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Abstract 
 
The presence of exogenous DNA in the cytosol results in the activation of the DNA 

sensor cyclic GMP-AMP synthase (cGAS). cGAS produces the second messenger 

cyclic GMP-AMP (cGAMP) which binds to and activates the endoplasmic reticulum 

adapter STimulator of INterferon Genes (STING). Activated STING initiates 

transcription of the anti-viral cytokine interferon-b, and by extension, induces 

activation of the anti-viral immune response. Other DNA sensors have been proposed 

to recognise exogenous DNA via STING but their relevance to the cGAS-STING 

pathway is unclear. Interferon-g inducible protein 16 (IFI16) is a putative DNA sensor 

that has also been proposed to induce interferon-b transcription via STING. This thesis 

demonstrates that both IFI16 and cGAS are required for full activation of immune 

responses to DNA and DNA virus infection in human immortalised keratinocytes 

(HaCaT).  

 

The cGAS-STING pathway was examined in IFI16(-/-) HaCaT cell lines to conclusively 

determine the contribution of IFI16 to DNA sensing. IFI16(-/-) HaCaT cell lines 

produced drastically reduced levels of interferon-b, interferon-stimulated genes and 

pro-inflammatory cytokine mRNAs following stimulation with exogenous DNA due to 

reduced activation of the STING pathway. IFI16 was observed not influence cGAS 

activity as DNA-induced cGAMP levels were comparable between Wild type and 

IFI16(-/-) cell lines. IFI16 was required for STING signalling following cGAMP 

stimulation. IFI16 was found to interact with STING promoting STING 

phosphorylation and translocation to peri-nuclear foci. Additionally, in preliminary 

experiments we observe that IFI16 may be required for STING palmitoylation. Thus, 

we propose that IFI16 and cGAS co-operate for the full activation of DNA sensing in 

HaCaT cells. 
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1.1.  The Immune System 

 

The immune system is composed of a collection of cells, organs and tissues that function in 

concert to defend an organism against infection from pathogens (Reviewed by Janeway, 

2001). In higher organisms, the immune system is composed of two distinct arms that differ 

by means of pathogen recognition, kinetics and cells; termed the innate and adaptive immune 

system, that work together to protect the host from infection. 

 

The innate immune system depends on a series of germline-encoded pattern recognition 

receptors (PRRs) to distinguish between pathogen and host (Reviewed by Wu and Chen, 

2014). PRRs recognise evolutionarily conserved molecular signatures from pathogens known 

as pathogen associated molecular patterns (PAMPs) such as bacterial cell wall components 

e.g. bacterial lipopolysaccharide (LPS) or features of viral RNAs such as an exposed 5’-

triphosphate. Additionally, PRRs may recognise damaged or mislocalised self-material 

known as damage associated molecular patterns (DAMPs) (Reviewed by Lotze et al., 2007). 

PRRs facilitate pathogen detection by initiating the production and secretion of pro-

inflammatory cytokines, chemokines, and anti-viral interferons (IFN) to co-ordinate an 

immune response against a pathogen before infection can be established. Activation of PRR 

signalling culminates in the recruitment and activation innate immune cells such as 

macrophages and dendritic cells, which attempt to eliminate the pathogen by phagocytosis. 

Macrophages and dendritic cells are also referred to as antigen presenting cells (APCs) 

(Reviewed by Janeway, 2001). Engagement of APC PRRs results in APC activation and 

maturation, and induces the expression of cell surface co-stimulatory molecules, cluster of 

differentiation (CD)80 and CD86. Many pathogens cannot be eliminated by the innate 

immune system alone and require activation of the adaptive immune system. Following 

maturation, dendritic cells migrate to lymph nodes where they induce activation of the 

adaptive immune system. 

 

The adaptive immune system is composed of B and T lymphocytes. Unlike the evolutionary 

conserved PAMPs of the innate immune system, the adaptive system mounts an immune 

response to a specific soluble protein antigen (Reviewed by Janeway, 2001). T cells recognise 

peptides from phagocytosed pathogens presented on major histocompatibility complex 
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(MHC) molecules by APCs.  The cell surface markers CD80 and CD86 on activated APCs 

interact with the T cell co-receptor CD28. CD80/86:CD20 interactions break T cell anergy 

and enable T cell activation. T cells are comprised of two lineages; CD8+ cytotoxic T Cells 

and CD4+ helper T cells. CD8+ T cells contain the cytolytic proteins perforin and granzyme 

B. CD8+ T cells recognise peptides presented on MHC1 molecules by infected cells or 

tumour cells. Upon engagement of MHC class I by the T Cell receptor, CD8+ T cells 

degranulate, inducing apoptosis in their target cells. CD4+ T cells recognise peptides 

presented on MHCII molecules by activated APCs. CD4+ helper T cells produce cytokines 

which can promote either the secretion of soluble protein antibodies by B cells or the 

cytotoxic functions of CD8+ T cells and intracellular killing mechanisms of phagocytes. The 

cytokine profile of a CD4+ T cell is determined by the local cellular environment and is 

subject to regulation by pathogens and host cells alike (Reviewed by Zhu and Paul, 2008). B 

cells produce antibodies that bind to pathogens, restricting their movement, and promoting 

their killing by phagocytes and Natural Killer (NK) cells through opsonisation. Additionally, 

virus-neutralising antibodies can prevent viral infection by inhibiting virus-cellular entry. 

Induction of a CD8+ cytotoxic T cell response is required to clear infections with intracellular 

pathogens and viruses. 

 

Cytokines produced in the innate immune response up-regulate co-stimulatory molecules on 

adaptive immune cells, priming their activation. The inflammatory response initiated by the 

innate immune response aids recruitment of adaptive immune cells to the site of infection. 

Thus, the innate immune system enables and augments the functions of the adaptive immune 

system. The specificity of a PRR for a unique PAMP and distinct downstream PRR 

signalling, ensures that an appropriate immune response against a pathogen is produced 

(Reviewed by Kawai and Akira, 2011; Sparrer and Gack, 2015).  

 

1.2  Anti-viral immunity 
 

The clearance of viral infection requires the recognition of viral peptides and viral nucleic 

acids by the immune system (Reviewed by Stetson and Medzhitov, 2006b). Viral infection is 

detected by infected cells presenting viral peptides on MHCI. APCs can additionally detect 

viral infection in-trans by phagocytosing infected cells resulting in the presentation of viral 

peptides on MHCI and MHCII molecules. Presentation of viral peptides on both MHC 
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molecules enables induction of a CD4+ T cell response which promotes the cytotoxic 

functions of CD8+ T cells. Activation of both CD4+ and CD8+ T cells enables effective 

clearance of viral infection. Recognition of viral nucleic acids by PRRs induces transcription 

of IFNs (Reviewed by Wu and Chen, 2014). 

1.2.1 Interferons: 
 

IFNs are a family of anti-viral cytokines which induce transcription of anti-viral genes to 

limit viral replication (Reviewed by Pestka et al., 2004). Additionally, IFNs support the 

functions of the adaptive immune response by up-regulating MHC molecules on APCs and 

virally infected cells. IFNs are designated as three classes based on the variety of receptor 

that they signal through; grouped as type I, type II and type III IFNs (Table 1.1).  

 

IFN-g is the sole Type II IFN. IFN-g is primarily produced by activated CD4+ T cells and 

NK cells.  IFN-g supports adaptive immune responses by upregulating expression of co-stim-  

Class Receptor Chains Ligand Function 
Type I IFNAR IFN-aR1 

IFN-aR2 
IFN-b 
IFN-α subtype 1-
13 
IFN-ε,  
IFN-κ 
IFN-ω 

Induction of genes with 
anti-viral activity 
 
(Global distribution, 
vital importance) 

Type II IFNg Receptor IFN-gR1 
IFN-gR2 

IFNg Upregulation of: 
 
CD80/86 co-stimulatory 
molecules on antigen 
presenting cells for 
lymphocyte activation 
 
MHC molecules 
 
Reactive Oxygen 
Species generating 
enzymes in Phagocytes 

Type III Type III IFN 
Receptor 

IL10R2 
IL28AR 

IL29 (IFN-l1) 
IL28A (IFN-l2) 
IL28B (IFN-l3) 
 

Induction of genes with 
anti-viral activity 
 
(Localised distribution 
and importance) 

 
Table 1.1 IFNs, IFN Receptors, their ligands, and functions (Adapted from Pestka et al., 

2004). 
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-ulatory molecules on APCs, promoting the activation of T cells (Reviewed by Pestka et al., 

2004). IFN-g also upregulates MHC class I molecules thus facilitating recognition of virally 

infected cells by T cells. Additionally IFN-g improves the phagocytic activity of APCs by 

promoting expression of nitric oxide synthase (Xie et al., 1993). 

 

Type I and type III IFNs are produced by most somatic cells following viral infection 

(Reviewed by McNab et al., 2015). Type I and type III IFNs signal in an autocrine and 

paracrine manner to induce activation of genes which impede viral replication; collectively 

referred to as IFN-stimulated genes (ISGs) (Reviewed by Pestka et al., 2004). While Type I 

and Type III IFNs have overlapping functions, the expression of the Type III IFN receptor is 

restricted to largely to the liver and mucosal sites such as the lung and gastrointestinal tract 

(Reviewed by Kotenko and Durbin, 2017). Mice lacking the type III IFN receptor, IL28AR, 

displayed no change in the ability to clear viruses but IL28AR signalling was found to 

synergise with Toll Like Receptor (TLR) signalling for anti-viral cytokine production in 

certain tissues (Ank et al., 2008). In contrast, the Type I IFN receptor (IFNAR) is expressed 

more globally and is vital to anti-viral immunity. Mice and patients without functional Type 

I IFN receptor (IFNAR) signalling succumb to lethal viral infections with significantly higher 

viral loads observed in viral replicative niches (Ank et al., 2008; Dupuis et al., 2003; Hwang 

et al., 1995; Müller et al., 1994). 

 

1.2.2 Type I Interferon Receptor Signalling 
 

5 forms of type I IFNs have been described in humans; IFN-α, IFN-β, IFN-ε, IFN-κ, and IFN-

ω (Reviewed by Pestka et al., 2004). The IFNAR is unique among cytokine receptors for the 

number of ligands it may bind as the 13 IFN-α subtypes, and the other type I IFNs all signal 

via the IFNAR. The IFNAR is structurally composed of two subunits designated IFNAR1 

and IFNAR2.  

 

IFN-β is the first type I IFN produced during viral infection. IFN-β is produced following 

activation of the transcription factor IFN regulatory factor (IRF)-3 by PRR signalling 

(Fig.1.1) (Lin et al., 1998; Schafer et al., 1998). PRR signalling also typically culminates in 

activation of Nuclear Factor Kappa-light-chain-enhancer of Activated B Cells (NFkB) 
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resulting in the transcription of pro-inflammatory cytokines (Reviewed by Kawai and Akira, 

2011; Reviewed by Sparrer and Gack, 2015). NFkB activation supports transcription of IFN-

b as the RelA subunit of NFkB forms a transcriptional complex with IRF3 known as the IFN-

b enhanceosome (Schafer et al., 1998). IRF-3 also promotes the transcription of a subset of 

other ISGs such the chemokine CCL5/RANTES (Génin et al., 2000; Grandvaux et al., 2002). 

IFN-β signals in an autocrine and paracrine manner via the IFNAR to induce transcription of 

the ISG, IRF7 (Marié et al., 1998; Sato et al., 1998).  IRF7 is then activated by PRR signalling 

and initiates IFN-α transcription. Cells then switch to a pre-dominantly IFN-α mediated 

response and continue to induce more ISGs via the IFNAR receptor.  

 

Ligand binding to the IFNAR induces receptor clustering and activates the Janus-associated 

kinases (JAK) associated with each subunit of the IFNAR; JAK1 which is associated with 

IFNAR2, and tyrosine kinase 2 (Tyr2) which is associated with IFNAR1. Receptor clustering 

results in JAK1 and Tyr2 activation by auto-phosphorylation (Reviewed by Ivashkiv and 

Donlin, 2014). JAK1 and Tyr2 phosphorylate the IFNAR, facilitating the recruitment and 

activation of signal transducer and activator (STAT) 1 and 2. JAK1 and Tyr2 then 

phosphorylate STAT1 and STAT2 enabling their dimerisation and nuclear translocation. 

 

STAT1/2 heterodimers form a complex with IRF9 in the cytoplasm known as IFN-stimulated 

gene factor 3 (ISGF3) and translocate to the nucleus (Fu et al., 1990). ISGF3 then initiates 

transcription of the IFN-Stimulated Response elements (ISRE) (Reviewed by Platanias, 

2005). The ISRE is present in the promoters of hundreds of anti-viral genes with deleterious 

effects on viral replication resulting in the induction of an anti-viral state (Schoggins et al., 

2011). Many of these ISGs promote what is described as a cell intrinsic anti-viral response 

and antagonise viral replication at several stages of the virus life cycle (Examples in Table 

1.2). STAT1 homodimers or STAT1/3 heterodimers bind and activate IFN gamma-activated 

sequences (GAS) to transcribe pro-inflammatory genes such as nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase and Dual oxidase 1 which aid in the production of 

reactive oxygen species (Reviewed by Platanias, 2005). 

 

Most cells possess the capacity to induce IFN-α and IFN-β via PRR signalling, albeit through 

differing stimuli determined by PRR expression (Reviewed by Kawai and Akira, 2011; Rev- 



	 23 

 

 

  

induces PRR Signalling

IRF3

Pathogen Nucleic Acid

P

IRF3
P

IRF3
P

NF-κB
P

NF-κB
P

IRF3
P

IRF3
P IFN-β+ISGs

IFN-β IFNAR Singalling

S
T
A

T
1 P

P

S
T
A

T
2

IRF9

S
T
A

T
1 P

P

S
T
A

T
2

IRF9

ISGF3

JAK1JAK1Tyr2

PP

IRF7

+
ISRE

IRF7
P

IRF7 NF-κB
P

Further PRR

Signalling

P
IRF7

P
IRF7

P
IRF7

P
IRF7 IFN-α

IFN-α

IFNAR

S
T
A

T
1 P

P

S
T
A

T
2

IRF9 ISGF3

S
T
A

T
1 P

P

IRF9 ISRE

S
T
A

T
2

NF-κB
P

Pro-inflammatory 

Genes
P

1.

2.

3.

IFN-α mediated 
anti-viral immunity

4.

Fig 1.1 Induction of Interferon and Activation of the Interferon-stimulated Response Element 

(1) The presence of a virus or pathogen nucleic acid stimulates PRR signalling, promoting the phospho-

rylation and activation of the transcription factor IRF3. Phospho-IRF3 then dimerises and translocates to 

the nucleus. Phospho-IRF3 and the Rel-A subunit of NF-κB, form the IFN-β enhanceosome and initiate 
IFN-β transcription. (2) IFN-β signals in an autocrine and paracrine manner through the IFNAR.  IFN-β 
binding to the IFNAR receptor promotes IFNAR clustering, leading to the activation of Tyr2 and JAK1 by 

reciprical auto-phosphorylation. Activated-Tyr2 and JAK1 then phosphorylate STAT1/2, enabling the 

formation of STAT1 and STAT2 dimers. STAT1/2 dimers associate with IRF9 in the cytoplasm forming 

the ISGF3 complex. ISGF3 translocates to the nucleus to initiate transcription of IRF7 and anti-viral 
genes via the ISRE. (3) IRF7 is activated by PRR signalling, where it initiates the transcription of IFN-α. 
(4) Cells then switch to a predominately IFN-α mediated response leading further transcription of ISRE 
genes. NF-κB is typically activated alongside IFN in many PRR pathways. NF-κB promotes the tran-

scription of pro-inflammatory genes which complement the anti-viral functions of many ISRE genes. 

Cytoplasm

Nucleus 
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IFN Stimulated Gene Function Ref 
Inhibition of Cytoplasmic Entry 
TRIM 5a 
(Tripartite motif-
containing protein 5a) 

Binds to viral capsid upon entry into 
cytoplasm and prevents uncoating, 
inhibits release of genetic material 

(Stremlau et 
al., 2004) 

IFITM Proteins 
(Interferon-induced 
transmembrane protein 1) 

Inhibit cytosolic entry by inhibiting 
virus-membrane fusions 

(Brass et al., 
2009) 

Inhibition of Viral Replication 
ADAR-1 
(Adenosine Deaminase, 
RNA-specific 1) 

RNA specific Adenosine deaminase; 
converts Adenosine to Inosine resulting 
in mutations in target RNA 

(Herbert et 
al., 1997) 

APOBEC3G 
(Apolipoprotein B mRNA 
editing enzyme, catalytic 
polypeptide-like 3) 

DNA specific Cytidine deaminase; 
Converts Cytosine to Uracil resulting in 
mutations in negative strand of cDNA in 
target retroviruses 

(Bishop et 
al., 2004) 

SAMHD1 
(SAM and HD domain-
containing protein 1) 

GTP-activated deoxynucleoside 
triphosphate triphosphohydrolase; 
depletes host nucleotide pool preventing 
synthesis of new virus genomes 

(Goldstone 
et al., 2011) 

OAS1 
(2'-5'-oligoadenylate 
synthetase 1) 

Synthesises (2',5')-oligoadenylates; small 
molecules which activate RNAseL 
promoting virus and host RNA 
degradation 

(Kristiansen 
et al., 2010) 

Inhibition of Transcription and Translation 
PKR 
(Protein Kinase R) 

Phosphorylates translation initiation 
factor eIF2α, inhibiting mRNA synthesis 
 

(Davies et 
al., 1993) 

IFIT Family 
(Interferon Induced 
Protein with 
Tetratricopeptide 
Repeats) 

Recognises 5’Triphosphate and lack of 
2’ O-methylation on viral RNAs and 
binds to them inhibiting their translation 

(Daffis et 
al., 2010; 
Pichlmair et 
al., 2011) 

MxA 
(Human myxovirus 
resistance protein 1) 

Suppresses transcription of viral RNAs  (Pavlovic et 
al., 1992) 

Prevention of Assembly and Release of New Virions 
Tetherin Prevents release of new virions from 

infected cells 
(Neil et al., 
2008) 

Viperin 
(Virus inhibitory protein, 
endoplasmic reticulum-
associated, interferon-
inducible) 

Downregulates expression of virus 
structural proteins, alters composition of 
membrane by inhibiting farnesyl 
diphosphate synthase activity, preventing 
lipid raft formation and virion release 

(Chin and 
Cresswell, 
2001; Wang 
et al., 2007) 

  
Table 1.2 Cell Autonomous Immunity by Interferon Stimulated Genes  
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iewed by Sparrer and Gack, 2015). IFN-α possesses 13 subtypes in humans with different 

affinities for IFNAR binding that have been observed to induce different subsets of ISGs in-

vitro (Reviewed by Gibbert et al., 2013; Hillyer et al., 2012).  The activity of the other type I 

IFNs are restricted to particular tissues or cell types; IFN-ε is expressed in the female 

reproductive tract and is regulated by local oestrogen levels (Fung et al., 2013), IFN-κ is only 

expressed in keratinocytes and is upregulated upon infection or IFN-β treatment (LaFleur et 

al., 2001) and IFN-ω has only been described in lymphoma cells infected with EBV 

(Hauptmann and Swetly, 1985). 

 

1.3 Inflammation 
 

Inflammation describes a localised physiological state characterised by redness, swelling, 

fever and pain at the site of insult (Reviewed by Netea et al., 2017).  Inflammation is mediated 

by pro-inflammatory cytokines such as Tumour Necrosis Factor alpha (TNFa), 

Interleukin(IL)-1b and IL-6. Pro-inflammatory cytokines act in an autocrine and paracrine 

manner to activate endothelial cells promoting vascular permeability and aids immune cell  

infiltration to the site of infection by chemokines (Reviewed by Melchjorsen et al., 2003). At 

high concentrations, these cytokines exert an endocrine effect on the host. These endocrine 

effects include inducing production of the acute phase protein response in the liver increasing 

the concentration of coagulation factors and components of the complement cascade in the 

bloodstream (Reviewed by Gabay and Kushner, 1999). Additionally, pro-inflammatory 

cytokines promote the activation of localised macrophages and neutrophils; prompting the 

release of prostaglandins which act on the hypothalamus to induce fever and sickness 

behaviours (Reviewed by Netea et al., 2017).  

 

TNFa, IL-1b and IL-6 are transcribed by NFkB following PRR signalling (Collart et al., 

1990; Hiscott et al., 1993; Reviewed by Kawai and Akira, 2011; Matsusaka et al., 1993). IL-

1b is transcribed in a pro-form by NFkB and requires processing by the cysteine-aspartate 

protease caspase-1 for its biological activity (Thornberry et al., 1992). Caspase-1 is activated 

by a multiprotein complex known as the inflammasome. 
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1.3.1 The Inflammasome  

 

The inflammasome describes a cytosolic multiprotein complex composed of a PRR 

containing a pyrin (PYD) domain and the adapter molecule ASC (apoptosis associated speck 

like protein containing a caspase activation and recruitment domain) (Martinon et al., 2002). 

Several varieties of inflammasome complexes exist, each with unique PAMP ligands 

(Reviewed by Broz and Dixit, 2016). Inflammasome activation promotes the assembly of 

ASC filaments aided by homotypic interactions between receptor and ASC PYD domains 

(Lu et al., 2014; Martinon et al., 2002). The nucleation of receptor and ASC in turn, promotes 

the recruitment, cleavage and activation of Caspase 1. Active caspase 1 cleaves the pro-forms 

of the cytokines IL-1β and IL-18 into their pro-inflammatory active forms. Inflammasome 

activation also results in the formation of large super-molecular complex of ASC dimers 

known as the pyroptosome (Fernandes-Alnemri et al., 2007; Lu et al., 2014). Large-scale 

Caspase 1 activation in the pyroptosome leads to cleavage of gasdermin D (Kayagaki et al., 

2015; Shi et al., 2015). Cleaved gasdermin D binds to phosphatidylinositol phosphates and 

phosphatidylserine present in the cell membrane leading to the formation of pores, resulting 

in a form of osmotic cell death known as pyroptosis (Liu et al., 2016). Pyroptosis results in 

the release of PAMPs, DAMPs and the mature IL1β and IL18 produced during 

inflammasome activation from the cell.  

 

1.4  Nucleic Acid Sensing Pathogen Recognition Receptors 
 

Engagement of unique PRR signalling pathways by specific PAMPs enables the activation 

of an appropriate immune response (i.e. humoral vs cell mediated) to prevent the 

establishment of infection (Reviewed by Kawai and Akira, 2011; Sparrer and Gack, 2015). 

Unlike bacteria or fungi, viruses lack conserved cell wall components (e.g. LPS), thus the 

main PAMPs for viral detection are typically nucleic acids. Deoxyribonucleic acid (DNA) 

and Ribonucleic acid (RNA) can be detected in the endolysosome following phagocytosis or 

accumulate in the cytoplasm during infection and be recognised as a PAMP (Sparrer and 

Gack, 2015). In recent years, there have been great advances in our understanding of the 

mechanisms of how nucleic acids are detected by PRRs (Reviewed by Sparrer and Gack, 

2015; Reviewed by Wu and Chen, 2014). These will be discussed based on cellular location. 
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1.4.1 Endolysosomal detection of nucleic acids is mediated by TLRs 3, 7-9 and 13 
 

Toll Like Receptors (TLRs) are a family of membrane associated PRRs (Reviewed by Kawai 

and Akira, 2011). TLRs are comprised of an N-terminus of multiple regions of leucine rich 

repeats (LRRs) that mediate ligand binding and a C-terminus containing a Toll/Interleukin-1 

receptor (TIR) domain which mediates downstream signalling. TLRs form dimers upon 

engaging with their ligands for subsequent signalling (Reviewed by Shimizu, 2017). 

Intracellular pathogens enter the cell through endocytic or phagocytic routes and release 

nucleic acids following their degradation in the endolysosome which are detected by TLRs 

3, 7-9 and 13 (Reviewed by Barton and Kagan, 2009; Wu and Chen, 2014). The forms of 

nucleic acids sensed in the endolysosome are single stranded(ss) (TLR 7 and TLR 8) and 

double stranded (ds) RNAs (TLR 3), 23S ribosomal RNA (TLR 13) and dsDNA (TLR 9). 

TLRs involved in the recognition of nucleic acids are trafficked to the endolysosomal 

compartment by the chaperone protein Unc-93 homolog B1 (UNC93B1) (Kim et al., 2008; 

Lee et al., 2013). Mice and patients possessing UNC93B1 mutations present with defects in 

endosomal TLR signalling and an increased susceptibility to viral infection, emphasising the 

importance of UNC93B1 to this process (Casrouge et al., 2006; Tabeta et al., 2006). 

 

1.4.1.1 TLR 3 
 

TLR 3 was first identified as a receptor for dsRNA in a screen for activators of an NFkB 

reporter in Human Embryonic Kidney (HEK293T) cells (Alexopoulou et al., 2001). TLR 3 

also recognises the synthetic dsRNA mimic Polyinosinic:polycytidylic acid, Poly(I:C) 

(Alexopoulou et al., 2001; Marshall-Clarke et al., 2007). dsRNA forms as a replication 

intermediate during positive strand ssRNA virus replication and is a product of DNA virus 

replication due to suspected convergent transcription and long ssRNA self-association 

(Weber et al., 2006). TLR 3 detects dsRNA in the endolysosome like compartments in 

phagocytes, however in cell lines and tumours, TLR 3 is often expressed on the extracellular 

surface (Matsumoto et al., 2003). TLR 3 initiates IFN-b and pro-inflammatory cytokine 

production via the TIR adapter TIR domain-containing adaptor inducing IFN-b (TRIF) (Fig 

1.2) (Yamamoto et al., 2003). Structural studies have revealed that TLR 3 achieves sequence-

independent recognition of RNA through amino acids within the LRRs interacting with the 

RNA sugar phosphate backbone (Bell et al., 2006). Specifically, mutation of His539 and 
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Asn541 within LRR20 (Bell et al., 2006) and Arg64, Phe84, Ser86 and Glu110 within LRR-

NT to LRR3 region (Leonard et al., 2008) impeded TLR 3 signalling by reducing interactions 

with the RNA backbone.  

 

The contribution of TLR 3 to immunity in vivo is unclear as TLR 3 knockout (-/-) mice were 

found to have normal immune responses to Vesicular Stomatitis Virus (VSV), Murine 

Cytomegalovirus (mCMV), Lymphocytic Choriomeningitis Virus (LCV) and Reovirus (RV) 

infections (Edelmann et al., 2004). However another study by (Negishi et al., 2008), reported 

that TLR 3 conferred resistance in mice against Coxsackievirus group B serotype 3 (CSV). 

Furthermore, IFNAR(-/-) mice expressing a transgenic TLR 3 were found to display increased 

resistance to VSV and Herpes Simplex Virus 1(HSV-1) infections, implying that TLR 3 has 

functions beyond IFN induction. Further studies are needed to elucidate the precise 

contribution of TLR 3 to anti-viral immunity. 

 

1.4.1.2 TLR 7 and TLR 8 
 

TLR 7 and TLR 8 are expressed in the endolysosomes of phagocytic APCs and recognise 

ssRNAs, imidazoquinolines and synthetic small molecule nucleotides (Diebold et al., 2004; 

Heil et al., 2004; Lund et al., 2004). TLRs 7 and 8 initiate IFN-a and pro-inflammatory 

cytokine production via Myeloid differentiation primary response gene 88 (MyD88) 

signalling following activation. The crystal structure of TLR 8 reveals that TLR 8 recognises 

the RNA degradation products; uridine and short oligo-nucleotides of 20bp (Tanji et al., 

2015). Similarly, TLR 7 structural studies revealed a preference of short ssRNAs, guanidine 

and guanidine derivatives such as 7-methylguanosine and 8-hydroxyguanosine that occur 

during DNA damage (Shibata et al., 2015; Zhang et al., 2016). However, TLR 7’s recognition 

of ssRNAs relies on amino acid residues which specifically interact with uridine moieties in 

RNA affording it the capacity to recognise a broader range of ssRNA ligands than TLR 8 

(Zhang et al., 2016). TLR 7 has been observed to detect VSV and Influenza A (IAV) in mice 

(Lund et al., 2004).  
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Figure 1.2 Endosomal TLR Signalling

Upon ligand binding TLRs dimerise to initiate signalling. TLR3 signals via TRIF. TRIF signalling 
diverges to initiate the production of IFN-β and pro-inflammatory cytokines. TRIF induces 
IFN-β by activating the ubiquitin E3 ligase TRAF3, which in turn enables TBK1 and IKKε to acti-
vate IRF3 and initiate IFN-β  transcription. The other arm of TRIF signalling is mediated by 
TRAF6 and RIP1. It is believed that the K63 ubiquitin chains on RIP1 and TRAF6 recruit and 
activate the TAB2/3-TAK1 complex, leading activation of MKK signalling culminating in the acti-
vation of AP1. The TAB2/3-TAK1 complex also activates NEMO, which enables the IKKs to 
phosphorylate IκB prompting its degradation, leading to transcription of pro-inflammatory 
genes by NF-κB. TLRs7-9 and 13 signal via MyD88. MyD88 signalling results in the formation 
of a complex between IRAK4 and IRAK2 or IRAK1 known as the MyDDosome which recruits 
TRAF6 . TRAF6 then activates the TAB2/3-TAK1 and NEMO complexes to induce activation of 
pro-inflammatory genes. TRAF6 also induces IFN-α via IKKα mediated phosphorylation of 
IRF7.
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1.4.1.3 TLR 13 
 

TLR 13 has been reported to recognise a specific 13 nucleotide sequence of bacterial 23S 

ribosomal RNA in the endosomes of dendritic cells and monocytes (Li and Chen, 2012; 

Oldenburg et al., 2012). TLR 13 has been implicated in the immune response against 

Streptococcus pyogenes (Fieber et al., 2013). TLR13 is understood to signal via MyD88 

(Fieber et al., 2013). 

 

1.4.1.4 TLR 9 

 

TLR 9 recognises unmethylated Cytosine-phosphate-Guanosine(CpG) regions of DNA in the 

endosomes of B cells and dendritic cells (Bauer et al., 2001; Hemmi et al., 2000). These 

unmethylated CpG regions are 20 times more prevalent in microbial DNA than in mammalian 

DNA, and have been confirmed to confer immunogenicity using oligonucleotides. Similar to 

TLRs 7 and 8, TLR 9 signals via MyD88 and induces IFNa and following activation 

(Reviewed by Kawai and Akira, 2011).  TLR 9 binds DNA in a 2:2 complex with the N 

terminal groove of the TLR 9 LRR recognising the CpG region of DNA and the C-terminus 

primarily interacting with the sugar-phosphate backbone  (Ohto et al., 2015).  TLR 9 has been 

implicated in the immune response to HSV-2 as plasmatoid dendritic cells from TLR 9(-/-) 

mice were unable to produce IFN-a upon infection (Lund et al., 2003). TLR 9 has also been 

observed to recognise viral RNA:DNA hybrids that form as replication intermediates during 

retroviral infection in human and murine dendritic cells (Rigby et al., 2014). Further in vitro 

analysis of TLR 9’s binding capabilities revealed that TLR 9 binds RNA:DNA hybrids with 

a greater affinity than reported for dsDNA. 

 

1.4.2 Cytosolic Nucleic Acid Sensing 
 

The expression of endolysosomal TLRs is restricted to phagocytic APCs. Although APCs 

can detect viruses released from infected or apoptotic cells, the cytoplasm and/or nucleus is 

the major replicative niche of a virus, and thus is outside the jurisdiction of the endolysosomal 

nucleic acid sensing TLRs. Cells that do not express the endolysosomal TLRs such as 

epithelial cells and fibroblasts mount effective immune responses to viral infection due to the 

presence of cell-intrinsic nucleic acid sensors in the cytosol (Stetson and Medzhitov, 2006a). 
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1.4.2.1 RNA Sensing in the Cytosol by RLRs 
 

Detection of cytoplasmic RNA is mediated by the RIG-I like Receptor (RLR) family and the 

adapter protein Mitochondrial Antiviral-Signaling protein (MAVS) (also known as CARD 

Adaptor Inducing IFN-β (Cardif), Virus-Induced Signalling Adaptor (VISA) and IFN-β 

Promoter Stimulator 1 (IPS-1)) (Kawai et al., 2005; Meylan et al., 2005; Seth et al., 2005; 

Reviwed by Wu and Chen, 2014; Xu et al., 2005). The RLR family contains three members; 

Retinoic acid-Inducible gene I (RIG-I), Melanoma Differentiation-Associated protein 5 

(MDA5) and Laboratory of Genetics and Physiology 2 (LGP2) (Kato et al., 2006; Yoneyama 

et al., 2005; Yoneyama et al., 2004).  

 

The RLRs are DExD/H box RNA helicases which function as PRRs for different features of 

pathogen RNA (Reviewed by Loo and Gale, 2011). Structurally, RLRs are comprised of three 

domains; a DExD/H box RNA helicase domain which contains RNA binding and unwinding 

capabilities and functions as an Adenosine Tri-Phosphate (ATP) hydrolase, a C-terminal 

repressor domain, and an N-terminus consisting of two caspase activation and recruitment 

domains (CARDs). LPG2 is distinct from RIG-I and MDA5 in that is does not possess the 

N-terminal CARD domains (Yoneyama et al., 2005). 

 

RIG-I was first proposed to be a receptor for dsRNA by (Yoneyama et al., 2004). While (Kato 

et al., 2008) demonstrated that RIG-I recognises short Poly(I:C) fragments, it has been shown 

that RIG-I preferentially recognises RNAs with exposed 5’triphosphate ends enabling RIG-I 

to distinguish from cellular RNA species (Hornung V et al., 2006). Further studies using IAV 

genomic RNA revealed that at least one 5’ phosphate was required for RIG-I mediated 

immunity (Pichlmair et al., 2006). RIG-I has also been demonstrated to recognise 

5’diphosphates ends of RNA. In an investigation by Goubau et al., (2014), RIG-I was found 

to associate with base-paired 5’pp-RNAs made by in vitro transcription. RIG-I was also 

essential for controlling reovirus infection (i.e a dsRNA virus with a free 5’pp terminus on 

its negative strand due to triphosphate processing by a viral phosphohydrolase) in MEFs and 

in mouse models of infection. Studies using next generation sequencing of RIG-I:RNA 

complexes also demonstrated that RIG-I binds short RNA transcripts containing 

5’triphosphates (Baum et al., 2010). Synthetic 5' triphosphate oligoribonucleotides were 
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utilised to determine that ssRNAs must form blunt dsRNA panhandle regions from self-

pairing to be recognised by RIG-I (Schlee et al., 2009). Additionally, (Rehwinkel et al., 2010) 

demonstrated using a viral reconstitution system with segments of the IAV genome that the 

full length of genome of IAV and Sendai virus (SeV) which contain exposed 5’triphosphates 

confer stimulatory RIG-I activity. Replication intermediates of these viruses lack 

5’triphosphates and thus do not substantially contribute to RIG-I immunity (Rehwinkel et al., 

2010).  

 

Other features have also been observed to enhance the immunogenicity of RNA by RIG-I 

such as poly uridine motifs found in the Hepatitis C virus (HCV) genome (Saito et al., 2008). 

RIG-I was also found to detect the short self RNAs produced by RNAse L during viral 

infection to enhance IFN production (Malathi et al., 2007). MDA5 has been proposed to 

recognise longer RNAs molecules over 4000 nucleotides in length that form higher secondary 

structures such as branches and webs (Kato et al., 2008; Pichlmair et al., 2009). Perhaps 

because of this preference for viral genome length, RIG-I and MDA5 have been observed to 

mediate immunity to distinct families of RNA virus; RIG-I mediates immunity to 

Paramyxoviruses, Rhabdoviruses, Orthomyxoviruses and Flaviviruses among others, while 

MDA5 mediates the detection of picornaviruses (Kato et al., 2006; Loo et al., 2008; 

Rehwinkel et al., 2010; Yoneyama et al., 2005).  

 

The specific contributions of LGP2 to the detection of viral RNA have been challenging to 

elucidate. Initially it was proposed that LGP2 was a negative regulator for RIG-I signalling 

as L929 cells overexpressing LPG2 presented with increased titres of encephalomyocarditis 

virus (EMCV) following infection (Yoneyama et al., 2005). Consistent with this observation, 

an investigation by (Venkataraman et al., 2007) highlighted that lgp2(-/-) MEFs were greatly 

sensitised to poly(I:C) stimulation and resistant to lethal VSV infection (i.e. a virus which is 

sensed by RIG-I during replication). Conversely, (Satoh et al., 2010) used lgp2(-/-) mice to 

propose that LGP2 acts upstream of RIG-I and MDA5 as a positive regulator of RLR 

signalling. In this study lgp2(-/-) mice were compromised in their ability to produce IFN-b in 

response to RNA virus infection. Similar results were observed in dendritic cells containing 

a functionally compromised LGP2 mutant without ATPase activity. This study also 

highlighted that LGP2 had no role in the recognition of in vitro transcribed RNAs and that 



	 33 

LGP2 synergised with MDA5 to drive an IFN-β reporter construct suggesting that LGP2 may 

sense RNA through MDA5 (Satoh et al., 2010). While the authors of this study were unable 

to provide a clear explanation for the contradictory observations of Venkataraman et al., 

(2007), they were able to demonstrate that restoring LGP2 expression in lgp2(-/-) MEFs 

rescued defects in IFN-b in response to EMCV infection. This confusing finding was partially 

explained by a later investigation by (Suthar et al., 2012). Unlike Satoh et al., (2010) and 

Venkataraman et al., (2007), the authors in this study used lgp2(-/-) mice generated on a pure 

C57BL/6 background with complete disruption of lgp2 transcription. Suthar et al., (2012) 

demonstrated that IFN-β production was attenuated in response to SeV and DENV infection 

in BMDMs but not MEFs, suggesting that LGP2 may only function as a positive regulator of 

RLR signalling in certain cell types. Analysis of LGP2/RNA complexes purified from cells 

has revealed that LGP2 has a high affinity for specific sequences within the L region of the 

EMCV antisense RNA strand and the nucleoprotein-coding region of Measles virus, whether 

LGP2 recognises other specific regions of RNA virus genomes is presently unclear 

(Deddouche et al., 2014; Sanchez David et al., 2016) Thus, further studies are required to 

fully elucidate the precise contribution of LGP2 to RNA sensing.  

 

The RLRs signal through the adapter protein MAVS at the mitochondria to initiate IFN-β and 

pro-inflammatory cytokine transcription (Fig 1.3) (Kawai et al., 2005; Meylan et al., 2005; 

Seth et al., 2005). RIG-I and MDA5 were anticipated to activate MAVS via their CARD 

domains as overexpression of the RIG-I CARD drives an IFN-β reporter construct 

(Yoneyama et al., 2004). Structural studies of MDA5 bound to RNA reveals that it recognises 

the internal duplex of the RNA structure unlike RIG-I which preferentially binds to the RNA 

ends (Wu et al., 2013a). Prior to RNA binding, RIG-I exists in an auto-inhibited state with 

CARD1 interacting with the Hel-2i domain within the DExD box (Kolakofsky et al., 2012; 

Luo et al., 2011). RNA binding and ATP hydrolysis releases the CARD from Hel-2i domain 

and this results in a conformational change permitting subsequent signalling by exposing the 

CARDs for K63 polyubiquitination by tripartite motif protein (TRIM) 25 and riplet/Ring 

Finger (RNF) 135 (Gack et al., 2007; Oshiumi et al., 2009; Oshiumi et al., 2010). TRIM25 

binding to RIG-I and RIG-I translocation from the cytosol to MAVS, is mediated by 14-3-3e 

(Liu et al., 2012). Additionally, unanchored polyubiquitin chains bind to RIG-I and potently 

activate RIG-I signalling (Zeng et al., 2010). MDA5 stacks along the dsRNA filament in a  
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head-to-tail arrangement, resulting in oligomerisation of the CARDs of MDA5 and MAVS 

activation. MDA5 is also K63 polyubiquitinated by TRIM65 and binds unanchored 

polyubiquitin chains prior to activating MAVS (Jiang et al., 2012; Lang et al., 2016). RIG-I 

and MDA5 are licensed for activation by SUMOlytation by TRIM38 and dephosphorylation 

of the CARDs (RIG-I (K96/K888 and S8/T170) and MDA5 (K43/K865 and S88)) by the 

phosphatases PP1a and PP1g (Hu et al., 2017) 

 

MAVS signalling (Fig 1.3) results in the IRF3 and NFκB transcription (Kawai et al., 2005; 

Meylan et al., 2005; Seth et al., 2005) The current model of MAVS signalling is that MAVS 

filament formation recruits the ubiquitin E3 ligases TNF receptor associated factor (TRAF)2, 

TRAF5 and TRAF6 (Liu et al., 2013). It is expected that bringing the TRAFs in close 

proximity to one another promotes their activation, resulting in the production of K63 

polyubiquitin chains, and enables recruitment of NF-κB essential modulator (NEMO) to the 

MAVS signalling complex. NEMO then activates TANK-binding kinase 1 (TBK1) and IκB 

kinase e (IKKe) to activate IRF3 transcription, and IKKa/b/ to NFκB transcription resulting 

in IFN-b and pro-inflammatory gene expression. Following filament formation and TRAF 

recruitment, MAVS is phosphorylated on Ser442 by IKK and TBK1, forming a platform for 

IRF3 recruitment and activation by TBK1 and IKKe (Liu et al., 2015a). 

 

RLRs are important for defence against viruses in mouse models. With the exception of 

plasmatiod dendritic cells, cells from MAVS (-/-) mice were unable to produce immune 

responses to infections with VSV, ECMV, Newcastle disease virus (NDV), and SeV (Kumar 

et al., 2006; Sun et al., 2006). MAVS (-/-) mice also succumbed to VSV infection. The N-

terminal CARD domain of MAVS is crucial for its interactions with RIG-I and MDA5. 

Interactions between tetramers of activated RLRs bound to unanchored polyubiquitin chains 

and MAVS induce the formation of prion-like supramolecular MAVS filaments which 

activate MAVS signalling (Hou et al., 2011; Jiang et al., 2012).  

 

1.4.2.2.1 Inflammatory DNA Sensing in the Cytosol by AIM2  
 

Absent in melanoma 2 (AIM2) is a cytosolic PYHIN protein (Fernandes-Alnemri et al., 2009; 

Hornung et al., 2009). PYHIN proteins contain a pyrin domain (PYD) and a hematopoietic 
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expression, interferon-inducible nature, and nuclear localization (HIN) domain.  AIM2 forms 

an inflammasome upon detecting DNA in the cytoplasm. AIM2 was first identified by 

examining the functions of other PYD proteins that could potentially interact with DNA, 

following an observation that NACHT, LRR and PYD domain containing protein 3  (NLPR3) 
(-/-) THP1 cells could still produce IL1β during adenovirus infection in an ASC dependent 

manner (Bürckstümmer et al., 2009; Fernandes-Alnemri et al., 2009; Hornung et al., 2009; 

Muruve et al., 2008)). AIM2 was found to co-immunoprecipitate and co-localise with ASC 

following DNA stimulation in THP1 cells. Additionally, AIM2 overexpression in HEK293T 

cells promoted the cleavage of Caspase1 and release of IL-1β (Hornung et al., 2009). 

Transfection of plasmid DNA into NLRP3(-/-) THP1 cells also resulted in the formation of 

AIM2 oligomers and the ASC pyroptosome (Fernandes-Alnemri et al., 2009). Structural 

studies of AIM2 and another PYHIN protein interferon-gamma inducible protein 16 (IFI16), 

revealed that PYHIN proteins recognise DNA independent of its sequence through binding 

the sugar phosphate backbone via the HIN200 domain (Jin et al., 2012).  

 

Sustained IFN signalling during viral infection has also been shown to increase expression of 

pyrin only protein 3 (POP3) in BMDMs (Khare et al., 2014). POP3 has also been shown to 

bind to AIM2 and inhibit cleavage of pro-caspase 1 when overexpressed in transgenic mice 

BMDMs, suggesting that it may form part of a negative feedback loop to prevent sustained 

AIM2 signalling and excessive pyroptosis  (Khare et al., 2014). In mice, AIM2 inhibition is 

mediated by another PYHIN protein, p202 (Yin et al., 2011a). p202 is believed to inhibit 

AIM2 signalling by preventing the nucleation and formation of AIM2 filaments, thus 

reducing the capability of AIM2 to form an inflammasome.  

 
1.4.2.2.2 NLRP3, Another Inflammasome for DNA? 

 

NLRP3 is the most widely studied inflammasome and has been demonstrated to form an 

inflammasome in response to a wide range of stimuli e.g. uric acid crystals, extracellular 

ATP, reactive oxygen species and bacterial pore forming toxins (Reviewed by Broz and Dixit, 

2016). Due to the number and diversity of ligands for NLRP3, it is unlikely that it recognises 

its ligands through direct binding. The ability of NLRP3 to form an inflammasome in 

response to cytosolic DNA is poorly understood. For example, in a study by (Muruve et al., 

2008), NLRP3(-/-) peritoneal macrophages were shown to respond to adenovirus infection. 



	 37 

However, enzyme-linked immunosorbent assays (ELISAs) performed on spleens taken from 

adenovirus infected NLRP3(-/-) mice demonstrated a significant reduction in IL1β and IL1 

associated cytokines. Another study using Listeria monocytogenes infected macrophages 

demonstrated that IL1β production was lost only when both AIM2 and NLRP3 were absent 

(Kim et al., 2010). Thus, it appeared that NLRP3 contributes to DNA sensing in vivo and was 

potentially redundant with AIM2 in certain cell types. Recently a report by (Gaidt et al., 2017) 

demonstrated that AIM2 was dispensable for inflammasome activation in human monocytes. 

Using Aim2(-/-) and pharmacological inhibitors of NLRP3 the authors show that 

inflammasome activation was mediated by NLRP3 following K+ efflux due to activation of 

the cGAS-STING (Section 1.5 and 1.6.1) lysosomal cell death pathway. 

	
1.4.2.2.3 Sox2 
 

SRY (sex determining region Y)-box 2 (Sox2) is a transcription factor responsible for the 

formation of endodermal and ectodermal tissues during foetal development (Reviewed by 

Sarkar and & Hochedlinger, 2013). However, in neutrophils, Sox2 has been observed to 

function as a cytosolic DNA sensor and induce expression of pro-inflammatory genes upon 

challenge with Listeria Monocytogenes, Bartonella, Staphylococci and Salmonella (Xia et 

al., 2015). Sox2 (-/-) mice exhibited more severe bacterial loads and reduced pro-inflammatory 

cytokine production during infection. Sox2 was observed to bind conserved bacterial DNA 

sequences through its High Mobility Group (HMG) domain consistent with its role as a 

transcription factor. Sox2 induced activation of NF-kB via TGF-b Activated Kinase 

1/MAP3K7 Binding Protein 2 (TAB2) and Transforming Growth Factor-b Activated Kinase 

1 (TAK1) induced activation of IKK and Mitogen-activated protein kinase kinase (MKK) 

signalling. 

 

1.5 STING is an adapter protein for DNA-induced interferon production 

 

The specific cellular signalling cascades that control IFNβ transcription during DNA sensing 

have been difficult to characterise, but are understood to require the endoplasmic reticulum 

(ER) adapter molecule stimulator of interferon genes (STING), also known as Membrane 

tetraspanning protein (MPYS), transmembrane protein 173 (TMEM173), MITA and 

endoplasmic reticulum interferon stimulator (ERIS) (Ishikawa, 2008; Ishikawa et al., 2009; 
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Jin et al., 2008; Sun et al., 2009; Zhong et al., 2008). The importance of STING was verified 

as antigen presenting cells taken from Sting(-/-) mice were demonstrated to be incapable of 

producing IFN in response to DNA transfection and infections with the intracellular 

pathogens Listeria monocytogenes and HSV1 (Ishikawa et al., 2009). Additionally, Sting(-/-) 

mice used in this study succumbed to lethal HSV1 infection. STING expression has been 

observed across numerous cell types (Zhong et al., 2008). Due to the importance of IFN-b in 

co-ordinating effective anti-viral immunity, STING has been the centre of intense research 

focus over the last decade (Reviewed by Barber, 2015). 

 

1.5.1 STING is a receptor for Cyclic Di-Nucleotides 
 

Until recently it was unclear how STING detected the presence of cytoplasmic DNA. While 

STING has been reported to directly bind DNA by (Abe et al., 2013), it is unlikely that it 

functions as a DNA sensing PRR itself as HEK293T cells stably expressing STING remained 

unresponsive to DNA transfection (Burdette et al., 2011). Instead, STING was found to be a 

receptor for the cyclic di-nucleotides that are produced by bacteria that leak into the cytosol 

during infection; cyclic di-adenosine monophosphate (c-di-AMP) and cyclic di-guanylate 

monophosphate (c-di-GMP) (Jin et al., 2011; McWhirter et al., 2009). Further structural stud 

ies revealed the crystal structure of STING in complex with c-di-GMP and demonstrated that 

STING is functionally active as a dimer, with a cyclic di-nucleotide binding cleft at the dimer 

interface (Huang et al., 2012; Ouyang et al., 2012; Shu et al., 2012).  

 

While these observations explained the mechanism of IFN induction by certain species of 

intracellular bacteria the mechanism by which DNA activated STING remained elusive until 

the discovery of the novel mammalian second messenger cyclic guanosine monophosphate-

adenosine monophosphate (cGAMP) which is produced by the cytosolic enzyme cGAMP 

synthase (cGAS) upon binding DNA (Sun et al., 2013a; Wu et al., 2013b). cGAMP is capable 

of directly binding to and activating STING, resulting in a conformational change in STING 

structure now believed to be required for STING activation and subsequent signalling (Diner 

et al., 2013; Zhang et al., 2013). Additional proteins were also proposed to recognise DNA 

and signal through STING to induce IFN-b, however their mechanism of STING activation 

is now unclear (Reviewed by Unterholzner, 2013). 
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1.5.2 STING mediated RNA sensing 
 

The involvement of STING in RNA sensing is contentious. Several early studies suggested 

that STING was involved in RNA sensing pathways (Ishikawa, 2008; Sun et al., 2009; Zhang, 

2012; Zhong et al., 2008; Zhong et al., 2009). However, others have also shown that STING 

is dispensable for detection of SeV (Chen et al., 2011; Tanaka, 2012). Furthermore, many 

RNA viruses such as Dengue virus, HCV and Coronaviruses block STING function during 

infection suggesting inhibition of STING aids their survival (Aguirre et al., 2012; Ding et al., 

2013; Nitta et al., 2013; Sun et al., 2012). It is important to note that as Dengue virus mediated 

activation of STING is due to host cell mitochondrial DNA leaking into the cytosol and that 

other RNA viruses may induce STING activation by similar mechanisms of host cell damage 

(Aguirre et al., 2017; Sun et al., 2017). STING may still possess cell type specific or virus 

specific roles for RNA sensing. However, considering the evidence that STING is a receptor 

for cyclic-di-nucleotides, the mechanism by which STING could sense RNA is ambiguous. 

A possible mechanism by which STING could regulate detection of RNA is through what 

Gough et al., (2002) describe as tonic signalling. Tonic signalling describes a homeostatic 

role of constitutive low level IFN production in the absence of infection. As MAVS and the 

RLRs are ISGs, it is possible that deletion of STING alters constitutive IFN levels by 

perturbing tonic signalling, and thus has knock-on consequences for the homeostatic 

regulation of ISGs. 

 

A study by (Holm et al., 2016) has demonstrated a cGAS-independent mechanism of STING 

activation during infection with IAV. Although IAV is an RNA virus, the authors demonstrate 

that virus particles and liposomes could induce STING activation in the absence of RNA, 

therefore it is unlikely that the viral RNA is being sensed through STING itself. The authors 

identify Arg169 to be a region of functional importance for STING mediated immunity in 

response to enveloped RNA viruses and liposomes. Arg169 sits outside the cGAMP binding 

cleft and is exposed to the cytosol for interactions with currently unknown additional factors. 

This study also demonstrated that the hemagglutinin fusion peptide of IAV was also found to 

bind to this region of STING, inhibiting STING dimerisation and the recruitment of TBK1 

upon stimulation with virus particles and liposomes but not DNA or cGAMP (Holm et al., 

2016). 
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1.5.3 STING trafficking and signalling via TBK1 
 

STING activation results in STING trafficking from the endoplasmic reticulum to 

endoplasmic reticulum-golgi intermediate compartments (ERGIC) in an autophagy-like 

process controlled by autophagy-related protein 9a (Atg9a) (Dobbs et al., 2015; Saitoh et al., 

2009). Trafficking from the ER to the ERGIC is an essential hallmark of STING activation, 

as inhibition of the process by the Shigella flexneri and Yersinia pestis effector proteins IpaJ 

and YopJ abrogated STING induced IFN production (Cao et al., 2016b; Dobbs et al., 2015). 

Activated STING at the ERGIC then acts as a scaffold protein for the recruitment of the non-

canonical IKK kinase TBK1 and transcription factor IRF3 (Liu et al., 2015a; Tanaka, 2012). 

After being recruited to STING, TBK1 then undergoes auto-phosphorylation and 

phosphorylates IRF3 and STING (Shu et al., 2013). IRF3 subsequently dissociates from 

STING, dimerises and translocates to the nucleus to initiate IFNβ transcription.  

 

While STING signalling is understood to require TBK1 and IRF3, many of the other aspects 

controlling STING behaviour and signalling remain nebulous such as the nature of the 

punctuate structures that STING forms at ERGICs. Although the formation of similar 

nucleated structures is also observed during formation of MAVS fibrils, it is presently 

unknown if STING forms such a supramolecular complex upon activation (Hou et al., 2011). 

NFκB activation is another hallmark of STING signalling; (Abe and Barber, 2014) have 

proposed that this is mediated by TBK1 activation of the IKK complex and also propose the 

involvement of additional factors such as TRAF6 with unpublished data. Thus, many aspects 

of this arm of STING signalling remain elusive. Although autophagy has been implicated in 

STING regulation and trafficking (Saitoh et al., 2009), the precise mechanism by which it 

specifically turnover after signalling has yet to be elucidated. 

 

1.5.4 STING Post-Translational Modifications 
 

STING is subjected to extensive post-translational modification during infection 

(Summarised in Fig 1.4). 
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1.5.4.1 STING Phosphorylation 
 

STING phosphorylation has been described on S358 and has been reported as a requirement 

for STING activation, albeit in an RNA sensing context (Zhong et al., 2008). STING 

phosphorylation has also been described in cells and in in vitro cell free assays on S366 by 

TBK1 and is reported as an essential requirement for STING signalling, permitting the 

recruitment IRF3 (Liu et al., 2015a). Conversely, S366 phosphorylation has also been 

proposed to represent inactivated STING following phosphorylation by unc-51 like 

autophagy activating kinase 1 (ULK1) during a negative feedback loop induced by sustained 

cGAMP signalling by (Konno et al., 2013).  STING also possesses additional serines in its 

C-terminus that have also been observed to undergo phosphorylation however their functional 

consequences are presently unknown (Zhong et al., 2008). 

 

1.5.4.2 STING Ubiquitination and SUMOlyation 
 

Ubiquitination of STING has also been reported in numerous studies. Ubiquitin contains 

several lysines in its structure allowing for the conjugation of additional ubiquitin molecules 

to ubiquitin leading to the formation of either Met1, K6, K11, K27, K29, K33, K48 and K63 

polyubiquitin chains (Reviewed by Akutsu et al., 2016). Different forms of polyubiquitin 

chains mediate different cellular functions; K48 chains mediate proteasomal degradation 

while the other forms of ubiquitin chains mediate unique signalling functions. The addition 

of K11, K27, K48 and K63 chains to STING have all been reported as essential steps in the 

activation and regulation of STING signalling (Qin et al., 2014; Tsuchida et al., 2010; Wang 

et al., 2014; Zhang, 2012; Zhong et al., 2009). Intriguingly, every E3 ligase reported in these 

studies has been found to ubiquitinate the same lysine on STING, K150. While (Wang et al., 

2014) demonstrate using a stringent two-step immunoprecipitation experiment that K27 

ubiquitin chains are the only ubiquitin chains directly bound to STING, they also suggest that 

the K63 and K11 chains that were lost could have been bound to another protein or cofactor 

in a STING signalling complex. K48 chains were still present on STING in this report, 

suggesting that various E3 ligases could potentially compete for K150 over time during 

STING signalling to promote the differential regulation of the pathway. This study also 

demonstrated that TBK1 directly binds to K27 ubiquitin chains, which presently have no 

widely understood function.  
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K63 ubiquitination on K224 of STING has recently been demonstrated to aid in the 

recruitment of IRF3 to the STING signalling complex (Ni et al., 2017). A small interfering 

RNA(siRNA) screen identified mitochondrial E3 ubiquitin protein ligase 1 (MLU-1) as the 

E3 ligase responsible for this modification. STING is also modified with small ubiquitin like 

modifier (SUMO) on K337 during viral infection by TRIM38 promoting STING activation 

and stability (Hu et al., 2016)  

 

One caveat of these studies is their reliance on over-expression experiments, which are 

occasionally prone to artefacts, or may neglect additional regulatory pathways or co-factors 

that may be cell type specific. For example, Hepatitis B virus and Yersinia pestis have been 

shown to block STING signalling by preventing K63 ubiquitination, affirming the importance 

of K63 chains to STING activation (Cao et al., 2016b; Liu et al., 2015b). This suggests that 

suggests that more rigorous and refined approaches using endogenous STING are required to 

appreciate how ubiquitin regulates this pathway.  
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1.5.4.3 STING Palmitoylation 
 

Palmitoylation has recently been described as an essential modulator of STING activation 

(Mukai et al., 2016). Palmitoylation describes the reversible transfer of palmitic acid to me- 

mbrane proximal cysteines on proteins by palmitoyl transferases and their subsequent 

removal by palmitoyl protein thioesterases (Reviewed by Linder and Deschenes, 2006). 

Palmitoylation influences the ability of membrane associated proteins to traffic into 

cholesterol rich lipid rafts wherein signal transduction is initiated. Palmitoylation can also 

alter the steric conformation of a protein in a membrane, thus influencing the ability of a 

receptor to bind a ligand (Reviewed by Goddard and Watts, 2012). (Mukai et al., 2016) 

identify that STING is palmitoylated on Cys88 and 91. Using a Cys88/91 Ser mutant or the 

palmitoyl transferase inhibitor, 2-Bromopalmitate, the authors demonstrate that inhibition or 

loss of palmitoylation abrogates STING signalling. Additionally, defects in intra-cellar 

responses to RNA sensing were observed with 2-Bromopalmitate suggesting that 

palmitoylation may also influence the RLR-MAVS pathway (Mukai et al., 2016). 

 

While the study by (Mukai et al., 2016) was the first to demonstrate STING palmitoylation, 

a palmitoyl transferase had previously been reported to positively regulate the STING 

pathway. The ER associated protein Zinc Finger DHHC-Type Containing 1 (ZDHHC1) is a 

palmitoyl transferase which has been observed to constitutively associate with STING and 

promote STING dimerisation and signalling (Zhou et al., 2014). Mice and murine embryonic 

fibroblasts (MEFs) lacking ZDHCC1 were impaired in their ability to mount an innate 

immune response to DNA and succumbed to HSV-1 infection. While ZDHHC1 was found 

to augment poly(I:C) responses during overexpression experiments in HeLa cells, Zdhhc1(-/-

) mice and MEFs responded normally to infections with vesicular stomatitis virus and 

poly(I:C) stimulation (Zhou et al., 2014), suggesting that another a palmitoyl transferase may 

mediate the effects over RLRs as reported by (Mukai et al., 2016). The palmitoyl transferase 

activity of ZDHHC1 was considered not to be required for STING function as overexpression 

of a catalytically dead mutants of ZDHHC1 potentiated the activation of an IFN-b reporter 

during HSV-1 and SeV infection in HeLa cells (Zhou et al., 2014).  However, whether 

ZDHHC1 palmitoylates STING has not been examined. Thus, further studies are needed. 
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1.6 STING-Dependent IFN Production 
 

In recent years, several receptors have been proposed to detect cytoplasmic DNA and signal 

through STING (Reviewed by Unterholzner, 2013). However, of all receptors studied only 

cGAS has a well-defined mechanism of STING activation thus the role of other receptors is 

contentious (Fig 1.5). 

 

1.6.1 cGAS and the Second Messenger cGAMP 
 

The importance of cGAS to DNA sensing was demonstrated by the inability of cGAS(-/-) cell 

lines and mice to produce IFN-β in response to DNA transfection, DNA vaccinations and 

infections with DNA and retroviruses (Gao et al., 2013a; Li et al., 2013b; Sun et al., 2013a).  

The crystal structure of cGAS revealed that cGAS possess a highly conserved Mab21 

nucleotidyl transferase domain and possessed a similar overall structure to the cytosolic 

dsRNA sensor 2'-5' oligoadenylate synthetase (OAS1) (Civril et al., 2013). Unlike OAS1, 

cGAS possesses a zinc thumb that affords cGAS sequence-independent recognition of DNA. 

DNA binding of cGAS to its zinc thumb induced as a conformational change to the cGAS 

active site (Civril et al., 2013). Further structural studies of cGAS revealed the presence of 

an activation loop adjacent to the DNA binding zinc thumb (Zhang et al., 2014b). DNA 

binding is believed to create a steric clash with this activation loop inducing major “switch-

like” conformational changes in the DNA binding region and active site of cGAS. Other 

structural studies have also suggested that cGAS could initially form 2:2 dimers upon binding 

DNA and may show a steric preference for binding the ends of DNA (Li et al., 2013a; Zhang 

et al., 2014b). Structural studies of cGAS:DNA complexes demonstrate that cGAS dimers 

assemble as ladder-like structures on U-turns and bends in DNA structure in the spaces 

induced by bacterial and mitochondrial nucleoid proteins; HU and mitochondrial 

transcription factor A, and high-mobility group box 1 protein (HMGB1) (Andreeva et al., 

2017). The positively changed N-terminus of cGAS has been reported to undergo structural 

changes upon DNA binding which have been observed to increase cGAS activity and 

promote the formation of 1:1 DNA cGAS complexes following DNA binding (Lee et al., 

2017; Tao et al., 2017). Recently, Luecke et al., (2017) have demonstrated that cGAS is 

capable of length-dependent DNA recognition. The authors of this study demonstrate using 

in vitro transcribed DNA oligomers that cGAS is sensitised to respond to DNA of <2000 base 



	 47 

pairs in length and that DNA of this length is immunestimulatory at concentrations low as 

0.0167µg/ml. 

 

cGAS DNA binding and activity are subject to regulation by a growing number of post-

translational modifications. cGAS DNA binding and nucleotidyl-transferase activity is 

promoted by K27 ubiquitination on K173 and K384 mediated by RNF185 (Wang et al., 

2017). Removal of K48 ubiquitin on K414 by Ubiquitin Specific Protease (USP)14 was 

identified as a stabilising modification by preventing p62 mediated autophagic turnover 

(Chen et al., 2016). Similarly, removal of SUMO from K335, 372 and 382 by sentrin/SUMO-

specific protease 7 (SENP7), and polyglutamate on Q272 and monoglutamate on Q302 by 

the cytosolic carboxypeptidases (CCPs) CCP5 and CCP6, improved cGAS’ DNA binding 

and nucleotidyl-transferase activity (Cui et al., 2017; Xia et al., 2016a) . 

 

The discovery of the mammalian second messenger, cGAMP, afforded significant 

mechanistic insights into the recognition of intracellular DNA by the innate immune system. 

cGAMP is produced following DNA transfection and infection with viruses (Gao et al., 

2013a; Wu et al., 2013b). cGAMP then directly binds to STING, inducing a conformational 

change in STING (Diner et al., 2013; Zhang et al., 2013), activating STING trafficking 

(Dobbs et al., 2015) and enabling the recruitment of TBK1 to STING for the activation of 

IRF3 (Liu et al., 2015a; Shu et al., 2013). cGAMP is likely to be important in priming immune 

responses in adjacent uninfected cells as it has been demonstrated to induce STING activation 

in bystander cells through gap junctions (Ablasser et al., 2013b), and is packaged into viral 

particles in cells with an active cGAS response (Bridgeman et al., 2015; Gentili et al., 2015).  

 

cGAMP is understood to bind STING with a greater affinity than other cyclic dinucleotides, 

inducing a more significant conformational change in STING (Zhang et al., 2013). It is 

suggested that c-di-GMP is also capable of inducing a similar STING conformational change, 

albeit to a lesser extent than the change induced by cGAMP (Huang et al., 2012). This was 

later explained by (Zhang et al., 2013), who highlight that the crystal structures of c-di-GMP 

bound to STING used in the studies that do not report a conformational change (Ouyang et 

al., 2012; Shu et al., 2012), use a single nucleotide polymorphism of STING (STING R232H), 
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that has been observed to be less effective at binding to c-di-GMP and c-di-AMP  (Yi et al., 

2013).  

 

Upon binding DNA, cGAS produces 2’-3’ cGAMP from cytosolic molecules of ATP and 

GTP (Ablasser et al., 2013a; Sun et al., 2013a). This reaction is permitted by conformational 

changes upon DNA binding that allow ATP and GTP to enter the catalytic pocket (Gao et al., 

2013b). Following the entry of ATP and GTP into the active site, cGAMP is proposed to be 

generated in a two-step process; GTP is first linearized to pppGp, which then attacks ATP to 

form a pppGpA(2’-5’) reaction intermediate, this is then followed by the formation of the 

(3’5’) adenosine-guanosine bond to form cGAMP (Ablasser et al., 2013a; Gao et al., 2013b). 

A distinct feature of cGAMP is its 2’-5’ guanosine-adenosine bond which has been speculated 

to promote stability and efficient transduction as a second messenger as many nucleases are 

unable to hydrolyse such a linkage (Gao et al., 2013b).  

 

Currently ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is the only known 

endogenous phosphodiesterase with the ability to hydrolyse cGAMP (Li, 2014). Snake 

venom phosphodiesterase from Crotalus adamanteus has been used to degrade cGAMP to 

confirm its identity by Liquid Chromatography-Mass spectrometry (Ablasser et al., 2013a). 

Mycobacterium tuberculosis evades the immune system by producing its own 

phosphodiesterase CdnP. Loss of CdnP from M.tb., or ENPP1 from mice, was observed to 

attenuate Mycobacterium tuberculosis infection (Dey et al., 2017). 

 

While cGAS has been predominately studied as a DNA sensor, a screen of the activity of IFN 

stimulated genes revealed that cGAS possesses additional undefined roles in the immune 

response against RNA viruses (Schoggins et al., 2014). Additionally cGas(-/-) mice 

succumbed to lethal infection with West Nile Virus (WNV) and possessed higher viral titres 

than cGas(+/+) mice, suggesting that cGAS may have a greater ligand specificity that 

previously anticipated (Schoggins et al., 2014). This hypothesis was verified with the 

discovery that cGAS can directly sense RNA:DNA hybrids (Mankan et al., 2014), however 

further studies are required to observe if this is a mechanism by which cGAS can detect RNA 

viruses. Alternatively, cGas(-/-) mice may respond differently to RNA virus infection because 
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of altered RLR regulation as a result of differences in tonic signalling in the absence of low 

level IFN production by cGAS (Reviewed by Gough et al., 2002)  

 

1.6.2 IFI16/p204 

 

Interferon Gamma Inducible Protein 16 (IFI16) is a nuclear PYHIN protein composed of an 

N-terminal pyrin domain (PYD) and two C-terminal HIN domains. PYHIN proteins bind to 

DNA in a sequence independent manner via an electrostatic charge between the HIN domain 

and the DNA sugar-phosphate backbone (Jin et al., 2012). The PYD has been observed to 

mediate PYHIN oligomerisation in in vitro studies, which is believed to be a pre-requisite for 

subsequent signalling (Morrone et al., 2014).  

 

In humans, the PYHIN protein family consists of five members; IFI16, Myeloid cell nuclear 

differentiation antigen (MNDA), Pyrin and HIN domain family member 1 (PYHIN1/IFIX), 

AIM2, and the AIM2 regulator POP3 (Fernandes-Alnemri et al., 2009; Hornung et al., 2009; 

Khare et al., 2014). IFI16, MNDA and PYHIN1/IFIX reside in the nucleus while AIM2 and 

POP3 reside in the cytosol. In mice, the PYHIN protein family is comprised of thirteen family 

members and AIM2 is the only obvious PYHIN orthologue present in both species (Cridland 

et al., 2012). p204 is believed to function as the murine orthologue of IFI16 as it also 

possesses two HIN domains and resides in the nucleus (Unterholzner et al., 2010).  

 

IFI16 is capable of inducing IFN-β transcription via STING upon detecting intracellular DNA 

(Unterholzner et al., 2010). IFI16 was first identified as a DNA sensor through a mass 

spectrometry screen on cytosolic THP-1 proteins that bound to a biotinylated 70mer motif 

from the Vaccinia virus (VACV) genome (Unterholzner et al., 2010).  IFI16’s role as a DNA 

sensor was first confirmed using siRNA knockdown for IFI16 and p204, in DNA transfection 

experiments and HSV-1 infections in human and murine monocytes (Unterholzner et al., 

2010) and has since been observed in dendritic cells (Kis-Toth et al., 2011), neutrophils 

(Tamassia, 2012), human foreskin fibroblasts (Orzalli et al., 2012), vascular endotheial cells 

(Iqbal et al., 2016) and human primary macrophages (Horan et al., 2013; Soby et al., 2012).  
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IFI16 is predominately nuclear at steady state. IFI16 has been observed to shuttle between 

the nucleus and cytoplasm in response to the presence of foreign DNA (Li et al., 2012a), and 

is capable of detecting foreign DNA in both locations (Horan et al., 2013; Li et al., 2012a; 

Orzalli et al., 2012; Unterholzner et al., 2010). Proteomic analysis of IFI16 revealed that the 

ability of IFI16 to shuttle between nucleus and cytoplasm, is regulated by acetylation of K99 

and K128 within the multipartite nuclear localization signal by the p300 acyltransferase (Li 

et al., 2012a). (Ansari et al., 2015) demonstrated that acetylation of IFI16 by the p300 histone 

acetyltransferase increases following association with Kaposi Sarcoma-associated 

Herpesvirus (KSHV) and HSV-1 genomes using proximity ligation microscopy assays. 

Inhibition of IFI16 acetylation did not influence its ability to bind the genomes of either virus 

but impeded its cytoplasmic translocation. (Dutta et al., 2015) observe an interaction between 

Breast Cancer gene 1 (BRCA1) and IFI16 that increases during KSHV, HSV-1 and Epstein-

Barr Virus (EBV) infection that promotes IFI16 acetylation. Vascular endothelial cells 

lacking BRCA1 displayed reduced IFI16 acetylation, reduced inflammasome activation and 

reduced activation of the STING pathway suggesting that BRCA1 enables IFI16 to function 

as a DNA sensor. (Iqbal et al., 2016) demonstrate that an association between Histone H2B 

in addition to BRCA1 promotes IFI16 function. Using the nuclear export inhibitor 

Leptomycin B, the authors demonstrate that Histone H2B-IFI16-BRCA1 complexes 

recognise viruses in the nucleus and translocate to the cytoplasm to activate the STING 

pathway. Histone H2B depletion by siRNA produced comparable decreases in IFN-b 

production to cGAS, IFI16 and STING depletion during HSV-1 and KSHV infections. 

 

It is currently unknown how IFI16 recognises pathogen DNA as “foreign DNA” and why 

IFI16 does not recognise host DNA in the nucleus. In vitro experiments have revealed that 

IFI16 forms cooperative filaments along DNA and suggest that IFI16 may discriminate 

between self and non-self DNA using filament length (Morrone et al., 2014). Further 

structural studies highlight how the presence of nucleosomes hinder the assembly of IFI16 

filaments, suggesting that chromatinization of host DNA is sufficient to prevent it from being 

recognised by IFI16 (Stratmann et al., 2015). This hypothesis is supported by an observation 

by (Orzalli et al., 2013), where IFI16 restricted expression of a large T antigen encoded on a 

plasmid containing the Simian vacuolating virus 40 but did not restrict T antigen expression 

from transfected chromatinized Simian vacuolating virus 40 DNA.  
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AIM2 is understood to form an inflammasome upon binding DNA in the cytoplasm 

(Fernandes-Alnemri et al., 2009; Hornung et al., 2009). Following oligomerisation, the PYD 

of AIM2 associates with the PYD of ASC, inducing ASC nucleation and resulting in the 

activation of Caspase-1 (Yin et al., 2011b). Conversely, IFI16 has only been shown to form 

a nuclear inflammasome during infection with particular viruses, namely Kaposi Sarcoma-

associated Herpesvirus (KSHV) (Kerur et al., 2011; Singh et al., 2013), Epstein Barr virus 

(EBV) (Ansari et al., 2013) and HSV-1 (Johnson et al., 2013). IFI16 was found to induce cell 

death via pyroptosis in CD4+ T cells during Human Immunodeficiency Virus (HIV) infection 

and is speculated to be a major contributor to the progression of HIV-1 infection to Acquired 

Immunodeficiency Syndrome (AIDS) (Monroe et al., 2014).  

 

The other PYHIN proteins Myeloid cell nuclear differentiation antigen (MNDA) and Pyrin 

and HIN domain family member 1  (PYHIN1/IFIX) have been shown to interact with proteins 

governing RNA processing and chromatin remodelling in a	functional interactome composed 

by (Diner et al., 2015). IFIX was also shown to have functions as a STING-dependent DNA 

sensor in this study during overexpression experiments in HEK293Ts (Diner et al., 2015). 

 

1.6.3 DDX41 

 

DExD/H box helicases (DDX) are a family of nucleic acid binding proteins; which include 

the RLRs (Reviewed by Loo and Gale, 2011). DDX41 was first identified as a DNA sensor 

through an RNAi screen of 59 DExD/H box helicases (Zhang et al., 2011b). DDX41 

knockdown experiments in murine immortalised dendritic cells, bone marrow derived 

dendritic cells and human monocytic THP1 cell lines revealed a reduction in IFN-β 

transcription. DDX41 was later found to be able to bind the bacterial cyclic dinucleotides c-

di-AMP and c-di-GMP also using its DEAD/c domain (Parvatiyar et al., 2012). DDX41 has 

been proposed to work upstream of STING and enhance STING recognition of cyclic 

dinucleotides  (Parvatiyar et al., 2012), as siRNA against STING and DDX41 was found to 

reduce IFN-β transcription during L.monocytogenes infection and upon c-di-AMP and c-di-

GMP stimulations. It is presently unknown if DDX41 can recognise the novel second 

messenger and mammalian cyclic dinucleotide, cGAMP (Wu et al., 2013b). 
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1.6.4 DAI 

 

DNA-dependent activator of IFN-regulatory factors (DAI), also known as DLM-1/Z-DNA 

binding protein 1 (ZBP1), was the first receptor for cytosolic DNA to be identified (Takaoka 

et al., 2007). Experiments in murine L929 cells and murine embryonic fibroblasts (MEF) 

cells demonstrated that DAI is encoded by an IFN stimulated gene and co-localised with 

DNA upon transfection and associated with TBK1 and IRF3 to induce IFNβ transcription. 

Further studies elucidated that DAI also interacted with receptor-interacting protein kinases 

(RIP)1 and RIP3 to activate the NFκB pathway and suggested that DAI, like STING, also 

undergoes dimerisation and is regulated by TBK1 phosphorylation upon activation (Kaiser 

et al., 2008; Rebsamen, 2009; Wang et al., 2008). However, the generation of DAI(-/-) mice 

and human cell lines revealed that DAI is redundant for DNA sensing as these mice and cell 

lines lacking DAI displayed normal responses to DNA stimulation and DNA based 

vaccinations (Ishii et al., 2008; Lippmann, 2008). DAI was shown to be linked to virus-

induced necrosis in a study using mCMV infection (Upton et al., 2012). Recently, another 

study focusing on DAI necroptosis by (Maelfait et al., 2017) demonstrated that the DAI  Z  

DNA binding domain induced necrosis through recognising Z-RNA. DAI-mediated necrosis 

was reduced when transcription was ablated as seen with infections with inactivated mCMV 

virus and reduced necrosis upon treatment with transcription blocker actinomycin D. 

Inhibition of DNA polymerases did not alter necrosis, while RNA labelling experiments 

demonstrated that DAI bound newly synthesised endogenous RNAs (Maelfait et al., 2017; 

Sridharan et al., 2017). 

 

1.6.5 DNA-PK 

 

DNA damage from environmental stress and DNA damaging chemotherapy drugs results in 

the production of IFN-β (Ahn et al., 2014; Kim et al., 1999; Kim et al., 2000). Many DNA 

viruses in turn have been observed to induce and manipulate the DNA damage response to 

aid their replication suggesting that these pathways may overlap and many receptors for DNA 

damage could also function as DNA sensing PRRs (Reviewed by Turnell and Grand, 2012).  

While the DNA binding catalytic subunits of the DNA-dependent protein kinase (DNA-

PKcs), Ku70/80 and the DNA damage protein kinase Ataxia telangiectasia (ATM) were 
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found to be dispensable for IFN-b induction in murine bone marrow derived macrophages 

(BMDMs) by (Stetson and Medzhitov, 2006a), evidence has emerged to suggest that DNA-

PKcs and ATM may contribute to DNA sensing in other cell types. 

 

DNA-PKcs orchestrates the repair of double strand breaks through the process of non-

homologous end joining. The Ku subunits of DNA PKcs bind to the double stranded break, 

stabilising the interactions between DNA-PKcs and its substrate. DNA-PKcs then recruits the 

DNA ligase IV-XRCC4 to repair the broken DNA ends. Ku70 has been implicated in the 

production of IFN-λ after immune stimulatory DNA (ISD) stimulation with in HEK293 cells 

(Zhang et al., 2011a) and both Ku70 and Ku80 have been shown to be required for IFN-β 

responses to transfected DNA in murine and human fibroblasts (Ferguson et al., 2012). An in 

vivo requirement for DNA-PKcs and its Ku subunits was demonstrated during HSV-1 and 

Modified Vaccinia Ankara (MVA) infections in mouse embryonic fibroblasts and in mouse 

intradermal infection models (Ferguson et al., 2012). Finally, using an inducible expression 

system in HEK293T cells DNA-PKcs was demonstrated to detect DNA in a STING 

dependent manner (Ferguson et al., 2012).  

 

1.6.6 Mre11 

 

Meiotic recombination factor 11 (Mre11) is recruited to double strand breaks following 

activation of ATM, along with Nibrin/NSB1 and RAD50 (collectively known as the MRN 

complex) (Reviewed by Lavin et al., 2015). Recently, Mre11 has been demonstrated to bind 

and mediate responses to transfected ISD in bone marrow derived dendritic cells (Kondo et 

al., 2013). Treatment of these cells with the Mre11 inhibitor Mirin also decreased IFNβ 

transcription upon transfection with ISD. Further experiments in an Mre11(-/-) cell line also 

revealed that Mre11 mediated IFN production was ablated with STING siRNA knockdown 

and that the other components of the MRN complex were not required for Mre11’s functions 

as a DNA sensor. Curiously, Mre11 knockdown did not impair IFNβ production during 

Listeria monocytogenes infection suggesting that Mre11 may only function as a DNA sensor 

in cases of sterile inflammation. 
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1.6.7 LSm14A 

 

LSm14A (also known as RNA Associated Protein 55 (RAP55)) is a constituent of RNA 

processing bodies (P bodies), which are sites of cytoplasmic mRNA degradation. An 

investigation by (Li et al., 2012b) revealed that LSm14A was capable of detecting nucleic 

acids in a manner that was dependent on MAVS, RIG-I and STING suggesting that LSm14A 

could potentially sample nucleic acids in P bodies and deliver them to nucleic acid sensing 

PRRs during infections. 
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1.7 STING-Independent Mechanisms of DNA-induced IFN Production 
 

While many DNA sensors have been proposed to signal in a STING-dependent manner, 

several receptors have been observed to induce IFN production in a STING-independent 

manner after detection of intracellular DNA.  

 

1.7.1 RNA polymerase III 
 

RNA polymerase III is responsible for the synthesis of a range small RNA molecules such 

5S ribosomal RNA, transfer RNAs, non-coding and micro-RNAs, and RNA molecules that 

function in RNA splicing and quality control (e.g. the spliceosome component U6 and 

RNAseP), in all eukaryotic cells (Reviewed by White, 2011). Investigations by (Ablasser et 

al., 2009; Chiu et al., 2009) revealed that RNA Pol III could also function as a DNA sensor 

for the synthetic DNA mimic, Poly(dA:dT). RNA pol III was found to transcribe Poly(dA:dT) 

into dsRNA which in turn induced IFN-β transcription via the RIG-I pathway. This method 

of DNA sensing is seemingly unique to Poly(dA:dT) as other forms of DNA do not induce 

dsRNA production (Ablasser et al., 2009; Unterholzner et al., 2010). Additionally, HEK293 

cells which possess the RNA pol III and RIG-I pathways are unable to respond to DNA of 

microbial or mammalian origin (Unterholzner et al., 2010). Because these observations 

suggest that RNA Pol III may only recognise Poly(dA:dT) rich DNA it has been difficult to 

verify if RNA Pol III plays an active role in infections with pathogens. The best-characterised 

examples of Pol III activity during infection are found within studies using EBV. However 

in these studies, the virus has been found to use RNA Pol III to encoded Epstein Barr virus 

small RNAs, which are then recognised by the RIG-I pathway and not function as a DNA 

sensor (Ablasser et al., 2009; Chiu et al., 2009; Samanta et al., 2006)   

 

1.7.2 LRRFIP1 
 

Leucine rich repeat (in FLII) interacting protein 1 (LRRFIP1) is a cytosolic nucleic acid 

binding protein that has been observed to bind RNA during vesicular stomatitis virus 

infections and DNA from Listeria monocytogenes infections in macrophages (Yang et al., 

2010). Unlike STING-dependent DNA sensors, LRRFIP1 promotes IFN-β transcription 

through a unique pathway by binding to the transcriptional co-activator β-catenin. β-catenin 
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then binds to the C-terminus of IRF3 and recruits the acetyltransferase p300 to the IFN-β 

promoter to promote assembly of the IFN-β enhanceosome (Yang et al., 2010).  

 

1.7.3 HMGB1 
 

High mobility group box (HMBG) proteins are strongly expressed in the nucleus where they 

are believed to regulate chromatin structure and transcription. HMGB1 is a ubiquitously 

expressed protein that has previously been implicated in DAMP associated activation of Toll-

like receptor pathways (Tian, 2007).  In addition to Toll-like receptors, HMGB1 has been 

observed to bind nucleic acids and potentiate activation of RIG-I and intracellular DNA 

sensing pathways (Yanai et al., 2009). The precise mechanism by which HMGB1 improves 

the efficiency of nucleic acid recognition by these PRRs is presently unknown. 

 

1.8  Which Receptors are Required for the STING-mediated IFN response?  
 

One striking feature of the innate immune response to DNA is the number of receptors 

proposed to signal through STING. (Table 1.3) details studies where a STING-dependent 

receptor has been implicated in the immune response to a pathogen. These studies typically 

describe the role of a proposed DNA sensor using siRNA depletion complemented with 

overexpression experiments in HEK293T cells. The discovery that cGAS(-/-) cells and mice 

are unable to respond to DNA transfection and viral infection has questioned the validity of 

the other proposed DNA sensors (Gao et al., 2013a; Li et al., 2013b). Further knockout studies 

will be required to conclusively confirm the precise contribution of other receptors, and to 

determine if there is redundancy or co-operation with cGAS, or cell type specificities. 

 

1.9  What defines a DNA sensor? 
 

When discussing the candidacy of the putative DNA sensors it is necessary to develop an 

operational definition of what defines a DNA sensor. Using the features of the verified DNA 

sensors AIM2 (Bürckstümmer et al., 2009; Fernandes-Alnemri et al., 2009; Hornung et al., 

2009), TLR 9 (Bauer et al., 2001; Hemmi et al., 2000) and cGAS (Sun et al., 2013a) as 

examples, a DNA sensor should possess the following features; 
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Pathogen Species  DNA 
Receptor 

Cell 
Type/Infection 

Model 

Reference 

DNA Virus 

Herpes Simplex 
Virus 1 

IFI16 

THP1 cells, 
peripheral blood 
mononuclear 
cells,  
human foreskin 
fibroblasts, 
U2OS cells, 
RAW264.7 cells 

(Horan et al., 
2013; 
Johnson et 
al., 2013; 
Orzalli et al., 
2012; 
Unterholzner 
et al., 2010) 
  

cGAS 

THP1 cells,  
cGAS(-/-) murine  
embryonic 
fibroblasts, 
cGAS(-/-) bone 
marrow derived-
macrophages,  
cGAS(-/-) dendritic 
cells, 
murine embryonic 
fibroblasts,  
microglia 

(Gao et al., 
2013a; Li et 
al., 2013b; 
Reinert et al., 
2017; West et 
al., 2015) 

DAI L929 cells (Takaoka et 
al., 2007) 

DDX41 murine dendritic 
cells 

(Zhang et al., 
2011b) 

DNA-PK murine embryonic 
fibroblasts 

(Ferguson et 
al., 2012) 

LSm14a THP1 Ccells (Li et al., 
2012b) 

Cytomegalovirus 

IFI16 

human embryonic 
lung fibroblasts, 
human foreskin 
fibroblasts  

(Dell'Oste et 
al., 2014; 
Diner et al., 
2016; 
Gariano et 
al., 2012)  

cGAS 

murine 
plasmatiod 
dendritic cells, 
monocyte derived 
DCs and 
macrophages, 
human foreskin 
fibroblasts, 
primary human 
endothelial cells 

(Bridgeman 
et al., 2015; 
Diner et al., 
2016; Lio et 
al., 2016; 
Paijo et al., 
2016) 
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Kaposi-Sarcoma 
Herpes virus IFI16 

human dermal 
microvascular 
endothelial cells 

(Iqbal et al., 
2016; Kerur 
et al., 2011; 
Roy et al., 
2016; Singh 
et al., 2013) 

Epstein-Barr 
Viurs IFI16 

primary human B 
cells, 
lymphoblastoid 
Cell lines 

(Ansari et al., 
2013) 

DNA Virus 

Vaccinia Ankara 
Virus 

cGAS 
dendritic cells, 
murine cancer 
models 

(Dai et al., 
2014; Dai et 
al., 2017; Lin 
et al., 1998) 

DNA-PK murine embryonic 
fibroblasts 

(Ferguson et 
al., 
2012)(Peters 
et al., 2013) 

Adenovirus 
cGAS 

RAW 264.7 cells, 
murine MS1 
endothelial cells 

(Lam et al., 
2014) 

DDX41 murine dendritic 
cells 

(Zhang et al., 
2011b) 

Human 
Papillomavirus 16 IFI16 HPV-induced 

tumour biopsy 
(Reinholz et 
al., 2013) 

Retrovirus 

 
Endogenous 
Retroviruses 

 

cGAS 

TREX(-/-) murine 
embryonic 
fibroblasts, 
TREX(-/-) bone 
marrow derived 
macrophages  
 

 
(Ablasser et 
al., 2014) 

 
Human 

Immunodeficiency 
Virus 

IFI16 

 
THP1 cell lines, 
HIV+ patient 
peripheral blood 
mononuclear 
cells, primary 
CD4+ T cells 

(Berg et al., 
2014; 
Jakobsen et 
al., 2013; 
Monroe et al., 
2014; Nissen 
et al., 2014) 

cGAS 

THP1 cell lines, 
L929 cell lines, 
HIV+ patient 
peripheral blood 
mononuclear 
cells, dendritic 
cells. 

(Gao et al., 
2013a; 
Lahaye et al., 
2013b; 
Nissen et al., 
2014) 
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RNA 
Viruses 

West Nile Virus cGAS 
cGAS(-/-) mice 
succumb to 
infection 

(Schoggins et 
al., 2014) 

Dengue Virus cGAS 

cGAS detects 
mitochondrial 
DNA leakage 
during dengue 
infection in 
THP1s and A549s 

(Aguirre et 
al., 2017; Sun 
et al., 2017) 

Intracellular 
Bacteria 

Listeria 
monocytogenes 

cGAS 

bone marrow 
derived 
macrophages, 
THP1 cells, 
human primary 
monocyte derived 
macrophages, 
U937 Cells 

(Hansen et 
al., 2014) 
 

IFI16 

DDX41 

murine dendritic 
cells, bone 
marrow derived 
macrophages 

(Parvatiyar et 
al., 2012; 
Zhang et al., 
2011b)  

Chlamydia 
trachomatis cGAS murine embryonic 

fibroblasts 
(Zhang, 
2014) 

Francisella 
novicida 

cGAS cGAS(-/-) and  
p204(-/-) 
RAW264.7 cells 

(Storek et al., 
2015) IFI16(p204) 

Mycobacterium 
tuberculosis 

STING-
Dependent 

IFN 

(ci-di-AMP) 

STING(-/-) RAW 
264.7 Cells 

 (Dey et al., 
2015) 

cGAS  

cGAS(-/-) THP1, 
bone marrow 
derived 
macrophages 

(Collins et 
al., 2015; 
Majlessi and 
Brosch, 2015; 
McNab et al., 
2015) 

Streptococcus 
pneumoniae DAI DAI(-/-) mice  (Parker et al., 

2011) 
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Streptococcus 
pneumoniae 

STING-
Dependent 

IFN 

(Unknown 
DNA 

Receptor) 

murine alveolar 
macrophages, 
bone marrow 
derived 
macrophages, 
alveolar epithelial 
cells, Sting(-/-) 
Mice 

(Koppe et al., 
2012; Parker 
et al., 2011) 

Extracellular 
Bacteria 

Neisseria 
gonorrhoeae 

(Following 
internalisation) 

cGAS 

cGAS(-/-) THP1s 
and bone marrow 
derived 
macrophages 

(Andrade et 
al., 2016) 

Protozoan 
Parasites 

Plasmodium yoelii cGAS plasmatiod 
dendritic cells 

(Yu et al., 
2016) 

 

Plasmodium 
falciparum 

STING-
dependent 

IFN response 

(Unknown 
Receptor) 

STING(-/-)bone 
marrow derived 
macrophages 

(Sharma et 
al., 2011) 

 

Table 1.3  Incidences where proposed STING-Dependent Receptors have been implicated 

to immunity to pathogen DNA 
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1) Sequence-independent recognition of DNA:  

 

A candidate DNA sensor should be able to recognise non-self DNA irrespective of its origin. 

Additionally, a potential DNA sensor should be capable of recognising DNA independent of a 

particular sequence or circumstantial structural motifs such as double stranded breaks. cGAS and 

AIM2 achieve sequence independent recognition by binding the sugar phosphate backbone of 

DNA, enabling them to recognise DNA from a range of sources (Civril et al., 2013; Jin et al., 

2012). TLR 9 also utilises the sugar phosphate backbone for its DNA recognition capabilities 

(Ohto et al., 2015).  Although TLR 9 activation is potentiated by CpG motifs in pathogen DNA, 

there is a substantial body of evidence to suggest TLR 9 binds indiscriminately to a broad range 

of DNAs (Reviewed by Lamphier et al., 2006).  

 

2) Bind DNA and Induce transcription of an Immune Response via Signalling Cascades: 

 

A candidate DNA sensor should indirectly mediate the induction of an immune response following 

DNA binding. cGAS induces activation of the STING pathway through production of cGAMP 

(Sun et al., 2013a; Wu et al., 2013b), AIM2 forms an inflammasome complex to induce IL-1b and 

IL-18 activation following DNA binding (Bürckstümmer et al., 2009; Fernandes-Alnemri et al., 

2009; Hornung et al., 2009), while TLR 9 signals via MyD88 to induce transcription of IFN and 

pro-inflammatory genes (Bauer et al., 2001; Hemmi et al., 2000).  This is important operational 

caveat in defining a putative DNA sensor as it is necessary to distinguish between potential DNA 

sensing PRRs and transcriptio factors that directly bind DNA and induce activation of immune 

genes such as IRF3 (Lin et al., 1998; Schafer et al., 1998) 

 

3) Validation by a Knockout Study 

 

The function of a putative DNA sensor must be determined by a knockout study to conclusively 

confirm its contribution to immunity. cGAS(-/-) mice are unable to respond to DNA transfection or 

infection with DNA viruses or retroviruses (Li et al., 2013b). Similarly, aim2(-/-) mice are 

vulnerable to infection with intracellular bacteria and DNA viruses (Rathinam et al., 2010) and 

plasmatiod dendritic cells from tlr9(-/-) mice are impaired in their responses to HSV-2 infection 

(Lund et al., 2003). 
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1.10 IFI16’s Candidacy as a DNA sensor; Perspectives from Virus-Host Interactions  

 

IFI16 is one of more widely studied proposed DNA sensors and has been implicated in the 

immune response to an array of intracellular pathogens in a variety of cell types (Table 1.3). 

Further evidence of the importance of IFI16 to DNA sensing can be observed from a 

perspective of virus-host interactions. Viruses typically subvert the immune response by 

disabling essential components of immune signalling pathways to enable their continued 

replication (Reviewed by Bowie and Unterholzner, 2008; Chan and Gack, 2016b). Viruses 

have been previously used to identify essential components of innate immune signalling and 

anti-viral immunity such as PKR (Davies et al., 1993), 14-3-3e (Chan and Gack, 2016a) and 

IRAK2 (Keating et al., 2007). cGAS is also inhibited during KSHV and HIV-1 infections 

(Lahaye et al., 2013a; Li et al., 2016).  

 

The importance of IFI16 to Herpesviridae immunity is emphasised by the diversity of ways 

this family can interact with IFI16 function. For example, IFI16 is antagonised and degraded 

by the HSV-1 proteins ICP0 and UL46 (Deschamps and Kalamvoki, 2017; Orzalli et al., 

2012) and by hCMV protein pUL83 (Biolatti et al., 2016). IFI16 is packaged into HCMV 

virions and exported from the infected cell to prevent it detecting viral DNA (Biolatti et al., 

2016; Dell'Oste et al., 2014). During latent KSHV infections, IFI16 inflammasomes are 

exported from infected endothelial cells in exosomes in what has been speculated to be a form 

of viral immune evasion (Singh et al., 2013). IFI16 degradation is also required for lytic 

reactivation of KSHV (Roy et al., 2016). Additionally, IFI16 also functions as a 

transcriptional repressor for HSV-1, HPV-18 and hCMV during infection (Gariano et al., 

2012; Johnson et al., 2014; Lo Cigno et al., 2015).  

 

To conclusively assess the function of IFI16, our lab has used transcription activator-like 

effector nucleases (TALENs) to generate an immortalised human keratinocyte cell line 

lacking IFI16. This cell line is a valuable tool, as it will allow us to examine the role of IFI16 

in DNA sensing in human cells. Keratinocytes constitute the outermost layer of skin and are 

frequently the initial point of contact for pathogens. Additionally, keratinocytes are the 

natural host for many DNA viruses such as HSV. As DNA sensing has been predominately 

studied in monocytes, using viruses that initially infect keratinocytes, we wished to study the 
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contribution of these receptors to innate immunity in skin cells. We propose that our 

observations in this model system can be extrapolated to the initial key events that shape the 

innate and adaptive immune responses to viral infections. 

 

1.11  Aims and Objectives of Investigation 
 

The principle aim of this investigation was to establish what function IFI16 has in the recognition 

of intracellular DNA. This was addressed through answering the following questions: 

1. Are HaCaT keratinocytes able to sense foreign DNA? 

 

Keratinocytes constitute a physical barrier between host and environment, and as such are the 

first point of contact for many pathogens and environmental insults. We aimed to investigate if 

human immortalised keratinocytes (HaCaTs) expressed components of a functional DNA 

sensing pathway and could mount an anti-viral innate immune response to foreign DNA. 

 

2. Is the DNA sensor IFI16 essential for the interferon response to DNA? 

 

As several DNA sensors have been implicated in the innate immune response to DNA, the 

contribution of IFI16 to intracellular DNA sensing is at present unclear. To conclusively 

determine the function of IFI16, our lab has used TALENs to generate IFI16 knockout HaCaT 

cells. We will determine if IFI16 is required for DNA sensing by assessing the ability of the 

IFI16 knockout HaCaT cell line to respond to DNA. 

 

3. Does IFI16 affect the cGAS-cGAMP-STING pathway of DNA sensing? 
 
How IFI16 interacts with the cGAS-STING pathway will be investigated in two phases: 

 

I.   Does IFI16 influence the activity of cGAS and facilitate the production of cGAMP? 

 

cGAS has not been studied in the context of another DNA sensor since its discovery. We will 

assess whether cGAS and IFI16 cooperate to sense pathogen DNA through examining whether 

IFI16 and cGAS form a complex during DNA sensing and by developing a quantitative Liquid 
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Chromatography–Mass Spectrometry method to measure cGAMP production to infer if IFI16 

influences cGAS activity. 

 

II. Does IFI16 influence the ability of STING to recognise cGAMP? 

 

If cGAS functions are not influenced by IFI16, we will examine whether IFI16 influences STING 

function. This will be addressed by examining if IFI16 and STING form a complex upon DNA 

stimulation and monitoring if cGAMP-induced STING signalling or STING post-translational 

modifications are altered in the absence of IFI16.  
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Chapter Two 
 
Methods and Materials 
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 2.1 Materials 
 

General lab chemicals were purchased from Sigma Aldrich or VWR chemicals unless 

otherwise stated. All solutions were prepared using de-ionised water from a Milli-Q system 

(Millipore).  

 

 2.2 Solutions 
	

SDS-PAGE and Western Blot Buffers 
 

10X Running Buffer:  0.25M Tris-Cl, 1.92M Glycine, 1%(w/v) sodium dodecyl  

sulfate (SDS) 

 

 10X Transfer Buffer:  0.25M Tris-Cl, 1.92M Glycine 

  

 1X Transfer Buffer:   100 mL 10x Transfer Buffer, 200 mL Methanol, made up to 1L 

    with deionized water (dH20). 

 

1.5M Tris (pH 8.8):  0.75M Tris-Cl dissolved in 420mL dH20. Adjust to pH 8.8  

                                             using Sodium Hydroxide (NaOH) + Hydrochloric acid (HCl).  

                                             Bring to 500 mL using dH20 

 

0.5M Tris (pH 6.8): 0.25M Tris-Cl, dissolved in 420mL dH20. Adjust to pH 6.8 

using NaOH+HCl Bring to 500 mL using dH20 

 

3x Sample Buffer: 62.5mM Tris-Cl pH 6.8, 10%(v/v) Glycerol, 2%(w/v) SDS, 

0.1%(w/v) Bromophenol blue,  

 

Add 150µL 1M Dithiothreitol(DTT) per 1 mL of 3xSample 

Buffer before use. 

 2x Native Gel  

Sample Buffer:  125mM Tris-Cl pH6.8, 30%(v/v) Glycerol,  

0.2%(v/v) Bromophenol Blue 

 



	 68 

 Native Gel  

Running Buffer:  1x Transfer buffer without methanol. 

  

 10xPhopshate Buffered  

Saline (PBS):  1.37M Sodium Chloride (NaCl), 100mM Sodium phosphate  

     (NaH2PO4), 18mM Dipotassium phosphate (K2HPO4), 27mM   

       Potassium Chloride (KCl).  

 

PBS/Tween:   0.1%(v/v) Tween per Litre of 1xPBS. 

 

10xTris-Buffered 

Saline (TBS):  200mM Tris-HCl, 1.5M NaCl. 

 

 TBS/Tween:   0.1%(v/v) Tween per Litre of 1xTBS. 

 

Cell Lysis Buffers 
 

Note: All lysis buffers require the addition of 10µL/mL protease inhibitors; 0.7mM 

Aprotinin, 1mM phenylmethane sulfonyl fluoride (PMSF) and 1 mM sodium orthovanadate 

(Na3VO4) prior to use. 

  

Cell Lysis Buffer:  50mM Tris-HCl pH 7.4, 150mM NaCl, 30mM Sodium Floride 

(NaF), 5mM Ethylenediaminetetraacetic acid (EDTA), 40mM 

Beta-glycerophosphate, 10%(v/v) Glycerol, 1%(v/v) Triton X-

100 

 

Thermo IP Lysis Buffer:   25mM Tris-HCl pH 7.4, 150mM NaCl,  

1mM EDTA, 50mM NaF, 5%(v/v) Glycerol, 1%(v/v) nonyl 

phenoxypolyethoxylethanol (NP-40)  

 

2xPalmitoylation Lysis  

Buffer: 200mM Tris-HCl pH 7.2, 300mM NaCl, 10mM EDTA,  

2.5%(w/v) SDS. 
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Palmitoylation Wash  

Buffer:   1x Palmitoylation Lysis Buffer with 6M Urea. 

 

Bacterial Growth Media 
 

Note: Must be at pH 7.0 to facilitate bacterial growth 

 

Super Optimal Broth w/ 

Catabolite Repression  

(SOC Media):  10mM NaCl, 2.5 mM KCl, 10mM MgCl2, 20mM Glucose, 

2% (w/v) Tryptone, 0.5%(w/v) yeast extract.   

 

Lysogeny broth (LB): 170mM NaCl, 1%(w/v) Tryptone, 0.5%(w/v) yeast extract 

 

Add 15g/L of agar to LB broth to produce agar plates upon 

cooling. Ampicillin resistance requires a final concentration of 

100µg/mL of antibiotic. Kanamycin resistance requires a final 

concentration of 50µg/mL antibiotic. 

 

DNA/Agarose Gel Reagents 
 

50xTris-acetate-EDTA 

(TAE) Buffer:  2M Tris-Cl, 5.7%(v/v) Gacial Acetic Acid,  

50mM EDTA pH 8.0  

 

6xDNA Loading Dye: 30%(v/v) Glycerol, 0.025%(w/v) Bromophenol Blue, 

0.025%(w/v) Xylene Cyanol  
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Enzyme Reaction Buffers 
 

Note: All enzyme reaction buffers described in this subsection are at a concentration of 1x 

 

Benzonase:   50mM Tris-HCl, pH 8.0, 2mM MgCl2, 150mM NaCl 

 

l Phosphatase: 50mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) pH 7.5, 100mM NaCl, 2mM DTT, 0.01% Brij-35 

 

Snake Venom  

Phosphodiesterase:  50mM Tris-Cl pH 8.8, 10mM Magnesium Chloride (MgCl2) 

 

cGAMP Infusion 
 

cGAMP Infusion Buffer:  50mM HEPES pH 7.0, 100mM KCl, 3mM MgCl2, 0.1mM DTT, 

85mM Sucrose, 0.2%(w/v) Bovine Serum Albumin, 1mM 

Adenosine triphosphate (ATP), 1mM Guanosine triphosphate 

(GTP), 5 mg/ml Digitonin  

 

Real Time PCR Solutions 
 

10xDNAse I Buffer:  100mM Tris-HCl pH 7.5, 25mM MgCl2, 1mM Calcium 

Chloride (CaCl2) 
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cGAMP Extraction Reagents 
 

Reagents used to extract cGAMP for quantitative analysis were prepared as (v/v)% solutions 

using HiPerSolv H2O. The following solutions were prepared during the optimization of the 

protocol detailed further in chapter 3.2:  

 

Protocol Stage Reagent  

Cell Lysis 70% Ethanol,  

80% Methanol 

Liquid-Liquid Extraction 9% Butanol,  

90% Butanol 

Solid Phase Extraction 

25%-45% Acetyl-Nitrate (C2H3NO4) 

(Increasing gradient with 5% intervals) 

100-700mM Ammonium Acetate (NH4CH3CO2) 

(Increasing gradient with 100mM intervals) 

80% Methanol+4-12% Ammonium Hydroxide (NH4OH) 

(Increasing gradient with 4% intervals) 

Table 2.1: Reagents used in developing a method to extract and quantify cGAMP (v/v)%  

  



	 72 

2.3 Antibodies: 
 

Primary Antibodies: 

Anti- Supplier Isotype Cat. Number Used at 

Beta Actin Sigma Aldrich Mouse A2228 1:10,000 

Cas9 Sigma Aldrich Mouse SAB4200701 1:1,000 

cGAS(MB21D1) Sigma Aldrich Rabbit HPA031700 1:1,000 

FLAG Tag Sigma Aldrich Mouse F3165 1:3,000 

HA Tag Cell Signalling Technology Mouse 2367 1:1,000 

IFI16 (C-Terminus) Santa-Cruz Biotech Goat SC-6050 1:1,000 

IFI16 (N-Terminus) Santa-Cruz Biotech Mouse SC-8023 1:1,000 

IRF3 Cell Signalling Technology Rabbit 11904 1:1,000 

IRF3(Ser396) Cell Signalling Technology Rabbit 4847 1:1,000 

STING Cell Signalling Technology Rabbit 13647 1:1,000 

STING(Ser 396) Cell Signalling Technology Rabbit 85735 1:1,000 

TBK1 Santa-Cruz Biotech Mouse SC-398366 1:500 

TBK1(Ser 172) Cell Signalling Technology Rabbit 5483 1:1,000 

Table 2.2: Primary Antibodies and supplier information 

 

Secondary Antibodies: 

Anti- Supplier Isotype Cat. Number Used at 

Mouse HRP Cell Signalling Technology Mouse 7076 1:3,000 

Rabbit HRP Cell Signalling Technology Rabbit 7074 1:3,000 

Table 2.3 Secondary Antibodies and supplier information 

 

Secondary Antibodies used in Immunofluorescence: 

Anti- Supplier Isotype Cat. Number Used at 

Mouse Alexa 647 Life Technologies Goat A21236 1:1,500 

Rabbit Alexa 488 Life Technologies  Goat A11034 1:1,500 

Table 2.4: Immunofluorescence Secondary Antibodies and supplier information 
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2.4 Methods:  
 
2.4.1 Cell Culture 
 

Human Immortalised Keratinocyte (HaCaT) and Human Embryonic Kidney (HEK293T) cell 

lines were maintained in Dulbecco's Modified Eagle's medium (Life Technologies) 

containing 10% (v/v) Foetal Calf Serum (FCS) and 10 µg/ml Gentamicin. Cells were housed 

in an incubator at 37°C with 5% CO2. Adherent cells were split every 2/3 days upon reaching 

confluence using TrypLE express (Life Technologies) to remove cells from cell culture 

plastics. Prior to treatment with TrypLE express, cells were twice rinsed in Dulbecco's 

Phosphate-Buffered Saline (Life Technologies) to remove residual FCS. Cell number per mL 

was determined using a Bright-Line™ Hemacytometer (Life Technologies). Cell culture 

plastics were purchased from Greiner Bio-one Inc. 

2.4.1.1 Generation of IFI16 Knockout Cell Lines 
	

IFI16 knockout cell lines (IFI16(-/-)) were generated by Leonie Unterholzner using TALEN 

technology. Left and right TALENs were transfected into HaCaT cell lines by electroporation 

using the Neon system (Life Technologies). Electroporated cells were allowed to recover 

overnight before selection for 48 hours in complete DMEM containing 5 µg/ml puromycin. 

Selected cells were then seeded as single cell clones in 96 well plates. DNA was extracted 

from individual colonies using Quickextract DNA extraction solution (EpiBio). 

Modifications of the TALEN target site; IFI16 exon 5, were screened by PCR using high 

resolution melting analysis on a LifeCycler 96 system (Roche), using LightCycler480 High 

Resolution Melting master mix (Roche). Potential IFI16(-/-) candidates were screened for lack 

of protein expression by western blotting for IFI16 and β-actin. Immunofluorescence analysis 

was used confirm homogeneity of cell clones. 

2.4.2 Nucleic Acid Transfection Conditions 
	

HaCaT cells were seeded at a density of 1.75x105 cells/mL, 16 hours before transfection. 

HaCaT were transfected with Lipofectamine2000 (1µL/mL;Invitrogen). Polyinosinic–

polycytidylic acid (Poly(I:C)), (2’,5’) cyclic guanosine monophosphate–adenosine 

monophosphate (cGAMP) and Herring-Testis(HT) DNA were purchased from Sigma. 

Vaccina Virus (VACV) 70mer, G3 and C3-YDNAs, and their respective reverse 
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complements were synthesised by Biofins Genomics, Germany. DNA oligomer sequences 

are detailed in Table 2.6. DNA oligomers were annealed by heating complementary strands 

at 99°C for 10 mins. Annealed oligomers were allowed to cool to room temperature before 

storage at -20°C for later use. 5’-triphosphate RNA was generated using the MEGAScript T7 

in-vitro transcription kit (Thermo Fisher) with pcDNA3.1: EGFP as template. Cell lines were 

transfected according to Lipofectamine2000 supplied protocol.  

2.4.3 cGAMP Stimulation Conditions 
 

For cGAMP stimulation, cells were incubated in cGAMP infusion buffer containing 15µM 

cGAMP for 10 minutes at 37°C. cGAMP infusion buffer was then removed and replaced 

with serum-containing medium without antibiotics for the remainder of the experiment. 

 

Name 5’-3’ Strand Sequence 3’-5’ Strand Sequence 

VACV 

70mer 

CCATCAGAAAGAGGTTTAATATTTTT

GTGAGACCATCGAAGAGAGAAAGAG

ATAAAACTTTTTTACGACT 

 

AGTCGTAAAAAAGTTTTATCTCTTTC

TCTCTTCGATGGTCTCACAAAAATAT

TAAACCTCTTTCTGATGG 

G3-Y DNA 
GGGTATATATATATATATATATAGGG 

 

GGGTATATATATATATATATATAGGG 

 

C3-Y DNA 
CCCTATATATATATATATATATACCC 

 

CCCTATATATATATATATATATACCC 

 

Table 2.5: Sequences of DNA Oligomers used to stimulate cell lines 

 

2.4.4 Overexpression Transfection Conditions 
 

HEK293T cells were seeded at a density of 1.75x105 cells/mL, 16 hours before transfection 

and were transfected with GeneJuice(Merck) in a ratio of 1µg Plasmid:3µL Genejuice as 

advised by the manufacturers protocol. Cells were left post Genejuice transfection for 18-24 

hours to facilitate optimal protein expression. 
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2.4.4.1 Plasmids 
 

Cultivation of Bacterial Strains: 

 

NovaBlue competent bacteria cultures (Novagen) were transformed with 1µg of the desired 

plasmid. Transformed cultures were permitted one hour of growth in antibiotic free SOC 

media (Novagen) prior to antibiotic-selection on agar plates. Resistant bacterial colonies 

were grown in a starter culture of 3mL LB broth containing antibiotics for 8 hours to achieve 

log phase growth. 1 mL of this starter culture was then inoculated into 100mL of LB broth 

containing appropriate antibiotics, and left to grow overnight (16 hours). Bacteria was 

collected by centrifugation at 3000xg for 15 minutes. Plasmids were purified from 

transformed cultures using the Quaigen Endofree Maxi-prep kit. 

 

Plasmid Origins: 

 

hSTING-FLAG was obtained from Lei Jin (Albany Medical College). pcDNA 3.1 cGAS was 

cloned by Jessica F.Almine (Leonie Unterholzner Group postdoc). pCMV-HA was obtained 

from Clontech and used as an empty vector control. pCMV-HA:IFI16 was cloned by Leonie 

Unterholzner. The IFI16 DNA binding mutant, pCMV-HA:IFI16-mt4 was received from T. 

Sam Xiao (National Institutes of Health, Bethesda, USA).  

 

2.4.5 SDS-PAGE and Western Blotting 
	

Cell lysates were diluted in 3x sample buffer, boiled for 5 minutes and resolved on 12% SDS-

PAGE gels at 120V. Lysates were resolved alongside SeeBlue Plus2 Pre-stained protein 

marker (Life technologies) to determine protein size. Gels were transferred to a 0.2µm 

Immobilon™ polyvinylidene difluoride (PVDF) membrane using a semi-dry transfer system 

at 100mA/Gel for one hour and blocked for 45 minutes in 5%Marvel/PBS-Tween (or for 

phospho-blots 5%BSA/TBS-Tween) prior to the addition of primary antibody.  

Primary antibodies were incubated with membranes overnight at 4°C at the concentrations 

outlined in Table 2.2. Primary antibody was removed from membranes with 5 washes of 

TBS-Tween at 10 minute intervals. Secondary antibodies were incubated with membranes 

for a further 90 minutes and removed with 3 washes of TBS-Tween at 10 minute intervals. 
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For visualisation, membranes were incubated in Clarity Western enhanced 

chemiluminescence (ECL) Substrate (Bio-rad) for 5 minutes, and visualised using X-Ray 

films.   

2.4.5.1 Native-PAGE 
	

Native-PAGE gels were pre-run for 30 minutes with 1x Native gel running buffer. This was 

followed by an additional 30-minute run with Native gel running buffer containing 1% 

sodium deoxycholate in the inner chamber. Cell lysates were diluted in 2x Native gel sample 

buffer and resolved for 90 minutes in fresh Native gel running buffer (with 1% deoxycholate 

in the inner chamber) and transferred as per SDS-gels. 

2.4.6 Viral Infections 
 

Cells were infected with viruses at the desired multiplicity of infection(MOI) in 100µL/mL 

of serum free medium for one hour. Virus containing serum free medium was then replaced 

with complete medium for the remainder of the experiment. MOI was determined using the 

following formula: 

!"# = %&'()*	,-./012	)1034	-,	50.)4	)4*6	,-.	01,*730-1
8-3'&	1)/9*.	-,	7*&&4	01,*73*6  

HSV-1 was used at an MOI of 5. Sendai virus containing defective viral particles was used 

at a dilution of (1:2,000). Viruses were UV-inactivated by placing the desired concentration 

of virus in serum free medium for the infection in a Spectrolinker XL-1000 UV Stratlinker at 

10µJ for 1 minute. 

2.4.7 Cell Lysis  
	

Cells were scraped from tissue culture plastics into chilled 1xPBS and collected by 

centrifugation at 4000xg for 10 minutes. PBS supernatants were removed and discarded. 

Cells were resuspended in lysis buffer and left on ice for one hour. Cell lysates were cleared 

of cell debris by centrifuging at 8000xg for 10 minutes. Cleared lysates were transferred to 

Eppendorf tubes and stored at -20°C until required. 
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2.4.8 Immunoprecipitations 
	

Cells were lysed in the Thermo immunoprecipitation lysis buffer and precleared of debris by 

centrifuging at 6000xg for 10 minutes. Debris-cleared lysates were incubated with 20µL of 

Protein G beads for 30 minutes. Pre-cleared lysates were then incubated with protein G-

antibody coupled overnight at 4°C. Antibody coupled beads were prepared at a ratio of 30µL 

beads to 1µL antibody. Immunoprecipitates were washed in lysis buffer three times prior to 

analysis by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot. 

2.4.8.1 Benzonase Treatment 
	

For benzonase treatment, immunoprecipitates were washed twice with Thermo IP lysis buffer 

without EDTA. Immunoprecipitates were resuspended in 50µL of Benzonase reaction buffer 

containing 1.5U/µL benzonase. Samples were incubated for 1 hour at 37°C for benzonase 

treatment. Post-treatment, immunoprecipiates were twice washed in Thermo IP lysis buffer 

(now containing EDTA) and analysed by SDS-PAGE and Western blot.  

2.4.8.2 λ Phosphatase Treatment 
	

λ phosphatase treatment was performed in a similar manner to Benzonase treatment. 

Following washes in IP lysis buffer without EDTA and resuspension in 50µL of λ 

Phosphatase reaction buffer containing 0.5U/µL of  l phosphatase, samples were incubated 

for 1 hour at 30°C. Post-treatment, samples were washed twice with Thermo IP lysis buffer 

and analysed analysed by SDS-PAGE and Western blot 

2.4.9 Real-Time PCR 
	

RNA Extraction: 

RNA was extracted from cells according to the protocol described in the VWR E.Z.N.A Total 

RNA kit. Genomic DNA contamination was removed which the addition of a DNAse I 

treatment step to the protocol. DNAse I was purchased from (Thermo-Fisher). DNAse I was 

used on the columns at a final concentration of 1U/Column. For experiments requiring pre-

incubations with fatty acid inhibitors (Such as 2-bromopalmitate; Chapter 3.3), cells were 

lysed in TriGENE(Sigma) and separated into aqueous and organic phases according to the 

manufacturer’s guidelines. The aqueous phase was removed and used with the VWR E.Z.N.A 
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kit to facilitate DNAse I treatment. RNA was eluted from columns into 50µL of diethyl 

dicarbonate (DEPC) water and stored at -80°C until required. 

cDNA Synthesis and RT-PCR Conditions: 

Isolated RNA was quantified using a NanoDrop 2000c(Thermo-Fisher). 200ng of RNA was 

used for cDNA synthesis reactions. cDNA was synthesised using the iScript cDNA synthesis 

kit (Bio-Rad).   

Real Time(RT)-PCR Primers were designed using the NCBI Primer-Blast tool and ordered 

from Eurofin genomics. Primer sequences are detailed in Table 2.6. mRNAs were quantified 

using FastStart Essential DNA Green Master SYBR Green, diluted to concentration of 1x by 

the addition of cDNA and primers in a 10µL reaction.  RT-PCR data was obtained using a 

Roche Lightcycler® 96. The programmed used to obtain RT-PCR data was as follows: initial 

denaturation at 95 °C for 600 seconds, 40 cycles of 95°C for 10 seconds then 60°C for 30 

seconds, followed by a melt curve step. Results were then analysed using the comparative Ct 

method, normalising values to β-actin. Data was expressed as fold change over mock 

treatment/transfection agent alone. 

Gene Forward Primer Reverse Primer  
Beta-Actin 5-CGCGAGAGAAGATGACCCAGATC -3’  5’-GCCAGAGGCGTACAGGGATA 3′  
IFN Beta 5’-ACGCCGCATTGACCATCTAT 3′  5’-GTCTCA TTCCAGCCAGTGCT-3′  
CXCL10 5’-AGCAGAGGAACCTCCAGTCT -3’  5’-AGGTACTCCTTGAATGCCACT -3′  
IL6 5’-CAGCCCTGAGAAAGGAGACA T-3′  5’-GGTTCAGGTTGTTTTCTGCCA-3’  
ISG56 5'-CAAAGGGCAAAACGAGGCAG-3' 5'-CCCAGGCATAGTTTCCCCAG-3' 
RANTES 5'-CTGCTTTGCCTACATTGCC-3' 5'-TCGGGTGACAAAGACGACTG-3' 

Table 2.6: Primer Sequences for House Keeping Gene and Cytokines 

 

2.4.10 Confocal Microscopy 
 

Slide Preparation 

 

50,000 cells were seeded onto glass coverslips (VWR) 12-18 hours prior to stimulation. Cells 

were washed in chilled PBS and fixed in -20°C methanol overnight. Cells were then 

permeablised in 0.5% Triton-X/PBS for 12 minutes at room temperature, washed and 
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incubated in a blocking buffer of 5% FCS/0.2% Tween/PBS for 1 hour. Primary antibodies 

were added to samples in blocking buffer at a concentration of (1:600). Primary antibodies 

were left to incubate with samples overnight at 4°C. Samples were washed three times using 

a solution of 0.005% Tween/PBS prior to the addition of fluorescent secondary antibodies in 

blocking buffer at a concentration of (1:1,500). Samples were permitted to incubate with 

secondary antibodies for 1 hour at room temperature. Samples were thrice washed again with 

0.005% Tween/PBS. Coverslips were mounted in 3µL MOWIOL-488(Calbiochem) 

containing 1mg/mL DAPI and sealed with nail varnish prior to imaging.  

 

Imaging 

 

Images were taken using a LSM710 laser scanning microscope (Zeiss) with the x60 oil 

immersion objective lens. 

 

2.4.11 ELISA 
 

Human CXCL10 and CCL5 protein was measured in supernatants using the human 

CXCL10/IP-10 and CCL5 ELISA Kits (R&D biosystems) and following the protocols 

provided by the manufacturer. Proteins were quantified using log of standard curve. 

Absorbance was measured at 450nm and corrected against a background absorbance of 

570nm 

 

2.4.12 DNA Sequencing 
 

DNA sequencing was performed by the Division of Signal Transduction Therapy’s DNA 

Sequencing Service at University of Dundee. DNA sequences were compared to the reference 

sequence using the multiple sequence alignment programme MAFFT (Multiple Alignment 

using Fast Fourier Transform) to emulate Clustalw via EMBL-EBI’s website. 

 

Sequencing Knockout Cell Lines: 

 

TALEN knockout cell lines were verified by amplifying the TALEN target site of the gene 

of interest using Herculase II Fusion DNA Polymerase (Agilent Technologies #600675). 
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DNA used in these PCR reactions was extracted from candidate knockout cell lines using 

QuickExtract™ DNA Extraction Solution (Epicentre). Primers used for sequencing PCRs are 

detailed in Table 2.8.  The PCR product was cloned into a TOP10 vector using the One Shot® 

TOP10 Chemically Competent kit (Thermo-Fisher) and transformed into One Shot cells. 

Colonies were grown overnight and plasmid DNA was extracted using a QIAprep Spin 

Miniprep Kit (Qiagen). Isolated TOP10 vectors were sent for sequencing to determine the 

changes to the TALEN target site.  

 

STING mRNA Sequencing: 

 

Due to the existence of polymorphisms that impede STING’s capacity to bind to and respond 

to cyclic di-nucleotides (Diner et al., 2013), the phenotype of STING in HaCaT cell lines was 

determined by sequencing STING mRNA. A cDNA library was created using SuperScript 

III Reverse Transcriptase(Thermo-Fisher) with total RNA extracted from the Wild 

Type/parental cell line. Due to the length of the STING transcript (1200-1900bp depending 

on the isoform), it was necessary to amplify STING from the cDNA library in two segments 

to ensure complete coverage. PCR products were cloned into TOP10 vectors and 

subsequently sequenced. HaCaT cell lines possess the Arg232 variant of STING and contain 

no other mutations that produced changes in STING protein sequence. 

 

Target Forward Primer Reverse Primer  
IFI16 

ex5 5'-GGGGCCCTGTGTTATACTGAG-3' 5'-TCAGGTGTTGGTGGAAAAATGAA-3' 

STING 

mRNA 

5'-

GTTCATTTTTCACTCCTCCCTCCTA-

3' 

5'-

GGGTAATCTGAGATGTGCTTTAAAAAG-

3' 

STING 

mRNA-

681 

5'-CCTTCACTTGGATGCTTGCC-3' 

Table 2.7: Sequences of Primers used in Sequencing Reactions 
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2.4.13 cGAMP Quantification 
 

Sample preparation: 

 

A method to quantitatively measure cGAMP production in cells was developed in 

collaboration with Abdel Abrith of the Fingerprints Proteomic Service at the University of 

Dundee. Due to the number of optimisation steps required in preparing these samples this 

portion of the method will be detailed at length in results chapter 3.2. 

 

Liquid Chromatography-Mass Spectrometer Configuration (Performed by Abdel Abrith of 

Fingerprints Dundee): 

 

cGAMP levels were measured in enriched cell lysates with a TSQ Quantiva interfaced with 

Ultimate 3000 Liquid Chromatography system (ThermoScientific), equipped with a porous 

graphitic carbon column (HyperCarb 30 1 mm ID 3 mm; Part No: C-35003- 031030, Thermo-

Scientific). The buffer used for Mobile phase A was comprised of 0.3% (vol/vol) formic acid 

adjusted to pH 9 with ammonia before a 1/10 dilution. Mobile phase buffer B comprised 80% 

(vol/vol) acetonitrile. The column was maintained at a controlled temperature of 30 °C and 

was equilibrated with 13% buffer B for 15 min at a constant flow rate of 0.06 mL/min. 

Aliquots of 13µL of each sample were injected into the column and compounds were eluted 

from the column with a linear gradient of 13–80% buffer B over 20 min.  

 

The concentration of Buffer B was then increased to 100% for 5 min and the column was 

washed for a further 5 min with Buffer B. Eluents were sprayed into the TSQ Quantiva using 

Ion Max NG ion source with ion transfer tube temperature set to 350 °C and vaporizer 

temperature 125°C. The TSQ Quantiva was run in negative mode with a spray voltage of 

2,600 V, sheath gas 40 and Aux gas 10. 

 

cGAMP and spiked in cyclic di-AMP levels were measured using multiple reaction 

monitoring mode with optimized collision energies and radio frequencies previously 

determined by infusing pure compounds. Three transitions (673.054328.03, 673.054343.92 
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and 673.064522.00) were used to monitor cGAMP and one transition (657.074328.03) was 

used to detect cyclic di-AMP. 

 

2.4.14 Snake Venom Phosphodiesterase Treatment 
 

cGAMP containing samples were dried under vacuum to remove the presence of residual 

solvents. Samples were vortexed with 100µL of Snake Venom Phosphodiesterase reaction 

buffer containing 0.05U/µL of enzyme and incubated at 37°C for 1 hour. Snake Venom 

Phosphodiesterase was removed from the sample during subsequent solid phase extraction 

steps in the protocol (detailed further in results chapter 3.2). 

 

2.5 Statistical Analysis 
 

Results from quantitative analyses (i.e. RT-PCR, ELISA, cGAMP Quantification) are 

presented as the mean of triplicate samples with error bars representing standard deviation. 

Two-way ANOVA was used to determine statistical significance. Statistics were analysed 

using GraphPad Prism 6 for Macintosh.  

 

P-Values; *=P<0.05, **P<0.01, ***P<0.001. 

 

2.6 Data Visualisation 
 

Figures were assembled using Adobe Illustrator for Macintosh and GraphPad Prism. 

Microscopy figures were analysed and assembled using OME Remote Objects(OMERO). 

Chemical Sturctures were drawn with Chemdraw Prime 16 (CambridgeSoft). 
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Chapter Three Part One 
 
IFI16 is required for the induction 
of innate immune responses to 
DNA in human immortalised 
keratinocytes 
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3.1.1  Human Immortalised Keratinocytes (HaCaT) cells express IFI16 and the 
cGAS-STING pathway and produce anti-viral cytokines in response to 
DNA transfection. 

 

We wished to examine the immune response to DNA in keratinocytes, as these cells 

are a natural host for numerous DNA viruses (e.g. HSV-1, hCMV, HPV). We utilised 

spontaneously immortalised human keratinocyte (HaCaT) cells as a model system for 

this investigation (Boukamp et al., 1988). While HaCaT cell lines are known to express 

PRRs such as TLRs (Mondini et al., 2007) and NLRs (Jang et al., 2015), DNA sensing 

PRRs had not been studied in this cell type when we began these experiments. Hence, 

we first needed to determine whether HaCaT cell lines expressed IFI16, cGAS, and the 

STING pathway, in addition to whether HaCaT cell lines possessed the capability to 

respond to transfected DNA. 

 

A time course was performed to establish if HaCaT cell lines expressed DNA sensors 

and could respond to DNA. HaCaT cells were transfected with HT-DNA or transfection 

agent alone for the times indicated in Fig 3.1.1. Cells were lysed and examined for the 

presence of IFI16, cGAS and STING pathway components by western blot (Fig 

3.1.1A). HaCaT cells were found to express IFI16 and cGAS at consistent levels 

throughout the time course. STING is understood to induce IFN-β transcription by 

providing a platform for  TBK1 activation by auto-phosphorylation (Tanaka and Chen, 

2012), and enabling TBK1 induced phosphorylation of the transcription factor IRF3 

(Ishikawa, 2008; Liu et al., 2015a). Following the activation of IRF3, STING is turned 

over by the influence of autophagy proteins (Saitoh et al., 2009).  Upon DNA 

transfection, we detect the phosphorylation of IRF3 (Fig 3.1.1A). Additionally, the 

appearance of a second STING band is observed with DNA transfection. We also 

witness a decrease in the presence of both STING bands following DNA treatment 

suggesting that STING is turned over at later time points (Fig 3.1.1A).  

 

STING is known to be phosphorylated upon activation (Sun et al., 2009; Zhong et al., 

2008), specifically on Ser 366 to recruit IRF3 (Liu et al., 2015a). To examine whether 

this second STING band is representative of phosphorylated STING as reported by 

(Konno et al., 2013), we immunoprecipitated STING from cell lysates following DNA 
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stimulation, and treated samples with λ phosphatase (Fig 3.1.1B). Fig 3.1.1B 

demonstrates in λ phosphatase treated samples that STING no longer displays the band 

shift that occurs with DNA transfection, indicating that the upper band corresponds to 

a phosphorylated form of STING. 

 

Real-Time PCR was used to measure the production of cytokine mRNA to assess 

whether HaCaT cell lines could induce production of anti-viral cytokines in response 

to DNA transfection. We elected to measure IFN-β mRNA as it is the first IFN 

produced in response to viral infection through IRF3 transcription (Lin et al., 1998; 

Schafer et al., 1998). IFN-β acts on cells in an autocrine and paracrine fashion to induce 

a myriad of ISGs with anti-viral activity (Reviewed by Stetson and Medzhitov, 2006b).  

 

We also chose to measure the induction of several other genes transcribed by IRF3. 

Namely, ISG56 and chemokines CCL5 and CXCL10. ISG56 is an inducible negative 

regulator of the STING pathway and is required to limit activation of the STING 

pathway and ensure an eventual return to homeostasis (Li et al., 2009). CCL5 and 

CXCL10 are imperative for the recruitment of dendritic cells, and specialist anti-viral 

immune cells such as Natural Killer, CD8+ cytotoxic T cells and T Helper-1 cells to 

the site of infection (Loetscher et al., 1996; Reviewed by Melchjorsen et al., 2003; 

Schall et al., 1990). Induction of IFN transcription is supported by efficient NFκB 

activation, with the RelA subunit of NFκB forming a transcriptional complex with 

phosphorylated IRF3 known as the IFN-β enhanceosome on the IFN-β promoter 

(Schafer et al., 1998). To assess NFκB activation, we examined the induction of the 

NFκB dependent gene IL-6. IL-6 promotes efficient immune responses by promoting 

fever, inflammation and activation of the acute phase protein response (Reviewed by 

Netea et al., 2017). As highlighted in the time course depicted in Fig 3.1.2, HaCaT cells 

induce production of IFN-β (Fig 3.1.2A), ISG56 (Fig 3.1.2B), CCL5 (Fig 3.1.2C), 

CXCL10 (Fig 3.1.2D) and IL-6 mRNAs (Fig 3.1.2E) most abundantly 4 hours after 

transfection with HT-DNA, with production decreasing incrementally at 6 and 8 hours 

post stimulation, and transfection agent alone failing to induce any significant cytokine 

production at all.  
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Fig 3.1.1 Human Immortalised Keratinocyte (HaCaT) cell lines express IFI16, cGAS 
  and STING and activate the STING pathway in response to transfected DNA 

(A) HaCaT cells were stimulated with 1μg/mL HT-DNA or 1μL/mL Lipofectamine(Mock) for the 
indicated times. Cells were lysed and examined for the presence of IFI16, cGAS, STING, β-Ac-
tin, and total and phosphorylated IRF3(Ser396) by Western blot. (B) STING was immunoprecip-
tated from wild typ HaCaT cells which were left untreated (UT) or stimulated with 1μg/mL 
HT-DNA for 6 hours. Immunopreciptates were treated with 100 units of λ phosphatase (or the 
H20 control) and incubated for 1 hour at 37°C before analysis by SDS-PAGE and western blot. 
Data from A and B are representative of three independent experiments.
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Fig 3.1.2  HaCaT cell lines express IFN-β and anti-viral cytokines in response to DNA 
  transfection 

(A-E) HaCaT cells were stimulated with 1μg/mL HT-DNA or 1μL/mL Lipofectamine alone (Mock) at the times 
indicated. IFN-β (A), ISG56 (B), CCL5 (C), CXCL10 (D) and Interleukin-6 (E) levels were measured by 
Real-Time PCR. Experiments were carried out with triplicate samples, mean values and standard deviation are 
shown.  Data are representative of three independent experiments. Statistical significance was determined using 
two-way ANOVA. p-value:*=P<0.05,**=P<0.01, ***=P<0.001.
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To confirm the Real-Time PCR results were reflective of protein production, 

supernatants were collected from HaCaT cell lines 18 hours post transfection with DNA 

or transfection agent alone to measure CXCL10 and CCL5 secretion by ELISA. Fig 

3.1.3 demonstrates that CXCL10 and CCL5 are only induced in response to DNA 

transfection but not in response to transfection agent alone. Collectively these 

observations demonstrate that HaCaT cell lines possess IFI16, a functional STING 

pathway, and can produce anti-viral cytokines in response to transfected DNA. 
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Fig 3.1.3 HaCaT cell lines secrete the chemokines CCL5 and CXCL10 in response to DNA 

(A-B) HaCaTs were stimulated with 1μg/mL HT-DNA or mock transfected for 18 hours. Super-
natents were collected and examined for the presence of CCL5 (A) and CXCL10 (B) by ELISA. 
Experiments were carried out with triplicate samples, mean values and standard deviation are 
shown. Data are representative of three independent experiments. Statistical significance was 
determined using one way ANOVA. p-value:*=P<0.05,**=P<0.01, ***=P<0.001 
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3.1.2  Human Immortalised Keratinocytes (HaCaT) cell lines without IFI16 still 
possess the other components of the DNA sensing pathway 

 

To conclusively assess the contribution of IFI16 to intracellular IFN induction,	we used 

HaCaT cells lacking IFI16, which had been generated using Transcription activator-

like effector nucleases (TALENs). Fig 3.1.4A depicts two independently generated 

IFI16 knockout HaCaT cell lines which still possess cGAS and the STING-TBK1-IRF3 

axis but lack IFI16. By examining the genomic sequence of the TALEN target site (Fig 

3.1.4B) in the hypotriploid HaCaT cell line, we observe that all three alleles of the IFI16 

gene possess premature stop codons or insertions resulting in frame shift mutations, 

rendering the cells incapable of producing IFI16 protein. 

 

3.1.3  IFI16 is required for HaCaT cells to produce IFN-β, cytokine and 
chemokine mRNA in response to DNA 

	
A time course was performed to assess whether the IFI16 knockout (IFI16(-/-)) cell lines 

could respond to DNA. As illustrated in Fig 3.1.5, Wild Type cells behave as previously 

observed in Fig 3.1.2 by producing an abundant amount of IFN-β, ISG56, CCL5, 

CXCL10 and IL-6 mRNAs 4 hours post-stimulation with incrementally less mRNA 

produced at 6 and 8 hour time points (Fig 3.1.5A-E). This is in stark contrast to the 

IFI16(-/-) cells which produce significantly less mRNA for every cytokine examined at 

4, 6 and 8 hours post stimulation compared to wild type cells. As IFI16(-/-) cells still 

display a residual immune response to DNA, it is unlikely that IFI16 is essential for 

DNA responses and therefore must play a role in enhancing the DNA-induced response. 

An investigation by (Thompson et al., 2014) purposed IFI16 functioned as a 

transcriptional regulator of IFN-β and ISGs during infection with DNA and RNA 

viruses rather than as a DNA sensor as proposed by (Unterholzner et al., 2010). To 

investigate if IFI16(-/-) cells were responsive to RNA stimulation, Wild Type and IFI16(-

/-) cells were stimulated with the dsRNA mimic Poly(I:C). Poly(I:C) was included as a 

control for TLR3 and RLR pathways, which also induce IFN-β transcription via IRF3 

(Alexopoulou et al., 2001; Marshall-Clarke et al., 2007; Yoneyama et al., 2005; 

Yoneyama et al., 2004) .   
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Fig 3.1.4 HaCaT cell lines without IFI16 still possess the cGAS-STING pathway

(A) Immunoblot analysis of IFI16 and cGAS-STING pathway components between Wild Type HaCaT 
and two independently generated IFI16 -/- cell lines. Western Blots are representative of three inde-
pendent experiments (B) Mulitple sequence allignment of IFI16 genomic DNA sequences spanning 
the TALEN target site obtained from both IFI16 -/- cell clones aligned to the IFI16 genomic DNA refer-
ence sequence. Left and right TALEN target sequences in exon 5 of the IFI16 gene are highlighted. 
Insertions to the reference sequence are displayed in red. 
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To ensure that the results of Fig 3.1.5 were not somehow unique to HT-DNA 

stimulation, Wild type and IFI16(-/-) cells were also stimulated with VACV 70mer; a 

dsDNA oligonucleotide of a reoccurring motif from the Vaccina virus genome 

(Unterholzner et al., 2010). 6 hours following stimulation, IFN-β, ISG and IL-6 mRNA 

was measured using RT-PCR (Fig 3.1.6A-E).  

Both IFI16(-/-) clones were observed to produce significantly less IFN-β mRNA in 

response to stimulation with either form of DNA, while responses to dsRNA are 

unaffected (Fig 3.1.6A). Similar trends were also observed with ISG56, CCL5, 

CXCL10 and IL-6 mRNAs in response to HT-DNA and VACV 70mer stimulation (Fig 

3.1.6B-E).  We also witness enhanced production of ISG56 mRNA in response to RNA 

stimulation in the absence of IFI16 (Fig 3.1.6B).  

As a further control, ability of the IFI16(-/-) cell lines to respond to single stranded RNA 

was also examined. Single stranded viral RNAs are detected by the RIG-I pathway and 

TLRs7 and 8 (Heil et al., 2004; Pichlmair et al., 2006). We utilised in-vitro transcribed 

GFP mRNA (5’3p-RNA) as a viral RNA mimetic as it lacks the 5’ guanine-methyl cap 

from host mRNA processing, allowing the 5’triphosphates exposed to be detected by 

RIG-I (Hornung V et al., 2006). Cytokine mRNA levels in Wild Type and IFI16(-/-) 

HaCaT cell lines were measured 6 hours following stimulation with VACV 70mer and 

5’3p-RNA. Fig 3.1.7A-B demonstrates that recognition of uncapped single stranded 

RNAs are largely unaffected by the absence of IFI16, as IFN-β (A) and CXCL10 (B) 

mRNA levels in response to GFP 5’3p-RNA are not significantly altered. We observe 

a modest decrease in IL-6 mRNA production in response ssRNA stimulation to in one 

IFI16(-/-) clone (Fig 3.1.7C). Responses to VACV 70mer are similar to those depicted 

in Fig 3.1.7.    

Taken together, the data presented in Figures 3.1.5-7 demonstrate that IFI16(-/-) cell 

lines produce significantly less IFN-β and anti-viral cytokine mRNAs in response to 

DNA transfection. Conversely, RNA responses are broadly unaffected by the absence 

of IFI16 or even enhanced (Fig 3.1.6B).  
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3.1.4  IFI16 is required for HaCaT cells to produce CCL5 protein in response to  
transfected DNA and infection with DNA Viruses 

	
We wished to confirm the RT-PCR results by measuring chemokine secretion using 

ELISA. We examined CCL5 secretion in response to a range of concentrations of HT-

DNA and VACV 70mer. CCL5 production is diminished in the IFI16(-/-) HaCaT cells 

in response to every concentration of DNA examined (Fig 3.1.8A).  We also examined 

the CCL5 response to different forms of DNA such as circular bacterial plasmid DNA 

(Fig 3.1.8A), and the Y-DNAs (Fig 3.1.8B) described by (Herzner AM et al., 2015). 

Y-DNAs are DNA oligomers representative of the short ssDNA reverse-transcripts 

produced early in infection by retroviruses. These are ssDNAs of fewer than 40 base 

pairs in length that activate dsDNA sensing pathways by self-pairing and forming stem-

loop structures (Jakobsen et al., 2013). Herzner et al (2015) observe that the presence 

of unpaired Guanosines at the ends of the Y-DNAs promote the immunogenicity of the 

oligomer. CCL5 production in response to circular bacterial plasmid was dependent on 

IFI16 (Fig 3.1.8A).  In Fig 3.1.8B, we observe that C3 Y-DNA induced a minimal 

CCL5 response in both cell lines as expected while G3 Y-DNA induced CCL5 

responses in an IFI16 dependent manner.  Collectively, these ELISA results 

demonstrate that every immunogenic form of DNA examined is detected in an IFI16 

dependent manner. As already seen in the RT-PCR experiments (Fig 3.1.6 and Fig 

3.1.7), chemokine responses to both ssRNA and dsRNAs are unaffected (Fig 3.1.8C).  

We next investigated CCL5 production in response to infection with the dsDNA virus 

HSV-1. HSV-1 possesses numerous mechanisms to evade the innate immune response 

(Reviewed by Christensen and Paludan, 2017) including degradation of IFI16 by the 

HSV-1 protein ICP0 (Orzalli et al., 2012). UV inactivation of HSV-1 impairs its ability 

to evade the immune response, but does not impede its entry to the cell (Coohill et al., 

1980). Fig 3.1.9A demonstrates that UV-inactivated HSV-1 induces a greater CCL5 

response in Wild Type HaCaT cells compared to the IFI16(-/-) cells. UV-treatment of 

the medium alone fails to induce CCL5 production, while HSV-1 does not induce any 

CCL5 response without UV-inactivation, likely due to the expression of immune 

evasion factors. 
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Fig 3.1.5 HaCaT Cell lines without IFI16 
produce less IFN, ISGs and pro-inflammatory 
cytokines in response to DNA transfection

(A-E) Wild type and IFI16(-/-) HaCaT cells were stimu-
lated with 1μg/mL HT-DNA or 1μL/mL Lipofectamine 
alone (Mock) at the times indicated. IFN-β (A), ISG56 
(B), CCL5 (C), CXCL10 (D) and Interleukin-6 (E) levels 
were measured by Real-Time PCR. Experiments were 
carried out with triplicate samples, mean values and 
standard deviation are shown. Data are representative 
of three independent experiments Statistical signifi-
cance was determined using two-way ANOVA. p-val-
ue:*=P<0.05,**=P<0.01, ***=P<0.001 
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Fig 3.1.6 HaCaT Cell lines without IFI16 
fail to produce IFN-β and anti-viral 
cytokines in response to DNA but main-
tain responses to double stranded RNA

(A-E) Wild type and two IFI16(-/-) HaCaT cell 
lines were stimulated with 1μg/mL HT-DNA or 
VACV 70mer, 100ng/mL Poly(I:C) or 1μL/mL 
Lipofectamine alone (Mock) for 6 hours. IFN-β 
(A), ISG56 (B), CCL5 (C), CXCL10 (D) and 
Interleukin-6 (E) levels were measured by 
Real-Time PCR. Experiments were carried out 
with triplicate samples, mean values and stand-
ard deviation are shown. Data shown are repre-
sentative of three independent experiments. 
Statistical significance was determined using 
two-way ANOVA. p-value:*=P<0.05,**=P<0.01, 
***=P<0.001 N.S=No significance
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Fig 3.1.7 HaCaT Cell lines do not require IFI16 to produce IFN-β in response to single 
stranded RNA

(A-C) Wild type and two IFI16(-/-) HaCaT cell lines were stimulated with 1μg/mL  VACV 70mer, 
50ng/mL pppRNA(GFP) or 1μL/mL Lipofectamine alone (Mock) for 6 hours. IFN-β (A), CXCL10 
(B) and Interleukin-6 (C) levels were measured by Real-Time PCR.  Experiments were carried 
out with triplicate samples, mean values and standard deviation are shown. Data are represent-
ative of three indepdent experiments. Statistical significance was determined using two-way 
ANOVA. p-value:*=P<0.05,**=P<0.01, ***=P<0.001 N.S=No Significance
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Fig 3.1.8 IFI16 is required to produce CCL5 in response to immunogenic DNA but is dispensible 
for responses to RNA

(A-C) Wild Type and IFI16(-/-) HaCaT Cell lines were stimulated with increasing concentrations of 
HT-DNA and VACV 70mer, 1μg/mL pcDNA(3.1) (A), 1μg/mL of different forms of Y-DNA (B), 50ng/mL of 
different forms of RNA (C) or transfection agent alone.18 hours post stimulation cell supernatents were 
collected and examined for CCL5 production by ELISA. Experiments were carried out with triplicate 
samples, mean values and standard deviation are shown. Data are representative of three independent 
experiments. Statistical significance was determined using two-way ANOVA. p-val-
ue:*=P<0.05,**=P<0.01, ***=P<0.001 N.S=No Significance 
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Fig 3.1.9  IFI16 is required for CCL5 production in response to HSV-1 infection in HaCaT 
  cell lines

Wild type and IFI16(-/-) HaCaT cell lines were infected with HSV-1, UV-inactivated HSV-1(MOI=5) 
(A) or Sendai virus (1:2000) (B) for 18 hours. Supernatents were examined for CCL5 production by 
ELISA. Experiments were carried out with triplicate samples, mean values and standard deviation 
are shown. Data are representative at least two independent experiments. Statistical significance 
was determined using two-way ANOVA. p-value:**=P<0.01. N.S=No significance 
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Consistent with previous observations examining ssRNA responses by RT-PCR, no 

difference in CCL5 production was detected between wild type and IFI16(-/-) cells in 

response to infection with Sendai Virus (Fig 3.1.9B) which is detected via the RIG-I 

pathway (Rehwinkel et al., 2010). Taken together, these ELISA results verify the RT-

PCR results of Fig 3.1.6 and Fig 3.1.7 and demonstrate that IFI16 is required for DNA 

and DNA virus induced cytokine production, whilst being dispensable for responses to 

RNA and RNA viruses. 

3.1.5  Cells without IFI16 do not efficiently activate the STING pathway 
	
We wished to examine the behaviour of STING in the IFI16(-/-) cell line to determine 

whether IFI16 acted upstream of STING as proposed by (Unterholzner et al., 2010). 

Upon activation STING has been observed to translocate from the endoplasmic 

reticulum into punctuate structures (Ishikawa et al., 2009). These puncta have been 

described as the trans-golgi ER-Golgi intermediate compartment (ERGIC) by (Dobbs 

N et al., 2015). Here STING recruits TBK1, which in turn activates IRF3 and initiates 

IFN-β transcription. Trafficking is understood to be an important component of STING 

activation, with inhibition of the process by bacterial proteins abrogating IFN-β 

induction (Dobbs N et al., 2015).  

STING trafficking was examined by confocal microscopy to observe if this process was 

altered in the absence of IFI16. In Wild Type HaCaT cell lines following DNA 

stimulation, STING traffics from discrete locations around the ER into punctate 

structures in approximately 40% of cells examined (Fig 3.1.10A-B). Conversely, it was 

observed that DNA induced STING trafficking is severely reduced in IFI16(-/-) cell line 

with only 10% of cells displaying STING trafficking.  

STING is known to be phosphorylated during its activation (Ishikawa, 2008; Zhong et 

al., 2008). We have previously detected STING phosphorylation with DNA treatment 

in HaCaT cell lines (Fig 3.1.1A). STING phosphorylation was examined between Wild 

Type and IFI16(-/-) cell lines in response to HT-DNA, VACV 70mer and Poly(I:C) 

stimulation by observing the appearance of a higher STING band by SDS-PAGE. 

STING phosphorylation is decreased in the IFI16(-/-) cell line in response to both forms 

of DNA (Fig 3.1.11A). RNA stimulation was found to not induce STING 
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phosphorylation in either cell line (Fig 3.1.11A).  

STING is specifically phosphorylated on Ser366 by TBK1 (Liu et al., 2015a; Tanaka 

and Chen, 2012).  Phosphorylation on STING Ser366 is has been demonstrated to be 

important for facilitating for recruitment of IRF3 to STING through creating negatively 

charged residues that IRF3 binds to prior its activation by TBK1 (Liu et al., 2015a). In 

Fig 3.1.11B STING Ser366 phosphorylation and downstream activation of the STING 

pathway was examined between wild type and IFI16(-/-) cell lines. In Wild Type cell 

lines, STING Ser366 phosphorylation is present at 2 and 4 hours after DNA stimulation. 

Phosphorylation of TBK1 and IRF3 can also be detected at these times. In direct 

contrast, reduced total and Ser366 STING phosphorylation is observed in the IFI16(-/-) 

cell line along with less TBK1 and IRF3 phosphorylation (Fig 3.1.11B). Residual 

STING and IRF3 phosphorylation is observed at 4 hours in the IFI16(-/-) (Fig 3.1.11B). 

This consistent with the reduced transcriptional profile observed by RT-PCR in the 

absence of IFI16 and confirms that the STING pathway is not sufficiently activated in 

the IFI16(-/-) cells. 

Following phosphorylation, IRF3 dimerises and translocates to the nucleus to initiate 

transcription. We wished to investigate whether IRF3 dimers could still form in IFI16(-

/-) cell lines. In Fig 3.1.11C, wild type and IFI16(-/-) cell lines were stimulated with HT-

DNA or Poly(I:C) to induce IRF3 phosphorylation and dimerisation. These lysates 

were then run on Native-PAGE gels to assess IRF3 dimerisation. Native-PAGE gels 

are run without detergents or reducing agents; preserving the quaternary structure of a 

protein allowing dimers or higher order protein complexes to be observed. IRF3 dimers 

are observed in the Wild Type cell line in response to both HT-DNA and poly(I:C) 

stimulation (Fig 3.1.11D). As expected from RT-PCR (Fig 3.1.6) and ELISA data (Fig 

3.1.8), the IFI16(-/-) cell line only produced IRF3 dimers with RNA stimulation, and 

does not produce any phosphorylated IRF3 or IRF3 dimers with HT-DNA stimulation 

(Fig 3.1.11D). Together, these observations confirm that IRF3 is still functioning 

normally in the absence of IFI16 after RNA recognition and that IFI16 must act 

upstream of, or on the level of, STING in the DNA sensing pathway. 
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(A) Confocal microscopy analysis of Wild Type and IFI16(-/-) 
HaCaT cell lines. Cell lines were transfected with 5μg/mL HT-DNA 
for 1 hour. Cells were stained for IFI16(Red/Alexa 647) and 
STING(Green/Alexa 488). DNA was visualised with DAPI (Blue). 200 
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Native-PAGE gels to examine IRF3 dimerisation. Data shown are representative of three inde-
pendent experiments.

36

36

50

98

C D

p-TBK1

TBK1

IRF3

p-IRF3

β-Actin

Wild Type IFI16(-/-)(2)

IRF3
(IRF3)2

A
M

oc
k

HT-
DNA

Po
ly(

I:C
)

M
oc

k
HT-

DNA
Po

ly(
I:C

)

Wild Type IFI16(-/-)(2)

M
oc

k
HT-

DNA
Po

ly(
I:C

)
M

oc
k

HT-
DNA

Po
ly(

I:C
)

36

50

50

98

98

64

B Wild Type IFI16(-/-)(1)

0 1 2 4 0 1 2 4

β-Actin

p-STING S366

t-STING 

cGAS

IFI16

50

64

98

36

50

Time(h)

p-TBK1

t-TBK1 

p-IRF3

t-IRF3 
50

50

98

98

36



	 102 

3.1.6 Discussion 
	
HaCaT cells express all three isoforms of IFI16, cGAS and STING at constant levels 

throughout an 8 hour time course (Fig 3.1.1A). This is distinct from other cells which 

have been used to study the immune function of IFI16, such as human foreskin 

fibroblasts, vascular endothelial cells and monocytes. These cells express low basal 

levels of IFI16 unless stimulated with IFN or DNA (Iqbal et al., 2016; Orzalli et al., 

2015; Unterholzner et al., 2010). This suggests that expression of these receptors may 

be regulated differently in keratinocytes. In contrast to these other cells, keratinocytes 

constitute the outer most layer of skin and are constantly exposed to pathogens and 

environmental insults. Keratinocytes could require more consistent PRR expression to 

provide defence in skin against the near ubiquitous presence of pathogens in the 

environment.  

 

Skin acts as a mechanical barrier to pathogen invasion and while skin possesses a 

wealth of nonspecific defence mechanisms (e.g. secretion of anti-microbial peptides), 

it is not impervious to infection. As a result, skin cells must possess the capacity to 

communicate infection to localised populations of immune cells and the wider immune 

system in order to maintain homeostasis (Reviewed by Pasparakis et al., 2014).We 

show that HaCaT cells produce IFN-β, ISG56, chemokines; CCL5 and CXCL10, and 

pro-inflammatory cytokine IL-6 when stimulated with DNA, showing that DNA 

sensors are active within these cells and that keratinocytes can communicate the 

presence of infection to cells of the immune system. Other cytokines, chemokines and 

anti-microbial peptides are also likely expressed in response to DNA stimulation and 

viral infection within these cells but have yet to be tested. 

 

The ability of IFI16 to recognise pathogen DNA has been observed in a wide variety 

of cell types (Table 1.3). However the discovery that cGAS knockout cell lines and 

mice are unable to respond to DNA stimulation or HSV-1 and HIV-1 infections has 

obscured the role of IFI16 in innate immunity (Gao et al., 2013; Li et al., 2013). As the 

studies in (Table 1.3) rely on IFI16 or p204 depletion by siRNA it is difficult to 

ascertain whether IFI16 has essential or redundant functions in initiating IFN-b 

production. Furthermore (Gray et al., 2016) propose that IFI16 is dispensable for IFN 



	 103 

production in response to hCMV infection in primary fibroblasts. However, it should 

be noted that the experiment the authors rely on for this conclusion examined IFN-β 

production using a CRISPR/Cas9 pool of partially depleted cells without selection, thus 

it is comparable to other depletion approaches such as siRNA. Therefore, the use of 

complete IFI16 knockout cell lines has afforded us conclusive insights into the role of 

IFI16 in innate immunity in keratinocytes (Fig 3.1.4). 

 

We found that HaCaT cells lacking IFI16 are compromised in their ability to produce 

IFN-β, anti-viral cytokine or chemokine mRNAs in response to DNA, suggesting that 

IFI16 is required for complete activation of DNA sensing pathways in keratinocytes 

(Fig 3.1.5-7). We also show that HaCaT cells without IFI16 are compromised in their 

ability to produce CCL5 in response to a variety of different forms and concentrations 

of DNA or when faced with HSV1 infection (Fig 3.1.8-9). cGAS has been observed to 

be essential for DNA sensing in every cell type examined thus far (Gao et al., 2013a; 

Li et al., 2013b). Other experiments performed within our group have confirmed that 

cGAS is also essential for DNA sensing in keratinocytes (Almine et al., 2017). 

Therefore, these results indicate that neither IFI16 or cGAS is redundant for the 

immune response to DNA in keratinocytes and that there is co-operation between both 

receptors for functional DNA sensing in this cell type. 

 

Since its discovery as a DNA sensor, IFI16 has been proposed to initiate IFN 

production via STING, albeit through an unknown mechanism (Unterholzner et al., 

2010). In contrast, cGAS produces cGAMP which binds to directly to the cyclic 

dinucleotide cleft of STING, triggering its activation (Gao et al., 2013c; Sun et al., 

2013a; Wu et al., 2013b).  STING activation is measured by STING trafficking from 

the ER into activated punctuate structures at ERGIC. This results in the recruitment of 

TBK1 to STING, which undergoes auto-phosphorylation before phosphorylating 

STING and the transcription factor IRF3.  

 

The STING pathway is shown to be dysfunctional in IFI16(-/-) HaCaT cells in (Fig 

3.1.10 and 3.1.11). In Fig 3.1.10 we demonstrate that STING trafficking in response 

to DNA stimulation, widely regarded as an essential hallmark of STING activation, is 
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severely reduced in the IFI16(-/-) HaCaT cells. While in Fig 3.1.11 we confirm the 

downstream STING signalling pathway is not activated with DNA stimulation in the 

IFI16 knockout cell line. Cells lacking IFI16 show no activation of TBK1 or IRF3 in 

response to DNA while these responses persist with RNA stimulation (Fig 3.1.11). 

These results clearly show that IFI16 acts on the level of STING or is involved 

upstream in the STING signalling pathway. As is unlikely that IFI16 is able to produce 

cyclic di-nucleotides itself, one mechanism by which IFI16 could potentially function 

upstream of STING is by promoting cGAS activity thereby enabling cGAMP 

production.  
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3.2.1 IFI16 and cGAS associate via DNA when initiating an immune response 
 

The previous phase of this investigation established that the STING pathway was not 

activated in IFI16(-/-) HaCaT cells. Yet these experiments were unable to elucidate 

whether IFI16 influences this phenotype by acting on STING itself or upstream of 

STING by influencing the activity of cGAS. To investigate the relationship between 

IFI16 and cGAS, we first wished to examine if IFI16 and cGAS formed a complex 

when initiating an immune response. Endogenous IFI16 was immunoprecipitated from 

Wild Type HaCaT cells to determine if IFI16 and cGAS come together during DNA 

sensing (Fig 3.2.1). IFI16(-/-) cells were included as a measure of the specificity of the 

IFI16 antibody (Fig 3.2.1). IFI16 and cGAS were found to increasingly associate at 2 

and 4 hours post DNA stimulation (Fig 3.2.1). 

 

Both IFI16 and cGAS have the capacity to bind DNA in a sequence independent 

manner, albeit through different mechanisms. IFI16 binds to the sugar phosphate 

backbone of DNA via electrostatic charge from its HIN200 domains (Jin et al., 2012). 

Similarly, cGAS also binds the DNA sugar phosphate backbone by utilising a zinc 

thumb motif (Civril et al., 2013). We utilised HEK 293T cells which do not natively 

express either IFI16 (Unterholzner et al., 2010) or cGAS (Sun et al., 2013b), to express 

both DNA sensors and determine whether the association observed between IFI16 and 

cGAS is a direct protein-protein interaction or through IFI16 and cGAS binding to the 

same piece of DNA. HEK293T cells were transfected with FLAG-cGAS and either 

HA-IFI16 or HA-IFI16(mt4); a mutant of IFI16 containing several point mutations in 

the HIN200 domains which impair its ability to bind DNA (described further by Jin et 

al., 2012). Fig 3.2.2 highlights that the association between IFI16 and cGAS is via a 

DNA binding platform, as cGAS does not associate with the IFI16(mt4) DNA binding 

mutant. The IFI16(mt4) maintains the IFI16 quaternary structure (Jin et al., 2012). This 

experiment also confirms this by showing that the interaction between wild type IFI16 

and cGAS is no longer observed in samples when DNA is removed with Benzonase 

treatment (Fig 3.2.2).  
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Fig 3.2.1 IFI16 and cGAS associate following DNA stimulation

IFI16 was immunoprecipitated from Wild Type and IFI16(-/-) HaCaT cell lines at 0, 1, 2 and 4h 
post HT DNA stimulation (5 μg/ml) using anti-IFI16(C-terminus). Immunoprecipitates were ana-
lysed for cGAS interactions by immunoblot analysis. Total cGAS, IFI16 and β-actin protein in 
lysates were determined by Western blot. Data shown are representative of two independent 
experiments.
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Fig 3.2.2 IFI16 and cGAS associate via DNA

HEK293T cells were transfected with 500ng/mL of cGAS-FLAG and HA-IFI16, either wild-type (WT) 
or DNA-binding mutant (M4), as indicated. 24 h post transfection, cells were lysed and immunopre-
cipitated using FLAG antibody. Immunoprecipitates were washed to remove EDTA and treated with  
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SDS–PAGE and western blotting. (A) and (B) are representative of two independent experiments.
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3.2.2 Overview of method to extract cGAMP for quantification using LC-
MS/MS  

 

The observation that IFI16 and cGAS associate on the same piece of DNA prompts 

speculation that IFI16 could influence cGAS function. To definitively determine 

whether IFI16 effects cGAS activity, it was necessary to devise a method to directly 

measure cGAMP production.  

 

Through collaboration with the Fingerprints Proteomics Service at the University of 

Dundee, we developed a method for quantifying cGAMP produced in cell lysates using 

a combined liquid chromatography and mass spectrometry (LC-MS/MS) approach 

(outlined in Fig 3.2.3). Experiments performed to optimise and refine individual 

components of this method will be described in 3.2.4.  To simplify detection, samples 

were enriched for cGAMP and similar small molecules. Cells were stimulated with 

DNA to induce cGAMP production and harvested into cell pellets. Cell pellets were 

lysed in ice cold solutions of 80% methanol to precipitate proteins and nucleic acids, 

leaving only small molecules and lipids in solution. 0.45 pmoles of cyclic-di-AMP were 

added to each sample as internal spike-in to control for losses in sample preparation 

and injection. Samples were dried using vacuum centrifugation. Lipids were removed 

through butanol liquid-liquid extraction as described by (Turnock and Ferguson, 2007). 

Specifically, samples were dissolved in 9% Butanol:H2O and extracted three times with 

90% Butanol:H2O. Lipids present in the sample move to the upper phase which contains 

a higher percentage of butanol, in which lipids more readily dissolve. The upper phase 

is removed during subsequent rounds of extraction leaving only small molecules in the 

hydrophilic lower phase. The lower phase was dried using vacuum centrifugation to 

remove butanol from the samples. Samples were resuspended in HiPerSolv H2O. 

Samples were further enriched for cyclic di-nucleotides using Hypersep Aminopropyl 

Solid Phase Extraction columns (Thermo) and later, eluted from columns with a 

solution of 80% Methanol and 4% Ammonium Hydroxide. Eluates were dried once 

more using vacuum centrifugation and resuspended in HiPerSolv H2O for analysis by 

LC-MS/MS. 
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3.2.3 Detection of Cyclic Di-Nucleotides by LC-MS/MS 
 

The Fingerprints Proteomics facility utilised a TSQ Quantiva triple quadrupole mass 

spectrometer interfaced with a	Dionex Ultimate 3000 Liquid Chromatography system 

(Thermo) equipped with a porous graphitic carbon column (HyperCarb 30 × 1 mm ID 

3µm; Part No: C-35003-031030, Thermo-Scientific) for sample analysis.  Samples 

were injected onto the liquid chromatography column where their small molecule 

content was separated based on size and polarity. Each small molecule fraction was 

then eluted into the mass spectrometer for identification.  

 

Multiple reaction monitoring mass spectrometry was used to identify compounds. 

Multiple reaction monitoring is highly specific as the first and last mass analysers of 

the quadrupole mass spectrometer are used as filters to select for a fragment ion of a 

compound and monitor the abundance of its corresponding daughter ions (Reviewed 

by Shi et al., 2016). The relative abundance of the daughter ions is measured as function 

of elution time. The fragmentation step produces specific fragments with mass to 

charge ratios that are characteristic of each compound of interest as each compound 

will fragment in a unique way. While highly selective, one disadvantage of multiple 

reaction monitoring is that significant optimisation is required to determine the optimal 

elution conditions and mass spectrometry parameters for each compound of interest.  

 

To determine whether cyclic di-nucleotides were compatible with this system and to 

determine their optimum conditions for elution and detection, 50pg of synthetic 

cGAMP, cyclic di-AMP and cyclic di-GMP were injected into the LC-MS/MS. As 

highlighted in Fig 3.2.4A, all three cyclic di-nucleotides were eluted from the LC 

column with distinct retention times. Based on these peaks, cyclic di-AMP was selected 

for use an internal standard during sample preparation as cyclic di-GMP was observed 

to elute over a broader peak. The m/z transitions used for detection of cGAMP and 

cyclic di-AMP are depicted in Fig 3.2.4B.  
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Fig 3.2.3 Schematic of cGAMP extraction protocol

Wild Type and IFI16(-/-) cells are stimulated with (1ug/mL) HT-DNA during a time course to initiate cGAMP production. 
Samples are scraped into cell pellets and subseqeuntly lysed in a cold solution methanol to preciptate proteins and 
nucleic acids. The internal standard cyclic di-AMP is added to samples. Samples are then dried under a vacuum and 
subjected to three rounds of buthanol:water extraction to remove lipids. Dried samples are resuspended in HiPerSolv 
H2O and enriched for small nucleotide molcules using aminopropyl solid phase extraction columns. Columns are 
washed to reduce background from other small molecules and metabolites. cGAMP was eluted from columns in a 
solution of 80% methanol+4%NH3OH, which was flushed through the column three times. Column eluents are dried 
and analysed for cyclic di-AMP and cGAMP by liquid chromatography and mass-spectrometry.
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Fig 3.2.4 Detection of cGAMP and ci-di-AMP standards by Liquid Chromatography-Mass  
   Spectrometry

(A) 50pg of synthetic cGAMP, cyclic di-AMP and cyclic di-GMP standards analysed by LC-MS. RT;Retention 
Time, AA: Area of curve (B) cGAMP and cyclic di-AMP multiple reaction monitoring transitions used for 
endogenous cGAMP quantification. m/z, mass/charge ratio of fragment ions
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3.2.4 Optimisation and refinement steps for cGAMP extraction method: 
 
a) Optimisation of solid phase extraction step: 

 

Solid phase extraction columns were utilised to enrich samples for cGAMP and remove 

other small molecules such as metabolites and nucleotides. Sample purification using 

solid phase extraction was deemed necessary as the presence of other small molecules 

in the sample appeared to be impeding the ability of cGAMP to bind the LC column; 

resulting in inefficient cGAMP binding and early elution (Fig 3.2.5) when compared to 

synthetic cGAMP standards on a background of HiPerSolv H2O (Fig 3.2.4A). 

 

A range of solid phase extraction columns were tested for their ability to bind and retain 

cGAMP (Fig 3.2.6). The ideal solid phase extraction column would reversibly bind 

cGAMP and retain no cGAMP on the column after elution. Envi-Carb columns (Sigma 

Aldrich) utilise graphitized porous carbon matrixes to bind planar molecules in aqueous 

solutions. WAX columns (OaSIS) rely on a neutral primary amine modified divinyl 

benzene polymer to bind molecules based on anion exchange. Aminopropyl columns 

(Thermo) use a modified silica polymer bonded to an aminopropyl phase. We suspect 

WAX and Aminopropyl columns bind the negatively charged phosphates of cGAMP 

based on their chemistry. 

 

Each solid phase extraction column was tested for its ability to bind cGAMP by loading 

20µg cGAMP in a 1mL solution onto each column. cGAMP was loaded onto the Envi-

Carb column in a 1M solution of sodium bicarbonate and in H2O for WAX and 

Aminopropyl columns.  Each column was then washed with a concentration gradient 

of different elution buffers based on their individual chemistries. As cGAMP possess 

pyrimidine and imidazole rings in its structure, each column fraction could be examined 

for the presence of cGAMP by measuring cGAMP’s absorbance at 260nm on a 

nanodrop instrument. While both Envi-Carb and WAX columns were capable of 

binding cGAMP, both columns retained a significant portion of cGAMP after elution 

with a concentration gradient of acetyl nitrile (Envi-carb) or ammonium acetate 

(WAX), rendering them unsuitable for use with biological samples. As illustrated in 
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Fig3.2.6, the Aminopropyl column retained no cGAMP following elution with 80% 

methanol and a concentration gradient of ammonium hydroxide, and thus was suitable 

for use with biological samples. Endogenous cGAMP produced in samples was found 

to elute with the same retention time as the synthetic cGAMP standard with in LC-MS 

following sample enrichment with Aminopropyl columns (Fig3.2.7). 

 

b) Optimisation of cell lysis conditions: 

 

When this protocol was originally designed samples were initially lysed in 70% 

Ethanol. However as highlighted in Fig3.2.7A this resulted a high background of other 

small molecules during LC-MS/MS analysis. While developing this method a similar 

cGAMP quantification protocol was published by (Rongvaux et al., 2014). Lysis of 

cells with 80% methanol and washing aminopropyl columns with a solution of 80% 

Methanol and 2% acetic acid prior to elution, as advised by this protocol, reduced the 

background signal without diminishing the yield of cGAMP (Fig3.2.7B). 

 

c) Optimisation of endogenous cGAMP production and detection   

    conditions: 

 

A cGAMP standard curve was constructed to enable the quantification of endogenous 

cGAMP production and to determine the detection limit of the mass spectrometer. 

Increasing amounts of synthetic cGAMP were spiked into unstimulated cell lysates. 

Samples were then processed as outlined in (3.2.2). As illustrated in Fig 3.2.8A, were 

we able to successfully detect increasing levels of cGAMP starting from a detection 

limit of 3 picograms, which corresponds to 4.5 femtomoles of cGAMP. 

 

To confirm that cGAMP is produced by HaCaT cell lines, wild type HaCaT cells were 

stimulated with a range of HT-DNA concentrations for 8 hours. cGAMP levels in 

samples were quantified using the standard curve in Fig 3.2.8A. As highlighted in Fig 

3.2.8B, cGAMP is produced upon DNA stimulation with increasing concentrations of 

DNA stimulation generally increasing the amount of cGAMP produced. Untreated and 

mock transfected samples display low basal levels of cGAMP. Treatment of DNA 
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treated samples with snake venom phosphodiesterase (Fig 3.2.8C) removed this 

cGAMP peak as would be expected based on observations by (Ablasser et al., 2013b). 

While we were confident we were measuring cGAMP production due the m/z 

transitions obtained from the cGAMP standard by multiple reaction monitoring, these 

experiments provide biological evidence that the compound were observe being 

produced is cGAMP. 
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LC-MS traces of Wild Type HaCaT lysates following stimulation with (1ug/mL) HT-DNA for 4 hours. 
Samples were lysed in 70% ethanol. Data shown are representative of two independent experiments.  
RT; rentention time. AA; Area under the curve
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3.2.5 IFI16 does not influence production of cGAMP in HaCaT cells 
	

Production of cGAMP was examined between wild Type and IFI16(-/-) cell lines. 

HaCaT cell lines were stimulated in triplicate with 1µg/mL of HT-DNA or VACV 

70mer for 8 hours, cells were then lysed and cGAMP production was quantified using 

a standard curve (Fig 3.2.9). The standard curve was produced by spiking in increasing 

amounts of synthetic cGAMP into unstimulated Wild type cell lysates and subjecting 

the samples to solid phase extraction (Fig 3.2.9A). As demonstrated in Fig 3.2.9B-C 

Wild Type and IFI16(-/-) cell lines were found to produce comparable levels of cGAMP 

in response to both forms of DNA stimulation. These results demonstrate that IFI16 has 

no role influencing cGAS activity in HaCaT cell lines.  
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3.2.6 Discussion: 
 

IFI16 and cGAS both bind to DNA in a sequence-independent manner through the DNA 

sugar phosphate backbone (Civril et al., 2013; Jin et al., 2012). In-vitro analyses of both 

DNA sensors have revealed more about their respective DNA-binding affinities and 

higher order structures upon binding DNA. (Morrone et al., 2014) demonstrate IFI16 

co-operatively assembles into filaments along dsDNA oligomers. This observation has 

provoked speculation that IFI16 may recognise pathogen DNA over host DNA based on 

DNA length. IFI16 was found to possess a nanomolar affinity for DNA binding. cGAS 

is believed to bind to the ends of DNA strands as dimers (Li et al., 2013a; Zhang et al., 

2014b). Recently, cGAS has also been observed to bind bends and U-turns in DNA 

created by bacterial and mitochondrion nucleoid proteins HU and mitochondrial 

transcription factor A, and HMGB1 (Andreeva et al., 2017). However recent studies 

have shown that the N-terminus of cGAS de-oligomerises cGAS DNA dimers into 1:1 

complexes which been recently found to enhance cGAS activity (Lee A et al., 2017; Tao 

et al., 2017). cGAS possesses comparatively weaker DNA binding affinity than IFI16, 

binding DNA in the micromolar range (Li et al., 2013a). Human cGAS has been shown 

to be activated by dsDNA oligonucleotides of at least 40 base pairs in length (Civril et 

al., 2013; Gao et al., 2013b; Kranzusch et al., 2013). The exception are the short ssDNA 

stem-loops structures from retroviral transcripts. These are shorter than 40 base pairs in 

length yet remain potent activators of cGAS (Herzner AM et al., 2015). Y-DNAs (i.e. 

synthetic oligomers of retrovirus ssDNA transcripts) containing unpaired guanosine 

between 12-20 base pairs in length have also been found to activate cGAS. IFI16 has 

also been observed to detect HIV DNA stem loop structures (Jakobsen et al., 2013).  

 

When these observations are considered together, IFI16 and cGAS appear to have 

distinct but not necessarily competing roles in DNA binding. We observe an association 

between IFI16 and cGAS upon DNA stimulation (Fig 3.2.1). Using HEK 293T cells, 

we determine this association to be dependent on DNA acting as a binding platform due 

to reduced associations between cGAS and IFI16 when the ability of IFI16 to bind DNA 

is compromised or if DNA is removed by nuclease treatment (Fig 3.2.2).   
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To conclusively assess if IFI16 influenced the activity of cGAS, we developed and 

optimised an LC-MS/MS based approach to quantify cGAMP production with 

femtomolar sensitivity (Fig 3.2.3). Synthetic cGAMP was used to determine the elution 

conditions and optimal phase transitions for cGAMP for multiple reaction monitoring 

mass spectrometry (Fig 3.2.4). Samples were also enriched for cGAMP by optimising 

solid phase extraction and cell lysis conditions (Fig 3.2.5-7).  We also confirmed that 

we were monitoring cGAMP production by confirming that the compound is produced 

only upon DNA stimulation and by monitoring its corresponding breakdown with snake 

venom phosphodiesterase as observed by (Ablasser et al., 2013b) (Fig 3.2.8).   

 

Although IFI16 and cGAS were found to assemble on the same DNA platform, we 

observed no change in cGAMP levels between wild type and IFI16(-/-) cell lines post-

stimulation with two forms of DNA (Fig 3.2.9). This suggests in keratinocytes that IFI16 

does not influence cGAS activity and acts in a complementary manner to cGAS, 

activating STING during DNA sensing as initially proposed by (Unterholzner et al., 

2010). 
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3.3.1 IFI16(-/-) HaCaT cells display impaired responses to cGAMP stimulation 
 

Previous experiments in this investigation have established that the STING pathway is 

not activated in IFI16(-/-) HaCaT cells (Fig 3.1.11).  By establishing a method to 

measure cGAMP levels we have also learnt that this cannot be explained by IFI16 

influencing cGAS activity, as wild type and IFI16(-/-) HaCaT cells produce equivalent 

amounts of cGAMP (Fig 3.2.9). These results confirm that IFI16 acts in parallel to 

cGAS and upstream of STING as originally proposed by (Unterholzner et al., 2010), 

and suggest that IFI16 enables activation of STING after cGAMP is produced.  

 

To investigate whether responses to cGAMP were dependent on IFI16, wild type and 

IFI16(-/-) cells were directly stimulated with cGAMP; bypassing cGAS function and 

cGAMP production. Cytokine mRNAs induced by cGAMP stimulation were measured 

by RT-PCR 6 hours post-stimulation (Fig 3.3.1). Fig 3.3.1 demonstrates that the 

response to cGAMP is impaired in the absence of IFI16. IFN-β, ISG56, Interleukin-6, 

CXCL10 and CCL5 mRNA production is reduced in response to cGAMP and HT-DNA 

stimulation in IFI16(-/-) HaCaT cells (Fig 3.3.1 A-E). cGAMP stimulation by 

lipofection induces a comparatively poor response to DNA stimulation in both cell 

lines. To verify that these results were not an artefact of our choice of delivery 

mechanism, we also infused cGAMP using digitonin permeabilisation when examining 

CCL5 production by ELISA (Fig 3.3.1F) as described by (Jonsson et al., 2017). Fig 

3.3.1F demonstrates that cGAMP induced CCL5 protein secretion was also reduced in 

the absence of IFI16, confirming the RT-PCR results. These results indicate that IFI16 

enables STING to respond to cGAMP stimulation. 

 

3.3.2 STING and IFI16 associate during DNA stimulation 
 

STING and IFI16 interactions were investigated to try to understand how IFI16 could 

influence the ability of STING to respond to cGAMP. STING was immunoprecipitated 

from wild type HaCaT cells and examined for interactions with IFI16 (Fig 3.3.2). In 

Fig 3.3.2 we find that there is a weak constitutive association between STING and 

IFI16, and that IFI16 increasingly associates with STING following DNA stimulation. 
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We suspect that this interaction is dynamic in keratinocytes as no IFI16 and STING co-

localisation was observed by immunofluorescence (Fig 3.1.10). 
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3.3.3 Discussion 
 

It is widely acknowledged that STING is required for IFN induction in response to 

cytoplasmic DNA, yet how STING was activated during responses to DNA was 

initially elusive (Ishikawa, 2008; Ishikawa et al., 2009; Sun et al., 2009; Zhong et al., 

2008). Although (Abe et al., 2013) report that STING recognises DNA directly, there 

is a wider consensus that STING functions as an adapter molecule to induce IFN with 

other proteins upstream of STING detecting DNA such as IFI16 and cGAS (Reviewed 

by Unterholzner, 2013). STING was then found to directly bind cyclic di-nucleotides; 

cyclic di-AMP and cyclic di-GMP from bacteria and endogenously produced cGAMP 

(Burdette et al., 2011; Wu et al., 2013b). Upon binding the cyclic di-nucleotide binding 

cleft of STING; cyclic di-nucleotides are understood to induce a conformational change 

in STING enabling its activation. (Diner et al., 2013; Gao et al., 2013c; Zhang et al., 

2013).  

 

STING signalling is impaired in IFI16(-/-) HaCaT cell lines (Fig 3.1.11). However, this 

is not due to IFI16 influencing cGAS activity as wild type and IFI16(-/-) cells produce 

similar levels of cGAMP post stimulation with DNA (Fig 3.2.9). We also observed 

impaired responses to direct cGAMP stimulation in IFI16(-/-) cells (Fig 3.3.1). These 

observations lead us to suspect that IFI16 must act upon STING to enable its activation 

post cGAMP production.  

 

STING activation is associated with a range of post-translational modifications such 

ubiquitination with K11, K27, K48 and K63 ubiquitin chains, SUMOlyation and 

phosphorylation on several residues (Hu et al., 2016; Konno et al., 2013; Liu et al., 

2015a; Ni et al., 2017; Qin et al., 2014; Sun et al., 2009; Tsuchida et al., 2010; Wang 

et al., 2014; Zhang, 2012; Zhong et al., 2008; Zhong et al., 2009). STING is also subject 

to the influence of a growing number of regulators including NLRC3 (Zhang et al., 

2014a), iRhom2 (Luo et al., 2016) and NLRX (Guo et al., 2016). We detect a 

constitutive association between IFI16 and STING which increases with DNA 

stimulation (Fig 3.3.2), supporting the idea that IFI16 provides an activating signal to 

STING to facilitate cGAMP responses. 
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A dynamic IFI16 and STING interaction supports the idea that IFI16 could somehow 

influence STING signalling in response to cGAMP.	IFI16 could affect STING function 

directly or indirectly by allowing STING post-translational modification. We have 

already observed that IFI16(-/-) cell lines display reduced STING trafficking and 

phosphorylation following DNA stimulation within this investigation (Fig 3.1.10-11). 

Additional experiments within our group have identified that cGAS(-/-) HaCaT cell lines 

display reduced STING phosphorylation upon DNA stimulation (Almine et al., 2017). 

cGAMP binding is also necessary for STING trafficking (Ablasser et al., 2013b). The 

association between IFI16 and STING provides further evidence that IFI16 and cGAS 

provide separate but complementary signals to STING to enable full STING activation. 
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3.4.1  Palmitoylation regulates protein trafficking and ligand binding 
 

Recently it has been demonstrated that STING palmitoylation is essential for immune 

responses to DNA (Mukai et al., 2016). Palmitoylation enables protein trafficking to 

cholesterol-rich lipid rafts (Reviewed by Linder and Deschenes, 2006). Palmitoylation 

can also influence the steric orientation of a protein in a membrane with consequences 

over ligand binding capabilities (Reviewed by Goddard and Watts, 2012).We elected 

to investigate if IFI16 influenced STING palmitoylation due to the reduced STING 

trafficking (Fig 3.1.10) and impaired response to cGAMP stimulation we observe in  

IFI16(-/-) HaCaT cells (Fig 3.3.1). 

 

3.4.2  Overview of acyl-RAC method of studying palmitoylation 
 

A modified form of S-acylation resin assisted capture (acyl-RAC) was employed to 

investigate STING palmitoylation (Forrester et al., 2011) (Fig 3.4.1). Briefly, samples 

were lysed in 2x palmitoylation lysis buffer and mixed with N-ethylmaleimide to 

irreversibly block free cysteines with an imide functional group. Proteins were then 

extracted from solution using chloroform-methanol precipitation and re-dissolved in 1x 

palmitoylation lysis buffer containing 8M urea. Samples were then split in two and 

mixed with either H2O or hydroxylamine. Hydroxylamine removes palmitate from 

proteins, exposing cysteines for binding with thiopropyl sepharose 6b(TPS) beads. H2O 

treated samples preserve their palmitoylated cysteines and therefore cannot be pulled 

down by TPS beads. Thus, protein palmitoylation is assessed by removing palmitate 

from proteins to enable TPS bead pulldowns, allowing for subsequent analysis by 

western blot. 

 

3.4.3  Optimisation of conditions for detecting STING palmitoylation 
 

We first investigated STING palmitoylation one hour post DNA stimulation, as STING 

was previously observed to have trafficked at this time point (Fig 3.1.10) and 

palmitoylation is known to facilitate protein movement into cholesterol rich lipid rafts 

for signalling (Reviewed by Linder and Deschenes, 2006). As illustrated in Fig 3.4.2A, 

STING is found to be constitutively palmitoylated and STING palmitoylation does not 
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Fig 3.4.1 Schematic of Palmitoylation Pulldown Technique 

Cell lines are stimulated with (5ug/mL) HT-DNA during a time course to promote palmitoylation. Samples are scraped 

into cell pellets and subseqeuntly lysed in 2xPalmitoylation lysis buffer. Lysates are mixed with 25mM N-ethylmaleim-

ide to block free cysteine residues. Samples are subjected to chloroform-methanol precipitation to enrich for protein 

content. Precipiates are dissolved in a solution of 1xPalmitoylation lysis buffer containing 8M urea.  Purified samples 

are split into three aliquots; loading controls, hyroxylamine treated and H2O treated (control). Hydroxylamine treat-

ment removes Palmitate from cysteine residues, enabling pulldown by TPS beads to determine palmitolyation. H2O 

treated controls retain their palmitate and are utilised to control for non-specific binding by TPS beads.
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Fig 3.4.2 STING is Palmitoylated

(A) HaCaT cell lines were stimulated with HT DNA (5μg/ml) for 1 hour. (B) HaCaT cell lines were stimu-
lated with HT DNA (5μg/ml) at 0,1 and 2 hours. Cells were harvested and lysed.Samples were split and 
treated with Hydroxylamine or H2O(control). STING, IFI16 and β-actin protein levels in lysates and 
TPS pulldowns was determined by Western blot. (A) and (B) are representative of two independent 
experiments.
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increase with DNA stimulation. Examining Palmitoylation over a longer time course in 

Fig 3.4.2B, revealed that STING palmitoylation is decreased 2 hours post-stimulation; 

consistent with a reduction in total-STING levels due to phosphorylation and turnover 

as previously seen in Fig 3.1.1A. 

 

We elected to serum starve HaCaT cells one hour prior to stimulation to see whether 

inducible STING palmitoylation could be observed by acyl-RAC in HaCaT cells as 

achieved by (Mukai et al., 2016) using [H3]-palmitate. As highlighted in Fig 3.4.3, 

serum starvation allowed palmitoylation to be observed as an inducible post-

translational modification on STING. Fig 3.4.3 shows that basal STING palmitoylation 

is present and greatly increases 30 minutes post DNA stimulation. This time frame is 

consistent with STING trafficking being enabled, allowing STING to move into 

punctuate ERGIC structures by 60 minutes for subsequent signalling as observed in Fig 

3.1.10. 

 

When studying palmitoylation, HaCaT cells were stimulated with 5µg/mL of HT-DNA 

as this concentration allowed STING trafficking to be clearly observed by confocal 

microscopy (Fig 3.1.10). As transfection agents can induce a modest level of STING 

activation (Holm et al., 2012), we wished to confirm whether STING palmitoylation in 

HaCaT cells was dependent on DNA stimulation as purposed by (Mukai et al., 2016). 

We examined STING palmitoylation post-stimulation with transfection agent alone, 

and 1µg/mL and 5µg/mL concentrations of HT-DNA (Fig 3.4.4). In Fig 3.4.4 we 

observe an increase in STING palmitoylation with 1µg/mL HT-DNA stimulation which 

increases further with 5µg/mL HT-DNA. We also observe that transfection agent alone 

induces a slight increase in STING palmitoylation versus untreated samples but not to 

the same extent as DNA stimulation.  

 

3.4.4  STING palmitoylation is required for immune responses to DNA in 
HaCaT cells 

 

As STING palmitoylation has only recently been described, we wished to verify if it 

was essential to for innate immune responses to DNA in HaCaT cells. Palmitoylation  
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Fig 3.4.3 STING Palmitoylation is inducible with serum starvation

HaCaT cell lines were serum starved for 1 hour and then subjected to stimulation with HT DNA (5μ
g/ml) at 0,15,30,60,120,240 mins. Samples were split and treated with Hydroxylamine or H2O(control). 
STING, IFIDa16 and β-actin protein levels in lysates and TPS pulldowns was determined by Western 
blot. (A) and (B) are representative of two independent experiments.
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Fig 3.4.4 STING Palmitoylation correalates with increased concentrations of DNA stimulation

HaCaT cell lines were serum starved for 1 hour and then subjected to stimulation with HT DNA (1 or 5
μg/ml) or transfection agent alone for 30 mins. Samples were split and treated with Hydroxylamine or 
H2O(control). STING, IFI16 and β-actin protein levels in lysates and TPS pulldowns was determined 
by Western blot. Data are representative of two independent experiments.
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was inhibited using 2-Bromopalmitate (2-BP); an irreversible inhibitor of palmitoyl 

transferases (Jennings et al., 2009). (Mukai et al., 2016) found in murine fibroblasts 

that 2-BP inhibited intracellular DNA and RNA sensing pathways, while TLR3 

signalling was unaffected by palmitoylation. Therefore, we included ectopic poly(I:C) 

stimulation as an additional control when examining nucleic acid sensing in this cell 

type. Wild type HaCaT cells were pre-incubated in serum free media containing 10µM 

2-BP or (0.01%) DMSO for 1 hour prior to stimulation. Induction of cytokine mRNA 

was measured 4 hours post-stimulation by RT-PCR. In Fig 3.4.5 we observe that 2-BP 

treatment significantly reduces IFN-β, CXCL10 and Interleukin-6 mRNA production 

in response to intracellular DNA (3.4.5A-C). RNA stimulation was also inhibited, 

suggesting that an aspect of the RLR-MAVS pathway could also be regulated by 

palmitoylation. In contrast, TLR3 signalling by ectopic poly(I:C) stimulation is 

unaffected by 2-BP treatment (3.4.5A-C). 

 

We next examined whether 2-BP specifically inhibited the STING activation. As in Fig 

3.4.6, wild type cells were pre-incubated in serum free media containing 10µM 2-BP 

or (0.01%) DMSO for 1 hour and stimulated with HT-DNA for the times indicated in 

Fig 3.4.6. Cells were lysed and STING Ser366 and IRF3 phosphorylation were 

examined by western blot. Fig 3.4.6 demonstrates that 2-BP treatment reduces STING 

Ser366 and IRF3 phosphorylation at 4 hours post DNA stimulation versus samples 

treated with DMSO vehicle alone. Additionally, we see a delay in total STING 

phosphorylation with 2-BP treatment as the upper phospho-STING band only appears 

at 4h hours post DNA stimulation, while it appears at 2 and 4 hours in DMSO treated 

samples (Fig 3.4.6). Thus, we can conclude that inhibiting palmitoylation limits 

activation of the STING pathway. 

 

Palmitoylation has been reported to facilitate protein trafficking to cholesterol rich lipid 

rafts (Reviewed by Linder and Deschenes, 2006). We wished to examine if inhibiting 

STING palmitoylation prevented STING trafficking in HaCaT cells. Wild type cells 

were treated with either 10µM 2-BP or (0.01%) DMSO for 1 hour and stimulated with 

5µg/mL HT-DNA. In Fig 3.4.7 we witness STING trafficking in 40% of cells treated 

with DMSO. Conversely, in 2-BP treated cells we observe no change in STING 
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trafficking from basal levels of 5%, demonstrating that palmitoylation is required for 

STING trafficking in HaCaT cells.   
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Fig 3.4.5 2-Bromopalmitate suppresses cytosolic nucleic acid sensing

(A-C) Wild Type HaCaT cell lines were starved for one hour in serum free medium containing 10μM 
2-Bromopalmitate(2-BP) or (0.01%) DMSO and stimulated with 5μg/mL HT-DNA, 100ng/mL 
Poly(I:C) or transfection agent alone. 5μg/mL of Poly(I:C) was added directly to the cell culture media 
to induce ectopic Poly(I:C) stimulation. Cell lines were stimulated for 4 hours before sample lysis.   
IFN-β (A), CXCL10 (B) and Interleukin-6 (C) mRNA was meaured by RT-PCR. Experiments were 
carried out with triplicate samples, mean values and standard deviation are shown. Data are repre-
sentative of three independent experiments. Statistical significance was determined using two-way 
ANOVA. p-value:*=P<0.05,**=P<0.01, ***=P<0.001 N.S=No significance 
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Fig 3.4.6 2-Bromopalmitate inhibits STING Phosphorylation

Wild Type HaCaT cell lines were starved for 1 hour in serum free media containing 10μM  2-Bro-
mopalmitate (2-BP) or (0.01%) DMSO stimulated with (1 μg/ml) of HT-DNA at 0, 1, 2 and 4 h. Cell 
lysates were examined for activation of STING and IRF3  (p-STING S366,p-IRF 3 S396) by West-
ern blot. Data are representative of two independent experiments.
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Fig 3.4.7 DNA induced STING activation is decreased 
following 2-Bromoplamitate treatment

(A) Confocal microscopy analysis of Wild Type HaCaT cell 
lines following treatment with DMSO(0.01%) or 10μM 2-Bro-
mopalmitate (2-BP). Cell lines were transfected with 5μg/mL 
HT-DNA for 1 hour. Cells were stained for STING(Green/Alexa 488), 
while DNA was visualised with DAPI (Blue). 200 cells were counted 
and scored for STING clusting. These scores are presented as 
percentage of STING clustering in (B). Data are representative of 
two independent experiments.
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3.4.5  STING Palmitoylation is dependent on IFI16 
 

To examine STING palmitoylation in IFI16(-/-) cells, wild type and IFI16(-/-) HaCaT 

cells were serum starved for 1 hour and stimulated with 5µg/mL HT-DNA for 30 

minutes before being lysed and subjected to TPS bead pulldown to examine 

palmitoylation. As highlighted in Fig 3.4.8, STING palmitoylation remains at basal 

levels in the IFI16(-/-) irrespective of DNA stimulation, while STING palmitoylation 

increases with DNA stimulation in the wild type cell line. This directly implicates IFI16 

in enabling the activation of STING during DNA sensing. 
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Fig 3.4.8 STING Palmitoylation is decreased in the absence of IFI16

Wild Type, IFI16(-/-) and cGAS(-/-) cell lines were serum starved for 1 hour and then subjected to stim-
ulation with HT DNA (5μg/ml) for 30 mins. Samples were split and treated with Hydroxylamine or H2O(-
control). STING, IFI16 and β-actin protein levels in lysates and TPS pulldowns was determined by 
Western blot. Data are representative of two independent experiments.
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3.4.6 Discussion 
 

We chose to examine STING palmitoylation in the context of IFI16, as palmitoylation 

can regulate protein trafficking and ligand binding, and both processes appeared to be 

compromised for STING in the IFI16(-/-) HaCaT (Fig 3.1.10, Fig 3.3.1) (Reviewed by 

Goddard and Watts, 2012; Linder and Deschenes, 2006). Using an acyl-RAC approach 

(Fig 3.4.1), we could detect STING palmitoylation in HaCaT cells (Fig 3.4.2). With 

further optimisation, we could observe STING palmitoylation as an DNA-inducible 

post-translational modification (Fig 3.4.3-4).  

 

As STING palmitoylation had only recently been described by (Mukai et al., 2016), we 

wished to verify the importance of palmitoylation in HaCaT cells using the 

palmitoylation inhibitor 2-BP. We found that 2-BP inhibited intracellular nucleic acid 

sensing pathways (Fig 3.4.5) and specifically prevented activation of the STING 

pathway (Fig 3.4.6). Unlike (Mukai et al., 2016), we observed an ablation of STING 

trafficking with 2-BP treatment (Fig 3.4.7) resulting in a phenotype similar to that in 

IFI16(-/-) cells. It is worth noting that our investigation examines endogenous STING 

trafficking, whereas (Mukai et al., 2016) utilise a reconstituted GFP-tagged murine 

STING in emCOS-1 cells. It is possible that a reconstituted system lessens the influence 

of 2-BP on STING trafficking by using non-physiological levels of STING. 

 

STING palmitoylation did not increase in IFI16(-/-) cells with DNA stimulation (Fig 

3.4.8). This result depicts a possible IFI16 mediated link to STING activation within 

30 minutes of DNA stimulation that is necessary for efficient STING activation. This 

poses the question whether palmitoylation is a unique signal provided by IFI16 to 

STING. In the future, it would be interesting to examine whether cGAMP stimulation 

induces STING palmitoylation to confirm if palmitoylation is mediated uniquely by 

IFI16 or cGAS. This could be investigated by examining STING palmitoylation 

following stimulation with DNA or cGAMP in Wild Type, IFI16(-/-) and cGAS(-/-) cells.  

  



	 146 

 
 
 
Chapter Four  
 
Discussion 
  
IFI16 and cGAS co-operate to 
detect exogenous DNA in human 
keratinocytes 
  



	 147 

4.1 IFI16 and cGAS are both required for DNA sensing in keratinocytes  
 

The presence of DNA in the cytosol results in the activation of the STING-TBK1-IRF3 

axis leading to the induction of IFN-b transcription and the initiation of an anti-viral 

immune response (Reviewed by Wu and Chen, 2014). In recent years, many DNA 

sensors have been proposed to recognise pathogen DNA and initiate an immune 

response through STING (Reviewed by Unterholzner, 2013). IFI16 has been implicated 

in the immune response to a wide array of pathogens in a variety of different cell types 

using siRNA depletion strategies (Table 1.3). However, the discovery that cells and 

mice lacking cGAS are unable to respond to DNA has prompted debate about the 

validity of the other proposed DNA sensors (Gao et al., 2013a; Li et al., 2013b). 

Additionally, the contribution of the entire ALR locus to IFN signalling has been called 

into question due to an investigation by (Gray et al., 2016). In this study, the authors 

demonstrate that mice lacking all 13 ALR genes display normal IFN responses to 

immune-stimulatory DNA stimulation and infections with lentiviruses and mCMV. 

This investigation also claims that IFI16 is dispensable for innate immune responses to 

DNA in human cells using a CRISPR/Cas9 pool of partially depleted primary 

fibroblasts in human cytomegalovirus (hCMV) infection (Gray et al., 2016). Thus, 

IFI16’s candidacy as a DNA sensor has been met with scepticism (Vance, 2016). 

 

We utilised two independently generated complete IFI16(-/-) human immortalised 

keratinocyte clones to conclusively evaluate the role of IFI16 during DNA sensing. 

Using these cells, I observed that IFI16 is essential for efficient activation of the STING 

pathway following DNA stimulation and HSV-1 infection. Conversely, I also 

demonstrate that IFI16 is not required for responses to RNA stimulation or SeV 

infection. These observations were supported by additional siRNA experiments in our 

lab using primary human keratinocytes where we witnessed decreased IFN-b mRNA 

production upon DNA transfection and during HSV-1 infection following IFI16 

depletion (Almine et al., 2017). We confirmed that cGAS was also essential for DNA 

sensing in keratinocytes as cGAS(-/-) HaCaT cells were also unresponsive to DNA 

stimulation (Almine et al., 2017). We also observed that expression of increasing 

amounts of IFI16 with cGAS and STING increased activation of an IFN-b luciferase 

reporter in HEK293T cells. Similar results were observed by (Jonsson et al., 2017) in 
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THP1 monocytes in response to HT-DNA stimulation and during HIV-1, HSV-1 and 

hCMV infections. It is important to note in these studies that although the IFN-b 

response in IFI16(-/-) cell lines is severely reduced, it is not entirely absent as in cGAS(-

/-) (Almine et al., 2017; Jonsson et al., 2017). This suggests that IFI16 is not essential 

for DNA responses but important for amplifying the residual cGAS response. 

Additionally, (Hansen et al., 2014) report equivalent decreases in IFN-b production 

following siRNA depletion of IFI16 and cGAS, in THP1 monocytes during Listeria 

monocytogenes infection. Collectively these observations suggest that there is co-

operation between IFI16 and cGAS during exogenous DNA sensing. 

 

Keratinocytes and THP1 monocytes lacking IFI16 express normal levels of the rest of 

the cGAS-STING pathway suggesting that IFI16 and cGAS do not regulate the 

expression of one another in these cells (Fig 3.1.4) (Almine et al., 2017; Jonsson et al., 

2017). This is distinct from what has been observed by (Storek et al., 2015) and (Orzalli 

et al., 2015) who demonstrate that CRISPR/Cas9 removal cGAS in RAW267.4 cells or 

depletion of cGAS by siRNA in human foreskin fibroblasts, results in equivalent losses 

of p204 and IFI16. This suggests that IFI16 regulation may vary between cell lines. 

Normal expression levels of cGAS in the IFI16(-/-) cells and vice versa, affords us 

conclusive insights into the contribution of both receptors to DNA sensing in 

keratinocytes. 

 

4.2 IFI16 does not influence cGAS activity in keratinocytes  
 

IFI16 and cGAS both achieve sequence independent recognition of DNA through 

binding the DNA sugar-phosphate backbone; IFI16 utilises its HIN200 domain to bind 

DNA (Jin et al., 2012), while cGAS uses a zinc thumb motif (Civril et al., 2013). IFI16 

has been observed to form filaments along strands of DNA in vitro, while cGAS 

structural studies suggest that cGAS may preferentially bind for the ends of DNA or U-

turns and bends in DNA created by nucleoid proteins and HMBG1 (Andreeva et al., 

2017; Morrone et al., 2014; Zhang et al., 2014b). Therefore, IFI16 and cGAS have 

distinct but not necessarily competing mechanisms of DNA binding.  
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To investigate the relationship between IFI16 and cGAS, I examined if IFI16 and cGAS 

interacted following DNA stimulation. I observed an association between endogenous 

IFI16 and cGAS following DNA stimulation in keratinocytes (Fig 3.2.1). Using 

overexpression experiments in 293T cells I inferred that IFI16 and cGAS associations 

were facilitated using DNA as a binding platform as associations were impaired 

between cGAS and an IFI16 DNA binding mutant (Fig 3.2.2) (Jin et al., 2012).  

Additionally, treatment of samples with the DNA and RNA endonuclease Benzonase 

also reduced associations between wild type IFI16 and cGAS (Fig 3.2.2). Associations 

between IFI16 and cGAS have also been observed in other studies. Iqbal et al., (2016) 

observe an interaction between IFI16 and cGAS in the cytosol using microscopy-based 

proximity ligation assays in human microvascular endothelial (HMVE) cells. Orzalli et 

al., (2015) and Diner et al., (2016) detect interactions between IFI16 and cGAS in 

human foreskin fibroblasts (HFF) by mass spectrometry.  

 

Although cGAS and IFI16 were observed to assemble on exogenous DNA together 

following stimulation, I observed no change in cGAS activity between wild type and 

IFI16(-/-) HaCaT cell lines using LC-MS/MS to directly measure cGAMP production 

(Fig 3.2.1-2,3.2.9). This is distinct from what Jonsson et al., (2017) observe in THP1 

monocytes, which display markedly reduced levels of cGAMP production in the 

absence of IFI16 using a similar LC-MS/MS technique. Jonsson et al., (2017) also 

observe increased levels of cGAMP production when IFI16 is co-expressed with cGAS 

in HEK293T cells. Iqbal et al., (2016) do not measure cGAMP production directly. 

Instead the authors examine induction of IFN-b mRNA in THP1 cells that have been 

stimulated using lysates from DNA-stimulated cells that contain cGAMP, but have 

been treated with Benzonase to remove RNAs and DNAs that would also stimulate the 

immune system. Iqbal et al., (2016) demonstrate that lysates from HMVE cells that 

have had IFI16 depleted by siRNA induce less of an IFN response in THP1s, correlating 

with a decrease in cGAMP production.  

 

It is presently unclear why IFI16 appears to have a role in augmenting cGAS activity 

in THP1s and HMVE cells but not in keratinocytes (Almine et al., 2017; Iqbal et al., 

2016; Jonsson et al., 2017). One possible explanation for this observation is the 
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difference in IFI16 regulation between cell types. THP-1 monocytes upregulate IFI16 

upon differentiation, correlating with an increased sensitivity to DNA stimulation 

(Jonsson et al., 2017; Unterholzner et al., 2010). IFI16 levels in THP1 cells and HMVE 

cells further increase with DNA stimulation, viral infection and IFN treatment, resulting 

in a positive feedback loop (Iqbal et al., 2016; Jonsson et al., 2017; Unterholzner et al., 

2010). In keratinocytes, I observe that IFI16 is expressed at consistent levels 

irrespective of DNA stimulation. Unlike monocytes and vascular endothelial cells, 

keratinocytes constitute a major physical barrier between host and environment and 

thus may need to regulate DNA sensing differently to cope with an increased pathogen 

burden. The absence of the IFI16 positive feedback loop therefore could serve to limit 

excessive activation of the immune response during a localised infection. It is also 

possible that in cells were IFI16 is expressed at very high levels such as in differentiated 

or stimulated THP1s that IFI16 may gain additional functions to further amplify the 

immune response. Thus, it is tempting to speculate that the specific functions of IFI16 

are dictated by how it is regulated in a particular cell type. 

 

Due to the discrepancy between different cell types regarding the influence of IFI16 on 

cGAS activity, it would be interesting to examine the IFI16 and cGAS association using 

immunoprecipitation and mass spectrometry approaches across different cell types to 

determine if the nature of the IFI16 and cGAS interaction varies (i.e. from a DNA 

intermediate to a direct protein:protein interaction) or to examine for the presence of 

additional cGAS co-factors or regulators in different cellular contexts. For example 

Polyglutamine binding protein 1 (PQBP1) was recently identified as a proximal sensor 

to cGAS during HIV-1 infection (Yoh et al., 2015). The authors show PQBP1 binds to 

reverse transcripts of HIV-1 and augments cGAS activity by direct association in 

dendritic cells. (Jakobsen et al., 2013) observe that IFI16 binds to these HIV-1 

transcripts in THP1 cells. cGAS is subject to regulation by an increasing number of 

post-translational modifications including K27 ubiquitination, SUMOlyation and 

glutamylation (Cui et al., 2016; Wang et al., 2017; Xia et al., 2016b). Therefore, it could 

also be interesting to examine whether IFI16 influences cGAS activating post-

translational modifications in cells where IFI16 augments cGAMP production. 
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4.3 IFI16 facilitates STING activation in keratinocytes  
 

IFI16 has been proposed to signal through STING since its discovery as a DNA sensor 

(Unterholzner et al., 2010). In keratinocytes, I observe a constitutive interaction 

between IFI16 and STING that increases with DNA stimulation (Fig 3.3.2).  Similar 

results are observed in THP1s and HMVE cells in studies by (Ansari et al., 2015; Iqbal 

et al., 2016; Jonsson et al., 2017). The interaction between IFI16 and STING is likely 

mediated by the IFI16 PYD, as constructs expressing the IFI16 PYD alone have been 

observed to drive IFN-b expression when overexpressed with STING (Almine et al., 

2017; Jonsson et al., 2017).  

 

I observe that cells lacking IFI16 are unable to respond to stimulation with exogenous 

cGAMP, which was also reported in the investigation by (Jonsson et al., 2017). We find 

that IFI16(-/-) HaCaT cells also do not respond to a non-hydrolysable form of cGAMP, 

cGAM(PS)2 (Li, 2014), indicating that the inability of the IFI16(-/-) cell lines to respond 

to cGAMP stimulation is due to a failure in  STING activation and not due to cGAMP 

degradation in the absence of IFI16 (Almine et al., 2017). We believe that the function 

of IFI16 in keratinocytes is to enable STING activation following cGAMP production 

as STING trafficking and phosphorylation are decreased in the IFI16(-/-) cell lines 

despite normal levels of cGAMP production. It would be interesting to examine if the 

ability of cGAMP to bind to STING was altered by an absence of IFI16. This could be 

tested by performing biotin-streptavidin pulldowns with biotinylated-cGAMP and 

comparing if the amount of STING pulldown varies between wild type and IFI16(-/-) 

cell lines.  

 

Additionally, it would be interesting to examine whether cGAS or cGAMP regulate 

IFI16 functions. IFI16 is a predominately nuclear protein which shuttles to the 

cytoplasm upon detecting viral DNA following acetylation by the p300 acyltransferase 

(Ansari et al., 2015; Li et al., 2012a; Unterholzner et al., 2010). Cytoplasmic 

translocation is required for IFI16 to induce IFN-b transcription via STING (Ansari et 

al., 2015), however the signal that activates the p300 acyltransferase during DNA 

sensing has not been determined. cGAS is capable of inducing immunity in bystander 

cells by transfer of cGAMP between gap junctions and by the incorporation of cGAMP 
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into budding viral particles from infected cells (Ablasser et al., 2013b; Bridgeman et 

al., 2015; Gentili et al., 2015). Through infusion of synthetic cGAMP, we demonstrate 

that IFI16 is required for STING to respond to cGAMP even in the absence of DNA. 

This would suggest that cGAS can promote IFI16 translocation and function, perhaps 

through direct or indirect activation of IFI16 acylation. We could test whether this is 

directly mediated by cGAS itself, or by cGAMP activating the p300 acyltransferase, 

through examining if IFI16 translocates to the cytoplasm with DNA and cGAMP 

stimulation in cellular fractionation experiments using wild type and cGAS(-/-) cell lines. 

 

4.4 IFI16 promotes STING phosphorylation, translocation palmitoylation in 
Keratinocytes  

 

There are many mechanisms by which IFI16 could potentially regulate STING 

activation; IFI16 could promote associations with a STING positive regulator such as 

iRhom2 or ZDHHC1 (Luo et al., 2016; Zhou et al., 2014) or remove a STING inhibitor 

such as NLRC3 or NLRX1 (Guo et al., 2016; Zhang et al., 2014a). Alternatively, IFI16 

could enable the addition of a STING post-translational modification. STING is subject 

to regulation by a range of post-translational modifications such as phosphorylation on 

S358 and S366 by TBK1, ULK1 and unidentified kinases (Konno et al., 2013; Liu et 

al., 2015a; Tanaka and Chen, 2012; Zhong et al., 2008), K11-, K27-, K48- and K63-

linked ubiquitination (Ni et al., 2017; Qin et al., 2014; Wang et al., 2014; Zhang, 2012; 

Zhong et al., 2009), SUMOlyation (Hu et al., 2016) and palmitoylation (Mukai et al., 

2016). 

 

I observe a reduction in STING trafficking and STING phosphorylation in IFI16(-/-) cell 

lines following DNA stimulation (Fig 3.1.10-11). cGAS is already known to be 

required for STING trafficking to ERGIC, and we demonstrate that STING is still 

phosphorylated following cGAMP stimulation IFI16(-/-) HaCaT cells (Almine et al., 

2017; Dobbs et al., 2015). Therefore, we were seeking an additional complementary 

STING activating signal that could be mediated by IFI16. I decided to examine STING 

palmitoylation as palmitoylation enables trafficking of proteins to cholesterol-rich 

membranes for subsequent signalling and can regulate the ability of a receptor to bind 

its ligand by sterically altering its confirmation in a membrane (Reviewed by Goddard 
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and Watts, 2012; Linder and Deschenes, 2006). STING trafficking and STING 

recognition of cGAMP appeared to be dysfunctional in the IFI16(-/-) cell line (Fig 

3.1.10, 3.3.1) and STING palmitoylation has recently been identified as an essential 

signal for STING activation (Mukai et al., 2016). In our experiments with the 

irreversible palmitoyl transferase inhibitor, 2-BP, we observe that inhibiting 

palmitoylation produces a similar phenotype to the IFI16(-/-) cell line, resulting in 

decreased STING phosphorylation, decreased downstream activation of the STING 

pathway, and decreased STING trafficking (Fig 3.4.5-7). We also find that 

palmitoylation does not increase with DNA stimulation in the IFI16(-/-) cell lines (Fig 

3.4.8).  

 

In the future, it would be interesting to evaluate whether IFI16 mediates palmitoylation 

independently of cGAS. This could be examined by testing if cGAMP stimulation can 

induce palmitoylation in Wild type, IFI16(-/-) and cGAS(-/-) cell lines. If palmitoylation 

was only induced with DNA stimulation in the wild type and cGAS(-/-) cell lines but not 

the IFI16(-/-), it would identify palmitoylation as a unique STING activating signal that 

is mediated by IFI16. 

 

The study by Mukai et al., (2016) was the first to demonstrate that STING is 

palmitoylated. However, the palmitoyl transferase ZDHHC1 had been already 

identified as a positive regulator of the STING pathway through direct associations with 

STING at the ER (Zhou et al., 2014). However it merits attention that the involvement 

of the palmitoyl transferase activity of ZDHCC1 has not yet been specifically tested 

(Zhou et al., 2014). Although ZDHHC1 and IFI16 were not found to associate in 

overexpression experiments in this report, it would be interesting to examine if 

ZDHHC1 and STING associations are altered in the absence of IFI16 as IFI16 could 

promote their association indirectly. Additionally, it would be interesting to perform an 

siRNA or CRIPSR/Cas9 screen of other palmitoyl transferases in keratinocytes and 

other cell types to observe if regulation of STING pathway requires particular palmitoyl 

transferases, and whether their involvement varies between different cell types. 

Administration of 2-BP was found to ameliorate activation of the STING pathway in 

overexpression experiments of STING induced auto-inflammatory disease (Mukai et 
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al., 2016). Additionally, dysfunctional palmitoyl transferases have already been 

implicated in inflammatory diseases such as microbial-driven dermatitis (Chen et al., 

2017). Therefore, there are many potential therapeutic benefits to studying how 

palmitoylation regulates innate immune signalling. 

 

In this investigation we provide evidence that IFI16 and cGAS contribute separate but 

necessary signals to STING for complete activation. Due to the extensive number and 

range of STING post-translational modifications it would be useful to employ a 

proteomics based approach using IFI16(-/-) and cGAS(-/-) cell lines to evaluate if certain 

post-translational modifications are dependent on IFI16 or cGAS alone. As 

palmitoylation appears to enable STING phosphorylation (Fig 3.4.5) and STING 

trafficking (Fig 3.4.7), it would also be interesting to study interplay between STING 

palmitoylation and other post-translational modifications to assess the influence of this 

recently described post-translational modification to all aspects of STING behaviour 

(Mukai et al., 2016). Although cGAS does not directly interact with STING (Sun et al., 

2013b), cGAS has been observed to interact with the autophagy regulator beclin-1 and 

thus could influence STING behaviour and STING post-translational modifications 

indirectly (Liang et al., 2014). 

 

4.5 Outlook: IFI16 is required for DNA sensing with specific functions that 
vary with cell type 

 

cGAS has been observed to be essential for DNA sensing in every cell type examined 

(Gao et al., 2013a; Li et al., 2013b). Within this investigation, we have demonstrated 

that IFI16 is also essential for efficient activation of the STING pathway during 

immune responses to DNA in keratinocytes, while Jonsson et al., (2017) observe 

similar results in monocytes/macrophages. Another study by Diner et al., (2016) 

demonstrates that while IFI16(-/-) human foreskin fibroblasts display normal activation 

of the STING pathway, they still present with defects in IFN-b and anti-viral cytokine 

production, suggesting that IFI16 performs a transcriptional role in these cells or 

influences STING signalling beyond the readouts examined. Human foreskin 

fibroblasts without IFI16 also failed to restrict replication of an ICP0(-/-) HSV-1 in this 

study.  
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The observations by Diner et al., (2016), when considered with the differences 

regarding the role of IFI16 in promoting cGAMP production between keratinocytes and 

monocytes, suggest that the range of functions IFI16 performs may be cell type specific 

and could reflect the physiological niche or vulnerability of that cell type to infection. 

The precise role of the ALR murine homologs will require further investigation. Gray 

et al., (2016) demonstrate that the ALR locus is disposable for IFN-b production in 

response to transfected DNA, lentiviral infection and murine models of DNA driven 

auto-inflammatory disease in mice. While species differences between mice and men 

are plausible, Nakaya et al., (2017) argue that different mouse strains may regulate 

expression the ALRs locus differently, resulting in differences in disease severity upon 

deletion. Alternatively, if the ALRs function as cGAS co-factors they may only be 

required for immunity in certain cell types or upon challenge with certain viruses, 

similar to PQBP1 and HIV-1 in dendritic cells in humans (Yoh et al., 2015).  

 

The results of our investigation and others demonstrate that although GAS can induce 

activation of STING by itself in over expression experiments, however in human cells 

that naturally respond to DNA, cGAS appears to require additional cofactors for 

optimal IFN-b induction (Almine et al., 2017; Jonsson et al., 2017; Sun et al., 2013a; 

Yoh et al., 2015). Considering this hypothesis, it may be beneficial to re-examine the 

contributions of many of the other putative DNA-sensors with similar knockout studies.  

Due to discrepancies in specific IFI16 functions between different cell types, it is 

evident that wider studies are needed to fully appreciate the contributions of IFI16 to 

innate immunity. However, it is clear from each of these human IFI16(-/-) studies that 

both IFI16 and cGAS are required for optimal induction of STING mediated anti-viral 

immunity (Fig 4.1) (Almine et al., 2017; Diner et al., 2016; Jonsson et al., 2017).  

 

4.6 Outlook: IFI16 as a DNA Sensor, challenges with experimental models 
 

Perhaps the greatest obstacle to addressing the scepticism surrounding IFI16’s 

candidacy as a DNA sensor is a lack of comparable experimental models. This is due 

to a lack of conservation in the alr locus between humans and mice. Humans possess  
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five ALRs, whereas there are thirteen ALRs present in mice (Cridland et al., 2012). 

AIM2 is the only ALR conserved between humans and mice. 

 

Our study and the works of Diner et al., (2016) and Jonsson et al., (2017) use IFI16(-/-) 

immortalised human cell lines generated by TALENs and CRISPR/Cas9 technologies 

and represent the first models to conclusively study IFI16 function in human cell lines. 

However, it is important to acknowledge that these models are not without limitations. 

These limitations include clonal effects within individual cells due to unprecedented 

off target effects of genetic manipulation, or that may have been generated through the 

clonal-selection process. Additionally, there are obvious practical limitations to 

extrapolating observations about a single homogenous cell population outwith a whole 

organism. As many cancer cell lines have been in use in pre-clinical research 

laboratories for decades, the clinical relevance of these models has been continuously 

questioned, hence the need to verify these observations with several independently 

generated knockout cell clones or with depletion experiments in primary human tissues 

(Gillet et al., 2013).  

 

Within this investigation, we generated two IFI16(-/-) HaCaT cell lines and extrapolated 

our experimental observations to primary human keratinocytes using siRNA 

experiments (Almine et al., 2017). Similarly, Jonsson et al., (2017) utilise siRNA 

experiments in PBMCs taken from HIV-1 patients to demonstrate IFI16’s role in 

restricting retroviral infection and IFN production. However, although the insights 

gained from these samples are immensely valuable, it is equally important to 

acknowledge that primary human tissues are of similarly a limited scope for 

extrapolating to the biology of a whole organism, and may be of limited practical use 

depending on the condition of the tissue donor. For example, many of the primary cells 

used in our investigation were donated from patients undergoing gastric bypass 

surgeries. Recent work by York et al., (2015), has demonstrated that excessive dietary 

cholesterol can limit the activation of the STING pathway, potentially resulting in 

impaired IFN induction in these patients. 
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Animal models have routinely been used to verify the contributions of different 

components of innate immune signalling pathways including cGAS (Li et al., 2013b), 

AIM2 (Rathinam et al., 2010) and STING (Ishikawa, 2008). Due to the lack of 

conservation of the alr locus between humans and mice, it has been difficult to model 

the contributions of the ALRs to human biology (Cridland et al., 2012). The alr locus 

has also been observed to possess significant diversity between different strains of 

laboratory mice, further complicating the development of a model to study their 

relevance to immunity. For example, the gene region of mnda1is not present in the 

DBA/2J, AKR/N, and NZB/BIN lab strains (Cridland et al., 2012). Additionally, there 

are two duplications of ifi202 and a pseudogene in the 129 mouse genome but only one 

copy of ifi202 is present in C57BL/6 (Wang et al., 1999). The DBA lab strain is also 

contains a partial deletion in ifi203 (Zhang et al., 2009). A recent paper by (Nakaya et 

al., 2017) mapped and compared the entire alr locus between C57BL/6 and 129 mice 

and observed considerable differences in the complement of alr genes between strains, 

and has raised concerns for how this will impact on the interpretation of autoimmune 

disease models used to discredit the contribution of the ALRs to immunity.  Thus, it is 

clear that the murine alr locus has been subjected to frequent rearrangement and is not 

strongly conserved between murine species. Similarly, bioinformatic analysis of the alr 

locus in humans and primates has revealed that the locus has been a subject of long-

standing balancing selection likely due to an evolutionary arms race between virus and 

host (Cagliani et al., 2014).  

 

4.7  Outlook: Clinical Importance of IFI16 to Immunity; Lessons from   
Infection and Auto-immunity 

 

Clinical evidence of the involvement of IFI16 in immunity has been observed across 

an array of different varieties of viral infections and auto-immune diseases. Analysis of 

a cohort of Swedish patients infected with HSV-2 revealed that IFN induction was 

largely dependent on IFI16 (Eriksson et al., 2017). Specific subgroup analysis of these 

patients revealed that the minor G allele of the IFI16 SNP rs2276404 was associated 

with resistance to infection. This allele was observed to frequently occur with the C 

allele of rs1417806 and together these SNPs are significantly overrepresented in 

uninfected individuals. PBMCs from patients with both of these SNPs possessed higher 
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levels of IFI16 and induced more IFN upon challenge with HSV-2. Pyroptosis induced 

by IFI16 inflammasomes in HIV infected CD4+ T cells leads to progression of HIV to 

AIDS (Monroe et al., 2014). Further analysis of this phenomenon by (Booiman and 

Kootstra, 2014) found that IFI16 influences HIV pathogenesis early in the HIV 

infection cycle and that patients with the IFI16 SNP rs1417806 possessed lower CD4+ 

T cell counts and progressed to AIDS faster than other patients following 

seroconversion. 

 

Increased levels of IFI16 have been observed in psoriatic lesions (Cao et al., 2016a). 

Anti-IFI16 antibodies are commonly found in rheumatic diseases such as Systemic 

Lupus Erythematosus, Sjögren's syndrome and limited Cutaneous Systemic Sclerosis 

(Baer et al., 2016; Caneparo et al., 2013; Mondini et al., 2006; Seelig et al., 1994). As 

the aetiology of these autoimmune diseases is complex, the role of these IFI16 

autoantibodies in disease pathogenesis is difficult to infer and even differs between 

diseases. For example, IFI16 antibodies negatively correlate with disease severity in 

Systemic Lupus Erythematosus but is strongly associated with disease severity in 

Sjögren's syndrome (Baer et al., 2016; Caneparo et al., 2013). 

 

4.8  What are the benefits to the host of having more than one receptor for viral 
DNA? 

 

Viruses are obligate parasites that require their host’s cells to replicate and spread to 

new hosts. Due to the restrictive size of their genomes, viruses have had to evolve 

efficient ways of evading their host’s immune system to enable their continued survival 

(Reviewed by Bowie and Unterholzner, 2008; Reviewed by Chan and Gack, 2016b). A 

mass spectrometry based analysis of 70 viral immune modulators complied from 30 

viral species revealed that these viruses targeted 579 host proteins, many of which have 

been implicated in host immune processes (Pichlmair et al., 2012).  

 

Vaccinia virus, the prototypic poxvirus, is the best studied model for viral immune 

evasion and has been observed to block the innate immune response at several levels 

of induction such as TLR activation, downstream signalling and IRF3 activation 

(Reviewed by Smith et al., 2013). DNA viruses have been observed to target IFI16, 
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cGAS and STING for degradation during infection to continue their replication 

(Reviewed by Orzalli and Knipe, 2014). The primary function of cGAS is to produce 

cGAMP, while IFI16 is required to enable activation of STING (Almine et al., 2017; 

Jonsson et al., 2017; Sun et al., 2013a). cGAS is capable of triggering immunity in 

bystander cells through spread of cGAMP through gap junctions and by longitudinal 

transfer through virions emerging from infected cells (Albasser et al., 2013a, 

Bridgeman et al., 2015; Gentili et al., 2015). IFI16 is also capable of inhibiting the 

replication of viruses by acting as a restriction factor by through binding to, and 

inhibiting translation of, viral DNA as observed in HSV-1, HPV-18, HIV-1 and hCMV 

infections (Gariano et al., 2012; Jakobsen et al., 2013; Johnson et al., 2014; Lo Cigno 

et al., 2015).  

 

Thus, it is tempting to speculate that due to the numerous strategies that viruses possess 

to evade the signalling mechanisms of the innate immune system that these additional 

functions have evolved to help prevent the host becoming overwhelmed by infection if 

one component of the DNA sensing pathway is compromised. For this reason, it would 

be interesting to examine the functions of the other putative DNA sensors to see if they 

compensate for IFI16’s STING activating functions or possess additional anti-viral 

functions if IFI16, cGAS or STING have been degraded during infection.  

 

4.9 Conclusion 
 

The results presented within this thesis demonstrate that IFI16 is required for the 

complete induction of anti-viral immunity in human immortalised keratinocytes. Other 

recently published studies of IFI16 knockouts in different cell types also suggest that 

IFI16 is required for functional anti-viral immunity, but when considered together, 

prompt speculation that IFI16 may possess additional functions in other cell types such 

as augmenting cGAMP production or regulating expression of anti-viral cytokines. 

Further research and knockout studies are therefore required to fully appreciate the 

contribution of IFI16 to innate immunity.  
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Many human cells can sense the presence of exogenous DNA during infection though the

cytosolic DNA receptor cyclic GMP-AMP synthase (cGAS), which produces the second

messenger cyclic GMP-AMP (cGAMP). Other putative DNA receptors have been described,

but whether their functions are redundant, tissue-specific or integrated in the cGAS-cGAMP

pathway is unclear. Here we show that interferon-g inducible protein 16 (IFI16) cooperates

with cGAS during DNA sensing in human keratinocytes, as both cGAS and IFI16 are required

for the full activation of an innate immune response to exogenous DNA and DNA viruses.

IFI16 is also required for the cGAMP-induced activation of STING, and interacts with STING

to promote STING phosphorylation and translocation. We propose that the two DNA sensors

IFI16 and cGAS cooperate to prevent the spurious activation of the type I interferon response.
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Keratinocytes constitute the outermost layer of the skin, and
as such are the first point of contact for many pathogens,
including DNA viruses. Keratinocytes not only provide a

physical barrier to infection and environmental insults but are
also thought to function as sentinels of infection and injury that
initiate and shape local immune responses1. However, their anti-
viral defence mechanisms are relatively under-studied. Like many
other cell types, keratinocytes are able to sense the presence of
pathogens through pattern recognition receptors that detect
pathogen-associated molecular patterns (PAMPs) as part of the
immediate innate immune response to infection. Pattern
recognition receptors include the Toll-like receptors at the cell
surface and in endosomes, as well as intracellular receptors that
sense the presence of viruses and intracellular bacteria inside
infected host cells. The PAMPs that constitute the major tell-tale
signs of viral infection are viral nucleic acids. Double-stranded
RNA and single-stranded RNA with a 50-triphosphate group for
instance are detected as ‘foreign’ by the cytosolic RNA receptors
MDA5 and RIG-I, whereas pathogen-derived dsDNA can be
detected by intracellular DNA receptors2.

Several cytosolic and nuclear DNA receptors promote the
transcription of type I interferons, cytokines and chemokines
upon recognition of DNA viruses, retroviruses and intracellular
bacteria. An important DNA receptor in the cytosol is cyclic
GMP-AMP synthase (cGAS), which catalyses the formation of
the second messenger cyclic GMP-AMP (2030cGAMP, referred to
as cGAMP throughout this manuscript)3,4. cGAMP then binds to
the adaptor protein STING in the endoplasmic reticulum
(ER), causing a conformational change in the STING dimer5.
Activation of STING results in its relocalization from the ER to
ER-Golgi intermediate compartments (ERGIC)6, where STING
associates with TANK binding kinase 1 (TBK1). This interaction
leads to the subsequent phosphorylation of STING by TBK1,
which causes the recruitment of interferon regulatory factor 3
(IRF3)7, IRF3 phosphorylation and nuclear translocation.
Together with nuclear factor kB (NF-kB), IRF3 is an important
transcription factor for the activation of the IFN-b promoter, as
well as for the expression of other cytokines, chemokines and
IFN-stimulated genes during the innate immune response to viral
infection.

Studies using cGAS-deficient mice, as well as mouse and
human cell lines lacking cGAS expression, have provided
evidence for a central role of cGAS during DNA sensing in a
variety of infection contexts and cell types8. The discovery of
cGAS has called into question the function of other, previously
identified DNA receptors, which have also been described to
detect viral dsDNA and activate STING9. One of the best
described DNA sensors is interferon-g-inducible protein 16
(IFI16), which shuttles between the nucleus and the cytosol,
but is predominantly nuclear at steady state10,11. IFI16 is related
to the inflammasome-inducing cytosolic DNA sensor AIM2
(ref. 12), and possesses an N-terminal pyrin domain and two HIN
domains, which bind DNA in a sequence-independent manner13.
IFI16 involvement in the type I interferon response to foreign
DNA has been demonstrated using RNA interference (RNAi)
approaches in a variety of mouse and human cells, and IFI16 and
its mouse orthologue p204 have been shown to function in
the innate immune response to DNA viruses such as HSV-1 in
human and mouse myeloid cells, epithelial cells and fibro-
blasts10,14–17. IFI16 is also required for the response to infection
with retroviruses such as HIV-1 in macrophages18 as well
as to infection with intracellular bacteria such as Listeria
monocytogenes in human myeloid cells19, and Francisella
novicida in mouse macrophages20. In many of these cases, an
essential role for cGAS has also been observed in the same cell
type, during infection with the same pathogen or following

stimulation with identical DNA ligands15,18–21. However, due to
the reliance on RNAi approaches to diminish, rather than abolish
IFI16 expression, the extent of redundancy or cooperation
between IFI16 and cGAS has been difficult to ascertain. Further-
more, it has been reported that the entire family of murine AIM2-
like receptors is dispensable for the interferon response to
exogenous DNA in mice22, thus casting doubts over the role of
IFI16 in the anti-viral response.

Here, we examine the role of IFI16 and cGAS in human
keratinocytes, which are the target cells and first point of contact
for a variety of DNA viruses. We use gene targeting to generate
human immortalized HaCaT keratinocytes lacking IFI16 or
cGAS, in order to investigate the function of these DNA receptors
during the detection of exogenous DNA. We find that IFI16 and
cGAS are not redundant during DNA sensing, but that both are
required for the full activation of the innate immune response to
exogenous DNA. Although the presence of cGAS is central for
DNA sensing in keratinocytes, as it is in other cell types, IFI16 is
closely integrated into the cGAS-cGAMP-STING signalling
pathway by promoting the activation of STING in synergy with
cGAMP. Thus, we propose that cGAS does not act in isolation,
but rather cooperates with other factors such as IFI16 to activate
STING in human cells.

Results
IFI16 is required for DNA sensing in HaCaT keratinocytes. We
used immortalized HaCaT keratinocytes as a model system to
study the detection of viral DNA in a human cell type that is the
initial point of contact for DNA viruses such as herpesviruses and
poxviruses. Using transcription activator-like effector nuclease
(TALEN) technology, two independent clonal cell lines were
generated, where all IFI16 alleles contained insertions or deletions
resulting in frameshift mutations. This resulted in the absence of
detectable IFI16 protein expression as confirmed by Western
blotting (Fig. 1a). HaCaT keratinocytes expressed cGAS, STING,
TBK1 and IRF3 to similar extents in the presence and absence of
IFI16 (Fig. 1a).

In order to assess the ability of HaCaT cells to respond to
exogenous DNA, we transfected wild-type (IFI16 þ /þ ) HaCaT
cells and the two IFI16 " /" clones with herring testis (HT)
DNA, and quantified the expression of IFN-b mRNA over time
by real-time PCR. IFI16 þ /þ HaCaT keratinocytes generated
a robust IFN-b response peaking at 4–6 h post DNA transfection.
This response was severely blunted in both IFI16 " /" clones
(Fig. 1b). It has previously been suggested that IFI16 is
dispensable for the early response to foreign DNA, but plays a
role at later time points after DNA transfection in some cell
types15,23. This does not seem to be the case in human
keratinocytes, as the absence of IFI16 affected IFN-b mRNA
expression as soon as induction was observed, at 2 h post
stimulation (Fig. 1b). While we do observe a residual response in
IFI16-deficient cells, this response occurs with similar kinetics as
that in wild-type HaCaT cells. A similar deficiency in IFN-b
mRNA production was observed following transfection with a 70
nt long dsDNA oligonucleotide (70mer, see ref. 10) or a circular
dsDNA plasmid (Fig. 1c), or when HT DNA was introduced into
cells by digitonin-mediated permeabilization (Supplementary
Fig. 1a).

IFN-b expression induced by transfection of the dsRNA mimic
poly(I:C) was not impaired in the absence of IFI16, even at the
lowest poly(I:C) concentrations tested, and indeed often caused
an enhanced response in IFI16-deficient cells (Fig. 1d). Both
IFI16-deficient cell clones exhibited a similar impairment in the
response to DNA, but not to poly(I:C) (Supplementary Fig. 1b,c),
or to in vitro transcribed RNA containing 50-triphosphates
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Figure 1 | IFI16 is required for DNA but not RNA sensing in HaCaT keratinocytes. (a) Immunoblot analysis of wild-type (IFI16 þ /þ ) HaCaT and two
IFI16 " /" HaCaT clones. (b–i) Quantitative real-time PCR (qRT-PCR) analysis of mRNA expression levels normalized to b-actin mRNA and mock
transfection in IFI16 þ /þ and IFI16 " /" HaCaT cells, as indicated. (b) qRT-PCR analysis of IFN-b mRNA expression in IFI16þ /þ and two IFI16 " /"
HaCaTcells clones transfected with 1 mg ml" 1 HT DNA for the times indicated. (c) qRT-PCR analysis of IFN-b mRNA 6 h post transfection with 1 mg ml" 1 of
a 70nt dsDNA oliogonucleotide (70mer) or circular pcDNA3.1 plasmid. (d) IFN-b mRNA induction 6 h after transfection with 1, 10 or 100 ng ml" 1 poly(I:C).
(e) Time course of ISG56 mRNA expression following transfection with 1 mg ml" 1 HT DNA. (f) ISG56 mRNA expression 6 h post transfection with 1 mg ml" 1

70mer oligonucleotide or 100 ng ml" 1 poly(I:C). (g) qRT-PCR analysis of CCL5 mRNA expression following transfection with 1 mg ml" 1 HT DNA for the
times indicated. (h) Relative CCL5 mRNA expression levels 6 h post transfection with 1 mg ml" 1 70mer oligonucleotide or 100 ng ml" 1 poly(I:C). (i) CCL5
mRNA expression levels 6 h post transfection with 1 mg ml" 1 of Y-G3 or Y-C3 oligonucleotides. (j) Secreted CCL5 (Rantes) protein detected by ELISA in the
supernatants of IFI16 þ /þ or IFI16 " /" HaCaT cells transfected with 1 mg ml" 1 HT DNA, Y-G3 or Y-C3 DNA for 24 h. (k) ELISA quantitation of CCL5
protein in supernatants from IFI16 þ /þ and IFI16 " /" HaCaT cells stimulated with 5 mg ml" 1 extracellular (EC) poly(I:C) added to the medium for 24 h.
(l) ELISA quantitation of CXCL10 (IP-10) protein in supernatants of IFI16 þ /þ or IFI16 " /" HaCaT cells transfected with 1 mg ml" 1 70mer
oligonucleotide or HT DNA. All qRT-PCR and ELISA data are presented as mean values of biological triplicates. Error bars indicate s.d. *Po0.05, **Po0.01,
***Po0.001 Student’s t-test. Data are representative of at least two experiments in two independent IFI16-deficient cell clones.
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(Supplementary Fig. 1d). This demonstrates that HaCaT cells
lacking IFI16 are still capable of mounting a type I inter-
feron response, but are specifically impaired in their response to
foreign DNA.

The activation of the IFN-b promoter relies on the transcrip-
tion factors IRF3 and NF-kB, which are both activated by the
adaptor protein STING. We found that the IRF3-dependent
expression of the interferon stimulated gene 56 (ISG56) was
strongly impaired by the absence of IFI16 in response to DNA,
but not poly(I:C) transfection (Fig. 1e,f). The same was true for
the NF-kB-dependent transcription of IL-6 mRNA (Supple-
mentary Fig. 1e–g). IFI16 was also required for the DNA-, but not
RNA-induced expression of the chemokines CCL5 (Rantes,
Fig. 1g,h) and CXCL10 (IP-10, Supplementary Fig. 1h,i). IFI16-
dependent CCL5 mRNA induction was also observed following
transfection of a short dsDNA oligonucleotide with single-
stranded guanosine-containing overhangs (Y-G3 DNA), which
has previously been implicated in the sequence-specific activation
of cGAS in THP-1 monocytes24. In agreement with the mRNA
expression data, we find that cells lacking IFI16 are unable to
secrete CCL5 (Rantes) protein in response to transfected HT
DNA or Y-G3 DNA (Fig. 1j), but CCL5 secretion is unaffected
following stimulation with extracellular poly(I:C; Fig. 1k). Cells
lacking IFI16 are also unable to induce CXCL10 (IP-10) secretion
in response to exogenous DNA (Fig. 1l). Overall, we show that the
innate immune response to exogenous DNA is strongly impaired
in HaCaT cells lacking IFI16, while the response to poly(I:C) or to
50-triphosphate-containing RNA is generally unaffected, or even
enhanced. This confirms a specific involvement of IFI16 in the
sensing of intracellular DNA.

IFI16 is required for the response to DNA viruses. Keratino-
cytes are natural host cells for many viruses including poxviruses
such as vaccinia virus (VACV) and Modified Vaccinia virus
Ankara (MVA) which replicate in the cytosol, and herpesviruses,
such as herpes simplex virus 1 (HSV-1) which replicates in the
nucleus of permissive cells. While IFI16 can shuttle between the
nucleus and the cytosol11, it is predominantly nuclear at steady
state in HaCaT keratinocytes (Fig. 2a), with low but detectable
levels in the cytosol, as has been observed in other cell types10,11.
We observed that during infection with VACV, endogenous IFI16
relocalized to viral factories in the cytosol, which also contain
DNA and the VACV virus protein A3, as visualized during
infection with VACV expressing an A3-mCherry fusion protein
(Fig. 2a). During infection with HSV-1, which replicates in the
nucleus, we observed a relocalization of IFI16 to nuclear puncta
(Fig. 2b), which have previously been shown to be sites of HSV-1
replication25,26. Thus, during infection with DNA viruses IFI16
localizes to viral factories in both the nucleus and the cytosol,
consistent with a role in the detection of foreign DNA in both
compartments.

We next tested whether IFI16 is required for the sensing of
DNA viruses. HSV-1 infection induced the expression of IFN-b,
ISG56 and IL-6 mRNA in HaCaT keratinocytes, even though
gene induction levels were modest, presumably due to the many
countermeasures employed by wild-type HSV-1 to dampen the
anti-viral response, which include the degradation of IFI16 and
STING25,27,28. Nevertheless, the HSV-1-induced expression of
IFN-b, ISG56 and IL-6 mRNA was impaired in IFI16-deficient
cells (Fig. 2c–e and Supplementary Fig. 2a,b). HaCaT cells lacking
IFI16 were also impaired in the secretion of CCL5 protein
following infection with ultraviolet light-inactivated HSV-1
(Fig. 2f).

We were unable to detect an innate immune response
to infection with VACV in HaCaT keratinocytes, as VACV

also possess a large repertoire of inhibitors of innate immune
signalling29. Thus, we examined the transcriptional response to
the poxvirus Modified Vaccinia virus Ankara (MVA), an
attenuated vaccine strain that lacks many of the immuno-
modulators of its relatives. MVA-induced CCL5 and ISG56
mRNA induction was significantly reduced in IFI16-deficient
cells (Fig. 2g,h). Cells lacking IFI16 also secreted less CCL5
protein 24 h post infection with MVA (Fig. 2i).

We also infected HaCaT cells with a preparation of the Sendai
virus (SeV) that contains a high proportion of defective viral
particles allowing its RNA genome to be recognized by RIG-I30,31.
SeV-induced CCL5 secretion was unaffected by the absence of
IFI16 (Fig. 2j). Analogously, the induction of IFN-b, ISG56 and
IL-6 mRNA expression in response to SeV was equally potent in
wild-type and IFI16-deficient cells (Fig. 2k,l, Supplementary
Fig. 2c,d).

We further confirmed the involvement of IFI16 in the sensing
of DNA viruses in primary human cells by RNAi. Treatment of
primary human keratinocytes from adult donors with a pool of
four IFI16 siRNAs resulted in the potent knock-down of IFI16
protein expression (Fig. 2m). IFI16-depleted primary keratino-
cytes were unable to induce IFN-b or IL-6 mRNA following
infection with HSV-1 (Fig. 2n,o). Knock-down of IFI16 in
embryonic lung fibroblast MRC-5 cells also reduced the
interferon response to transfected DNA, but not to transfected
poly(I:C) (Fig. 2p,q). This effect was also observed when
individual IFI16-targeting siRNAs were used, confirming that
the effects were not due to off-target effects of a particular siRNA
sequence (Supplementary Fig. 2e).

IFI16 is required for the DNA-induced activation of STING.
We have previously shown that IFI16 can interact with the DNA
sensing adaptor protein STING, and that p204, a mouse ortho-
logue of IFI16, promotes the activation of IRF3 and NF-kB in
mouse myeloid cells10,14. However, one study proposed that IFI16
can induce the transcription of IFN-a and IFN-b at the promoter
level, and promotes IFN expression irrespective of stimulus32.

To confirm a role for IFI16 at the level of STING and
transcription factor activation, we examined the individual steps
in the signalling cascade activated by exogenous DNA. Upon
stimulation with intracellular DNA, STING translocates away
from the ER to the ERGIC and clusters in membrane-bound
peri-nuclear foci6,33–35. STING signalling at the ERGIC results
in the recruitment and activation of the kinase TBK1 (ref. 6).
TBK1-mediated phosphorylation of STING is then thought to
lead to the recruitment and activation of IRF3 (ref. 7), resulting in
IRF3 phosphorylation, dimerization and nuclear translocation.

To place IFI16 in this signalling cascade, we first investigated
the localization of endogenous STING protein in HaCaT
keratinocytes by confocal microscopy. We found that STING
relocalizes after 1 h stimulation with dsDNA, and moves from
the ER to peri-nuclear foci in 46% of wild-type HaCaT cells
(Fig. 3a,b). In HaCaT cells lacking IFI16, much fewer cells (12%)
displayed DNA-induced STING clustering (Fig. 3a,b), suggesting
that IFI16 affects the function of STING upon DNA transfection.
This effect was also observed in a second IFI16-deficient cell clone
(Supplementary Fig. 3a,b). Importantly, we were able to
reconstitute IFI16-deficient cells with in vitro transcribed, capped
and polyadenylated mRNA encoding IFI16. Reconstitution of
cells with mRNA rather than expression plasmid allowed us to
stimulate the cells by DNA transfection, and quantify STING
translocation upon stimulation. IFI16-deficient cells transfected
with mRNA expressing GFP displayed low levels of STING
clustering after stimulation with exogenous DNA (12% of cells),
like the IFI16 " /" cells before mRNA transfection (Fig. 3c,d).
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In IFI16-deficient cells reconstituted with mRNA encoding IFI16,
more cells (24%) showed DNA-induced STING translocation
(Fig. 3c,d). This shows unequivocally that IFI16 is involved in the
DNA-induced translocation of STING.

The presence of exogenous DNA induces the phosphorylation
of STING by TBK1 and other kinases7,36. We observe the
appearance of a more slowly migrating STING band by
SDS–polyacrylamide gel electrophoresis (SDS–PAGE) following

transfection with HT DNA and Y-G3 DNA in wild-type HaCaT
cells, which is reduced in the absence of IFI16 (Fig. 3e and
Supplementary Fig. 3c). This band is indeed a phosphorylated
form of STING, as shown by STING immunoprecipitation
followed by treatment with l phosphatase (Fig. 3f). Thus, IFI16
plays a role in the DNA-induced phosphorylation of STING.

We also tracked the phosphorylation of TBK1 (at Serine 172)
and IRF3 (at Serine 396) over time after DNA transfection.
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Phosphorylation of TBK1 and IRF3 peaked at 4 h post DNA
transfection in wild-type HaCaT cells. TBK1 and IRF3 phosphor-
ylation levels were much reduced, but not completely absent in
cells lacking IFI16 (Fig. 3g), consistent with a reduced transcrip-
tional response to exogenous DNA. In agreement with the
unimpaired transcriptional response to poly(I:C), the phosphor-
ylation of TBK1 and IRF3 induced by poly(I:C) was able to
proceed in the absence of IFI16 (Supplementary Fig. 3d). Both
IFI16-deficient cell clones also showed impaired translocation of
IRF3 to the nucleus at 4 h post transfection, as observed by
confocal microscopy (Fig. 3h,i and Supplementary Fig. 3e,f).
Taken together, our data indicate that IFI16 acts ‘upstream’ of
STING and transcription factor activation during DNA sensing,
consistent with a role as bona fide co-receptor in this signalling
pathway.

DNA sensing in HaCaT keratinocytes also requires cGAS.
HaCaT keratinocytes also express cGAS (Fig. 1a). In order to
assess whether the function of cGAS is as critical during DNA
sensing in human keratinocytes, as it is in many other cell types8,
we generated HaCaT cells lacking cGAS, using a CRISPR-Cas9
nickase approach. cGAS-deficient HaCaT cells still contained
similar IFI16 protein levels as wild-type cells (Fig. 4a). Thus,
deletion of cGAS in HaCaT cells does not automatically result in
the reduction of IFI16 protein levels which has been observed in
other cell contexts15,20, and the relative function of the two DNA
sensors can be examined in isolation.

We find that cGAS-deficient HaCaT cells are unable to induce
IFN-b, CCL5, ISG56 and IL-6 mRNA at 6 h post stimulation with
transfected DNA (Fig. 4b–e). cGAS-deficient cells are also
impaired in their response to infection with the cytosolic DNA
virus MVA (Fig. 4f), as measured by CCL5 mRNA induction.
Thus, as in many other cells, cGAS is essential for the response to
foreign DNA and DNA viruses in HaCaT keratinocytes. Given
that we have shown here that IFI16 also has an important role in
the same cells and in response to the same DNA ligands and
viruses, our data suggest that IFI16 and cGAS each have
important, but functionally different, roles in the innate immune
response to DNA, and need to cooperate to achieve full activation
of an anti-viral response.

To test whether the cooperation between IFI16 and cGAS can
also be observed in HEK293T cells, which do not express
endogenous STING and are unable to mount an innate immune
response upon DNA transfection10,37, we transfected HEK293T
cells with expression constructs encoding STING, cGAS and IFI16
and measured IFNb promoter activation using luciferase assays.
We found that IFI16 synergizes with cGAS and STING in the
activation of the IFNb promoter in a dose-dependent manner
(Fig. 4g). Furthermore, the activities of IFI16 and cGAS were

critically dependent on the presence of STING in this system
(Fig. 4g). IFI16 did not synergize to the same extent with other
signalling factors such as the TLR3 adaptor protein TRIF, even
when STING was co-expressed (Fig. 4h). This indicates that the
strong synergy between IFI16 and cGAS is specific to their roles
in the DNA sensing pathway, rather than simply being due to an
additive effect of two independent IFN-inducing factors.

IFI16 interacts with cGAS in a DNA-dependent manner. The
molecular function of cGAS in the DNA sensing pathway is well-
defined. Upon recognition of DNA, cGAS catalyses the produc-
tion of the second messenger cGAMP from ATP and GTP.
cGAMP then binds to STING dimers, resulting in a conforma-
tional change in STING that is thought to contribute to
STING activation5. We find that IFI16 also influences STING
phosphorylation and translocation in response to DNA
(Fig. 3a–f). To place the function of IFI16 in the context of the
cGAS-cGAMP-STING pathway, we examine whether IFI16 plays
a role in the DNA-induced production of cGAMP, and/or in the
cGAMP-induced activation of STING.

We first tested whether IFI16 and cGAS would form a complex
during DNA sensing. We were able to detect an interaction
between endogenous IFI16 and cGAS that was enhanced by
stimulation with DNA (Fig. 5a). We could also detect the
interaction in FlipIn HEK293 cells expressing GFP-IFI16, but not
GFP alone (Supplementary Fig. 4a) and in HEK293T cells
expressing HA-tagged IFI16 and Flag-tagged cGAS (Fig. 5b). The
interaction between the two proteins is facilitated by DNA as a
binding platform, as cGAS does not interact with a IFI16 protein
containing several point mutations that impair its ability to bind
DNA (IFI16-m4, described in ref. 13) (Fig. 5b). Furthermore,
treatment of the IFI16-cGAS complex with benzonase, a nuclease
which degrades DNA and RNA, also reduced the interaction
(Fig. 5b). Thus, IFI16 and cGAS are brought together by
assembling on exogenous DNA.

IFI16 is not required for cGAMP production in HaCaT cells.
We next tested whether IFI16 would be able to influence cGAS
function in production of the second messenger cGAMP. To
measure the production of cGAMP during DNA sensing, we
quantified endogenous cGAMP levels in cell extracts after DNA
stimulation using a liquid chromatography and mass spectro-
metry (LC-MS/MS) approach outlined in Supplementary Fig. 4b.
Multiple reaction monitoring allowed us to unambiguously
identify cGAMP, as well as cyclic-di-AMP which we used as
internal spike-in control to account for losses during the sample
preparation and injection. Three m/z transitions were used for
the identification of cGAMP, and one for c-di-AMP (Fig. 5c),

Figure 2 | IFI16 is required for the innate immune response to DNA viruses. (a) Confocal imaging of HaCaT cells infected with VACV-A3-RFP
(MOI¼0.1) for 24 h and stained with FITC-labelled IFI16 antibody (green). A3-RFP is shown in red, DNA is stained with DAPI (blue). (b) Confocal imaging
of HaCaT cells infected with HSV-1 (MOI¼ 1) for 6 h and stained with anti-IFI16 antibody (red). DNA is visualized with DAPI (blue). Scale bars, 20mm.
(c–e) qRT-PCR analysis of IFI16 þ /þ and IFI16 " /" HaCaT cells infected with HSV-1 (MOI¼ 1) for 6 h. mRNA expression levels normalized to b-actin
mRNA were determined for IFNb (c), ISG56 (d) and IL6 (e). (f) Secreted CCL5 protein from HaCaT cells infected with UV inactivated HSV-1 (MOI¼ 5) for
24 h, quantified by ELISA. (g,h) qRT-PCR analysis of ISG56 (g) and CCL5 (h) mRNA expression in HaCaT cells infected with MVA (MOI¼ 5) for 6 h.
(i) ELISA quantitation of CCL5 protein in supernatants from HaCaT cells infected with MVA (MOI¼ 5) for 24 h. (j) ELISA analysis of CCL5 protein from
HaCaT cells infected with a Sendai virus (SeV) preparation containing defective viral particles (1:2,000 dilution) for 24 h. (k,l) qRT-PCR analysis of IFNb
(k) and ISG56 (l) mRNA expression in HaCaT cells infected with Sendai virus (SeV) at dilutions of 1: 20 000, 1: 2,000 and 1:200 for 6 h. (m) Primary
human keratinocytes (NHEK) were transfected with a non-targeting (NT) or IFI16-targeting siRNA pool for 48 h. Protein expression was examined
by Western blotting. (n,o) NHEK were treated with siRNA pools for 48 h, and infected with HSV-1 (MOI¼ 1) for 6 h. IFN-b (n) and IL-6 (o) mRNA
expression levels were quantified by qRT-PCR. (p,q) qRT-PCR analysis of IFN-b mRNA expression in MRC-5 human embryonic lung fibroblasts treated with
siRNA pools for 48 h, and transfected for 6 h with 1 mg ml" 1 HT DNA (p) or 100 ng ml" 1 poly(I:C) (q). Data are representative of at least two independent
experiments, and presented as mean values of biological triplicates, with error bars indicating s.d. *Po0.05, **Po0.01, ***Po0.001 Student’s t-test.
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allowing us to accurately detect synthetic cGAMP and c-di-AMP
standards (Supplementary Fig. 4c), and quantify cGAMP in a
background of processed cell lysates with pg sensitivity (standard
curve in Fig. 5d). Unstimulated HaCaT cells contain low, but
detectable amounts of cGAMP (Fig. 5e and Supplementary

Fig. 4d). Following stimulation with HT DNA or VACV 70mer
oligonucleotide, cGAMP levels increase in both wild-type
and IFI16-deficient HaCaT cells (Fig. 5e,f and Supplementary
Fig. 4e). Treatment of cell extracts with snake venom phospho-
diesterase removes the cGAMP peak following DNA stimulation
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(Supplementary Fig. 4f), as would be predicted38. Thus, we
conclude that IFI16 is not required for cGAMP production in
HaCaT keratinocytes.

IFI16 is required for the response to exogenous cGAMP. We
next tested whether IFI16 affects the activation of STING by
cGAMP. Cells can be stimulated by the intracellular delivery of
cGAMP, thus by-passing cGAS function and the production of
endogenous cGAMP.

In order to assess the function of IFI16 in this context, we
transfected HaCaT cells with synthetic 2030 cGAMP, and
quantified the gene expression response over time. The delivery
of synthetic cGAMP induced the expression of CCL5 and ISG56
mRNA in wild-type HaCaT cells, peaking at 12 and 6 h post
transfection. IFI16-deficient cells exhibited a severely blunted
response that occurred with similar kinetics to the response in
wild-type cells (Fig. 6a and Supplementary Fig. 5a). As lipofection
has also been described to induce a STING-dependent innate
immune response in some cells39, we tested other means of
delivering cGAMP. A similar reduction in cGAMP-induced
gene expression was observed when cGAMP was infused into
the cells by digitonin-mediated permeabilization (Supplementary
Fig. 5b,c). IFI16-deficient cells also secreted less CCL5 protein
quantified by ELISA (Fig. 6b). In analogy to our observations
in cells stimulated by DNA transfection, IFI16 deficiency
also impaired the phosphorylation of STING, TBK1 and IRF3
following stimulation with cGAMP (Fig. 6c), and the trans-
location of IRF3 to the nucleus (Fig. 6d,e).

Finally, we tested the response of HaCaT cells to endogenously
produced cGAMP delivered though gap junctions. For this, we
over-expressed cGAS in HEK293T cells, which acted as producer
cells for endogenous cGAMP, and co-cultured these with
wild-type or IFI16-deficient HaCaT cells (schematic representa-
tion in Fig. 6f). The expression levels of FLAG-tagged cGAS in the
co-culture were confirmed by western blotting (Fig. 6g). As
HEK293T cells do not express STING, they cannot respond to the
cGAMP they produce and are not stimulated by the over-
expression of cGAS alone (Fig. 4g). However, neighbouring
HaCaT cells that are in direct contact with the cGAS-expressing
HEK293T cells take up cGAMP through gap junctions, resulting
in the activation of STING and the induction of an innate
immune response in the HaCaT cells. Co-culture with cGAS-
expressing HEK293T cells, but not HEK293T cells transfected
with empty vector, induced the phosphorylation of endogenous
STING in the HaCaT cells, which was reduced in HaCaT cells
lacking IFI16 (Fig. 6g). As a consequence of STING activation,
HaCaT cells co-cultured with cGAS-expressing HEK293T cells
induce the expression of CCL5 mRNA, compared with HaCaT
monocultures or co-cultures with HEK293T cells containing

empty vector (Fig. 6h). In agreement with our data using
synthetic cGAMP, CCL5 mRNA levels induced by endogenous
cGAMP were significantly lower in IFI16-deficient HaCaT cells
(Fig. 6h), despite similar levels of cGAS expression in the co-
culture (Fig. 6g). IFI16 was also required for the expression of
ISG56 and IFN-b in these co-culture experiments (Supplementary
Fig. 5d–f). Taken together, we find that IFI16 is required for the
response to cGAMP, whether delivered into the cells by
permeabilization, transfection or through gap junctions from
neighbouring cells.

IFI16 provides an additional signal for STING activation. The
observed effects of IFI16 on cGAMP-induced STING activation
could potentially be explained by a role of IFI16 in the stabili-
zation of cGAMP. For this reason, we tested whether the use of a
non-hydrolysable analogue of cGAMP, cGAM(PS)2 (ref. 40),
would overcome the effect of IFI16 on cGAMP-induced
activation of an innate immune response. We found that CCL5
mRNA expression following the exposure of cells to cGAMP or
its non-hydrolysable analogue was equally affected by the absence
of IFI16 (Fig. 7a). Analogously, STING phosphorylation and the
activation of TBK1 and IRF3 were reduced in IFI16-deficient
cells, regardless of whether the cells were stimulated with cGAMP
or cGAM(PS)2 (Fig. 7b). While we cannot formally exclude a role
of IFI16 in affecting cGAMP turnover, our results indicate that
IFI16 has an important function in cGAMP-induced STING
activation that is independent of cGAMP hydrolysis.

We also examined whether IFI16 is required for the response
to other cyclic di-nucleotides that are sensed by STING. STING
can detect molecules such as cyclic di-AMP and cyclic di-GMP
which are produced by bacteria, and constitute a PAMP during
infection with intracellular pathogens37. Some common STING
sequence variants display impaired sensing of bacterial cyclic di-
nucleotides41. Sequencing of STING cDNA in HaCaT cells did
not reveal the presence of alleles containing such sequence
polymorphisms, and, in agreement with this, HaCaT cells can
respond to the transfection of synthetic cyclic di-AMP. The
response to cyclic di-AMP was also dependent on IFI16 (Fig. 7c).
Thus, the involvement of IFI16 in STING activation is not limited
to the DNA sensing pathway, but also encompasses the innate
immune response to bacterial cyclic di-nucleotide PAMPs in
human keratinocytes.

We next tested the interaction between IFI16 and STING
during DNA sensing. Using co-immunoprecipitation, we can
detect a constitutive weak interaction between endogenous
STING and IFI16 in HaCaT cells, and complex formation
increases in the hours following DNA transfection (Fig. 7d).
However, we do not observe a clear co-localization of IFI16
and STING in DNA-stimulated HaCaT cells (see Fig. 3a),

Figure 3 | IFI16 is required for the DNA-induced activation of STING and IRF3. (a) Confocal analysis of IFI16 þ /þ and IFI16 " /" HaCaT cells that
were mock transfected or transfected for 1 h with 5mg ml" 1 HT DNA. Cells were stained for endogenous IFI16 (red) and STING (green). DNA is visualized
with DAPI (blue). (b) Cells as in (a) were observed by confocal microscopy and scored for STING clustering. At least 200 cells were counted per sample.
(c) Confocal analysis of IFI16 " /" HaCaT cells reconstituted for 6 h with 1 mg ml" 1 in vitro transcribed, capped and polyadenylated mRNA encoding GFP
or IFI16, followed by transfection with 5 mg ml" 1 HT DNA for 1 h. Cells were stained for STING (red), and DNA (DAPI, blue). GFP or AlexaFluor488-stained
IFI16 are shown in green. (d) Cells as in c were scored for STING clustering, with at least 300 cells counted per sample. (e) Immunoblot analysis of HaCaT
cells treated with 1 mg ml" 1 HT DNA for 4 h, and probed for IFI16, STING and b-actin protein levels by Western blotting. (f) HaCaT cells were stimulated
with 1mg ml" 1 HT DNA for 6 h or left untreated (UT). STING immunoprecipitates (IP) were treated with l phosphatase where indicated, and analysed by
western blotting. (g) Western blot analysis of IRF3 phosphorylation at Ser396 (pIRF3) and TBK1 phosphorylation at Ser172 (pTBK1) in HaCaT cells
transfected with 1mg ml" 1 HT DNA for the times indicated. (h) HaCaT cells were transfected with 5 mg ml" 1 HT DNA for 4 h, and the translocation of
endogenous IRF3 was analysed by confocal microscopy. Cells were stained for IRF3 (green) and IFI16 (red), DNA is visualized with DAPI (blue). (i) Cells as
in (h) were scored for predominately cytosolic (C), predominantly nuclear (N) and evenly distributed nuclear and cytosolic (NþC) localization of IRF3. At
least 200 cells were counted per sample. Results are representative of at least two experiments each in two independent IFI16 " /" cell clones. Scale
bars, 20mm.
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suggesting that the association between the two proteins is likely
dynamic.

Given that IFI16 binds to STING and synergizes with cGAMP
in STING activation, we tested whether IFI16 would be able to
influence STING function in the absence of cGAS and cGAMP.
When IFI16 is transiently expressed in HEK293T cells in the
presence of a luciferase reporter system driven by the IFNb
promoter, IFI16 is only able to activate the IFNb promoter
if STING is also co-expressed (Fig. 7e). IFI16 contains two
C-terminal HIN domains which bind DNA13 and an N-terminal
pyrin domain (PYD) which is thought to mediate its signalling
functions. We found that over-expression of the PYD alone is
able to drive STING activation in this assay, while expression of
the DNA-binding HINb domain is not (Fig. 7e). We have
previously shown that the DNA-binding function of IFI16 is
required for full STING activation in the context of the full-length
IFI16 protein in this assay, where plasmid DNA likely provides
the stimulus13. This correlates with the DNA-induced interaction
between endogenous IFI16 and STING that we observe under
more physiological conditions in HaCaT keratinocytes (Fig. 7d).
Over-expression of the pyrin domain likely drives the activation
of STING constitutively, by-passing the requirement for DNA

detection by the HIN domain. Taken together, we find that IFI16
acts on STING via its pyrin domain, and cooperates with cGAMP
and other cyclic di-nucleotides to promote the phosphorylation
and translocation of STING.

Discussion
The function of IFI16 as a receptor for foreign DNA during
infection with DNA viruses and intracellular bacteria is supported
by a large body of evidence, mostly relying on the use of RNAi
approaches42. It has been reported that p204, a mouse orthologue
of IFI16, cooperates with cGAS during Francisella novicida
infection in murine RAW264.7 monocytic cells20, and synergy
between IFI16 and cGAS has also been observed during Listeria
monocytogenes infection in human myeloid cells, and during
HSV-1 infection in primary human foreskin fibroblasts15,19, using
RNAi approaches to study the effect of IFI16 and cGAS depletion.
However, one study suggested that IFI16 may have a more
generic function in the transcriptional activation of type I IFN
regardless of stimulus32, and it has recently been shown that the
locus containing all murine homologues of IFI16 is dispensable
for DNA sensing in mice22. This study also reported that pools of
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gene targeted human fibroblasts with low or undetectable levels of
IFI16 protein displayed unimpaired IFNb mRNA expression in
response to infection with human cytomegalovirus22. Thus, the
role of IFI16 during DNA sensing has remained controversial.

Here, we generated human immortalized keratinocytes lacking
IFI16, in order to unambiguously determine to what extent IFI16
is required for the innate immune response to DNA in these cells.
We show that IFI16 is specifically required for the innate immune
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response to transfected DNA and to infection with nuclear and
cytosolic DNA viruses, but is dispensable for the response to
poly(I:C), in vitro transcribed RNA, and during infection with
Sendai virus. Indeed, the RNA-induced responses are frequently
enhanced in the absence of IFI16, possibly due to the competition
between DNA and RNA sensing pathways for downstream
signalling factors such as TBK1 and IRF3. By analysing the events
that follow the detection of foreign DNA in more detail, we
find that IFI16 synergizes with cGAMP in the activation of
STING. Our data suggest that the activation of STING relies
on two independent signals from cGAMP and IFI16, and both
are required for optimal STING phosphorylation and trans-

location, and the full activation of the resulting signalling
cascades.

It is clear that in HEK293T cells, which lack many of the key
components of the DNA sensing pathway, the activation of
STING can be driven by cGAS and cGAMP alone (Fig. 4g), or
alternatively by IFI16 in the absence of cGAS (Fig. 7e and
refs 11,13). In keratinocytes, which naturally respond to DNA,
this is not the case, as both IFI16 and cGAS are required for the
full activation of STING after DNA stimulation. Thus, the
activation of STING is likely more complex and more tightly
controlled under physiological conditions, where STING protein
levels may be limiting, and additional regulatory mechanisms are
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likely to exist. Thus, while HEK293T cells provide a convenient
model to test some of the signalling mechanisms at play, the more
complex regulation of this signalling pathway will require detailed
analysis in more appropriate cell systems that have evolved to
respond to exogenous DNA with a high level of selectivity to
prevent potentially damaging responses.

In recent years, a multitude of regulatory mechanisms that can
influence STING function have been described. In addition to the
conformation change caused by cGAMP binding, STING is
regulated by a variety of post-translational modifications, inclu-
ding phosphorylation by TBK1 and other kinases7,36, ubiqui-
tylation with K48-, K63- and K27-linked ubiquitin chains43–47,
and palmitoylation48. These and other signals may be involved
in the translocation of STING from the ER to the signalling
compartments where TBK1 recruitment takes place, and further
trafficking for the subsequent degradation of STING6,34. In
addition, a number of positive and negative regulators that
interact with STING have been described49–51, but their precise
molecular function during DNA-mediated activation of STING
has not yet been fully elucidated. Our data indicate that IFI16 is
required for STING phosphorylation, and for STING trans-
location away from the ER following DNA stimulation. It would
be of great interest to determine whether this effect is a direct
consequence of IFI16 association, or whether the function of
IFI16 is mediated by the addition or removal of a post-
translational modification or the dissociation of a negative
regulator. The detailed analysis of STING modifications and
interaction partners following stimulation with DNA in cells
lacking IFI16 or cGAS is required to provide additional insights
into the precise molecular mechanisms of STING activation that
is elicited by the cooperation of DNA sensors and co-factors. In
this context, it would also be important to characterize the

degradation of STING that usually follows its activation. Our data
suggest that the absence of IFI16 causes an un-coupling of STING
activation and degradation, as degradation appears to proceed
normally, despite reduced levels of STING phosphorylation and
trafficking in IFI16-deficient cells (see Supplementary Fig. 3c and
Figs 6c and 7b).

It is interesting to note that a parallel study on IFI16 function
in human THP-1 monocytes and primary monocyte-derived
macrophages found an analogous function of IFI16 in promoting
the phosphorylation of STING in response to exogenous DNA
and cGAMP52, with a similar impairment in IFN induction in the
absence of IFI16. However, the authors also show, that in this
cellular context, IFI16 can perform an additional function during
DNA sensing in also promoting the production of cGAMP by
cGAS. Thus, there may be cell-type-specific differences in the
regulation of the DNA sensing pathway.

We find that in human keratinocytes, cGAS and IFI16 function
more independently of each other, only co-operating at the level
of STING activation. Furthermore, while in other cell types
cGAS promotes IFI16 protein expression after DNA stimula-
tion15,20, this is not the case in human keratinocytes, where IFI16
protein levels remain unchanged over a 12 h time course after
DNA transfection (see Fig. 3g).

Thus, it is conceivable that the range of IFI16 functions may
depend on its relative abundance in the cell, which is particularly
dynamic in monocytes and macrophages. In monocytes and
THP1 cells, IFI16 protein expression is induced very strongly by
differentiation, and this correlates with an increased sensitivity to
exogenous DNA in those cells10. In these cells, IFI16 levels
increase even further upon DNA stimulation, providing a positive
feedback loop. This positive feedback loop is absent in human
keratinocytes, which may serve to prevent excessive immune
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Figure 7 | IFI16 acts on STING to promote its activation by cyclic di-nucleotides. (a) IFI16 þ /þ or IFI16 " /" HaCaT cells were permeabilized with
digitonin and infused with 15 mM cGAMP or its non-hydrolysable analogue cGAM(PS)2 for 6 h. CCL5 mRNA expression was analysed by qRT-PCR. (b) Cells
were permeabilized and infused with 15mM cGAMP or cGAM(PS)2 for 4 h, and lysates were analysed by western blotting for phosphorylation of STING,
TBK1 at Ser172 (pTBK1) and IRF3 at Ser396 (pIRF3). (c) Cells were transfected with 100 mg ml" 1 cyclic di-AMP for 6 h, and IFN-b mRNA levels were
quantified by qRT-PCR. (d) STING was immunoprecipitated from HaCaT cells transfected with 5 mg ml" 1 HT DNA for the times indicated. Lysates and
immunoprecipitates (IP) were analysed by SDS–PAGE and western blotting. (e) HEK293T cells were transfected with a firefly luciferase reporter construct
under the control of the IFNb promoter, a Renilla luciferase transfection control, 2 ng STING-FLAG plasmid and 150 ng empty vector (EV) or IFI16
expression constructs as indicated: full-length IFI16 (fl), the IFI16 HINb domain (HINb), or the IFI16 pyrin domain (PYD). Firefly luciferase activity was
measured 24 h post transfection, and normalized to Renilla luciferase activity. Data are representative of at least two independent experiments. qRT-PCR
and luciferase data are expressed as means of triplicate samples; error bars represent s.d. *Po0.05, **Po0.01, ***Po0.001 Student’s t-test.
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activation after localized infection. Differences in the relative
expression levels of cGAS, IFI16 or other AIM2-like receptors
may also account for some of the observed differences between
mouse and human cells, and between different mouse strains22.
While we and others provide strong evidence for an involvement
of IFI16 in DNA sensing in human cells, the function of IFI16
homologues in mice may need to be investigated further.

In summary, we show here that cGAS and IFI16 cooperate in
the sensing of intracellular DNA in human keratinocytes. While
we still observe a weak transcriptional response to exogenous
DNA in the absence of IFI16 in these cells, IFI16 is critical for the
full activation of STING, and cooperates with cGAMP in the
activation of this key signalling adaptor. The integration of IFI16
into the cGAS-cGAMP-STING signalling cascade provides
a further level of regulation of STING activation that may be
important to prevent the spurious activation of the innate
immune system.

Methods
Cells and viruses. Immortalized human keratinocytes (HaCaT), MRC-5 human
embryonic lung fibroblasts and immortalized human embryonic kidney HEK293T
cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco)
supplemented with 10% (v/v) FCS and 50 mg ml" 1 gentamicin. Primary human
keratinocytes from adult donors were obtained from Lonza, and grown in
KGM-Gold Keratinocyte Basal Medium supplemented with KGM-Gold Single-
Quots (Lonza). Cell lines were regularly tested for mycoplasma contamination.

Sendai virus (SeV, strain Cantell) was kindly provided by R. Randall (University
of St. Andrews, UK). Vaccinia virus with RFP-tagged A3L protein (VACV-RFP)53

was propagated in RK13 cells and sucrose-purified. MVA was kindly provided by
B. Ferguson (University of Cambridge, UK). MVA was propagated in BHK cells
and sucrose-purified. GFP-tagged Herpes Simplex Virus 1 (HSV-1-GFP) was
kindly provided by F. Grey (The Roslin Institute, University of Edinburgh, UK)
and propagated in Vero cells. All viruses were titrated on BSC cells.

Generation of IFI16" /" and cGAS " /" HaCaT cells. HaCaT cells lacking
cGAS or IFI16 were generated using CRISPR-Cas9 nickase or TALE nuclease
technology, respectively. Plasmids encoding left and right TALEN arms, or Cas9
nickase and two guide RNAs, were transfected into HaCaT cells using electro-
poration with the Neon system (Life Technologies). Cells were selected for 48 h
with puromycin, then allowed to recover and seeded as single cells in 96-well plates.
DNA was extracted from individual colonies using Quickextract DNA extraction
solution (EpiBio), and screened for modifications of the target site, using high
resolution melting analysis on a LifeCycler 96 system (Roche), using Light-
Cycler480 High Resolution Melting master mix (Roche). Candidate clones
displaying mutated target sites were screened for lack of protein expression by
western blotting of IFI16 or cGAS and b-actin, and by immunofluorescence
analysis to confirm homogeneity of cell clones.

Virus infection. HaCaT cells were seeded 24 h before infection and were infected
with VACV or MVA in DMEM supplemented with 2.5% (v/v) FCS for 1 h, before
replacing the inoculum with DMEM containing 2.5% (v/v) FCS. HSV-1-GFP
infections (MOI¼ 1) were performed in serum-free DMEM for 1 h, followed by the
maintenance of cells in complete DMEM containing 10% (v/v) FCS. Infections
with a SeV preparation containing defective viral particles was carried out in
serum-free DMEM for 1 h, followed by replacement of the medium with complete
DMEM containing 10% (v/v) FCS. Infections were allowed to proceed for 6 h,
unless indicated otherwise.

Transfection of nucleic acids and cGAMP. Cells were seeded at 1–1.5$ 105 cells
per ml 24 h before transfection, and stimulated with 1 mg ml" 1 HT DNA (HT
DNA, Sigma), a double-stranded 70mer oligonucleotide derived from VACV
(50-CCATCAGAAAGAGGTTTAATATTTTTGTGAGACCATCGAAGAGAGAA
AGAGATAAAACTTTTTTACGACT-30)10, Y-G3 DNA (50-GGGGAACTCCAG
CAGGACCATTGGGG-30) or Y-C3 DNA (50-CCCGAACTCCAGCAGGAC
CATTGCCC-30)24. DNA oligonucleotides were synthesized by Biofins Genomics,
Germany. In vitro transcribed RNA containing a 50-triphosphate was generated
using the MEGAScript T7 transcription kit (Thermo Fisher) with pcDNA3.1:
EGFP as template. 50 ng ml" 1 of in vitro transcribed RNA and 100 ng ml" 1

poly(I:C) (Sigma) were used, unless indicated otherwise. 2030 cGAMP (Invivogen)
or cyclic di-AMP (Invivogen) were transfected at 20 and 100mg ml" 1, respectively.
All transfections were carried out with 1 ml Lipofectamine 2000 (Life Technologies)
per ml medium.

Transfection by digitonin permabilization was carried out in a buffer containing
50 mM HEPES (pH 7), 100 mM KCl, 3 mM MgCl2, 0.1 mM DTT, 85 mM
saccharose, 1 mM ATP, 0.1 mM GTP and 0.2% (v/v) BSA. 25 mg ml" 1 HT DNA

(Sigma). 15 mM 2030 cGAMP or 2030 cGAM(PS)2 (both Invivogen) was transfected
using 5 mg ml" 1 digitonin in permeabilization buffer for 10 min at 37 !C before
replacing the permabilization buffer with DMEM containing 10% (v/v) FCS.

Quantitative real-time PCR (qRT-PCR). RNA was extracted using HighPure
RNA Isolation Kits (Roche), and cDNA was synthesized using the iScript cDNA
Synthesis Kit (Bio-Rad Laboratories). Real-time PCR amplification was performed
in a 10 ml reaction containing FastStart Universal SYBR Green Master Mix (Roche)
on a LifeCycler 96 system (Roche). The real-time PCR program was as follows:
initial denaturation at 95 !C for 600 s; 40 cycles of 95 !C for 10 s then 60 !C for 30 s;
followed by a melt curve step. Quantification cycle (Cq) of mRNAs of interest were
normalized to Cq of b-actin reference mRNA and data was expressed as fold
change over mock treatment. Primers were synthesized by Eurofins Genomics.
Primer sequences were: b-actin forward (FWD): 50-CGCGAGAGAAGATGACC
CAG;ATC-30 ; b-actin reverse (REV): 50-GCCAGAGGCGTACAGGGATA-30 ;
IFNb FWD: 50-ACGCCGCATTGACCATCTAT-30 ; IFNb REV: 50-GTCTCA
TTCCAGCCAGTGCT-30 ; CXCL10 FWD: 50-AGCAGAGGAACCTCCAGTCT-30 ;
CXCL10 REV: 50-AGGTACTCCTTGAATGCCACT-30 ; CCL5 FWD: 50-CTGC
TTTGCCTACATTGCCC-30; CCL5 REV: 50-TCGGGTGACAAAGACGACTG-30;
ISG56 FWD: 50-CAAAGGGCAAAACGAGGCAG-30; ISG56 REV: 50-CCCAG
GCATAGTTTCCCCAG-30 ; IL6 FWD: 50-CAGCCCTGAGAAAGGAGACAT-30 ,
IL6 REV: 50-GGTTCAGGTTGTTTTCTGCCA-30 .

ELISA. For the quantification of secreted chemokines by ELISA, cells were
stimulated for 24 h as indicated. Supernatants were harvested and secreted CCL5 or
CXCL10 protein levels were quantified using Human CCL5/Rantes (DY278) and
Human CXCL10/IP-10 (DY266) DuoSet ELISA kits (R&D Systems) according to
manufacturer’s instructions. Absorbance was measured at 450 nm and corrected
against absorbance at 570 nm.

Western blotting and antibodies. For western blotting, cells were harvested in
lysis buffer containing 50 mM Tris (pH 7.4), 150 mM NaCl, 30 mM NaF, 5 mM
EDTA, 10% (v/v) glycerol, 40 mM b-glycerophosphate, 1% (v/v) Triton X-100,
1 mM sodium orthovanodate, 0.1 mM phenylmethanesulfonylfluoride and 0.07 mM
aprotinin. Proteins were separated by SDS–PAGE and transferred to poly-
vinylidene (PVDF) membranes using semi-dry transfer. Membranes were blocked
with 5% (w/v) non-fat milk in PBS containing 0.1% (v/v) Tween-20 (PBS-T) for 1 h
before incubation with antibodies. Western blots using antibodies against phos-
phorylated proteins were performed with TBS containing 0.1% (v/v) Tween-20 and
5% bovine serum albumin (BSA).

The antibodies used were anti-IFI16 (1G7, Santa Cruz Biotechnology),
anti-cGAS (HPA031700, Sigma Aldrich), anti-STING (D2P2F, Cell Signaling
Technology), anti-TBK1 (D1B4, Cell Signaling Technology), anti-IRF3
(D6I4C, Cell Signaling Technology), anti-b-actin (A2228, Sigma Aldrich),
anti-phospho(Ser172)-TBK1 (D52C2, Cell Signaling Technology) and anti-
phospho(Ser396)-IRF3 (4D4G, Cell Signaling Technology). Primary antibodies
were used at a dilution of 1:1,000. Secondary horse radish peroxidase-coupled
anti-mouse (7076 S) and anti-rabbit (7074 S) antibodies were from Cell Signaling
Technology and used at a dilution of 1:3,000. Full immunoblots including size
markers are shown in Supplementary Fig. 6.

Luciferase assays. HEK293T cells were seeded in 96-well plates at 1$ 105 cells
per ml, and transfected with 60 ng of a firefly luciferase construct under the control
of an IFNb promoter (IFNb-luciferase, obtained from T Taniguchi, University of
Tokyo) and 60 ng pGL3-Renilla luciferase transfection control10 per well. In
addition, pcDNA3.1:STING-FLAG (kindly provided by Lei Jin, Albany Medical
Centre) and cGAS or IFI16 expression constructs were co-transfected as indicated.
Empty vector (pCMV-HA, Clontec) was added to keep amounts of DNA constant.
Transfections were carried out using 0.8 ml GeneJuice Transfection Reagent
(Merck Millipore) per well, and cells were lysed in Passive Lysis Buffer
(Merck Millipore) 24 h post transfection. Firefly luciferase activity was measured
and normalized to Renilla luciferase activity in each sample. IFI16 truncations
(Pyrin domain, aa 1–91; HINb domain, aa 507–730) were cloned into pIRESpuro2
containing an N-terminal HA tag.

Co-culture of HEK293T and HaCaT cells. For the co-culture with cGAS-
expressing cells, HEK293T cells were transfected with pCMV6-Entry:cGAS-myc-
FLAG (OriGene) or empty vector for 6 h using GeneJuice Transfection Reagent
(Merck Millipore). cGAS-expressing HEK293T and wild-type or IFI16 " /"
HaCaT cells were seeded together in 12-well plates at a ratio of 1:4 (HEK293-
T:HaCaT) at a total of 1.5$ 105 cells per ml. RNA and protein samples were
harvested after 18 h of co-culture.

siRNA transfection. Pools of four dual strand modified siRNAs were obtained
from GE Dharmacon (ON-TARGETplus SMARTpool siRNA), and used as pool or
individually, as indicated. Primary human keratinocytes or MRC-5 fibroblasts were
seeded in 24-well plates at 1.5$ 105 cells ml" 1 and transfected with 5 nM of non-
targeting siRNA pools or IFI16-targeting siRNA using 3 ml ml" 1 of Lipofectamine
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RNAimax (Life Technologies). Cells were stimulated 48 h after treatment with
siRNA.

Immunofluorescence and confocal microscopy. Cells were seeded on coverslips
24 h before stimulation with DNA or infection as indicated. Cells were washed with
PBS, and fixed in methanol at " 20 !C. Cells were permeabilized for 12 min in 0.5%
Triton-X in PBS, washed in PBS, and incubated for 1 h in blocking solution
(5% FBS, 0.2% Tween-20 in PBS). Cells were stained with primary antibodies
(1:600 in blocking solution) at room temperature over night. Primary antibodies
used were anti-IFI16 (1G7, Santa Cruz Biotechnology), anti-STING (D2P2F,
Cell Signaling Technology) and anti-IRF3 (D6I4C, Cell Signaling Technology).
Coverslips were washed in PBS, and incubated for 3 h with fluorescently labelled
secondary antibodies, used at a dilution of 1:1,500 in blocking solution. Anti-mouse
IgG labelled with AlexaFluor647 (A21236) or AlexaFluor488 (A11029), and
anti-rabbit IgG labelled with AlexaFluor488 (A11034) were from Life Technologies.
Coverslips were washed in PBS and mounted in MOWIOL 4–88 containing
1 mg ml" 1 DAPI. Images were obtained using a $ 100 oil immersion objective
on a LSM710 laser scanning microscope (Zeiss).

mRNA reconstitution. DNA plasmids pcDNA3.1(þ ):GFP or pcDNA3.1(þ ):
IFI16 were used as templates for the in vitro synthesis of capped and poly-
adenylated mRNA using the mMESSAGE mMACHINE T7 Transcription Kit
(ThermoScientific). IFI16 " /" HaCaT cells were seeded at 1$ 105 cells/ml on
coverslips 24 h before transfection with 1 mg ml" 1 GFP mRNA or IFI16 mRNA for
6 h using using 1 ml ml" 1 of Lipofectamine 2000 (Life Technologies). Cells were
then stimulated with 5 mg ml" 1 HT DNA (Sigma) for 1 h.

cGAMP detection by LC-MS. 5$ 106 HaCaT cells per sample were lysed in cold
80% methanol, followed by the addition of 0.45 pmol cyclic-di-AMP, as internal
spike-in to control for losses in sample preparation and injection. Cell debris was
removed by centrifugation, samples were dried by vacuum centrifugation, and then
subjected to three rounds of butanol:water extraction. Dried samples were
resuspended in 1 ml H2O and subjected to solid phase extraction using HyperSep
Aminopropyl columns (ThermoFisher). Columns were activated using 80%
methanol before the addition of samples. The columns were then washed twice
with a solution of 2% (v/v) acetic acid/80% (v/v) methanol. Elution was performed
using a solution of 4% (v/v) ammonium hydroxide/80% (v/v) methanol.
Samples were dried again by vacuum centrifugation and resuspended in 40 ml
H2O for analysis by liquid chromatography and mass spectrometry (LC-MS).

cGAMP levels were measured using a TSQ Quantiva interfaced with Ultimate
3000 Liquid Chromatography system (ThermoScientific), equipped with a porous
graphitic carbon column (HyperCarb 30$ 1 mm ID 3 mm; Part No: C-35003-
031030, Thermo-Scientific). Mobile phase buffer A consisted of 0.3% (v/v) formic
acid adjusted to pH 9 with ammonia before a 1/10 dilution. Mobile phase buffer
B was 80% (v/v) acetonitrile. The column was maintained at a controlled
temperature of 30 !C and was equilibrated with 13% buffer B for 15 min at a
constant flow rate of 0.06 ml min" 1. Aliquots of 13 ml of each sample were loaded
onto the column and compounds were eluted from the column with a linear
gradient of 13–80% buffer B over 20 min. Buffer B was then increased to 100% for
5 min and the column was washed for a further 5 min with Buffer B. Eluents were
sprayed into the TSQ Quantiva using Ion Max NG ion source with ion transfer
tube temperature set to 350 !C and vaporizer temperature 125 !C. The TSQ
Quantiva was run in negative mode with a spray voltage of 2,600 V, sheath gas 40
and Aux gas 10. cGAMP and spiked in cyclic di-AMP levels were measured using
multiple reaction monitoring mode with optimized collision energies and radio
frequencies previously determined by infusing pure compounds. Three transitions
(673.054328.03, 673.054343.92 and 673.064522.00) were used to monitor
cGAMP and one transition (657.074328.03) was used to detect cyclic di-AMP.

Co-immunoprecipitation. Cells were lysed in IP lysis buffer (25 mM Tris-HCl
pH 7.4, 150 mM NaCl, 1% NP-40, 1 mM EDTA, 50 mM NaF and 5% glycerol),
supplemented with Complete protease inhibitor cocktail (Roche). Samples were
pre-cleared by centrifugation at 2,000 g for 10 min before incubation with
antibodies overnight at 4 !C, followed by the addition of protein G beads
(ThermoFisher) for 3 h. Immunoprecipitates were washed three times with the
IP lysis buffer. Bound proteins were eluted by boiling in SDS-sample buffer and
analysed by western blot.

Treatment with phosphatase and benzonase. For phosphatase treatment,
immunoprecipitates containing STING were incubated with 25 U l phosphatase
for 1 h at 30 !C. For treatment with benzonase, immunoprecipitates were washed in
lysis buffer without EDTA, and incubated in 100ml benzonase reaction buffer
(50 mM Tris-Cl, pH 8, 2 mM MgCl2, 150 mM NaCl) with 1.5 U ml" 1 benzonase
for 1 h at 37 !C. Immunoprecipitates were washed twice in lysis buffer and analysed
by SDS–PAGE and western blotting.

Statistical analysis. Results from real-time PCR analysis, luciferase assays,
ELISA and cGAMP quantification are presented as averages of triplicate
samples with error bars representing s.d. Data were subjected to a multiple
t-test statistical analysis with the Holm-Sidak method. *Po0.05, **Po0.01,
***Po0.001.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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Supplementary Figure 1. IFI16 is required for DNA, but not RNA sensing in HaCaT keratinocytes.
(a-i) qRT-PCR analysis of mRNA expression levels normalised to ȕ�DFWLQ mRNA and mock treatment in wild type 
(IFI16 +/+) HaCaT keratinocytes or two IFI16-deficient HaCaT clones, IFI16 -/- (1) or (2), as indicated. Data are 
presented as mean values of biological triplicates. Error bars indicate standard deviation (sd). * p<0.05, ** p<0.01, 
*** p<0.001 Student’s t-test. (a)�&HOOV�ZHUH�SHUPHDELOLVHG�ZLWK�GLJLWRQLQ��DQG��LQIXVHG�ZLWK����ȝJ�PO�KHUULQJ�WHVWLV�
(HT) DNA for 6 h. ,)1�ȕ mRNA expression levels were quantified by qRT-PCR. (b) ,)1�ȕ mRNA expression 6 h 
post mock transfection, or transfection with 1 µg/ml 70mer oligonucleotide. (c) I)1�ȕ mRNA expression after 
transfection of 100 ng/ml poly(I:C). (d) ,)1�ȕ mRNA levels after transfection with 50ng/ml LQ�YLWUR transcribed GFP 
mRNA containing 5’ triphosphate groups (pppRNA). (e) Time course analysis of IL-6 mRNA expression following 
WUDQVIHFWLRQ�ZLWK���ȝJ�PO�+7�'1$�IRU�WKH�WLPHV�LQGLFDWHG��(f) IL-6 mRNA expression 6 h post transfection with 1, 10 
or 100 ng/ml poly(I:C). (g) IL-6 mRNA expression 6 h post transfection with 50 ng/ml LQ�YLWUR transcribed mRNA 
(pppRNA). (h) CXCL10 mRNA 6 h post transfection with 1 µg/ml HT DNA or 100 ng/ml poly(I:C). (i) CXCL10 mRNA 
expression 6 h post transfection with 1 µg/ml plasmid DNA or 70mer oligoncleotide, or 50 ng/ml LQ�YLWUR transcribed 
RNA (pppRNA). 
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Supplementary Figure 2. IFI16 is required for the response to DNA viruses
(a,b)�:LOG�W\SH��,),��������RU�,),���GHILFLHQW�+D&D7�FHOOV�ZHUH�LQIHFWHG�ZLWK�+69����02, ���IRU���K��,)1�ȕ��D��
or IL-6 (b) mRNA expression was analysed by qRT-PCR. (c) HaCaT cells were infected with a preparation of 
6HQGDL�YLUXV�FRQWDLQLQJ�GHIHFWLYH�YLUDO�SDUWLFOHV�IRU��K��DQG�,)1�ȕ�P51$�H[SUHVVLRQ�ZDV�PHDVXUHG�E\�T57-
PCR. (d) HaCaT cells were infected with a preparation of Sendai virus, at dilutions of 1:20,000, 1:2,000 and 
1:200. After 6h, levels of IL-6 mRNA were quantified by qRT-PCR. (e) MRC-5 human embryonic lung fibro-
blasts were treated with a non-targeting (NT) or IFI16-targeting pool of siRNAs, or the four IFI16-targeting 
VL51$V�LQGLYLGXDOO\�DV�LQGLFDWHG��([SUHVVLRQ�RI�,)1�ȕ�P51$�ZDV�TXDQWLILHG�IROORZLQJ�WUDQVIHFWLRQ�RI����J�PO�
HT DNA for 6h. All data are presented as mean values of biological triplicates. Error bars indicate standard 
deviation (sd). * p<0.05, ** p<0.01, *** p<0.001 Student’s t-test.  
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Supplementary Figure 3. IFI16 acts ’upstream’ of STING, TBK1 and IRF3.
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E\�FRQIRFDO�PLFURVFRS\��&HOOV�ZHUH�VWDLQHG�IRU�67,1*��JUHHQ��DQG�,),����UHG���(b)�&HOOV�DV�LQ��D��ZHUH�VFRUHG�IRU�
67,1*�FOXVWHULQJ��$W�OHDVW�����FHOOV�ZHUH�FRXQWHG�SHU�VDPSOH��(c) IFI16�����RU�����+D&D7�FHOOV�ZHUH�WUHDWHG�ZLWK�
<�*��'1$�ROLJRQXFOHRWLGH�IRU�WKH�WLPHV�LQGLFDWHG��67,1*�DQG�,5)��SKRVSKRU\ODWLRQ�ZDV�DVVHVVHG�E\�:HVWHUQ�
EORWWLQJ��(d)�&HOOV�ZHUH�WUHDWHG�ZLWK����J�PO�+7�'1$�RU�����QJ�PO�SRO\�,�&��IRU��K��7%.��DQG�,5)��SKRVSKRU\ODWLRQ�
ZDV�DVVHVVHG�E\�:HVWHUQ�EORWWLQJ� (e)�:LOG�W\SH�RU�,),���GHILFLHQW�+D&D7�FHOOV�ZHUH�VWLPXODWHG�ZLWK���ȝJ�PO�+7�
'1$�IRU��K��,5)��WUDQVORFDWLRQ�WR�WKH�QXFOHXV�ZDV�REVHUYHG�E\�FRQIRFDO�PLFURVFRS\��&HOOV�ZHUH�VWDLQHG�IRU�,5)��
�JUHHQ��DQG�,),����UHG���QXFOHDU�'1$�LV�VWDLQHG�ZLWK�'$3,��EOXH���(f)�&HOOV�DV�LQ��H��ZHUH�VFRUHG�IRU�SUHGRPLQDQWO\�
F\WRVROLF��&���SUHGRPLQDQWO\�QXFOHDU��1��RU�HYHQ�QXFOHDU�DQG�F\WRVROLF�GLVWULEXWLRQ�RI�,5)����$W�OHDVW�����FHOOV�ZHUH�
FRXQWHG�SHU�VDPSOH��6FDOH�EDUV������P�

- 98
N'D

- 50

- 36
- 98

- 64

- 50

- 64

- 98

- 64

- 64

IFI16 -/- (1)



a b
cells in 10 cm dishes

c

d

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

RT: 13.55
AA: 10866

RT: 9.47
AA: 5464

RT: 13.54
AA: 36237

RT: 9.47
AA: 22983

0 5 10 15

Time (min)

re
la

tiv
e 

ab
un

da
nc

e
re

la
tiv

e 
ab

un
da

nc
e

re
la

tiv
e 

ab
un

da
nc

e

cGAMP

c-di-AMP

cGAMP c-di-AMP

lysis in methanol

butanol extraction

solid phase extraction
with aminopropyl column

liquid chromatography
with porous carbon column

protein, DNA, RNA

lipids

other small molecules

c-di-AMP
spike-in

MS/MS 
for cGAMP and c-di-AMP

0
20
40
60
80

100

0
20
40
60
80

100

0
20
40
60
80

100

RT: 13.32
AA: 6716

RT: 9.23
AA: 184

RT: 13.32
AA: 22557

RT: 9.23
AA: 623

cGAMP
c-di-AMP
spike-in

re
la

tiv
e 

ab
un

da
nc

e
re

la
tiv

e 
ab

un
da

nc
e

re
la

tiv
e 

ab
un

da
nc

e

RT: 13.20
AA: 6649

RT: 9.13
AA: 51.08

RT: 13.20
AA: 21885

RT: 9.17
AA: 473

0
20
40
60
80

100

0
20
40
60
80

100

0
20
40
60
80

100

cGAMP
c-di-AMP
spike-in

re
la

tiv
e 

ab
un

da
nc

e
re

la
tiv

e 
ab

un
da

nc
e

re
la

tiv
e 

ab
un

da
nc

e

c-di-AMP

cGAMP

c-di-AMP

cGAMP

Untreated

0 5 10 15 20 0 5 10 15 20

IFI16 +/+

time (min)

IFI16 -/- (2)

time (min)

RT: 8.53
AA: 43345

0 5 10 15
time (min)

0
20
40
60
80

100

re
la

tiv
e 

ab
un

da
nc

e

0
20
40
60
80

100

re
la

tiv
e 

ab
un

da
nc

e

cGAMP

cGAMP

IFI16 +/+
+ HT DNA

IFI16 +/+
+ HT DNA

SVP-treated

e

Supplementary Figure 4. IFI16 does not affect cGAMP production.
(a) HEK293 Trex FlpIn cells were induced to express IFI16-GFP or GFP alone by treatment with 1 µg/ml tetracyclin 
for 18 h, prior to immunoprecipitation with anti-GFP antibody. cGAS and GFP fusion proteins were detected by 
immunoblotting. (b) Schematic representation of sample preparation for analysis by LC-MS. (c) Total and extracted 
ion chromatogram of 50 pg synthetic cGAMP and cyclic di-AMP standards. (d) Quantification of cGAMP by LC-MS 
in untreated wild type (IFI16 +/+) or IFI16 -/- HaCaT cells. (e) Production of endogenpus cGAMP quantified by 
LC-MS 2 h post transfection of 1 µg/ml HT DNA. Data are presented as mean values of triplicate samples; error 
bars represent standard deviations. (f) cGAMP extracted ion chromatogram of wild type HaCaT cells stimulated 
with 1 µg/ml HT DNA for 4h (top) and from parallel lysates treated with 0.05 U snake venom phosphodiesterase 
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Supplementary Figure 6. Uncropped immunoblots from Figures 1 - 7.
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