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Abstract 

Intestinal dysbiosis involves a shift in microbial composition and abundance within the gut 

and compelling evidence has highlighted the pivotal role dysbiosis plays in the onset and 

pathogenesis of numerous diseases, including inflammatory bowel disease (IBD), allergies 

and even mental health disorders. The intestinal microbiota is largely defined by host diet; a 

recent mouse model of total parenteral nutrition (TPN) showed that a dysbiotic shift in 

microbial dominance occurs following enteral nutrient depravation. Furthermore, 

metabolomics studies have identified that IBD patients can be discriminated from healthy 

based on their urinary metabolite profiles, but whether such profiles are accountable to 

intestinal dysbiosis remains uncertain. The research presented herein employed two human 

models; a novel TPN model in loop ileostomy patients, and patients with IBD, to assess 

microbial shifts and associated physiological consequences as well as determine whether 

urinary metabolite profiles are reflective of the intestinal microbiota.   

Using 16S rDNA-qPCR and -DGGE methods we revealed extensive variations in the microbiota 

of functional and defunctioned ileum following enteral nutrient deprivation, with a 

significant relative decrease in the Firmicutes phylum and concomitant increases in γ-

Proteobacteria. Immunohistochemical techniques exposed a distinct physiological 

environment associated with a dysbiotic microbiota. Such environment was defined by 

reduced epithelial cell proliferation and mucosal atrophy that is likely due to altered host-

microbiota interactions at the epithelial surface. We also observed post-operative 

complications that were potentially dysbiosis-mediated in almost 50% of the study cohort. 

Urinary NMR and Illumina 16S next-generation sequencing multi-omics statistical analyses 

identified correlations between dietary-associated urinary metabolites, particularly 

epicatechin, and distinct enterotype-like microbiota profiles. Application of this principle to 

prediction of IBD, as an example of a dysbiosis-associated disease, proved to be difficult due 

to limited sample numbers confounding interpatient variability.  

This research furthers the utilisation of intestinal microbiota as a therapeutic target, possibly 

via novel prebiotic administration to the defunctioned ileum with the potential to restore 

microbiota function prior to reanastomosis and reduce post-operative complications. 

Furthermore, it also provides promise for inexpensive, non-invasive detection of dysbiosis as 

a risk-factor of associated diseases. Further research, employing greater numbers of 

participants, is required to fully evaluate the potential predictive value of dysbiosis.   
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1.1 - Introduction 

This project aims to investigate intestinal dysbiosis both as a cause and a potential predictor 

of various associated diseases. First, molecular and biochemical techniques will be employed 

to explore dysbiosis and consequences for intestinal physiology utilising a novel human 

model which controls for confounding interpatient genetic and environmental variability. In 

addition, urinary NMR metabolomics and Illumina® 16S deep sequencing will be utilised to 

determine whether host urine metabolites are reflective of intestinal microbiota 

composition.  

To provide a contextual background for this research and the data collected, the literature 

review will be presented with particular focus on the following topics:  

 Diversity, structure and function of the human intestinal microbiota 

 Acquisition and stability of the intestinal microbiota 

 Maintenance of homeostasis and tolerance to commensal microbes 

 Intestinal dysbiosis and associated diseases 

 Dysbiosis aetiology and influence of diet 

 Intestinal microbiota as a therapeutic target 

 

 

1.2 – Structure and Diversity of the Human Intestinal Microbiota 

 

The gastrointestinal (GI) tract harbours a vast and diverse microbial community, referred to 

as the gut microbiota. This complex ecosystem comprises over 1014 microorganisms of 

approximately 1000 different species, differing in composition and increasing in abundance 

and diversity with progression through the GI tract  (figure 1.1) (Eckburg et al., 2005). The 

large intestine is resident to the vast majority of the human microbiota and is predominated 

by obligate anaerobes, which collectively outnumber all cells of human origin by an order of 

magnitude (Zhu et al., 2010). The composition of the intestinal microbiota is also thought to 

differ cross-sectionally with distinct microbes residing the intestinal lumen and mucosa 

(Eckburg et al., 2005). Bacteroidetes and Firmicutes phyla account for >90% of the intestinal 

microbiota, whilst the remaining populations consist of less predominant phyla including 

Proteobacteria, Actinobacteria, Fusobacteria and a small proportion of fungi and viruses 

(Eckburg et al., 2005, Reyes et al., 2010, Hoffmann et al., 2013).  
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Firmicutes is at present the largest phylum, containing no less than 200 genera, with most of 

the intestinal microbiota belonging to Clostridium and Lacotobacillus. Firmicutes are Gram-

positive bacteria with a low G+C DNA content that are particularly efficient at harvesting 

energy from host diet (Vos et al., 2009). The second most predominant phylum, 

Bacteroidetes comprises three broad classes of Gram-negative, non sporeforming, rod 

shaped bacteria; Flavobacteria, Sphingobacteria and the most well studied Bacteroida. The 

Figure 1.1 – Microbiota of the GI tract in humans.  

The most diverse and abundant human microbiota is that of the GI tract which has 

coevolved with the host to reach a state of mutualism. A gradient exists in microbiota 

load with up to 1014 prokaryotes of around 100 different species residing within the large 

intestine. Microbiota that are specially equipped to thrive under various host 

physiological conditions, such as pH and oxygen levels, predominant each organ of the 

GI tract, with anaerobes and facultative anaerobes significantly outnumbering aerobes. 

    Figure adapted from (Tsabouri et al., 2014). 
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genus Bacteroides provide important metabolic capabilities which promote a diverse 

metabolism in the human host (Wexler, 2007). The Proteobacteria phylum consist of five 

classes of Gram-negative bacteria, categorised primarily according to trophic status. 

Gammaproteobacteria is the most diverse class with many human pathogens including Vibrio 

cholerae and enteric bacteria including the most widely studied Escherichia coli (E.coli; 

(Garrity et al., 2005)). Actinobacteria are Gram-positive, high G+C DNA content 

microorganisms which harbour the clinically relevant bacterial genera Bifidobacterium and 

Actinomyces (Whitman et al., 2012).  

 

 

The broad diversity of the intestinal microbiota has become increasingly well characterised 

with the development of high throughput sequencing technologies, enabling progression 

from limited culture-based methodologies. It was originally believed that all healthy adults 

harboured the same intestinal microbiota as the limited proportion of culturable intestinal 

bacteria were repeatedly isolated from different individuals. Since then, culture-independent 

studies such as the human microbiome project, have demonstrated substantial inter- and 

intra-individual variation in microbial diversity, despite the consistency of the “core” phyla 

(Consortium, 2012, Eckburg et al., 2005). Subsequent attempts to define a characteristic 

microbiota at species level in the adult intestine have identified various functionally 

important species, most notably Faecalibacterium prausnitzii (F. prausnitzii), which are 

shared across most individuals, albeit at varying abundances (Tap et al., 2009).  

 

 

In 2011 it was suggested that despite the substantial inter-individual species variability, a 

common functionality, being the metabolism of nutrients within the lumen, is shared across 

each unique microbiota and would therefore result in different types of intestinal microbiota 

(Arumugam et al., 2011). The study identified three groups, termed enterotypes, across 4 

combined datasets totalling more than 200 individuals from different cultures. Each 

enterotype is predominated by a different bacterial genera; Bacteroides, Prevotella and 

Ruminococcus, respectively. The first is also positively correlated with Clostridia and 

Lactobacillus, whilst the second and third are correlated negatively with E. coli (Arumugam 

et al., 2011). Since then a fourth enterotype has been suggested to be related to intestinal 

disease with an altered intestinal microbiota and is defined with an abundance of 

Proteobacteria, particularly E. coli (Harmsen and C., 2016). The ongoing effort to define 
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specific enterotypes enabling stratification of individuals into microbiota groups, analogous 

to the distinct A, B and O blood groups, is desirable as it would simplify the diverse microbiota 

to relatable and manageable subgroups. However, enterotype determination is subject to 

selection and application of sequencing and analytical methodologies (Koren et al., 2013). 

Furthermore, evidence has begun to demonstrate the vast temporal variability of the 

intestinal microbiota in healthy adults which is increasingly suggestive of a continuous 

dynamic ecosystem (Knights et al., 2014).  

 

 

1.3 – Acquisition and Stability of the Intestinal Microbiota  

The intestine of an unborn child was until recently, considered sterile with initial microbial 

colonisation occurring during and immediately after birth (Escherich, 1988). However, recent 

studies have identified that foetuses are exposed to maternal microbiota that have infiltrated 

the amniotic fluid, likely via the placenta, suggesting microbiome acquisition may begin in 

utero (Collado et al., 2016). In addition, identification of bacteria in neonate meconium 

samples further supports this notion, although given that the bacterial profiles resemble 

maternal and later infant faecal profiles, rather than that of amniotic fluid or placenta, such 

findings may be a consequence of colonisation during child birth rather than in the womb 

(Collado et al., 2016).  

 

Postpartum microbial colonisation of the intestine is determined by a variety of factors 

including method of delivery and feeding, duration of hospital stay and use of antibiotics 

(Penders et al., 2006). During vaginal delivery, the neonate is colonised with maternal vaginal 

and faecal microbiota via direct contact. However, neonates delivered by caesarean section 

are deprived of this direct contact resulting in a lack of maternally derived microbes, such as 

Bifidobacteria and are instead colonised by environmental microbes (Biasucci et al., 2008). 

Likewise, breastfed infants are colonised predominantly by Bifidobacteria and lactobacilli, 

whilst those fed on formula milk share microbial predominance between Bacteroides and 

Bifidobacteria and also harbour microbes such as Escherichia coli and Staphylococci 

(Harmsen et al., 2000). The precise influence of each of these factors on microbial diversity 

in children however is not yet well established but associations exist between disruptions in 

intestinal microbiota development and establishment of disease in later life, particularly 

allergies and obesity (Wang et al., 2008, Kalliomaki et al., 2008). 
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The intestinal microbiota is diverse and fluctuates considerably throughout infancy prior to 

development of a more stable microbiota in adulthood. During the first year of life, the 

intestinal microbiota has been shown to vary substantially both temporally within and 

between babies, largely as a consequence of environmental exposures, such as the 

microbiota of family members as well as diet (Palmer et al., 2007). By the age of 1, the 

microbial profiles converge toward a characteristic adult intestinal microbiota, predominated 

by Firmicutes and Bacteroidetes (Palmer et al., 2007). During adolescence, adulthood and 

through to old age, the intestinal microbiota remains relatively stable at the phylum level but 

is shaped by a variety of genetic and environmental factors to form a unique and 

continuously diverse microbiota. Host genetics are considered to influence intestinal 

microbiota composition, with twin studies reporting a high degree of similarity in microbiota 

profiles (Dicksved et al., 2008, Lee et al., 2011). However, subsequent studies have also 

reported a comparable level of similarity in the intestinal microbiota of monozygotic and 

dizygotic twins, suggesting that it is in fact environmental factors which interact with host 

genetics to shape intestinal microbiota composition, rather than genetic determinants 

exclusively (Turnbaugh et al., 2009). Likewise, studies investigating cultural differences in the 

intestinal microbiota composition have reported distinct profiles in healthy adults around the 

world. One study, which compared the intestinal microbiota profiles of healthy adults living 

in South Korea and the United States, found biogeographical signatures defined by significant 

increases in Lactobacillales and reductions in Clostridales in the South Korean cohort (Lee et 

al., 2011). Although these cohorts undoubtedly have genetic differences, dissimilarity of the 

intestinal microbiota is considered to be a consequence of vastly contrasting lifestyles 

causing distinct environmental exposures (Lee et al., 2011).  

 

1.4 – Functionality of Human Intestinal Microbiota  

 

The intestinal microbiota has co-evolved with human hosts to reach a state of mutualistic 

symbiosis; humans provide nutritional sustenance and a superlative physiological 

environment, whilst the microbiota implement a broad range of essential functions which 

promote host health. The combined genomic capacity of the intestinal microbiota, referred 

to as the intestinal microbiome, has been calculated to exceed 3 million genes, which 

outnumbers that of the human host by several orders of magnitude (Qin et al., 2010). This 
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vast microbial ecosystem and its combined genomic repertoire provides a range of 

physiological and enzymatic functions which promote host health.  

 

 

The broad mass of the intestinal microbiota provides barrier effects that protect the 

intestinal epithelium from potential invasion by toxins and pathogens also present in the 

lumen. Both germ-free (GF) and antibiotic treated mice have been shown to have an 

increased susceptibility to infection by enteric pathogens such as Clostridium difficile (Osawa 

and Mitsuhashi, 1964, Lawley et al., 2009). The dense population of resident microbes 

generates competition for shared nutrients and niches within the intestine, acting as a 

physical barrier to pathogenic invasion as well as attenuate overgrowth of opportunistic 

resident microbes. Resident microbes promote this defence via production of bacterial toxins 

that inhibit similar and thus competing species. Furthermore, the production of short chain 

fatty acids (SCFA) by bacteria such as Bacteroides can locally adjust the pH and consequently 

inhibit growth of intestinal pathogens, particularly enterohaemorrhagic E. coli  (Shin et al., 

2002).  

 

 

It is also understood that the extent to which the intestinal microbiota contribute to host 

health far exceeds such protective functions. In particular, a range of gnotobiological studies 

have demonstrated that resident microorganisms are crucial for normal development of 

intestinal architecture in early life. For example, GF mice exhibit significant morphological 

defects in the development of various secondary lymphoid tissues, including Peyer's patches 

and lymphoid follicles, which usually provide innate immune functions against invasive 

microorganisms (Bouskra et al., 2008). In addition, a substantial reduction in the overall 

surface area of the intestine and thickness of the lamina propria was observed in GF mice 

compared to control groups (Abrams et al., 1963, Gordon and Bruckner-Kardoss, 1961). 

However, although the developmental consequences of intestinal microbiota depletion are 

well documented, the mechanisms by which microbes influence such development are not 

yet comprehensively defined.  

 

 

In addition, commensal microbes are fundamental in establishment of proper host immune 

function that supports host-microbiota symbiosis, via immune cell training upon first 
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encounter. It has been suggested that exposure to commensal microbes within the first three 

months of life is essential for complete immune training (Arrieta et al., 2015). Research has 

shown that regulatory T cells present in the intestine express distinct cell surface receptors 

to those in the periphery, inferring a superior role for immune cell interactions with localised 

microbiota-derived antigens (Lathrop et al., 2011). Commensal interaction with such immune 

cells results in peripheral expansion of regulatory T cells rather than inflammatory effectors, 

as is observed with exposure to pathogenic microorganisms (Lathrop et al., 2011). 

Furthermore, research into this area has concluded that infants harbour a distinct premature 

immune system prior to microbiota-mediated immune cell training and an increased 

susceptibility for infection and disease has been correlated with perturbed microbiota-

mediated immune training in early years (Arrieta et al., 2015). 

 

 

1.5 – Metabolism of the Intestinal Microbiota 

 

The intestinal microbiota contribute to host metabolism via production of essential dietary 

SCFA, amino acids, lipids and vitamins which, due to a lack of host digestive enzymes, are 

otherwise absent (Zhu et al., 2010). Disaccharides and simple sugars, such as lactose and 

glucose, are hydrolysed and absorbed in the small intestine by host metabolism. However, 

complex carbohydrates, also referred to as dietary fibre, are polysaccharide chains such as 

starch and cellulose that are indigestible by host metabolic enzymes due to the configuration 

of glycosidic linkages between oligomers (figure 1.2B). These carbohydrates reach the large 

intestine undigested where various intestinal microbiota, including F. prausnitzii, are 

equipped with a specialised range of enzymes capable of metabolising such compounds.  

Complex carbohydrates are metabolised into simple oligosaccharide and monosaccharides 

and then fermented, for energy harvest, into SCFA end-products such as propionate and 

formate, by the intestinal microbiota (figure 1.2A) (Tremaroli and Backhed, 2012).  

 

Propionate, acetate and butyrate are the principle SCFA produced within the large intestine 

and provide some nutritional value to the host as well as influencing intestinal health. SCFAs 

traverse the intestinal epithelium via transporters such as monocarboxylate transporter 1  



9 
 

  

Figure 1.2 – Intestinal microbiota-mediated metabolism of host dietary fibre.  

(A) Complex carbohydrates are first metabolised into oligo and monosaccharides then 

fermented into SCFAs by the intestinal microbiota where they serve a variety of functions 

both locally and on a systemic scale. Metabolites in excess are excreted in host urine. (B) 

Microbiota fermentation to produce SCFA end-products. Red circles depict glycosidic 

linkages indigestible by host metabolic capabilities.  

   Figure adapted from Tremaroli and Backhed (2012). 
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(MCT-1) where butyrate serves as an energy substrates for IECs whilst acetate and 

propionate function as substrates for gluconeogenesis and lipogenesis (figure 1.3) (den 

Besten et al., 2013). Additional mechanistic effects of SCFA have been suggested to influence 

host intestinal immunology and physiology. Such mechanisms are highlighted in figure 1.3 

and discussed in relevant sections throughout.  

 

In comparison to complex carbohydrates, there is limited research into microbiota-

associated protein metabolism, likely due to the generally accepted opinion that all nine 

essential amino acids are provided by host diet. However, as research began to acknowledge 

the broad metabolic capability of the intestinal microbiome, investigative studies emerged 

demonstrating a role for microbiota-mediated de novo synthesis of amino acids. Studies 

employing a combination of radiolabelled carbon and nitrogen tracers with antibiotic 

treatments calculated the rate of microbiota contribution to leucine input to be up to 22% in 

healthy adults (Raj et al., 2008). Furthermore, a similar study identified lysine, proline and 

histidine contribution to be up to 21%, 41% and 52%, respectively (Metges, 2000). 

Furthermore, intestinal microbiota harbour proteolytic metabolic capabilities which promote 

catabolism of dietary protein into amino acids (Wallace, 1996). Dietary and microbiota 

derived amino acids are utilised for host and microbiota protein synthesis as well as 

modulating host nitrogen and energy balance in peripheral tissues (reviewed in Dai et al. 

(2011)).  

 

As with most intestinal microbiota functions, early indications as to a role of the microbiota 

in host lipid metabolism was provided by comparison of GF mice with that of conventionally 

raised mice which found increased cholesterol and triglyceride levels in the serum of GF mice, 

indicative of decreased lipid clearance (Velagapudi et al., 2010). The intestinal microbiota 

have been identified to indirectly influence lipid metabolism via a variety of different 

mechanisms. Firstly, the intestinal microbiota are able to metabolise bile acids in the 

intestine that are responsible for emulsification, absorption and transport of dietary fats 

from the intestine to the liver. Deconjugation of bile acids by intestinal microbes delays 

absorption and enables further metabolism into secondary bile acids. A small portion of 

secondary bile acids that are absorbed into the periphery, act as ligands for the G protein-

coupled receptor (GPCR), TGR5  which modulates systemic glucose and lipid metabolism via  

induction of glucagon-like peptide (GLP)-1 secretion (Thomas et al., 2009).  Likewise, bacterial 

derived SCFAs are able to modulate host metabolism via localised signalling through GPCRs,  
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Figure 1.3 – Mechanisms of SCFA influence on intestinal physiology and immunology. 

 Microbiota derived SCFA metabolites are suggested to mediate host-microbiota and 

intestinal homeostasis via variety of mechanisms. SCFA IEC GPCR binding stimulates 

NLRP3-associated inflammasome formation, increased IL-18 secretion and fortification of 

immune responses. IEC MCT-1 regulate transport SCFA across the epithelial barrier where 

they influence chemotaxis of immune cells. Butyrate provides primary energy source for 

IECs. GPCR binding by SCFA upregulates heat shock protein-25 (Hsp-25) to promote cell 

survival and repair. SCFA stimulate mucin secretion, fortifying the mucosal barrier. SCFAs 

also inhibit HDAC activity resulting in histone hyperacetylation and modulation of gene 

transcription.  

Figures adapted from Macia et al. (2012) and Lin et al. (2015). 
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GPCR41 and GPCR43 which also induce GLP-1 secretion (figure 1.3) (Tolhurst et al., 2012). On 

the other hand, choline, an important nutrient required for lipid metabolism and hepatic 

production of very-low-density lipoproteins (VLDLs), is metabolised by the intestinal 

microbiota into toxic timethylamines. Trimethylamine is then further metabolised by the 

host in the liver to form trimethylamine-N-oxide which has been implicated in perturbation 

of cholesterol metabolism (Bennett et al., 2013).  

 

Numerous essential vitamins including vitamin K, biotin, vitamin B12 and thiamine, are also 

produced by the intestinal microbiota, most notably by members of the genera Clostridium, 

Bacteroides and Bifidobacterium (Hill, 1997). In addition, various studies have demonstrated 

that indigenous microbiota are able to detoxify potentially damaging dietary compounds. For 

example, heterocyclic aromatic amines (HAA), produced during high-temperature cooking of 

meats, are implicated in the onset of colorectal cancer (CRC) (Helmus et al., 2013). Various 

species of Lactobacillus and Bifidobacterium directly bind to and alter the structure of HAAs, 

consequently reducing their mutagenicity (Stidl et al., 2008).  

 

 

1.6 – Intestinal Homeostasis Modulated by the Intestinal Microbiota 

 

In addition to serving beneficial developmental, metabolic and protective functions within 

the host, the intestinal microbiota have been implicated in maintaining intestinal 

homeostasis. The intestinal epithelium is composed of a monocellular layer of intestine 

epithelial cells (IECs) arranged into specialised villi and crypts, referred to as the crypts of 

Lieberkuhn. To maintain intestinal health the IEC layer is continuously replenished by the 

division and differentiation of pluripotent intestinal epithelial stem cells (IESCs), residing at 

the base of crypts, into a range of functionally distinct IEC subsets (table 1.1; figure 1.4A). A 

state of intestinal homeostasis is achieved when the rate of IESC proliferation is equal to the 

rate of programmed cell death, via anoikis or apoptosis, thus maintaining cell numbers (Frisch 

and Francis, 1994). Early gnotobiotic experiments demonstrated the significant influence 

resident microorganisms have on intestinal homeostasis. For example, the rate of IEC 

turnover in GF mice was found to be significantly reduced as a result of decreased IEC 

proliferative activity, reduced rate of differentiation and upward migration within intestinal 

crypts and an overall decreased rate of IEC apoptosis (Abrams et al., 1963, Alam et al., 1994, 

Savage et al., 1981). Subsequent studies investigating the mechanisms underpinning such 
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observations have identified that microbial-mediated intracellular IEC signalling pathways 

serve a vital role in maintaining intestinal homeostasis (figure 1.4B) (Rakoff-Nahoum et al., 

2004). 

Differentiated Cell Type Location and Abundance Primary Function  

Absorptive enterocytes Distributed throughout the 

epithelium. Most abundant 

cell type in small intestine 

Absorption of nutrients from 

the intestinal lumen 

Goblet cells Distributed throughout the 

epithelium. Increase in 

abundance in the colon and 

rectum.  

Secretion of mucus into the 

intestinal lumen 

Enteroendocrine cells Represent <1% of cell 

numbers. Distributed 

throughout the  epithelium 

Secretion of a variety of 

hormones that impact gut 

motility and physiology 

Paneth cells Reside at the base of crypts 

below stem cell populations 

Secretion of antimicrobial 

peptides for microbial 

regulation 

Microfold cells (M cell) Located above lymphoid 

Peyer's patches. Particularly 

rare cell type. 

Selectively present microbial 

antigens to the underlying 

immune cells 

Conserved microbial molecular products such as lipopolysaccharide (LPS) and muramyl 

dipeptide (MDP) function as ligands for various pattern recognition receptors (PRRs) 

expressed on IECs. Microbial activation of different families of PRRs including, NOD-like 

receptor (NLR) and Toll-like receptor (TLR) families, provide distinct intracellular signals that 

promote and regulate homeostasis (figure 1.4B) (Hirota et al., 2011, Rakoff-Nahoum et al., 

2004). The specificity of IEC PRRs for such highly conserved microbial ligands, provided the 

first indications that downstream functions of IEC signalling extend far beyond that of 

pathogen elimination. Since then, a variety of studies employing PRR signalling-deficient and 

antibiotic treated mice, have demonstrated the essential role of microbe-mediated IEC 

signalling in maintaining intestinal homeostasis. For example, broad-spectrum antibiotic 

treated mice as well as TLR-deficient mice were unable to recover from chemically induced 

colitis, using dextran sodium sulphate (DSS), whilst TLR2-deficient mice given oral doses of 

Table 1.1 - Differentiated cell types of the intestinal epithelium. 

Table composed based on information presented in Barker et al. (2008) and Kucharzik et al. (2000). 
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LPS (a TLR4 ligand) were protected from mortality due to IEC repair and restored IEC 

homeostasis (Rakoff-Nahoum et al., 2004). Similarly, mice deficient in NLRP3, a member of 

the NLR family of receptors that oligomerise to form inflammasome complexes and initiate 

IL-18 release and immune activation, demonstrated an increased susceptibility to DSS-

induced colitis as well as marked changes in the intestinal microflora, and reduced intestinal 

bactericidal capabilities (figure 1.3) (Hirota et al., 2011). Further studies have begun to 

elucidate the beneficial downstream effector mechanisms which influence intestinal 

homeostasis and have identified that such signalling pathways promote IEC survival and 

proliferation through expression of epidermal growth factor receptor (EFGR) ligands and 

trefoil factor 3 (TFF3; figure 1.4B) (Brandl et al., 2010, Taupin et al., 2000).  

 

 

 

1.7 - Maintenance of Tolerance to Resident Microbiota  

 

Although the intestinal microbiota usually obtain a symbiotic relationship with the host, 

individual species are not necessarily benign, non-pathogenic microorganisms. Certain 

species, often referred to as pathobionts, reside within the intestinal microbiota but have the 

potential to establish infection or disease in particular environments. For example, 

Clostridium difficile, belonging to the Firmicutes phylum, comprises a small portion of the 

resident microbiota but can opportunistically induce pseudomembranous colitis following 

long term antibiotic therapy (Limaye et al., 2000). In addition, the vast antigenic nature of 

the intestinal microbiota paired with its residing proximity to the intestinal epithelium 

presents an enormous challenge to the host immune system. Given that the host immune 

system is specifically adapted to eliminate non-self cells, the intestinal microbiota pose a 

substantial threat of extensive immune activation.  The host obtains several physiologic and 

immunologic defence mechanisms which serve to prevent adverse immunological responses 

to resident microorganisms.  

 

 

Primary physiological defence mechanisms involve creating a physical barrier to attenuate 

direct contract between the intestinal microbiota and the underlying IECs. This is achieved 

through production of a mucus layer to the intestinal mucosa and formation of cell junctions 

which create tight, mostly impenetrable connections between IECs. The dense, gelatinous 
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mucus layer is formed via assembly of mucin glycoproteins into mesh-like polymers upon 

exocytosis from goblet cells (Johansson et al., 2008). The mucus layer in the large intestine is 

stratified and denser than that of the small intestine to account for the increased bacterial 

load. It consists of two layers and the innermost IEC-associated layer is firmly packed so 

largely devoid of bacteria (Johansson et al., 2008). The outer layer is less dense due to 

proteolytic degradation of mucin polymers by intestinal bacteria and is as a result inhabited 

by a vast number of microbes, known collectively as the mucosal-associated intestinal 

microbiota (Desai et al., 2016).  

 

 

The small intestine has fewer goblet cells present in the epithelium and therefore does not 

harbour a stratified mucus layer. To prevent substantial bacterial penetration, as is observed 

in the colonic epithelium of mucin deficient mice, immunological and chemical barriers exist 

to maintain microbiota tolerance (Johansson et al., 2008). Immunoglobulin A (IgA) and 

antimicrobial peptides (AMPs) such as defensins are secreted by Paneth cells and IECs in the 

small intestine (figure 1.4A). AMPs are small cationic proteins which serve to modulate 

bacterial loads by non-specifically inducing cell lysis through a variety of killing mechanisms, 

including membrane disruption via pore formation (Brogden, 2005).  Secretory IgA have a 

diverse repertoire for microbial specificity and which coat the cell surface of bacteria, upon 

transcytosis into the lumen by IECs, targeting them for destruction via phagocytic 

mechanisms (Kawamoto et al., 2014). IgA promotes diversification of the microbiota by 

limiting species predominance, particularly in the abundant Firmicutes phylum (Kawamoto 

et al., 2014).  

 

 

A recent study has proposed a novel immune mechanism thought to support microbiota 

tolerance in the large intestine. A glycosylphosphatidylinositol (GPI)-anchored protein on the 

surface of IECs, referred to as Ly6/PLAUR domain-containing 8 (Lypd8), is released into the 

lumen during IEC turnover and favourably binds to flagellated microbes such as Proteus 

mirabilis, preventing bacterial invasion and translocation across the intestinal epithelium 

(Okumura et al., 2016). Mice absent of Lypd8 were found to harbour microbiota in the inner 

mucus layer as well as the presence of flagellated bacteria in the lamina propria, supporting 

a crucial role of Lypd8 in maintaining host-microbiota homeostasis (Okumura et al., 2016).   
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Figure 1.4 A - Homeostatic tolerance mechanisms sustaining host health. The single IEC 

layer presents a physical barrier separating the intestinal microbiota from the underlying 

lamina propria, rich in immune cells. A variety of host defence mechanisms function to 

prevent failure of this barrier and maintain host health. AMPs and IgA are secreted into the 

lumen by paneth and plasma cells, respectively, directly targeting commensal microflora to 

regulate abundance and prevent translocation. Goblet cells secret mucin which coats the IEC 

layer and attenuates direct bacterial contact. A specialised subset of dendritic cells actively 

sample the lumen and promote immune cell differentiation and activation accordingly. 

Peyer's patches are organised lymphoid tissues which commit differentiation of B cells into 

IgA secreting plasma cells following antigen presentation and stimulation by the overlying M 

cells. These defence mechanisms and are mediated by a range of host-microbial interactions, 

particularly those which occur in the intestinal lumen following successful bacterial 

translocation (represented by bold black arrow). 
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Figure 1.4 (continued) B - Pattern recognition receptor signalling pathways in IECs promote 

intestinal health, in response to intestinal microbiota detection. Recognition of bacterial 

products at the basolateral surface of the intestinal epithelium by TLRs, or in the cytosol by 

NLRs, triggers intracellular signalling cascades and activation of NF-κB. Expression of PRRs in 

IECs is polarised and aids differentiation between pathogens and commensals. Microbial 

activation at the apical IEC surface inhibits NF-κB translocation by targeting IκB for 

proteosomal degradation depicted in schematic using red arrow and cross. Blue arrow 

represents activation of NF-κB-associated gene transcription. Proliferation and survival of 

IECs is promoted via the production of EGFR ligands and TFF3, whereas the production of IgA 

is promoted by TGF-β and BAFF synthesis. EBF is fortified by the increased secretion of mucus 

and AMP from goblet and paneth cells as well as an increase in tight junction formation. The 

blue dashed box highlights the location of such signalling events. 

Figure composed based on information presented in Rakoff-Nahoum et al. (2004), Abreu (2010) and 

Peterson and Artis (2014). 
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A specialised subset of dendritic cells (DCs) are able to sample intestinal microbiota at 

different locations across the intestinal epithelium; the lamina propria and within organised 

lymphoid nodules referred to as Peyer's patches (figure 1.4A) (Rescigno et al., 2001, Lelouard 

et al., 2012). This sampling enables DCs to examine microflora located at the luminal side of 

the IEC surface and those which have penetrated the IEC surface, respectively. Bacterial 

activated DCs induce B lymphocyte differentiation into IgA secreting plasma cells which 

subsequently secrete bacterial specific IgA and promote swift clearance of penetrative 

microorganisms via phagocytic mechanisms (Lelouard et al., 2012).  

 

The aforementioned physical, chemical and immunological barriers function concurrently in 

biological feedback processes to maintain intestinal microbiota-host homeostasis (figure 

1.4B). Mucus secretion is stimulated by recognition of microbiota-derived metabolites such 

as butyrate and propionate by NLRs in the cytosol (figure 1.3) (Shimotoyodome et al., 2000). 

Whilst production of AMPs, tight junction expression and transcytosis of IgA is regulated by 

TLR and NLR signalling pathways on the basolateral membrane of the intestinal epithelium 

in addition to SCFA-mediated activation of GPCRs on IEC surface (figure 1.4B; figure 1.3) 

(Abreu, 2010, Rakoff-Nahoum et al., 2004). Furthermore, regulatory immune responses are 

co-ordinated by indirect expression of B cell activating factor expression (BAFF) and 

transforming growth factor-β (TGF-β) to promote IgA synthesis and regulatory T cell activity 

(figure 1.4B) (Xu et al., 2007, Zeuthen et al., 2008). Therefore, increased bacterial infiltration 

and detection by PRRs subsequently escalates signalling cascades thus activating nuclear 

factor-κB (NF-κB) transcription factor and results in fortification of epithelial barrier function, 

increased IEC survival and immune response regulation (Abreu, 2010) (figure 1.4B).  

 

1.8 – Intestinal Dysbiosis  

 

Under normal conditions the mechanisms discussed thus far maintain a state of homeostasis 

within the intestine and promote health of the human host. However, disruption of such 

mechanisms can pose severe pathological consequences. Intestinal dysbiosis is defined as a 

perturbation of the microbiota composition or abundance which usually promotes host 

health. Instead, dysbiosis often leads to a loss of host tolerance mechanisms and results in 

non-specific chronic inflammation. Dysbiosis is categorised by pathobiont expansion, 

commensal depletion and a reduction in overall diversity but often exists as a consequence 
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of all three deviations simultaneously. However, for the sake of clarity, each will be discussed 

as a separate entity and considered with associated immunological and clinical 

consequences.  

 

Various intestinal microbiota have been branded as beneficial bacteria, or symbionts, as they 

promote host-microbiota homeostasis through a variety of different mechanisms which 

mitigate the host inflammatory response. For example, Bacteroides fragilis (B. fragilis) 

derived polysaccharide A (PSA) stimulates CD4+ T cells via TLRs which increases IL-10 levels 

and consequently suppresses inflammatory response mechanisms (Mazmanian et al., 2008). 

Furthermore, Clostridia strains from groups IV and XIVa stimulate Transforming Growth 

Factor-β (TGF-β) release form IECs which promotes differentiation of regulatory T cells again 

suppressing inflammatory responses (figure 1.5) (Atarashi et al., 2013). Additionally, 

commensal Lactobacillus paracasei and Lactobacillus casei both produce lactoceptin, a 

protease that degrades the inflammatory cytokine interferon gamma-induced protein 10 (IP-

10) responsible for chemoattraction of lymphocytes (von Schillde et al., 2012).  A loss of these 

symbionts defines dysbiosis and has been observed in clinical investigations of several 

dysbiosis-associated diseases. Notably, a reduction in Clostridia strains from groups IV and 

XIVa has been reported in the intestinal microbiota of inflammatory bowel disease (IBD) 

patients compared to healthy controls (Gophna et al., 2006). Furthermore, reductions in 

Bacteroidetes has been reported in the mucosal-associated microbiota of IBD patients (Frank 

et al., 2007).  Symbiont decline wanes their protective mechanisms and generates a 

proinflammatory environment, creating an environmental niche which suits pathobionts 

(figure 1.5). 

 

The abundance of pathobionts residing in the intestinal microbiota is usually controlled via 

host defence mechanisms and microbiota niche competition, as discussed. However, in 

various circumstances, expansion of such bacteria can occur contributing to disease 

pathology. Arguably the most frequently reported case of pathobiont expansion is that of the 

Enterobacteriaceae family and in particular E. coli and Shigella species. These flagellated 

bacteria have the ability to penetrate the inner mucus layer and intestinal epithelium and 

have been identified as increased in abundance in patients with IBD (Frank et al., 2007). An 

overgrowth of pathobionts leads to increased bacterial translocation and chronic stimulation  
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Figure 1.5 - Loss of intestinal homeostasis associated with dysbiosis. A depletion of 

symbionts, represented by bold red cross, prevents TGF-β and PSA activation of regulatory T 

cells and IL-10 mediated suppression of inflammatory response mechanisms. Concurrent 

increased pathobiont expansion and translocation, as denoted with bold black arrow, leads 

to increased host-microbial basolateral interactions with chronic activation of IEC signalling 

and activation of innate immune cells. Subsequent proinflammatory cytokine expression 

recruits and activates T cells initiating a vast immune response. IFN-γ and TNF-α expression 

lead to extensive immune cell recruitment, apoptosis of IECs and a loss of tight junctional 

complexes, respectively. Breakdown of intestinal homeostasis falls into a positive feedback 

loop due to the destruction of EBF and influx of microbiota, represented by bold red arrow.  

Figure composed based on information in Su et al. (2013), Mazmanian et al. (2008) and Atarashi et 

al. (2013). 
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of TLR receptors on the basolateral IEC membrane and DCs in the lamina propria (figure 1.5). 

In response to activation, these immune cells secrete significant quantities of 

proinflammatory cytokines such as Tumour Necrosis Factor (TNF)-α, Interleukin (IL)-6 and IL-

1β which stimulate effector T cell populations and induce substantial immune responses 

against the intestinal microbiota. It has been suggested that such immune responses fall into 

a positive feedback loops due to a consequential TNF-α and Interferon (IFN)-γ-associated 

breakdown of epithelial barrier and increased translocation of resident microflora and 

associated products exacerbating the immune response (figure 1.5) (Su et al., 2013). 

 

A depletion in microbiota diversity is the third defining feature of intestinal dysbiosis. As 

discussed, regulatory T cells are crucial in maintaining host-microbiota homeostasis. 

Gnotobiological studies identified that multiple species of Clostridia contribute to activation 

of regulatory T cells (Atarashi et al., 2013). However, this stimulation was abolished when 

colonised with single Clostridia species demonstrating the functional importance of less 

abundant commensal microbes. As with symbiont depletion and pathobiont expansion, 

reduction in intestinal microbiota diversity has been observed in IBD patients when 

compared to healthy controls demonstrating the functional decline of a diversity restricted 

microbiota (Willing et al., 2010).  

 

A debate exists as to the cause or consequential role of dysbiosis in various associated 

diseases (reviewed in Butto and Haller (2016)). Understandably, the answer to such question 

will pose significant clinical implications, particularly if a causative relationship is established. 

However, considering the different features of dysbiosis, it is probable that disease 

connection is multifactorial. Logically, a loss of beneficial intestinal bacteria is likely to play a 

causative role with initiation in the attenuation of host tolerance mechanisms. This is likely 

later exacerbated by an outgrowth of pathobionts colonising a newly established, disease-

associated niche within the intestine. Evidence to support this notion is provided by the 

observation that a loss of beneficial microbiota was observed in IBD patients regardless of 

active or remissive disease state, suggesting that it is not simply a reflection of inflammation 

but an underlying persistent issue (Gophna et al., 2006). Furthermore, familial IBD studies 

have demonstrated that pathobiont presence alone is not sufficient to induce disease, 

therefore a loss of beneficial microorganisms and microbiota diversity is also necessary 
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indicating a causative role for symbiont depletion and a consequential but detrimental role 

for pathobiont expansion (Joossens et al., 2011). 

 

1.9 – Aetiology of Dysbiosis and Influence of Diet 

 

As is observed with intestinal microbiota development in early years, the aetiology of 

dysbiosis is highly multifactorial with factors such as genetics, lifestyle choices, medical 

practices and environmental exposures influencing microbiota composition (figure 1.6). 

These compound factors underpin dysbiosis by either depleting symbiont microorganisms or 

hindering host-microbiota tolerance mechanisms.  

 

Genetic mutations in the NLR, nucloetide-binding oligomerisation domain protein 2 (NOD2), 

responsible for initiating AMP synthesis following commensal microbial stimulation, are 

implicated in 25-35% of all cases of Crohn's disease and have been shown to induce a state 

of immunodeficiency in the host (Economou et al., 2004). A range of genetic mutations, such 

as those which occur in the leucine rich regions (LLR) of the protein, alter the ability of NOD2 

to recognise intracellular LPS and peptidoglycan fragments (Bonen et al., 2003). Such 

mutations therefore disrupt the ability of the immune system to monitor the intestinal 

mircroflora, rendering the host incapable of modulating microflora abundance and may 

consequently induce dysbiosis.  

 

Although genetic factors undoubtedly play a vital role in the pathogenesis and aetiology of 

dysbiosis-associated diseases, it is becoming more apparent that genetic factors simply 

predispose certain individuals to disease by increasing sensitivity to fluctuations in the 

microflora. Instead, it is actually an array of environmental factors that directly alter 

microflora composition to induce dysbiosis and initiate disease. Evidence to support this 

notion is provided by various epidemiological and clinical studies which have reported a 

notable increase in the incidence of various dysbiosis-associated diseases, such as IBD and 

CRC, in developing populations, including India, Israel and China (Center et al., 2009). The 

rapid nature of the observed increase in disease incidence cannot be due to genetic factors 

alone and highlights the importance of environmental influences in dysbiotic disorders.  
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Figure 1.6 – Aetiology of dysbiosis and associated diseases. 

The cause of intestinal dysbiosis is highly multifactorial with singular factors considered to 

predispose dysbiosis. Host genetics, lifestyle and colonisation in early years alter 

immunological and physiological host-microbiota homeostatic tolerance mechanisms whilst 

host diet and antibiotic use directly modulate microbiota composition. Lifestyle choices such 

as smoking and stress also indirectly alter the intestinal microbiota via influencing host diet, 

illustrated by blue dashed arrow. Diet is considered to be the most influential factor in 

dysbiosis as it directly modulates microbiota predominance on a frequent basis via 

composition of host dietary nutrients. A wide spectrum of dysbiosis-associated diseases have 

been identified and range from localised intestinal pathologies to more systemic disorders 

including obesity, allergies and schizophrenia.  
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Furthermore, migrant studies have shown that families emigrating from low incidence 

countries to Westernised regions with a high incidence of dysbiotic disorders can acquire 

diseases such as IBD, at a rate comparable to that of the native population, particularly in the 

case of migrant children (Pinsk et al., 2007). 

 

Numerous environmental aetiological factors of dysbiosis have been identified and can be 

categorised into three primary groups; medical practices, lifestyle and diet (figure 1.6). 

Medical practices refer to an individual's historic and present use of therapeutics that have 

been linked to influencing intestinal dysbiosis. The most common and significant medicinal 

factor is undoubtedly antibiotic use. It is well understood that antibiotic therapies rapidly and 

non-specifically disrupt the diversity and abundance of intestinal microbiota and 

consequently impact on host health. For example, studies employing the use of broad 

spectrum antibiotics demonstrated that a significant disruption in the relative proportion of 

dominant phyla, Bacteroidetes and Firmicutes, with expansion of Proteobacteria occurs 

rapidly following first administration (De La Cochetiere et al., 2005). Furthermore, an 

association between antibiotic induced dysbiosis and disruption of intestinal homeostasis 

was identified in antibiotic treated mice. Significantly fewer IFN-γ expressing regulatory T 

cells were identified in the lamina propria following antibiotic treatment, likely due to 

antibiotic-mediated destruction of symbionts and resultant pathobiont expansion 

dampening such anti-inflammatory mechanisms (Hill et al., 2010). Therefore, although the 

effects of short-term antibiotic use have been identified to stabilise naturally following use, 

long-term antibiotic exposure can both induce and sustain dysbiosis and has been associated 

with a significantly increased risk of developing dysbiotic-associated diseases such as Crohn's 

disease (De La Cochetiere et al., 2005, Card et al., 2004). 

 

 

The intestinal microbiota is also defined by the major macronutrient components of host diet 

(table 1.2). Differences in intestinal microbiota profiles are reported in different types of diet, 

such as those associated with geographical locations or vegetarianism. Such observations are 

accountable to differences in predominating macronutrients: fats, proteins and 

carbohydrates.  Transient alterations are observed in the intestinal microbiota with each 

predominant macronutrient as a consequence of complementary or contrasting bacterial 

metabolic capabilities. Increased complex carbohydrates, such as dietary fibre, results in an 
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increase in butyrate-producing microbiota capable of dietary fibre fermentation, whilst 

microbes with alternative metabolic preferences decline (De Filippo et al., 2010). This 

microbiota profile is often observed in vegetarians due to a high carbohydrate and low 

protein and fat diet (Liszt et al., 2009). Alternatively, a diet rich in protein increases 

microbiota with proteolytic capabilities which often results in a concomitant decline of 

butyrate-producing populations due to associated reduction in carbohydrate intake (Russell 

et al., 2011). A fat rich diet causes an increase in bile acid production which favours the 

expansion of bile acid metabolising microbiota whilst also reducing Lactobacillus populations 

through bactericidal activity (Islam et al., 2011). Furthermore, dysbiotic shifts in microbial 

abundance, including decreases in several Bacteroides species and significant overgrowth of 

members of the Firmicutes phyla, were reported in mice following transfer to a high sugar, 

high fat, 'Westernised' diet (Turnbaugh et al., 2006). 

  

 

Several lifestyle choices have also been implicated in underpinning dysbiosis (figure 1.6). For 

instance, the mechanistic links between cigarette chemicals and intestinal disorders are well 

documented (reviewed in Birrenbach and Bocker (2004) and Liang et al. (2009) for IBD and 

CRC respectively), but only relatively recently has the effects of smoking on the intestinal 

microflora been suggested. Cessation of smoking in 15 healthy individuals was found to 

induce profound shifts in microbial populations, notably an increase in the number of 

Firmicutes and a decrease in Proteobacteria was observed (Biedermann et al., 2014). Studies 

have previously concluded that this observation suggests smoking directly influences 

dysbiotic microbial shifts in the intestine that may consequently induces disease 

pathogenesis. However, it should also be noted that cessation of smoking is linked to 

Macronutrient 
Composition 

Intestinal Microbiota Composition Reference  

Fat rich Increased Bacteroides  
Decreased Bifidobacterium and Lactobacillus 

Islam et al. 
(2011) 

Carbohydrate rich Increased fermenting species – Clostridium 
cluster XVIII, F. prausnitzii and Prevotella 
Decreased Bifidobacterium, Lactobacillus and 
Enterobacteriaceae  

De Filippo et 
al. (2010) 

Protein rich Decreased butyrate producing species – 
Clostridium cluster XIV, F. prausnitzii, 
Bifidobacterium and Lactobacillus 

Russell et al. 
(2011) 

High-fat, high-sugar – 
‘Westernised diet’ 

Increased Enterococcus and Clostridium  
Decreased Bacteroides 

Turnbaugh et 
al. (2006) 

Table 1.2 – Macronutrient influence on Intestinal Microbiota Composition. 
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increased hunger and eating, particularly high-fat, high-sugar foods (Hughes and Hatsukami, 

1986). It is therefore more probable that smoking cessation indirectly modifies the intestinal 

microbiota via altered host diet.  

 

Neuro-emotional stress has also been linked to intestinal dysbiosis with early studies 

demonstrating altered microbiota composition in Soviet cosmonauts with temporal 

reductions observed in faecal Lactobacillus and Bifidobacterium species (Lizko, 1987). Stress 

has been shown to increase hormone levels such as cortisol, which stimulate intestinal 

motility and thus clearance of predominant intestinal microbiota populations (Nakade et al., 

2007). Furthermore, stress has been linked to decreased secretory IgA levels and dampened 

mucus secretion that subsequently supports growth of pathobionts (Drummond and 

Hewson-Bower, 1997, Lizko, 1987). However, similarly to smoking cessation, individuals 

enduring long periods of stress are more likely to make poor dietary choices, opting for 

convenience or comfort foods that are high in fat and refined sugars and will often overeat 

due to a hormonal dysregulation of appetite (Sinha and Jastreboff, 2013). Furthermore, the 

Soviet cosmonaut study failed to consider space-associated dietary restrictions (Lizko, 1987). 

Therefore, whilst stress directly hinders host-microbiota homeostatic tolerance mechanisms 

via the mechanisms described, it is also likely to indirectly modify the intestinal microbiota 

composition through altered macronutrient intake.  

 

 

Despite many years of investigation, none of the factors discussed thus far can be held 

entirely accountable for development of dysbiosis. In fact, that majority of cases of dysbiosis 

are thought to occur as a result of exposure to a combination of causative factors which 

collectively induce major shifts in microbial profiles and attenuate host-microbiota 

homeostasis. However, host diet is becoming increasingly recognised to be the most 

significant environmental causative factor for dysbiosis. This is because it is the major 

variable factor that directly encounters the intestinal microflora on a frequent basis. 

Experimental support for this notion was provided by a comparative study which evaluated 

the relative influences of host genetics and diet on microbial composition in mice and 

subsequent metabolic syndrome complications. It was concluded that changes in dietary 

factors accounted for 57% of the total variation in gut microbiota, whilst less than 12% was 

due to underlying genetic mutations (Zhang et al., 2010). 
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1.10 – Intestinal Microbiota in Dysbiosis-associated Diseases  

Intestinal dysbiosis has been associated with underpinning the pathogenesis of numerous 

chronic and degenerative diseases, ranging from various localised disorders such as IBD and 

CRC to more systemic pathologies including atherosclerosis, various metal health disorders 

and obesity (figure 1.6).  

 

Dysbiosis-associated pathologies localised within the intestine have understandably received 

the most attention in attempts to elucidate causative mechanistic interactions. IBD is a class 

inflammatory conditions of the intestine that have been associated with a loss of symbiont 

intestinal microbiota and their SCFA metabolites. Research has also investigated the 

potential of a singular causative pathogen for IBD onset with studies suggesting 

Mycobacterium avium paratuberculosis and Clostridium difficile as environmental infectious 

agents for IBD subgroups Crohn’s disease (CD) and Ulcerative colitis (UC) (Pierce, 2010, 

Clayton et al., 2009). However, a lack of direct evidence to support these studies has led to 

scepticism regarding a one-disease-one-microbe theory. Instead, depletion of butyrate-

producing microbiota and a concomitant increase in pathobionts have been implicated in 

breakdown of epithelial barrier function and induction of inflammation in the intestine (as 

detailed in section 1.8) (Frank et al., 2007). The same pattern of dysbiosis is also reported in 

CRC patients, with reduced SCFA producing microbiota and increased in Enterobacteriaceae 

pathobionts (Sobhani et al., 2011). A mouse model demonstrated a protective role for 

butyrate in CRC as administration to genetically susceptible mice fed on a high fat diets, 

typically associated with decreased SCFA production, led to a significant decrease in the 

occurrence of tumours (Schulz et al., 2014).  

 

Similar to IBD and CRC, obesity has also been linked to dysbiosis but with a high fat and high 

sugar, ‘Westernised’ diet-associated microbiota. Most notably, a disrupted Bacteroidetes to 

Firmicutes ratio, in favour of Firmicutes, is frequently reported with an overall decrease in 

microbiota diversity (Turnbaugh et al., 2009). This characteristic microbiota has an increased 

metabolic capacity for energy harvest with a significantly enriched genomic repertoire to that 

of lean individuals. In addition, a high fat diet is linked to increased chylomicron lipid 

transporters in the intestine that indirectly facilitate absorption of bacterial derived LPS 

across the epithelium resulting in activation of innate immune responses. This process, 
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referred to as metabolic endotoxemia, is considered to cause low-grade chronic 

inflammation, often reported in obese patients and perpetuate disease pathology (Cani et 

al., 2007). 

 

The metabolic functionality of the intestinal microbiota is associated with additional systemic 

pathologies, including atherosclerosis. The influence of the microbiota on host lipid 

metabolism, as discussed in section 1.5, is mediated through catabolism of bile acids into 

secondary bile acids. In peripheral organs and tissues, primary bile acids bind to farnesoid X 

receptors (FXRs) to negatively regulate bile-acid synthesis, whilst secondary bile acids bind 

to TGR5 and promote energy expenditure and maintain glucose homeostasis (Sinal et al., 

2000, Thomas et al., 2009). A loss of bile acid metabolising populations, such as species of 

Clostridia, during dysbiosis can reduce the production of secondary bile-acids, concomitantly 

increasing the absorption of primary bile acids into the bloodstream and consequently 

creates excess levels of cholesterol due to a reduction in bile acid synthesis. In addition, FXR 

signalling exerts anti-homeostatic effects on endothelial cells, macrophages and vascular 

smooth muscle cells which collectively renders the host susceptible to atherosclerotic lesions 

and plaque formation (reviewed in Mencarelli and Fiorucci (2010). Furthermore, an altered 

intestinal microbiota composition and its potentially increased capacity to metabolise 

choline into trimethylamines has been shown to have important implications in the onset of 

non-alcoholic fatty liver disease (NAFLD) as demonstrated in mice on a high fat diet (Dumas 

et al., 2006). Microbiota-mediated decreased choline bioavailability is suggested to cause a 

NAFLD characteristic accumulation of triglycerides in the liver due to impaired production of 

phosphatidylcholine production, responsible for triglyceride assembly to form VLDL and 

subsequent clearance from the liver (Dumas et al., 2006).  

 

The intestinal microbiota have also been implicated in numerous mental health disorders 

primarily through metabolite-mediated influence of the central nervous system (CNS), via 

the gut-brain axis (GBA). Microbial derived products such as SCFA have neurotoxic effects 

which influence behaviour and brain development. Propionate produced by the intestinal 

microbiota is able to cross the blood brain barrier and influence behaviour in adolescent rats 

consistent with that observed in autism spectrum disorders (MacFabe et al., 2011). 

Furthermore, SCFAs are natural inhibitors of histone deacetylases (HDACs) which regulate 
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gene expression via modulation of DNA coiled histone proteins (figure 1.3). A dysbiosis-

associated decrease in SFCA production causes an excess of HDAC expression which 

consequently alters gene expression and has been implicated in schizophrenia (Kurita et al., 

2012). Administration of HDAC inhibitors have been shown in resolve schizophrenia-

associated behavioural phenotypes, such as ‘head-twitch’, in mice (Kurita et al., 2012). 

However it should be noted that such research remains in its infancy and the full functional 

and mechanistic influences of intestinal microbiota on host mental health remain yet to be 

comprehensively elucidated.  

 

Returning to localised-associated pathologies, irritable bowel syndrome (IBS) is a 

heterogeneous functional disorder of the intestine that does not have an observable 

pathology and has been associated with a dysbiotic microbiota. A typical microbiota has not 

been reliably identified in IBS patients, but increased temporal instability of predominant 

populations with overgrowth of aerobic organisms has been reported (Maukonen et al., 

2006).  Likewise to mental health disorders the microbiota is considered to influence IBS 

through the GBA in mechanisms largely related to stress-associated cortisol release and 

altered intestinal motility (Nakade et al., 2007). Furthermore, studies have identified that the 

intestinal microbiota of IBS patients have an altered fermentation capacity resulting in 

increased hydrogen gas production and this has been suggested to underpin the significant 

bloating observed in IBS patients (Tana et al., 2010).  

 

 

1.11 – Defining a Characteristic Dysbiotic Intestinal Microbiota   

Despite extensive attempts to clarify dysbiosis and how such profiles modulate associated 

diseases, the findings from such research, although essential to improving our understanding 

of dysbiosis, remain yet to be translated into suitable therapeutic or diagnostic procedures. 

One major factor limiting such development is the variation in microbial profiles between 

species commonly utilised in models of dysbiosis and that of the human host. A comparative 

meta-analysis of the core gut microbiome between mice and humans demonstrated that 

although a considerable number of genera were shared, there were distinct quantitative 

differences in their relative abundance between the two species (Krych et al., 2013). 

Attempts to overcome this issue included the development of a mouse model referred to as 

human flora-associated (HFA) mice. This model involves inoculating GF mice with human 
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faeces and is considered to support a stable ecosystem representative of the human 

microbiota (reviewed in Hirayama and Itoh (2005)). However, it has also been reported that 

various genera which comprise a large portion of the human microbiota, such as Lactobacilli 

and Bifidobacteria, are lost upon transfer into the mouse intestine (Corpet, 2000). Therefore, 

although studies employing animal models have proved useful in identifying key 

physiological mechanisms that are influenced by the microbiota, the inability to extrapolate 

these findings directly to humans has significantly hindered clinical progression. Similar issues 

are also encountered in studies employing human participants. The considerable number of 

genetic and environmental factors, which contribute to intestinal dysbiosis, vary significantly 

between individuals and thus impedes the ability to perform interpatient comparisons during 

attempts to accurately profile the intestinal microflora. One study, extensively profiling just 

three individuals, noted substantial variations in presence of Bacteroidetes phylotypes 

(Eckburg et al., 2005), highlighting the difficulty in characterising a ‘typical’ microflora. Future 

research to design and evaluate robust scientific methods that can control for interpatient 

variability will aid in defining dysbiosis.  

 

 

1.12 - Intestinal Microbiota Modulation: Aiming for Rebiosis and Implications for 

 Therapies 

Given the pivotal role of the intestinal microbiota in the onset and pathogenesis of numerous 

disease, modulation of the microbiota utilising pre and probiotics are logical practices to 

restore and maintain host health. Prebiotics are rather generically defined as ‘non-digestible 

food ingredients that, when consumed in sufficient amounts, selectively stimulate the 

growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the 

gut microbiota that confer(s) health benefits to the host’ (Roberfroid et al., 2010). Probiotics 

on the other hand are defined are ‘live organisms which, when administered in adequate 

amounts, confer a health benefit to the host’ (FAO/WHO, 2002). Simply, the overall aim of 

pre and probiotic use is to inflate the beneficial effects of symbiotic intestinal microbiota, 

thus promoting host health.  
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Lactobacilli and Bifidobacteria are two bacterial genera that have received a lot of research 

focus and are therefore recognised to benefit health via mechanisms discussed throughout. 

Such beneficial microbiota are often used in combination, termed poly-biotics, to exploit 

complementary differences in bacterial functionality. For example, VSL#3 contains over 450 

billion bacteria from 8 different strains, 7 of which are members of Lactobacilli and 

Bifidobacteria genera and is the most heavily dosed probiotic on the market (table 1.3; 

WWW, VLS#3 Polybiotic Food Supplement). It has been clinically proven to be therapeutically 

valuable in alleviating intestinal disease symptoms, including IBD and IBS by altering the 

composition and thus functionality of the intestinal microbiota (Tursi et al., 2004, de Boer et 

al., 2012).  

 

 

 

Conversely, common prebiotics include lactulose, inulin and oligofructose which function to 

promote the beneficial activities of symbiotic microbes.  Oligofructose and inulin are 

naturally occurring polysaccharides present in plant foodstuffs that when artificially 

substituted into the host diet can influence both the intestinal microbiota composition and 

metabolic activity. Selective increases in Bifidobacteria and concomitant reductions in 

Staphylococci and Streptococci were observed in faecal microbial profiles following 

oligofructose and inulin administration. In addition, breath analysis revealed greater 

quantities of hydrogen and methane were excreted with prebiotic use, indicating an increase 

in carbohydrate fermentation and production of beneficial SCFAs (Gibson et al., 1995). 

Furthermore, lactulose has been clinically demonstrated to avert clinical complications of 

liver disease by upregulating metabolic activity of Bifidobacteria populations. Bifidobacteria-

mediated lactulose metabolism lowers the pH within the intestine and converts gaseous 

ammonia into salt form which is excreted. This process consequently draws ammonia from 

Poly- or 
Probiotic 

Contributing bacterial species Dose 

VSL#3 Bifidobacterium breve, B. longum, B.infantis, Lactobacillus 
paracasei, L. acidophilus, L.delbrueckii subsp. Bulgaricus, L. 
plantarum and Streptococcus thermophiles. 

4.5 × 1011 

Symprove Lactobacillus rhamnosus, L. acidophilus, L. plantarum and 
Enterococcus faecalis. 

1.0 × 1010 

Actimel Lactobacillus casei 1.0 × 1010 

Yakult Lactobacillus casei 6.5 × 109 

Table 1.3 – Composition and dose of reputable poly-biotics and probiotics. 

Table composed based on information presented on WWW, VLS#3 Polybiotic Food Supplement. 
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the liver and prevents hepatic encephalopathy onset which occurs as a result of accumulated 

ammonia crossing the blood brain barrier (Prasad et al., 2007). 

 

One major limitation of pre and probiotic use is the temperamental nature of such beneficial 

effects, thus requiring long term administration. A relatively novel method for achieving 

intestinal rebiosis as a potential therapeutic for various diseases is faecal microbial 

transplantation (FMT). FMT involves broad antibiotic depletion of the intestinal microbiota 

of a diseased individual and subsequent oral or enema administration of intestinal microbes, 

obtained from healthy donor faeces, in large doses to the intestine. FMT has proven highly 

efficacious at treating recurrent Clostridium difficile infection, repeatedly restoring 

microbiota and host health in over 90% of patients over long periods (van Nood et al., 2013). 

A revolution in therapeutics for dysbiosis-associated diseases was anticipated with FMT 

following such impressive initial clinical outcomes. However, subsequent studies 

investigating the efficacy of FMT at inducing remission in UC and CD patients have been 

highly varied (Moayyedi et al., 2015, Paramsothy et al., 2017). Investigations to improve and 

standardise several confounding variables such as donor-recipient match criteria and sample 

collection and processing, in addition to number of donors and donor species are ongoing 

meaning FMT continues to hold promising future implications for treatment of dysbiosis-

associated diseases (Moayyedi et al., 2015, Paramsothy et al., 2017).  

 

In addition to being targeted for therapeutic potential, the intestinal microbiota have been 

implicated in determining the efficacy of numerous treatments. For example, the use of 

VSL#3 poly-biotic dually administered with reduced-doses of balsalazide was identified to be 

more efficacious in treating ulcerative colitis than balsalazide or mesalazine drugs alone 

suggesting the presence of anti-inflammatory host microbes can strengthen drug anti-

inflammatory mechanisms (Tursi et al., 2004). However this study did not test sole 

administration of VSL#3 and so improved efficacy could be a direct result of enhanced 

microbiota composition rather than microbiota-drug associations. Moreover, intestinal 

microbiota impact the immunomodulatory effects of chemotherapeutics in the treatment of 

various cancers. A study by Lehouritis et al. (2015) investigated various bacteria and cancer 

cell lines both in vitro and in vivo for influences on the efficacy of 30 chemotherapeutic 

agents. In total, 30% of the drugs were identified to be significantly attenuated by E. coli and 
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Listeria welshimeri whilst 20% were improved by the same microbes and 50% were 

unaffected in cell toxicity assays. Furthermore, in vivo studies replicated such findings with 

tumours supporting E. coli growth and reduced toxicity of gemcitabine in the presence of E. 

coli (Lehouritis et al., 2015). This research indicates the potential future direction towards 

personalised medicines to accommodate individuality in the intestinal microbiota as well as 

potential modulation of microbiota composition to improve drug efficacy. 

 

The principle of intestinal microbiota modulation is based upon the therapeutic potential of 

inducing rebiosis. Research thus far has presented substantial developments and 

breakthroughs in the treatment of dysbiosis associated diseases by targeting or utilising 

microbiota, however due to socioeconomic issues, prevention of disease is always better 

than cure. Given that dysbiosis is recognised as a major causative factor in numerous 

associated pathologies, perhaps research should be focusing on investigating novel 

techniques to enable detection or diagnosis of dysbiosis rather than merely acting upon 

clinical manifestation.  
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1.13 Research Aims:  

The intestinal microbiota is the most abundant, diverse and complex microbial ecosystem 

residing within the human host. A range of host- and microbiota-mediated immunological 

and physiological mechanisms have evolved to establish a mutualistic existence, but 

disruption of such mechanisms poses severe pathological consequences. Intestinal dysbiosis 

is associated with numerous chronic and degenerative diseases and therapeutics have 

therefore targeted the microbiota for rebiosis. However, clinical progression of such 

therapeutics is limited, mostly due to substantial individual variability in microbiota 

composition and lack of a characteristic profile of dysbiosis.  

 

To advance understanding of the role of intestinal microbiota in health and disease this 

project aimed to employ two novel human models, in loop ileostomy patients and IBD 

patients, to achieve the following:  

 Investigate dysbiosis as a causative factor of disease utilising a novel human model 

in loop ileostomy patients. 

 

 Explore mechanisms by which different microbiota profiles impact upon physiology 

of the intestine utilising a novel human model of dysbiosis. 

 

 Investigate the relationship between intestinal microbiota profiles and metabolites 

excreted in human urine, with regard to potential clinical application to complement 

diagnosis of dysbiosis-associated diseases.  
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2.1 - Materials  

2.1.1 - Reagents  

Reagent/Product Supplier Catalogue Number 

QIAamp® cador® Pathogen Mini Kit Qiagen 54104 

QIAamp®  UCP Pathogen Mini Kit Qiagen 50214 

QIAamp® DNA Stool Mini Kit Qiagen 51504 

Pathogen Lysis Tube S  Qiagen 19091 

MiniElute™ PCR Purification Kit Qiagen 28004 

Buffer ATL Qiagen 19076 

Proteinase K Qiagen 19131 

PowerClean® Pro DNA Clean-up Kit MoBio Labs 12997 

3-Aminopropyltriethoxysilane (APES) Sigma Aldrich 440140 

Bovine Serum Albumin (BSA) Sigma Aldrich A3294 

Triton X-100  Sigma Aldrich T8787 

Tri-sodium citrate dihydrate Sigma Aldrich S1804 

Goat Serum  Sigma Aldrich G9023 

PAP pen Sigma Aldrich Z377821 

Click-iT® Plus TUNEL Assay for In Situ 
Apoptosis Detection, Alexa Flour® 594, 

ThermoFisher 
Scientific 

C10618 

REDTaq® ReadyMix™ PCR Reaction Mix Sigma Aldrich R2523 

Ammonium Persulfate (APS) Sigma Aldrich A3678 

N,N,N′,N′-Tetramethylethylenediamine 
(TEMED) 

Sigma Aldrich T7024 

SYBR® Gold Nucleic Acid Gel Stain (10,000x) ThermoFisher 
Scientific 

S11494 

SYBR® Green JumpStart™ Taq ReadyMix™ Sigma Aldrich S4438 

XL1-Blue Subcloning-Grade Competent Cells Agilent 
Technologies 

200130 

SOC Outgrowth medium New England 
BioLabs 

B9020S 

Low Salt Luria Broth  Duchefa Biochemie L1705 

GeneJET Plasmid Miniprep Kit ThermoFisher 
Scientific 

K0503 

 DUS 10 Reagent Strips for Urinalysis  Dream Future 
Innovation Co Ltd 

3064 

Sodium Azide Sigma Aldrich S2002 

Deuterium oxide (D2O) Sigma Aldrich 435767 

Deuterated (Trimethylsilyl)-propionic-
2,2,3,3-d4 acid sodium salt (TSP-d4) 

Sigma Aldrich 269913 

Potassium Phosphate  Sigma Aldrich P9791 

 

 

  

Table 2.1 – Reagents and products with supplier details. 
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 2.1.2 - Antibodies 

 

 

2.1.3 - PCR Primers 

Primer Sequence 
Product 
Size (bp) 

Refs 

Universal 
926F + 1062R 

F: 5'-AAACTCAAAKGAATTGACGG-3' 180 Bacchetti 
De Gregoris 

et al. 
(2011) 

R: 5'-CTCACRRCACGAGCTGAC-3' 

γ-Proteobacteria 
1080γF + γ1202R 

F: 5'-TCGTCAGCTCGTGTYGTGA-3' 170 

R: 5'-CGTAAGGGCCATGATG-3' 

Bacteroidetes 
798cfbF + 
cfb967R 

F: 5'-CRAACAGGATTAGATACCCT-3'  240 

R: 5'-GGTAAGGTTCCTCGCGTAT-3' 

Firmicutes 
928F-Firm + 
Firm1040R 

F: 5'-TGAAACTYAAAGGAATTGACG-3' 200 

R: 5'-ACCATGCACCACCTGTC-3' 

Eubacterial 
(Universal) 
Uni344F + 
Uni514R 

F: 5‘-ACTCCTACGGGAGGCAGCAGT-3’ 190 Hartman et 
al. (2009) 
Table S2 

R: 5’-ATTACCGCGGCTGCTGGC-3’ 

Universal 16S  
341f-GC Clamp + 
518r 

F: 5'- 
CGCCCGCCGCGCGCGGCGGGCGGGGCGG
GGGCACGGGGGGCCTACGGGAGGCAGCA
G -3'  

190 Muyzer et 
al. (1993)  

 

R: 5'-ATTACCGCGGCTGCTGG -3'  

Universal V3/V4 
16S + Illumina® 
Overhang  
S-D-Bact-0341- b-
S-17 + S-D-Bact-
0785-a-A-21 

F: 5'- 
TCGTCGGCAGCGTCAGATGTGTATAAGAGA
CAGCCTACGGGNGGCWGCAG -3' 

550 Klindworth 
et al. 

(2013) 

R: 5'- 
GTCTCGTGGGCTCGGAGATGTGTATAAGA
GACAGGACTACHVGGGTATCTAATCC-3' 

 

 

Antibody Manufacturer 
Catalogue 
Number 

Source Concentration 
Working 
Dilution 

anti-PCNA 
(PC10) 

primary 
antibody 

Life 
Technologies 

13-3900 Mouse 500 µg/ml 1:350 

anti-mouse 
(H+L) Alexa-

Fluor® 488 IgG 

Life 
Technologies 

A-11001 Goat 2 mg/ml 1:1000 

Normal 
Mouse IgG 

Santa Cruz sc-2025  200 µg/0.5ml 1:20 

Hoechst 
33342 Nucleic 

Acid Stain 

Life 
Technologies 

H3570  10 mg/ml 1:1000 

Table 2.2 – Antibodies with working concentrations and supplier details. 

 

 

 

 

Table 2.3 – PCR primer sequences.  

Single underlined sequence denotes GC-rich clamp positioned at the 5' end of the forward 

primer. Double underlined sequences denote Illumina® overhang adapters. 
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2.1.4 - Buffers and Solutions 

Solution Composition 

50 × Tris acetic acid (TAE) 
buffer (1 L) 

242.0 g Tris base, 57.1 mL Acetic acid, 100.0 mL 0.5 M EDTA, 
q.s to 1 L with dH2O. Autoclaved prior to use. Stock diluted 
1:50 to achieve 1 × solution as required. 

Gradient dye (10 mL) 0.05 g Bromophenol Blue, 0.05 g Xylene Cyanol. q.s to 10 mL 
with 1 × TAE buffer. 

2 × Gel Loading Dye (10 
mL) 

0.25 mL of 2% Bromophenol Blue, 0.25 mL of 2% Xylene 
Cyanol, 7.0 mL 100% Glycerol and q.s to 10 mL with dH2O. 
Solutions were degassed under a vacuum. 

0% Denaturant (20 mL) 5.0 mL 40% Acrylamide, 0.4 mL 50 × TAE buffer q.s to 20 mL 
with dH2O. 

100% Denaturant (20 mL) 5.0 mL 40% Acrylamide, 0.4 mL 50 × TAE buffer, 8.0 mL 
formamide and 8.4 g Urea. Solution was heated to 50 °C, 
whilst stirring continuously, to dissolve urea crystals. 
Solutions were degassed for 3 min under a vacuum. 

10% APS (1 mL) 0.1 g APS then q.s to 1 mL with dH2O. 

4% Paraformaldehyde  (1 L) 800 mL 1xPBS was heated to 50°C. 40g paraformaldehyde 
was added to the heated solution. pH raised via addition of 
1N NaOH dropwise until dissolved. Solution was filtered and 
pH adjusted to 6.9 with 1 N HCl. q.s to 1 L with PBS. 

Sodium Citrate Buffer 
(10mM Sodium Citrate, 
0.05% Tween 20, pH 6.0, 1 
L) 

Tri-sodium citrate dihydrate 2.94 g, 900 mL dH2O, mix to 
dissolve. pH to 6.0 with 1N HCl, add 0.5 mL of Tween 20 and 
mix well.  q.s to 1L with dH2O. 

2 × Phosphate Buffer (1M 
KH2PO4, 10% TSP-d4 in 
100% D2O, pH. 7.4, 100 mL) 

1M KH2PO4 prepared by dissolving 13.6 g into 80 mL 100% 

D2O. 100 mg TSP-d4 was dissolved in 6 mL 100% D2O and 
both solutions were mixed via sonication.  pH was adjusted 
to 7.4 with addition of KOH pellets then q.s to 100 mL with 
D2O. 

 

 

 

  

Table 2.4 – Buffers and Solutions.  
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2.2 - Methods 

2.2.1 - Research Ethics 

Favourable ethical opinion was obtained from North West Research Ethics Committee 

following submission of relevant study documentation through the Integrated Research 

Application System (IRAS) and formal assessment by an independent peer review panel (REC 

references 13/NW/0695 and 14/NW/1429 for surgical and endoscopy studies, respectively). 

Local Research and Development approval was achieved at each collaborating National 

Health Service (NHS) Trust; Lancashire Teaching Hospitals (Preston, UK) and University 

Hospitals of Morecambe Bay (Barrow-In-Furness, UK), in addition to authorisation from the 

study sponsor; Lancaster University Research Support Office. 

 

2.2.2 – Surgical Patient Recruitment 

Patients at Lancashire Teaching Hospitals, scheduled for loop ileostomy reversal surgery, 

were assessed against the inclusion and exclusion criteria of the study by the Surgical Care 

Practitioner (table 2.5). Suitable and willing patients provided full informed consent and were 

anonymised via study ID allocation (BCRGXXX). Non-identifiable patient information 

including age, gender, and BMI were recorded in addition to the following post-operative 

data: number of days with ileostomy, incidence of complications, C reactive protein (CRP), 

WBC and albumin blood levels. Relevant study documentation is presented in appendix 1.  

 

Study Inclusion Criteria  Study Exclusion Criteria  

The participant may only enter the 

study if ALL of the following apply:  

 Participant is willing and able to 

give informed consent for 

participation in the study.  

 Male or Female, aged 18 years or 

above.  

 Must be undergoing ileostomy 

reversal surgery.  

The participant may not enter the study if ANY 

of the following apply:  

 Patients not undergoing ileostomy reversal 

surgery.  

 Patients who are currently, or have taken 

any courses of antibiotics within the last 3 

months. 

Table 2.5 – Inclusion and exclusion criteria for patient recruitment to surgical study. 
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2.2.3 – Provision of Surgical Specimen  

Ileostomy reversal surgery involves reanastomosis of functional and defunctioned intestine 

using a linear stapler. During this process, a short region of the intestine is removed from the 

end of each limb and are the specimens acquired for this study (figure 3.2). Immediately 

following acquisition, luminal associated microflora were sampled by inserting a sterile swab 

into the lumen of each specimen. Specimen were then transferred into sterile histopots and 

sustained with Minimum Essential Media (MEM). All specimen were transported from the 

operating theatre to the research laboratories at Lancaster University and were processed 

within two hours of collection.  

To examine the mucosal associated microflora, an equal number of mucosal biopsies were 

dissected from each specimen. The number of biopsies obtained from each participant 

ranged between 2 and 5 per limb and was determined by availability of mucosa in the 

defunctioned specimen. For histological analysis, a full thickness portion was obtained from 

each limb at immediately transferred into paraformaldehyde fixative. MEM media was 

collected and processed to salvage loosely adhered bacteria which may have washed off 

during transport.  

 

2.2.4 Surgical Specimen DNA Extractions  

2.2.4.1 - Mucosal Tissue DNA Extraction – Mucosal biopsies (~20 mg each), dissected from 

surgical specimen, were finely sliced to aid release of associated microflora. Biopsies were 

exposed to various DNA extraction pre-treatments associated with the QIAamp® Cador® 

Pathogen Lysis Minikit (Qiagen, Manchester, UK). First, samples were digested in proteinase 

K at 56 °C for 30 mins, centrifuged at 4000 × g for 30s to pellet tissue and the supernatant 

subjected to mechanical lysis, at maximum speed for 10 min, utilising Pathogen Lysis Tubes 

S (Qiagen) on a Vortex Genie 2 (Scientific Industries). Following mechanical lysis, total 

genomic DNA was extracted using QIAamp® Cador® Pathogen Lysis Mini Kit (Qiagen), 

according to the manufacturer’s protocol. Eluted DNA was quantified using a NanoDrop™ 

2000c Spectrophotometer (Thermo-Fisher) and stored at -20 ᵒC until required. 

2.2.4.2 - Luminal Swab and MEM Media DNA Extraction – Swab heads were separated from 

transport vials and placed in 650 µL buffer ATL (Qiagen). Samples were vortexed at full speed 

for 10 min, prior to incubation at 56 °C for 20 min, in a thermoshaker at 800 rpm. Media 
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samples were centrifuged at 8000 × g to pellet bacteria and resuspended in 500 µL buffer 

ATL (Qiagen). Media and swab supernatants were subjected to mechanical lysis at maximum 

speed for 10 min utilising Pathogen Lysis Tubes S (Qiagen) on a Vortex Genie 2 (Scientific 

Industries), prior to DNA extraction using QIAamp® UCP Pathogen Mini Kit (Qiagen), 

according to the manufacturer’s protocol. Eluted DNA from swab and media samples were 

pooled, quantified as described, then stored at -20 ᵒC until required.  

 

2.2.5 - Denaturation gradient gel electrophoresis (DGGE) 

2.2.5.1 – Generation of a Standard DNA Marker for DGGE Analyses – A sample enriched in 

microbial diversity was generated from pooled human faecal DNA for use as a standard 

marker in DGGE analyses. Faecal samples were gifted from five healthy volunteers, differing 

in age (between 20 and 50 years old), gender, weight (between 9 and 18 stone) and 

geographical location to increase overall microbial diversity within the marker. All samples 

were transported on ice to research laboratories at Lancaster University and processed 

within two hours of collection in a class II microbiological safety cabinet (Baker), employing 

aseptic technique. Samples were processed in duplicate by weighing 2 × 200 mg sample into 

microcentrifuge tubes containing 1.4 mL buffer ASL (Qiagen). DNA extractions were 

performed using QIAamp® DNA Stool Mini Kit (Qiagen), according to the manufacturer’s 

protocol, with the following modification; increased incubation temperature in lysis buffer 

from 70 to 95 °C, to improve lysis efficiency. DNA Eluted from 10 samples was pooled, 

quantified as described, then stored at -20 ᵒC until required. 

2.2.5.2 – Polymerase Chain Reaction (PCR) for DGGE – A highly conserved 200 base pair (bp) 

sequence, neighbouring the V3 hypervariable region of the 16S ribosomal ribonucleic acid 

(rRNA) gene, was amplified using universal 16S rRNA primers, 341F_GC and 518R (table 2.3; 

Muyzer et al., 1993) on luminal and mucosal microbiol DNA samples. For PCR reactions 

performed for use in DGGE analysis, a 40 base pair nucleotide GC rich clamp was attached to 

the 5' end of the 341F forward primer (GC Clamp sequence listed in table 2.3). All PCR 

reactions were prepared in a designated PCR area, contained within Holten LaminAir™ HV 

Mini Airflow cabinet (Thermo-Fisher), using sterile filter pipette tips, sterile 0.2 mL PCR tubes 

and sterile-filtered PCR grade water (Sigma Aldrich). The PCR reaction mix (Vf = 25 µL) 

contained 12.5 µL REDTaq® ReadyMix™ PCR Reaction Mix (0.06 unit/µL Taq DNA polymerase, 

0.4 mM  dNTP mix, 20 mM Tris-HCl, 100 mM KCl, 0.002% gelatin and 3mM Magnesium 
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Chloride (MgCl2); Sigma Aldrich), 1 µL BSA (0.5 µg/µL), 1 µL 341f primer (0.4 mM), 1 µL 518r 

primer (0.4 mM),  X µL template DNA (100 ng/25 µL reaction) and q.s to 25 µL with PCR grade 

water. The PCR cycle was initiated with a denaturation step of 95°C for 5 min; followed by 29 

cycles of 95 °C for 30 sec, 57 °C for 30 sec, 72 °C for 30 sec and a concluding step of 72 °C for 

5 min. PCR was performed using a PTC-100® Thermal Cycler (Bio-Rad) with a total run time 

of approximately 1.5 h.  

2.2.5.3 – DGGE Profiling – Parallel DGGE was performed using a DCode™ Universal Mutation 

Detection System (Bio-Rad). DGGE analysis was conducted following the manufacturer’s 

recommended protocol (BioRad). Briefly, PCR products were resolved with 40% 

polyacrylamide gels, composed with a 30 to 70% linear gradient of denaturants (table 2.4), 

which rise in concentration in the direction of electrophoretic migration. Polymerisation was 

initiated with the addition of 150 µL 10% APS and to each denaturant solution. Gels were 

cast using a BioLogic™ EP-1 Econo Pump (Bio-Rad) at a flow rate of 5 mL/min, whilst gradients 

were formed using a SG50 Gradient Maker (Hoefer, Massachusetts, USA) and visualised with 

the addition of 200 µL gradient dye to the 70% denaturant solution (table 2.4). Samples 

composed of 5 µL PCR sample (30 ng/µL), 7.5 µL loading dye (table 2.4) and 2.5 µL sterile PCR 

grade water (Sigma), were loaded into individual lanes, whilst the standard faecal DNA 

marker was loaded into the two outermost lanes. Electrophoresis was conducted at 60 °C 

and ran at 60 V for 16 h. Gels were post-stained using 20 mL 1 × SYBR® Gold Nucleic Acid Gel 

Stain (Invitrogen) for 30 min, with constant, gentle agitation, rinsed in 1 × TAE buffer and 

imaged using a BioDoc-It™ 210 UV imaging system (Bio-Rad) with 4 sec exposure. Gels were 

stored in a refrigerated humidified chamber for up to 24 h prior to band excision.  

2.2.5.4 – Digital Processing of DGGE Profiles – DGGE profiles were processed digitally using 

BioNumerics software (version 7.5; Applied Maths, TX, USA), following the manufacturer’s 

guidelines; lanes and bands were automatically defined and manually corrected, followed by 

automatic normalisation against marker lanes. Next, band matching analysis was performed, 

dividing all bands into classes of common bands and generating a binary presence/absence 

banding profile (appendix 2). Percent presence was calculated for each band class and those 

differing in abundance between functional and defunctioned profiles were selected for 

extraction and sequencing.  

Hierarchical cluster analysis was also performed on binary data, following manufacturer’s 

guidelines for band based coefficients, with the following defined parameters: Similarity 
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coefficient, Jeffrey’s X; Optimisation, 0.5%; Band matching tolerance, 0.5%; Uncertain bands, 

Include; Method, Unweighted Pair Group Method with Arithmetic Mean (UPGMA).   

2.2.5.5 – DGGE Band Excision and Purification – Amplicons from DGGE bands of interest 

were reamplified directly from the gel, using the PCR parameters as described in 2.2.5.2. The 

purity of the PCR products was confirmed via DGGE and the process was repeated until a 

single band was obtained.  Purification was confirmed by running extracted band 

neighbouring the original sample (appendix 3).  

2.2.5.6 - Sanger Sequencing and Analysis – Following matched confirmation of target bands 

with original sample profiles, amplicons were subjected, in triplicate, to Sanger sequencing 

(Source Bioscience, Nottingham, UK), using primers 341F+GC Clamp and 518r. Consensus 

sequences were generated using the ClustalW Multiple Alignment tool accessory within 

BioEdit software (available online at, www.mbio.ncsu.edu/BioEdit/bioedit.html). Alignment 

mismatches were manually corrected where possible or otherwise base-called as N. Using 

FASTA format, consensus sequences were individually submitted to Nucleotide Basic Local 

Alignment Search Tool (BLASTn; (Altschul et al., 1990) 

https://blast.ncbi.nlm.nih.gov/Blast.cgi). BLASTn parameters were defined as: Highly similar 

sequences (megablast), within the 16S ribosomal RNA sequences (Bacteria and Archaea) 

database. Each sequence and thus band class, was assigned a genus classification based on 

BLAST E values, Query cover and Max scores. Consensus sequences and taxonomic 

assignments for each experiment are presented in appendix 4. 

 

2.2.6 – Phylum-specific 16S ribosomal-deoxyribonucleic acid quantitative real-time PCR 

(16S rDNA qRT-PCR) 

Predominant microbial phyla were compared using phylum-specific and universal 16S rDNA 

primers (table 2.3). PCR was performed in a 25 µL reaction volume containing 12.5 µL SYBR® 

Green JumpStart™ Taq ReadyMix™ (20 mM Tris-HCl, pH 8.3, 100 mM KCl, 7 mM MgCl2, 0.4 

mM each dNTP, stabilizers, 0.05 unit/mL Taq DNA Polymerase, JumpStart Taq antibody, and 

SYBR Green I; Sigma-Aldrich), 30-50 ng of template DNA and 1 µL each forward and reverse 

primer (10 µM) and q.s to 25 µL with PCR grade water. PCR parameters were as follows: 1 

cycle of 95 °C for 5 min, 35 cycles of 95 °C for 20 sec, 61.5 °C for 10 sec, annealing, 72 °C for 

30 sec and 1 cycle of 72 °C for 5 min. Data was normalised to total bacteria, using universal 
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primers, and the relative abundances of each phylum determined using the delta delta-Ct (2-

∆∆Ct) algorithm method (Livak and Schmittgen, 2001).  

 

2.2.7 – Quantification of Total Bacterial Load 

pCR®2.1-TOPO® plasmid DNA, containing a 179 bp cloned portion of the 16S rRNA gene was 

kindly provided by Dr Sheena Cruickshank at The University of Manchester, with permission 

from Professor Lora Hooper at University of Texas Southwestern Medical Centre. The 

recombinant pCR®2.1-TOPO® plasmid was generated at University of Texas Southwestern 

Medical Centre.  

2.2.7.1 – Preparation of Luria Broth (LB) + Kanamycin Agar Plates – 15 g low salt LB (Duchefa 

Biochemie, Haarlem, NL) was dissolved in 500 mL dH2O. Agar was autoclaved for 20 min then 

left to cool. Prior to pouring, 500 µL kanamycin (30 mg/mL) was added and mixed thoroughly. 

Plates were poured in an Evanair Class II Bio2+ Microbiological Safety Cabinet with a lit 

Bunsen then stored at 2-5 ᵒC until required.  

2.2.7.2 – pCR®2.1-TOPO® Plasmid Transformation - The pCR®4-TOPO® plasmid was 

transformed into XL1-Blue competent cells (Agilent Technologies, California, USA). A single 

vial was thawed slowly on ice then 50 µL XL1-Blue competent cells and 1 µL pCR®2.1-TOPO® 

plasmid were gently mixed in a falcon tube. The suspension was incubated on ice for 30 min, 

heat-pulsed at 42 ᵒC for precisely 45 sec and again placed on ice for a further 2 min. Next, 

200 µL SOC Outgrowth medium (New England BioLabs, Hertfordshire, UK) was added prior 

to incubation at 37 ᵒC for 1 h, shaking at 250 revolutions per minute (rpm).  

2.2.7.3 – Clone Selection using LB Kanamycin Plates – The transformation suspension was 

streaked onto an LB kanamycin plate (30 µg/mL kanamycin; prepared as described in 2.2.7.1) 

and incubated overnight, upside-down, at 37 ᵒC. Since the pCR®2.1-TOPO® plasmid contains 

a kanamycin resistance cassette, XL1-Blue competent cells which acquired the plasmid will 

selectively grow on the LB kanamycin plate, thus generating a single cell clone.  

2.2.7.4 – Clone Amplification – Following overnight incubation, a single colony was 

transferred into 3 mL LB broth (Life Technologies) containing kanamycin at a final 

concentration of 30 µg/mL, using aseptic technique. Universal tube was incubated overnight 

at 37 ᵒC, in a shaking incubator at 220 rpm. 
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2.2.7.5 – Isolation of Plasmid DNA – Following overnight incubation, 1ml aliquot of culture 

was transferred into an Eppendorf and centrifuged at 12000 × g for 3 min to pellet cells. 

Plasmid DNA was extracted and purified using GeneJET Plasmid Miniprep Kit (Thermo-

Fisher), following manufacturer’s protocol A: ‘Plasmid DNA purification using centrifuges’. 

Eluted DNA was quantified using a NanoDrop™ 2000c Spectrophotometer (Thermo-Fisher) 

and stored at -20 ᵒC until required. 

2.2.7.6 – Generation of pCR®2.1-TOPO® Plasmid Standard Curve – Molecular weight of a 

single copy of recombinant plasmid was calculated using the equation:  

𝑚 = (𝑛) (
1.096 × 10−21𝑔

𝑏𝑝
)  

 

Mass of plasmid copy number of interest was calculated. This was selected to be 3 × 109 to 

represent typical bacterial abundances within the small intestine: 

 Copy # of interest × mass of single plasmid = mass of plasmid DNA required 

The following formula was applied for dilution calculation:  

 C1V1 = C2V2     

 

 

A full worked example of standard curve calculation is presented in appendix 5. Dilutions 1-

5, corresponding to 3 × 109 – 3 × 105 copy numbers, were utilised for construction of standard 

curve with physiological representation of bacterial load in the small intestine.  

2.2.7.7 - pCR®2.1-TOPO® Plasmid 16S rDNA qRT-PCR - Total bacterial load in the functional 

and defunctioned intestine was measured via qRT-PCR, employing universal eubacterial 16S 

rRNA primers, Uni334F and Uni514R (table 2.3). PCR was performed in triplicate 25 µL 

reactions containing 12.5 µL SYBR® Green JumpStart™ Taq ReadyMix™ (20 mM Tris-HCl, pH 

8.3, 100 mM KCl, 7 mM MgCl2, 0.4 mM each dNTP, stabilizers, 0.05 unit/mL Taq DNA 

Polymerase, JumpStart Taq antibody, and SYBR Green I; Sigma-Aldrich), 0.75 µL each forward 

and reverse primer (10 µM), 1 µL template DNA and 10 µL PCR grade H2O. PCR was performed 

Where:  m = calculated mass of single plasmid 

 n = plasmid + insert size (bp) 

 1.096 × 10-21 = average base pair mass 

Where C1 = concentration in copy number of plasmid stock 

 V1 = volume of plasmid stock 

 C2 = desired concentration 

 V2 = volume of diluted plasmid 
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using a CFX96 Real-Time PCR Detection System (Bio-Rad) and cycle parameters were: 1 cycle 

of 95 °C for 10 min followed by 39 cycles of 95 °C for 15 sec and 60 °C for 1 min.  

The abundance of bacterial 16S rRNA gene was quantified via extrapolation from the 

pCR®2.1-TOPO® plasmid standard curve utilising quantification cycle (Cq) values for each 

sample. Bacterial quantification relates to total 16S rRNA gene copy number and not colony 

forming units or absolute cell counts.  

 

2.2.8 - Histological Analyses 

2.2.8.1 - Tissue Fixation and Sectioning - Full thickness excised functional and defunctioned 

tissue sections were fixed in 4% paraformaldehyde solution for 24 h. Samples were 

transferred into cassettes and dehydrated through increasing concentrations of alcohol (70-

100%; 1 h each) to 2 × 1 h incubations in xylene and paraffin wax. Samples were next 

embedded in liquid paraffin wax and cooled on ice overnight to form solid blocks. Histological 

sections 7 µM thick were prepared using a RM2125 RTS Microtome (Leica Microsystems, 

Milton Keynes, UK) on APES-coated, frosted microscope slides and incubated at 37 ᵒC 

overnight to dry. 

2.2.8.2 - Haematoxylin and Eosin (H&E) Staining - H&E sections were generated to assess 

tissue orientation and suitability for immunofluorescence experiments in addition to villous 

height and crypt depth analyses. 

Tissue sections were deparaffinised in xylene for 2 × 5 min then rehydrated in graded alcohol 

(100-70%) for 2 × 1 min each. Slides were washed in running tap water and rinsed in distilled 

H2O (dH2O) prior to immersing slides in Haematoxylin (Sigma-Aldrich, Dorset, UK) for 5 min 

with gentle agitation. Next slides were washed in hot running tap water for 15 min then 

submerged into Eosin for 30 sec with gentle agitation. Slides were rinsed in running tap water 

for 1 min then dehydrated in graded alcohol (70-100%) for 2 × 5 min each followed by 2 × 5 

min xylene. Sections were mounted using DPX (Sigma-Aldrich) and coverslips then stored at 

room temperature until analysed. 

2.2.8.3 - Morphological Analyses - Morphological analysis was performed on suitable H&E 

tissue sections. Images were captured using Nikon Eclipse E600 microscope with 10 × 

magnification. Villous height and crypt depth were measured using ImageJ software as 

illustrated in appendix 6 (Schneider et al. (2012); https://imagej.nih.gov/ij/). Measurements 
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were converted from pixels to µM at 3.63 µM/pixel. Percent change in villous height and 

crypt depth were calculated using functional measurements as control.  

2.2.8.4 – Inflammation Scoring - Coded H&E sections were scored for inflammation by a 

blinded observer. Scoring applied a well-validated system which assigns a score of 0 – 4 for 

inflammation and mucosal damage based on degree and extent of transmural inflammation, 

goblet cell depletion, immune infiltrate and architecture distortion (Rath et al., 1996).  

 

2.2.9 - Immunofluorescence Proliferating Cell Nuclear Antigen (PCNA) Analysis 

Immunofluorescence was performed on suitably orientated embedded functional and 

defunctioned human tissue sections. First, tissue sections were deparaffinised and 

rehydrated through xylene and decreasing concentrations of alcohol in dH2O (100-70%) for 

2 × 5 min and 2 × 2 min each prior to 0.5% NaCl in dH2O for 5 min. 

Heat-Induced Epitope Retrieval (HIER) was conducted to reveal antigen binding sites masked 

during the fixation process, by boiling in sodium citrate buffer pH 6.0 in a microwave oven 

for 15 min, followed by gradual cooling in dH2O for 10 min. Samples were next permeabilised 

using TBS + 0.25% Triton X-100 for 10 min with gentle agitation to ensure free access of the 

primary antibody to its epitope, then washed in TBS + 0.025% Triton X-100 for 2 × 2 min. A 

PAP pen (Sigma-Aldrich) was used to create a hydrophobic barrier around each tissue section. 

Non-specific antibody binding was attenuated via incubation in 10% goat serum in TBS + 3% 

BSA for 2 h at room temperature in a humidified container. Slides were next immunised with 

1.4 µg/mL mouse anti-PCNA (PC10) primary antibody in 3% BSA-TBS, overnight at 4 ᵒC, in a 

humidified container. A species matched isotype control was also included, incubated with 

1.4 µg/mL Normal Mouse IgG in 3% BSA-TBS only. 

Following overnight incubation, slides were rinsed in TBS + 0.025% Triton X-100 for 2 × 2 min 

then incubated with 2 µg/mL Goat Anti-Mouse Alexa-Fluor® 488 antibody in TBS (Thermo-

Fisher, Paisley, UK) for 1 h at room temperature, in a darkened humidified container. Slides 

were counterstained with Hoescht33342 Trihydrochloride nucleic acid stain (Life 

Technologies, Paisley, UK) and mounted using VectaShield® Mounting Medium (Vector 

Laboratories, Peterborough, UK), then sealed with a coverslip and stored in the dark at 4 ᵒC 

until visualised using a Zeiss LSM 880 confocal microscope.  

The number of PCNA positive cells and all nucleated cells were counted by a blinded 

observer. Rate of IEC proliferation was calculated as the percent of PNCA-positive cells/crypt 
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to account for potential variation in total number of cells per crypt between functional and 

defunctioned samples.  

 

2.2.10 – Click-iT® Terminal Deoxynucleotidyl Transferase-dUTP Nick End Labelling (TUNEL) 

Assay 

Paraffin embedded functional and defunctioned tissue sections were assessed for apoptosis 

using Click-iT® Plus TUNEL Assay for In Situ Apoptosis Detection, Alexa Flour® 594, according 

to the manufacturer’s protocol. A positive control slide, treated with DNAse I, was prepared 

according to manufacturer’s instructions. In addition, a negative control slide, treated only 

with Click-iT® Plus TUNEL Reaction Cocktail. Slides were counterstained with Hoescht33342 

Trihydrochloride nucleic acid stain (Life Technologies) and mounted using VectaShield® 

Mounting Medium (Vector Laboratories, Peterborough, UK), then sealed with a coverslip and 

stored in the dark at 4 ᵒC until visualised using a Zeiss LSM 880 confocal microscope. Due to 

the limited number of TUNEL positive cells, quantification of positive cells/crypt was not 

performed. 

 

2.2.11 – Statistical Analyses  

Univariate statistical analyses, employing a paired T-test, was performed using SPSS Statistics 

Desktop (IBM, New York, USA) to compare data from functional versus defunctioned 

samples. p ≤0.05 was deemed statistically significant (* p ≤0.05; ** p ≤0.01; *** p ≤0.001; 

****p ≤0.0001).  

 

2.2.12 – Endoscopy Outpatient Recruitment   

Patients undergoing colonoscopy or flexible sigmoidoscopy at either Lancashire Teaching 

Hospitals (Lancashire, UK) or University Hospitals of Morecambe Bay NHS Foundation Trust 

(Cumbria, UK) were assessed against the study inclusion and exclusion criteria by the 

Research Nurse or Gastroenterologist (table 2.6). Upon receipt of informed consent, 

participants were anonymised via study ID allocation (LTHXXX/LANCXXX) and non-

identifiable patient information including age, gender and relevant treatment history was 

recorded. Relevant study documentation is presented in appendix 7. 
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Study Inclusion Criteria  Study Exclusion Criteria  

The participant may only enter the study 

if ALL of the following apply:  

 Participant is willing and able to give 

informed consent for participation in 

the study.  

 Male or Female, aged 18 years or 

above.  

 Must be undergoing colonoscopy or 

flexible sigmoidoscopy examination.  

 Diagnosed with IBD (test group).  

 Must not be diagnosed with IBD, CRC 

or IBS to be included as a 'healthy' 

control.  

The participant may not enter the study if ANY 

of the following apply:  

 Patients not undergoing colonoscopy or 

flexible sigmoidoscopy.  

 Participants who do not have IBD cannot 

be included in test group.  

 Participants who have ongoing bowel 

pathologies such as IBD, CRC and 

specifically IBS cannot be included in the 

'healthy' control group. 

 Participants who are currently taking any 

antibiotic, or who have taken broad 

spectrum antibiotics within the last 3 

months.  

 Participants who have or, within the last 

month, have had a urinary tract infection 

(UTI).  

 

 

2.2.13 – Urine and Colonic Biopsy Sample Acquisition and Processing  

2.2.13.1 – Sample Acquisition - Immediately following collection, participant midstream 

urine samples were screened for indications of a UTI using DUS 10 Reagent Strips (Dream 

Future Innovation Co Ltd, Gyeongsangnam-do, Korea) following the manufacturer’s 

instructions. Patients with observed leukocyte and nitrite levels exceeding 125 WBC/µL and 

trace levels respectively were excluded from the study and referred to their GP for 

confirmatory diagnosis and treatment. For non-excluded participant samples, sodium azide 

was added to a final concentration of 0.02%, to prevent bacterial growth.   

During the patients’ flexible sigmoidoscopy or colonoscopy procedure, two additional 

biopsies were obtained; one from the descending and one from the sigmoid colon. Biopsies 

were placed directly into a sterile 2 mL microcentrifuge tube containing 180 µL Buffer ATL 

(Qiagen).  

All samples were stored on ice, transported to the research labs at Lancaster University and 

processed within 4 h of collection. Human samples were processed within a class II 

microbiological safety cabined (Baker), employing aseptic technique.  

Table 2.6 – Inclusion and exclusion criteria for patient recruitment to endoscopy study. 
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2.2.13.2 – Urine Sample Processing – Urine samples were prepared for analysis via 

centrifugation for 5 min at 3900 × g at 4 ᵒC, to remove particulate matter. Aliquots of 1.5 mL 

urine were snap frozen in liquid nitrogen and stored at -80 ᵒC prior to nuclear magnetic 

resonance (NMR) spectroscopy.  

2.2.13.3 – Colonic Biopsy DNA Extraction and Purification – Biopsy samples were digested 

in 40 µL proteinase K at 56 °C for 1 h prior to bead beating, at maximum speed for 10 min, 

utilising Pathogen Lysis Tubes S (Qiagen) on a Vortex Genie 2 (Scientific Industries).  Following 

mechanical lysis, total genomic DNA was extracted using QIAamp® Cador® Pathogen Lysis 

MiniKit (Qiagen), according to the manufacturer’s protocol.  

PCR inhibitors were removed from extracted DNA samples using PowerClean® Pro DNA 

Clean-up Kit (Mo Bio Laboratories, California, USA) following the manufacturer’s instructions. 

Eluted DNA was quantified using a NanoDrop™ 2000c Spectrophotometer (Thermo-Fisher) 

and diluted to 50 ng/µL with a final volume of 50 µL. Samples were stored at -20 ᵒC prior to 

Illumina® MiSeq sequencing. 

 

 

2.2.14 – 1D 1H NMR Spectroscopy 

NMR spectroscopy experiments were performed at The University of Liverpool NMR Centre 

for Structural Biology with technical guidance from Dr Marie Phelan and Dr Geoffrey Akien; 

NMR Facility Managers from University of Liverpool NMR Centre for Structural Biology and 

Lancaster University Chemistry Department, respectively.  

2.2.14.1 - 1D 1H NMR Sample Preparation – Urine samples were thawed at room 

temperature for approximately 1 h and processed as described with minor modifications 

(Beckonert et al., 2007). Briefly, after centrifugation at 6000 × g for 5 min, 500 µL aliquot each 

urine sample was mixed with 500 µL 2× phosphate buffer, containing 10% TSP-d4 (table 2.4). 

Samples were vortexed for 1 min and centrifuged at 13000 × g for 2 min room temperature. 

A 600 µL aliquot was transferred to a coded 96 deep well plate for automated acquisition 

and loading of 400 µL of each urine sample into racked 3mm NMR tubes by a Burker-modified 

Gilson Nebular 215 liquid handler (Bruker BioSpin, Karlsruhe, Germany). 
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2.2.14.2 - 1D 1H NMR Spectroscopy – Samples were processed consecutively at 298 K on a 

Bruker AVANCE III 600MHz spectrometer equipped with a 1H-optimisted 5 mM helium TCI 

cryoprobe (Bruker BioSpin). Data were also acquired at 300 K, but due to the disappointing 

separation in the statistical analysis of the 298 K NMR data alone, and the limitations of time, 

no attempt was made at a detailed analysis. Furthermore, data was also acquired in 5 mm 

tubes on the 600 MHz instrument, as well as in both 3 mm and 5 mm tubes in a Bruker 

AVANCE III HD 700 instrument (Bruker BioSpin), but in all cases the lineshape and signal to 

noise were poorer compared to the 3 mm/600 MHz dataset.  

Prior to running each batch of samples, the temperature was calibrated using MeOH-d4, and 

the 3D shims (Topshim 3d, TopSpin, version 3.5, Bruker Biospin) and water suppression 

frequency (O1) optimised manually using a 90% H2O/10% D2O sucrose test sample. Each 

sample was allowed a 5 min equilibration period in the magnet, before shimming, automated 

calibration of the 1H 90° pulse length (pulsecal). 1D 1H spectrum were acquired using a 

standard vendor supplied, gradient enhanced, single pulse sequence with a 90ᵒ flip angle and 

water suppression, referred to as 1D nuclear Overhauser enhancement spectroscopy 

(NOSEY)-presat (or noesygppr1d), performed as previously described (Beckonert et al., 

2007). A total of 32 scans were performed for each sample with an acquisition time of 

approximately 4 min per sample. The acquired free induction decay (FID) data were 

automatically processed to ensure consistency, with a line broadening of 0.3 Hz and zero-

filled to 64k Fourier domain points prior to Fourier transformation. The automation routine 

included manual phasing, baseline correction and reference to TSP-d4 at 0 ppm.  

2.2.14.3 – NMR Spectroscopy Data Preprocessing - NMR spectra were overlayed in NMR 

processing and analysis software, TopSpin (Version 3.5, Bruker Biospin). Buckets were 

defined manually via visual analysis and annotated using Chenomx NMR Suite 6.0 (Chenomx 

Inc., Edmonton, Canada) to create a pattern file (appendix 8) that was imported into AMIX 

(Version 3.9.14, Bruker Biospin) for computational processing of the defined buckets. The 

Chenomx NMR Suite enables comparison spectral peaks against a reference library of defined 

common mammalian metabolites, facilitating spectral annotation. Ambiguous peaks were 

labelled as ‘Unknown’ for further investigation if found to be of significance. The AMIX-

generated bucket table harboured a list of metabolite-annotated peaks and relative 

intensities, relating to total area under each peak, for each patient urine sample (appendix 

9). Representative NMR spectra were labelled with assigned metabolite annotations using 
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Tools for Analysis of Metabolic NMR (TameNMR) within the Galaxy framework (available at 

www.galaxy.liv.ac.uk from autumn 2017). 

 

Normalisation and scaling preprocessing methods for acquired spectroscopic metabolomics 

datasets are required to ensure amenability to downstream multivariate statistical analyses. 

Such techniques are continually scrutinised and debated within the literature and 

standardised methods do not currently exist. Various appropriate methods were considered 

in the context of the dataset generated, previous experimental literature and advice from 

NMR technicians.  

 

Normalisation is applied to the data obtained from each sample to ensure comparability. This 

is important with urine due to drastic concentration variations between samples. 

Normalisation can be performed to a housekeeping metabolite considered to be constant 

across all samples, usually creatinine. However creatinine excretion rates have been shown 

to vary between individuals due to differences in age, gender and disease state (Slupsky et 

al., 2007). Another method is to normalise to the total intensity by expressing each data point 

in relative terms as a fraction of the total spectral integral, a method referred to as constant 

sum normalisation (Craig et al., 2006). This method assumes the total integral is constant 

throughout all samples but is considered ineffective if drug metabolites are expected to be 

present within the urine. This led us to consider probabilistic quotient normalisation (PQN) 

which scales spectra according to the most probable dilution factor in the dataset and has 

been shown to be more robust and accurate than other normalisation methods (Dieterle et 

al., 2006). PQN normalisation was therefore selected for processing of the dataset. Next, 

scaling functions to bring all variables to a comparable scale. Methods include mean centring, 

where all variables have the mean of respective samples subtracted to give a mean of 0, or 

unit variance, where each variable is divided by the standard deviation of all respective 

samples. Pareto scaling is a modification of the latter method which involves the division of 

each variable by the square root of the standard deviation of all respective samples and was 

selected for this study as it is considered to be more effective at minimising bias of abundant 

urinary metabolites, such as urea (van den Berg et al., 2006).   

 

Normalisation and scaling were performed utilising the R programming language script 

‘NMRMetab_Norm_Scale.R’ written and provided by collaborators at Liverpool University, 



53 
 

Computational Biology Facility, within the RStudio software interface (Version 1.0.143, 

RStudio Inc. Boston, MA; https://www.rstudio.com/).  

 

 

2.2.15 – Illumina® MiSeq Sequencing 

Purified DNA extracted from colonic tissue biopsies was outsourced to Source Bioscience for 

Illumina® MiSeq Sequencing and data processing. The full sequencing workflow is illustrated 

in figure 2.1 and described briefly as follows: 

2.2.15.1 – Library Preparation – Samples were first subjected to Amplicon PCR (figure 2.1A) 

to amplify target DNA utilising S-D-Bact-0341- b-S-17 and S-D-Bact-0785-a-A-21 primers 

containing Illumina® overhang adapters (table 2.3). PCR reactions were composed as 

indicated in table 2.7 then subjected to PCR cycle parameters outlined in table 2.8.  

 

PCR Reagent Volume (µL) 

2 × KAPA HiFi HotStart ReadyMix 12.5 

Forward Primer (1 µM) 5.0  

Reverse Primer (1 µM) 5.0  

Template DNA (5 ng/µL) 2.5  

Total 25.0  

 

 

 

Cycle Number of cycles Temperature Duration 

Initial 

Denaturation 
1 95°C 3 min 

Denaturation 
24 (Amplicon PCR) 

8 (Index PCR) 

95°C 30 sec 

Annealing 55°C 30 sec 

Extension 72°C 30 sec 

Final Extension 1 72°C 5 min 

Hold 1 4°C ∞ 

 

 

Table 2.7 - Amplicon PCR reaction components for Illumina® MiSeq library preparation. 

Table 2.8 - Amplicon and index PCR cycle parameters for Illumina® MiSeq library 

preparation 
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Finally, PCR purification using AMPure XP beads was again performed prior to library 

validation checks utilising a Bioanalyzer DNA 1000 chip (Agilent, Santa Clara, CA) to verify 

amplicon size of 630 bp.  

2.2.15.2 – Cluster Generation – Library quantification, normalisation and pooling were first 

conducted by diluting libraries to 4 nM and mixing 5 µL aliquots from each library containing 

unique indices to generate a pooled amplicon library. Next, a 5 µL aliquot was mixed with 5 

µL 0.2N NaOH, briefly vortexed, centrifuged at 280 × g for 1 min at 20 ᵒC and diluted to 20 

pM in pre-chilled HT1 hybridisation buffer to denature the pooled library in preparation for 

cluster generation. A PhiX quality control library was prepared as described for the amplicon 

library to a matched final concentration of 20 pM. Both libraries were then diluted to 4 µM 

in HT1 buffer with a final volume of 600 µL and combined at a PhiX control spike-in 

concentration of 25% (150 µL PhiX and 450 µL pooled). Finally, the combined library was heat 

denatured at 96 ᵒC for 2 min and placed on ice immediately prior to MiSeq V3 reagent 

cartridge loading.  

Cluster generation is an automated process by which single stranded DNA amplicons are 

hybridised and clonally amplified in a flow cell via bridge amplification (figure 2.1B). Reverse 

strands are cleaved and washed away leaving forward strands tethered to the flow cell for 

subsequent sequencing.  

2.2.15.3 – Sequencing-by-Synthesis – Annealing of specific sequencing primers initiates 

sequencing-by-synthesis. Following the addition of a complementary nucleotide a light 

source excites the clusters resulting in emission of a distinguishing fluorescent signal. 

Automated detection and interpretation of emission wavelength and signal intensity defines 

the base call and thus the DNA sequence. This process is conducted twice, first for forward 

and second for reverse strand sequencing.  

2.2.15.4 – Illumina® Sequencing Data Processing – First pooled sample libraries are 

separated based on the unique indices labelling system. Pre-processing raw Illumina® next-

generation sequencing data involves trimming adapter sequences and merging paired-end 

reads. Sequencing reads were quality analysed and trimmed of adapter sequences using 

Skewer (Jiang et al., 2014). Next, paired-end reads are overlapped and merged to create 

longer read sequences using Fast Length Adjustment of Short Reads (FLASH; Magoc and 

Salzberg (2011)).  
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Quantitative Insights Into Microbial Ecology™ (QIIME™; Caporaso et al. (2010)) was utilised 

to pick orthogonal taxonomic units (OTU), compose OTU tables, perform taxonomic 

assignment and plot taxa sample data. OTU picking was set to a 97% minimum threshold for 

sequence similarity and subsequent clustering. Taxonomic assignments, connecting OTUs to 

an organism identification, were defined using the Ribosomal Database Project (RDP) 

Classifier reference database, with a confidence value of 0.8 (Wang et al., 2007). Taxonomic 

data is presented as a relative proportion of total OTUs for each patient and not precise OTU 

counts for each taxonomy.  

2.2.15.5 – Plotting Sequence Data – The relative proportions of microbiota taxa present 

within each patient was visualised utilising bar charts. Such charts were generated using 

RStudio software (Version 1.0.143, RStudio Inc. Boston, MA) using the R package ggplot2 

(Wickham, 2009). Microbiota variables with very low counts detected in few samples are 

considered to arise primarily due to sequencing errors and can cause difficulties in data 

interpretation. To control for this, a low count filter was applied to eliminate microbiota with 

a sample prevalence of <25%.  
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Figure 2.1 – Illumina® sequencing workflow. (A) Library preparation, to anneal sequencing 

binding site, indices and complementary sequence to flow-cell oligos to PCR amplicons (B) 

Cluster generation; 1. Hybridisation, strand synthesis and denaturation, 2. Bridge 

amplification and reverse strand synthesis, 3. Clonal amplification and 4. Reverse strand 

cleavage in preparation for (C) sequencing using sequencing-by-synthesis technology. 

                         Figure adapted from WWW, Illumina Inc®., 2012. 

Amplicon PCR 

and purification 

Index PCR and 

purification 

1 2 3 4 
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2.2.16 – Multivariate Statistical Analyses of Illumina MiSeq Sequencing and Urinary NMR 

Metabolomics Datasets.  

Statistical analyses were performed with training and guidance provided by Dr Marie Phelan 

and Dr Frank Dondelinger at University of Liverpool NMR Centre for Structural Biology and 

Lancaster University Centre for Health Informatics, Computing and Statistics, respectively.  

To account for the impact of metabolites on the measurement outcome (in this case control 

and IBD groups), multivariate statistical analyses were employed. Furthermore, multivariate 

models were utilised to identify metabolites contributing to, and predicting, such results.  

Both unsupervised and supervised multivariate statistical methods were applied during data 

analysis. Unsupervised analyses such as hierarchical clustering and principal component 

analysis (PCA) are often the first step in data exploration as they involve application of 

statistical models without prior knowledge of sample classifications, such as disease group, 

whilst supervised models, including partial least squares-discriminant analysis, are built 

following exposure to a training subset of data with defined sample classifications that is then 

applied to the remaining dataset.  

2.2.16.1 – Hierarchical Cluster Analyses – To investigate potential existence of subgroups 

within metabolomics and microbiota datasets, hierarchical clustering was performed. Cluster 

analysis was executed utilising RStudio software (Version 1.0.143, RStudio Inc. Boston, MA) 

and the accompanying hclust function. Within this script the Euclidean distance measure was 

utilised to inform the hierarchical clustering.  

2.2.16.2 – Principal Components Analyses – PCA was performed to reduce the 

dimensionality of the metabolomics and microbiota datasets as well as visualising data 

structure. PCA scores and biplots were generated utilising the statistical analysis function of 

MetaboAnalyst (Version 3.0; Xia et al. (2015); 

http://www.metaboanalyst.ca/faces/home.xhtml). For metabolite data analysis the pre-

processed NMR peak intensity data table was uploaded whilst the microbiota taxonomic 

order proportion data table was uploaded as a concentrations table. The datasets were then 

subjected to the inbuilt PCA multivariate statistical package and graphics were exported in 

portable network graphic (PNG) format as a resolution of 300 dpi.  

2.2.16.3 – Orthogonal Partial Least Squares Discriminant Analyses (OPLS-DA) – OPLS-DA is 

required to enhance the variance between groups and minimise intrinsic variance within 
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groups (i.e. the systematic variation not related to test variables). Diagnostic parameters such 

as explained variance (R2) that are presented in the model overview are commonly utilised 

as a measure of model performance, with acceptable values considered to be R2 >0.6 for 

biological cohorts (Worley and Powers, 2013). 

OPLS-DA models were generated utilising the statistical analysis function of MetaboAnalyst 

(Version 3.0; Xia et al. (2015); http://www.metaboanalyst.ca/faces/home.xhtml). Datasets 

were uploaded as described above and subjected to inbuilt OPLS-DA statistical functions. 

Graphical score plots and model overviews were exported in PNG format at a resolution of 

300dpi.  

2.2.16.4 – Linear Regression Analysis – Penalised linear regression analysis was performed 

to investigate potential relationships between metabolite and microbiota profiles or 

predominant microbes via integration of multi-omics datasets utilising RStudio software 

(Version 1.0.143, RStudio Inc. Boston, MA) package glmnet (Friedman et al., 2010). 
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Chapter 3: 

 

Investigating the effect of enteral nutrient 

deprivation on intestinal microbiota composition 

utilising a novel human model in patients 

undergoing ileostomy reversal surgery. 
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3.1 – Rationale:  

Surgical resection of the large intestine is commonly carried out in patients with intestinal 

pathologies, such as colon cancer. To facilitate healing, prevent septic complications and 

reduce requirement for repeat operations, a temporary defunctioning loop ileostomy is 

formed upstream of the surgical site (figure 3.1). It functions to protect the downstream 

anastomosis via redirection of faecal stream through the abdominal wall, into an ileostomy 

pouch. Diversion of the faecal stream in this way gives rise to two opposing nutritional 

environments; the proximal ileum remains functional with nutrient and water absorption 

occurring at the mucosal surface from peristaltic motioned chyme, whilst the distal ileum is 

wholly deprived of luminal contents and consequently rendered inactive (figure 3.2A).   

 

 

 

 

 

 

The composition of the intestinal microbiota is modulated by various host genetic and 

environmental factors including medical practices such as antibiotic use, method of childbirth 

and most notably, host diet (De La Cochetiere et al., 2005, Gronlund et al., 1999, De Filippo 

et al., 2010). A plethora of literature now exists detailing the effects of diet modulation on 

the intestinal microbiota (Graf et al. (2015) and discussed in the literature review). An 

extreme example of diet modulation is demonstrated during medical interventions which 

Figure 3.1 - Defunctioning loop ileostomy formation in surgical resection patients. A. ileum 

is lifted through the abdominal wall and divided longitudinally. B. Proximal ileum is everted, 

exposing the mucosa. C. Both limbs are sutured to surrounding skin.  

Tumour in  
sigmoid colon Anastomosis 

a. 

b. 

c. 

Defunctioning Loop 
Ileostomy 

Abdominal 
wall 

ileum 

Sigmoid Colectomy 
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impose complete withdrawal of enteral nutrients. In such circumstances, total parenteral 

nutrition (TPN), a saline solution containing essential macronutrients, vitamins, electrolytes 

and water, is delivered intravenously to bypass the gastrointestinal tract (Gasser and Parekh, 

2005). The use of TPN is debated due to numerous associated complications, including sepsis 

and hepatic dysfunction, motivating research to investigate the consequences of TPN on 

intestinal microbiota (Kudsk et al., 1992, Peyret et al., 2011). A mouse model of TPN 

demonstrated that depravation of enteral nutrition leads to dysbiotic shifts in microbial 

dominance from Firmicutes to Proteobacteria and Bacteroidetes (Miyasaka et al., 2013). 

Similar observations were made in rats fed TPN for 14 days with changes in Bacteroidetes 

and Firmicutes ratio in favour of Bacteroidetes phylum (Hodin et al., 2012). This shift appears 

to be a consequence of loss of Firmicutes rather than an increase in Bacteroidetes.  

 

Human studies investigating the impact of TPN on intestinal microbiota are few in number 

and limited, due to the feasibility of sample collection, to analysis of faecal microbiota. One 

recent study investigated the use of TPN in children with a functional disorder of the small 

intestine known as short bowel syndrome (Engstrand Lilja et al., 2015). Comparison of the 

faecal microbiome with both healthy siblings and short bowel syndrome children weaned 

from TPN demonstrated an overall loss of microbial diversity as well as a distinct increase in 

relative abundance of Proteobacteria. However, this study also reports long-term antibiotic 

use in short bowel syndrome patients and it can therefore not be determined whether the 

observed dysbiosis is a direct consequence of TPN (Engstrand Lilja et al., 2015). Furthermore, 

this study – and many others – utilise faecal samples to assess the intestinal microbiota with 

the assumption that they obtain similar microbial distribution and abundance, but faecal 

microbiota has been reported to have limited representativeness of the mucosal microbiota, 

largely under-representing bacterial diversity (Durban et al., 2011). In addition to interpatient 

genetic and environmental variability, issues such as antibiotic use and ideal versus feasible 

sample collection methods are common hindrances in clinical microbiome studies and efforts 

should be made to develop scientific models with minimise such issues.  
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Patients undergoing loop-ileostomy reversal surgery present a novel human model of TPN 

(figure 3.2). The enterally deprived, defunctioned ileum receives only blood-borne nutrition 

and therefore simulates conditions observed with TPN use. Furthermore, the functional 

ileum serves as a paired control which enables intrapatient comparisons, thus negating 

interpatient variations which often encumber human studies. Harnessing this human model 

provides unique opportunity to evaluate intestinal microbiota profiles in distinct in vivo 

nutritional environments, eliminating both interspecies and interpatient translational issues 

common in microbiota studies.  

 

This thesis proposes that ileostomy-mediated faecal stream diversion and the resultant loss 

of enteral nutrition in the downstream intestine alters microbiota composition and 

abundance, causing dysbiosis. We aimed to investigate the mucosal- and luminal-associated 

microbiota in functional and defunctioned intestine, obtained from patients undergoing 

ileostomy reversal surgery, utilising a variety of biochemical and molecular techniques.  

 

 

Figure 3.2 - Structure of the intestine. A. loop ileostomy and B. following reanastomosis. 

Block arrows denote presence and direction of luminal contents flow. Tissue located above 

dashed lines represent areas of intestine removed prior to reanastomosis and form the 

specimen acquired for our research. 

Figure published in Beamish et al. (2017). 
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3.2 – Research Aims:  

- To investigate alterations in the composition and abundance of the microbiota following a 

period of enteral nutrient deprivation. 

- Attempt to elucidate a characteristic dysbiotic microflora utilising a novel human model in 

loop ileostomy patients.  

 

3.3 – Methods Summary:  

Tissue was obtained and processed from 35 study participants, recruited from Royal Preston 

Hospital, while 9 participants were excluded on medical grounds. All recruited patients had 

loop ileostomy to protect downstream anastomoses following resection of colorectal cancer 

tumours. Loop ileostomies were in place for an average of 12 months prior to reversal 

surgery.  

 

Microbial DNA was extracted from functional and defunctioned luminal swab and mucosal 

tissue samples respectively, as described in section 2.2.4. DNA from luminal-associated 

microbiota was utilised to perform DGGE profiling and qRT-PCR analyses while mucosal-

associated microbial DNA was expended in DGGE profiling, total bacterial load quantification 

and Illumina® 16S sequencing analyses.  
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3.4 – Results:  

3.4.1 – Sanger sequencing of extracted DGGE bands enables accurate identification of 

microbes to genus level.  

Evaluation of DGGE band extraction and Sanger sequencing methods to identify unknown 

bacteria from patient loop ileostomy samples was conducted utilising bacterial DNA from 

four predominant phyla of the intestinal microbiota. DGGE analysis of DNA extracted from B. 

longum, B. fragilis, E. faecalis, and E. coli, pertaining to Actinobacteria, Bacteroidetes, 

Frimicutes, Proteobacteria, phyla respectively is presented in figure 3.3. In addition, luminal-

associated DNA extracted from functional and defunctioned ileum from one patient are also 

presented. All sample lanes displayed more than one band despite containing purified DNA 

from a single species of bacteria, with E. coli presenting 4 distinct bands for example. 

 

Figure 3.4 presents fourteen bands post extraction and purification with corresponding 

species assignment for ten samples sequenced. Visual analysis of the gel revealed that not 

all bands were successfully isolated; bands 1, 5, 6 and 7 presented multiple bands after one 

round of purification. In addition, bands 10 and 14 appeared to have amplified an incorrect 

band and as a result were not selected for sequencing. However successful isolation of bands 

10-13, as determined via presence of single band, demonstrated that bands of interest can 

be extracted from complex mixed microbial samples.  

 

Taxonomic species assignment, via BLAST analysis, was possible for nine of ten samples 

sequenced (figure 3.4). Confident taxonomic assignment was unsuccessful for the consensus 

sequence generated from band 1, likely due to contaminating DNA from another distinct 

band present in the sample (figure 3.4). In addition, band 4 was incorrectly assigned as 

uncultured Bifidobacterium sp. when it was in fact DNA extracted from B. longum. It was 

therefore decided that bacterial taxonomic assignment should be limited to genus level for 

unknown bands extracted from mixed samples. It was also concluded that multiple rounds 

of extraction and purification should be performed to obtain a single band prior to 

sequencing analysis. 
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Figure 3.3 – Microbial DGGE profiles for band extraction and sequencing.  

DGGE-PCR analysis of 16S rDNA PCR amplicons of bacterial species representing four 

predominant gut phyla: B. longum, Actinobacteria; B. fragilis, Bacteroidetes; E. faecalis, 

Frimicutes and E. coli, Proteobacteria, in addition to unknown functional and defunctioned 

paired profiles from patient 022. Blue boxes highlight bands selected for extraction.  

Ladders composed from pooled faecal microbiota DNA to enable comparison between gels. 

Abbreviations: F, functional; D, defunctioned. 
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Figure 3.4 – Species assignment for extracted and sequenced microbial DGGE bands.  

DGGE-PCR analysis of fourteen bands extracted and purified from microbial DGGE profiles 

presented in figure 3.3, as indicated by blue arrows. Ten of the fourteen bands were selected 

for sequencing. Inclined, the corresponding bacterial species ID for each band sequence is 

displayed. ‘X’ samples were not selected for sequencing. Consensus sequences and 

taxonomic assignments for each band class are presented in appendix 4. 

Ladders composed from pooled faecal microbiota DNA to enable comparison between gels.  
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3.4.2 – Total bacterial load is significantly reduced in defunctioned intestine. 

Quantification of total mucosal-associated bacterial load was conducted via determination 

of the 16S rRNA gene copy number. Small intestinal bacterial load is considered to be around 

108 cells per mL of luminal content (Berg, 1996). In accordance with this, the average 

mucosal-associated bacterial load in the functional ileum was calculated to be 2.63 × 108 

gene copies per gram of tissue, compared with 9.89 × 107 in the defunctioned (figure 3.5A). 

This constituted to a 62.4% average decrease in total bacterial load in the defunctioned ileum 

(figure 3.5A; n = 27, p = 0.0003). A reduction occurred consistently across all paired samples 

tested (figure 3.5B), suggesting that faecal stream diversion and consequential microbial 

enteral nutrient deprivation leads to a substantial reduction in total mucosal-associated 

bacterial load.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.3 – Luminal-associated microbiota profiles differ in functional and defunctioned 

intestine. 

Intrapatient comparisons of luminal-associated microbiota profiles from functional and 

defunctioned intestine were conducted to investigate potential variations in luminal 

microbial composition utilising universal 16S rDNA PCR and visualised via DGGE analysis 

(figure 3.6). Unsurprisingly, it is immediately evident from figure 3.6 that distinctive microbial 

profiles are apparent both between patient samples and within paired samples taken from 

our patient cohort, as evidenced by visibly diverse banding patterns. 

Figure 3.5 - Enumeration of total bacterial load. Bacterial enumeration of (A) average- and 

(B) absolute-16S rRNA gene copy numbers per gram of mucosal tissue in functional and 

defunctioned intestine (n = 27; p = 0.0003).               Data published in Beamish et al. (2017). 
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Figure 3.6 - Intrapatient comparisons of luminal-associated intestinal microbiota profiles between functional and defunctioned intestine.  DGGE-PCR 

analysis of 16S rDNA PCR amplicons. Band classes are depicted using characters a through h and corresponding bands are enclosed. X depicts band classes 

lost during extraction. Blue line segregates samples excluded from downstream analysis due to variant processing methods. Ladders composed from pooled 

faecal microbiota DNA. Abbreviations: F, functional; D, defunctioned.         Data published in Beamish et al. (2017). 
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Digital processing of the gel image enabled identification of common band classes shared 

between different samples, presented in the form of a binary presence or absence banding 

profile (appendix 2). Each band on a DGGE gel represents one or more closely related 

bacterial species therefore the number of bands in each profile can be considered to reflect 

the number of different bacterial species and thus overall microbial diversity. On average, 

the total number of bands in the defunctioned profiles was lower than the number observed 

in the functional profiles (average of 16 bands to 11 bands, respectively; figure 3.7A), 

indicating that faecal stream diversion reduces diversity of the intestinal microbiota. A 

reduction in diversity was not observed consistently across the cohort as three samples were 

found to have an equal or increased number of bands in the defunctioned profiles (figure 

3.7B). Interestingly, such samples had the lowest diversity in the functional ileum (figure 3.7).  

 

 

 

 

 

 

 

 

 

 

 

 

Subsequent hierarchical cluster analysis of the binary data, presented in figure 3.8, revealed 

considerable similarity between the defunctioned profiles as they frequently clustered 

together rather than with their paired functional counterparts. Profiles from functional 

intestine were also observed to cluster together demonstrating that, irrespective of natural 

interpatient genetic and environmental variability, distinct luminal-associated microbial 

populations exist within the functional and defunctioned intestine. 

Figure 3.7 - Luminal DGGE band analysis. (A) average- and (B) absolute-number of bands in 

luminal-associated DGGE profiles, representing microbial diversity. n = 11, p ≤0.05. 

                      Data published in Beamish et al. (2017). 
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Figure 3.8 – Hierarchical cluster analysis of luminal-associated DGGE profiles represented 

in graphical form as an UPGMA dendrogram. Braces highlight examples for functional and 

defunctioned profile clusters F: functional ileum, D: defunctioned ileum.  

n = 11.       Data published in Beamish et al. (2017). 
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3.4.4 – Luminal-associated microbial dysbiosis is apparent at phylum and genus level in 

defunctioned ileum.  

To further characterise the apparent disparity in luminal-associated microbial profiles 

between the functional and defunctioned intestine, Sanger sequencing analysis was 

performed on extracted band classes of interest (figure 3.9). In total, 73 distinct band classes 

were identified across 22 DGGE profiles (11 functional and 11 defunctioned paired samples). 

A total of 10 band classes, differing in percent presence between functional and defunctioned 

profiles, were selected and of these 8 were successfully extracted, purified and sequenced 

(appendix 3; figure 3.9). Subsequent BLAST analysis revealed the highest matched identities 

from NCBI nucleotide databases for each band class and the highest sequence similarity (99-

100%) match was assigned at genus level. Band classes a and b were assigned to the 

Bacteroides genus, band class c and d to Streptococcus, band class e to Shigella, band class f 

and g to Clostridium and band class h to Spirosoma. Shigella is a human pathogen that is not 

commonly associated with the intestinal microbiota. Therefore it is likely that Band e was 

misclassified and is actually the closely related common commensal, Escherichia.  
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Figure 3.9 – Luminal band class quantification. Luminal-associated DGGE band classes 

differing in functional versus defunctioned profiles expressed as a percentage presence 

across all patients. Characters a-h correspond to the band classes highlighted in figure 3.6. 

Inclined, the corresponding bacterial genus ID for each band class is displayed. Consensus 

sequences and taxonomic assignments for each band class are presented in appendix 4. 

                    Data published in Beamish et al. (2017). 
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Figure 3.9 also demonstrates percent reductions in Clostridium (18.2% and 36.3% band class 

f and g, respectively), Shigella (9%, band e) and Streptococcus (36.3% and 18.2%, band c and 

d) genera across defunctioned profiles, compared with functional. Conversely, an increase in 

the percentage presence of Spirosoma (27% increase, band h) was observed in the 

defunctioned ileum. Interestingly, members of the Bacteroides genus were observed to 

increase or decrease in percent presence across the functional and defunctioned profiles 

(27.3% reduction and 36% increase, band a and b, respectively; figure 3.9). 

 

 

Furthermore, the relative percent abundance of three predominant intestinal microbial 

phyla, Firmicutes, Bacteroidetes and y-Proteobacteria, were calculated in the defunctioned 

intestine compared to the paired functional control, utilising qRT-PCR (figure 3.10). A 

significant reduction in the relative abundance of the Firmicutes phylum was observed in the 

defunctioned intestine (21% reduction, n = 18; p = 0.02), in addition to a concomitant small 

but significant increase in the y-Proteobacteria phylum (6.9% increase, n = 9, p = 0.05). 

Consistent with the DGGE sequencing data, no significant difference was observed in the 

relative abundance of the Bacteroidetes phylum, due to substantial variation in phylum 

abundance across the patient cohort (n = 17, p = 0.22).  

 

  

Figure 3.10 – Relative quantification of predominant luminal-associated phyla. Percent 

change of phylum abundance in defunctioned intestine relative to functional. Data 

normalised to universal 16S rDNA primers (Firmicutes (n = 18, p = 0.02), Bacteroiodetes (n = 

18, NS), y-Proteobacteria (n = 9, p ≤0.05).  Data published in Beamish et al. (2017). 
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3.4.5 – Mucosal-associated microbial profiles differ in functional and defunctioned 

intestine following ileostomy-mediated enteral nutrient deprivation. 

 

Intrapatient comparisons of mucosal-associated microbial profiles were performed to assess 

the extent of dysbiosis within microbial populations at mucosal level utilising universal 16S 

rDNA PCR and visualised via DGGE analysis (figure 3.11). As with luminal-associated DGGE 

profiles, distinct mucosal-associated microbial populations were observed both between and 

within paired patient samples, as evidenced by clearly diverse banding patterns. No 

difference was observed in the number of DGGE bands between the mucosal-associated 

functional and defunctioned profiles suggesting that the diversity of mucosal-assocaited 

microbiota is maintained despite enteral nutrient deprivation (figure 3.12).   

 

 

 

Hierarchical cluster analysis of binary data, representing common band classes shared 

between sample profiles, revealed that distinct mucosal-associated microbial profiles exist 

in defunctioned and functional ileum as the profiles were observed to cluster together (figure 

3.13). However mucosal-associated microbiota in defunctioned ileum appear less affected 

by ileostomy-mediated nutrient diversion compared to luminal-associated microbiota as four 

patient’s defunctioned samples clustered with their functional counterparts thus maintaining 

paired nature (figure 3.13 arrows). 
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Figure 3.12 - Mucosal DGGE band analysis. (A) average- and (B) absolute-number of bands 

in mucosal-associated DGGE profiles, representing microbial diversity. n =15, p >0.05. 
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 Figure 3.11 - Intrapatient comparisons of mucosal-associated intestinal microbiota profiles between functional and defunctioned intestine. DGGE-PCR 

analysis of 16S rDNA PCR amplicons. Band classes are depicted using characters a through f. Ladders composed from pooled faecal microbiota DNA. 

Abbreviations: F, functional; D, defunctioned.  
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Figure 3.13 - Hierarchical cluster analysis of mucosal-associated DGGE profiles represented 

in graphical form as an UPGMA dendrogram. Red arrows highlight samples with retained 

paired sample nature. F: functional ileum, D: defunctioned ileum. n = 15. 
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3.4.6 – Mucosal-associated microbial dysbiosis is apparent at phylum, order and genus 

level in defunctioned ileum. 

To further elucidate mucosal-associated microbial profiles in functional and defunctioned 

intestine, band classes of interest were extracted and purified for Sanger sequencing analysis. 

A total of 96 distinct band classes were identified across 30 DGGE profiles (15 functional and 

15 defunctioned paired samples). Band classes were assessed for percent presence in 

functional and defunctioned profiles and from a selection of 10, 6 were successfully extracted 

and purified and sequenced (appendix 3; figure 3.14). Due to limited sequence read quality, 

confident genus assignment, with a sequence similarity of 99-100%, was successful with only 

3 band classes during subsequent BLAST analysis using NCBI nucleotide databases (figure 

3.14). The generated data demonstrates a reduction in the Gemella and Enterococcus genera 

and a concurrent increase in the Bacteroides genus in the defunctioned ileum compared to 

functional (figure 3.14).  
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Figure 3.14 - Mucosal band class quantification. Mucosal-associated DGGE band classes, 

differing in functional versus defunctioned profiles, expressed as a percentage presence 

across all patients. Characters a-f represent band classes highlighted in figure 3.11. Inclined, 

corresponding bacterial genus ID for each band class. Consensus sequences and taxonomic 

assignments for each band class are presented in appendix 4. 
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Next-generation Illumina® sequencing analysis of the mucosal-associated microflora, 

classified to phylum level, revealed alterations in the proportions of three predominant phyla 

analogous to that observed in the luminal-associated profiles; relative increase in 

Proteobacteria, relative decrease in Firmicutes and a varied response in Bacteroidetes 

phylum in the defunctioned ileum compared to the functioned controls (figure 3.15). This 

trend was observed in all except one patient in which the defunctioned profile microbiota 

proportions remained relatively unchanged despite enteral nutrient deprivation (Patient 

043). Contrastingly, a drastic shift in microbial profiles was observed in another patient, with 

microbial dominance shifting almost entirely from Firmicutes to Proteobacteria (Patient 029).  

Furthermore, less predominant bacterial phyla, including Chloroflexi, Fusobacteria, OD1, 

Cyanobacteria and Actinobacteria, were identified to increase in relative proportion in the 

defunctioned ileum.  
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Figure 3.15 - Relative taxonomic composition of 16S rRNA amplicon sequences in mucosal-

associated microbiota, at phylum level. F, functional; D, defunctioned. n = 4. 
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Taxonomic classification of sequencing data to order and genus level was carried out in 

attempt to further characterise dysbiosis in the defunctioned ileum. This revealed the order 

Clostridales and Lactobacillales, of the Firmicutes phylum, are predominantly associated with 

the functional intestine, often decreasing in relative terms in the defunctioned ileum (figure 

3.16). Likewise, Enterobacteriales and Pseudomonadales are the predominant order of the 

Proteobacteria phylum, appearing to increase in relative abundance in the defunctioned 

ileum. Interestingly, several less abundant order, including Xanthomonadales, Rhizobiales 

and Burkholderiales are primarily acquired in the defunctioned ileum and contribute to 

predominance of Proteobacteria. The order, Actinomycetales and Bifidobacteriales compose 

the Actinobacteria phylum and appear to remain stable within the defunctioned ileum often 

presenting near equivalent relative abundance that observed in paired functional profiles.  

 

Further analysis of sequencing data revealed a large variation in microbial diversity within 

both functional and defunctioned profiles is also apparent across the cohort, at genus level, 

highlighting the extent of interpatient variability in the intestinal microbiome (figure 3.17). 

In addition, increased bacterial diversity in the functional ileum appears to support greater 

preservation of microbial profiles in the defunctioned ileum, despite enteral nutrient 

deprivation. For example, patient 043 hosts numerous genera within the Firmicutes phylum 

which are largely maintained in the defunctioned ileum. In contrast, patients 029 and 040 

host predominately Enterococcus and Streptococcus within the functional ileum, 

respectively and are observed to lose substantial portions of such microbes in the 

defunctioned ileum. However, this data requires quantification, using OTU counts for each 

paired sample, to confirm such suggestions.  
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Figure 3.16 - Relative taxonomic composition of 16S rRNA amplicon sequences in mucosal-

associated microbiota, at order level. F, functional; D, defunctioned. n=4.  

Key presents predominant order. Annotated figure and complete key detailing all assigned 

taxonomic classifications is presented in appendix 11. F, functional; D, defunctioned. n = 4.  
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Figure 3.17 - Relative taxonomic composition of 16S rRNA amplicon sequences in mucosal-

associated microbiota, at genus level. F, functional; D, defunctioned. n=4.  

Key presents predominant genera. Annotated figure and complete key detailing all assigned 

taxonomic classifications is presented in appendix 12. F, functional; D, defunctioned. n = 4.  
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Finally, PCA was executed to visualise structure within the microbiota sequencing data (figure 

3.18). Separation was observed between the functional and defunctioned microbiota profiles 

with an overlap occurring due to the similarity of 043 functional sample with defunctioned 

profiles (figure 3.18A). The associated PCA biplot suggested that relative proportions of 

Firmicutes, Bacteroidetes and Proteobacteria defined the variability between clusters with 

Firmicutes correlating with the majority of functional samples whilst proportions of 

Bacteroidetes and Proteobacteria correlate with defunctioned profiles, as evidenced by the 

magnitude and direction of respective vectors (figure 3.18B). The similarity of sample 043F 

with defunctioned profiles is observed to be a result of reduced Firmicutes proportions 

(figure 3.18B). Sample 029D was identified to be a potential outlier with substantial 

proportions of Proteobacteria, but this cannot be confirmed due to limited sample numbers.  
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Figure 3.18 – PCA of functional and defunctioned mucosal-associated microbiota. (A) 

PCA scores plot and (B) corresponding biplot of proportionate mucosal-associated 

microbiota profiles, at phylum taxonomic level, from functional (green; F) and 

defunctioned (red; D) ileum.  

A 

B 
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3.5 – Discussion:  

For the first time, this research demonstrated a strong relationship between loop ileostomy-

mediated faecal stream diversion and profound alterations in the intestinal microbiota of the 

defunctioned ileum at the time of reversal. A significant reduction in total bacterial load in 

the defunctioned intestine was identified, as determined by a reduction in 16S rRNA gene 

copy number, as well as broad shifts in microbiota composition between functional and 

defunctioned intestine. Of particular note, a significant loss of the predominant phylum 

Firmicutes was observed with a concomitant increase in γ-Proteobacteria in the 

defunctioned ileum. Such dysbiotic characteristics are also reported in IBD, suggesting that 

the microflora in the defunctioned ileum may potentially disrupt homeostasis and/or 

promote disease (Baumgart et al., 2007, Sokol et al., 2008). Furthermore, these results are 

also consistent with that reported in the study investigating the effects of TPN on the 

microbiota of human small intestine (Ralls et al., 2014). Interestingly, the study reports a 

correlation between duration of TPN use and increased severity of dysbiosis; participants fed 

with TPN either partially, or for less than 6 weeks, somewhat maintained microbial diversity 

compared to one participant given TPN for >2 months. Given that the downstream intestine 

in participants of this study remained defunctioned for an average of one year, it is 

unsurprising that such profound dysbiosis was observed. 

 

 

The copy number of the 16S rRNA gene is frequently utilised as a measure of bacterial load 

in microbial studies for both clinical and environmental samples as it highly conserved 

between species of bacteria and contains 9 hypervariable regions which enable reliable 

taxonomic classification (Klappenbach et al., 2001). The 16S rRNA gene copy number varies 

considerably between bacterial species, with E. faecalis of the Firmicutes phylum obtaining 

4 copies whilst E. coli of Proteobacteria harbours between 7 and 9 copies (Klappenbach et 

al., 2001). In this study, gene quantification revealed an average of 62.4% reduction in total 

bacterial load in the defunctioned ileum across the patient cohort. However, the reduction 

in bacterial cell numbers may be underestimated due to dysbiotic shift in favour of 

Proteobacteria which appear to obtain more copies of the 16S rRNA gene per bacteria. 

Despite this, the overarching conclusion that total bacterial load is significantly reduced in 

the defunctioned ileum remains the same.  
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Loss of total microbiota is also reported in patients with anorexia nervosa when compared 

to gender and age matched controls (Morita et al., 2015). Anorexia nervosa patients 

electively halt their intake of food, without receiving artificial nutrition such as TPN, meaning 

the intestine is consequently defunctioned and the microbiota starved.  The observed 

reduction in total bacteria was attributed to significant losses of members of the Firmicutes 

phylum, including Clostridium and Streptococcus, as well as Bacteroides of the Bacteroidetes 

phylum (Atarashi et al., 2013). These observations are consistent to that reported in 

defunctioned limb of loop-ileostomy patients in this study with a loss of Streptococcus and 

Clostridium reported in both DGGE and Illumina® deep sequencing analyses. Moreover, 

expansion of the Firmicutes phylum is frequently found in obese humans and also correlated 

with adaption of a westernised diet, which is likely due to an increased capacity for energy 

harvest from high fat diet (Turnbaugh et al., 2006, De Filippo et al., 2010). Considering this, 

such drastic losses of predominant microbial phyla in the nutritionally deprived defunctioned 

intestine is to be expected. This research also reported parallel increases in the abundance 

of the Proteobacteria phylum following a period of enteral nutrient deprivation. Such shifts 

in microbial abundance are likely due to changes in nutrient availability within the intestine. 

Members of the Proteobacteria phylum have previously been shown to achieve increased 

survival rates in nutritionally restricted environments, including sterile PBS and sewage water 

when compared with other bacterial populations (Sinclair and Alexander, 1984). In addition, 

literature has recently begun to consider Proteobacteria as a microbial signature of dysbiosis 

in the intestine due to its recurrence in various dysbiosis-associated diseases, particularly IBD 

(Baumgart et al., 2007). It is also important to note that the microbiota sequencing data is 

presented as relative proportions in abundance meaning increases reported in certain 

microbiota populations, such as Actinobacteria and Proteobacteria, may be a reflection of 

the reduced total bacteria load, rather than increases in their numbers.  

 

 

 

Illumina sequencing of mucosal-associated microflora provided detailed insights into the 

microbial profiles of the functional and defunctioned intestine and distinct differences were 

observed throughout the cohort. Despite analysing phylogenetic profiles to genus level, we 

were unable to define a specific microbial profile characteristic of either nutritional 

environment. Although disappointing, this is largely unsurprising considering culture-

independent sequencing studies have demonstrated that an individual can host up to 200 of 
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a possible 1,000 species-level phylotypes and reports have noted significant variation in 

species composition within the intestinal microbiota between healthy individuals (Avershina 

and Rudi, 2015, Eckburg et al., 2005). Given the enormous and unique diversity of the 

intestinal microbiota, it is becoming seemingly unlikely that a determinative loss or gain of 

specific bacterial genera for dysbiosis will be identified, meaning a ‘one microbiome fits all’ 

principle will not extend past the phylum level. To transition into clinical application the 

individuality of intestinal microbiota must be accommodated and it may be that diagnostic 

and therapeutic techniques will become personalised. Furthermore decreasing costs of next 

generation sequencing technologies will promote such clinical advancements. 

 

 

 

The data presented herein also suggests that increased taxonomic diversity in functional 

ileum may better preserve microbial profiles through a period of enteral nutrient 

deprivation. Previous studies have demonstrated that communities rich in diversity are more 

resistant and resilient to perturbing environmental factors and biological invasion. For 

instance, the invasive capacity of the weed, Crepis tectorum, was found to be limited in areas 

with high resident plant diversity due to limited nutrient and light availability, increasing 

biological competition (Naeem et al., 2000). Furthermore, soil microbial communities high in 

species richness were found to be more resilient to various environmental stressors, such as 

copper and excessive heat, than those with low diversity (Griffiths et al., 2005). This was 

suggested to be due to a larger functional capacity of the diverse microbiota. Such principle 

can also extend to the intestinal microbiota as low microbial diversity in the intestine has 

been correlated with IBD, but it has not been yet determined whether such observations are 

causative or consequential of disease (Willing et al., 2010, Butto and Haller, 2016). 

Considering this, techniques to promote the intestinal microbiota diversity prior to loop 

ileostomy formation may prove to increase microbial resilience to enteral nutrient 

deprivation and thus attenuate dysbiosis. Nonetheless, additional analyses employing OTU 

counts to quantify and compare microbiota populations and overall diversity within the 

functional and defunctioned intestine, with increased sample numbers, is required to 

confirm such suggestions. 
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Here we present a novel human model of dysbiosis that enables assessment of variations in 

the presence and profile of the intestinal microbiota, as a consequence of dietary 

modification. The primary advantage of this model is the paired functional sample obtained 

from the same individual at the same time as the defunctioned. The paired sample nature 

enables control of genetic and environmental bias as consequences of potential perturbing 

factors, such as contaminants from showering or changing ileostomy pouch for example, will 

be apparent in both functional and defunctioned samples and therefore eliminated during 

subsequent analyses. However, despite such unique advances, this model is not without its 

limitations. Firstly, the anaerobic environment of the intestine is likely compromised during 

ileostomy as the limbs are sutured to the abdominal wall. Due to this, we cannot determine 

whether possible key bacteria have been eliminated from both limbs due to inadequate 

growth conditions. Furthermore, this model is executed utilising the ileum of the small 

intestine and although the majority of enzymatic digestion and absorption occurs here, 

bacterial fermentation of indigestible complex carbohydrates, crucial mediators of host 

health and disease, occurs in the colon (Tremaroli and Backhed, 2012). The consequences of 

dietary modification in the small intestine are therefore arguably less relevant than those 

observed in the colon. Future studies applying this model to colostomy patients may prove 

beneficial, however only 35% of colostomies are temporary, potentially making recruitment 

of patients undergoing reversal surgery problematic (WWW, Colostomy Association).  

 

 

In the context of patients recruited to this study, despite loop ileostomy generating such 

drastic nutritional environments, research had not yet been conducted to elucidate potential 

effect on the intestinal microbiota in the defunctioned ileum. This data demonstrates 

patients undergoing loop ileostomy reversal surgery harbour substantial dysbiosis in the 

defunctioned ileum with profound shifts observed in microbiota predominance. Previous 

research has demonstrated the crucial impact microbiota have on maintenance of intestinal 

homeostasis as well as rapid breakdown of EBF associated with dysbiosis (as discussed in 

literature review). Considering we have observed such profound dysbiosis in the 

defunctioned ileum, future studies should investigate the consequences of dysbiosis on 

defunctioned ileal morphology and homeostasis in view of potential implications for the 

success of ileostomy reversal surgery.   

Collectively, findings presented within this chapter revealed that dysbiosis occurs in the 

defunctioned ileum of loop ileostomy patients following enteral nutrient deprivation. 
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Furthermore, we have presented a novel human model of dysbiosis which can be utilised in 

future studies to determine host microbiota profiles influence on intestinal physiology with 

consideration to dysbiosis associated diseases.  
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Chapter 4: 

 

Investigating the morphology of functional and 

defunctioned ileum following ileostomy-

mediated faecal stream diversion  
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4.1 – Rationale:  

The structure of the human intestine has evolved to support its primary function; the 

absorption of nutrients and water from luminal contents. This function is aided considerably 

by diverse metabolic actions of the intestinal microbiota and in return such resident 

microorganisms receive sustenance from host enteral nutrition, inducing a state of host-

microbiota mutualism. Loop ileostomy deprives the downstream intestine of enteral 

nutrition, rendering it inactive until reversal surgery is carried out an average of 12 months 

post formation. Research presented in chapter 3 demonstrated that loop ileostomy-

mediated enteral nutrient deprivation leads to profound disruptions to microbial structure 

and abundance, termed dysbiosis, in the defunctioned ileum. However, the physiological 

consequence of this dysbiosis remain yet to be investigated.   

 

 

Previous mouse models have demonstrated that TPN use, which deprives the intestine of 

enteral nutrition equal to that of loop ileostomy, leads to microbial dysbiosis (Miyasaka et 

al., 2013). In addition, rats fed on exclusive TPN for 8 days were observed to develop 

circumferential atrophy with remodelling of the intestinal wall, such as increased thickness 

of the submucosal layers, throughout the intestine when compared to identically housed rats 

fed and watered ad libitum (Ekelund et al., 2007). It is also known that recognition of 

commensal microbes by IEC TLR mediates host-microbiota crosstalk and is crucial for 

maintaining intestinal homeostasis (Rakoff-Nahoum et al., 2004). Collectively, this research 

supports a probable role for the microbiota in influencing intestinal physiology in the 

defunctioned intestine, consequential to enteral nutrient deprivation.  

 

 

Chapter 3 utilised loop ileostomy patients undergoing reversal surgery, to investigate 

nutritional influence on the presence and profile of the intestinal microbiota. The same 

patients also lend themselves as a novel human model for analysis of how distinct microbial 

populations may alter intestinal physiology, promoting either health or disease. Likewise to 

chapter 3, the paired nature of obtained samples will enable intrapatient analysis of intestinal 

morphology following enteral nutrient deprivation-induced dysbiosis whilst controlling for 

interpatient genetic and environmental variability.  
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This research model will also enable consideration of post-operative clinical outcomes for 

patients undergoing loop-ileostomy reversal surgery. In addition to the inconvenience of a 

second operation for loop closure, the reversal procedure is associated with a substantial 

morbidity of 21-70% (Shabbir and Britton, 2010). Small bowel obstruction and anastomotic 

leakage are the most common post-operative complications with respective incidence rates 

up to 22% and 19% (Pemberton et al., 1987, Phang et al., 1999, El-Hussuna et al., 2012). 

Further complications include prolonged postoperative ileus and faecal incontinence, as well 

as incisional hernia and wound infections at the site of stoma formation (El-Hussuna et al., 

2012).  Due to such complications, around 5% of cases prove to be irreversible, leaving 

patients with a permanent stoma and a reduced quality of life (Bailey et al., 2003). 

Investigation of ileostomy-mediated enteral nutrient deprivation and resultant influence of 

dysbiosis on intestinal structure and function, with particular consideration to the rate of 

post-operative complications, may potentially identify a novel therapeutic target for 

improving the success of ileostomy reversal surgeries.  

 

This thesis proposes that dysbiosis associated with loop ileostomy-mediated enteral nutrient 

deprivation in the downstream intestine results in distortion of intestinal morphology, 

potentially via a loss of host-microbial interaction at the mucosal surface. We also suggest 

that these mechanisms underpin the substantial morbidity associated with ileostomy 

reversal surgery.  
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4.2 – Research Aims:  

- Investigate the consequence of enteral nutrient deprivation and resultant dysbiosis on 

intestinal function and morphology, utilising a novel human model. 

- Explore possible mechanisms by which microbiota impact intestinal function and how these 

may influence clinical outcome of ileostomy reversal surgery. 

 

4.3 – Methods Summary:  

Full thickness excised functional and defunctioned tissue sections, obtained from 35 patients 

undergoing ileostomy reversal surgery, were fixed, embedded and sectioned, as described in 

section 2.2.8.1. Morphological analyses measuring villous height, crypt depth and 

inflammation were performed on tissue sections from paired samples. IEC proliferation and 

apoptosis rates were assessed using immunofluorescence PCNA and Click-iT TUNEL assays. 

Participant demographics and post-operative clinical data were recorded and compiled for 

exploratory data analysis using a scatterplot matrix.  
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4.4 – Results:  

4.4.1 - Defunctioned ileum is atrophied but not inflamed at the time of loop ileostomy 

reversal. 

Assessment of intestinal morphology was conducted via qualitative and quantitative analysis 

of histological sections. Atrophy of villi in the defunctioned ileum is immediately apparent 

from figure 4.1A, with visibly distorted and stunted villi, in comparison to that of the paired 

functional control. Following quantification, a 47% ±15% reduction in average villous height 

was observed in defunctioned ileum of all patients, compared with functional (figure 4.1B). 

This reduction in villous height was found consistently across all paired samples tested (figure 

4.1C).  

 

 

 

 

Figure 4.1 – Histological analysis of villous height in functional and defunctioned 

intestine. (A) Representative H&E stained sections, magnification 4 ×. (B) Average villous 

height ± SEM (n = 9, p = 0.0004) (C) Paired villous height (n = 9). 

Data published in Beamish et al. (2017). 
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Histological analysis of crypt depth was performed to assess total mucosal height and atrophy 

of the mucosa found to extend to the crypts with a significant reduction in average crypt 

depth in the defunctioned limb following enteral nutrient deprivation (figure 4.2A). The 

average crypt depth in the functional ileum was 306 µM ±48 µM, decreasing to 266 µM ±31 

µM in the defunctioned ileum, which constitutes to an 11.5% ±12% overall reduction 

observed in average crypt depth across all patients tested (figure 4.2A). Analysis of paired 

data revealed a varied response to enteral nutrient deprivation across the cohort with the 

shortest of functional crypts seeing a slight increase in crypt depth in the defunctioned ileum 

(figure 4.2B).  

 

 

 

Despite drastic mucosal atrophy identified in defunctioned ileum, scoring the extent of 

mucosal damage, immune infiltrate and goblet cell depletion, revealed no significant 

inflammation in the defunctioned ileum compared with functional (figure 4.3), suggestive of 

an absence of chronic inflammation at time of reversal surgery.  

 

 

 

  

Figure 4.2 – Histological analysis of crypt depth in functional and defunctioned 

intestine. (A) Average crypt depth ± SEM (n = 9, p = 0.02) (B) Paired crypt depth (n = 9). 
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4.4.2 – Villous atrophy accountable to reduced IEC proliferation in defunctioned crypts 

rather than increased anoikis. 

Homeostasis of the intestine is maintained by a fine balance of epithelial cell proliferation in 

the intestinal crypts and anoikis at the tip of the villi (Frisch and Francis, 1994). To assess 

potential functional impact of enteral nutrient deprivation upon epithelial replenishment, 

the proportion of proliferative cells per crypt and rate of apoptosis was determined via 

immunofluorescent PCNA antibody and TUNEL staining (figure 4.4, figure 4.6).  

 

Loop ileostomy-mediated defunctioning resulted in a decline in the percent of proliferating 

cells, visualised as PCNA-positive IECs per crypt (38.1% ±8.3%; figure 4.5) compared to that 

observed in the functional controls (61.8% ±11.9%; figure 4.5). This represents an overall 

average reduction of 23.7% ±4% (n = 5, p = 0.01; figure 4.5A), supporting evidence that 

microbial changes influence IEC proliferation.  

  

Figure 4.3 – Histological analysis of inflammation in functional and defunctioned 

intestine. (A) Average inflammation score ±SEM (n = 9, p = >0.05) (B) Paired inflammation 

score (n = 9). 

Data published in supplementary material of Beamish et al. (2017). 
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Figure 4.4 – Assessment of IEC proliferation in functional versus defunctioned intestine. 

Representative immunofluorescent PCNA labelling (green) to measure proliferation. 

White arrows illustrate individual proliferating cells identified for quantification. All 

nucleated cells, counterstained using Hoechst 33342, are coloured blue. Isotype control 

represents non-specific antibody binding.         Data published in Beamish et al. (2017). 
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TUNEL staining, which measures the extent of double strand DNA breaks generated during 

apoptosis, revealed no difference in rates of apoptosis between the functional and 

defunctioned ileum (figure 4.6). This suggests that reduction in villous height is likely due to 

decreased proliferation of IEC rather than increased apoptosis, which may be due to a 

dysbiosis-associated lack of pro-proliferative microbial signals. 

 

 

 

  

Figure 4.5 – Relative quantification of IEC proliferation in functional versus 

defunctioned intestine. (A) Average percent proliferating PCNA positive cells/crypt ± SEM 

(n = 5; p = 0.01). (B) Paired percent PCNA-positive cells per crypt in the functional and 

defunctioned intestine (n = 5). 

 Data published in Beamish et al. (2017). 
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Figure 4.6 – Assessment of apoptosis in functional versus defunctioned intestine.  

Representative immunofluorescent TUNEL labelling (red) to measure apoptosis. All 

nucleated cells, counterstained using Hoechst 33342, are coloured blue. (A) Magnification 

10 ×. (B) Magnification 20 ×. (C) TUNEL +ve control treated with DNAse and TUNEL –ve 

control treated with TdT reaction cocktail only. Magnification 10×. 
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4.4.3 – Blood CRP levels are raised but albumin and WBC levels remain normal post 

ileostomy reversal surgery. 

 

To monitor post-operative clinical outcomes, routinely obtained serum CRP, Albumin and 

WBC levels were recorded (table 4.1). As per Lancashire Teaching Hospitals NHS Trust 

guidelines, the healthy reference ranges for serum albumin, CRP and WBC levels are as 

follows: 34-54 g/L, 0-5 mg/L and 4.0-11.0 ×109/L, respectively. We found a substantial 

elevation in post-operative CRP levels with an average of 87.9 mg/L, and normal levels of 

serum albumin (average 38.1 g/L) across the patient cohort. Furthermore, all WBC counts 

remained within reference range with an average of 9.4 ×109/L.  

 

Table 4.1 - Mean Participant Demographics and 
Post-operative Clinical data 

Age (years)* 58 (±16) 

BMI* 26.0 (±2.4) 

Days since ileostomy formation* 392 (±264) 

Gender (% females) 51 

Length of Hospital Stay (Days) 6 (±4) 

Post-op CRP (mg/L) 87.9 (±54.8) 

Post-op Albumin (g/L)  38.1 (±3.4) 

Post-op WBC (x109/L) 9.4 (±1.7) 

 

 

4.4.4 – Ileostomy reversal surgery is associated with substantial morbidity. 

Patient post-operative clinical outcomes were documented to investigate potential influence 

of dybiosis on clinical outcome of ileostomy reversal surgery (table 4.2). A total morbidity 

rate of 48.6% was observed post-operatively across the cohort, with wound associated 

complications being the most common with 14% incidence, followed by post-operative ileus 

and erratic bowel function both with 11% incidence. Less prevalent complications included 

abdominal distension and anastomotic leak with 8.6% and 2.9% incidence, respectively. 

Finally, 51.4% of patients recovered without complication, despite prolonged enteral 

nutrient deprivation. 

* The mean is given with standard deviation in parentheses. 

Abbreviations: BMI, body mass index; CRP, C-reactive protein; WBC, white blood cells. 

Data published in Beamish et al. (2017). 
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Interestingly, two of the patients who developed post-operative ileus were also measured 

for total bacterial load and were found to have a higher than average reduction in total 

bacterial load than the patients who did not (average reduction of 62.4%; patient 001 had 

71.6% decrease, 038 had 97.2% decrease in total bacterial load).  

 

 

 

 

 

 

4.4.5 – Exploratory analysis of participant demographics revealed associations with clinical 

outcomes.  

Scatterplot matrix analysis was performed to investigate potential associations between 

sample variables, particularly regarding changes in intestinal microbiota and clinical 

outcomes. Full scatterplot matrix is located in appendix 10 whilst noteworthy correlations 

are presented in figure 4.7. First it was identified that percent decrease in total bacterial load 

positively correlated with mean post-operative CRP levels, mean post-operative WBC count 

and with increased duration of hospital stay post loop ileostomy reversal surgery. 

Furthermore, a strong positive correlation was identified between mean post-operative CRP 

levels and relative increases in Bacteroidetes and γ-Proteobacteria phyla and concomitant 

relative decreases in the Firmicutes phylum. Interestingly, duration of hospital stay was 

found to have no correlation with patient age or BMI, factors which may have existed as 

confounding variables.  

  

Post-operative Complications # % 

Ileus 4 11.4 

 Wound  5 14.3 

 Bowel function 4 11.4 

Anastomotic Leak 1 2.9 

Abdominal Distension 3 8.6 

Total Complications 17 48.6 

 Without Complication 18 51.4 

Table 4.2 – Incidence of post-operative complications following ileostomy reversal 

surgery. #, number of patients affected; %, percent of patients affected across cohort.  

 



100 
 

0.296
R² = 0.0875

0

5

10

15

20

25

30

0 50 100

D
u

ra
ti

o
n

 o
f 

H
o

sp
it

al
 S

ta
y 

(D
ay

s)

Precent Decrease in TBL

  

Figure 4.7 – Noteworthy scatterplots correlating participant demographics with post-

operative clinical data.  R2 estimates fit of model to data and is the square of the Pearson 

correlation coefficient.        
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Figure 4.7 – (continued) – Full scatterplot matrix is presented in appendix 10. 
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4.5 – Discussion:  

The data presented reveals substantial distortion of intestinal mucosal architecture following 

enteral nutrient deprivation, with significant atrophy of villi in the defunctioned ileum. 

Similar results were also reported in the rat jejunum following defunctioning by a blind end 

Roux-en-y anastomosis (Kovalenko and Basson, 2012). Likewise to ileostomy patients, food 

is provided for the rat, offering nutritional sustenance, whilst the bypassed jejunum remains 

sedentary. This study reported mucosal and fibromuscular atrophy when compared with 

adjacent functional bowel and remarkably such changes were observed within only 3 days 

following initial anastomosis formation.  

 

Previous studies have hypothesised that morphological dysfunction observed in 

defunctioned ileum is likely a direct consequence of nutrient depletion. It is understood that 

SCFA such as butyrate, act as nutritional substrates for epithelial cells and so such 

assumptions are plausible (Csordas, 1996). The research presented herein demonstrated that 

ileostomy-associated defunctioning results in a reduction in IEC proliferation. Miyasaka et al. 

reported that mice fed exclusively on TPN demonstrated a reduction in IEC proliferation in a 

MyD88 dependent manner (Miyasaka et al., 2013). MyD88 knockout (-/-) mice, which lack 

TLR signalling pathway function that is crucial in host-microbiota homeostasis, presented 

normal levels of IEC proliferation irrespective of enteral nutrient deprivation, but wild-type 

TPN mice, with reduced IEC proliferation, demonstrated a characteristic significant shift in 

microbial dominance from Firmicutes to Proteobacteria, consistent with findings in loop 

ileostomy patients presented in chapter 3. Furthermore, physiological preservation of 

epithelial barrier function in MyD88 -/- TPN fed mice was also reported, indicating minimal 

disruption to intestinal morphology, suggesting that intestinal microbiota influence host 

immunological responses and thus mucosal architecture.  Considering this research with the 

data presented in chapters 3 and 4, it is reasonable to conclude that the reduction we 

observed in IEC proliferation and resultant intestinal atrophy is highly likely to be a 

consequence of dysbiosis, via altered host-microbial interactions at the intestinal surface, 

rather than exclusively due to nutrient deprivation. 

 

Further support for this principle is provided by clinical studies which have attempted to 

stimulate the defunctioned intestine prior to reanastomosis and loop closure, utilising a 



103 
 

sterile saline solution (Miedema et al., 1998, Abrisqueta et al., 2013, Abrisqueta et al., 2014). 

Such studies were conducted with the aim of gradually activating cellular mechanisms of 

absorption and motility to restore functionality to the intestine prior to reversal surgery. 

However, there have been varied and limited reports of success at reducing post-operative 

complications, particularly post-operative ileus. The rationale and practice within these 

studies vastly disregards the importance of a healthy gut microbiome for proficient intestinal 

function. In particular, the absence of nutritional value to the stimulating solution used within 

these studies is likely to conserve dysbiosis and continue to promote mucosal distortion in 

the weeks prior to ileostomy reversal surgery.   

 

Another possible mechanism which may underpin the observed physiological changes in the 

defunctioned ileum involves direct nutrient sensing by enteroendocrine cells. Postprandial 

nutrients including sugars, amino acids, SCFAs and bile acids are known to act as substrates 

for GPCRs and transporters on the luminal surface of enteroendocrine cells (reviewed in 

Gribble and Reimann (2016)). Such interactions induce secretion of gut hormones, glucagon-

like peptide 1 (GLP-1) and cholecystokinin (CCK), which function to regulate intestinal 

mobility (Camilleri et al., 2012, Lin et al., 2002). Therefore a loss of enteral nutrition, as a 

consequence of loop ileostomy mediated faecal stream diversion, deprives enteroendocrine 

cells of luminal nutrients and thus attenuates CCK and GLP-1-mediated functional activity 

within the intestine. This mechanism likely occurs simultaneously to dysbiosis-associated 

disruption of host-microbiota interactions at the intestinal mucosal surface, consequently 

perpetuating the deterioration observed in intestinal morphology and function in the study 

cohort. Novel therapeutics to provide nutritional sustenance to defunctioned ileum may 

potentially achieve rebiosis and activate host cellular mechanisms prior to loop ileostomy 

reversal surgery. 

 

Intestinal dysbiosis has been linked to the pathogenesis of numerous chronic diseases due to 

the induction of a proinflammatory state within the intestine (as discussed in the literature 

review). Interestingly, we identified that there was no significant inflammation observed in 

the defunctioned ileum at the time of loop ileostomy reversal. We propose that this finding 

is linked to the reduction observed in total bacterial load following nutrient deprivation. The 

intestinal microbiome is sensitive to local nutritional fluctuations and data presented in 
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chapter 3 indicated that nutrient deprivation in the defunctioned ileum significantly depleted 

bacterial load. It is likely that an initial period of inflammation following ileostomy formation 

occurs but a subsequent state of ‘dysbiotic equilibrium’ is reached and mucosal homeostasis, 

be it at a compromised capacity, is reinstated preventing chronic inflammation. However, 

reanastomosis to reinstate luminal flow through the defunctioned intestine (figure 3.2) could 

restore bacterial load while maintaining dysbiosis, therefore putting patients at risk of 

complications. This notion is also supported by our finding that the number of days between 

loop ileostomy formation and reversal is not correlated with clinical outcome or decrease in 

bacterial load, meaning that the observed physiological changes are likely to occur rapidly 

following loop ileostomy formation rather than progressively over a long period.  

 

 

Blood tests, measuring CRP, albumin and WBCs are routinely used as predictors of post-

operative complications and clinical outcomes (Ortega-Deballon et al., 2010, Hubner et al., 

2016). Complied patient data reported elevation of post-operative CRP levels with normal 

serum albumin and WBC levels across the patient cohort. Significantly elevated CRP and WBC 

levels are often signals of infection and in loop ileostomy reversal patients can be early 

indicators of anastomotic leak (Ortega-Deballon et al., 2010). The observed elevated CRP is 

possibly due to incompetent barrier function in the defunctioned intestine following 

reanatosmosis. However, this would likely cause increased bacterial translocation and 

inflammation, yet the WBC count in these patients is considered to be normal. It is therefore 

more likely that, for the majority of patients, such responses occur in consequence of a 

natural inflammatory response to surgery. On the other hand, it was also identified that 

increases in the relative abundance of Bacteroidetes and γ-Proteobacteria and decreased 

Firmicutes are positively correlated with increased post-operative CRP levels, suggesting a 

role for dysbiosis in influencing post-operative inflammatory responses. Further research to 

perform precise time course analysis of CRP, WBC and albumin levels post-operatively may 

prove useful in elucidating possible influences.  

 

 

The combined morbidity rate of the cohort was identified to be 48.6%, fitting centrally within 

the range of 21-70% previously reported in literature (Shabbir and Britton, 2010). The most 

frequently reported post-operative complication in the study cohort was associated with the 

surgical wound and is likely occur as a result of environmental factors such as infection, rather 
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than dysbiosis. However, all other recorded complications, including severe complications 

such as ileus and anastomotic leak, may potentially be linked to microbial dysbiosis. Studies 

have shown that depletion of microbiota populations within the Firmicutes phyla (as was 

observed in our study) is associated with altered intestinal permeability and activation of 

local immune cells in mice (Cani et al., 2009). It is plausible that dysbiosis driven changes in 

the defunctioned limb following reversal surgery, promote intestinal inflammation and 

contribute to an increased risk of developing post-surgical complications, such as ileus. We 

also identified a small positive correlation between decreased bacterial load and increased 

duration of hospital stay which, when paired with our observation that two patients who 

developed ileus were also found to have a higher than average reduction in total bacterial 

load, suggests that loss of intestinal microbiota populations may increase risk of post-

operative complications that ultimately result in lengthier hospital stays. Factors such as 

patient age and BMI are usually crucial factors in patient prognosis following surgery 

however, for this procedure, this did not appear to be the case as no correlations were 

observed between such factors within the study cohort. 

 

 

To strengthen our hypotheses, future studies exploring the expression levels of TLR receptors 

in defunctioned ileum following enteral nutrient deprivation would be most interesting as it 

would elucidate our suggested mechanism of dysbiosis-mediated distortion of the 

defunctioned intestine. In addition, clinical studies to measure levels of bacteria and/or 

associated products in the blood of patients pre, during and post loop ileostomy would offer 

interesting insights into the influence of dysbiosis on epithelial barrier function and 

subsequent clinical outcome. Finally, this research presents the microbiota as a potential 

novel therapeutic target for improving the outcome of iletostomy reversal surgery. 

Subsequent clinical feasibility studies to provide the defunctioned ileum with nutritional 

sustenance prior to reanastomosis, with the aim of promoting microbiome restoration, may 

prove to reduce post-operative morbidity in loop-ileostomy patients.  
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Chapter 5: 

 

Utilising NMR Spectroscopy-Based Urinary 

Metabolite Profiling for Prediction of Intestinal 

Microbiota Composition 

 

 

  



107 
 

5.1 – Rationale:  

The broad diversity and functional capacity of the intestinal microbiota is becoming 

increasingly recognised with the advancement of high-throughput sequencing technologies. 

However despite such advances, understanding of the functional role of even the most 

abundant bacteria within the gut remains limited. It is well accepted that microbiota-

generated metabolic products are important in maintaining health and homeostasis, most 

notably during an inflammatory response (as discussed in literature review), but emerging 

studies indicate that such metabolites are also pivotal in the onset and pathogenesis of 

numerous systemic and gastrointestinal diseases.  

 

The indigenous human metabolism is tightly integrated with that of the intestinal microbiota, 

whose vast genomic capacity provides a repertoire of supplementary enzymatic and 

biochemical capabilities of benefit to the host (Qin et al., 2010). The significant influence 

resident microbes have on the host metabolome is highlighted in a study that demonstrated 

humanised mice (mice transplanted with human faecal microbiota) harbour distinct urinary 

and faecal metabolome profiles to that of conventionally raised mice (Marcobal et al., 2013). 

This observation indicates that differing profiles of intestinal microbes can induce systemic 

changes in host metabolites, outweighing that of the indigenous host metabolism.  

 

Metabolomics is defined as the systematic analysis of metabolites produced during specific 

cellular processes and in recent years efforts have been made to map the intestinal 

microbiota and their relationship to specific metabolites. A comprehensive review from 

Nicholson et al., defined several chemical classes involved in host-microbiota co-metabolism 

via compilation of data presented in the literature thus far (table 5.1) (Nicholson et al., 2012). 

SCFA are considered to be the most significant microbial-associated metabolites due to their 

localised functional influence on gut motility and IEC turnover and associations with 

colorectal cancer (Park et al., 2016). However, choline metabolites, although primarily 

metabolised in the liver, are also converted by microbial enzymes into trimethylamine, which 

has been implicated in development of NAFLD (Dumas et al., 2006). Such systemic 

consequences of microbial-associated metabolites highlight the vast functional influence of 

the intestinal microbiome.  
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Chemical classes with example metabolites Associated microbiota 

SCFA:  
Acetate, propionate, butyrate 

Clostridia; Eubacterium and 
Faecalibacterium 

Bile Acids:  
Cholate, hyocholate, glycodeoxylcholate 

Lactobacillus, Bifidobacteria, 
Enterobacter, Bacteroides, Clostridium 

Choline: 
Methylamine, trimethylamine, 
trimethylamine-N-oxide, betaine 

Faecalibacterium prausnitzii, 
Bifidobacterium 

Phenol:  
Hippuric acid, 2-hydroxybenzoic acid, 
phenylacetate, phenylpropionate, 

Clostridium difficile, F. prausnitzii, 
Bifidobacterium, Subdoligranulum, 
Lactobacillus 

Indole derivatives: 
Indoleacetate, indole-3-propionate, 
melatonin, serotonin, 

Clostridium sporogenes, E. coli 

Vitamins:  
Vitamin K, vitamin B12, biotin 

Bifidobacterium 

Lipids:  
Conjugated fatty acids, LPS, peptidoglycan, 
cholesterol, phosphatidylcholines, 
triglycerides 

Bifidobacterium, Roseburia, Lactobacillus, 
Klebsiella, 
Enterobacter, Citrobacter, Clostridium 

Others: 
D-lactate, glucose, urea, creatinine, 
succinate.  

Bacteroides, Ruminococcus, 
Faecalibacterium,  Bifidobacterium, 
Lactobacillus 

The majority of gut microbial-metabolome studies have to date focused on targeted analysis 

of covariation, such as with microbial SCFAs, but have not yet comprehensively explored the 

wider indigenous- and microbiota-metabolic interactions. Considering the broader nature of 

the intestinal microbiome, Li et al attempted to characterise key microbial populations which 

influence host metabolism via functional metagenomics analyses in Chinese and American 

families (Li et al., 2008). They reported that variation in Bacteroides uniformis was identified 

to be positively associated with citrate and 3-aminoisobutyrate. Furthermore, variation in 

Faecalibacterium prausnitzii is associated with modulation of eight different urinary 

metabolites, including 2-hydroxyisobutyrate and dimethylamine. Interestingly 

dimethylamine, produced during microbial catabolism of choline, has been linked with fatty 

liver and type 2 diabetes in mice (Dumas et al., 2006) and an increased abundance of the 

Firmicutes phylum, to which F. prausnitzii belongs, has been associated with obesity in 

humans (Ley et al., 2006). However, this study is limited by the employment of DGGE faecal 

sample analysis as such methodology may disregard key mucosal-associated microbiota. 

Table 5.1 - Human metabolites and associated intestinal microbiota.   

          Table modified from information presented in Nicholson et al. (2012). 
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Furthermore, the kindred study cohort share genetics and environmental exposures and are 

therefore not representative of the general population.    

The research presented herein has focused on localised physiological consequences of 

dysbiosis when in reality, the effects are broadly systemic, with correlations reported 

between microbiota-associated metabolites and disorders such as obesity and 

cardiovascular disease. This thesis postulates that the metabolic signatures of human urine 

reflect gut microbiota composition and thus health or disease, and may potentially be 

exploited as an early clinical indicator of numerous dysbiosis-associated diseases.  

 

5.2 – Research Aims: 

- To determine whether intestinal microbiota composition is reflected in the profile of host 

urinary metabolites.  

- To evaluate the capability of urinary metabolites as early predictors of various dysbiosis-

associated diseases via detection of dysbiosis.  

 

5.3 – Methods Summary:  

Study participants were recruited from Gastroenterology outpatient clinics at Royal Preston 

Hospital and Furness General Hospital. A mid-stream urine sample and two biopsies were 

obtained from each patient; one each from the descending and sigmoid colon. All 

participants within the cohort were pooled, disregarding IBD or Control status, to facilitate 

investigation of the research aims within this chapter.  

 

DNA extracted from colonic biopsies was utilised for Illumina® 16S sequencing to profile 

intestinal microbiota and each classified microbial taxa was presented as a relative 

proportion of the total number of OTUs/sample for subsequent analysis. Urine samples were 

subjected to urinary NMR analysis to profile metabolites. Relative NMR peak intensities of 

annotated urine metabolites were normalised and scaled to minimise bias due to variation 

in urine sample concentration and the presence of very abundant metabolites (e.g. urea), 

respectively. Hierarchical cluster and penalised linear regression analysis were utilised to 

investigate potential influence of intestinal microbiota on urinary metabolite profiles.  
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5.4 – Results: 

5.4.1 – Hierarchical clustering analysis of microbiota sequencing data revealed five 

enterotype-like groups. 

Intestinal microbiota was profiled via Illumina 16S sequencing of microbial DNA extracted 

from colonic biopsies that were obtained from 42 patients during endoscopic examination. 

Taxonomic classification of Illumina sequencing data identified a total of 20 microbial phyla, 

42 class, 83 order, 172 family, 412 genus and 566 different species across the entire patient 

cohort. The vast interpatient variability of intestinal microbiota composition is apparent in 

figure 5.1 with broad diversity observed across the cohort in relative proportions of the 4 

predominant phyla; Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria.  

 

To assess similarity between the microbiota profiles, hierarchical clustering analysis was 

performed on proportionate sequencing data, at phylum, order and genus taxonomic levels 

(Figure 5.2).  Hierarchical clustering analysis measures the distance, or dissimilarity, between 

samples by pairing the closest related samples first, then methodically linking such samples 

with those that are more distinct. Hierarchical cluster analysis revealed a crescendo in 

interpatient variability from phylum through to genus level as the first level branches were 

observed in increase in height at genus level indicating the presence of more dissimilar 

microbiota profiles. In addition, hierarchical  analysis revealed 5 clusters with closely related 

microbiota profiles, at order level,  at a branch cut position of 0.5 (Figure 5.2B).   

 

Relative proportions of Illumina 16S sequencing data at taxonomic level order according to 

the 5 hierarchical-defined groups are presented in figure 5.3. Each group is observed to be 

defined by predominant microbial order in an Enterotype-like manner. Group 1 is defined by 

almost complete predominance of Enterobacteriales belonging to the phylum, 

Proteobacteria. Due to the limited patient numbers within group 1 it was excluded from 

downstream analyses. Group 2 equates to over one third of the cohort and is defined by what 

is considered to be a ‘typical’ microbiota; an abundance of Clostridales with slightly fewer 

Bacteroidales and a small proportion of less predominant microbes, including 

Enterobacterales and Verrucomicrobiales. Group 3 harbour reduced proportions of 

Clostridales corresponding increased relative proportions of Verrucomicrobiales,  
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Figure 5.1 - Relative taxonomic composition of 16S rRNA amplicon sequences from 

human intestinal biopsy samples, at phylum level. K, kingdom; p, phylum. LTH and LANC 

prefix denote associated NHS site for recruited participants. LANC022 was retrospectively 

excluded from downstream analyses due to confirmatory IBS diagnosis. 

LANC005 
LANC002 
LANC037 
LANC010 
LANC004 
LANC034 
  LTH 006 
LANC007 
LANC012 
LANC025 
LANC038 
LANC021 
LANC016 
LANC028 
LANC026 
LANC018 
LTH 010 
LANC015 
LANC023
LANC036 
LANC032  
LANC020 
LANC011 
LANC024 
LANC029 
  LTH 005 
LANC017 
  LTH 002 
LANC019 
LANC027 
LANC035 
LANC030 
LANC013 
LANC022 
  LTH 003 
LANC006 
LANC009 
LANC001 
  LTH 013 
LANC003 
LANC008 
LANC040 
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Figure 5.2 - Hierarchical cluster analyses of Illumina 16S intestinal microbiota profiles at 

(A) phylum (B) order and (C) genus taxonomic level.  

Colours depict 5 groups with closely related microbiota profiles, as defined by blue arrow 

which represents branch cutting point.  

 

A 

B 

C 

Group  1      5              2         3        4  



113 
 

 

 

  

Figure 5.3 – Relative taxonomic composition of 16S rRNA amplicon sequences in human intestinal biopsy samples, at order level, depicting 5 hierarchical 

clusters in Figure 5.2B. O, order. Relative proportions do not always total 1 as order lower than 25% in abundance were excluded from analysis.  



114 
 

Fusobacteriales and Actinomycetales, with a consequential overall increased microbiota 

diversity compared to the other groups. Proportions of Bacteroidales are relatively average 

within this group. On the other hand, group 4 is defined by Bacteroidales predomination with 

reduced Clostridales and limited microbiota diversity across less predominant order such as 

Enterobacteriales. Group 5 is distinguished by an almost equivalent abundance of 

Enterobacteriales with combined Clostridales and Bacteroidales, and a depletion of other 

less predominant bacterial taxa to very low and in some cases almost non-existent levels.  

 

5.4.2 – Substantial interpatient variation observed in human urinary metabolite profiles. 

1H NMR spectroscopy and subsequent metabolite annotation was employed to determine 

urinary metabolite profiles in the patient cohort. A representative urine NMR spectra is 

presented and annotated in figure 5.4 using TameNMR within the Galaxy framework 

(available at www.galaxy.liv.ac.uk). The highly overlapped nature of urine NMR spectra is 

visible, particularly in the aromatic signals region between 6 and 9 ppm. A total of 237 

metabolites were identified across 41 urine NMR spectra in the patient cohort (appendix 8). 

 

As with Illumina sequencing data, hierarchical cluster analysis, which assigns a Euclidean 

pairwise distance measure to samples to denote similarity or singularity, was performed on 

normalised and scaled relative metabolite concentrations to assess similarity of urinary 

metabolite profiles (figure 5.5A).  No distinct grouping was observable in profiles across the 

cohort as the dendrogram is predominated by small and highly dissimilar clusters. 

 

To gain initial insights into the relationship between the microbiota groups and metabolites, 

the microbiota group assignments for each participant were transposed onto the paired 

metabolite dendrogram labels (figure 5.5B). On the whole the microbiota groups are broadly 

distributed throughout the metabolite dendrogram with no immediate observable trend. 

However, group 2 (red) and group 3 (green) appear to cluster with themselves and each other 

more frequently than any other group. Groups 3 and 5 (turquoise) are most distinct from 

each other whilst group 4 (blue) has similarities with all other groups except group 3 (figure 

5.5B).   Samples LTHTr013 and LANC012 are highly distinct to all other samples as they cluster 

individually with a distance measure of 30+, likely due to confounding interpatient variables 

affecting metabolite composition.  
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Figure 5.4 – Representative 1H NMR spectra of patient urine samples with respective 

metabolite annotations of manually defined buckets. TSP is utilised as a reference for 0 

ppm. For purposes of clarity, buckets labelled as ‘Unknown’ have been excluded. 

Annotated metabolite bucket pattern file is presented in Appendix 7.  
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Figure 5.5 – Hierarchical cluster analysis of (A) 1H NMR urinary metabolite NMR 

profiles. (B) Patient labels are coloured according to intestinal microbiota clustering 

groups at order level (figure 5.2B).  Black, group 1; red, 2; green, 3; blue, 4 and turquoise, 

5.  

A 

B 
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5.4.3 – Various urinary metabolites are correlated with intestinal microbiota profiles in 

humans.  

Regression analysis of urinary metabolites was performed against the composition of four 

intestinal microbiota clusters identified at taxonomic level order to investigate the potential 

relationship between microbiota profiles and urinary metabolites in humans (figure 5.6). On 

the whole the effect sizes, indicating extent of association between the two variables, were 

small, likely as a result of large variability in metabolite profiles between patients. Despite 

this, several candidate metabolites were identified; carnosine was positively correlated with 

group 2 whilst negatively correlated with group 5. Epicatechin was positively associated with 

groups 3 and 5 whilst inversely associated with groups 2 and 4. In addition, urocanate and 

hydroxytryptophan were positively correlated with groups 3 and 4 respectively. Interestingly, 

no SCFA metabolites were identified to be associated with intestinal microbiota profiles.  

 

 

 

 

 

 

 

 

 

 

Figure 5.6 – Penalised multinomial regression analysis of urinary metabolites against 

enterotype-like microbiota profiles. Metabolites with a positive effect size are positively 

correlated with microbiota profile whilst a negative effect size indicates negative 

correlation with corresponding microbiota profile. (Intercept) represents the bias of the 

model, i.e. the odds of choosing a cluster if the metabolite levels were all 0. Group 1 was 

omitted from analysis due to limited sample numbers.  
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5.4.4 – Urinary metabolites are also associated with specific microbial populations.  

Considering the observed interpatient limitations related to study participant numbers in 

identifying associations between intestinal microbiota profiles and urinary metabolites, 

regression analysis of urinary metabolites against specific microbiota classifications at 

phylum and order taxonomic levels was also performed (figure 5.7).  

 

As was observed with the results of the microbiota group regression in figure 5.6, epicatechin 

was identified to be the metabolite most strongly correlated with intestinal microbiota 

populations. At order level, epicatechin was identified to be negatively correlated with 

Bacteroidales and Clostridiales with an effect size of -0.35 and -0.2 respectively and inversely 

correlated with Enterobacteriales, Lactobacillales and Rhizobiales (figure 5.7). Also observed, 

urindine monophosphate (UMP) negatively correlated with Clostradiales but strongly 

correlated with Enterobacteriales whilst trigonelline was found to have inverse correlative 

trends to UMP.  In addition, N-Carbamoyl-beta-alanine and 2-Hydroxyisovalerate were 

identified to have small effect sizes in positive and negative correlation with 

Enterobacteriales and Clostridales, respectively. Cytidine was identified to have a similar 

correlation profile to epicatechin as it was found to negatively correlate with Bacteroides and 

Clostridales and positively correlate with Enterobacteriales. However, the overall effect sizes, 

indicating extent of association between the two variables, were small, suggesting that the 

representativeness of the microbial populations may be limited due to large interpatient 

variation in urinary metabolites.  

 

These findings phylogenetically translate to that presented in figure 5.8, with epicatechin, 

cytidine, N-Carbamoyl-beta-alanine and UMP identified to negatively correlate with 

Bacteroidetes and Firmicutes phyla and positively correlate with Proteobacteria phylum.  

Trigonelline was identified to be negatively correlated with Proteobacteria and positively 

correlated with Firmicutes. 
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Figure 5.7 – Penalised linear regression analysis of urinary metabolites against intestinal microbiota taxa at order taxonomic level. Metabolites with 

a positive effect size are positively correlated with microbiota taxa whilst a negative effect size indicates negative correlation with corresponding 

microbial taxa. (Intercept) represents the bias of the model, i.e. the odds of choosing a cluster if the metabolite levels were all 0.  

Abbreviations: o, order; UMP, Uridine monophosphate; N.Carbamol…alanine, N-Carbamoyl-beta-alanine. 
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Figure 5.8 – Penalised linear regression analysis of urinary metabolites against intestinal 

microbiota taxa at phyla taxonomic level. Metabolites with a positive effect size are 

positively correlated with microbiota taxa whilst a negative effect size indicates negative 

correlation with corresponding microbial taxa. (Intercept) represents the bias of the 

model, i.e. the odds of choosing a cluster if the metabolite levels were all 0.  

 

Abbreviations: p, phylum; UMP, Uridine monophosphate; N.Carbamol…alanine, N-

Carbamoyl-beta-alanine. 
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5.5 – Discussion:  

This chapter aimed to explore the potential relationship between intestinal microbiota 

composition and urinary metabolites in humans, with the long-term goal of utilising urinary 

metabolite analysis as a potential rapid and convenient indicator of health and disease. To 

do this intestinal microbiota profiles and urinary metabolites were determined for 42 

patients utilising Illumina® 16S sequencing and 1H NMR spectroscopy, respectively then 

compared via hierarchical and regression analyses.  

 

First, hierarchical cluster analysis of intestinal microbiota profiles at taxonomic level order 

identified 5 distinct enterotype-like groups within the study cohort, each predominated by a 

different bacterial taxa. Interestingly, none of these profiles were unique to this study and 

have all been previously reported in the literature as associated with health or disease 

phenotypes. Groups 1 and 5 were predominated by Enterobacteriales belonging to the 

phylum, Proteobacteria, with significant reductions observed in the proportion of all other 

microbial orders, particularly Bacteroidales and Clostridales. Such microbiota composition is 

often reported in cases of active IBD and CRC, which are primarily defined by an outgrowth 

of Enterobacteriales (Frank et al., 2007, Sobhani et al., 2011). Group 2 was identified to be 

largely predominated by Clostridales and Bacteroidales, then harbour a small proportion of 

order such as, Enterobacterales, Verrucomicrobiales and Actinomycetales. Such microbiota 

is considered to be ‘normal’ and associated with maintenance of intestinal homeostasis, 

host-microbiota tolerance and promoting overall host health (The Human Microbiome 

Consortium (2012) and as discussed in literature review). However it is also observable within 

this group that several patients are largely predominated by Clostridales. Such vast expansion 

of Clostridales has also been reported in cases of obesity, with a disrupted Bacteroidetes to 

Firmicutes ratio and reduced overall microbial diversity (Turnbaugh et al., 2009). Group 3 was 

defined by reduced proportions of Clostridales to create an even Bacteroidetes to Firmicutes 

ratio. A reduction in the Firmicutes phylum is often linked to carbohydrate-reduced diets and 

so may be a reflection of host dietary preferences (De Filippo et al., 2010). Group 3 also 

appeared to have increased proportions of typically less predominant microbial populations. 

This may be a reflection of pathobiont expansion in consequence to a loss of predominant 

microbial populations and reduced niche competition. Group 4 was identified to have a shift 

in microbiota predominance to Bacteroidales with reduced Clostridales and overall bacterial 

diversity in less predominant order. Expansion of the Bacteroidetes phylum has been 
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previously correlated with diets that are protein rich but reduced in calories (Russell et al., 

2011, Monira et al., 2011). Such diets and their associated microbiota-enterotype have been 

suggested to be detrimental to intestinal health due a reduction in protective microbiota-

mediated SCFA synthesis and a concomitant increase in cancer-associated metabolites 

(Russell et al., 2011).  

 

The four predominant enterotype-like groups identified within this study somewhat conform 

to those suggested in the literature to be defined by Bacteroides, Prevotella, Ruminococcus 

and Enterobacteriacae abundance (Arumugam et al., 2011, Harmsen and C., 2016). 

Bacteroides and Prevotella are genus classifications within the order Bacteroidales whilst 

Ruminococcus and Enterobacteriacae are classifications belonging to Clostridales and 

Enterobacteriales respectively, thus fitting with 3 of the microbiota groups identified in the 

cohort within this study. This trend also indicated that the data presented fits into different 

categories of dysbiosis with group 2 typically representing health and the other groups 

signifying distinct profiles of dysbiosis that may be associated with various diseases. 

However, long-term participant follow up and assimilation of medical history would be 

required in future studies to confirm whether such profiles are retained over time and 

identify any connections to clinical complications.  

 

It is known that various intestinal microbes contribute to host metabolism, but it is likely that 

the full breadth of such interactions will not become apparent for many years, as the 

contents of table 5.1 continues to expand. For example, it is not currently understood which 

microbes are involved in the conjugation of glycine and benzoic acid to form hippurate, 

despite it being one of the most frequently detected urinary metabolites (Bouatra et al., 

2013). This study aimed to perform broad functional characterisation of the intestinal 

microbiota relationship with urinary metabolites and several associations were identified. 

Epicatechin was observed to be positively correlated with groups 3 and 5 but negatively 

correlated with groups 2 and 4, thus suggesting a negative association with potentially cancer 

and obesity-linked dysbiotic profiles. Epicatechin (KEGG ID: C09727)  is a polyphenolic 

flavonoid present in abundance in plants, cocoa, tea and grapes which is known to have 

strong antioxidant properties and has been shown to mimic the effects of insulin, offering 

protection against diabetes (KEGG pathyway; Kanehisa and Goto (2000); Samarghandian et 
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al. (2017)). Furthermore, epicatechin and associated metabolites have recently been 

identified to harbour protective effects in cervical cancer by attenuating proliferation in vitro 

in HeLa cells (Hara-Terawaki et al., 2017). The mechanisms underpinning such observations 

remain speculative but the health benefit of this metabolite is undoubted. The negative 

association observed in this study between epicatechin abundance and groups 2 and 4 

microbiota enterotypes indicates a potential role for epicatechin as a non-invasive predictor 

of dysbiosis and associated complications including obesity, type II diabetes and cancer.  

 

Urocanate (KEGG ID: C0785) is a metabolic intermediate derived from host- and microbiota-

mediated metabolism of histidine to glutamate (KEGG pathyway; Kanehisa and Goto (2000)). 

This metabolite was found to be associated with group 3 microbiota, defined by an increase 

in proportions of usually less predominant microbial populations and a reduction in 

Clostridiales. Whilst this profile is not readily associated with a host clinical phenotype it may 

be a reflection of increased microbial diversity. Predominant metabolic functions are usually 

attributed to the most abundant microbiota, but microbes present in minor abundances can 

share metabolic functionality, promoting their survival and collectively inducing functional 

changes in the host (discussed in Arumugam et al. (2011)). It is therefore plausible that low 

abundant microbes with combined metabolic activity can substantially influence the human 

urine metabolome.  It is also generally accepted that a microbiota rich in diversity promotes 

host health therefore, metabolites such as urocanate may be a reflection of a diverse 

microbiota, rich in low abundance species.  

 

Carnosine (KEGG ID: C00386) is a dipeptide composed of alanine and histidine amino acids 

that is abundant is muscle tissue (KEGG pathyway; Kanehisa and Goto (2000)). Increased 

carnosine levels have previously been associated with diets high in meat and fish intake 

(Cheung et al., 2017). Such protein rich diets have been associated with colorectal cancer 

development due to production of harmful metabolites such as nitrosamine and concomitant 

losses of SCFAs (Russell et al., 2011). However, a diet well balanced with protein and 

carbohydrate intake has been shown to promote microbiota diversity and have sufficient 

SCFA to counteract effects of such harmful metabolites and promote host health (Russell et 

al., 2011). The observation that carnosine is associated with group 2 microbiota profile 
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typically representative of health, presents itself as a potential biomarker of intestinal health 

if present with a definable physiological range.  

 

Linear regression analysis was also performed against predominant microbial taxa in the 

intestine to investigate the relationship between metabolites and different microbial 

populations. The metabolites identified to be correlated with the enterotype-like microbiota 

groups were also reflected in the microbial taxa-associated analysis. For instance, 

epicatechin, that was identified to be negatively associated with a Firmicutes dominant, 

obesity-like profile, was observed to negatively correlate with Clostridales and Bacteroidales 

and positively correlate with Enterobacteriales. The strong association between epicatechin 

and Proteobacteria abundance may potentially prove to be useful in prediction of localised 

pathologies associated with Proteobacteria predominance, such as IBD.  

 

Numerous studies report significant alterations in the abundance of microbiota derived 

metabolites in the urine of patients with various dysbiosis-associated diseases (Williams et 

al., 2009, Stephens et al., 2013). This indicates that different populations of microbiota 

produce different end products of metabolism that are detectible in host urine. To our 

surprise, none of the metabolites identified to be associated with the four microbiota profiles 

observed in the study cohort were derived from the intestinal microbiota. This is likely due 

to the limited study numbers, especially within each microbiota group, meaning that any 

consequential changes observed in the bacterial derived metabolites were not significant 

enough to outweigh the variations in endogenous and diet-associated metabolites between 

the same groups. For example, N-Carbamoyl-beta-alanine (also referred to as 

Ureidopropionic acid; KEGG ID: C02642) and UMP (KEGG ID: C00105) detected in our 

analyses, are intermediates in the endogenous metabolism of uracil and are indicative of the 

chemical complexity of urine (The human metabolome database: Wishart et al. (2009)). To 

overcome this, future work should increase participant numbers and also employ targeted 

profiling of bacterial derived metabolites to extract this potentially important information 

from the dataset. Furthermore, former studies have concluded that urinary metabolites are 

influenced by environmental factors more significantly than serum metabolites (Walsh et al., 

2006). Considering this, it may be more feasible in future work to first apply our study 
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rationale and methodology to blood samples as serum is relatively easy to obtain, chemically 

less complex and subject to less environmental variation than urine.  

 

The majority of metabolites identified in this study, including epicatechin, 2-

Hydroxyisovalerate (KEGG ID: C04181) and carnosine, originate from food present in the host 

diet (The human metabolome database: Wishart et al. (2009)). Although such metabolites 

exist mainly as a result of endogenous metabolism, they may have potential to reflect 

intestinal microbiota composition. The influence of host diet on shaping the composition of 

the intestinal microbiota is well documented and this study has shown correlations between 

host-metabolised compounds and different microbiota profiles. It is therefore possible that 

dietary metabolites present in the urine may reflect a specific type of host diet, such as 

carnosine in omnivorous diets, which is indirectly indicative of the intestinal microbiota 

profile of that individual.  

 

The methods utilised for metabolite identification of NMR peaks are based entirely on 

annotation via fitting to a reference spectral library of purified metabolites. To confirm 

metabolite identification, future experiments should spike urine aliquots with purified and 

quantified metabolites of interest, to determine the affected NMR peaks as well as enabling 

absolute quantification (Stephens et al., 2013). Furthermore, the microbiota sequencing data 

are presented as relative proportions of total bacteria and may result in misinterpretation of 

microbiota predominance. For example, the increase in proportions of typically less 

predominant microbiota observed in group 3 of this study may actually be a reflection of a 

loss of predominant populations and thus a decreased overall bacterial load. It would be 

beneficial in future analyses to determine the OTU counts for each microbial taxa to enable 

direct comparison.  

 

This research has suggested associations between gut microbiota profiles and various urinary 

metabolites which may potentially be implicated in health and disease. To fully evaluate their 

potential as predictive clinical biomarkers for various dysbiosis-associated diseases, long-

term follow up studies should be conducted in future to assess progressive incidence rates 

for each disease-associated metabolite or metabolite profile. Although this study has 
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identified correlations between microbiota profiles and various metabolites, long-term data 

detailing clinical outcomes of these patients was not obtained, due to the nature of the 

original research aims, therefore such analyses were not possible.   

 

In addition, this study ambitiously attempted integrative analysis of two “omics” datasets 

and successfully identified potential urinary metabolites associated with defined intestinal 

microbiota profiles via combined analysis of microbiomics and metabolomics datasets. Such 

multi-omics approaches are relatively novel and are said to require large sample numbers, 

tailored statistical analyses and considerable time investment from skilled researchers (Hasin 

et al., 2017). This study was primarily hindered by substantial interpatient variability in 

urinary metabolite profiles that is likely to be diet-associated variation. Future work to 

significantly increase study participants will aid in achieving statistical power for urinary 

metabolite analysis and downstream integration of different omics datasets. Furthermore, 

collection of qualitative data concerning participant lifestyle and diet with particular focus on 

macronutrient intake, BMI, use of medicines and any additional pathologies will further assist 

in elucidating the relationship between the intestinal microbiota and urinary metabolites.  
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Chapter 6: 

 

Investigating the Potential Application of 

Diagnosing Dysbiosis via Urinary NMR 

Metabolomics for Detection of Disease 

Susceptibility. 
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6.1 – Rationale:  

Intestinal dysbiosis is associated with numerous localised and systemic pathologies and 

research presented in chapter 5 demonstrated various urinary metabolites that are 

putatively associated with intestinal microbiota composition and thus health or disease. 

Utilising IBD as an example of a localised dysbiosis-associated disease, this study aimed to 

apply such principle to prediction of microbiota composition in health and disease states, 

which may in time be utilised to aid diagnosis via rapid, inexpensive and non-invasive 

methods.    

 

CD and UC are the two predominant classifications of IBD which are thought to manifest as 

a consequence of a disrupted immunological response to a dysbiotic gut microbiota. 

However, despite extensive efforts to elucidate the complexities of these diseases, the 

precise aetiology and pathophysiology remain uncertain. Current diagnostic strategies for 

IBD involve combined analysis of historical clinical data, endoscopy examination and 

histological assessment of mucosal biopsies. Collectively, such techniques are 

disadvantageous due to their highly invasive and time-consuming nature. Prompt and 

accurate diagnosis of IBD has proven crucial for improved patient quality of life and effective 

clinical management as it enables timely administration of appropriate therapeutics. For 

example, newly diagnosed CD patients promptly given immunosuppressants such as 

azathioprine, were observed over a period of 26 weeks and found to enter remission earlier 

and more frequently than those initially given therapeutics considered to be less efficacious 

(Ricart et al., 2008). Furthermore, the study also reported that timely administration of 

appropriate therapeutics almost doubled the median time to relapse between the two 

cohorts (Ricart et al., 2008). At present, no adequate method for detection of IBD exists prior 

to clinical presentation and so there remains an urgent requirement for novel, non-invasive 

pre-screening and early diagnostic techniques for IBD.  

 

In recent years research has begun to investigate the role of metabolites in the onset and 

progression of various diseases, including IBD. Current studies have utilised both animal 

models, with IL-10 gene deficient mice (Murdoch et al., 2008) and serum, faecal and urine 

sampling of IBD patients, in an attempt to identify clinical metabolic biomarkers of disease. 

Several studies investigating faecal metabolomics reported significant differences in the 
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metabolite profiles of IBD and controls as well as between IBD subsets, CD and UC. Notably, 

decreased levels of butyrate, acetate and methylamine were found in faecal samples of IBD 

patients compared to those of healthy controls (Marchesi et al., 2007, Le Gall et al., 2011). 

Similar metabolomics studies have also investigated the profiles of urine obtained from IBD 

patients and controls, primarily due to the more convenient nature of sample collection 

within a clinical environment. Reported results were largely analogous to those obtained 

from faecal samples, with considerable separation of the two groups utilising PLS-DA models. 

Determinative urine metabolites include increases in amino acids such as leucine and 

creatinine, as well as decreases in concentrations of hippurate, acetate and 2-

hydroxyisobutyrate (Stephens et al., 2013, Dawiskiba et al., 2014). 

 

There is evidence to suggest that the gut microbiome of IBD patients is distinctive from 

controls with significant shifts observed in microbial predominance (as discussed in the 

literature review; Frank et al. (2007)). However, despite repeated conclusive evidence 

presented in the literature that IBD patients can be distinguished from healthy based on 

either metabolite or microbiota profile analyses, research has not yet comprehensively 

explored whether such findings are linked. It may be that dysbiosis of the gut microbiota is 

accountable for changes observed in the urinary metabolome of IBD patients as a 

consequence of altered metabolism in a dysbiotic gut. Evidence to support this theory is 

provided by the fact that the key metabolites identified to hold distinctive power between 

IBD and controls are primarily amino acids and SCFAs (Bjerrum et al., 2015). SCFA 

metabolites, including acetate, butyrate and propionate are produced by the activity of the 

gut microbiota during fermentation of indigestible complex carbohydrates (Reviewed in Rios-

Covian et al. (2016)). It is therefore feasible that IBD-associated fluctuations in the 

composition of the gut microbiota alters synthesis of SCFAs to an extent detectible in 

patient’s urine. This thesis proposes that intestinal dysbiosis observed in IBD leads to distinct 

variations in the urinary metabolite profiles which may be harnessed for non-invasive 

diagnostic tests.  
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6.2 – Research Aims:  

- To validate literature reporting distinct microbial and urinary metabolome profiles between 

IBD and control cohorts. 

- To investigate potential relationship between dysbiotic gut microbiota and altered urinary 

metabolite profiles in IBD patients.  

 

6.3 – Methods Summary:  

Illumina® 16S sequencing microbiota and urinary metabolite profile datasets, generated as 

described in sections 2.2.13, 2.2.14 and 2.2.15, and analysed in chapter 5, were 

retrospectively assigned into IBD or Control groups according to their diagnosis following 

endoscopy and histological examination. Multivariate statistical analyses, including 

hierarchical cluster, PCA and OPLS-DA were employed to investigate potential differences in 

microbiota and metabolite profiles in IBD and control participants.  

 

  



131 
 

6.4 – Results: 

6.4.1 – Partial separation observed between IBD and control intestinal microbiota profiles. 

Intestinal microbiota profiles of IBD and control individuals were generated utilising Illumina 

16S sequencing and are presented at phyla, order level in figures 6.1 and 6.2 respectively. 

Whilst no immediate trends are apparent between the two groups in these figures, the vast 

interpatient variability in microbiota composition is obvious, particularly at order level.  

 

Hierarchical clustering analysis of the proportionate microbiota data at phylum, order and 

genus level, was performed to assess the relationship of microbiota profiles within the two 

groups (figure 6.3). At phylum level, four distinct groups are apparent with the majority of 

IBD patients clustering within the rightmost group, although this trend is not exclusive to IBD 

patients (Figure 6.3A). The same pattern is observed in the clustering of IBD and control 

patients at order level, with no distinct clusters observed between the two groups (Figure 

6.3B). At genus level there are no distinctive trends in clustering between IBD and control 

patients with an almost even distribution of the patients observed throughout three main 

clusters, thus indicating that interpatient diversity is more substantial than disease-control 

group variation (Figure 6.3C). 
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Figure 6.1 – Relative taxonomic composition of 16S rRNA amplicon sequences from human intestinal biopsy samples, at phylum level, in IBD and control 

patients. p, Phylum.  
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Figure 6.2 – Relative taxonomic composition of 16S rRNA amplicon sequences from human intestinal biopsy samples, at order level, in IBD and control 

patients. o, order.   
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Figure 6.3 – Hierarchical cluster analyses of intestinal microbiota profiles at (A) phylum 

(B) order and (C) genus level in IBD (red) and control (black) cohorts. 

A 

B 

C 
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Comparison of control and IBD intestinal microbiota profiles was conducted using PCA. Figure 

6.4A demonstrates little separation between the two groups with entirely overlapping 

clusters. However, the plot also indicates that IBD patients appear to harbour a more 

consistent microbiota profile as they are observed to be gathered in a tighter cluster than 

that of the control cohort. Furthermore the PCA biplot which represents the relationship 

between PC scores and variables as vectors, demonstrates that the variability observed 

across the control cohort is accountable to proportionate difference in the three 

predominant order, Clostridales, Bacteroidales and Enterobacteriales (figure 6.4B). 

 

Supervised multivariate statistical modelling utilising OPLS-DA revealed greater separation 

between IBD and control microbiota profiles with little overlap observed (figure 6.5A). 

However, figure 6.5B presents the model overview and it can be seen that although the 

model explains a large amount of the variance observed across cohorts, as evidenced by R2 

values of 0.509 and 0.159 for X and Y axis respectively, the model has a negative Q2 value of 

-0.0421 and therefore does not predict disease state when applied to new data. In addition, 

orthogonal variation R2 values were identified to be 0.134 and 0.159 for X and Y axis, 

indicating that a considerable amount of variation in the microbiota of the study cohort is 

not related to disease groups.  
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Figure 6.4 – PCA of intestinal microbiota profiles from IBD and control patients. (A) PCA 

scores plot and (B) corresponding biplot of proportionate microbiota data, at taxonomic 

level order, from IBD (green) and control (red) cohorts.  

A 

B 
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Figure 6.5 – OPLS-DA of intestinal microbiota profiles from IBD and control patients. 

(A) OPLS-DA scores plot and (B) model overview of proportionate microbiota data, at 

taxonomic level order, from IBD (green) and control (red) cohorts. R2X and R2Y are the 

explained variance of X and Y matrix, respectively and Q2 is the predictive accuracy of the 

model. p1, Predictive variation, is the variation of X (microbiota) correlated to Y (groups); 

o1, orthogonal variation, is the variation in X that is uncorrelated to Y. 

A 

B 



138 
 

6.4.2 – No distinct differences observed in urinary metabolite profiles of IBD and control 

cohorts.  

Representative 1H NMR spectra of urinary metabolites from IBD and control participants are 

presented in figure 6.7.  Distinct differences in peaks and peak intensities are apparent in IBD 

and control spectra, particularly in the region of 2-3ppm.  

 

Hierarchical clustering analysis revealed that all metabolite profiles are largely dissimilar, as 

evidenced by an absence of distinct clusters present on the dendrogram (figure 6.6). In 

addition a minimum branch height of 15 on a relative scale of closeness for all samples is 

substantially larger than that of the microbiota clustering dendrograms indicating greater 

variation in metabolite profiles than in the microbiota across the cohort. There is no apparent 

similarity within the metabolome profiles of IBD and control groups evidenced with cluster 

analysis, but interestingly, the three most unique profiles, individually branched on the 

leftmost side of the dendrogram, are those of IBD patients.  

  

Figure 6.6 – Hierarchical cluster analysis of 1H NMR urinary metabolite NMR profiles 

from IBD (red) and control (black) cohorts. 
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Comparison of urinary metabolite profiles of IBD patients and controls utilising PCA revealed 

no differences between the two cohorts as no segregation was observed in the PCA clusters 

(figure 6.8A). Additionally, the associated PCA biplot revealed that there are no metabolites 

that hold importance as evidenced by the equivalent magnitude of vectors present on the 

biplot (figure 6.8B). Of all metabolites analysed, the 3-hyroxybutyrate vector was observed 

to have the largest magnitude and therefore may hold potential importance in distinguishing 

urinary metabolite profiles.  

Figure 6.7 – Representative 1H NMR spectra of (A) IBD and (B) Control urine samples 

with defined bucket boundaries. Metabolite annotations have been omitted for clarity, 

bucket identities are reported in appendix 8. 

A 

B 
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OPLS-DA supervised modelling of urine metabolite data revealed greater segregation of IBD 

and control metabolite profiles (figure 6.9A). However, as was observed with the microbiota 

data, the model explained a reasonable amount of variance with R2 values of 0.0762 and 

0.228 for X and Y axis respectively, but the model has no predictive power for disease group 

with a Q2 of -0.331 and is therefore invalid (figure 6.9B). Furthermore, orthogonal variation 

was identified to be higher than predictive variation with R2 values of 0.0762 and 0.228 for X 

and Y axis, respectively, indicating that the interpatient variation in metabolite profiles is 

greater than intergroup variation.  
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Figure 6.8 – PCA of urine metabolite profiles from IBD and control patients. (A) PCA 

scores plot and (B) corresponding biplot of relative 1H NMR metabolite concentrations, 

from IBD (green) and control (red) cohorts.  

A 

B 
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Figure 6.9 – OPLS-DA of urine metabolite profiles from IBD and control patients. 

(A) OPLS-DA scores plot and (B) model overview of relative 1H NMR metabolite 

concentrations, from IBD (green) and control (red) cohorts. R2X and R2Y are the explained 

variance of X and Y matrix, respectively and Q2 is the predictive accuracy of the model. 

p1, Predictive variation, is the variation of X (metabolites) correlated to Y (groups); o1, 

orthogonal variation, is the variation in X that is uncorrelated to Y. 

A 

B 
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6.4.3 – Participant demographics demonstrated well matched study cohorts but a variety 

of confounding variables exist between IBD patients. 

Considering the lack of differences observed in the intestinal microbiota and metabolite 

profiles observed thus far, subsequent attempts to perform integrated analysis of the two 

datasets was not feasible or worthwhile. Instead review of participant demographics and 

clinical characteristics was performed to assess suitability of the study cohort and the 

relevant collected data are presented in table 6.1.   

 

Table 6.1 - Participant demographics and clinical characteristics of IBD cohort 

 IBD Control Excluded 

Number (male/female) 15 (8/7) 26 (13/13) 12 

Average age in years (±StDev)  55 (±16) 56 (±16) - 

Average disease duration in years (Range) 16 (0-42) - - 

Disease Classification:  
Crohn’s disease 

Ulcerative Colitis 
Other 

 
8 
5 
2 

 
- 
- 
- 

 
- 
- 
- 

Disease state: 
Active IBD  
Remission  

Untreated - new diagnosis  

 
10 
1 
4 

 
- 
- 
- 

 
- 
- 
- 

Medication/treatments:  
Surgical resection 

Asacol 
5-ASA 

Azathioprine 
Methotrexate 

Budesonide 
Sulfasalazine 

 
2 
3 
4 
4 
2 
1 
1 

 
- 
- 
- 
- 
- 
- 
- 

 
- 
- 
- 
- 
- 
- 
- 

 

 

A total of 53 patients consented to participation in the study, fifteen of whom were 

confirmed IBD cases based on a combined review of historical, endoscopic and histological 

data, whilst 26 were classified as controls as defined in the study inclusion and exclusion 

criteria, resulting in largely unbalanced study groups. A variety of factors including 

retrospective IBS diagnosis and complications preventing sample collection led to the 

exclusion of 12 participants. The male to female ratio was well matched with 47% females in 

the IBD group and a 50% even split in the controls. In addition the average age was almost 

identical at 55 and 56 (±16) years in both groups.  
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Within the IBD group 8 patients were confirmed as Crohn’s disease diagnosis and 5 where 

Ulcerative colitis. In addition 2 patients were classified as other following diagnosis of 

ischaemic colitis and collagenous colitis respectively. Furthermore, substantial variation was 

observed in disease state with two thirds of IBD patients classified as active IBD whilst 

receiving treatment, whilst 1 patients was in remission and 4 others were retrospectively 

diagnosed and had not yet received any treatment. Finally the range of treatments received 

was highly variable with administration of various combinations and doses of therapeutics 

and 2 bowel resections.  
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6.5 – Discussion:  

This chapter aimed to explore the relationship between the gut microbiota and urinary 

metabolite profiles in IBD and Control patients, with an anticipation of identifying a novel 

non-invasive diagnostic tool for IBD, with potential future application to other dysbiosis-

associated pathologies. First, the gut microbiota profiles of IBD and control patients were 

compared and no difference was observed between the two groups utilising both supervised 

and supervised statistical methods. This observation is inconsistent with findings presented 

in the literature as previous studies have reported substantial difference in intestinal 

microbiota profiles (Frank et al., 2007). Next the urinary metabolite profiles of IBD and 

controls were compared however, little separation was observed between the two cohorts 

utilising hierarchical, PCA and OPLS-DA models. Again, this finding contrasts with that 

reported in the literature, with distinct differentiation identified in the urinary metabolite 

profiles of IBD and controls (Stephens et al., 2013, Williams et al., 2009). The OPLS-DA 

statistical modelling employed in this study generated highly disparate R2 and Q2 values 

whilst well matched values of R2 =0.811; Q2 =0.698 were reported in the Stephens et al.  

study, indicating that the data presented in this thesis is subject to model overfitting (Worley 

and Powers, 2013). Overfitting occurs in supervised statistical methods when the model is 

highly dependent on the training data, usually as a result of a large number of variables 

compared with the number of observations (Worley and Powers, 2013). Alternatively, such 

discrepancies in the data presented with that in the literature may in fact be a result of 

differences in study design and implementation. For instance, the control cohort in Stephens 

et al. study were self-identified healthy individuals, whereas we recruited outpatients at 

endoscopy clinics and retrospectively assigned patients to study groups following diagnosis 

(Stephens et al., 2013). In addition, different 1H NMR acquisition parameters were employed 

in both studies as well as different data processing methods; targeted vs exploratory 

metabolomics. Such variability in study methodologies can cause data discrepancies and 

reinforces the requirement for wide-scale method standardisation. 

 

Interestingly, hierarchical clustering of the metabolome profiles identified that the most 

dissimilar and therefore unique samples were obtained from IBD patients. IBD is defined by 

development of a ‘leaky gut’ due to an extensive breakdown in EBF following a loss of tight 

junction expression, increased apoptosis and chronic inflammation (Su et al., 2013). Such 

physiology leads to increased intestinal permeability and has been shown to result in 
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escalated translocation of bacteria and derived products across the epithelial barrier and into 

the periphery of the host (Demehri et al., 2013).  This process is considered crucial in disease 

progression and severity, and has induced debates to whether dysbiosis is a cause or 

consequence of IBD (reviewed in Butto and Haller (2016)). It is therefore also plausible that 

a breakdown of EBF results in an uncontrolled influx of host and bacterial derived metabolites 

following a loss of absorptive selection mechanisms. This would manifest substantial 

alterations in the host urinary metabolite profile and abundances and may explain the highly 

dissimilar profiles observed in three of the study cohort.  

 

The lack of separation between intestinal microbiota and metabolite profiles observed in this 

study may be a consequence of limited sample size, with only 41 participants in total; 15 in 

the IBD group and 26 controls. Previous studies successfully demonstrating separation 

between the groups have been conducted on 100+ participants, likely providing sufficient 

statistical power to outweigh interpatient genetic and environmental confounding variables 

to accurately reject the null hypothesis (Stephens et al., 2013, Williams et al., 2009). In 

addition, the control population within this study is not without limitations; control 

participants were recruited from endoscopy waiting lists and were categorised 

retrospectively based on inclusion criteria of no IBD, IBS or colon cancer diagnosis. However, 

it should not be ignored that the majority of such patients were referred to endoscopy 

following presentation of concerning clinical symptoms, such as chronic diarrhoea. Such 

clinical features have been associated with altered intestinal microbiota composition and 

could consequently attenuate distinction between IBD and control populations. The NHS is 

now gradually implementing a new CRC screening programme available to all men and 

women over 55, inviting individuals for endoscope examination in addition to the faecal 

occult blood test routinely utilised for screening (WWW, NHS Bowel Cancer Screening). This 

programme will benefit future studies as it will facilitate access to more ideal control patients 

that are better representations of the general population and healthy individuals.  

 

The reliability of the IBD test group may also be scrutinised as collated participant 

demographics detail substantial variations between IBD participants particularly in the case 

of treatments. It was found that one third of the participants were not receiving treatment, 

either due to remission or new diagnosis, whilst 2 participants had previously undergone 
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surgical bowel resection and the remaining individuals were in receipt of a variety of 

medications. Previous research has demonstrated that various forms of prescribed 

medication and treatments can attenuate metabolic discrimination of IBD patients, 

particularly between disease subsets. Two studies reported differing metabolite profiles in 

patients on TNF-α antibody therapy to those on alternative forms of treatment (Stephens et 

al., 2013, Bjerrum et al., 2015). In addition, the same studies demonstrated that IBD patients 

who have previously undergone surgical bowel resection may also confound statistical 

outcome of urinary metabolite analyses, which is logical as a shorter colon is likely to result 

in reduced or altered metabolite absorption (Stephens et al., 2013, Bjerrum et al., 2015). 

Furthermore, it has been previously reported that urinary metabolite profiles differ in patient 

with active IBD and those in remission (Dawiskiba et al., 2014). Considering this study was 

conducted with the long term goal of developing a potential novel diagnostic or pre-

screening test for IBD in addition to other dysbiosis-associated diseases, future research 

should aim to obtain samples from newly diagnosed and untreated IBD patients to remove 

confounding variables and ensure representativeness, although such rigorous recruitment 

criteria would have been infeasible within the time frame of this study. Longitudinal studies 

that investigate participants at diagnosis and after ‘X’ weeks of treatment would also be 

useful to eliminate confounding variables and  thus facilitate monitoring of intestinal 

microbiota and host metabolite responses to either drug or dietary-associated therapeutics.  

 

Overall, this study aimed to first confirm reports of distinct urinary metabolite and intestinal 

microbiota profiles in IBD and healthy individuals and then perform integrated omics 

analyses, analogous to that applied in chapter 5, to investigate the potential relationship 

between bacterial derived metabolites and health or disease state. However, due to limited 

patient recruitment and subsequent sample size, statistical power was not reached with the 

initial aim of this study meaning the latter could not be conducted. Further research, 

implementing the improvements suggested herein, is therefore required to establish 

whether specific urinary metabolites or metabolite profiles can predict inflammatory bowel 

disease, as an example of a dysbiosis-associated disease. 
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Chapter 7: 

 

Discussion and Future Directions 
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7.1 – Discussion and Future Directions 

The intestinal microbiota is a highly diverse microbial ecosystem that holds vast health 

implications for the human host. From promoting metabolic capabilities and mediating 

inflammatory responses through to potentially influencing host behaviour via the gut-brain 

axis, the intestinal microbiota is undoubtedly a super organism that is pivotal in most aspects 

of health and disease. Decades of research has methodically unravelled the complex cellular 

and biochemical mechanisms facilitating host-microbiota coevolution as well as factors such 

as dysbiosis that underpin the breakdown of homeostasis and onset of intestinal disease. 

However despite such advances, caveats in this literature persist, most notably regarding 

characterisation of dysbiosis and translation of research into clinical diagnostic and 

therapeutic applications.  

 

In relation to this project, our research area of interest concerned dysbiosis of the intestinal 

microbiota and its role in the onset and as a potential predictor of associated pathologies. 

We first employed a novel human model utilising loop ileostomy patients to study intestinal 

microbiota profiles in distinct nutritional environments, controlling for confounding 

interpatient genetic and environment variability. From here we next assessed the 

consequences of dysbiosis in patients undergoing ileostomy reversal surgery with 

consideration to post-operative clinical outcome. Finally we attempted multi-omics 

integration of NMR and Illumina sequencing data to assess the relationship between 

intestinal microbiota profiles and urinary metabolites as a potential clinical indicator of 

dysbiosis. Collectively, the results generated advance our understanding of intestinal 

dysbiosis and provide promise for further development in future studies. 

 

7.2 – Dysbiosis as a Cause of Intestinal Pathology. 

A long standing debate exists in the field of intestinal microbiota research as to the cause or 

consequential role of dysbiosis in pathogenesis of associated diseases (reviewed in Butto and 

Haller (2016)). One side of the argument proposes that dysbiosis occurs in consequence to 

disease as localised inflammation-associated changes in epithelial integrity may select for a 

dysbiotic microbiota and perpetuate disease phenotype. Alternatively, it is also suggested 

that the acquisition of a dysbiotic microbiota induces inflammation and causes breakdown 
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of EBF resulting in disease pathology. Both theories are plausible but the latter, if proven 

accurate, would influence the clinical management and diagnosis of associated diseases 

considerably. 

 

Our investigations into microbiota composition exploiting a novel human model in loop 

ileostomy patients identified that intestinal dysbiosis caused substantial distortion of 

mucosal architecture, with considerable villous atrophy, as a result of reduced IEC 

proliferation which is likely due to altered host-microbiota interactions at the epithelial 

surface. The use of our novel human model was advantageous as it enabled intrapatient 

comparisons of microbiota profiles and associated intestinal physiology whilst controlling for 

interpatient genetic and environmental variables that often confound such clinical studies. 

Functional ileostomy limbs served as paired controls due to receipt of enteral nutrition and 

these samples were found to maintain healthy intestinal environment when compared to the 

respective defuntioned ileum. Such findings support a causal role for perturbations in the 

intestinal microbiota in localised disease pathologies as the experimental model controlled 

for all confounding variables thus demonstrating capacity for a dysbiotic microbiota to 

instigate disease pathology. 

 

The aetiology of dysbiosis is regarded as multifactorial since no contributory genetic or 

environmental factor is independently sufficient to instigate dysbiosis associated disease. 

Considering our human model, the intestinal microbiota was subject to extreme insult in the 

form of complete nutritional deprivation which induced dysbiosis and intestinal injury. 

However, it is unlikely that natural variation in host diet is substantial enough to cause such 

profound and detrimental dysbiosis, meaning host genetic and environmental influences are 

also required for disease onset.  Interestingly, the aetiology of cancer has been defined by a 

‘multi-hit’ hypothesis which states that multiple mutations acquired in tumour suppressor 

genes are required to instigate tumour growth, particularly in CRC (Segditsas et al., 2009). 

Furthermore, this same principle has been suggested for two recognised dysbiosis associated 

pathologies, schizophrenia and NAFLD, with a combination of genetic susceptibility and 

various determinative environmental factors that are encountered at different stages 

through life resulting in full clinical onset (Feigenson et al., 2014, Buzzetti et al., 2016). 

Intestinal dysbiosis also fits this hypothesis, with genetic and environmental factors, such as 
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NOD mutations and postpartum colonisation, underpinning predisposition, then subsequent 

lifestyle practices such as diet and antibiotic use which pivotally lead to dysbiosis. Essentially, 

the more ‘hits’ an individual has with predisposing factors the more susceptible they are to 

developing dysbiosis and associated diseases.  

 

Current treatments for dysbiosis associated diseases function to reverse a ‘hit’ in disease 

susceptibility by disrupting functional interactions that promote disease onset. These 

therapeutics usually target either the aberrant immune response or the dysbiotic microbiota 

to attenuate disease pathology. For example, inflammatory cytokines have been targeted 

with antibody therapies such as anti-TNF-α antibody, Infliximab for treatment of IBD (De Bie 

et al., 2011). Alternatively, FMT which involves transplanting a healthy microbiota into a 

diseased host to eliminate dysbiosis has also been explored in IBD therapy and is considered 

to be more efficacious than immunomodulatory techniques which may be counteracted by 

compensatory immune pathways (Moayyedi et al., 2015, Paramsothy et al., 2017).  

 

A novel opportunity for microbiota-targeted therapeutic intervention which may provide an 

interesting avenue for further research involves the use of prebiotic preparations in loop 

ileostomy patients. Direct administration of prebiotics to the defunctioned intestine in the 

weeks prior to reversal surgery could restore the microbiota and reinstate intestinal 

homeostasis, offering an improved microbial and physiological environment better able to 

promote intestinal health and repair following reanastomosis. This could potentially reduce 

morbidity rates associated with reversal procedure as the risk of developing complications 

such as post-operative ileus may be consequently reduced. Furthermore, the application of 

probiotics to the defunctioned intestine should be considered inappropriate as artificial 

increases in bacterial load within a dysbiotic and unstable physiological environment is likely 

to trigger chronic inflammation and perpetuate breakdown of EBF, increasing potential of 

clinical complications.  

 

Finally, one overarching conclusion from this research is that the future direction of 

therapeutics is likely to progress into personalised treatment strategies to accommodate 

individual variability in the functional composition of the intestinal microbiota. The principle 
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of personalised medicine to make such accommodations has recently been explored in type 

II diabetic patients. Zeevi et al. developed a clinical model which successfully utilised 16S 

rRNA intestinal microbiota, clinical and postprandial glucose data of 800 individuals to predict 

glucose response to ‘real-life’ meals for a validation cohort (Zeevi et al., 2015). This research 

then enabled personalisation of meal choices based on intestinal microbiota profiles which 

consequently reduced the risk of diabetes via microbiota-mediated indirect control 

postprandial glucose levels.  

 

 

7.3 – Dysbiosis as a Predictor of Disease. 

Previous studies have defined intestinal microbiota ‘enterotypes’ that are predominated by 

a different microbial phyla and exist independent of cultural differences within the human 

race (Arumugam et al., 2011, Harmsen and C., 2016). These four enterotypes are suggested 

to share common functionality and have been inferred with either health or disease. In our 

research five distinct enterotype-like profiles were identified within the study cohort via 

hierarchical cluster analysis of proportionate microbiota data. These profiles were analogous 

to enterotypes described in the literature, with each predominated by distinct microbiota 

populations that have previously been associated with health or disease status such as IBD 

and obesity. This suggests that the substantial inter-individual variation observed in intestinal 

microbiota profiles, at genus and species taxonomic levels, may not hinder clinical 

advancements as much as is currently anticipated because such rationale endorses 

stratification of patients into defined microbiota subgroups. This principle is fortified with the 

observation that different microbial species share common metabolic functionality and so 

exert significant influences on host phenotype through combined biochemical and enzymatic 

capabilities despite presence in low abundances. Ultimately, this may render microbiota 

variation at species level insignificant when concerning the functional consequences of 

dysbiosis in the onset of associated diseases. 

 

The current diagnosis of dysbiosis associated diseases relies solely on combined assessment 

of clinical presentations and historical patient data, largely due to the multifactorial nature 

of such diseases which makes their prediction difficult. However, considering the proposed 

pivotal role of dysbiosis as a determinative ‘hit’ factor in the onset of various associated 



153 
 

diseases, and the association of specific enterotypes with various diseases, it may be possible 

to predict host disease susceptibility based on analysis of intestinal microbiota composition. 

To test this theory we investigated the potential prospect that host urinary metabolites 

reflect functional enterotypes. The rationale for this connection was supported by the 

understanding that different microbial fermentation pathways produce distinct SCFA end-

products, that when in excess, are excreted through urination (Tremaroli and Backhed, 

2012).  Several urinary metabolites were identified to be associated with the enterotypes 

defined in our study cohort, however such metabolites tended to be dietary-associated, such 

as flavonoids, rather than metabolites directly associated with bacterial activity, such as 

SCFA. This is not entirely surprising as it may be a reflection of a diet that is supportive of a 

particular enterotype, rather than a reflection of enterotype metabolism.  We found such 

dietary metabolite associations were replicated when correlated with four predominant 

microbiota phyla. Such findings may hold potential to manipulate an individual’s enterotype 

through dietary means. In addition, these findings do not discount the distinguishing 

potential of SCFA metabolites for intestinal microbiota prediction as the enriched and 

chemically-complex nature of urine as a waste product of metabolism is likely to have 

overshadowed fluctuations in less abundant metabolites. Targeted metabolite analyses can 

be employed in future to investigate specific metabolites of interest. 

 

Future research should also undertake application of this theory to detect dysbiosis 

associated diseases by investigating the predictive capacity of the intestinal microbiota for 

IBD (or another example disease) through urinary metabolite analysis. Previous research has 

demonstrated an ability to distinguish IBD from healthy via discriminant analysis of urinary 

NMR metabolite profiles, with significant differences observed in host- and bacterial-derived 

metabolites (Stephens et al., 2013, Williams et al., 2009). Still, research had not yet correlated 

such metabolite profiles with intestinal microbiota composition and health and disease 

status within the same individual. Unfortunately our attempts were hindered by limited 

sample numbers and flawed participant cohorts resulting in no distinction between IBD and 

controls using metabolite or microbiota analysis. In future, particular consideration should 

be paid to ensure the representative nature of study cohorts to undiagnosed IBD and healthy 

populations, for example. This will offer better predictive capacity to first replicate the 

findings of previous studies and subsequently enable integration of the microbiota and 
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metabolomic datasets to determine predictive capacity of host urinary metabolites for health 

and disease. 

 

One significant issue surrounding application of novel diagnostic or screening techniques is 

the feasibility of biomarker detection. To ensure downstream compatibility of this theory and 

practise to clinical implementation, a convenient and non-invasive test to detect dysbiosis 

would be required. Current NMR spectrometry based analysis of urinary metabolites would 

be costly, time consuming and thus infeasible on a broad scale. Following comprehensive 

identification of characteristic metabolite profiles, associated with intestinal enterotypes, a 

set of reagent strips could be developed to enable rapid and low-cost quantification of 

metabolites, in the form of a urine dipstick test, analogous to that routinely utilised to 

estimate glucose levels during diagnosis of type II diabetes.  

 

In conclusion, this thesis supports the growing body of evidence suggesting that the 

microbiota is paramount in intestinal (and organismal) health.  Determination of intestinal 

microbiota composition, ideally via rapid, inexpensive and non-invasive techniques such as 

analysis of urinary metabolites, could theoretically be utilised to predict patient disease 

susceptibility and stratify patients to appropriate therapeutics. Such a pre-screening 

technique lends itself well to the probable forthcoming application of personalised medicine, 

as a convenient detector of microbiota composition that could be utilised to make informed 

decisions with drug prescriptions and disease diagnoses.  
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Websites 

BioEdit Software  

www.mbio.ncsu.edu/BioEdit/bioedit.html 

 

Colostomy Association 

http://www.colostomyassociation.org.uk/index.php?p=199&pp=3&page=Stoma%20Revers

al 

 

Illumina Inc® 2012 

https://www.illumina.com/company/video-hub/JA6mofeuntk.html 

 

ImageJ Software 

https://imagej.nih.gov/ij/ 

 

KEGG Pathway Database  

http://www.genome.jp/kegg/pathway.html 

 

MetaboAnalyst  

http://www.metaboanalyst.ca/faces/home.xhtml 

 

NCBI BLASTn 

https://blast.ncbi.nlm.nih.gov/Blast.cgi 
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NHS Bowel Cancer Screening 

http://www.nhs.uk/Conditions/bowel-cancer-screening/Pages/Introduction.aspx 

 

RStudio Software 

https://www.rstudio.com/ 

 

TameNMR Software 

www.galaxy.liv.ac.uk from autumn 2017 

 

VSL#3 Polybiotic Food Supplement  

https://www.vsl3.co.uk/index.php 
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Appendix 1 - Surgical Study Clinical Documentation 

Participant Consent From  
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Patient Information Sheet  
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Appendix 2 - Binary DGGE Banding Profiles of Luminal and Mucosal-associated Microbiota 
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Appendix 3 - Mucosal and Luminal DGGE band extraction and purification 

  

Luminal band class extraction. DGGE to confirm selection and purity of luminal-associated 

amplicons later sequenced. Band classes (A) f, g, e and c (B) h, a, b and d ran adjacent to 

corresponding original sample. Arrows indicate location of band class within original sample.

             Data published Supplementary Information of (Beamish et al., 2017) 
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Mucosal band class extraction. DGGE to confirm selection and purity of mucosal-associated 

amplicons later sequenced. Band classes (A) c, d, b, a and e (B) f, ran adjacent to 

corresponding original sample. Arrows indicate location of band class within original sample. 
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Appendix 4 - DGGE Band Class Consensus Sequences and Taxonomic Assignments for 

Optimisation Experiment, Mucosal and Luminal Microbiota Profiles. 

Consensus Sequences: 

Selected bands are presented in Chapter 3, figure 3.3. 

Band 1: 

NNNNGGGAATCTTNNNGCAATGGACGAAAGNCTGACCNNAGCAACGCCGCGTGAGTGANGAAG

GNTTTCGGATCGNAAAACTCTGTTGTTANAGNNNAACANGGACGTTNNTAACTGANCGTCCCCTG

ACGGTATCTAACCANAAAGCCACGG 

Band 2: 

GGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCGACGCCGCGTGCGGGATGGAGGCCTTCG

GGTTGTAAACCGCTTTTGTTCAAGGGCAAGGCACGGTTTCGGCCGTGTTGAGTGGAT 

Band 3: 

GAGGAATATTGGTCAATGGGCGCTAGCCTGAACCAGCCAAGTAGCGTGAAGGATGAAGGCTCTAT

GGGTCGTAAACTTCTTTTATATAAGAATAAAGTGCAGTATGTATACTGTTTTGTATGTATTATATGAA

TAAGGATCGGCTAACTCCGTGCCAGCAGCCGCGGTAATA 

Band 4: 

GGGAATCTTCGGCAATGGACGAAAGTCTGACCGAGCAACGCCGCGTGAGTGAAGAAGGTTTTCGG

ATCGTAAAACTCTGTTGTTAGAGAAGAACAAGGACGTTAGTAACTGAACGTCCCCTGACGGTATCT

AACCAGAA 

Band 5: 

CCTTCGGGTTGTAAAGTACTTTCGACGGGGAGGAAGGGAGTCAAGTTAATACCTTTGCTCATTGAC

GTTACCCGCACAAAAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATA 

Band 6: 

GGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCG

GGTTGTAAAGTACTTTCGACGGGGAGGAAGGGAGTCAAGTTAATACCTTTGCTCATTGACG 

Band 7: 

GGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCG

GGTTGTAAAGTACTTTCAGCGGGGAGGAAGGGAGTAAAGTTA 

Band 8: 

GGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCG

GGTTGTAAAGTACTTTCAGCGGGGAGGAAGGGAGTAAAGTTAATAC 

Band 9: 

GGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCAACGCCGCGTGAGCGATGAAGGCCTTCGG

GTCGTAAAGCTCTGTCCTCAAGGAAGATAATGACGGTACTTGAGGAG 

Band 10: 

GGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCAACGCCGCGTGAGTGATGACGGCCTTCG

GGTTGTAAAGCTCTGTCTTCAGGGACGATAATGACGGTACCTGAGGAGG 
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Consensus sequence Taxonomic Assignment: 

 

 

Luminal-associated Microbiota Consensus Sequences: 

Band classes are presented in Chapter 3, figure 3.6. 

Band Class a: 

CTACGGGAGGCAGCAGTGAGGAATTTTGGTCAATGGGGGACCACTTGAACCAGCCAAGTAGCGTG

AAGGATGACTGCCCTATGGGTTGTAAACTTCTTTTATAAAGGAATAAAGTCGGGTATGCATACCCGT

TTGCATGTACTTTATGAATAAGGATC 

Band Class b: 

TACGCGTGTCCATGGAAGCAGGCACCAGAGCCCCTGCCAGGTAATTAGAAAGATGACGGGATTAT

GGGGGGTATACTTCTTTTATAAAGGAATAAAGTCGGGTATGTATACCCGTTTGCATGTACTTTATGA

ATAAGGATCGGCTAACTCCGTGCCAGCAGCCGCGGTAA 

Band Class c: 

GCAATGGGGGCAACCCTGACCGAGCAACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAGCT

CTGTTGTAAGTCAAGAACGAGTGTGAGAGTGGAAAGTTCACACTGTGACGGTAGCTTACCAGA 

Band Class d: 

AGCAGTAGGGAATCTTTGGCAATGGACGGAAGTCTGACCGAGCAACGCCGCGTGAGTGAAGAAG

GTTTTCGGATCGTAAAGCTCTGTTGTAAAGAGAAGAACGAGTGTGAGAGTGGAAAGTTCACACTGT

GACGGTAACTTACCAGAAAGGG 

Band 

Class 
Assignment 

Max 

Score 

Query 

Cover 
E Value Accession 

1 
‘No significant similarity found’ 

- - - - 

2 Uncultured Bifidobacterium 313 100% 1e-81 LT 858997.1 

3 Bacteroides fragilis 318 100% 2e-83 LT692011.1 

4 Enterococcus faecalis 257 100% 4e-65 CP022712.1 

5 Escherichia coli 202 100% 2e-48 JX183942.1 

6 Uncultured Escherichia sp. 222 100% 1e-54 GU132156.2 

7 Escherichia coli  198 100% 2e-47 LT906474.1 

8 Escherichia coli 206 100% 1e-49 LT906474.1 

9 Paraclostridium benzoelyticum  207 100% 3e-50 NR 148815.1 

10 Uncultured Clostrium sp. 281 100% 3e-72 LT625904.1 
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Band Class e: 

CGGGAGGCAGCAGTGGGGAATCTTGCACAATGGGGAAAAGCCTGATGCAGCGATGCCGCGTGAG

TGATGAAGGCCTTCGGGTTGTAAAGCTCTTTCAGCGGGGAAGAAAAGAGTAAAGTTAATACCTTTG

CTCATTGACGGTACTTGACTAGGAA 

Band Class f: 

ATATTGCACAATGGGGGAAACCCTGATGCAGCAACGCCGCGTGAGTGATGACGGCCTTCGGGTTG

TAAAGCTCTGTCTTCAGGGACGATAATGACGGTACCTGAGGAGGAAGCCACGGCT 

Band Class g: 

GTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCAACGCCGCGTGAGCGATGAAGGCCTT

CGGGTCGTAAAGCTCTGTCCTCAAGGAAGATAATGACGGTACTTGAGGAG 

Band Class h: 

GGAATACTCGAAAGACAGGCTGTGTGGAAACCCAGCAGAGAGGAGGTGCTGTGTGAAGTCTGTGC

CAGTAGCCGCGGTAATAAAATTATATCGGTGAAGAACTCTGGTCCTGCGGGGTCAGTTGACGGTAG

CCGAGGAATAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATA 

 

Luminal-associated Microbiota Taxonomic Assignment: 

 

 

 

 

 

Band 
Class 

Assignment 
Max 

Score 
Query 
Cover 

E 
Value 

Accession 
Assigned 
Genus ID 

a Bacteroides dorei  259 100% 3e-69 
NR 

041351.1 
Bacteroides 

b Bacteroides vulgatus 178 72% 8e-45 
NR 

074515.1 
Bacteroides 

c 
Streptococcus 

vestibularis 
237 100% 9e-63 

NR 
042777.1 

Streptococci 

d 
Streptococcus 

oligofermentans 
268 100% 4e-72 

NR 
103943.1 

Streptococci 

e Shigella sonnei 189 92% 3e-48 
NR 

104826.1 
Shigella 

f Clostridium 
aurantibutyricum 

222 100% 2e-58 
NR 

044841.2 
Clostridia 

g Clostridium ghonii 213 100% 1e-55 
NR 

119036.1 
Clostridia 

h Spirosoma endophyticum 134 92% 2e-31 
NR 

135723.1 
Spirosoma 
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Mucosal-associated Microbiota Consensus Sequences: 

Band classes are presented in Chapter 3, figure 3.11. 

Band Class a: 

CATAAATTAATATCCTACTGAATGCCCTATGGGATGTAAACTTCTTTTATAAGGGAATAAAGTGGAG

TATGCATACTCCTTTGCATGTACCGTATGAATAAGGATCGGCTAACTCCGTGCCAGCAGCCGCGGTA

ATAA 

Band Class b: Sequence quality not suitable. 

Band Class c: 

TACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGCGAAAGCCTGACGGAGCAACGCCGCGTG

AGTGAAGAAGGATTTCGGTTCGTAAAGCTCTGTTGTTAGGGAAGAATGATTGTGTAGTAACTATAC

ACAGTAGAGACGGTACCTAACCAGAAAGCC 

Band Class d: 

GGAGGCAGCAGTAGGGAATCTTCGGCAATGGACGAAAGTCTGACCGAGCAACGCCGCGTGAGTG

AAGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGAGAAGAACAAGGACGTTAGTAACTGAACGTC

CCCTGACGGTATCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCC 

Band Class e: Sequence quality not suitable. 

Band Class f: Sequence quality not suitable. 

 

 

Mucosal-associated Microbiota Taxonomic Assignment: 

 

 

 

 

 

 

Band 
Class 

Assignment 
Max 

Score 
Query 
Cover 

E 
Value 

Accession 
Assigned 
Genus ID 

a Bacteroides eggerthi 198 86% 5e-51 
NR 

112935.1 
Bacteroides 

c Gemella taiwanensis  296 100% 2e-80 
NR 

133753.1 
Gemella 

d Enterococcus faecalis 333 100% 2e-91 
NR 

113901.1 
Enterococcus 
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Appendix 5 - pCR®2.1-TOPO® Plasmid Standard Curve Calculations 

Step 1 – Mass of single recombinant plasmid calculation 

𝑚 = (𝑛) (
1 𝑚𝑜𝑙𝑒

6.023𝑒23 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 (𝑏𝑝)
) (

660𝑔

𝑚𝑜𝑙𝑒
)  

 

𝑚 = (𝑛) (
1.096𝑒−21𝑔

𝑏𝑝
) 

 

𝑚 = (4057𝑏𝑝) (
1.096𝑒−21𝑔

𝑏𝑝
) 

 

𝑚 = 4.447𝑒−18𝑔 

 

Where: n = Plasmid + insert size (bp), m = mass, Avogadros number = 6.023e23 molecules / 

1 mole, Average MW of a double-stranded DNA molecule = 660 g/mole. 

 

Step 2 – Mass of plasmid copy number of interest calculation 

Typical bacterial abundances within the small intestine are 3x109.   

 

 Copy # of interest x mass of single plasmid = mass of plasmid DNA required 

(3 × 109) × (4.447 × 10−18) =  1.33 × 108 
 

 

Step 3 – Plasmid Standard Curve Dilutions: 

C1V1 = C2V2 

See table for C1, V1, C2, V2 values. 

Initial Concentration of plasmid DNA (C1) was determined using a NanoDrop™ 2000c 

Spectrophotometer (Thermo-Fisher). 

(1.19 × 107)(V1) =  (3 × 109)(100µL) 

V1 = 11.3 µL 
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D
ilu

ti
o

n
 #

 Plasmid 
DNA 

Source 

Initial Conc.  
(g/µL) 

 
 

C1 

Vol of 
plasmid 

DNA (µL) 
 

V1 

Volume 
of PCR 

H2O (µL) 

Final 
Volum
e (µL) 

 

V2 

Final 
conc. in 
(g/µl) 

 

C2 

Resulting 
copy # 

1 Stock 1.19E-07 11.3 88.7 100 1.34E-08 3.00E+09 

2 D1 1.34118E-08 10 90 100 1.34E-09 3.00E+08 

3 D2 1.34118E-09 10 90 100 1.34E-10 3.00E+07 

4 D3 1.34118E-10 10 90 100 1.34E-11 3.00E+06 

5 D4 1.33394E-11 10 90 100 1.33E-12 3.00E+05 

6 D5 1.34118E-12 10 90 100 1.34E-13 3.00E+04 

7 D6 1.34118E-13 10 90 100 1.34E-14 3.00E+03 

8 D7 1.34118E-14 10 90 100 1.34E-15 3.00E+02 

 

Dilutions 1 – 5 were selected for standard curve construction in 16S rDNA qRT-PCR detailed 

in section 2.2.10.7. 
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Appendix 6 - Measurement of Villous Height and Crypt Depth using ImageJ Software. 

Tool: Segmented Line  

Analyze: Measure (Pixels) 
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Appendix 7 - Endoscopy Study Clinical Documentation  

Participant Consent Form - Furness General Hospital 
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Participant Consent Form - Royal Preston Hospital  
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Patient Information Sheet  
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Study Cover Letter - Furness General Hospital 
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Study Cover Letter - Royal Preston Hospital 
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Letter to GP Following UTI-based Exclusion 
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Appendix 8 - Pattern File for Computational Bucket Processing of 1H NMR Spectral Peaks 

10/04/17 
PATTERN       = 1 
DESCRIPTION   = /raid/usr/EBeamish/Urine_NMR/EBeamish_urine3mm_080217_6/291 
AUTHOR        = ebeamish 
DIM           = 2 
ORIGIN        = 1 
ITEMS         = 237  

9.312 9.273 1-Methylnicitinomide 1 
9.152 9.097 Trigoneline 1 
9.069 9.034 Unknown 
9.002 8.959 1-Methylnicitinomide 2 
8.939 8.892 1-Methylnicitinomide 3 
8.886 8.823 Trigoneline 2 
8.818 8.788 Unknown 
8.774 8.727 Unknown 
8.700 8.659 Unknown 
8.654 8.631 Unknown_Nicotinate 
8.602 8.502 IMP_Hippurate 1_ADP 
8.487 8.414 Unknown 
8.410 8.360 Unknown 
8.359 8.310 Inosine_Unknown 
8.308 8.121 Oxypurinol_Adenine_Hypoxanthine 
8.120 8.049 Unknown  
8.045 8.000 Theophylline_Riboflavin 1_Quinolinate 
7.997 7.954 Riboflavin 2_Unknown 
7.953 7.912 N,N-Dimethylformamide_Na-Aceytllysine_Xanthine 
7.910 7.853 4-Pyridoxate_Kynurenate 
7.852 7.785 Hippurate 2_Salicyurate 1 
7.778 7.749 Indole-3-lactate 
7.748 7.739 N-Phenylacetylphenylalanine 
7.738 7.714 Tryptophan 1 
7.713 7.701 Unknown 
7.700 7.682 T-Methylhistidine 
7.667 7.626 Hippurate 3  
7.582 7.537 Hippurate 4_Tryptophan 2 
7.534 7.507 Indole-3-Lactate 
7.507 7.491 Salicyurate 2 
7.474 7.444 Unknown 
7.384 7.346 3,5-Dibromotyrosine_N-Phenylacetylglycine 
7.345 7.334 Tryptophan 2_Acetylsalicylate 
7.333 7.302 Unknown 
7.300 7.266 Tryptophan 3_Unknown 
7.264 7.230 Unknown 
7.192 7.161 Tryptophan 4_Tyrosine 2_Unknown 
7.159 7.121 Unknown 
7.088 7.055 T-Methylhistidine 
7.055 7.030 Epicatechin 1 
7.017 6.985 Unknown 
6.984 6.934 Epicatechin 2 
6.933 6.902 Tyrosine 2 
6.892 6.863 3,4-Dihydroxybenzeneacetate 1 
6.844 6.812 Unknown 
6.798 6.759 3 Hydroxyphenylacetate 
6.719 6.696 3,4-Dihydroxybenzeneacetate 2  
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6.691 6.663 Unknown 
6.662 6.634 2-Furoylglycine_Unknown 
6.625 6.608 Unknown 
6.608 6.595 Trans-Aconitate 
6.591 6.550 Unknown 
6.539 6.524 Fumarate 
6.520 6.486 Unknown_2,3,4,-Trihydroxybenzoate 
6.460 6.448 2,6-Dihydroxybenzoate 
6.434 6.359 Urocanate 
6.313 6.289 Unknown 
6.208 6.192 Unknown 
6.156 6.121 IMP_Unknown 
6.120 6.071 Inosine 
6.062 6.027 Unknown 
6.001 5.878 Unknown 
5.873 5.850 Xanthosine 
5.829 5.805 Uracil  
5.730 5.676 cis-Aconitate 
5.634 5.572 UDP-glucose 
5.570 5.511 Unknown 
5.485 5.468 Unknown   
5.424 5.404 Sucrose_Maltose 
5.402 5.377 Allantoin_Ribose 1 
5.376 5.353 Unknown 
5.352 5.285 Unknown 
5.284 5.249 Galactose_Cellobiose_Lactose 
5.235 5.216 Glucose 
5.209 5.174 Trehalose 
5.169 5.135 Riboflavin 
5.130 5.095 Unknown 
5.058 4.953 Mandelate 
4.950 4.926 Ribose 2 
4.925 4.760 Water 
4.759 4.719 Unknown 
4.713 4.683 Unknown 
4.681 4.651 Glucose_Glucuronate 
4.646 4.634 Unknown 
4.619 4.598 Unknown 
4.594 4.559 Unknown 
4.551 4.518 Ascorbate 
4.512 4.475 1-Methylnicitinomide 4_Unknown 
4.468 4.456 Lactose 1 
4.455 4.444 Trigonelline 
4.443 4.403 1,3-Dihydroxyacetone_Hydroxyacetone 
4.392 4.323 Tartrate_sn-Glycero-3-phosphocholine 1 
4.319 4.257 Glycylproline 1_Galactonate 1 
4.250 4.212 Sucrose 
4.211 4.143 Gluconate 
4.142 4.114 Ribose 1_Lactulose 
4.109 4.083 5-Aminolevulinate_N-Methylhydantoin 
4.075 4.057 Creatinine 1 
4.056 4.025 Ascorbate 
4.024 4.002 Fructose 
4.001 3.968 Galactonate 2_Hippurate 5 
3.967 3.961 Glycylproline 2 
3.958 3.936 1,7-Dimethylxanthine 1 
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3.930 3.894 Syringate_Unknown 
3.894 3.878 Unknown 
3.877 3.857 Homovianillate_Arabinitol 1 
3.856 3.828 Ribose 2_Arabinitol 2 
3.827 3.812 Xylitol 
3.811 3.788 Erythritol 1 
3.787 3.722 Ascorbate 
3.715 3.704 Unknown 
3.701 3.650 Lactose 2_Arabinitol 3_Erythritol 2 
3.649 3.593 Unknown 
3.587 3.575 Glycine 
3.572 3.543 myo-Inositol 
3.542 3.473 Ribose 3_Cellobiose 
3.469 3.457 Acetoacetate 
3.457 3.407 Fucose_Unknown 
3.400 3.384 Unknown 
3.383 3.364 Methanol 
3.361 3.338 Caffine 
3.331 3.313 Cellobiose 
3.305 3.300 1,7-Dimethylxanthine 2 
3.296 3.285 Unknown 
3.285 3.276 Unknown 
3.274 3.267 Betane_Trimethylamine N-oxide 
3.261 3.254 Carnosine 1 
3.252 3.245 sn-Glycero-3-phosphocholine 2  
3.243 3.237 Unknown 
3.237 3.224 Carnitine 
3.212 3.190 O-Acetylcarnitine_choline 
3.189 3.179 Unknown 
3.179 3.141 N-Nitrosodimethyamine_Ethanolamine 
3.139 3.128 Malonate 
1.127 3.105 cis-Aconitate_Unknown 
3.103 3.075 Carnosine 2 
3.067 3.045 Creatinine 2 
3.043 3.038 Creatine Phosphate 
3.035 2.942 Na-Acetyllysine_Unknown 
2.940 2.926 N-Methylhydantoin_Unknown 
2.926 2.904 Unknown 
2.904 2.898 Unknown 
2.896 2.875 Unknown 
2.875 2.862 Unknown 
2.861 2.846 Unknown 
2.845 2.824 Unknown 
2.819 2.809 Methylguanidine 
2.808 2.794 Unknown 
2.792 2.784 Unknown 
2.874 2.752 Unknown 
2.752 2.724 Unknown 
2.723 2.704 Dimethylamine 
2.703 2.680 Unknown 
2.679 2.657 Unknown 
2.657 2.634 Unknown  
2.634 2.622 Unknown 
2.621 2.610 Methylamine 
2.610 2.577 Unknown 
2.568 2.538 Unknown 
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2.537 2.524 Unknown 
2.524 2.512 Unknown 
2.512 2.483 Unknown 
2.483 2.438 Glutamine 
2.435 2.415 Unknown  
2.415 2.401 Unknown   
2.399 2.390 Unknown   
2.390 2.384 Pyruvate 
2.384 2.364 N-Carbamoyl-B-alanine 
2.357 2.343 Unknown 
2.340 2.297 3-Hydroxybutyrate 1 
2.296 2.283 Acetoacetate 
2.282 2.248 Unknown 
2.245 2.238 Acetone 
2.235 2.222 Unknown 
2.221 2.193 Unknown 
2.193 2.183 Adipate 1 
2.182 2.177 Unknown 
2.177 2.164 Unknown 
2.164 2.156 Unknown_Acetaminophen 
2.156 2.151 Unknown 
2.149 2.135 Methylsuccinate 
2.135 2.126 Unknown 
2.114 2.089 Unknown 
2.087 2.060 Unknown 
2.058 2.027 Unknown 
2.026 2.006 Unknown 
2.004 1.983 2-Aminobutyrate 
1.983 1.959 Unknown 
1.954 1.936 Unknown 
1.936 1.927 Acetate 
1.927 1.917 Unknown 
1.917 1.912 Melatonin 
1.912 1.894 Unknown 
1.894 1.872 Unknown 
1.870 1.855 Unknown 
1.855 1.835 Unknown 
1.834 1.817 Unknown 
1.816 1.797 Unknown 
1.797 1.771 Unknown 
1.771 1.747 Unknown 
1.747 1.699 Cadaverine_N-Acetylornithine 
1.697 1.654 Unknown 
1.654 1.628 Arginine 
1.627 1.580 Biotin_2-Hydroxyvalerate 
1.579 1.533 Adipate 2 
1.534 1.509 Unknown 
1.503 1.479 Alanine 
1.475 1.457 Unknown 
1.454 1.434 Unknown 
1.415 1.373 Acetonin 
1.372 1.359 2-Hydroxyisobutyrate 
1.353 1.330 Threonine_Lactate 
1.330 1.322 3-Hydroxy-3-methylglutarate_Unknown 
1.322 1.297 Unknown 
1.297 1.281 Unknown 
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1.281 1.271 3-Hydroxyisovalerate 
1.270 1.248 Unknown 
1.246 1.227 Fucose   
1.223 1.196 3-Hydroxybutyrate 2 
1.196 1.187 3-Aminoisobutyrate 
1.185 1.176 Unknown 
1.176 1.162 Unknown 
1.161 1.131 Unknown 
1.125 1.101 Unknown 
1.100 1.084 Unknown 
1.084 1.063 Methylsuccinate 
1.063 1.057 Unknown 
1.057 0.961 Valine_Butanone_2-Aminobutyrate_Unknown 
0.961 0.928 Unknown 
0.921 0.853 2-Hydroxybutyrate 3_Unknown 
0.850 0.818 Unknown 
0.796 0.734 Unknown 
0.734 0.695 Unknown 
0.681 0.630 Unknown 
0.579 0.527 Unknown 
0.176 0.164 Unknown 
0.102 0.092 Unknown 
0.011 0.000 TSP 
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Appendix 9 - PQN Normalised and Pareto Scaled Relative Concentrations of Annotated Urine Metabolites. 

 Table A 

 
Sample LANC001 LANC011 LANC002 LANC023 LANC036 LANC003 LANC024 LANC004 LANC015 LANC025 LANC005 LANC026 LANC006 LANC017 LANC027 LTHTr002 LANC007 LANC008 LANC019 LTHTr005

Group Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control

X1.3.Dihydroxyacetone -0.014 -0.014 -0.014 -0.014 0.11 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014

X1.3.Dimethylurate -0.112 0.176 0.151 -0.155 0.497 -0.019 0.204 0.073 0.195 -0.091 -0.078 -0.036 -0.076 0.174 -0.058 -0.11 -0.105 -0.118 -0.111 -0.093

X1.6.Anhydro...D.glucose -0.077 -0.077 0.003 -0.077 -0.077 -0.077 0.029 0.776 -0.077 0.045 -0.077 -0.077 -0.077 -0.002 -0.077 -0.077 -0.077 -0.077 0.029 0.047

X1.7.Dimethylxanthine -0.011 0.005 0.118 0.244 0.254 0.079 0.04 -0.04 -0.041 0.226 -0.148 -0.036 -0.175 -0.293 -0.22 -0.163 -0.053 -0.109 -0.178 -0.162

X1.Methylnicotinamide -0.024 0.056 0.572 0.164 -0.25 -0.25 -0.102 -0.105 -0.003 0.175 -0.148 0.082 -0.124 0.382 -0.131 -0.25 -0.141 -0.137 0.018 0.074

X2..Deoxyadenosine -0.043 -0.043 0.283 -0.043 -0.043 -0.043 0.133 -0.043 -0.043 -0.043 -0.043 -0.043 -0.043 -0.043 -0.043 -0.043 -0.043 -0.043 -0.043 -0.043

X2..Deoxyguanosine -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 0.022 -0.027 -0.027 -0.027 0.123 -0.027 -0.027 0.096 -0.027 0.15 -0.027 -0.027 -0.027

X2..Deoxyinosine 0.092 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 0.122 -0.011 -0.011 -0.011 0.083 -0.011 -0.011

X2.Aminoadipate -0.113 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113 0.861 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113

X2.Aminobutyrate 0.147 0.223 -0.149 0.075 -0.212 0.077 0.255 -0.212 -0.086 0.421 -0.086 0.074 -0.147 -0.212 0.84 0.229 0.116 -0.147 -0.11 -0.212

X2.Ethylacrylate 0.161 -0.034 -0.034 -0.034 -0.034 0.266 -0.034 -0.034 -0.034 0.231 0.165 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034

X2.Furoylglycine 0.038 -0.063 -0.063 -0.063 0.176 -0.063 -0.063 -0.063 -0.063 -0.063 0.15 0.134 0.013 0.027 -0.063 -0.063 0.057 0.038 0.033 0.048

X2.Hydroxy.3.methylvalerate -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 0.197 0.176 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035

X2.Hydroxybutyrate -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 0.346 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009

X2.Hydroxyisobutyrate -0.049 -0.1 0.388 0.197 -0.241 -0.058 -0.14 -0.089 0.057 -0.113 -0.114 -0.104 -0.042 0.336 -0.102 -0.183 -0.002 -0.051 0.208 0.061

X2.Hydroxyisocaproate -0.015 0.105 -0.015 0.181 -0.015 -0.015 -0.015 0.197 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015

X2.Hydroxyisovalerate -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011

X2.Hydroxyphenylacetate 0.176 0.104 0.004 0.063 0.023 -0.119 -0.119 -0.119 0.076 -0.025 -0.013 -0.119 0.005 0.028 0.054 0.065 0.053 0.109 0.039 -0.119

X2.Hydroxyvalerate -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 1.2 -0.044 -0.044 -0.044

X2.Methylglutarate -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022

X2.Oxocaproate -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012

X2.Oxoglutarate 0.166 -0.111 -0.111 -0.111 -0.111 0.613 -0.111 -0.111 0.591 -0.111 -0.111 -0.111 -0.111 -0.111 -0.111 -0.111 -0.111 -0.111 -0.111 -0.111

X2.Oxoisocaproate -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004

X2.Phenylpropionate -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 0.1 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006

X3.4.Dihydroxybenzeneacetate 0.084 0.04 -0.085 -0.085 -0.085 -0.085 -0.085 -0.085 -0.085 0.007 0.09 0.072 0.098 -0.085 -0.085 -0.085 0.088 0.126 0.031 -0.085

X3.4.Dihydroxymandelate -0.076 -0.076 0.019 0.096 -0.076 -0.076 0.113 0.041 0.085 0.048 -0.076 -0.076 -0.076 -0.076 -0.076 -0.076 0.077 -0.076 0.079 0.092

X3.5.Dibromotyrosine -0.123 -0.123 -0.123 -0.123 0.134 -0.041 0.586 -0.123 -0.123 -0.123 -0.123 -0.123 0.293 -0.103 -0.093 -0.123 -0.057 0.298 -0.123 -0.123

X3.Aminoisobutyrate -0.331 1.421 0.322 0.168 -0.331 0.055 0.554 -0.24 -0.107 0.845 -0.04 0.058 -0.12 0.097 0.043 0.019 -0.331 -0.122 -0.079 0.045

X3.Chlorotyrosine -0.055 -0.055 -0.055 -0.055 0.404 -0.055 -0.055 0.27 -0.055 -0.055 -0.055 0.113 -0.001 -0.055 -0.055 -0.055 -0.055 0.186 -0.055 -0.055

X3.Hydroxy.3.methylglutarate 0.089 0.087 0.013 -0.054 -0.101 -0.026 0.056 -0.108 -0.058 -0.005 -0.11 -0.04 -0.069 0.011 0.052 -0.04 0.094 0.001 0.004 0.011

X3.Hydroxybutyrate -0.62 -0.053 -0.542 -0.445 -0.62 -0.513 -0.014 -0.62 -0.62 -0.34 -0.595 -0.543 -0.579 -0.584 -0.468 -0.524 14.413 -0.579 -0.379 -0.606

X3.Hydroxyisobutyrate -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 1.2 -0.062 -0.062 -0.062

X3.Hydroxyisovalerate -0.173 0.009 0.325 0.262 -0.206 -0.011 -0.207 -0.05 -0.075 -0.112 -0.163 0.059 -0.069 0.126 -0.079 -0.009 0.239 -0.078 0.105 0.021

X3.Hydroxykynurenine -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 -0.038 0.151 -0.038 -0.038 -0.038 -0.038 -0.038 0.18 -0.038 -0.038 -0.038 -0.038 -0.038

X3.Hydroxymandelate 0.027 -0.105 -0.105 -0.022 0.232 -0.105 -0.105 0.005 -0.105 0.046 -0.105 -0.007 -0.013 0.029 0.038 -0.105 0.02 -0.105 -0.105 -0.105

X3.Hydroxyphenylacetate -0.019 -0.164 -0.164 -0.011 0.157 -0.002 -0.045 0.036 -0.018 -0.018 -0.053 -0.036 -0.029 -0.023 -0.019 0.553 -0.072 -0.035 -0.041 -0.03

X3.Indoxylsulfate -0.205 -0.205 0.02 0.058 -0.205 -0.205 0.137 0.035 0.087 -0.205 0.052 0.122 -0.205 0.129 0.025 -0.205 0.051 -0.205 0.099 -0.205

X3.Methyl.2.oxovalerate -0.014 0.342 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014

X3.Methyladipate -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 0.291

X3.Methylglutarate -0.108 0.229 -0.108 0.12 0.06 -0.108 -0.108 -0.108 -0.108 -0.108 -0.108 0.187 -0.108 -0.108 0.304 0.232 0.338 -0.108 -0.108 -0.108

X3.Methylxanthine 0.156 -0.092 -0.093 0.12 -0.14 -0.087 -0.098 0.031 -0.101 0.016 -0.004 -0.053 -0.14 -0.042 -0.047 0.136 -0.048 -0.099 0.071 -0.14
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Sample LANC001 LANC011 LANC002 LANC023 LANC036 LANC003 LANC024 LANC004 LANC015 LANC025 LANC005 LANC026 LANC006 LANC017 LANC027 LTHTr002 LANC007 LANC008 LANC019 LTHTr005

Group Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control

X3.Methylxanthine 0.156 -0.092 -0.093 0.12 -0.14 -0.087 -0.098 0.031 -0.101 0.016 -0.004 -0.053 -0.14 -0.042 -0.047 0.136 -0.048 -0.099 0.071 -0.14

X3.Phenylpropionate -0.034 -0.034 -0.034 -0.034 0.534 -0.034 -0.034 -0.034 -0.034 -0.034 0.323 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034

X4.Aminohippurate -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 0.23 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011

X4.Guanidinobutanoate -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 0.708 -0.018 -0.018 -0.018 -0.018

X4.Hydroxy.3.methoxymandelate 0.152 -0.198 -0.036 -0.058 -0.049 0.217 -0.001 -0.028 0.049 0.041 -0.02 -0.042 -0.039 -0.091 0.06 0.019 -0.135 0.04 -0.067 0.011

X4.Hydroxybenzoate -0.069 -0.069 -0.069 -0.069 -0.069 0.276 -0.069 0.304 0.247 -0.069 -0.069 -0.069 -0.069 0.212 -0.069 -0.069 -0.069 -0.069 -0.069 -0.069

X4.Hydroxyphenylacetate 0.017 -0.217 -0.104 -0.217 -0.027 -0.217 0.03 0.058 0.013 -0.015 -0.021 0.054 -0.217 -0.023 0.206 0.449 -0.034 -0.217 0.021 -0.06

X4.Pyridoxate -0.002 0.03 0.057 0.225 -0.125 -0.058 0.402 -0.112 0.206 0.092 0.007 -0.089 0.112 -0.045 -0.059 -0.046 -0.067 0.107 0.157 -0.053

X5.6.Dihydrothymine 0.162 0.194 -0.078 -0.078 -0.078 -0.078 -0.078 -0.078 -0.078 -0.078 -0.078 -0.078 -0.078 -0.078 -0.078 0.12 -0.078 -0.078 -0.078 -0.078

X5.6.Dihydrouracil -0.021 0.828 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021

X5.Aminolevulinate -0.052 0.53 -0.177 -0.288 0.311 -0.117 -0.01 0.4 0.025 0.31 0.088 0.033 0.065 -0.062 0.158 -0.103 -0.231 0.05 -0.135 0.095

X5.Hydroxyindole.3.acetate 0.084 -0.158 -0.04 -0.029 0.041 0.017 -0.158 0.041 0.012 -0.101 -0.082 -0.055 -0.04 -0.074 0.06 0.189 -0.158 0.019 -0.036 -0.158

X5.Hydroxylysine -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031

X5.Hydroxytryptophan 0.098 -0.175 -0.034 0.065 0.156 -0.175 0.084 -0.175 -0.175 0.035 0.006 0.089 0.029 -0.01 -0.068 -0.175 0.052 0.034 -0.108 0.017

X5.Methoxysalicylate -0.06 -0.06 -0.06 -0.06 0.259 0.107 -0.06 0.181 -0.06 0.135 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

Acetaminophen -0.085 -0.085 -0.085 -0.085 -0.085 -0.048 0.559 -0.032 -0.085 -0.085 -0.085 0.054 -0.085 -0.085 -0.085 1.123 -0.085 -0.085 -0.085 -0.085

Acetate -0.052 0.204 -0.12 -0.107 -0.318 0.169 -0.048 -0.11 -0.07 -0.123 -0.196 -0.037 -0.091 -0.076 -0.067 1.175 -0.088 -0.089 -0.113 -0.091

Acetoacetate -0.487 1.302 -0.422 -0.434 -0.484 -0.36 0.164 -0.525 -0.474 0.326 -0.424 -0.059 -0.398 -0.438 -0.126 -0.167 7.821 -0.491 0.286 -0.505

Acetoin 0.149 0.906 -0.093 -0.093 0.069 -0.093 -0.093 -0.093 0.032 -0.093 -0.093 -0.093 0.063 -0.093 -0.093 -0.093 -0.093 0.076 -0.093 0.047

Acetone -0.206 -0.117 -0.015 0.039 -0.17 0.359 0.247 -0.221 -0.19 0.013 0.159 -0.037 -0.167 -0.192 -0.1 -0.157 1.882 -0.188 0.132 -0.207

Acetylsalicylate -0.038 0.124 -0.125 -0.051 0.224 -0.125 0.056 0.007 0.039 -0.033 0.041 0.046 -0.125 -0.019 0.009 0.026 -0.125 -0.125 -0.049 0.093

Adenine -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 0.664 -0.021 -0.021

Adenosine -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 0.078 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012

Adipate -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023

ADP -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 0.205 -0.013 -0.013 -0.013 -0.013 0.094 -0.013 -0.013

Alanine -0.36 -0.36 -0.184 -0.079 -0.121 0.074 0.075 0.471 0.287 -0.125 -0.165 -0.117 0.121 -0.107 -0.122 -0.08 -0.142 0.116 0.051 0.288

Allantoin 0.048 -0.167 0.032 -0.167 0.042 -0.167 -0.017 0.007 0.028 -0.167 -0.167 -0.167 0.047 0.023 0.163 -0.167 0.094 0.039 0.063 0.085

Alloisoleucine 0.099 -0.076 0.215 -0.076 -0.076 -0.076 -0.076 -0.076 0.252 -0.076 -0.008 0.066 0.006 -0.076 -0.076 -0.076 0.095 -0.076 0.36 -0.076

Anserine 0.05 0.102 -0.024 0.042 -0.125 0.146 -0.07 -0.032 -0.093 -0.06 0.143 0.008 -0.144 -0.127 0.106 -0.027 -0.013 0.054 -0.096 0.097

Anthranilate -0.03 -0.03 -0.03 -0.03 0.515 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

Arabinitol 0.953 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121 0.462 -0.121 -0.121 -0.121 0.526 -0.121 -0.121 -0.121 -0.121 -0.121

Arabinose -0.328 -0.328 -0.328 -0.328 -0.328 -0.328 -0.137 -0.328 -0.328 -0.328 0.952 -0.328 0.488 -0.148 0.687 -0.266 0.636 -0.328 0.574 -0.328

Arginine -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 1.128 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073

Ascorbate 0.839 -1.445 0.874 -0.039 -1.5 0.852 -0.994 -1.214 0.579 0.74 -0.374 -0.742 -1.078 0.458 -0.925 -1.376 -0.227 -1.09 -0.329 2.559

ATP 0.143 -0.012 -0.012 0.147 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 0.09 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012

Azelate -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023

Betaine 0.05 -0.073 -0.068 -0.078 -0.142 0.082 -0.127 -0.035 0.084 -0.04 -0.108 -0.12 -0.154 0.156 0.021 0.504 -0.027 -0.154 0.002 0.125

Biotin -0.261 -0.261 0.07 0.047 0.269 -0.261 0.283 -0.261 0.06 -0.261 -0.261 0.399 0.007 0.073 0.127 0.26 0.005 -0.009 0.176 0.159

Butanone -0.097 -0.097 -0.097 -0.097 0.129 0.217 0.482 -0.097 0.045 0.105 -0.097 -0.097 0.171 0.098 -0.097 -0.097 0.048 0.183 -0.097 -0.097

Cadaverine -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022

Caffeine -0.167 0.074 0.191 -0.025 0.221 0.355 -0.094 -0.043 -0.102 0.067 -0.019 -0.007 -0.087 0.098 -0.063 -0.047 -0.084 -0.167 0.037 -0.064

Caprate -0.045 -0.045 -0.045 -0.045 -0.045 -0.045 -0.045 -0.045 0.441 -0.045 -0.045 -0.045 -0.045 -0.045 -0.045 -0.045 -0.045 -0.045 -0.045 -0.045

Carnitine -0.069 -0.17 -0.029 -0.051 0.006 0.246 -0.038 0.259 -0.125 0.085 -0.012 -0.141 -0.042 -0.17 -0.071 -0.071 -0.006 -0.038 0.006 -0.064
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Sample LANC001 LANC011 LANC002 LANC023 LANC036 LANC003 LANC024 LANC004 LANC015 LANC025 LANC005 LANC026 LANC006 LANC017 LANC027 LTHTr002 LANC007 LANC008 LANC019 LTHTr005

Group Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control

Carnosine 0.231 0.378 -0.24 -0.124 -0.24 -0.001 0.02 0.477 -0.178 -0.24 -0.08 -0.13 0.581 -0.159 -0.13 -0.15 -0.137 -0.194 -0.064 0.717

Cellobiose 0.456 -0.445 -0.399 0.496 -0.316 -0.445 0.561 -0.445 0.354 0.317 -0.023 0.162 -0.445 -0.445 -0.445 -0.326 0.496 0.078 0.28 0.277

Chlorogenate -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.262 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

Cholate -0.024 -0.024 -0.024 0.03 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 0.003 -0.024 -0.024 -0.024 -0.024 0.127 -0.024 0.028

Choline -0.173 0.206 -0.066 -0.029 0.217 -0.101 0.097 -0.083 0.006 -0.066 -0.086 0.032 -0.173 -0.062 -0.018 -0.064 0.023 -0.173 0.104 -0.173

cis.Aconitate 0.013 0.423 0.015 0.016 -0.573 0.003 0.225 0.081 0.116 -0.46 -0.126 0.029 0.306 -0.132 -0.368 -0.236 0.622 0.289 0.117 -0.469

Citraconate -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 0.246 -0.037 0.074 0.308 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037

Citrate -0.092 -0.092 -0.092 0.125 -0.011 -0.092 -0.092 -0.092 0.34 0.092 -0.092 0.126 0.094 0.178 -0.092 0.136 0.132 -0.092 -0.092 -0.092

Citrulline 0.571 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 0.548 -0.047

Creatine -0.013 -0.245 1.374 -0.222 -0.111 -0.14 -0.225 -0.05 1.8 -0.161 -0.039 -0.196 -0.07 0.665 -0.078 0.601 -0.263 -0.105 0.078 -0.21

Creatine.phosphate 0.078 0.997 0.055 0.037 -0.22 -0.116 -0.124 -0.174 -0.017 -0.132 -0.181 -0.171 -0.081 -0.181 0.085 -0.112 0.751 -0.069 -0.217 -0.174

Creatinine 2.258 -0.473 1.516 -3.446 -0.874 -0.168 -1.276 0.622 0.741 0.598 -0.2 -3.499 -0.176 -3.285 0.269 -0.933 1.736 -0.2 2.171 -2.91

Cytidine 0.1 -0.035 0.096 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 0.167 -0.035 -0.035 -0.035 0.152 -0.035 -0.035 0.227 -0.035 -0.035 0.138

dCTP -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006

Desaminotyrosine -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024

Dimethylamine 0.692 -0.023 0.008 0.267 0.017 -0.214 -0.299 -0.24 0.116 0.016 -0.12 -0.22 -0.112 0.183 0.069 -0.599 0.055 -0.124 0.124 0.369

Dimethyl.sulfone -0.032 0.056 -0.104 0.036 -0.115 -0.07 0.024 -0.145 0.004 -0.089 -0.105 -0.115 0.029 0.004 -0.092 0.621 -0.038 0.038 0.031 0.065

dTTP 0.102 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 0.096 -0.027 -0.027 -0.027 -0.027 0.077 0.205 0.163

Epicatechin 0.102 -0.046 -0.046 -0.046 0.141 -0.046 -0.046 -0.046 -0.046 0.109 -0.046 -0.046 0.059 -0.046 -0.046 -0.046 0.071 -0.046 0.075 -0.046

Erythritol 0.773 0.117 -0.144 0.004 -0.808 0.129 -0.808 0.122 -0.808 0.061 -0.234 -0.034 0.111 -0.429 0.153 -0.182 -0.045 0.182 0.338 -0.808

Ethanol -0.156 -0.156 -0.156 -0.156 0.012 0.038 -0.156 -0.156 -0.156 -0.156 -0.156 -0.008 -0.156 -0.156 -0.156 -0.156 -0.156 -0.156 -0.156 -0.156

Ethanolamine -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 0.978 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057

Ethylene.glycol -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 0.244 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 0.091 -0.042 -0.042 -0.042

Ethylmalonate -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 0.528 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031

Ferulate -0.067 -0.067 -0.02 -0.067 0.055 0.085 -0.067 -0.067 -0.009 0.003 -0.067 0.1 0.068 -0.009 -0.067 -0.067 -0.018 0.042 0.12 0.239

Formate -0.283 0.6 -0.284 -0.203 -0.17 0.87 0.254 -0.025 -0.145 -0.083 0.056 0.011 -0.287 -0.208 -0.023 0.022 -0.299 -0.232 -0.168 -0.081

Fructose 0.183 -0.25 -0.179 -0.069 0.439 -0.511 -0.511 1.016 0.345 0.287 0.094 -0.511 -0.511 0.254 -0.511 0.826 0.504 -0.243 -0.511 0.133

Fucose -0.277 -0.016 0.26 0.296 -0.401 0.03 -0.023 -0.273 -0.31 -0.015 -0.117 -0.195 0 -0.01 -0.127 -0.12 1.042 -0.005 0.637 0.118

Fumarate -0.013 0.152 -0.033 -0.013 -0.091 0.06 -0.071 -0.034 0.045 -0.001 -0.091 -0.03 0.024 -0.024 0.018 -0.091 -0.006 0.026 -0.009 -0.091

Galactarate 0.055 -0.326 -0.032 0.192 -0.083 -0.212 0.181 -0.157 -0.013 -0.033 -0.326 -0.078 0.263 -0.03 0.019 0.054 -0.146 0.253 -0.004 0.386

Galactitol -0.225 0.032 -0.225 -0.225 0.176 -0.105 0.508 0.521 -0.225 -0.083 1.132 -0.123 -0.225 -0.225 -0.225 0.109 0.035 -0.225 -0.225 -0.056

Galactonate 0.412 -0.373 -0.086 -0.144 -0.129 0.129 0.399 -0.373 0.208 -0.055 -0.148 -0.064 0.098 0.313 -0.083 0.791 0.21 0.084 -0.013 -0.373

Galactose -0.177 0.39 -0.177 -0.177 0.744 -0.177 1.014 -0.177 -0.177 0.74 0.561 -0.177 -0.177 0.869 -0.177 0.185 -0.177 0.274 -0.177 -0.177

Gallate -0.024 0.08 -0.008 -0.045 0.022 -0.045 0.408 0.003 0.007 -0.045 -0.045 -0.007 -0.045 -0.045 -0.045 0.38 -0.045 -0.045 -0.045 -0.045

Gentisate -0.062 -0.062 0.086 -0.062 -0.062 -0.062 0.195 0.119 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 0.114 -0.062 -0.062 -0.062 -0.062 0.057

Glucarate 0.166 -0.137 -0.137 -0.137 -0.137 -0.137 -0.137 -0.137 -0.137 -0.137 -0.137 0.081 -0.137 -0.137 0.936 0.199 -0.137 0.345 -0.137 -0.137

Glucitol -0.259 -0.259 -0.259 -0.259 -0.259 -0.259 -0.259 -0.259 -0.259 -0.259 0.523 0.622 0.767 -0.259 -0.259 -0.259 -0.259 0.767 -0.259 -0.259

Gluconate 0.317 0.321 -0.743 0.497 0.005 0.216 -0.383 -0.515 0.49 0.392 -0.078 -0.622 0.261 0.395 -0.743 -0.743 -0.743 0.241 -0.743 0.433

Glucose 1.333 -0.121 -0.121 -0.121 0.302 -0.121 -0.121 -0.121 -0.121 0.215 0.486 -0.121 -0.121 -0.121 0.538 -0.121 -0.121 -0.121 -0.121 -0.121

Glucose.6.phosphate -0.239 -0.239 -0.163 -0.239 0.107 0.027 -0.239 -0.239 -0.239 0.493 -0.239 -0.239 -0.239 -0.239 -0.239 -0.239 -0.239 -0.239 0.37 -0.239

Glucuronate 0.299 0.109 -0.383 -0.383 0.193 0.36 0.349 -0.383 0.183 0.088 -0.383 -0.383 0.351 -0.383 0.812 -0.383 -0.383 0.021 0.114 -0.383

Glutamine 1.003 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 1.131 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084

Glutaric.acid.monomethyl.ester -0.023 -0.023 -0.023 -0.023 0.17 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 0.208 -0.023 -0.023 -0.023 -0.023
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Sample LANC001 LANC011 LANC002 LANC023 LANC036 LANC003 LANC024 LANC004 LANC015 LANC025 LANC005 LANC026 LANC006 LANC017 LANC027 LTHTr002 LANC007 LANC008 LANC019 LTHTr005

Group Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control

Glutathione -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031

Glycerate -0.036 -0.036 -0.036 -0.036 -0.036 -0.036 -0.036 -0.036 -0.036 -0.036 -0.036 -0.036 -0.036 -0.036 -0.036 -0.036 -0.036 -0.036 -0.036 -0.036

Glycine -0.443 0.503 -0.541 0.55 -0.739 1.071 0.364 -0.134 1.074 -0.493 -0.521 0.169 -0.123 0.298 -0.451 0.774 -0.719 -0.126 -0.775 0.274

Glycocholate -0.042 -0.042 -0.042 0.09 -0.042 -0.042 0.05 -0.042 0.123 0.06 -0.042 -0.042 0.099 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 0.082

Glycolate -0.572 -0.225 -0.091 -0.488 -0.572 0.168 -0.535 0.229 0.361 -0.466 -0.506 0.252 0.205 0.47 -0.531 0.143 -0.102 0.222 0.369 0.272

Glycylproline -0.09 -0.351 0.643 -0.363 -0.267 -0.18 -0.369 0.734 -0.149 -0.357 -0.151 -0.264 -0.355 -0.233 -0.168 -0.133 -0.484 -0.254 -0.14 0.613

GTP -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 0.237 -0.012 -0.012 -0.012 -0.012 -0.012

Guanidinosuccinate 0.364 -0.127 -0.127 -0.127 0.57 -0.127 -0.127 -0.127 -0.127 -0.127 0.332 0.201 -0.127 0.335 -0.127 -0.127 -0.127 -0.127 -0.127 -0.127

Guanidoacetate -0.296 -0.139 0.315 0.203 -0.223 -0.196 -0.296 0.407 0.458 -0.182 0.008 -0.22 -0.296 0.355 -0.296 0.661 -0.296 -0.296 -0.214 0.133

Guanosine 0.099 -0.013 0.045 0.261 -0.07 -0.176 -0.093 0.05 0.117 0.125 0.066 0.071 -0.045 -0.058 -0.176 -0.176 0.03 -0.142 0.108 0.098

Hippurate -0.372 0.926 -0.255 -0.256 1.42 0.09 -0.034 0.472 -0.104 -0.256 -0.575 -0.272 -0.08 -0.197 -0.242 0.532 -0.288 -0.071 -0.193 0.11

Histamine 0.621 -0.019 -0.08 -0.063 -0.106 0.072 -0.005 -0.087 -0.057 -0.07 0.152 -0.071 -0.085 -0.087 -0.056 0.426 -0.062 -0.091 -0.072 -0.151

Histidine 0.223 -0.099 -0.099 -0.099 -0.099 -0.099 -0.048 -0.056 -0.099 -0.099 -0.099 -0.099 -0.053 0.493 -0.004 -0.099 0.046 -0.058 -0.022 -0.04

Homocitrulline -0.151 -0.151 0.623 -0.151 -0.151 -0.151 -0.151 0.563 0.477 -0.151 0.252 -0.151 0.426 0.183 -0.151 -0.151 -0.151 -0.151 -0.151 -0.151

Homogentisate -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 0.061 -0.02 0.112 0.147 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

Homovanillate -0.132 -0.014 -0.05 -0.008 0.134 -0.195 -0.019 -0.071 0.005 -0.128 -0.052 -0.085 -0.046 0.027 -0.027 0.22 -0.03 -0.024 -0.106 0.084

Hydroxyacetone 0.214 -0.182 -0.182 0.125 0.109 0.234 -0.182 -0.043 0.146 0.187 0.124 0.099 0.126 -0.182 0.109 0.086 -0.182 0.13 0.086 -0.182

Hypoxanthine -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 0.309 -0.013 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 0.369 -0.05 -0.05

Ibuprofen -0.093 0.385 0.023 -0.036 -0.019 -0.093 0.01 0.018 0.155 -0.093 0.202 -0.015 0.198 -0.028 -0.093 -0.01 -0.093 0.19 -0.093 -0.093

Imidazole 0.087 0.426 0.119 0.201 0.02 0.079 0.178 -0.096 -0.093 -0.167 -0.012 -0.091 0.018 0.037 -0.158 -0.049 0.273 0.011 -0.006 0.268

IMP 0.096 -0.102 0.096 0.095 -0.102 0.106 -0.058 -0.043 -0.102 -0.027 -0.102 0.049 -0.007 0.093 0.099 -0.102 0.141 0.095 -0.102 0.137

Indole.3.acetate -0.12 -0.12 -0.05 0.02 0.033 -0.12 -0.12 0.008 -0.023 0.028 0.103 -0.029 0.088 -0.015 -0.12 -0.12 -0.042 0.068 -0.034 0.024

Indole.3.lactate 0.042 0.053 -0.035 -0.061 -0.069 0.201 -0.193 0.127 -0.063 0 0.04 -0.065 -0.193 -0.042 0.227 -0.193 -0.06 0.052 -0.042 0.088

Inosine 0.093 -0.031 0.033 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 0.105 0.221 -0.031 -0.031 0.049 0.072 0.147 0.035

Isocitrate -0.555 -0.555 0.232 0.447 -0.555 0.279 -0.555 -0.555 -0.555 0.42 -0.555 0.288 0.325 0.278 0.605 0.517 -0.555 0.355 -0.555 0.294

Isoeugenol 0.023 -0.071 0.093 0.035 -0.071 -0.071 0.028 0.082 0.077 -0.071 0.08 0.096 -0.071 -0.071 -0.071 -0.071 0.03 0.123 -0.071 0.069

Isoleucine -0.042 -0.042 -0.042 -0.042 -0.042 0.211 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 0.44 -0.042 0.066 -0.042

Isopropanol -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 0.133 -0.009 -0.009 -0.009 -0.009 -0.009

Kynurenate 0.029 0.072 -0.003 0.042 0.146 -0.063 0.081 -0.063 -0.063 -0.063 -0.063 -0.063 0.085 -0.063 -0.063 0.036 -0.021 0.002 0.048 0.016

Kynurenine -0.079 -0.079 -0.079 0.184 0.136 -0.079 0.13 -0.079 -0.079 0.259 -0.079 -0.079 -0.079 -0.079 -0.079 0.393 -0.079 0.151 -0.079 -0.079

Lactate -0.064 -0.262 0.128 -0.1 -0.166 -0.002 0.231 0.129 0.069 -0.262 -0.143 -0.102 -0.014 -0.071 -0.022 0.14 0.415 -0.012 0.018 0.086

Lactose -0.183 0.092 -0.04 0.695 -0.524 -0.524 -0.524 -0.029 0.188 0.266 0.4 0.135 -0.294 0.892 0.695 -0.164 -0.524 0.077 -0.013 -0.267

Lactulose 0.458 0.208 0.126 0.029 0.156 -0.067 -0.273 -0.235 -0.447 0.638 0.526 -0.286 0.062 -0.811 0.531 -0.35 -0.103 0.043 0.062 0.06

Leucine -0.041 0.212 0.216 -0.041 0.131 -0.041 -0.041 -0.041 0.257 -0.041 -0.041 -0.041 -0.041 -0.041 -0.041 -0.041 -0.041 -0.041 -0.041 -0.041

Levulinate -0.102 -0.102 0.17 0.234 -0.102 -0.102 -0.102 -0.102 -0.102 -0.102 0.226 0.144 -0.102 0.11 -0.102 0.368 0.002 0.082 0.232 -0.102

Maleate 0.02 -0.029 -0.029 0.029 -0.029 -0.029 0.152 -0.029 -0.029 -0.029 -0.029 -0.029 -0.001 0.013 -0.029 -0.029 0.151 -0.029 -0.029 -0.029

Malonate 0.113 -0.024 -0.107 0.236 -0.134 -0.186 0.098 -0.075 -0.158 -0.036 -0.031 -0.162 0.111 -0.14 -0.204 -0.143 -0.166 0.115 1.996 -0.198

Maltose -0.082 -0.082 -0.082 0.125 0.096 -0.082 -0.082 0.447 0.297 0.07 -0.082 -0.082 0.178 -0.082 -0.082 -0.082 -0.082 -0.014 0.249 -0.082

Mandelate -0.055 -0.192 -0.067 -0.061 -0.015 0.004 0.182 -0.164 -0.023 -0.192 -0.192 -0.049 -0.047 -0.04 -0.007 0.177 -0.053 -0.04 -0.056 -0.033

Mannitol -0.186 0.464 0.302 -0.186 1.269 0.336 0.464 -0.186 -0.186 -0.186 -0.186 0.312 -0.186 -0.186 -0.186 -0.186 -0.186 -0.186 -0.186 -0.186

Mannose -0.047 -0.047 0.146 0.22 -0.047 -0.047 0.459 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 0.23 -0.047 -0.047 -0.047 -0.047

Melatonin -0.083 -0.156 -0.086 0 0.141 0.018 -0.156 -0.068 -0.084 -0.107 0.053 -0.015 -0.016 -0.104 -0.051 0.682 -0.074 -0.02 -0.059 -0.065

Methanol 0.062 -0.109 -0.213 -0.006 -0.065 -0.029 -0.213 0.419 -0.154 -0.159 -0.144 -0.148 -0.213 0.512 -0.213 -0.079 0.056 -0.213 0.916 0.226
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Sample LANC001 LANC011 LANC002 LANC023 LANC036 LANC003 LANC024 LANC004 LANC015 LANC025 LANC005 LANC026 LANC006 LANC017 LANC027 LTHTr002 LANC007 LANC008 LANC019 LTHTr005

Group Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control

Methionine 0.191 0.008 -0.061 0.087 -0.191 -0.094 0.254 -0.191 -0.191 0.252 0.243 -0.191 0.282 -0.136 -0.191 0.331 -0.191 0.311 -0.191 0.431

Methylamine 0.061 -0.158 -0.128 0.011 -0.158 -0.105 0.27 0.005 -0.071 0.418 0.08 0.077 0.014 0.036 -0.158 -0.158 -0.027 -0.089 0.078 -0.037

Methylguanidine -0.049 0.241 -0.172 -0.1 0.056 0.332 -0.123 0.198 -0.172 0.059 -0.172 -0.074 -0.081 -0.082 0.076 0.292 -0.172 -0.084 -0.11 0.022

Methylsuccinate 0.006 0.12 -0.027 0.358 -0.309 -0.049 0.009 0.127 0.033 0.108 -0.159 -0.051 -0.126 0.11 -0.11 0.218 -0.137 -0.131 0.333 0.275

myo.Inositol 0.907 -0.15 -0.15 -0.15 0.387 -0.15 0.186 -0.15 -0.15 0.242 -0.15 -0.15 0.512 -0.15 -0.15 -0.15 -0.15 -0.15 1.854 -0.15

N.N.Dimethylformamide -0.031 0.086 0.074 0.023 -0.295 -0.147 -0.165 -0.068 0.047 0.076 -0.112 -0.035 0.015 0.29 -0.092 -0.106 -0.033 0.035 0.217 0.071

N.N.Dimethylglycine -0.077 -0.064 -0.077 -0.056 -0.095 -0.095 -0.007 -0.02 0.059 0.051 -0.074 0.113 -0.061 0.02 0.143 0.001 -0.081 0.108 -0.022 0.065

N6.Acetyllysine 0.324 -0.114 -0.114 -0.114 0.313 0.186 -0.114 -0.114 -0.114 0.033 -0.114 -0.114 -0.114 0.03 0.34 -0.114 0.007 -0.114 -0.008 0.237

N.Acetylaspartate 0.142 -0.14 0.287 -0.14 0.215 -0.14 -0.14 -0.14 0.171 0.349 -0.14 -0.14 -0.14 0.262 -0.14 -0.14 -0.017 -0.14 0.054 0.153

N.Acetylcysteine -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 0.798 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

N.Acetylglucosamine 0.791 -0.087 -0.087 -0.087 -0.087 -0.087 -0.087 -0.087 0.248 -0.087 -0.087 -0.087 -0.087 0.006 -0.087 -0.087 0.241 -0.087 -0.087 -0.087

N.Acetylglutamate -0.199 0.14 -0.199 0.082 0.33 0.017 -0.033 0.025 0.067 0.048 -0.006 0.112 -0.199 -0.006 -0.199 -0.076 0.011 -0.199 -0.001 0.231

N.Acetylglutamine -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 0.64 -0.033 -0.033 -0.033 -0.033 -0.033

N.Acetylglycine -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016

N.Acetylornithine -0.074 -0.074 -0.074 -0.074 -0.074 0.096 -0.074 -0.074 -0.074 -0.074 -0.074 -0.074 -0.074 -0.074 -0.074 -0.074 -0.074 -0.074 -0.074 -0.074

N.Acetylserotonin -0.013 0.217 -0.051 -0.128 -0.018 0.119 0.085 -0.049 0.025 0 0.003 -0.001 0.042 0.068 0.031 0.119 -0.128 -0.128 -0.128 -0.128

N.Acetyltyrosine 0.048 -0.096 -0.011 -0.096 0.135 -0.096 0.033 0.011 0.027 -0.096 -0.096 0.019 0.027 -0.096 0.065 -0.096 0 0.034 -0.096 0.015

NADH -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 0.078 -0.015 -0.015 -0.015 -0.015 -0.015 0.142 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015

NADPH -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.162 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

N.Carbamoylaspartate -0.232 -0.232 -0.232 0.648 -0.232 -0.232 -0.232 -0.232 -0.232 0.548 0.624 -0.232 -0.232 -0.232 -0.232 -0.232 -0.232 0.164 -0.232 -0.232

N.Carbamoyl...alanine 1.009 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026

Nicotinurate -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 0.198 -0.005 -0.005

N.Methylhydantoin 0.088 0.074 -0.157 0.072 -0.157 0.008 -0.074 0.112 -0.061 -0.045 -0.174 -0.029 -0.053 -0.017 -0.089 0.496 -0.103 -0.032 0.265 0.081

N.Nitrosodimethylamine -0.076 0.285 0.237 -0.08 -0.317 0.093 0.128 -0.092 -0.082 -0.233 -0.077 0.117 -0.054 -0.112 0.053 -0.185 -0.058 -0.053 0.331 0.598

N.Phenylacetylglycine -0.046 0.107 0.027 -0.033 0.224 0.024 0.288 -0.142 -0.265 -0.155 -0.183 -0.21 -0.164 -0.029 -0.184 0.526 -0.076 -0.168 -0.18 -0.19

N.Phenylacetylphenylalanine -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011

N..Acetyllysine 0.364 0.372 -0.168 -0.168 -0.168 0.211 -0.168 -0.168 0.169 -0.005 -0.168 -0.009 0.308 0.014 -0.039 -0.168 -0.168 0.324 -0.168 -0.113

O.Acetylcarnitine -0.213 -0.088 0.598 0.79 -0.315 -0.009 0.663 -0.255 0.191 0.373 0.094 0.333 -0.253 -0.001 -0.152 -0.288 0.168 -0.253 -0.3 -0.152

O.Acetylcholine -0.133 -0.133 -0.092 -0.083 0.01 0.218 -0.088 -0.046 0.123 0.211 -0.006 0.06 -0.133 0.047 0.112 0.034 0.055 -0.133 0.057 -0.011

o.Cresol -0.105 -0.105 0.21 -0.105 0.29 -0.105 0.167 -0.105 -0.105 0.181 -0.105 -0.105 -0.105 -0.105 -0.105 0.196 0.123 -0.105 -0.105 0.127

O.Phosphocholine -0.106 0.024 0.071 0.04 -0.027 0 -0.008 -0.035 -0.058 -0.081 0.09 -0.03 -0.027 0.255 -0.066 -0.052 -0.106 -0.027 0.14 0.941

Ornithine -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 1.274

Oxypurinol 0.081 -0.303 0.147 -0.494 -1.091 0.002 -0.985 3.381 -0.25 0.779 -0.502 0.009 0.006 0.578 -0.711 -0.905 -0.748 -0.016 2.806 1.397

Pantothenate -0.043 -0.07 -0.032 -0.033 0.138 0.102 -0.037 -0.06 0.001 0.102 -0.069 -0.041 0.05 0.002 -0.123 -0.172 0.111 -0.172 0.129 -0.035

p.Cresol 0.048 -0.118 -0.006 0.01 -0.118 0.038 0.033 0.066 0.011 -0.118 -0.118 0.018 0.027 0.04 0.007 -0.118 0.007 -0.118 -0.118 -0.003

Phenylacetate -0.005 0.02 -0.02 -0.039 0.005 0.105 0.134 0.144 0.043 -0.062 -0.012 -0.103 0.163 -0.002 -0.13 -0.068 0.014 0.156 0.014 0.011

Propylene.glycol -0.093 0.619 -0.014 -0.093 -0.093 -0.012 0.213 -0.093 -0.093 -0.02 0.08 0.044 -0.093 -0.093 -0.022 0.1 0.194 -0.093 -0.011 -0.093

Protocatechuate -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.119 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.277

Pyridoxine -0.043 0.052 -0.021 0.018 0.086 0.076 0.007 0.031 0.024 -0.012 -0.007 -0.026 -0.01 -0.011 0.005 0.004 -0.068 -0.003 -0.014 0.024

Pyrimidine 0.073 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 0.084 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 0.535 -0.034 -0.034 -0.034 -0.034

Pyroglutamate -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028

Pyruvate 0.116 -0.104 -0.104 -0.104 -0.104 0.241 0.169 0.018 0.131 0.627 0.041 -0.104 -0.104 -0.104 0.068 -0.104 0.049 -0.104 0.086 0.147

Quinolinate 0.102 -0.14 -0.14 0.08 -0.14 -0.14 -0.14 -0.14 -0.14 0.131 -0.14 -0.14 -0.14 0.2 -0.14 -0.14 0.135 -0.14 0.079 0.099
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Sample LANC001 LANC011 LANC002 LANC023 LANC036 LANC003 LANC024 LANC004 LANC015 LANC025 LANC005 LANC026 LANC006 LANC017 LANC027 LTHTr002 LANC007 LANC008 LANC019 LTHTr005

Group Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control

Riboflavin -0.018 0.239 0.063 -0.04 -0.129 0.16 -0.077 0.058 0.034 0.138 -0.064 -0.033 -0.073 -0.058 -0.129 0.01 0.221 0.057 -0.054 -0.02

Ribose 0.543 -0.793 0.009 0.432 0.661 0.652 -0.793 -0.793 0.458 0.335 0.707 -0.173 0.159 -0.793 -0.088 0.168 -0.793 0.642 0.416 -0.793

Saccharopine -0.12 -0.12 0.623 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 0.738 -0.12 -0.12 -0.12 -0.12 -0.12 0.582 -0.12 -0.12 -0.12 -0.12

S.Adenosylhomocysteine -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014

Salicylate 0.052 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 0.35 -0.031 0.062 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031

Salicylurate 0.028 -0.089 -0.089 -0.089 -0.089 -0.089 -0.089 -0.089 0.142 0.039 -0.089 -0.089 0.101 -0.089 0.28 -0.089 -0.007 0.099 -0.089 -0.089

Sarcosine -0.053 -0.053 -0.053 -0.053 0.164 0.014 0.28 0.031 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 0.087 -0.053 -0.053 -0.053 0.04

Serotonin -0.081 0.195 -0.081 -0.081 -0.081 -0.081 0.46 -0.019 0.006 -0.002 0.043 -0.081 -0.081 0.206 -0.081 -0.081 -0.081 -0.081 -0.081 -0.081

sn.Glycero.3.phosphocholine -0.207 -0.096 -0.183 0.453 -0.158 -0.171 0.068 -0.108 0.856 -0.169 0.067 0.455 -0.207 -0.034 -0.091 -0.169 -0.207 -0.207 0.118 -0.09

Succinate -0.043 0.363 -0.118 0.067 -0.307 -0.067 -0.194 -0.099 0.065 -0.084 -0.163 0.014 0.123 0.147 -0.128 0.137 -0.307 0.13 -0.084 0.069

Succinylacetone -0.076 0.4 0.54 0.027 0.161 -0.167 -0.003 -0.053 -0.114 0.05 -0.29 -0.015 0.118 0.134 -0.049 0.347 0.401 0.115 0.006 -0.21

Sucrose -0.068 -0.068 0.009 -0.068 -0.068 -0.068 -0.068 -0.068 -0.068 -0.068 0.068 0.084 0.483 -0.009 -0.068 0.006 0.14 0.478 -0.068 -0.068

Syringate -0.024 0.36 -0.044 -0.023 -0.079 -0.044 0.569 -0.045 0.142 -0.071 -0.048 -0.079 -0.028 -0.018 0.006 0.599 -0.057 -0.034 -0.079 -0.054

Tartrate -0.02 0.058 -0.014 -0.133 -0.063 -0.005 -0.052 -0.076 -0.031 -0.133 -0.009 -0.025 -0.133 -0.01 -0.133 0.283 -0.018 -0.133 -0.133 -0.022

Taurine 0.378 -0.207 0.317 -0.207 -0.207 0.151 0.158 1.154 -0.207 -0.207 1.362 0.047 -0.207 -0.207 -0.207 -0.207 -0.207 -0.207 -0.207 0.031

Theophylline -0.056 0.027 0.087 -0.062 0.042 -0.071 0.071 -0.013 0.186 -0.092 -0.003 -0.128 0.155 -0.026 -0.036 0.35 -0.04 0.166 -0.093 -0.046

Threonate -0.819 -0.159 0.196 0.605 0.494 -0.15 0.357 0.885 -0.142 0.017 0.663 0.092 -0.218 0.225 -0.466 1.199 0.325 -0.218 0.421 -0.819

Threonine 0.072 -0.226 -0.226 0.146 0.058 0.151 0.053 0.113 0.082 -0.226 -0.226 0.194 0.036 0.056 0.024 0.175 -0.226 0.032 0.218 0.239

Thymidine -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 0.139 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013

Thymol -0.17 0.07 0.08 0.112 0.073 -0.05 0.014 0.047 0.056 0.047 0.085 0.051 0.045 0.109 0.048 -0.17 -0.17 0.016 -0.17 0.148

trans.4.Hydroxy.L.proline -0.071 -0.071 -0.071 -0.071 -0.071 -0.071 -0.071 0.341 -0.071 -0.071 -0.071 -0.071 -0.071 -0.071 -0.071 -0.071 -0.071 -0.071 -0.071 -0.071

trans.Aconitate 0.12 -0.065 0.018 0.072 0.066 -0.101 -0.055 0.128 0.106 0.024 -0.186 -0.074 -0.01 0.012 0.014 -0.08 0.1 -0.02 0.116 0.112

Trehalose -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 0.034 -0.007 -0.042 -0.042 0.015 -0.042 -0.042 -0.042 -0.042

Trigonelline -0.01 0.265 -0.107 -0.095 -0.02 0.613 -0.06 -0.035 -0.105 -0.055 0.307 0.032 -0.08 0.402 -0.044 0.318 -0.187 -0.084 -0.106 -0.121

Trimethylamine.N.oxide -0.15 0.101 -0.163 0.039 -0.148 -0.166 -0.162 0.282 -0.153 -0.16 -0.152 -0.003 -0.058 -0.154 -0.169 -0.165 -0.167 -0.048 -0.171 -0.162

Tropate -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023

Tryptophan 0.103 -0.223 -0.144 -0.014 0.005 -0.223 -0.104 -0.045 -0.057 -0.072 -0.043 0.034 0.037 -0.074 -0.223 -0.05 -0.065 0.044 -0.12 -0.017

Tyramine -0.049 -0.049 -0.049 -0.049 -0.049 -0.049 -0.049 -0.049 0.132 -0.049 -0.049 -0.049 -0.049 -0.049 0.358 0.22 -0.049 -0.049 -0.049 -0.049

Tyrosine -0.143 -0.143 -0.143 -0.143 -0.143 -0.143 -0.143 -0.143 0.323 -0.143 0.053 -0.143 0.183 0.235 -0.143 -0.143 0.11 0.191 0.457 0.213

UDP.galactose -0.017 -0.017 -0.017 0.259 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 0.257 -0.017

UDP.glucose -0.032 -0.032 -0.032 -0.032 -0.032 -0.032 -0.032 -0.032 -0.032 -0.032 0.312 -0.032 0.051 -0.032 -0.032 -0.032 -0.032 0.068 0.1 -0.032

UDP.glucuronate -0.053 -0.053 -0.053 -0.053 0.133 -0.053 0.076 -0.053 -0.053 -0.053 -0.053 0.182 -0.053 -0.053 -0.053 -0.053 0.107 -0.053 -0.053 0.054

UDP.N.Acetylglucosamine -0.08 -0.08 -0.08 0.125 -0.08 0.102 -0.08 -0.08 0.041 -0.08 -0.08 0.005 0.01 0.094 0.084 0.019 -0.08 -0.08 0.102 0.008

UMP 0.217 -0.038 -0.038 -0.038 -0.038 -0.038 0.07 -0.038 -0.038 -0.038 -0.038 -0.038 0.109 0.074 -0.038 -0.038 0.083 -0.038 -0.038 -0.038

Uracil -0.088 -0.088 0.106 -0.088 -0.088 -0.088 -0.088 -0.088 -0.088 -0.088 -0.088 -0.088 0.23 0.11 -0.088 -0.088 -0.088 0.096 0.227 -0.088

Uridine -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 0.345 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027

Urocanate -0.055 -0.055 0.079 -0.055 -0.055 -0.055 0.047 -0.055 -0.055 0.129 -0.055 -0.055 -0.055 0.148 -0.055 -0.055 -0.055 -0.055 0.128 -0.055

Valerate -0.046 -0.046 -0.046 -0.046 -0.046 -0.046 0.714 -0.046 -0.046 -0.046 -0.046 -0.046 -0.046 -0.046 -0.046 -0.046 -0.046 -0.046 0.146 -0.046

Valine -0.05 0.052 -0.036 0.172 -0.153 -0.114 -0.005 -0.042 0.097 0.051 -0.079 0.133 0.024 -0.021 -0.046 -0.09 -0.257 0.028 0.173 -0.047

Vanillate 0.014 0.156 -0.035 -0.035 -0.035 0.179 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 0.006 0.081 -0.035 -0.035 -0.035 -0.035 0.081

Xanthine 0.117 0.14 -0.028 0.022 -0.048 0.07 0.353 -0.164 -0.039 -0.164 0.076 -0.044 -0.099 -0.039 -0.164 0.017 -0.084 -0.108 0.024 -0.164

Xanthosine 0.105 -0.034 -0.001 0.009 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 0.2 0.001 -0.034 -0.034 -0.034

Xanthurenate -0.009 -0.102 0.052 0.096 -0.102 0.157 0.102 0.038 -0.022 -0.102 -0.102 -0.032 -0.058 -0.038 -0.102 0.001 -0.068 -0.06 -0.05 -0.048
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Sample LANC001 LANC011 LANC002 LANC023 LANC036 LANC003 LANC024 LANC004 LANC015 LANC025 LANC005 LANC026 LANC006 LANC017 LANC027 LTHTr002 LANC007 LANC008 LANC019 LTHTr005

Group Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control

Xylitol -0.177 -0.177 -0.177 -0.177 0.299 -0.177 -0.177 0.292 -0.177 -0.177 0.763 -0.177 -0.177 -0.177 -0.177 -0.177 -0.177 0.361 -0.177 -0.177

Xylose -0.066 -0.066 0.021 -0.066 0.332 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066

X..Alanine -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031

X..Glutamylphenylalanine 0.11 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 0.145 -0.064 -0.064

X..Methylhistidine -0.205 0.405 0.104 0.583 -0.286 -0.29 -0.329 -0.441 0.15 0.064 0.48 0.26 -0.034 -0.379 -0.085 -0.313 0.225 -0.165 0.32 -0.185

X..Methylhistidine.1 -0.031 0.022 -0.071 -0.04 0.514 -0.065 -0.13 -0.155 -0.144 -0.052 0.101 -0.009 0.016 -0.029 0.18 0.134 -0.145 0.032 -0.059 -0.109
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Table B  

Sample LANC009 LANC020 LTHTr006 LANC010 LANC032 LTHTr010 LANC034 LANC012 LANC013 LANC037 LANC038 LANC016 LANC040 LANC018 LANC028 LTHTr003 LANC029 LANC030 LANC021 LTHTr013

Group Control Control Control Control Control Control IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD

X1.3.Dihydroxyacetone -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 0.435 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014

X1.3.Dimethylurate -0.155 0.136 -0.04 -0.095 0.316 -0.006 0.034 0.091 -0.07 -0.037 -0.07 -0.082 -0.01 0.011 -0.105 -0.072 0.026 -0.106 0.08 -0.155

X1.6.Anhydro...D.glucose -0.077 -0.077 0.473 -0.077 -0.009 -0.035 0.07 -0.077 -0.077 0.103 -0.077 0.053 -0.077 -0.077 0.061 -0.077 0.017 -0.077 0.084 0.023

X1.7.Dimethylxanthine -0.093 -0.198 -0.045 -0.09 0.193 0.158 0.315 -0.02 0.32 0.003 0.09 -0.171 -0.041 0.244 -0.174 -0.054 0.052 -0.029 0.202 0.003

X1.Methylnicotinamide 0.084 0.415 -0.006 0.016 -0.021 -0.09 -0.033 -0.25 -0.051 -0.083 0.072 0.199 0.156 -0.12 0.035 0.103 -0.05 -0.25 -0.179 0.197

X2..Deoxyadenosine -0.043 -0.043 0.119 -0.043 -0.043 0.231 -0.043 -0.043 -0.043 -0.043 -0.043 -0.043 -0.043 0.236 0.179 -0.043 -0.043 -0.043 -0.043 0.255

X2..Deoxyguanosine -0.027 -0.027 0.04 -0.027 -0.027 -0.027 -0.027 -0.027 0.109 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 0.113 -0.027 0.106 0.076 -0.027

X2..Deoxyinosine -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 0.092 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011

X2.Aminoadipate 0.497 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113 0.792 -0.113 -0.113 1.469 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113 0.324

X2.Aminobutyrate -0.212 -0.212 -0.212 0.477 -0.02 -0.212 0.225 -0.212 -0.044 -0.137 -0.11 -0.212 -0.008 -0.212 0.249 -0.136 0.669 -0.212 -0.136 -0.212

X2.Ethylacrylate -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 0.104 -0.034 0.231 -0.034 -0.034 -0.034 -0.034 -0.034

X2.Furoylglycine 0.022 -0.063 -0.063 -0.063 0.21 -0.063 0.03 0.254 0.222 -0.063 -0.063 -0.063 -0.063 -0.063 0.062 -0.063 -0.063 -0.063 -0.063 -0.063

X2.Hydroxy.3.methylvalerate -0.035 0.147 -0.035 -0.035 0.178 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 0.068 -0.035 0.164 0.21 -0.035 -0.035 -0.035 -0.035 -0.035

X2.Hydroxybutyrate -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009

X2.Hydroxyisobutyrate 0.063 0.137 -0.234 0.094 -0.002 -0.251 -0.106 -0.228 -0.035 -0.014 0.019 0.102 0.167 0.06 0 0.124 -0.033 0.078 0.216 -0.018

X2.Hydroxyisocaproate -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 0.023 -0.015 -0.015 -0.015 0.036

X2.Hydroxyisovalerate -0.011 -0.011 -0.011 -0.011 -0.011 0.415 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011

X2.Hydroxyphenylacetate -0.119 0.04 0.005 0.133 -0.119 -0.119 0.107 -0.119 -0.119 -0.01 0.051 -0.119 -0.119 -0.119 -0.008 -0.119 0.256 0.061 -0.119 0.395

X2.Hydroxyvalerate -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 -0.044 0.486 -0.044 -0.044 -0.044 -0.044 -0.044

X2.Methylglutarate -0.022 -0.022 0.269 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 0.563 -0.022 -0.022

X2.Oxocaproate -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 0.485 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012

X2.Oxoglutarate -0.111 -0.111 0.615 -0.111 -0.111 0.205 0.555 0.293 -0.111 -0.111 -0.111 -0.111 0.528 -0.111 -0.111 -0.111 -0.111 -0.111 -0.111 -0.111

X2.Oxoisocaproate -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 0.175 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004

X2.Phenylpropionate -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 0.124 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006

X3.4.Dihydroxybenzeneacetate -0.085 0.064 0.042 -0.085 0.089 -0.085 0.026 0.151 0.134 0.061 0.136 0.003 -0.085 0.127 -0.085 -0.001 0.06 -0.085 -0.085 0.011

X3.4.Dihydroxymandelate -0.076 -0.076 0.167 0.027 -0.076 0.141 0.023 -0.076 0.104 -0.076 0.169 0.022 -0.076 -0.076 0.001 -0.076 0.113 -0.076 0.053 0.049

X3.5.Dibromotyrosine 0.242 -0.123 -0.123 -0.112 -0.113 -0.123 -0.123 -0.123 -0.123 -0.123 0.535 0.013 -0.123 -0.123 -0.113 0.605 -0.123 -0.073 0.026 0.681

X3.Aminoisobutyrate -0.224 -0.194 -0.331 0.518 0.032 -0.15 -0.095 -0.144 0.584 -0.18 -0.084 0.173 -0.171 -0.232 -0.331 -0.331 -0.331 0.085 -0.331 -0.188

X3.Chlorotyrosine 0.195 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 0.207 0.086 -0.055 -0.055 -0.055 -0.055 0.231 -0.055 -0.055 -0.055

X3.Hydroxy.3.methylglutarate -0.099 -0.042 -0.028 -0.018 -0.097 -0.02 0.016 0.632 0.007 -0.111 -0.016 -0.04 -0.055 -0.057 0.182 -0.114 0.027 -0.112 0.306 -0.167

X3.Hydroxybutyrate -0.62 -0.62 -0.62 -0.461 -0.398 -0.62 -0.489 -0.62 -0.62 -0.558 -0.598 -0.575 -0.614 -0.62 5.107 -0.525 0.132 -0.62 -0.62 -0.615

X3.Hydroxyisobutyrate -0.062 -0.062 0.013 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 1.086 -0.062 -0.062 -0.062 -0.062 -0.062

X3.Hydroxyisovalerate -0.067 0.353 -0.171 0.047 -0.165 0.009 -0.082 -0.171 -0.071 -0.062 0.053 0.177 -0.059 0.042 0.273 0 -0.128 0.23 0.011 -0.131

X3.Hydroxykynurenine -0.038 -0.038 -0.038 -0.038 0.084 -0.038 -0.038 -0.038 -0.038 0.194 -0.038 -0.038 0.147 0.107 -0.038 0.228 -0.038 -0.038 0.14 -0.038

X3.Hydroxymandelate 0.022 -0.006 -0.04 0.008 0.013 -0.105 0.06 -0.105 -0.105 -0.105 -0.105 0.046 -0.105 -0.035 0.049 0.127 0.044 -0.105 -0.007 1.15

X3.Hydroxyphenylacetate 0.086 -0.164 -0.049 -0.041 -0.036 -0.07 -0.062 0.125 -0.008 0.126 -0.01 -0.03 0.046 -0.066 -0.035 -0.025 -0.004 0.18 -0.046 0.116

X3.Indoxylsulfate 0.226 0.251 0.082 -0.205 0.013 0.283 0.039 -0.205 0.04 -0.205 0.403 0.334 -0.205 0.277 0.041 -0.005 -0.205 0.084 0.188 -0.205

X3.Methyl.2.oxovalerate -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 0.192 -0.014 -0.014 -0.014

X3.Methyladipate -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 0.163 -0.012 -0.012 -0.012 -0.012

X3.Methylglutarate -0.108 0.057 0.08 0.291 -0.108 -0.108 0.127 -0.108 -0.108 0.03 0.094 0.106 -0.108 -0.108 -0.108 -0.108 0.248 0.083 -0.108 -0.108

X3.Methylxanthine -0.14 0.221 0.052 -0.036 0.219 -0.14 -0.083 -0.14 0.231 0.253 0.038 -0.026 0.25 -0.026 -0.094 0.142 -0.1 -0.044 0.069 0.004
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Sample LANC009 LANC020 LTHTr006 LANC010 LANC032 LTHTr010 LANC034 LANC012 LANC013 LANC037 LANC038 LANC016 LANC040 LANC018 LANC028 LTHTr003 LANC029 LANC030 LANC021 LTHTr013

Group Control Control Control Control Control Control IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD

X3.Methylxanthine -0.14 0.221 0.052 -0.036 0.219 -0.14 -0.083 -0.14 0.231 0.253 0.038 -0.026 0.25 -0.026 -0.094 0.142 -0.1 -0.044 0.069 0.004

X3.Phenylpropionate 0.41 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034

X4.Aminohippurate -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 0.207 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011

X4.Guanidinobutanoate -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018 -0.018

X4.Hydroxy.3.methoxymandelate 0.102 0.024 -0.078 -0.015 -0.01 -0.021 -0.047 0.146 -0.107 0.095 -0.015 -0.062 -0.094 -0.12 -0.131 0.081 0.093 0.435 -0.061 -0.038

X4.Hydroxybenzoate -0.069 -0.069 -0.069 -0.069 -0.069 -0.069 0.293 -0.069 0.215 -0.069 -0.069 -0.069 0.256 0.402 -0.069 -0.069 -0.069 -0.069 -0.069 -0.069

X4.Hydroxyphenylacetate -0.217 -0.012 0.051 -0.05 0.061 -0.011 -0.069 0.087 -0.016 -0.217 0.068 -0.093 -0.029 0.467 -0.031 -0.082 0.389 0.133 -0.217 0.304

X4.Pyridoxate -0.139 -0.121 0.068 0.03 0.089 0.136 0.231 -0.098 0.064 -0.012 -0.092 -0.118 -0.068 -0.129 -0.108 -0.144 -0.135 -0.099 -0.091 -0.005

X5.6.Dihydrothymine 0.131 -0.078 -0.078 -0.078 -0.078 -0.078 -0.078 0.228 0.344 -0.078 -0.078 -0.078 0.317 0.155 -0.078 0.762 -0.078 -0.078 -0.078 -0.078

X5.6.Dihydrouracil -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021

X5.Aminolevulinate 0.075 0.028 0.001 -0.171 -0.173 -0.118 -0.248 -0.277 0.286 -0.099 -0.054 -0.186 -0.082 -0.131 0.357 0.055 -0.051 -0.019 0.025 -0.107

X5.Hydroxyindole.3.acetate 0.066 -0.014 -0.066 0.057 -0.066 -0.022 -0.077 0.206 0.051 0.014 0.075 -0.108 -0.158 -0.122 -0.078 -0.088 -0.045 0.275 0.04 0.681

X5.Hydroxylysine -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 1.21 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031

X5.Hydroxytryptophan 0.145 -0.175 -0.066 -0.104 0.074 -0.115 -0.011 -0.175 -0.175 0.053 -0.175 -0.042 0.032 0.001 -0.105 0.021 0.063 0.126 -0.004 1.059

X5.Methoxysalicylate -0.06 -0.06 -0.06 0.064 -0.06 -0.06 -0.06 -0.06 0.086 0.212 -0.06 -0.06 0.468 -0.06 -0.06 -0.06 0.127 -0.06 0.161 -0.06

Acetaminophen -0.085 -0.085 -0.085 -0.085 -0.002 -0.085 -0.085 -0.085 -0.085 0.169 -0.046 -0.085 0.277 -0.085 -0.085 -0.085 0.006 -0.085 -0.085 0.411

Acetate -0.205 -0.01 -0.205 -0.051 0.009 -0.064 -0.052 0.029 0.244 1.31 0.016 -0.104 -0.178 -0.108 -0.041 -0.007 -0.065 0.003 0.047 -0.318

Acetoacetate -0.504 -0.525 -0.516 0.128 -0.076 -0.505 -0.202 -0.451 -0.47 -0.446 -0.366 -0.269 -0.492 -0.525 2.153 -0.383 0.324 -0.048 -0.511 -0.42

Acetoin -0.093 -0.093 0.057 -0.093 -0.093 -0.093 -0.093 0.218 0.041 0.056 -0.093 -0.093 0.013 0.357 -0.093 -0.093 -0.093 -0.093 0.094 0.138

Acetone -0.133 -0.049 -0.201 0.076 -0.086 -0.221 -0.067 -0.174 -0.181 -0.182 -0.122 0.078 -0.191 -0.053 0.888 -0.072 0.002 0.182 -0.209 -0.152

Acetylsalicylate 0.074 -0.013 0.046 -0.021 -0.125 0.082 0.178 0.37 -0.125 -0.125 -0.125 0.094 -0.083 0.004 -0.037 0.088 -0.076 -0.009 0.074 -0.125

Adenine -0.021 -0.021 -0.021 -0.021 -0.021 0.024 -0.021 -0.021 -0.021 -0.021 -0.021 0.096 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021

Adenosine 0.233 -0.012 0.15 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012

Adipate -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 0.899 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023

ADP -0.013 -0.013 -0.013 -0.013 -0.013 0.183 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013

Alanine -0.104 0.411 -0.118 0.029 0.156 -0.034 0.036 0.525 -0.032 0.681 -0.017 0.02 -0.097 -0.36 -0.182 0.056 -0.064 -0.081 -0.36 0.014

Allantoin -0.002 -0.031 -0.024 0 0.021 -0.092 0.383 0.594 0.027 -0.167 -0.167 0.011 -0.167 0.051 0.037 -0.019 -0.167 0.053 0.181 -0.013

Alloisoleucine 0.096 -0.076 -0.076 -0.076 -0.076 -0.076 -0.076 -0.013 -0.076 0.203 0.241 -0.076 0.002 -0.076 -0.076 -0.076 -0.076 0.049 0.24 -0.076

Anserine -0.037 0.043 -0.035 -0.036 -0.053 -0.144 -0.019 -0.04 0.085 0.063 -0.087 0.059 0.158 0.143 -0.195 -0.026 -0.025 0.026 0.087 0.098

Anthranilate -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 0.244 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 0.348 -0.03 -0.03 -0.03

Arabinitol -0.121 -0.121 1.704 -0.121 -0.121 -0.121 -0.121 -0.121 0.605 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121

Arabinose 0.059 -0.328 0.285 -0.328 0.241 -0.328 -0.328 -0.328 0.348 -0.328 -0.137 0.924 0.93 -0.328 -0.328 -0.328 0.736 1.141 -0.328 -0.108

Arginine -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 -0.073 0.55 -0.073 -0.073 1.025 -0.073 -0.073 -0.073 -0.073 -0.073

Ascorbate -0.816 1.452 4.786 0.523 0.398 -0.848 -0.287 -1.512 0.37 4.066 -1.055 1.843 0.187 -0.899 -0.185 -0.075 -0.902 -1.098 0.005 -1.523

ATP -0.012 -0.012 -0.012 -0.012 -0.012 0.06 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012 -0.012

Azelate -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 0.897 -0.023 -0.023 -0.023

Betaine -0.145 -0.124 -0.199 -0.029 -0.065 -0.073 -0.105 -0.077 -0.117 1.578 -0.099 0.026 -0.13 -0.002 -0.14 -0.191 0.088 -0.028 0.023 -0.092

Biotin 0.018 -0.261 0.308 0.09 -0.261 -0.1 0.154 -0.261 0.409 0.081 -0.261 0.133 -0.261 0.065 0.12 0.102 0.08 -0.261 0.003 -0.261

Butanone -0.097 -0.097 0.106 -0.097 -0.097 -0.097 0.111 -0.097 -0.097 -0.097 -0.097 -0.097 -0.097 0.078 0.231 -0.097 0.396 -0.097 -0.097 0.035

Cadaverine -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 0.862 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022 -0.022

Caffeine 0.085 0.207 -0.048 0.021 0.073 -0.101 -0.105 0.039 0.062 -0.092 0.121 -0.051 -0.042 0.009 -0.089 0.03 -0.044 0.004 -0.101 -0.054

Caprate -0.045 -0.045 -0.045 -0.045 -0.045 -0.045 -0.045 0.445 -0.045 -0.045 -0.045 -0.045 -0.045 -0.045 0.782 -0.045 -0.045 -0.045 -0.045 -0.045

Carnitine 0.046 -0.047 -0.097 -0.17 0.553 -0.029 -0.127 0.218 -0.113 0.086 0.384 -0.123 -0.031 -0.116 -0.107 -0.084 -0.116 0.143 -0.122 0.349
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Sample LANC009 LANC020 LTHTr006 LANC010 LANC032 LTHTr010 LANC034 LANC012 LANC013 LANC037 LANC038 LANC016 LANC040 LANC018 LANC028 LTHTr003 LANC029 LANC030 LANC021 LTHTr013

Group Control Control Control Control Control Control IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD

Carnosine -0.116 0.156 0.472 0.21 -0.064 -0.24 -0.17 0.151 -0.116 0.044 -0.11 -0.156 0.17 0.074 0.088 -0.095 -0.24 -0.134 -0.117 -0.141

Cellobiose -0.159 -0.445 1.251 -0.445 0.44 -0.445 0.14 -0.255 -0.445 -0.445 -0.445 0.084 0.233 0.151 0.304 0.466 0.271 0.303 0.148 -0.445

Chlorogenate -0.01 -0.01 -0.01 -0.01 -0.01 0.11 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

Cholate 0.019 -0.024 -0.024 -0.024 0.014 0.063 -0.024 0.331 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 0.127 -0.024

Choline 0.189 -0.14 -0.173 0.209 -0.063 -0.016 -0.05 -0.117 0.195 -0.173 -0.014 0.132 -0.003 0.153 0.225 0.233 0.056 -0.03 0.064 -0.09

cis.Aconitate -0.179 -0.455 0.949 -0.033 0.349 -0.027 0.473 -0.287 -0.089 0.014 0.095 0.046 -0.091 -0.037 0.349 0.085 -0.41 -0.558 0.01 -0.097

Citraconate -0.037 -0.037 -0.037 -0.037 -0.037 0.183 -0.037 -0.037 -0.037 0.07 -0.037 -0.037 -0.037 -0.037 -0.037 -0.037 0.391 -0.037 -0.037 -0.037

Citrate 0.074 -0.092 -0.092 -0.092 -0.092 -0.092 -0.092 -0.092 -0.092 -0.092 0.118 0.138 0.276 -0.092 -0.092 -0.092 0.574 -0.092 -0.092 -0.092

Citrulline 0.617 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047 -0.047

Creatine -0.102 0.038 -0.25 -0.226 -0.183 -0.216 -0.13 0.23 -0.236 -0.078 -0.184 0.074 -0.154 -0.267 0.164 -0.061 -0.239 -0.086 -0.284 -0.201

Creatine.phosphate 0.097 -0.138 0.154 -0.097 0.069 -0.075 0.031 -0.157 0.067 -0.107 -0.23 -0.045 -0.172 0.616 -0.209 -0.029 0.133 -0.25 0.149 0.158

Creatinine 1.005 2.169 -0.272 -3.461 -0.336 0.11 1.242 -0.662 -0.663 0.34 0.965 1.947 -0.068 1.082 0.866 2.047 -0.2 0.951 0.047 0.421

Cytidine -0.035 0.153 -0.035 0.087 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035

dCTP -0.006 -0.006 -0.006 -0.006 -0.006 0.25 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006

Desaminotyrosine -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 0.109 -0.024 -0.024 -0.024 -0.024 -0.024 0.084 -0.024 -0.024 -0.024 0.69

Dimethylamine 0.036 0.047 0.036 0.107 -0.083 0.01 0.417 -1.099 -0.064 0.011 0.004 0.125 0.362 -0.145 0.118 0.108 0.277 -0.133 -0.067 -0.031

Dimethyl.sulfone 0.126 -0.078 -0.062 0.036 0.049 -0.13 -0.12 -0.123 -0.072 0.121 0.112 -0.002 -0.015 0.054 -0.118 0.115 0.065 0.01 -0.014 0.043

dTTP -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 0.163 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 0.096 -0.027 -0.027 -0.027 -0.027

Epicatechin -0.046 0.098 -0.046 0.102 0.088 0.018 0.081 -0.046 0.07 -0.046 -0.046 -0.046 -0.046 0.081 0.089 -0.046 -0.046 -0.046 -0.046 -0.046

Erythritol 0.155 0.713 -0.808 -0.131 0.27 0.314 0.494 0.079 -0.034 -0.613 0.489 0.347 0.016 0.508 -0.086 0.315 0.557 0.124 0.414 -0.808

Ethanol -0.156 -0.156 5.29 -0.156 -0.156 -0.156 -0.156 -0.156 -0.156 0.022 -0.156 -0.156 -0.156 -0.156 -0.156 -0.156 -0.156 -0.156 -0.156 -0.058

Ethanolamine -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 1.182 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057 -0.057

Ethylene.glycol -0.042 -0.042 0.706 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 0.059 -0.042 -0.042 0.214 -0.042 0.102

Ethylmalonate -0.031 -0.031 0.329 -0.031 -0.031 -0.031 -0.031 -0.031 0.279 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031

Ferulate -0.067 -0.004 0.09 0.002 -0.009 -0.067 -0.067 0.084 0.026 0.085 -0.067 -0.004 -0.067 0.035 -0.021 -0.033 0.031 -0.067 -0.015 0.015

Formate -0.078 -0.008 -0.199 -0.06 -0.145 0.059 -0.218 0.852 -0.246 0.764 0.205 -0.182 0.051 -0.125 -0.063 0.119 -0.315 0.384 0.114 -0.228

Fructose 0.285 0.134 1.031 0.141 -0.511 -0.511 -0.511 -0.511 0.083 0.116 -0.511 -0.511 0.695 -0.354 0.076 -0.21 -0.011 0.238 0.392 0.173

Fucose -0.145 -0.344 -0.586 0.07 0.038 0.605 -0.139 -0.248 -0.465 -0.236 0.235 0.176 -0.392 -0.055 1.177 0.241 -0.027 0.294 -0.369 -0.324

Fumarate -0.091 -0.053 0.227 -0.032 0.141 0.001 0.172 -0.034 -0.025 0.094 -0.027 -0.034 -0.011 -0.029 -0.041 -0.021 0.062 -0.019 0.043 -0.049

Galactarate 0.138 0.026 0.347 -0.201 -0.09 0.061 0.032 -0.154 -0.156 0.029 -0.007 0.028 0.286 -0.082 0.038 -0.022 -0.01 0.17 -0.07 -0.326

Galactitol -0.225 -0.225 0.262 -0.225 -0.024 -0.225 -0.225 0.329 -0.225 -0.225 -0.068 -0.225 0.015 -0.225 0.021 -0.004 -0.008 -0.028 0.972 0.438

Galactonate -0.373 -0.055 -0.373 0.205 -0.02 0.085 0.016 0.01 0.44 -0.373 -0.026 -0.185 -0.373 0.011 0.104 0.205 0.084 0.113 -0.101 -0.196

Galactose 0.359 -0.177 -0.177 -0.177 -0.177 -0.177 0.106 -0.095 -0.177 -0.177 -0.177 -0.177 -0.177 -0.177 -0.177 -0.177 -0.177 -0.177 -0.177 -0.177

Gallate 0.046 -0.045 -0.045 -0.045 -0.011 -0.045 -0.045 -0.045 -0.002 0.179 -0.045 -0.005 -0.045 -0.008 -0.045 -0.045 -0.045 -0.045 -0.045 0.024

Gentisate -0.062 0.119 0.021 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 0.059 -0.062 0.058 -0.062 0.085 0.048 0.124 -0.062 -0.062 0.064 0.462

Glucarate 0.221 0.127 -0.137 -0.137 -0.137 -0.137 0.379 0.781 0.179 -0.137 -0.137 -0.137 -0.137 0.564 -0.137 -0.137 -0.137 -0.137 -0.137 -0.137

Glucitol 0.633 1.048 -0.259 0.907 0.86 0.803 -0.259 -0.259 -0.259 0.854 -0.259 -0.259 -0.259 -0.259 -0.259 -0.259 -0.259 -0.259 -0.259 -0.259

Gluconate 0.185 0.057 0.155 0.491 -0.181 0.624 0.476 -0.743 -0.019 0.242 0.209 -0.017 -0.105 -0.18 -0.743 0.298 0.637 0.056 -0.061 0.366

Glucose -0.121 -0.121 0.191 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121 -0.121 -0.024 0.196 -0.121 -0.121 0.517 -0.121 -0.121

Glucose.6.phosphate -0.239 -0.239 0.432 -0.239 -0.239 -0.08 0.414 0.417 -0.239 -0.239 -0.239 -0.239 0.34 0.673 0.247 0.639 1.615 0.433 -0.239 -0.239

Glucuronate -0.383 -0.383 0.765 -0.383 -0.383 0.303 0.045 0.044 -0.383 0.435 0.002 0.283 0.205 0.432 0.084 -0.229 0.299 -0.383 0.064 0.138

Glutamine -0.084 -0.084 -0.084 -0.084 0.972 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084 -0.084

Glutaric.acid.monomethyl.ester -0.023 -0.023 0.487 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023
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Sample LANC009 LANC020 LTHTr006 LANC010 LANC032 LTHTr010 LANC034 LANC012 LANC013 LANC037 LANC038 LANC016 LANC040 LANC018 LANC028 LTHTr003 LANC029 LANC030 LANC021 LTHTr013

Group Control Control Control Control Control Control IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD

Methionine -0.191 0.077 -0.191 -0.191 0.013 -0.191 -0.014 -0.191 0.079 0.309 -0.015 0.07 -0.095 -0.191 0.254 -0.191 0.115 -0.191 0.156 -0.191

Methylamine 0.047 -0.061 -0.158 0.13 0.127 -0.158 0.153 -0.079 -0.158 -0.023 -0.05 0.084 -0.083 -0.112 0.422 0.042 0.16 -0.063 -0.074 -0.109

Methylguanidine -0.172 -0.172 -0.099 -0.113 -0.172 0.009 0.751 0.006 -0.096 -0.088 0.137 -0.172 0.435 0.06 -0.066 -0.042 -0.077 0.06 -0.084 0.007

Methylsuccinate -0.176 -0.041 -0.381 0.066 0.206 -0.079 0.044 -0.141 -0.206 0.321 0.133 -0.04 -0.055 0.047 -0.381 0.314 0.104 -0.258 0.066 -0.141

myo.Inositol -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 0.854 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15

N.N.Dimethylformamide -0.027 0.2 0.037 0.079 0.087 -0.04 -0.028 -0.062 0.158 0.021 0.01 -0.006 -0.197 0.067 -0.105 0.162 0.009 0.031 0.027 -0.275

N.N.Dimethylglycine -0.095 0.075 -0.069 -0.056 -0.054 -0.062 0.166 -0.001 -0.055 -0.055 0.168 0.008 -0.001 0.171 -0.035 -0.095 -0.026 0.054 0.006 0.127

N6.Acetyllysine -0.114 0.025 -0.114 0.217 -0.114 -0.114 0.218 0.213 -0.114 -0.114 0.247 0.01 -0.114 -0.114 0.011 -0.114 -0.114 -0.114 0.224 -0.114

N.Acetylaspartate -0.14 -0.14 0.067 0.032 0.084 0.002 0.163 -0.14 0.071 -0.14 -0.14 0.267 -0.14 0.027 0.179 -0.14 0.225 -0.14 0.078 -0.14

N.Acetylcysteine -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

N.Acetylglucosamine -0.087 -0.087 -0.087 -0.087 -0.087 -0.087 0.679 0.316 -0.087 -0.087 -0.025 -0.087 -0.087 0.54 -0.087 -0.087 -0.087 -0.087 -0.087 -0.087

N.Acetylglutamate -0.199 0.128 0.026 0.386 0.027 0.083 -0.022 0.067 0.13 0.032 0.083 0.059 -0.029 -0.199 -0.199 -0.199 -0.199 0.007 0.052 0.02

N.Acetylglutamine -0.033 -0.033 -0.033 0.231 -0.033 -0.033 -0.033 0.359 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033

N.Acetylglycine -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 -0.016 0.606 -0.016 -0.016

N.Acetylornithine -0.074 -0.074 0.421 0.509 -0.074 -0.074 -0.074 -0.074 -0.074 0.501 -0.074 -0.074 -0.074 -0.074 0.425 -0.074 0.56 -0.074 -0.074 -0.074

N.Acetylserotonin -0.019 0.041 -0.128 -0.128 -0.128 -0.057 -0.043 0.146 0.114 -0.128 0.072 -0.128 -0.128 0.11 0.006 0.064 0.057 0.19 0.059 0.086

N.Acetyltyrosine -0.096 0.002 -0.096 0.042 0.02 0.094 0.021 0.032 0.041 -0.096 0.004 -0.096 -0.096 0.034 0.018 -0.008 -0.096 0.159 -0.096 0.578

NADH -0.015 -0.015 0.107 -0.015 -0.015 0.214 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015

NADPH -0.01 -0.01 -0.01 -0.01 -0.01 0.056 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.157

N.Carbamoylaspartate -0.232 0.768 -0.232 0.78 -0.232 -0.232 -0.232 -0.232 0.4 0.413 -0.232 0.661 -0.232 -0.232 0.679 -0.232 0.349 -0.232 -0.232 0.468

N.Carbamoyl...alanine -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026 -0.026

Nicotinurate -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005

N.Methylhydantoin -0.238 -0.049 -0.048 0.155 -0.088 0.023 -0.071 -0.051 0.02 0.695 0.077 0.005 -0.03 -0.11 -0.008 -0.137 -0.099 -0.115 0.001 -0.14

N.Nitrosodimethylamine 0.017 0.237 -0.317 -0.036 -0.017 -0.131 0.12 0.427 -0.317 -0.091 0.082 -0.317 -0.027 -0.011 -0.045 0.289 0.04 -0.003 -0.317 -0.01

N.Phenylacetylglycine 0.39 -0.136 0.002 -0.142 -0.269 -0.111 -0.154 -0.037 -0.193 0.239 0.326 -0.087 0.44 -0.17 -0.133 -0.118 0.238 -0.213 0.041 0.916

N.Phenylacetylphenylalanine -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 0.422 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011 -0.011

N..Acetyllysine -0.168 0.055 -0.168 -0.168 -0.168 -0.168 -0.168 -0.101 0.218 -0.168 -0.01 -0.025 0.243 -0.168 -0.168 0.317 0.19 -0.038 0.286 0.289

O.Acetylcarnitine -0.227 -0.232 -0.266 -0.173 0.04 -0.31 0.209 -0.173 -0.215 -0.305 -0.021 0.107 -0.323 -0.3 0.814 0.298 0.743 -0.133 -0.175 -0.291

O.Acetylcholine 0.343 0.128 -0.133 0.018 -0.085 -0.056 -0.051 -0.133 0.231 -0.133 0.03 -0.045 -0.078 -0.133 0.086 0.167 -0.037 -0.081 -0.045 -0.063

o.Cresol 0.246 -0.105 -0.105 -0.105 0.162 -0.105 0.078 0.204 -0.105 -0.105 0.314 -0.105 -0.105 0.199 0.237 -0.105 -0.105 -0.105 -0.105 -0.105

O.Phosphocholine -0.106 -0.066 -0.106 -0.106 -0.076 -0.022 -0.04 -0.068 -0.106 -0.006 -0.075 -0.025 -0.01 -0.063 0.043 -0.038 -0.074 0.003 -0.036 0.04

Ornithine -0.06 -0.06 -0.06 1.018 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

Oxypurinol 0.04 0.702 -0.105 -0.082 0.716 0.087 -0.678 -0.664 -0.491 -0.899 -0.128 0.197 -0.385 -0.241 -0.169 0.334 -0.706 -0.407 -0.734 0.431

Pantothenate 0.056 0.004 0.082 -0.055 -0.048 0.165 -0.071 0.02 -0.032 -0.071 0.216 -0.075 -0.08 0.107 0.1 0.004 -0.1 -0.035 0.061 0.008

p.Cresol -0.118 -0.01 -0.011 0.054 -0.118 -0.118 0.004 0.282 0.039 0.025 0.054 -0.009 -0.027 -0.118 -0.118 0.072 -0.118 0.328 0.003 0.435

Phenylacetate -0.024 0.098 -0.347 -0.059 0.044 -0.347 0.011 -0.121 -0.019 0.265 0.174 -0.057 0.189 0.041 -0.347 -0.045 -0.108 0.087 -0.053 0.254

Propylene.glycol -0.093 -0.093 0.522 -0.01 -0.093 -0.093 -0.093 -0.093 -0.054 -0.04 -0.018 -0.093 -0.029 -0.093 0.223 -0.093 -0.093 -0.093 0.184 -0.093

Protocatechuate -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

Pyridoxine -0.043 -0.032 -0.026 0.01 -0.041 -0.107 -0.021 0.12 -0.006 -0.048 -0.04 -0.006 -0.012 -0.01 -0.018 -0.024 0.013 0.021 0.013 0.141

Pyrimidine -0.034 -0.034 0.058 -0.034 -0.034 -0.034 -0.034 -0.034 0.214 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 0.19 -0.034 -0.034

Pyroglutamate -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 -0.028 1.081

Pyruvate -0.104 -0.104 -0.104 0.072 -0.104 -0.104 -0.104 -0.014 -0.104 0.238 -0.104 0.082 -0.104 -0.104 0.024 -0.104 0.125 -0.104 -0.104 0.07

Quinolinate 0.007 0.297 -0.14 0.022 0.182 0.444 0.317 -0.14 0.212 0.142 -0.14 -0.14 0.211 0.18 0.066 -0.14 0.034 -0.14 -0.14 -0.14
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Sample LANC009 LANC020 LTHTr006 LANC010 LANC032 LTHTr010 LANC034 LANC012 LANC013 LANC037 LANC038 LANC016 LANC040 LANC018 LANC028 LTHTr003 LANC029 LANC030 LANC021 LTHTr013

Group Control Control Control Control Control Control IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD

Riboflavin -0.016 0.103 -0.067 -0.059 -0.045 -0.03 -0.044 -0.129 0.052 -0.071 0.049 -0.078 -0.033 0.071 0.125 -0.037 -0.067 -0.048 -0.068 0.108

Ribose 0.167 0.242 -0.793 0.394 0.435 -0.503 0.247 0.051 0.747 0.113 0.456 -0.793 -0.793 0.666 -0.564 -0.793 0.131 0.105 0.581 -0.252

Saccharopine -0.12 -0.12 0.632 0.727 0.355 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 0.312 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12

S.Adenosylhomocysteine 0.075 -0.014 -0.014 -0.014 0.071 0.141 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 0.208 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014

Salicylate -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031 0.196 -0.031 -0.031 -0.031 0.183 -0.031 0.223 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031

Salicylurate 0.186 -0.089 0.055 -0.012 0.131 0.102 0.144 0.198 -0.089 -0.089 -0.089 0.064 0.168 0.034 -0.089 0.206 -0.089 -0.089 -0.089 -0.089

Sarcosine -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 -0.053 0.093 -0.053 0.085 0.171 -0.053 -0.053 -0.053 -0.053 -0.053 0.148 0.052 -0.053 0.309

Serotonin -0.021 0.157 -0.081 -0.081 -0.081 -0.081 -0.081 -0.081 -0.081 -0.081 -0.081 0.07 0.275 0.226 -0.081 0.123 -0.081 -0.081 0.186 0.122

sn.Glycero.3.phosphocholine 0.322 -0.031 -0.207 0.063 -0.05 -0.207 0.138 -0.114 0.297 -0.167 -0.104 0.146 -0.179 -0.108 -0.096 0.278 0.236 -0.077 0.098 -0.159

Succinate -0.104 0.24 0.111 -0.194 0.194 0.084 0.449 0.144 0.072 0.039 -0.029 -0.132 -0.015 -0.057 -0.162 0.003 -0.21 -0.019 0.353 -0.287

Succinylacetone -0.133 -0.09 -0.223 0.043 -0.038 -0.173 -0.046 0.001 -0.122 -0.117 -0.043 0.001 -0.117 -0.09 -0.1 -0.027 0.279 -0.018 -0.218 -0.089

Sucrose -0.068 -0.068 -0.068 -0.068 -0.068 -0.068 -0.068 0.098 -0.068 -0.068 0.083 -0.068 0.113 -0.068 0.082 -0.068 -0.068 0.138 -0.068 -0.003

Syringate -0.008 -0.05 -0.053 -0.069 -0.079 -0.054 -0.079 -0.016 -0.079 -0.079 0.03 -0.06 -0.059 -0.061 -0.071 0.116 -0.079 -0.079 -0.053 -0.066

Tartrate -0.133 0.015 -0.025 -0.133 0.001 -0.133 -0.039 -0.032 0.028 0.015 -0.053 -0.001 -0.011 -0.066 0.007 -0.001 0.056 -0.133 0.015 1.432

Taurine -0.207 -0.207 0.107 1.408 -0.207 0.466 -0.207 -0.207 -0.207 -0.207 -0.207 -0.207 0.212 -0.207 -0.207 -0.207 -0.207 -0.207 -0.207 -0.207

Theophylline 0.018 -0.048 -0.128 -0.013 -0.104 0.046 -0.059 0.081 -0.091 0.046 0.019 -0.038 -0.096 -0.064 -0.1 -0.083 -0.003 0.054 -0.075 0.222

Threonate -0.819 0.802 -0.819 0.599 -0.17 -0.196 -0.197 -0.008 -0.819 0.641 -0.005 0.5 -0.069 -0.311 -0.205 0.088 -0.819 -0.152 -0.819 0.294

Threonine 0.016 0.263 -0.226 0.347 -0.226 -0.226 0.099 0.469 0.044 0.221 0.161 -0.226 -0.226 -0.226 -0.226 0.205 -0.226 -0.226 -0.226 -0.078

Thymidine -0.013 -0.013 -0.013 0.197 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 0.154 -0.013 -0.013 -0.013 -0.013

Thymol -0.17 -0.051 0.007 0.038 -0.056 0.018 0.033 0.02 0.067 -0.17 -0.005 0.083 -0.17 0.118 0.016 -0.17 -0.17 0.066 0.06 0.163

trans.4.Hydroxy.L.proline -0.071 -0.071 -0.071 -0.071 -0.071 -0.071 0.94 -0.071 -0.071 -0.071 -0.071 -0.071 -0.071 -0.071 0.819 -0.071 0.441 -0.071 -0.071 -0.071

trans.Aconitate 0.022 -0.014 -0.047 -0.218 0.101 0 0.068 0.006 0.245 0.102 -0.005 0.039 -0.063 0.006 -0.215 0.07 -0.259 0.049 0.007 -0.194

Trehalose -0.042 -0.042 0.422 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 0.955 -0.042 0.01 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042 -0.042

Trigonelline 0.168 -0.187 0.105 -0.101 0.054 -0.187 -0.148 -0.139 0.116 -0.187 -0.028 -0.1 -0.129 -0.088 -0.074 0.097 -0.07 0.221 -0.013 -0.135

Trimethylamine.N.oxide 1.926 0.073 -0.158 -0.16 -0.148 -0.171 -0.158 -0.147 -0.162 -0.168 0.158 -0.168 0.424 -0.154 -0.17 -0.168 -0.147 -0.17 -0.143 1.738

Tropate -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 -0.023 0.888 -0.023 -0.023 -0.023

Tryptophan -0.223 -0.223 0.014 0.071 -0.223 0.652 0.013 0.201 -0.126 0.079 -0.223 0.035 0.508 0.022 -0.075 0.17 -0.223 0.106 0.053 0.641

Tyramine -0.049 0.178 -0.049 0.187 -0.049 -0.049 0.229 -0.049 -0.049 -0.049 -0.049 -0.049 -0.049 0.127 -0.049 0.134 -0.049 -0.049 -0.049 -0.049

Tyrosine 0.251 0.438 0.219 0.2 -0.143 -0.143 -0.143 -0.143 -0.143 -0.143 -0.143 0.242 -0.143 -0.143 -0.143 0.256 -0.143 -0.143 0.214 -0.143

UDP.galactose -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 0.132 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017

UDP.glucose -0.032 -0.032 -0.032 -0.032 -0.032 -0.032 -0.032 0.256 -0.032 -0.032 -0.032 -0.032 -0.032 0.151 -0.032 0.126 -0.032 -0.032 -0.032 -0.032

UDP.glucuronate 0.026 -0.053 -0.053 -0.053 0.06 -0.053 -0.053 0.15 -0.053 0.154 -0.053 -0.053 0.25 -0.053 -0.053 0.096 -0.053 0.194 -0.053 -0.053

UDP.N.Acetylglucosamine -0.08 -0.08 -0.023 0.096 0.079 -0.015 0.013 0.084 -0.024 -0.08 0.179 0.017 -0.08 0.119 -0.08 -0.032 -0.08 0.091 0.104 -0.002

UMP -0.038 0.116 0.035 -0.038 0.053 0.031 -0.038 -0.038 -0.038 -0.038 -0.038 0.074 -0.038 -0.038 0.228 -0.038 -0.038 -0.038 -0.038 -0.038

Uracil 0.457 -0.088 0.102 0.096 -0.088 0.092 -0.088 0.453 0.084 -0.088 -0.088 -0.088 -0.088 -0.088 0.323 0.012 -0.088 -0.088 -0.088 -0.088

Uridine -0.027 0.136 -0.027 -0.027 -0.027 -0.027 -0.027 0.183 -0.027 -0.027 -0.027 0.313 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027 -0.027

Urocanate 0.21 0.155 0.11 0.142 -0.055 0.054 0.08 -0.055 -0.055 -0.055 -0.055 0.092 -0.055 -0.055 0.115 -0.055 -0.055 -0.055 -0.055 -0.055

Valerate -0.046 -0.046 -0.046 -0.046 -0.046 -0.046 -0.046 -0.046 -0.046 0.292 -0.046 -0.046 0.098 -0.046 -0.046 0.347 -0.046 -0.046 -0.046 -0.046

Valine -0.068 0.076 -0.137 -0.002 0.107 -0.004 0.023 -0.034 -0.119 0.031 0.133 0.033 -0.01 0.062 0.072 0.038 -0.009 0.131 -0.032 -0.082

Vanillate -0.035 0.029 -0.035 0.287 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 0.104 -0.035 0.105 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035 -0.035

Xanthine 0.048 -0.085 0.28 -0.039 -0.076 -0.031 -0.102 -0.038 -0.164 0.326 -0.164 -0.164 0.038 -0.085 0.081 -0.075 -0.164 -0.164 -0.076 0.985

Xanthosine -0.034 -0.034 -0.034 -0.034 -0.034 0.005 -0.034 -0.034 -0.034 -0.034 -0.034 -0.034 0.026 -0.034 -0.034 0.004 -0.034 -0.034 -0.034 0.694

Xanthurenate -0.061 -0.024 -0.102 -0.038 -0.102 -0.082 -0.102 0.094 0.08 0.253 -0.102 -0.04 0.213 -0.059 -0.076 -0.039 -0.049 -0.102 -0.04 0.827
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Sample LANC009 LANC020 LTHTr006 LANC010 LANC032 LTHTr010 LANC034 LANC012 LANC013 LANC037 LANC038 LANC016 LANC040 LANC018 LANC028 LTHTr003 LANC029 LANC030 LANC021 LTHTr013

Group Control Control Control Control Control Control IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD IBD

Xylitol -0.177 -0.177 1.621 -0.177 -0.177 -0.177 -0.177 0.17 -0.177 1.345 0.799 -0.177 -0.177 -0.177 -0.177 -0.177 -0.177 -0.177 -0.177 -0.177

Xylose -0.066 -0.066 -0.066 0.374 -0.066 -0.066 -0.066 -0.066 -0.066 1.141 -0.066 -0.066 -0.066 0.425 -0.066 -0.066 -0.066 -0.066 -0.066 -0.066

X..Alanine -0.031 -0.031 -0.031 -0.031 -0.031 0.416 -0.031 0.397 -0.031 -0.031 -0.031 -0.031 -0.031 0.324 -0.031 -0.031 -0.031 -0.031 -0.031 -0.031

X..Glutamylphenylalanine 0.624 -0.064 -0.064 -0.064 -0.064 0.24 -0.064 0.824 0.228 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064 -0.064

X..Methylhistidine 0.64 0.012 -0.01 -0.255 0.072 -0.034 0.064 -0.348 0.025 0.158 0.227 0.306 -0.188 0.011 -0.117 0.265 -0.024 -0.193 -0.187 -0.306

X..Methylhistidine.1 0.72 0.013 -0.025 -0.191 -0.005 -0.137 -0.121 -0.07 -0.191 -0.03 -0.104 -0.135 0.039 0.078 -0.191 -0.061 -0.006 0.007 0.23 0.221
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Appendix 10 - Scatterplot Matrix  
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Appendix 11 - Complete and Annotated Proportionate Microbiota Data at Order Level. 
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Relative taxonomic composition of 16S rRNA amplicon sequences in mucosal-associated 

microbiota, at order level. K, kingdom; p, phylum; c, class; o, order; F, functional; D, 

defunctioned. n=4.  
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Appendix 12 - Complete and Annotated Proportionate Microbiota Data at Genus Level. 
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Relative taxonomic composition of 16S rRNA amplicon sequences in mucosal-associated 

microbiota, at genus level. K, kingdom; p, phylum; c, class; o, order; f, family; g, genus; F, 

functional; D, defunctioned. n=4. 

 


