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Here are the highlights from our paper:
{ We studied the framework in which the stock price environment is in one-to-one correspondence

with a given driving processes.
{ We focused on the systems driven by a sentiment process of the Markov chain type, governing

the buy vs. sell decision of agents.
{ We demonstrated that the Baum-Welch algorithm of the Hidden Markov Models can be

used to recover the transition probabilities matrix of the sentiment process, when the system
exhibits sufficiently long-lived sentiment states.

{ We discussed application of the Recurrent Neural Network to the problem of reconstruction
of the specific sentiment states at each point in time, from the observed stock prices.

{ We discussed regimes of applicability of the HMM and RNN methods to the problem of the
sentiment reconstruction.

Sincerely,

Mikhail Goykhman, Ali Teimouri

*Highlights (for review)
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Abstract.

In this paper we continue the study of the simulated stock market framework

defined by the driving sentiment processes. We focus on the market environment

driven by the buy/sell trading sentiment process of the Markov chain type. We apply

the methodology of the Hidden Markov Models and the Recurrent Neural Networks

to reconstruct the transition probabilities matrix of the Markov sentiment process and

recover the underlying sentiment states from the observed stock price behavior. We

demonstrate that the Hidden Markov Model can successfully recover the transition

probabilities matrix for the hidden sentiment process of the Markov Chain type. We

also demonstrate that the Recurrent Neural Network can successfully recover the

hidden sentiment states from the observed simulated stock price time series.

1. Introduction

A typical stock market simulation framework considers a discrete-time evolution of a

system of agents, each possessing shares of stock and units of cash, who submit orders

to the stock exchange, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] for some of the original

papers. One can assume that at each time step each agent participates in a trade with

some probability, which in the simplest models is identical for all of the agents, and is

a constant in time. If the agent decides to participate in a trade then it needs to decide

on the side of the trade (buy or sell), the limit price (for which it is willing to buy or

sell the shares of stock), and the size of the order.

‡ goykhman89@gmail.com

*Manuscript
Click here to view linked References



Machine learning in sentiment reconstruction of the simulated stock market 2

In the simplest models the buy/sell side is determined by a flip of a fair coin, the

limit price is normally distributed around the value related to the most recent stock

price, and the size of the order is drawn uniformly between a zero and all-in [5]. Under

such conditions the stock price time series will exhibit a mean-reverting behavior around

the equilibrium, Pe = M/S, determined by the total amount of cash M and the total

number of shares S in the system. This relation is a simple consequence of the balance

of an expected cash flows to and from the stock market capitalization. Similarly, the

volatility σe around the mean price Pe is determined by the standard deviation σ of the

limit orders submitted by the agents, σe ' kσ, for a certain value of k [5].

The real world stock prices time series are far from being simple mean-reverting

processes. In order to obtain interesting stock price dynamics one needs to incorporate

a non-trivial behavior of the agents, rather than a random behavior described in the

previous paragraph. Various models have been proposed in the literature, incorporating

a sophisticated strategies into the behavior of agents, such as trend-following, contrarian,

fundamental, utility optimization, etc, see [14] for a review. The common feature of

those models is that the agents apply a specified strategy to the observed stock price

behavior to make a purposeful decision about their trading actions. Such models have

been rather successful in explaining stylized facts of a stock price behavior, such as fat

tails of logarithmic returns [15] and volatility clustering.

Another way to model the stock price behavior in a simulated setting has been

proposed in [13]. The starting assumption adopted in [13] was to consider a stock market

framework in which the strategies of the agents are in one-to-one correspondence with

a set of processes, called sentiments. (An interesting review of the sentiment analysis

in stock market can be found in [16].) § Examples of such sentiment processes include

the perceived volatility sentiment, determining the standard deviation of the submitted

limit price, the buy/sell attitude, determining the willingness to buy rather than sell

a stock, and the participation sentiment, determining the trading volume. All or large

groups of the agents receive sentiments from the same source, probably with some noise

around it. For instance, half of the agents might receive an information that a stock

has been assigned a positive rating, and therefore the agents in that group will be, e.g.,

thirty-percent more willing to buy that stock rather than to sell it.

One could ask what would be the reason to model the behavior of the stock market

participants using the driving sentiment processes. Indeed, it is likely to expect that

the agents participating in the market will readjust their trading decision basing on the

observed stock price behavior, rather than persist following the pre-specified sentiment.

We answer this question by pointing out that the sentiment processes which we discuss

in this paper are emergent rather than imposed, in the sense that the collective behavior

of the agents, in the framework considered in this paper, can be described via sentiment

states.

§ There are subtle specifics as to how this one-to-one correspondence is to be understood. For instance,

we do not distinguish between market frameworks in which a subgroup of agents follows a particular

strategy, or each agent in the whole system adopts that strategy with the corresponding probability.
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We do not address the question of intelligence of the agents in our stock market

simulation framework. Our stock market framework models the situation in which the

(large groups of) agents have some trading guidelines which we propose to model by a set

of sentiments. This is contrasted with most of the agent-based stock market simulations,

ranging in their degree of sophistication in modeling the agents’s intelligence: starting

from the model [5] of agents with low intelligence (where agents only look at the most

recent stock price and stock volatility to decide on the limit orders they submit), to

the sophisticated model of [4] with agents shaping their trade decisions using genetic

algorithms. The major postulate of our sentiment-driven stock market framework is

that all of the intelligent decision-making by the agents has happened elsewhere, and

that the outcome of it can be concisely formulated in terms of the driving sentiment

processes.

Therefore the sentiment trading conditions discussed in this paper define a market

framework as the starting assumption. In a sentiment-driven stock market framework

the stock price dynamics is largely determined by the properties of the underlying

sentiment processes. Once all the sentiments have been specified we can predict well

what will come out of the simulation. We can ask the opposite question: if we observe a

stock price behavior and we know that it has originated in a sentiment-driven framework,

how do we determine the underlying sentiment processes? This paper is concerned with

such a question.

Notice that above we are talking about attempting to explain a stock price behavior

using sentiment driving processes when we know for sure that the observed stock price

time series has been simulated in a sentiment-driven market simulation. One can ask a

question of whether the real-world stock data can be analyzed in a similar way, starting

from the assumption that the behavior of the real market participants boils down, within

a certain degree of approximation, to a few driving sentiment processes. In this spirit

it would be interesting to explore how the sentiment market framework can account for

the real market behavior. We will not be addressing this question in this paper, leaving

it for future work.

The simplest sentiment-driven stock market environment is defined by a few well-

separated sentiment regimes. By calculating the mean stock price in each of those

regimes we can derive the corresponding sentiment. The probability to switch between

the regimes is then small (of order of an inverse number of steps the market spends in

the given sentiment state). We discuss such a situation in section 2, where we consider

the market environment in which various groups of agents follow the buy/sell sentiment

which changes twice over the time of the simulation. We demonstrate explicitly that

the resulting mean stock price in each of the sentiment regimes is consistent with the

cash flow balance equation.

A more sophisticated situation is to consider a non-trivial sentiment time series,

switching regularly between states with different sentiments. A simple example of such

a process, which we will be focusing on for the most part of this paper, is given by
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a Markov chain, with a certain transition probability matrix. The problem is then

to recover the transition probability matrix of the sentiment Markov process from the

observed stock price time series. We will address this problem in section 3 using the

Baum-Welch algorithm of the Hidden Markov Model (HMM). For an excellent review

of the HMM we refer reader to [17].

We notice for completeness that there have been some attempts in the literature

to use techniques of the HMM to predict the stock price behavior [18, 19, 20]. A

typical goal stated in the literature is to predict the next day’s stock price using the

HMM trained on the most recent stock price values. We notice that since typically the

next day’s stock price is correlated with the current day’s stock price, any prediction

prescription for the next day’s price which relies on the current day’s price will appear

to be successful, and exhibit a high correlation scores with the actual next day’s stock

price. However we point out that one should be careful about how valuable is in fact

such a prediction, and whether one can construct a profitable trading algorithm based

on it. In the frameworks aspiring to predict the next day’s stock price we suggest to

test this goal by calculating the fraction of days on which at least the direction (and at

most the return) of the stock price has been guessed correctly. In this paper we are not

concerned with an interesting question of predicting the real world stock prices using

the HMM.

If we know the transition probabilities matrix for the sentiment Markov process and

if we know the current sentiment state which we are in, then we can make an informed

trading decision, taking into account the most likely true market value of the stock, and

the probability that such a value will change, and by how much. In section 3 we discuss

application of the Viterbi algorithm of the HMM to the problem of reconstruction of

the underlying hidden sentiment states. We demonstrate that due to limitations of

the HMM to describe the sentiment market framework the Viterbi algorithm performs

poorly, and predicts the underlying sentiment states with an accuracy being as good as

a random guess. We explain in subsection 3.2 that this is essentially due to the fact that

the distribution of observed stock prices depends not only on the current sentiment but

also on the sequence of the recent sentiments, as contrasted with the local condition of

the HMM.

Therefore in order to predict the underlying hidden sentiment states one needs a

different method, which would be capable to remember the sequence of states for a fit,

rather than a single state. We suggest that for this purpose one can use the technology of

the Recurrent Neural Networks (RNN). In section 4 we demonstrate that using the RNN

one can improve the prediction of the underlying sentiment states from the observed

stock prices, and make it significantly above a random guess.

We discuss our results in section 5. In Appendix A we review the methodology of

the Hidden Markov Models relevant for this paper. Appendix B is dedicated to a review

of the Recurrent Neural Networks.
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2. A simple buy/sell sentiment market

In this paper we study the stock market simulation framework in which all of the

non-trivial price dynamics originates from specified processes, which we refer to as

sentiments. In this section we discuss a simple example of a sentiment-driven stock

market system, and explain our notation on this system. We will be only considering

a non-trivial buy/sell sentiment process. It is defined as follows: the agent A is said

to follow a buy/sell sentiment ψ(t) if at the time t, provided it decides to participate

in a trade, it will submit a buy order with the probability pb and a sell order with the

probability ps = 1− pb, determined as

pb
ps

= eψ(t) . (1)

Consider the system of N = 1000 agents, evolving in a discrete time t = 1, . . . , T

over the course of T = 104 steps. Each agent Ai, i = 1, . . . , N , at the beginning of the

considered time step, is in a possession of Mi units of cash, and Si shares of stock. The

amount of shares of stock and the amount of cash in the system is constant. At each

time step each agent will submit a trade order with probability ρ = 1/10 to the stock

exchange. A typical way to simulate trading between the agents which can be found in

the literature is done by maintaining a limit order book an operating a matching engine,

similar to the real stock exchange.

In this paper we clear the unfilled orders from the order book before the next time

step, see however [21] for the discussion of time-frame it takes to fill large orders, and

how this influences the price change. In this paper we omit discussion of this subtlety,

which would be interesting to incorporate in the future work. The model discussed in

this paper therefore serves to model a day trading activity, in which the agents submit

their orders with the expiration tag of that day’s market close. We refer reader to [13]

for a recent discussion of the mechanics of the matching engine.

Regardless of the side of the order the agent will submit a limit price for its order by

taking a gaussian draw centered around the most recent stock price with the standard

deviation σ = 0.01. The side of the order (buy or sell) in the system discussed in this

section is determined as follows. The agents are divided into two groups: the group G1

has zN agents, z = 1/4, and the group G2 has the remaining (1 − z)N agents. The

agents of the group G1 are following the sentiment process

ψ1(t) =

{
0 if t ∈ [0, T/3]

log 2, if t ∈ [T/3, T ]
(2)

and the agents of the group G2 are following the sentiment process

ψ2(t) =

{
0 if t ∈ [0, 3T/4]

− log 2, if t ∈ [3T/4, T ]
(3)

We stress here that the chosen specific sentiment drivers (2), (3) considered in

this section serve only the purpose of illustration for the sentiment-driven market
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Figure 1. Stock time series for the simulation in section 2. There are three

sentiment regimes: T1 ' [0, T/3], with the mean P
(1)
e = 98.5 and volatility σ(1) = 1.5,

T2 ' [T/3, 3T/4], with the mean P
(1)
e = 116.7 and volatility σ(2) = 3.3, T3 ' [3T/4, T ],

with the mean P
(1)
e = 69.3 and volatility σ(3) = 4.3. These values are in agreement

with the prediction (7), with P1 = 100.

framework proposed in this paper (following [13]). We suggest that the real-world market

sentiments are of a much more non-trivial form. In fact, the point of this paper is to

discuss an application of the methods of the Hidden Markov Models and the Recurrent

Neural Networks to the problem of inferring the real-world market sentiments.

We will assume that regardless of the side each agent Ai submits an order of a

uniform size ui = U(0, 1), and for a limit price N (Pt−1, σ), where Pt−1 is the most

recent stock price. These conditions are designed in the spirit of the sentiment-driven

market framework of [13], with a constant volatility sentiment.

The starting stock price is chosen to be P1 = 100. We give each agent Mi(t =

1) = N (105, 103) units of cash and Si(t = 1) = 103 shares of stock. Non-identical initial

wealth allocations in the sentiment-driven market framework have been considered in

[13]. Under the conditions of a uniformly distributed trade size and a neutral buy/sell

sentiment, the equilibrium price is Pe = Mi/Si = 100, equal to the original stock price

P1. Therefore we expect that until the time t = T/3 the stock price will be mean-

reverting around the P1. After that the sentiment of the agents from the group G1

becomes more bullish, so we expect the price to go up to a new equilibrium value.

The length of the transition period depends on the perceived stock volatility σ and the

trading intensity of the agents. For the purposes of this section we skip discussion of

the transition period and calculate the new equilibrium price of a well-separated new

sentiment regime.

In equilibrium the average cash flows to and from the stock market capitalization
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should balance each other. This condition can be derived by averaging the cash flow

balance equation

peff
b M = peff

s S Pe , (4)

where we have denoted the total cash in the system as M =
∑

iMi, and the total

number of shares outstanding as S =
∑

i Si, and introduced the effective buy and sell

probabilities. The latter are defined by noticing that having several groups of agents with

different sentiments in each group is the same as having one group, where each agent

decides at each step to act accordingly with a certain sentiment, with the corresponding

probability:

peff
b = p(buy|G1) p(G1) + p(buy|G2) p(G2) =

eψ1

eψ1 + 1
z +

eψ2

eψ2 + 1
(1− z) , (5)

peff
s = p(sell|G1) p(G1) + p(sell|G2) p(G2) =

1

eψ1 + 1
z +

1

eψ2 + 1
(1− z) . (6)

Specifically for the sentiment processes (2), (3) we obtain the expected equilibrium

price time dependence

Pe(t) =





P1 if t ∈ [0, T/3]

13

11
P1 if t ∈ [T/3, 3T/4]

5

7
P1 if t ∈ [3T/4, T ]

(7)

This can be easily confirmed by a simulation, see figure 1.

In the setup considered in this section the market has undergone just two transitions

between three sentiment regimes, over a large number of simulation steps (104). In such

a case different sentiment regimes are well separated from each other, and we can easily

calculate the mean stock price and the standard deviation for each sentiment regime, see

caption of figure 1, and use the flow balance equation (4) to calculate the corresponding

sentiment. We can also infer the order of magnitude of the transition probabilities

between the sentiment regimes as being negligibly small, Ptrans ' O(10−4).

3. Sentiment fit using Hidden Markov Models

In section 2 we discussed the simplest example of inferring sentiment properties from

the observed stock price time series in a system with a well-separated sentiment regimes.

A more sophisticated example of a sentiment-driven market can be constructed by

considering a sentiment which is itself a non-trivial time series process. In this section

we consider a simple market simulation where trading activity of the agents is influenced

by a simple buy/sell sentiment process ψ(t) of the Markov chain type. In subsection 3.1

we describe specifics of the simulated stock market. In subsection 3.2 we discuss how one

can reconstruct the properties of the underlying sentiment process using the framework

of the HMM. In subsection 3.3 we describe the outcome of multiple simulations and the

HMM fit of the sentiments. We refer reader to Appendix A for a review of the HMM

relevant for this paper.
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Figure 2. Stock time series for the simulation in section 3.1.

3.1. Simulation setup

Consider the system of N = 1000 agents trading over the period of T = 1000 steps. At

each time step each agent decides to participate in a trade with probability ρ = 1/10.

If it participates in a trade, it will choose the buy side with the probability pb, and the

sell side with the probability ps = 1 − pb, such that pb/ps = eψ(t). Regardless of the

side of the trade the agent will submit a limit price for its order chosen as a gaussian

draw around the most recent stock price with the standard deviation being a stationary

volatility sentiment process σ = N (0.02, 0.005). At the beginning we give each agent

1000 shares of stock at the initial price P1 = 100, and N (105, 103) units of cash.

The sentiment process ψ(t), governing the buy/sell decision making of the agents,

is a Markov chain, with three possible states, and the corresponding equilibrium prices

(4) being

• Buy with sentiment ψb = 1, and equilibrium price P
(b)
e = 271.

• Neutral with sentiment ψn = 0, and equilibrium price P
(n)
e = 100 .

• Sell with sentiment ψs = −1, and equilibrium price P
(s)
e = 36.

The Markov chain ψ(t) will be initialized randomly at t = 1, and the switch between

the different sentiment states will occur according to the transition probabilities matrix

||aij|| =



Pb,b Pb,n Pb,s
Pn,b Pn,n Pn,s
Ps,b Ps,n Ps,s


 , (8)
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where Pi,j is the probability of moving from i to j in one time step. In order to realize

a long-lived hidden states we will be considering the values of aij drawn uniformly from

the interval

aii ∈ [0.95, 0.98] . (9)

Then due to (9) the system will spend on average 20-50 time steps in each sentiment

state. In such a manner we will run multiple trading simulations, drawing the

probability matrix aij randomly, taking into account the constraint (9), and generate

the corresponding stock price time series.

3.2. Single HMM reconstruction

In the previous subsection we discussed the general market environment which will

be used in this section to generate the stock price time series governed by a buy/sell

sentiment process of the Markov chain kind. In this section we are going to reconstruct

the hidden transition matrix, afit
ij , from the observed stock price behavior using the

Baum-Welch algorithm of the HMM. We will begin by running a single simulation and

explaining our approach, and in the next subsection we proceed to running multiple

simulation and gathering fit results.

While we use the methods of the HMM to fit the sentiment transition probabilities

matrix aij, the stock market environment discussed above is not a Hidden Markov

system. Indeed, while the hidden sentiment process is constructed to be of the Markov

chain type, the observed stock price is derived from an intersection of supply and demand

at each time step, rather than obtained using an emission probabilities matrix (as in

the HMM) from the hidden states to the observed states.

Specifically, in the HMM for each hidden state the emission probabilities for

observed states are always the same. But in the stock market simulation each sentiment

does not uniquely determine distribution of possible stock prices. In fact, the price is

expected to be essentially influenced by the recent sentiments, for instance, it matters

whether the sentiment has recently decreased or increased. Therefore a more appropriate

way to fit the sentiment time series would involve a method allowing to keep track of

the sequence of states, rather than one state. We will employ such a method in the next

section, where we will be considering application of the Recurrent Neural Networks to

the problem of inferring the sentiments.

Let us incorporate a buy/sell sentiment driving process of the Markov chain type

with the transition probability matrix

aij =




0.95 0.025 0.025

0.035 0.93 0.035

0.05 0.05 0.9


 . (10)

into the market system described above in this section. Running a simulation over

T = 1000 steps we have generated the stock price time series plotted in figure 2. We are

going to take the stock price time series produced in this simulation as an observable
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input. Following the Baum-Welch algorithm we were able to reconstruct the transition

probabilities matrix as

afit
ij =




0.93 0.07 0

0.06 0.82 0.12

0 0.09 0.91


 . (11)

Notice that this result is rather close to the actual transition probabilities matrix (10).

It is notable that such an accuracy drops sharply if one violates the constrain given in

(9). The reason for taking that constraint is to have the market reside in a state with the

given sentiment for a long enough time. This way the stock price can spend enough time

close to the corresponding equilibrium value P (e), thereby allowing the HMM to train

on that value as the one corresponding to each specific sentiment ψ. On the other hand

in a system with short-lived sentiment states assumptions of the HMM will be invalid,

as discussed above, rendering the Baum-Welch algorithm inapplicable. We will repeat

such a simulation and reconstruction below multiple times and confirm this result.

Applying the Viterbi algorithm we obtained the fit score 0.4, that is, only 40% of

the Viterbi predictions of the underlying sentiments match the reality. This is almost

as good as a random guess of one out of three sentiments, as we will confirm below by

running multiple simulations and aggregating scores of the Viterbi predictions. Such a

poor performance of the Viterbi algorithm for the market sentiment reconstruction is

in fact anticipated, and as discussed above can be explained by the fact that the stock

market simulation is not really a Hidden Markov Model.

3.3. Repeated HMM reconstructions

In this subsection we are going to discuss the results of the repeated simulations, similar

to those described in subsection 3.2. For each simulation we are going to initialize

the transition probabilities matrix of the hidden sentiment Markov process randomly,

with the only demand that it satisfies the constraint (9). For each generated sentiment

process we simulate the stock market evolution in the setup described in subsection 3.1.

We then perform the Baum-Welch fit for the transition probabilities matrix aij, and the

Viterbi fit for the sentiment states ψ(t).

The result of the Baum-Welch fit is a 3 × 3 plot in figure 3, where each subplot

corresponds to a hidden transition probabilities matrix element. Specifically, on each

panel we provide a scatterplot of the Baum-Welch fit for the transition probability

matrix elements, afit
ij , vs. the actual transition probability matrix elements, aij, used in

that simulation.

For each simulation described above we also use the Viterbi algorithm to reconstruct

the sentiment state ψ(t) at each time step t. We plot the results in figure 4. The mean

score is 0.33, which is as good as guessing one of three sentiment states at random. This

is a reflection of the fact that the sentiment market environment, as discussed above, is

not a hidden Markov system.
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Figure 3. Results for the sentiment transition probabilities matrix fit in subsection

3.3 over 100 simulations. Each pane of the 3× 3 plot corresponds to the fit results for

one of the nine matrix elements. The horizontal axis represents the actual value of the

matrix element aij , and the vertical axis represents the Baum-Welch fit afit
ij .

4. Sentiment fit using Recurrent Neural Network

In section 3 we discussed an approach to reconstruct properties of the hidden sentiment

process from the observed stock price behavior using the methodology of the HMM. We

have demonstrated that the Baum-Welch algorithm of the HMM can be used to recover

the transition probabilities matrix for the sentiment Markov process with a sufficiently

long-lived sentiment states. We have also applied the Viterbi algorithm to estimate the

underlying sentiment states from the observed stock prices and demonstrated that the

resulting predictions are not satisfactory, and are no better than a random guess. We

have argued in subsection 3.2 that such a poor performance of the HMM fit for the

sentiment states is due to the fact that the simulated stock market, unlike the HMM,

is influenced by the sequence of recent states, rather than a single current state. As an

alternative to the Viterbi algorithm in this section we attempt another approach, using

the Recurrent Neural Networks, to the problem of recovering sentiment states from the

stock price time series. We refer reader to Appendix B for a review of the RNN, relevant

for the purposes of this paper.
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Figure 4. Results for the sentiment states fit in subsection 3.3 over 100 simulations,

obtained using the Viterbi algorithm. The score on the x-axis represents the fraction

of states reconstructed correctly.
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Figure 5. Stock time series for the simulation in section 4.
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An RNN is a neural network designed to fit time series, and capable of remembering

and training on sequences of states. An input for an RNN is a time series {Pt}, t = 1, . . .

of an arbitrary length, and one can train RNN on sequences of data of length T (unfold

the RNN into T time layers). We are interested in reading an output ψ̂t at each t, which

will be the buy/sell sentiment of the market at time t. The hat indicates that this is

the fit, rather than the true sentiment ψt.

Consider the system of N = 1000 agents over T = 5000 simulation steps, driven by

a buy/sell sentiment process of the Markov chain type with the states ψ = −1, 0, 1, and

the transition probabilities matrix of the form (8) defined to be equal to

aij =




0.9948 0.0002 0.005

0.0016 0.9962 0.0022

0.0044 0.0025 0.9931


 . (12)

We also include the volatility sentiment as a stationary process σ(t) ∼ N (0.02, 0.005).

Running the simulation we obtain the stock price time series in figure 5. Notice that the

system spends about 100 steps in each sentiment state. We split the 5000 steps into the

first 4500 steps, used as a train set, and the last 500 steps, used as a test set. We train

the RNN on the chunks of data with T = 100 steps from the train set. The length of

the memory layer is taken to be 200. We then ask the RNN to predict sentiments from

the stock price observations in the test set. The train score then turns out to be 0.51,

and the test score is 0.54, reflecting the fractions of sentiment states inferred correctly

by the RNN. This is significantly better than 0.33 score of the random guess.

In order to confirm this result we repeat the calculation over 100 simulations,

drawing the diagonal elements of the sentiment transition probability matrix uniformly

from the interval [0.97, 1). We noticed that in order to optimize the average RNN

performance one should unfold the RNN for the T steps in the range T ' [25, 75]. In

figure 6 we plot the scores obtained for T = 50. This makes sense, because we need

T to be larger than the length of the transition period between the sentiment states.

On the other hand T should be smaller than the life-time of a sentiment state. The

train set score and the test set score are equal to 0.56, 0.5 respectively, which is an

improvement compared to the 0.33 random guess score. We speculate that not quite

perfect performance of an RNN is due to the properties of the simulated stock price

time series. It would be interesting to classify systematically what kind of simulated

stock price times series in a sentiment-driven stock market framework allows for a more

accurate reconstruction of the underlying sentiment states.

5. Conclusions and discussion

In this paper we discussed the problem of inferring the properties of the hidden sentiment

process from the observed stock price behavior in a sentiment-driven simulated stock

market framework of [13]. We have mostly considered the systems in which the sentiment

process is a Markov chain, and approached the problem of retrieving the Markov
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Figure 6. Results for the sentiment states RNN fit in section 4 for 100 simulations.

The score on the x-axis represents the fraction of states reconstructed correctly. The

train set is the first 90% of the data points, the test set is the last 10%. The mean of

the train set is 0.56, the mean of the test set is 0.5.

transition probabilities matrix, and the sentiment states themselves, from the stock

price time series. To tackle this problem we proposed to use the methods of the Hidden

Markov Model and the Recurrent Neural Network. While it would be interesting to

infer the sentiment processes using techniques of the HMM and RNN, in this paper

we only considered reconstructing sentiments of the stock time series which have been

simulated, rather than taken from the real world market data.

We demonstrated that the Baum-Welch algorithm of the Hidden Markov Model

allows to successfully reproduce the sentiment transition probabilities matrix. This is

true provided the system exhibits a long-lived sentiment states. We also demonstrated

that the prediction performance of the Viterbi algorithm of the HMM, applied to infer

the sentiment states at each time step, is as good as a random guess. This is due to the

fact that, the Viterbi algorithm is predicting the most probable path between hidden

states and observation, assuming that for the given hidden state the distribution of

observations is always the same. In other words, in the HMM the observable state,

which in our case is the stock price, is determined locally from the hidden state, which

in our case is the sentiment, by the fixed emission probability matrix. Therefore the

distribution of observables is always the same for the same hidden states. However,

in the case of the simulated stock price the distribution of a price at the given time

moment depends on the sequence of the recent hidden sentiment state, not only on the

single most recent sentiment.

We observed that in order to be able to recreate the underlying sentiment state

from the observed stock price time series we need to have a model which will fit the

current stock price against the sequence of the recent sentiment states, not just against

the current sentiment state. For this purpose we proposed to use the technology of the

Recurrent Neural Network, which is known as a framework capable of remembering the

sequence of states and fitting time series. We demonstrated that the accuracy of the

RNN method is around 50%, being significantly better than the random score of 33%.
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We suggest the further tuning of the RNN can improve the fit score even further.

In this paper we have refrained from applying the sentiment-driven market

framework to the real-world market, leaving this interesting direction for future work.

We note that our results for the Baum-Welch and RNN performance suggest that our

method can be adequate for day rather than intra-day stock price time series, so that one

would have regimes with potentially long-lived sentiment states. It is worth mentioning

that our approach can be used for more complicated models involving option trading.

This is because most of options are traded over a long run.
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Appendix A. Hidden Markov Models

In this appendix we review the known techniques of the Hidden Markov Models. For

an excellent introduction we refer the reader to [17].

The framework of HMM is based on the concept of an ordinary Markov chain.

Consider a random process {xt} in discrete time, t = 1, 2, . . . , T , where T is the length

of the period over which we study the process. At each time step t the random variable

xt can be in one of N states, denoted by X1, X2, · · · , XN . We cannot observe the states

{xt} directly. Instead we observe the process {yt}, where each yt can be in one of M

states Y1, Y2,..., YM .

The HMM is characterized by the following parameters:

• Hidden state transition probability distribution A = {aij}, where aij is the N ×N
matrix of transition probabilities between hidden states, i.e.

aij = P (xt+1 = Xj|xt = Xi), 1 6 i, j 6 N.

• Observable state probability distribution B = {bik}, where {bik} is the N × M

matrix of emission probabilities between hidden states to observed states, i.e.

bik = P (yt = Yj|xt = Xi), 1 6 i 6 N, 1 6 k 6M.

• Initial distribution π = {πi}, where πi is N -tuple of probabilities of the initial

hidden states, i.e.

πi = P (x1 = Xi), 1 6 i 6 N.

In this manner we shall define the discrete HMM by a triplet:

λ = (A,B, π). (A.1)

If we observe the sequence {yt}, t = 1, . . . , T , and we know the spectrum of

observable states {Yt}, and the dimension of hidden states, we can use the Baum-Welch
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algorithm to infer the parameters λ of the HMM. We begin by initializing λ by a guess,

and then iterating the following procedure until it converges. First we calculate the

forward and backward probabilities

α̂it = P (xt = Xi|y1 · · · yt) , β̂it =
1

ct+1 · · · cT
P (yt+1 · · · yT |xT = Xi) , (A.2)

ct = P (yt|y1 · · · yt−1) (A.3)

using the the recursion relations

αi1 = πi bik1 , ct+1 α̂i t+1 =
∑

j

α̂jt aji bi kt+1 , (A.4)

β̂iT = 1 , ct+1 β̂it =
∑

j

β̂j t+1 aij bj kt+1 , (A.5)

∑

i

α̂it = 1 , α̂i1 =
αi1
c1

, (A.6)

where we have denoted yt = Ykt , Next we calculate the probabilities.

γit = P (xt = Xi|y1 · · · yT ) = α̂it β̂it , (A.7)

ξtij = P (xt = Xi, xt+1 = Xj|y1 · · · yT ) =
1

ct+1

α̂itβ̂j t+1 aij bj kt+1 . (A.8)

Finally we update the λ parameters as

πi = γi1 , aij =

∑T−1
t=1 ξtij∑T−1
t=1 γit

, bik =

∑T
t=1 δ(yt = Yk) γit∑T

t=1 γit
. (A.9)

The underlying hidden states {xt} can be inferred using the Viterbi algorithm. One

defines two auxiliary matrices Rit, Qit of size N × T , where Rit is the probability of the

most likely sequence x1 · · ·xt given the observed sequence y1 · · · yt, such that xt = Xi.

It can be calculated recursively as

Ri1 = πi bik1 , Rit = max
j

(Rj t−1 aji) bik1 . (A.10)

The Qit is xt−1 of the most likely hidden sequence x1 · · ·xt given the observation y1 · · · yt.
It can be calculated from the known Rit as

Qit = arg maxj(Rj t−1 aji) . (A.11)

The most likely hidden state at t = T is then

xT = arg maxi(RiT ) , (A.12)

which is then used to initialize iterative calculation

xt = Qxt+1 t+1 . (A.13)
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Appendix B. Recurrent Neural Network

In this appendix we review the simplest kind of a Recurrent Neural Network (RNN). An

RNN is the neural network able to fit the data represented as a time series. A typical

problem which can be addressed by an RNN is to predict the output times-series {yt}
from the input time series {xt}, where t = 1, 2, . . . . An RNN is designed to be flexible

to the specific length of the time series. We can train it on the chunks of data of the

length T . Suppose an input at the given time t is a vector xt of dimension S and an

output yt is a vector of dimension N . The xt is received by the input layer, and the yt
is produced by the output layer. Similarly to the usual neural network the RNN has a

hidden layer, in between the input and the output layers. The hidden layer mt is the

‘memory’ of the RNN, influenced both by the current input xt, and by all the previous

inputs xτ , τ = 1, 2, . . . , t− 1. We represent the memory layer mt as a vector of size M .

An RNN is characterized by the hidden bias vector b, output bias vector e, input-

to-weight matrix W , memory-to-memory matrix V , and memory-to-output matrix U .

We will describe these parameters collectively as

R = (W,V, U, b, e) . (B.1)

The core functionality of the RNN is described by the equations

mt = f (W xt + V mt−1 + b) , (B.2)

yt = U mt + e , (B.3)

with some classifier function f , which in this paper we choose to be f ≡ tanh. To

summarize, the inner structure of the RNN is characterized by the t-independent

parameters R and by the t-dependent memory vectors mt. To train an RNN means

to fit the parameters R to produce the desired output {yt} from the given input {xt}.
It is convenient to represent the desired outputs yt in such a way that at each given

time step t we want the output yt to be equal to the vector Rt with the components

Rit = δi rt , i = 1, . . . , N . (B.4)

Then we can represent the desired output as the time series of index values {rt} of the

non-zero yt vector component. We can match this desired output vector to the actual

output yt by calculating the probabilities of the rt values

Pit =
eyit∑
j e

yjt
, i = 1, . . . , N , (B.5)

and using those probabilities in the loss function, see, e.g., [22]

L = −
∑

t

log

(∑

i

PitRit

)
. (B.6)
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The RNN parameters R can then be tuned over many training iterations using the

backpropagation of the loss function L. We want the loss function value to be as small

as possible, so we will shift the values of the parameters R in the direction opposite to

the gradients of the loss function L w.r.t. those parameters. We summarized all the key

gradients here,

[
∇(y)L

]
mt
≡ ∂L

∂ymt
= Pmt − δmrt , (B.7)

[
∇(U)L

]
ij
≡ ∂L

∂U ij
=
∑

t

[
∇(y)L

]
it
mjt , (B.8)

[
∇(e)L

]
i
≡ ∂L

∂ei
=
∑

t

[
∇(y)L

]
it
, (B.9)

[
∇(m)L

]
it
≡ ∂L

∂mit

=
∑

j

U ji
[
∇(y)L

]
jt

+
[
∇(mn)L

]
it
, (B.10)

[
∇(mn)L

]
it
≡
∑

j

[
∇̂(m)L

]
j t+1

V ji , (B.11)

mit ≡ tanh m̂it , (B.12)

[∇̂(m)L]it ≡
∂L

∂m̂it

=
[
∇(m)L

]
it

(1−m2
it) , (B.13)

[
∇(W )L

]
ij
≡ ∂L

∂W ij
=
∑

t

[∇̂(m)L]it xjt , (B.14)

[
∇(V )L

]
ij
≡ ∂L

∂V ij
=
∑

t

[∇̂(m)L]itmj t−1 , (B.15)

[
∇(b)L

]
ij
≡ ∂L

∂bi
=
∑

t

[∇̂(m)L]it . (B.16)

Once we know the gradients we know by how much we need to shift the parameters

R in order to decrease the loss function,

R → R− r

ρ
[∇(R)L] , (B.17)

where the learning rate is r ' 0.1, and the adaptive learning rate [23] is

ρ =

√∑

n

[∇(R)L]2 , (B.18)

and the sum is done over all the iterations we have performed up till now, inclusive.
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