Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at √s=13 TeV with the ATLAS detector

Barton, Adam Edward and Beattie, Michael and Bertram, Iain Alexander and Borissov, Guennadi and Bouhova-Thacker, Evelina Vassileva and Dearnaley, William and Fox, Harald and Grimm, Kathryn Ann Tschann and Henderson, Robert Charles William and Hughes, Gareth and Jones, Roger William Lewis and Kartvelishvili, Vakhtang and Long, Robin Eamonn and Love, Peter Allan and Muenstermann, Daniel Matthias Alfred and Parker, Adam Jackson and Skinner, Malcolm and Smizanska, Maria and Walder, James William and Wharton, Andy (2017) Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at √s=13 TeV with the ATLAS detector. Physical Review D, 96 (7). ISSN 1550-7998

Full text not available from this repository.

Abstract

Jet energy scale measurements and their systematic uncertainties are reported for jets measured with the ATLAS detector using proton-proton collision data with a center-of-mass energy of √s=13 TeV, corresponding to an integrated luminosity of 3.2 fb−1 collected during 2015 at the LHC. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells, using the anti-kt algorithm with radius parameter R=0.4. Jets are calibrated with a series of simulation-based corrections and in situ techniques. In situ techniques exploit the transverse momentum balance between a jet and a reference object such as a photon, Z boson, or multijet system for jets with 20<pT<2000 GeV and pseudorapidities of |η|<4.5, using both data and simulation. An uncertainty in the jet energy scale of less than 1% is found in the central calorimeter region (|η|<1.2) for jets with 100<pT<500 GeV. An uncertainty of about 4.5% is found for low- pT jets with pT=20 GeV in the central region, dominated by uncertainties in the corrections for multiple proton-proton interactions. The calibration of forward jets (|η|>0.8) is derived from dijet pT balance measurements. For jets of pT=80 GeV, the additional uncertainty for the forward jet calibration reaches its largest value of about 2% in the range |η|>3.5 and in a narrow slice of 2.2<|η|<2.4.

Item Type:
Journal Article
Journal or Publication Title:
Physical Review D
ID Code:
88914
Deposited By:
Deposited On:
24 Nov 2017 02:02
Refereed?:
Yes
Published?:
Published
Last Modified:
01 Apr 2020 05:51