbFEN1 antibody were to be purified, depletion 

may potentially be visualized for the wild type T. brucei.  

7.6.5 Investigating protein-protein interactions 

To investigate the protein-protein interactions identified with TbFEN1, SILAC analysis and 

mass spectrometry could be carried out. The SILAC process involves growing multiple 

parasite cell lines in media of different amino acid molecular weights; resulting in relative 

varying protein weights between cell lines, such as: Light, Medium and Heavy. A BirA* 

marker on the TbFEN1 protein, adds a biotin molecule to proteins which come within a 20-30 

nm radius of it. Proteins which are biotinylated in the BioID process are potential interacting 

proteins (Roux et al., 2013). Biotinylated proteins can then be separated from other parasite 

proteins via streptavidin, leaving only the proteins which have interacted with the protein of 

interest, through the SILAC cell lines, there will be three different weights for the same 

proteins present. These proteins can then undergo mass spectrometry, where the results 

can be compared to the TbFEN1 protein library to identify the interacting proteins. This 

provides a stronger indication of the potential functions of the TbFEN1. This method has 

previously been carried out successfully in mammalian cells and in T. brucei cell lines to 

investigate protein-protein interactions (Morriswood et al., 2013, Wang and Huang, 2014, 

Emmott and Goodfellow, 2014). This method provides a straight forward approach to fully 

identifying protein-protein interactions, and could specifically be used following this work to 

investigate whether there is a true interaction between TbFEN1 and TbPCNA. 
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Appendix 

A. Tb427tmp.211.2870 – Putative 5’NdeI RAD2, Trypanosoma brucei Lister strain 427  
 
TbRAD2      MGVHGLWRLLDTFGEVTQPADWKGKRVAIDASIWIAQFRSSCEPGESVEERILEGFFMRI  60 

            MGVHGLWRLLDTFGEVTQPADWKGKRVAIDASIWIAQFRSSCEPGESVEERILEGFFMRI 

427 RAD2    MGVHGLWRLLDTFGEVTQPADWKGKRVAIDASIWIAQFRSSCEPGESVEERILEGFFMRI  60 

 

TbRAD2      LKLLFYGIEPIFVFDGPSTMSKRAEQRRRAQHREALEQAMVTRHARRLIAAQMSAGLLDV  120 

            LKLLFYGIEPIFVFDGPSTMSKRAEQRRRAQHREALEQAMVTRHARRLIAAQMSAGLLDV 

Sbjct  61   LKLLFYGIEPIFVFDGPSTMSKRAEQRRRAQHREALEQAMVTRHARRLIAAQMSAGLLDV  120 

 

TbRAD2      HSLPRKYRSPGSGKKLQKPLRQSLPPTDLLHDVDEDVGESCVETGTILLQPKGRKKRTRE  180 

            HSLPRKYRSPGSGKKLQKPLRQSLPPTDLLHDVDEDVGESCVETGTILLQPKGRKKR RE 

427 RAD2    HSLPRKYRSPGSGKKLQKPLRQSLPPTDLLHDVDEDVGESCVETGTILLQPKGRKKRXRE  180 

 

TbRAD2      VCLAPEVVSRSLTHSFLSEAEIFLEQRKTFEKFHENNRLAYTSTSIFMGPRRVAEEVSRA  240 

            VCLAPEVVSRSLTHSFLSEAEIFLEQRKTFEKFHENNRLAYTSTSIFMGPRRVAEEVSRA 

427 RAD2    VCLAPEVVSRSLTHSFLSEAEIFLEQRKTFEKFHENNRLAYTSTSIFMGPRRVAEEVSRA  240 

 

TbRAD2      LGGATRGEAESIQGSSAGNSSSSSVLVEGVGSAAIVVEEECGDSVCEILSSSSCSVIVVD  300 

            LGGATRGEAESIQGSSAGNSSSSSVLVEGVGSAAIVVEEECGDSVCEILSSSSCSVIVVD 

427 RAD2    LGGATRGEAESIQGSSAGNSSSSSVLVEGVGSAAIVVEEECGDSVCEILSSSSCSVIVVD  300 

 

TbRAD2      NAIKSDPHTVDAFHHNVSFGKEEESTSDEVEVLSRGDYWSCADNDCDDLLSLAASDRTPD  360 

            NAIK DPHTVDAFHHNVSFGKEEESTSDEVEVLSRGDYWSCADNDCDDLLSLAASDRTPD 

427 RAD2    NAIKXDPHTVDAFHHNVSFGKEEESTSDEVEVLSRGDYWSCADNDCDDLLSLAASDRTPD  360 

 

TbRAD2      TQCNDSTHLWYPGTQLLGGLGSADDGGIVDESRDNCTETSCGLSEFNPFGGVVVPSGNLR  420 

            TQCNDSTHLWYPGTQLLGGLGSADDGGIVDESRDNCTETSCGLSEFNPFGGVVVPSGNLR 

427 RAD2    TQCNDSTHLWYPGTQLLGGLGSADDGGIVDESRDNCTETSCGLSEFNPFGGVVVPSGNLR  420 

 

TbRAD2      KDEKEVLLNTSVITSSETLETTGIPLKVPSVSREHVREKQVVPFELLGIVELLDCCGIPY  480 

            KDEKEVLLNTSVITSSETLETTGIPLKVPSVSREHVREKQVVPFELLGIVELLDCCGIPY 

427 RAD2    KDEKEVLLNTSVITSSETLETTGIPLKVPSVSREHVREKQVVPFELLGIVELLDCCGIPY  480 

 

TbRAD2      VLSPNEADAQCAFLNEQRVVDAVFTEDSDVIVHGAPVVLRGFFSKGRHVVAYRQSDLLAC  540 

            VLSPNEADAQCAFLNEQRVVDAVFTEDSDVIVHGAPVVLRGFFSKGRHVVAYRQSDLLAC 

427 RAD2    VLSPNEADAQCAFLNEQRVVDAVFTEDSDVIVHGAPVVLRGFFSKGRHVVAYRQSDLLAC  540 

 

TbRAD2      GVDKVVLVALALLLGCDYAEGVNGLSLLESLHVIAATWRQTTNSVEGGAEQVRDMLSSWC  600 

            GVDKVVLVALALLLGCDYAEGVNGLSLLESLHVIAATWRQTTNSVEGGAEQVRDMLSSWC 

427 RAD2    GVDKVVLVALALLLGCDYAEGVNGLSLLESLHVIAATWRQTTNSVEGGAEQVRDMLSSWC  600 

 

TbRAD2      SAVRRRRIPWGEDVPLTRFYRNYVKWSTLQLADSFPESHVVDAYFNPTVNTDTRPFVCAA  660 

            SAVRRRRIPWGEDVPLTRFYRNYVKWSTLQLADSFPESHVVDAYFNPTVNTDTRPFVCA  

427 RAD2    SAVRRRRIPWGEDVPLTRFYRNYVKWSTLQLADSFPESHVVDAYFNPTVNTDTRPFVCAX  660 

 

TbRAD2      PDWTKLRLFASMHGILNKKYCGERLENAQRECQRRQPPSGDPADSAQRRLTDFFSPLPNR  720 

            PDWTKLRLFASMHGILNKKYCGERLENAQRECQRRQPPSGDPADSAQRRLTDFFSPLPNR 

427 RAD2    PDWTKLRLFASMHGILNKKYCGERLENAQRECQRRQPPSGDPADSAQRRLTDFFSPLPNR  720 

 

TbRAD2      ERVIFRKQPPKFSEALSYLRAARGDP  746 

            ERVIFRKQPPKFSEALSYLRAARGDP 

427 RAD2    ERVIFRKQPPKFSEALSYLRAARGDP  746 
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B. Tb927.9.11760 – Putative 5’NdeI RAD2, Trypanosoma brucei TREU927  
 

TbRAD2      MGVHGLWRLLDTFGEVTQPADWKGKRVAIDASIWIAQFRSSCEPGESVEERILEGFFMRI  60 

            MGVHGLWRLLDTFGEVTQPADWKGKRVAIDASIWIAQFRSSCEPGESVEERILEGFFMRI 

927 RAD2    MGVHGLWRLLDTFGEVTQPADWKGKRVAIDASIWIAQFRSSCEPGESVEERILEGFFMRI  60 

 

TbRAD2      LKLLFYGIEPIFVFDGPSTMSKRAEQRRRAQHREALEQAMVTRHARRLIAAQMSAGLLDV  120 

            LKLLFYGIEPIFVFDGPSTMSKRAEQRRRAQHREALEQAMVTRHARRLIAAQMSAGLLDV 

927 RAD2    LKLLFYGIEPIFVFDGPSTMSKRAEQRRRAQHREALEQAMVTRHARRLIAAQMSAGLLDV  120 

 

TbRAD2      HSLPRKYRSPGSGKKLQKPLRQSLPPTDLLHDVDEDVGESCVETGTILLQPKGRKKRTRE  180 

            HSLPRKYRSPGSGKKLQKPLRQSLPPTDLLHDVDEDVGESCVETGTILLQPKGRKKRTRE 

927 RAD2    HSLPRKYRSPGSGKKLQKPLRQSLPPTDLLHDVDEDVGESCVETGTILLQPKGRKKRTRE  180 

 

TbRAD2      VCLAPEVVSRSLTHSFLSEAEIFLEQRKTFEKFHENNRLAYTSTSIFMGPRRVAEEVSRA  240 

            VCLAPEVVSRSLTHSFLSEAEIFLEQRKTFEKFHENNRLAYTSTSIFMGPRRVAEEVSRA 

927 RAD2    VCLAPEVVSRSLTHSFLSEAEIFLEQRKTFEKFHENNRLAYTSTSIFMGPRRVAEEVSRA  240 

 

TbRAD2      LGGATRGEAESIQGSSAGNSSSSSVLVEGVGSAAIVVEEECGDSVCEILSSSSCSVIVVD  300 

            LGGATRGEAESIQGSSAGNSSSSSVLVEGVGSAAIVVEEECGDSVCEILSSSSCSVIVVD 

927 RAD2    LGGATRGEAESIQGSSAGNSSSSSVLVEGVGSAAIVVEEECGDSVCEILSSSSCSVIVVD  300 

 

TbRAD2      NAIKSDPHTVDAFHHNVSFGKEEESTSDEVEVLSRGDYWSCADNDCDDLLSLAASDRTPD  360 

            NAIK+DPH VDAFHHNVSFGKEEESTSDEVEVLS GDYWSCADNDCDDLLSLAASDRTPD 

927 RAD2    NAIKTDPHAVDAFHHNVSFGKEEESTSDEVEVLSSGDYWSCADNDCDDLLSLAASDRTPD  360 

 

TbRAD2      TQCNDSTHLWYPGTQLLGGLGSADDGGIVDESRDNCTETSCGLSEFNPFGGVVVPSGNLR  420 

            TQCNDSTHLWYPGTQLLGGLGSADDGGIVDESRDNCTETSCGLSEFNPFGGVVVPSGNLR 

927 RAD2    TQCNDSTHLWYPGTQLLGGLGSADDGGIVDESRDNCTETSCGLSEFNPFGGVVVPSGNLR  420 

 

TbRAD2      KDEKEVLLNTSVITSSETLETTGIPLKVPSVSREHVREKQVVPFELLGIVELLDCCGIPY  480 

            KDEKEVLLNTSVITSSETLETTGIPLKVPSVSREHVREKQVVPFELLGIVELLDCCGIPY 

927 RAD2    KDEKEVLLNTSVITSSETLETTGIPLKVPSVSREHVREKQVVPFELLGIVELLDCCGIPY  480 

 

TbRAD2      VLSPNEADAQCAFLNEQRVVDAVFTEDSDVIVHGAPVVLRGFFSKGRHVVAYRQSDLLAC  540 

            VLSPNEADAQCAFLNEQRVVDAVFTEDSDVIVHGAPVVLRGFFSKGRHVVAYRQSDLLAC 

927 RAD2    VLSPNEADAQCAFLNEQRVVDAVFTEDSDVIVHGAPVVLRGFFSKGRHVVAYRQSDLLAC  540 

 

TbRAD2      GVDKVVLVALALLLGCDYAEGVNGLSLLESLHVIAATWRQTTNSVEGGAEQVRDMLSSWC  600 

            GVDKVVLVALALLLGCDYAEGVNGLSLLESLHVIAATWRQTTNSVEGGAEQVRDMLSSWC 

927 RAD2    GVDKVVLVALALLLGCDYAEGVNGLSLLESLHVIAATWRQTTNSVEGGAEQVRDMLSSWC  600 

 

TbRAD2      SAVRRRRIPWGEDVPLTRFYRNYVKWSTLQLADSFPESHVVDAYFNPTVNTDTRPFVCAA  660 

            SAVRRRRIPWGEDVPLTRFYRNYVKWSTLQLADSFPESHVVDAYFNPTVNTDTRPFVCAA 

927 RAD2    SAVRRRRIPWGEDVPLTRFYRNYVKWSTLQLADSFPESHVVDAYFNPTVNTDTRPFVCAA  660 

 

TbRAD2      PDWTKLRLFASMHGILNKKYCGERLENAQRECQRRQPPSGDPADSAQRRLTDFFSPLPNR  720 

            PDWTKLRLFASMHGILNKKYCGERLENAQRECQRRQPPSGDPADSAQRRLTDFFSPLPNR 

927 RAD2    PDWTKLRLFASMHGILNKKYCGERLENAQRECQRRQPPSGDPADSAQRRLTDFFSPLPNR  720 

 

TbRAD2      ERVIFRKQPPKFSEALSYLRAARGDP  746 

            ERVIFRKQPPKFSEALSYLRAARGDP 

927 RAD2    ERVIFRKQPPKFSEALSYLRAARGDP  746 

 

Appendix 1. Amplified Sequence Comparison of TbRAD2.  Alignment results of the 

sequenced TbFEN1 and TbRAD2 protein against known sequences (A) T. brucei TREU 927 (B) T. 
brucei lister strain 427 and (C) T. brucei TREU 927. Where red amino-acids are not the same 
between the two compared sequences, green amino-acids are the same between the compared 
sequences but not between alignments B and C. The X symbol shows were the amino-acid is not 
specific in the known sequence. Results obtained by EMBL-EBI’s Clustal Omega (Goujon et al., 2010, 
Sievers et al., 2011, McWilliam et al., 2013).  
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Appendix 2. Final bleed 308 1:200 anti-sera against T. brucei procyclic 427. Fluorescent 

microscopy panels showing the affinity of the final bleed anti-sera of rabbit 308 to the native T. brucei 
protein FEN1, in the procyclic 427 parasite strain. The anti-sera was used at a concentration of 1:200 
and was detected using the anti-rabbit 568 secondary to interact with TRITC excitation and emission 
wavelengths. Images were taken using the Deltavision Elite.  
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Appendix 3. Final bleed 308 1:1,000 anti-sera against T. brucei procyclic 427. 
Fluorescent microscopy panels showing the affinity of the final bleed anti-sera of rabbit 308 to the 
native T. brucei protein FEN1, in the procyclic 427 parasite strain. The anti-sera was used at a 
concentration of 1:1,000 and was detected using the anti-rabbit 568 secondary to interact with TRITC 
excitation and emission wavelengths. Images were taken using the Deltavision Elite. 
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Appendix 4. Final bleed 309 1:200 anti-sera against T. brucei procyclic 427. Fluorescent 
microscopy panels showing the affinity of the final bleed anti-sera of rabbit 309 to the native T. brucei 
protein FEN1, in the procyclic 427 parasite strain. The anti-sera was used at a concentration of 1:200 
and was detected using the anti-rabbit 568 secondary to interact with TRITC excitation and emission 
wavelengths. Images were taken using the Deltavision Elite.  
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Appendix 5. Final bleed 309 1:1,000 anti-sera against T. brucei procyclic 427. 
Fluorescent microscopy panels showing the affinity of the final bleed anti-sera of rabbit 309 to the 
native T. brucei protein FEN1, in the procyclic 427 parasite strain. The anti-sera was used at a 
concentration of 1:1,000 and was detected using the anti-rabbit 568 secondary to interact with TRITC 
excitation and emission wavelengths. Images were taken using the Deltavision Elite.  
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Appendix 6. Pre-immune 308 1:1,000 anti-sera against T. brucei bloodstream 427. 
Fluorescent microscopy panels showing the affinity of the pre-immune bleed anti-sera of rabbit 308 to 
the native T. brucei protein FEN1, in the bloodstream 427 parasite strain. The anti-sera was used at a 
concentration of 1:1,000 and was detected using the anti-rabbit 568 secondary to interact with TRITC 
excitation and emission wavelengths. Images were taken using the Deltavision Elite. 
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Appendix 7. Final bleed 308 1:200 anti-sera against T. brucei bloodstream 427. 
Fluorescent microscopy panels showing the affinity of the final bleed anti-sera of rabbit 308 to the 
native T. brucei protein FEN1, in the bloodstream 427 parasite strain. The anti-sera was used at a 
concentration of 1:200 and was detected using the anti-rabbit 568 secondary to interact with TRITC 
excitation and emission wavelengths. Images were taken using the Deltavision Elite.  
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Appendix 8. Final bleed 308 1:1,000 anti-sera against T. brucei bloodstream 427. 
Fluorescent microscopy images showing the affinity of the final bleed anti-sera of rabbit 308 to the 
native T. brucei protein FEN1 during the different stages of the bloodstream 427 parasite cell cycle. 
The anti-sera was used at a concentration of 1:1,000 and was detected using the anti-rabbit 568 
secondary to interact with TRITC excitation and emission wavelengths. Images were taken using the 
Deltavision Elite. 
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Appendix 9. Final bleed 308 1:5,000 anti-sera against T. brucei bloodstream 427. 
Fluorescent microscopy images showing the affinity of the final bleed anti-sera of rabbit 308 to the 
native T. brucei protein FEN1 during the different stages of the bloodstream 427 parasite cell cycle. 
The anti-sera was used at a concentration of 1:5,000 and was detected using the anti-rabbit 568 
secondary to interact with TRITC excitation and emission wavelengths. Images were taken using the 
Deltavision Elite. 

  



Appendix 

158 
 

 

Appendix 10. Pre-immune 309 1:1,000 anti-sera against T. brucei bloodstream 427. 
Fluorescent microscopy panels showing the affinity of the pre-immune bleed anti-sera of rabbit 309 to 
the native T. brucei protein FEN1, in the bloodstream 427 parasite strain. The anti-sera was used at a 
concentration of 1:1,000 and was detected using the anti-rabbit 568 secondary to interact with TRITC 
excitation and emission wavelengths. Images were taken using the Deltavision Elite. 
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Appendix 11. Final bleed 309 1:200 anti-sera against T. brucei bloodstream 427. 
Fluorescent microscopy panels showing the affinity of the final bleed anti-sera of rabbit 309 to the 
native T. brucei protein FEN1, in the bloodstream 427 parasite strain. The anti-sera was used at a 
concentration of 1:200 and was detected using the anti-rabbit 568 secondary to interact with TRITC 
excitation and emission wavelengths. Images were taken using the Deltavision Elite.  
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Appendix 12. Final bleed 309 1:1,000 anti-sera against T. brucei bloodstream 427. 
Fluorescent microscopy panels showing the affinity of the final bleed anti-sera of rabbit 309 to the 
native T. brucei protein FEN1, in the bloodstream 427 parasite strain. The anti-sera was used at a 
concentration of 1:1,000 and was detected using the anti-rabbit 568 secondary to interact with TRITC 
excitation and emission wavelengths. Images were taken using the Deltavision Elite.  
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Appendix 13. Final bleed 309 1:5,000 anti-sera against T. brucei bloodstream 427. 
Fluorescent microscopy panels showing the affinity of the final bleed anti-sera of rabbit 309 to the 
native T. brucei protein FEN1, in the bloodstream 427 parasite strain. The anti-sera was used at a 
concentration of 1:5,000 and was detected using the anti-rabbit 568 secondary to interact with TRITC 
excitation and emission wavelengths. Images were taken using the Deltavision Elite. 


