Documentation for MAGMA functions

This file contains documentation for the most important functions in the MAGMA file accompanying
the thesis.

ComputeDegree(clustervar, grading, rank)
Returns the degree of the cluster variable clustervar given grading vector grading (a sequence of integers). The
integer rank should be set to the rank of the cluster algebra.

BipartiteB(n)/ BipartiteC(n)
Generate the Cartan matrix B,, in bipartite form.

A3(a,b,c)

Returns the skew-symmetric matrix with sub-diagonal entries given by the integers a, b and c.

MAExMat (k, 1)/MAinitCl(k, 1)/MAInitGr(k, 1)

Generate the exchange matrix/initial cluster/initial grading vector for the cluster algebra structure on O((M (k,1)).

GAExMat(k,l)/GAInitGr(k, 1)
Does the same as above but for the Grassmannian ring (input (k,1) for Gr(k, k +1)).

MatrixPathMutation(rank, B, path)
Given exchange matrix B, return the matrix obtained by applying the mutation path path to B.

Optional parameters:
o mutable_cols:=rank The number of mutable columns of B.

IteratedClusterMutation(clusterplusmat, mutationlist, rank)
Returns the seed (or degree seed along with list of degrees found) obtained from the initial seed clusterplusmat
(which needs to be a list (sequence) with the cluster as the first entry and matrix as the second) under the
mutation path mutationlist. The cluster is in clusterplusmat is allowed to be a grading vector. The seed is
returned as a list with entries of the form [cluster, matriz] or as [degree cluster, matriz, degrees].
Optional parameters:

o multi:=false Whether a multi-grading is being input as the degree cluster.

o fast:=false If this is true, computations are done using degree vectors rather than with variables.

e mutable_cols:=rank The number of mutable columns of the exchange matrix in clusterplusmat.

DvectorPathMutation(rank, B, path)
Returns the denominator cluster obtained after applying the mutation path path using initial exchange matrix
B.

PathMutation(rank, B, path, grading)
Depending on the optional parameters, prints information about the variables, degrees, exchange matrix, clus-
ter, denominator cluster, degree cluster, etc. obtained after applying the mutation path path (a sequence of
integers) with the initial exhchange matrix B and grading vector grading. Can also return the objects them-
selves.
Optional parameters:
o multi:=false This needs to be set to true if the grading is a multi-grading.
o fulloutput:=false Whether to compute and output full cluster variables (otherwise, denominator vectors,
or just grading vectors, will be used instead).
o compute_dvectors:=true Whether to use denominator vectors when calculating paths. If this is false,
only the degree cluster will be calculated (unless fulloutput is true).
o stringoutput:=true Whether to return a string (easier to read) or return a list containing the cluster and
matrix after the mutation path
o show_degreecluster:=true Whether to display the degree cluster obtained.
o show_matriz:=true If using fulloutput:=true, whether to show the matrix obtained.
o show_heading:=true Whether to show a heading to make output easier to interpret.
o show_deglist:=false 'Whether to show the list of all degrees we have obtained under the mutation path.

o custom_initclust:=[] Here a custom initial cluster can be input to use instead of the standard initial
cluster (Xi,...,X,), which will be used by default.
« mutable_cols:=rank The number of mutable directions if there are frozen variables. (If this is set to k,
the frozen directions are assumed to be the last k.)
Example usage:
« PathMutation(3, A3(-2,-1,1), [1], [1,1,2] : fulloutput:=true);

MAPathMutation/GAPathMutation(k, I, path)

These functions call PathMutation with inputs appropriate for the cluster algebras corresponding to O(M (k, 1))
and O(Gr(k,k +1)). There are optional parameters that are mostly the same as in PathMutation (but cus-
tom_initclust is no longer an optional parameter since it is being set in PathMutation).

RandPath(rank, length)
Return a random repetition-free mutation path of lenght length with entries in {1,...,rank}.
Optional parameters:

o exclude:={} A set of mutation directions that will not be selected.

AllClusterVariables(rank, initexchmat, CAtype)
For a finite-type cluster algebra, finds all cluster variables. The type of the cluster algebra needs to be specified
in CAtype as a one-letter string (e.g. CAtype:=“A”). Returns a list whose first entry is the list of cluster
variables found, second entry is the list of mutation paths used and third entry is the time taken.
Optional parameters:
o grading:=[0..rank] This can be set to an initial grading vector. If it is changed from the default, the
function will replace each cluster variable returned with a pair whose first entry is the variable and second
its degree.

ACVRadius(rank, initexchmat, radius)

Acts in the same way as AllClusterVariables (including the optional parameter) but only only tries mutation
paths whose lengths are at most radius. In other words, finds all cluster variables of a cluster algebra obtainable
within a specified mutation radius.

Print ACV /Print ACVR /BriefACVR (rank, initexchmat, CAtype)
Calls AllClusterVariables/ACVRadius and outputs relevant information in a readable format (rather than re-
turning lists of objects etc.).
Optional parameters:
o grading:=[0..rank] Works as in AllClusterVariables.

MAFindBigMats(k, I, length)
In the cluster algebra for O(M(k,1), searches for and prints mutation paths that lead to a double (or larger)
arrow by using all paths up to length length. This is used to prove that infinitely mant degrees occur in this
graded cluster algebra.
Optional parameters:

e minlength:=1 The minimum length of paths to try.

o custom_paths:=[] If this is changed form the default, a custom list of paths to try will be used.

o minentry:=2 The minimum arrow weight (or minimum entry of the exchange matrix, in absolute value)

to search for.

MAFindBigMatsRand(k, 1, length, num_paths)
This does the same as MAFindBigMats, but instead of exhausting all paths, num_paths random paths of length
length are attempted.
Optional parameters:
e minentry:=2 Works as in MAFindBigMats.

Quiver(Q)

Given a skew-symmetric matrix @), returns the corresponding quiver represented as a simple graph with labelled
vertices encoding the edge weights and directions. This allows us to use the IsIsomorphic function, which takes
advantage of the nauty package for fast graph isomorphism detection.

FindQuiverClass(A)
Given the skew-symmetric matrix A, returns the list of matrices corresponding to quivers that are mutation
equivalent.

IsEsseqDegreeQuiver(A, gradA, B, gradB)
For skew-symmetric matrices A and B, checks if the corresponding degree quivers (with degrees of vertices
defined by the grading vectors gradA and gradB, to be input as sequences of integers) are essentially equivalent.
Returns true/false as well as the permutation such that the first degree quiver is essentially equivalent to the
second.
Optional parameters:
o allow_neg_grad:=false If this is set to true, the function will return true if the degree quivers are essentially
equivalent up to sign of the grading vectors.
o only_allow_neg_grad:=false If this is set to true, the function will only return true if the degree quivers
are essentially equivalent after negating one of the grading vectors.
o custom_isom:=false This should be set to true if given_isom is going to be changed from the default (see
below).
o given_isom:=0 When custom_isom is set to true, this can be set to a specific isomorphism. If so, the
function returns true if the two degree quivers are essentially equivalent by that specific isomorphism.
The isomorphism should be a mapping between vertices of graphs (as is returned by IsIsomorphic, for
example).
o multi:=false If this is true, multi-gradings can be used in gradA and gradB. This should be a list of basis
vectors for the grading (sequence of sequences, e.g. [[3,1,2],[1,-1,1]]).
Example usage:
o X_123:=MatrixPathMutation(7, X_7, [1,2,3]);
X_123g:=IteratedClusterMutation([*[1,1,2,1,1,1,1], X_7*], [1,2,3], 7 : fast:=true)[1];
IsEsseqDegreeQuiver(X_7, [1,1,2,1,1,1,1], X_123, X_123g);

FindDegreeQuivers(A, grading)
Attempts to find all degree quivers essentially equivalent the degree quiver corresponding to the skew-symmetric
matrix A with vertex degrees defined by grading. Returns a list of matrices for the quivers and a corresponding
list of gradings.
Optional parameters:

o multi:=false Works as in previous functions.
Example usage:

o FindDegreeQuivers(E_7_11, [[0,1,0,-1,0,0,0,0,1],[0,0,1,2,1,0,0,0,0],[0,0,0,-1,0,1,0,1,0]] : multi:=true);

FDQ_NewSession(file_prefiz, A, grading)
For degree quivers with large mutation classes. Starts performing FindDegreeQuivers on A with the grading
grading and saves progress to a file. Saves associated files with a prefix as set by the string file_prefiz. Once a
session is running, its state will be saved automatically. Interrupting the function or closing or disconnecting
from the MAGMA session should not cause any problems as the function can pick up from where it left off
using RestoreSession below.
Optional parameters:

o multi:=false Works as above.

o save_frequency:=100 How frequently to save the state.
Example usage:

o FDQ_NewSession("E_aff 67, E_aff_6, [1,0,1,0,1,0,1] : save_frequency:=200);

FDQ_RestoreSession(file_prefix)
Continues the computation of FindDegreeQuivers for the set of files created by FDQ_NewSession with the prefix
file_prefiz.
Optional parameters:
o save_frequency:=100 How frequently to save the state.

Example usage:
o FDQ_RestoreSession(”E_aff_6”);

FindEsseqDegSeeds:=function(Q, grading, attempts)
Searches for and prints out paths that result in a degree quiver essentially equivalent to the one defined by
the skew-symmetric matrix ¢ with grading given by grading. Stops after trying a number of paths equal to
attempts. Returns true or false (depending on whether any successful paths were found), a list of successful
paths and a list of corresponding permutations.
Optional parameters:
o exclude_dirs:={} A set of mutation directions to exclude from paths that are attempted.
o randomise:=false Whether to randomise the paths that are attempted.
e min_length:=1 The minimum length of paths that are to be attempted.
e allow_var_esseq:=true Whether to allow clusters that have the same variables to count as successes.
o allow_neg_grad:=false Whether to allow degree seeds that are essentially equivalent up to negating the
degree cluster to count as successes.
o only_allow_neg_grad:=false As above, but to only allow such degree seeds to count as successes.
o min_successes:=10 Stop the function once this many successful paths have been found.
o multi:=false Whether the grading is a multi-grading.
o display-messages:=true Whether to print a message about the paths found.
Example usage:
« found, paths, perms:=FindEsseqDegSeeds(E_aff_6,grad, 100 : randomise:=true, min_length:=2,
min_successes:=1, allow_var_esseq:=false);

FindNonVarDegLoop(Q, grading, attempts)
Searches for and prints paths that give a degree seed essentially equivalent to the one defined by the matrix @
and grading vector grading, but with cluster variables that appear to grow on repeated application of the path.
(This is useful for finding paths that can be used to prove the existence of infinitely many variables of a certain
degree.) Returns the list of successful paths, the list of corresponding permutations, and the weight of each
path after a certain number of repetitions (which is a measure of the size of the corresponding denominator
cluster, or how fast the cluster variables are growing). Returns
Optional parameters:
o exclude_dirs:={} Mutation directions to exclude from attempted paths.
o depth:=200 How many times to repeat each mutation path (repeated paths will have entries permuted
as per essential equivalence).
» min_dvec_weight:=Ceiling(depth/4) The minimum weight that the resulting denominator cluster needs
to be for a path to be considered successful.
o search_strength:=Ncols(Q)*100 The number of paths to try per attempt.
o min_length:=Round(Ncols(Q)/2) The minimum length of paths that are to be attempted.
o multi:=false,allow_neg_grad:=false Works as in above functions.
e allow_neg_grad:=false Works as in above functions.
o only_allow_neg_grad:=false Works as in above functions.
Example usage:
o paths,perms,weights:=FindNonVarDegLoop(E_7_11, [[0,1,0,-1,0,0,0,0,1],]0,0,1,2,1,0,0,0,0],[0,0,0,-1,0,1,0,1,0]],
100 : depth:=15, multi:=true, min_length:=5);

RepeatPermedPathMut(reps, Q, grad, path, perm)
Given a path which gives and degree seed that is essentially equivalent to the one defined by the skew-symmetric
matrix @ and grading vector grad by the permutation perm, apply the path n times, permuting path by perm
each time.
Optional parameters:
o multi:=false Works as in a above functions.
o initial_path:=[] If this is changed from the default, an additional path will be applied before applying
the repeated paths.
o terminal_path:=[] As above, but with a path applied after the repeated paths.
o subpath_length:=0 1If this is greater than 0, the last repetition of the path will be replaces by a subpath
of length subpath_length.
o compute_dvectors:=true Works as in PathMutation, which is called by this function.
o stringoutput:=true Works as in PathMutation.
e show_deglist:=true Works as in PathMutation.
Example usage:
« RepeatPermedPathMut(5, E_aff_7, [-1,0,-1,0,1,0,1,0],[-1,0,-1,0,0,0,0,1]], path, perm : subpath_length:=1,
multi:=true);

