
A Sequence-based Selection Hyper-heuristic Utilising a
Hidden Markov Model

Ahmed Kheiri
University of Exeter

College of Engineering, Mathematics and
Physical Sciences

Streatham Campus, Harrison Building
Exeter EX4 4QF, UK

a.kheiri@exeter.ac.uk

Ed Keedwell
University of Exeter

College of Engineering, Mathematics and
Physical Sciences

Streatham Campus, Harrison Building
Exeter EX4 4QF, UK

e.c.keedwell@exeter.ac.uk

ABSTRACT
Selection hyper-heuristics are optimisation methods that op-
erate at the level above traditional (meta-)heuristics. Their
task is to evaluate low level heuristics and determine which
of these to apply at a given point in the optimisation process.
Traditionally this has been accomplished through the evalu-
ation of individual or paired heuristics. In this work, we pro-
pose a hidden Markov model based method to analyse the
performance of, and construct, longer sequences of low level
heuristics to solve difficult problems. The proposed method
is tested on the well known hyper-heuristic benchmark prob-
lems within the CHeSC 2011 competition and compared
with a large number of algorithms in this domain. The
empirical results show that the proposed hyper-heuristic is
able to outperform the current best-in-class hyper-heuristic
on these problems with minimal parameter tuning and so
points the way to a new field of sequence-based selection
hyper-heuristics.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords
Hyper-heuristic, Cross-domain, Computational Design

1. INTRODUCTION
A hyper-heuristic performs a search over the space of heuris-

tics which operate directly on the space of solutions, for solv-
ing computationally hard problems [4]. It conducts explo-
ration of the search space of heuristics complying with the
limitations exposed by the domain barrier, which does not
allow any problem dependent information to pass through
to the high-level where the hyper-heuristic components re-
side. This feature enables the reuse of their components and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11–15, 2015, Madrid, Spain
c⃝ 2015 ACM. ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754766

themselves on other problem domains without any change.
Even though the term hyper-heuristic was coined in the
early 21st century [7], the idea of combining the different
existing heuristics to exploit their strengths dates back to
1960s [8, 12]. Two categories of hyper-heuristics can be
defined, namely, selection hyper-heuristics and generation
hyper-heuristics. Selection hyper-heuristics function by se-
lecting and applying a heuristic from a set of low level heuris-
tics followed by a move acceptance criterion to decide whether
to accept or reject the new solution (Figure 1), while gen-
eration hyper-heuristics aim to generate new heuristics by
understanding the characteristics of the input heuristics.
Hyper-heuristics can be further distinguished by their feed-
back mechanisms and they can incorporate online learning,
offline learning or no learning at all. The online learning
hyper-heuristic learns from feedback during the search pro-
cess, whereas the offline learning hyper-heuristic learns be-
fore the actual search starts [4]. This work focuses on the de-
velopment of a novel online learning selection hyper-heuristic
utilising a hidden Markov model to analyse sequences of
heuristics. The performance of the hyper-heuristic is as-
sessed through HyFlex [19], a software tool for facilitating
the testing of hyper-heuristics. HyFlex provides implemen-
tations of six problem domains each with its own problem
instances and relevant problem-specific information such as
low level heuristics, providing scientists with a means to
benchmark their algorithms and therefore solely focus on
the hyper-heuristic development. The cross domain heuris-
tic search over the six HyFlex problem domains was the
CHeSC competition in 20111.

Traditional selection hyper-heuristics consider single heuris-
tics (e.g. simple random and random permutation hyper-
heuristics [7]) or heuristic pair performance (e.g. choice
function hyper-heuristic [7]) when determining the heuris-
tic to select (and execute) next. Several previously pro-
posed hyper-heuristics have attempted to produce sequences
of heuristics. The sequences of heuristics in these studies
are usually predetermined in an offline manner such as in
iterated local search [15] which applies a sequence of mu-
tational heuristics (diversification) followed by hill climbers
(intensification). Before CHeSC 2011 started, it is reported
in [3] that the best performing hyper-heuristic on HyFlex
was an approach based on an iterated local search which
applies a set of low level heuristics in a predefined sequence.
The current state-of-the-art hyper-heuristic and the winner

1http://www.asap.cs.nott.ac.uk/chesc2011/

P
ro

b
le

m
 sp

e
cific

in
fo

rm
a

tio
n

,

e
v

a
lu

a
tio

n
 fu

n
ctio

n
,

in
itia

l so
lu

tio
n

,

in
sta

n
ce

s, …

Space of Heuristics

LLH1 LLH2 LLH3 LLHn

D
o

m
a

in
 b

a
rrie

r

yes

no

no

Move Acceptance Selection Method

Scurrent

Terminate?

yes

Select LLH

Apply to Sprev

 Accept?

Sprev ← Scurrent

return best

obtained solution
Selection hyper-heuristic

Space of Solutions

Problem independent information, update system

parameters, performance of applied LLH, …

Figure 1: Selection hyper-heuristic framework

of CHeSC 2011, known as AdapHH [17], uses a technique
to discover relay hybridised heuristics during part of the
search process. The number of combined heuristics is fixed
and maintained in a first-in-first-out manner. Other top per-
forming approaches in CHeSC 2011 include the rank 2 algo-
rithm VNS-TW [13], which is based on variable neighbour-
hood search and applies a predefined sequence of shaking
heuristics then hill-climber heuristics; rank 3 was ML [14]
which is based on a self-adaptive meta-heuristic using mul-
tiple cooperating agents to determine adequate sequences of
local search heuristics; rank 4 was PHUNTER [6] which at-
tempts to balance the diversification and intensification se-
quence of heuristics; and rank 5 was EPH [16] which evolves
population of prefixed sequence of heuristics by employing
diversification and intensification scheme. Soon after the
competition, CHeSC 2011 became a benchmark for eval-
uating the performance and generality level of a selection
hyper-heuristic for subsequent algorithms. These include
[11], where an improved choice function hyper-heuristic is
proposed, which uses heuristic pair performance. The re-
sults revealed the success of the approach when compared to
the traditional choice function [7]; and [5, 1], where a set of
successful iterated local search algorithms for cross-domain
search are proposed.
In contrast to the above approaches, this work introduces

a new method known as sequence-based selection hyper-
heuristic (SSHH), inspired by the hidden Markov model
(HMM) [2], at which each low level heuristic, analogous to
a state in the HMM, has a transition probability matrix
to move to another state and emission probability matrices
to determine the parameters for each low level heuristic and
the acceptance strategy. The HMM approach is able to both
analyse the sequence of heuristics and generate sequences of
any size for use in optimisation. The automatic generation
of probability matrices linking low level heuristics, accep-
tance strategy and heuristic parameters ensures that many
fewer parameters have to be set to operate the technique.
The analysis of higher order (e.g. greater than 2) heuris-
tic sequences in this way using a hidden Markov model is
also unprecedented in the literature. Although a very recent
technique using an HMM exists [21], it represents solutions

as states rather than low level heuristics as proposed here.
The proposed approach records the search process as a se-
quence of pairs of heuristic application in an online fashion,
and processes this information to inform the selection of the
next heuristic to apply in the optimisation. It does not ex-
plicitly enforce the diversification and intensification phases,
but rather discovers and learns these sequences automati-
cally. The HyFlex framework is used to evaluate this new
hyper-heuristic and to compare with many of the state-of-
the-art approaches shown above. In later experimentation
we show the HMM-sequence based technique improves upon
all the entries to this contest, demonstrating that it can im-
prove on the state-of-the-art in this field, with many fewer
parameters to optimise than competing techniques.

The paper is structured as follows. Section 2 provides
briefly the background of HyFlex and CHeSC 2011. Section
3 describes the novelty and all algorithmic components of
the proposed hyper-heuristic. Section 4 presents the results
of the proposed method on HyFlex problems and discusses
the generality of the approach. Section 5 provides the con-
clusions of the study.

2. HYFLEX
HyFlex (Hyper-heuristics Flexible framework) [19] is an

object oriented software framework written in Java provid-
ing an implementation of six problem domains and encap-
sulating the problem specific information such as solution
representations, solution constructions, low level heuristics
and evaluation functions. HyFlex currently provides an im-
plementation of boolean satisfiability (SAT), 1D bin pack-
ing (BP), personnel scheduling (PS), permutation flowshop
(PFS), travelling salesman problem (TSP), and vehicle rout-
ing problem (VRP). In each HyFlex problem, four types of
perturbative low level heuristics are defined: (i) mutational
which perturbs a solution randomly, (ii) ruin and re-create
which destroys a given solution partially and then rebuilds
the deleted parts, (iii) hill climbing that incorporates an it-
erative improvement process and returns a non-worsening
solution, and (iv) crossover which creates a new solution
by exchanging and recombining parts from two solutions.
Each low level heuristic is associated with a problem and

heuristic dependent parameter, controlled by the user and
taking a value in the range [0,1]. HyFlex was used in the
Cross-domain Heuristic Search Challenge (CHeSC) in 2011,
to determine the hyper-heuristic that works well across the
different HyFlex problem domains. Competitors are invited
to submit their hyper-heuristics to the HyFlex framework
for evaluation. The organisers conducted 31 runs for each
competing algorithm for five selected instances from each
problem domain. Each run is limited to 600 seconds based
on the organisers’ machines. The methodology followed to
rank the algorithms was inspired by the Formula One sys-
tem. In each instance, the median values of the 31 runs of
each algorithm are calculated, and the top eight algorithms
based on the median values take the score 10, 8, 6, 5, 4,
3, 2 and 1 points, respectively. These points are summed
across the 30 instances for each algorithm. The approach
that scores the maximum is deemed the winner. Table 1
summarises the total number of low level heuristics and the
indexes of each low level heuristic for each heuristic category.
Twenty competitors submitted their algorithms to CHeSC
2011. The description of the twenty competing algorithms
and the results are provided in the CHeSC 2011 competition
website.

Table 1: The total number of low level heuristics
and the distribution of heuristic types

problem domains SAT BP PS PFS TSP VRP
no. of heuristics 11 8 12 15 13 10
mutational 0-5 0,3,5 11 0-4 0-4 0,1,7
ruin & re-create 6 1,2 5-7 5,6 5 2,3
hill climbing 7,8 4,6 0-4 7-10 6-8 4,8,9
crossover 9,10 7 8-10 11-14 9-12 5,6

3. METHODOLOGY
The traditional iterative selection hyper-heuristic passes

a solution through a heuristic selection process to decide on
a heuristic to apply from a fixed set of low level heuristics
and then a move acceptance process to accept or reject the
newly created solution at each step. The selection process
has traditionally been accomplished through the evaluation
of individual or paired heuristics. Empirical evidence [20]
shows that the traditional selection hyper-heuristic frame-
work may lead to the mutational heuristics being ignored.
Hence, several hyper-heuristic frameworks have been pro-
posed to combine a set of mutational and hill climber heuris-
tics by invoking a mutational heuristic first followed by a hill
climber [20]. These frameworks are explicitly encouraging a
diversifying (exploring of the search space) phase followed by
an intensifying (exploiting of the accumulated search expe-
rience) phase. Here we propose a sequence-based selection
hyper-heuristic utilising a hidden Markov model which is
relatively simple to implement and achieves robustness by
automatically adjusting itself to the problem domain. The
method is also able to use its probability matrices to adapt
to changing search characteristics over time. For example, a
problem might be best solved in the initial stages by a cer-
tain sequence of heuristics selected from the heuristics pool,
but as the nature of the optimisation problem changes over
time, the sequence will also need to change, necessitating the

online approach. The developed method differs markedly
from standard selection hyper-heuristic approaches in that
it is able to observe recent sequences of operations and so
is able to learn sequences of heuristics that generate good
solutions. The algorithm 1 provides the pseudocode of the
proposed hyper-heuristic.

In this method, the sequences of low level heuristics are
generated and analysed using hidden Markov model (HMM)
[2]. The hidden states of an HMM correspond to the low
level heuristics. Initially, each low level heuristic (state) has
an initial probability to be selected (Algorithm 1, Line 1).
Each low level heuristic has three probability matrices as-
sociated with it: An acceptance strategy emission proba-
bility matrix to associate heuristics with acceptance strat-
egy, a heuristic parameter emission probability matrix to
determine the parameters for each low level heuristic and a
transition probability matrix to determine the probability of
moving from one heuristic to another during the optimisa-
tion (Algorithm 1, Lines 2-4). Initially, all probabilities are
distributed equally (Algorithm 1, Line 8). At the first step,
an initial low level heuristic will be selected (Algorithm 1,
Line 12).

The next low level heuristic, acceptance strategy (AS)
and heuristic parameter (p) are chosen based on probabil-
ities provided in the matrices (Algorithm 1, Lines 15-17),
using a roulette wheel selection strategy. They are added to
a record for later processing (Algorithm 1, Line 18). Recall
that each low level heuristic in HyFlex is associated with
a problem and heuristic dependent parameter (denoted as
p), controlled by the user and taking a value in the range
[0,1]. We discretised the choices for the control parameters
provided in HyFlex into 11 different parameters: {0.0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, whereas for the ac-
ceptance strategy there are only two options: {1, 2}. The
selected heuristic with the selected parameter will be ap-
plied to the candidate solution to produce a new solution
(Algorithm 1, Line 19). If the acceptance strategy is 1, then
the move acceptance method will be invoked and the emis-
sion and transition probability matrices are updated (Al-
gorithm 1, Lines 20-28). Otherwise, the move acceptance
method will not be applied meaning that the next low level
heuristic will be applied on the new solution regardless of
the quality of the new solution. The latter strategy helps
the search to discover new regions in the search space. The
move acceptance method uses the previous solution before
applying the recorded recent sequence of heuristics (i.e. the
solution which was returned the last time the move accep-
tance method was called) and the current (candidate) so-
lution and then returns one of these two solutions (Algo-
rithm 1, Line 21). To maximise the likelihood of generating
best solutions, emission and transition probability matrices
are updated only if the candidate solution is better than the
best recorded solution (Algorithm 1, Lines 23-26). To up-
date the matrices (Algorithm 1, Line 25), the scores of the
three matrices corresponding to the recorded previous and
next heuristics, acceptance strategies and heuristic parame-
ters are increased by 1. The probability of selection in any
of the matrices is scorep/

∑
∀k(scorek). The above methods

are iteratively applied until a set of termination criteria is
satisfied (Algorithm 1, Line 29).

Figure 2 illustrates an example of how the developed method
would work on 3 low level heuristics. For simplicity, we
consider only three possible heuristic parameters: {0.0, 0.1,

Algorithm 1: Sequence-based Selection Hyper-heuristic

1 Let I: initial state distribution;
2 Let A: state transition probabilities;
3 Let B: acceptance strategy emission probabilities;
4 Let C: heuristic parameter emission probabilities;
5 Let Sprev: previous solution;
6 Let Scurr: current solution;
7 Let Sbest: best obtained solution;
8 I, A,B,C ← Initialise();
9 Sprev ← Sinitial;

10 Scurr ← Sprev;
11 Sbest ← Sprev;
12 llhcurr ← Select(I);
13 repeat
14 llhprev ← llhcurr;
15 llhcurr ← Select(A, llhprev);
16 AS ← Select(B, llhcurr);
17 p← Select(C, llhcurr);
18 record.Add(llhprev, llhcurr, AS, p);
19 Scurr ← Apply(Scurr, llhcurr, p);
20 if AS == 1 then
21 Sprev ← MoveAcceptance(Sprev, Scurr);
22 Scurr ← Sprev;
23 if Scurr isBetterThan Sbest then
24 Sbest ← Scurr;
25 UpdateScores(A,B,C, record);
26 end
27 record.Clear();
28 end
29 until TerminationCriteriaSatisfied();

0.2}. The initial matrices and the updated matrices after
5 iterations are shown in the figure. At the first iteration,
LLH2 is selected with selection parameter p = 0.2 and ac-
ceptance strategy AS = 1 and applied on an initial solution
(Sinitial). The newly generated solution (S1) is rejected by
the move acceptance method and therefore the next low level
heuristic will be applied on Sinitial. The matrices are not
updated because the best obtained solution has not been
improved. LLH1 with p = 0.1 and AS = 1 are selected next
and applied on Sinitial. The new solution (S2) is accepted by
the move acceptance method and its quality is better than
the best obtained solution, and therefore, the scores of mov-
ing from LLH2 to LLH1, the heuristic parameter p = 0.1
and the acceptance strategy AS = 1 of LLH1 are increased
by 1. LLH3 with p = 0.0 and AS = 2 are selected next
and applied on S2 generating new solution S3. Nothing is
updated and the move acceptance method is not invoked be-
cause AS = 2. We move to the next iteration where LLH1
with p = 0.1 and AS = 1 are selected and applied on S3

generating new solution S4. The move acceptance method
compares S4 with S2 to decide whether to accept or reject
S4. In this example, S4 is accepted and because its quality
is better than the best obtained solution (which was S2) the
scores of moving from LLH1 to LLH3, the heuristic parame-
ter p = 0.0 and the acceptance strategy AS = 2 of LLH3 are
increased by 1; and also the scores of moving from LLH3 to
LLH1, the heuristic parameter p = 0.1 and the acceptance
strategy AS = 1 of LLH1 are increased by 1. LLH1 with
p = 0.2 and AS = 1 are selected next and applied on S4.
The new solution (S5) is accepted by the move acceptance
method, but its quality is not better than the best obtained
solution, hence, the matrices are not updated.

When trained for a sufficient number of iterations on the
problem, those sequences of operations that are more likely
to produce the best solutions will automatically be learned.
The two emissions and transition probability matrices create
a model of the optimisation process conducted thus far and
the likelihood for of the optimisation being in state (low
level heuristic) i at time n given the recent application of
heuristics, heuristic parameters and acceptance strategies
can be calculated thus:

L(i, n) = L(i, n− 1)× allhn−1.llhn × e1(p)× e2(AS) (1)

where L(i, n− 1) is the likelihood of the previous state (low
level heuristic) in the automaton, a is the probability of tran-
sition from one low level heuristic to another, e1 is the prob-
ability of the emission of heuristic parameter p for llhn, and
e2 is the probability of the emission of acceptance strategy
AS for llhn. Given the example in Figure 2 and according to
the roulette wheel selection strategy, one can say that LLH3
with AS = 2 and p = 0.0 has the greatest probability to be
selected next, followed by LLH1 with AS = 1 and p = 0.1.

4. EMPIRICAL RESULTS
In this section, the results of the proposed sequence-based

selection hyper-heuristic approach, denoted as SSHH, are
presented. There is still a debate going on the usefulness
of crossover in the evolutionary algorithm community [10,
18]. Considering that we have proposed a single point based
search framework, crossover operators provided in HyFlex
are ignored by our method during the experiments, since
crossover requires two solutions as input. Investigating how
to best utilise all low level heuristics, including crossover op-
erators within sequence-based selection hyper-heuristic would
be of interest as future work. The experiments are performed
on an i7-4770K CPU at 3.50GHz with 16GB RAM. A bench-
marking software tool developed by the organisers of CHeSC
is used to report the time our machine should take which is
equivalent to 600 seconds of the organisers’ machine. This
program reported that a single run of our machine should
terminate after 346 seconds which was implemented as the
convergence criterion. The move acceptance criterion (only
called when AS = 1) employed in this work accepts all im-
proving moves by default; non-improving moves are accepted
if the objective value of the candidate solution is less than a
threshold. The threshold equals the objective function value
of the best recorded solution plus a value (T). The value of
T is set to 30, and is decreased by 2 in case no improvements
in the current best obtained solution are found for 15 consec-
utive seconds. Note that if the integer part of the objective
value is already 0, then T is added to the decimal part. For
example, if the objective value is 0.0325 and T = 30 then
the threshold would be 0.0355. The parameter setting for
T of 30 has been set after a small number of preliminary
experiments.

To compare the performance of the SSHH against the
CHeSC 2011 competitors, 31 trials across five CHeSC in-
stances from boolean satisfiability (SAT), one dimensional
bin packing (BP), personnel scheduling (PS), permutation
flow shop (PFS), travelling salesman problem (TSP) and
vehicle routing problem (VRP) problem domains are per-
formed. Table 2 provides the scores of SSHH and CHeSC
2011 competing algorithms based on the Formula One scor-
ing system with respect to the median values across all
CHeSC 2011 instances. The proposed SSHH ranks top with

AS=1

p=0.2

Iter5
. . .

AS=1

p=0.1

Iter4

AS=2

p=0.0

Iter3

AS=1

p=0.1

Iter2

AS=1

p=0.2

Iter1

LLH2

LLH1 LLH1 LLH1

LLH2

LLH3

LLH1

Update

A, B, C

if AS=1

LLH3

LLH2

LLH3

LLH2

LLH3

LLH1

LLH2

LLH3

LLH1 LLH2 LLH3

1/3

1/3

1/3 1/3

1/3

1/3 1/3

1/3

1/3

LLH1

LLH2

LLH3

1 2

1/2

1/2

1/2 1/2

1/2

1/2 LLH1

LLH2

LLH3

0.0 0.1 0.2

1/3

1/3

1/3 1/3

1/3

1/3 1/3

1/3

1/3

Transition Matrix A

A
cc
ep
ta
n
ce
 S
tr
at
eg
y
 M
at
ri
x
 B

H
eu
ri
st
ic
 P
ar
am
et
er
 M
at
ri
x
 C

LLH1

LLH2

LLH3

LLH1 LLH2 LLH3

1/4

2/4

2/4 1/4

1/4

1/4 2/4

1/4

1/4

LLH1

LLH2

LLH3

1 2

3/4

1/2

1/3 2/3

1/2

1/4 LLH1

LLH2

LLH3

0.0 0.1 0.2

1/5

1/3

2/4 1/4

1/3

3/5 1/5

1/3

1/4

Transition Matrix A

LLH1

LLH2

LLH3

1/3

1/3

1/3

Initial Matrix I

A
cc
ep
ta
n
ce
 S
tr
at
eg
y
 M
at
ri
x
 B

H
eu
ri
st
ic
 P
ar
am
et
er
 M
at
ri
x
 C

Sinitial

S1

S2
S3

S1 is much worse - rejected

S2 is better than the best - accepted

S4 is better than the best - accepted

S5 is not better than the best - accepted

S4
LLH1

LLH2

LLH3

S5

from

to

from

to

Figure 2: Sequence-based Selection Hyper-heuristic

a total score of 165.10, beating all other entries to the compe-
tition including the current best performer, AdapHH. SSHH
is the best in SAT, BP and TSP problem domains. In the PS
and VRP problem domains, it still performs well compared
to the CHeSC approaches, but in the PFS problem domain,
its performance is not as good as on the other problem do-
mains. Interestingly, by examining the competing methods,
the proposed SSHH performs better than the Markov chain
hyper-heuristic (MCHH-S), that uses the Markov property,
on all HyFlex problem domains. Further analysis of the be-
haviour of SSHH can be seen in Figure 4.
Figure 3 presents the boxplots of the normalised median

objective function values of each competing method and
SSHH for each instance for SAT, BP, PS, PFS, TSP and
VRP problem domains. The median objective function val-
ues are normalised to a value in the range [0,1] as suggested
in [9]. The normalisation is used to unify the scales of the
objective function values. The following formula is employed
for the normalisation:

n =
m(i)−mb(i)

mw(i)−mb(i)
(2)

where m(i), for a given method, is the median objective
function value of 31 runs on instance i, mb(i) is the best
median objective function value of 31 runs obtained by any
method on instance i, and mw(i) is similar but for the worst.
Due to space restrictions, we only provide analysis for

three problem domains: BP, PS and TSP. Figure 4 provides
the average utilisation rate of each heuristic considering only
moves which improve on the best-of-run solution from 10

Table 2: Scores of SSHH and CHeSC 2011 compet-
ing algorithms across six domains

Method SAT BP PS PFS TSP VRP Overall
SSHH 39.10 45.00 22.50 3.50 41.00 14.00 165.10
AdapHH 30.43 38.00 8.00 37.00 34.75 14.00 162.18
VNS-TW 30.93 2.00 35.50 33.50 12.75 5.00 119.68
ML 10.00 8.00 29.50 39.00 10.00 21.00 117.50
PHUNTER 7.00 2.00 11.50 8.00 22.75 32.00 83.25
EPH 0.00 6.00 9.00 21.00 29.75 11.00 76.75
HAHA 26.43 0.00 23.00 3.50 0.00 13.00 65.93
NAHH 10.50 15.00 1.00 22.00 10.00 6.00 64.50
KSATS-HH 20.35 9.00 7.00 0.00 0.00 21.00 57.35
ISEA 3.50 23.00 14.50 3.50 7.00 3.00 54.50
HAEA 0.00 1.00 1.00 8.00 8.00 25.00 43.00
ACO-HH 0.00 16.00 0.00 9.00 7.00 1.00 33.00
GenHive 0.00 10.00 6.50 7.00 2.00 6.00 31.50
SA-ILS 0.25 0.00 16.00 0.00 0.00 4.00 20.25
XCJ 3.50 11.00 0.00 0.00 0.00 5.00 19.50
AVEG-Nep 9.50 0.00 0.00 0.00 0.00 8.00 17.50
DynILS 0.00 9.00 0.00 0.00 8.00 0.00 17.00
GISS 0.25 0.00 8.00 0.00 0.00 6.00 14.25
SelfSearch 0.00 0.00 2.00 0.00 2.00 0.00 4.00
MCHH-S 3.25 0.00 0.00 0.00 0.00 0.00 3.25
Ant-Q 0.00 0.00 0.00 0.00 0.00 0.00 0.00

runs while solving an arbitrary instance from each problem
domain. The figure also provides the probabilities of the
emissions and transitions for each low level heuristic. Some
of the low level heuristics do not seem to contribute to the
best-of-run solutions. For example, LLH11 in PS does not
contribute to the improvement of the best solutions. Fur-

VNS-TW

SSHH

AdapHH

HAHA

KSATS

AVEGNep

ML

NAHH

PHUNTER

ISEA

MCHH-S

HAEA

ShafiXCJ

EPH

GISS

SA-ILS

SelfS

ACO-HH

GenHive

Ant-Q

DynILS

0.00 0.25 0.50 0.75 1.00

Normalised objective function value

H
y
p

e
r-

h
e

u
ri

s
ti
c

SAT

SSHH

AdapHH

ISEA

NAHH

ACO-HH

DynILS

GenHive

VNS-TW

EPH

KSATS

ML

SelfS

HAEA

PHUNTER

MCHH-S

HAHA

ShafiXCJ

SA-ILS

AVEGNep

Ant-Q

GISS

0.00 0.25 0.50 0.75 1.00

Normalised objective function value

H
y
p

e
r-

h
e

u
ri

s
ti
c

BP

ML

VNS-TW

PHUNTER

HAHA

ISEA

SA-ILS

SSHH

EPH

GenHive

KSATS

NAHH

SelfS

HAEA

AdapHH

ShafiXCJ

GISS

ACO-HH

AVEGNep

MCHH-S

DynILS

Ant-Q

0.00 0.25 0.50 0.75 1.00

Normalised objective function value

H
y
p

e
r-

h
e

u
ri

s
ti
c

PS

AdapHH

ML

VNS-TW

NAHH

EPH

HAEA

SSHH

HAHA

ISEA

PHUNTER

GenHive

ACO-HH

DynILS

SelfS

KSATS

ShafiXCJ

AVEGNep

SA-ILS

MCHH-S

GISS

Ant-Q

0.00 0.25 0.50 0.75 1.00

Normalised objective function value

H
y
p

e
r-

h
e

u
ri

s
ti
c

PFS

SSHH

EPH

AdapHH

PHUNTER

ML

ACO-HH

ISEA

DynILS

VNS-TW

NAHH

HAEA

GenHive

ShafiXCJ

HAHA

SelfS

Ant-Q

SA-ILS

AVEGNep

MCHH-S

KSATS

GISS

0.00 0.25 0.50 0.75 1.00

Normalised objective function value

H
y
p

e
r-

h
e

u
ri

s
ti
c

TSP

HAEA

PHUNTER

AdapHH

SSHH

ML

GISS

ShafiXCJ

HAHA

ISEA

KSATS

NAHH

SA-ILS

GenHive

EPH

DynILS

VNS-TW

MCHH-S

AVEGNep

ACO-HH

SelfS

Ant-Q

0.00 0.25 0.50 0.75 1.00

Normalised objective function value

H
y
p

e
r-

h
e

u
ri

s
ti
c

VRP

Figure 3: Boxplots of the normalised median objective function values of SSHH and CHeSC 2011 hyper-
heuristics per each HyFlex problem domain over five CHeSC instances

thermore, a number of the low level heuristics are only useful
when combined with other sequence of heuristics. For exam-
ple, LLH0, LLH1 and LLH5 in TSP do not make improve-
ment in their own, but the majority of the improvements in
TSP are due to combining these heuristics (mutational and
ruin & re-create heuristics) with LLH8 (hill climber). In-
terestingly, and by examining the transition matrix, LLH8

does not improve the best-of-run solutions unless combined
with these heuristics. These types of sequences, which are
automatically discovered by the proposed approach, have
been previously suggested in the literature [15] by applying
perturbation first (e.g. mutational heuristics) to explore the
search space followed by the intensification phase (e.g. hill
climbers) to exploit the accumulated search experience, but

until now, this has been done manually. In BP, the sequence
LLH4-LLH6-LLH2-LLH6 seems to generate most of the im-
provements, an interesting finding. However, in the case of
the PS problem domain, such heuristic sequences were rarely
identified. This is likely to be due to the fact that the low
level heuristics (in particular the hill-climbers) associated
with the PS problem domain are slow, and therefore there
was not enough time to learn and detect the good sequences.
In general, the probabilities of the heuristic parameters are
distributed equally. However, in BP large values are slightly
preferable. Most of the low level heuristics in BP use ac-
ceptance strategy 2 meaning that the search is largely ex-
ploratory for this problem. For the TSP problem domain,
it is observed that the most successful low level heuristic in
this problem (LLH8 - hill climber) favours the first accep-
tance strategy and acts as an intensification process, while
the other heuristics (particularly LLH0, LLH1 and LLH5)
prefer the second acceptance strategy for the purposes of
diversification.

5. CONCLUSION
In this paper a new sequence-based selection hyper-heuristic

inspired by a hidden Markov model has been proposed. The
method has been shown to successfully optimise a number
of combinatorial optimisation problems. The proposed ap-
proach is the best general purpose hyper-heuristic for heuris-
tic search across a number of different HyFlex problem do-
mains, achieving improved performance over established state-
of-the-art hyper-heuristics such as AdapHH. A key further
point is that the SSHH approach requires only one param-
eter (the threshold in the move acceptance method) to be
set as opposed to AdapHH that has over 45 parameters2.
The adaptive iteration limited list-based threshold move ac-
cepting method used in AdapHH allows diversification only
if the intensification phase does not yield any improvements
for a predefined number of iterations. Our method discov-
ers and learns automatically when to move from intensi-
fication to diversification and vice versa. The additional
power of this approach comes from the fact that it is capa-
ble of discovering sequences of heuristics and automatically
identifying the relationship between the heuristic selected,
its heuristic parameter and acceptance strategy in addition
to its relationship with other low level heuristics on the
problem. One further advantage of the method is that the
probabilities learned by the model are easily accessible and
can be analysed to determine what has been learned about
the search space and relationships between low level heuris-
tics, heuristic parameters and acceptance strategy. Our ini-
tial observations showed that the performance of selection
hyper-heuristics may vary depending on the choice of the
low level heuristics, and that not all the heuristics contribute
to the improvement of a candidate solution during part of
the search process unless they are applied in combination
with sequences of heuristics. The proposed approach begins
from a näıve state where the nature of the low level heuris-
tics is not known, yet its adaptive characteristics lead auto-
matically to the discovery of useful sequences of mutational
heuristics followed by hill climbers. These findings are sup-
ported by results from other studies [15]. Further work on
this analysis will investigate how these probabilities change

2http://code.google.com/p/generic-intelligent-hyper-
heuristic/

over time and their interaction with known features in the
problem landscape.

6. ACKNOWLEDGMENTS
This work was supported by EPSRC grant EP/K000519/1.

7. REFERENCES
[1] S. Adriaensen, T. Brys, and A. Nowé. Fair-share ILS:

a simple state-of-the-art iterated local search
hyperheuristic. In D. V. Arnold, editor, Proceedings of
the 2014 Conference on Genetic and Evolutionary
Computation (GECCO ’14), pages 1303–1310, New
York, NY, USA, 2014. ACM.

[2] L. E. Baum and T. Petrie. Statistical inference for
probabilistic functions of finite state Markov chains.
The Annals of Mathematical Statistics,
37(6):1554–1563, 12 1966.

[3] E. K. Burke, T. Curtois, M. R. Hyde, G. Kendall,
G. Ochoa, S. Petrovic, J. A. V. Rodŕıguez, and
M. Gendreau. Iterated local search vs.
hyper-heuristics: towards general-purpose search
algorithms. In IEEE Congress on Evolutionary
Computation (CEC ’10), pages 1–8, 2010.

[4] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall,
G. Ochoa, E. Özcan, and R. Qu. Hyper-heuristics: a
survey of the state of the art. Journal of the
Operational Research Society, 64(12):1695–1724, 2013.

[5] E. K. Burke, M. Gendreau, G. Ochoa, and J. D.
Walker. Adaptive iterated local search for
cross-domain optimisation. In Proceedings of the 13th
Annual Conference on Genetic and Evolutionary
Computation (GECCO ’11), pages 1987–1994, New
York, NY, USA, 2011. ACM.

[6] C. Y. Chan, F. Xue, W. H. Ip, and C. F. Cheung. A
hyper-heuristic inspired by pearl hunting. In
Y. Hamadi and M. Schoenauer, editors, Learning and
Intelligent Optimization, Lecture Notes in Computer
Science, pages 349–353. Springer Berlin Heidelberg,
2012.

[7] P. Cowling, G. Kendall, and E. Soubeiga. A
hyperheuristic approach to scheduling a sales summit.
In E. Burke and W. Erben, editors, Practice and
Theory of Automated Timetabling III, volume 2079 of
Lecture Notes in Computer Science, pages 176–190.
Springer Berlin Heidelberg, 2001.

[8] W. B. Crowston, F. Glover, G. L. Thompson, and
J. D. Trawick. Probabilistic and parametric learning
combinations of local job shop scheduling rules. 117.
Defense Technical Information Center, 1963.

[9] L. Di Gaspero and T. Urli. Evaluation of a family of
reinforcement learning cross-domain optimization
heuristics. In Y. Hamadi and M. Schoenauer, editors,
Learning and Intelligent Optimization, Lecture Notes
in Computer Science, pages 384–389. Springer Berlin
Heidelberg, 2012.

[10] B. Doerr, E. Happ, and C. Klein. Crossover can
provably be useful in evolutionary computation. In
Proceedings of the 10th Annual Conference on Genetic
and Evolutionary Computation (GECCO ’08), pages
539–546, New York, NY, USA, 2008. ACM.

0 0.2 0.4 0.6 0.8 1

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6

Acceptance Strategy

AS=1
AS=2

0 0.2 0.4 0.6 0.8 1

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6

Heuristic Parameter

p=0.0
p=0.1
p=0.2
p=0.3
p=0.4
p=0.5
p=0.6
p=0.7
p=0.8
p=0.9
p=1.0

0 0.2 0.4 0.6 0.8 1

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6

Next Low Level Heuristic

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6

< 1% < 1%
13%

1%
2%

< 1%

84%

Utilisation Rate

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6

(a) BP

0 0.2 0.4 0.6 0.8 1

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6
LLH7

LLH11

Acceptance Strategy

AS=1
AS=2

0 0.2 0.4 0.6 0.8 1

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6
LLH7

LLH11

Heuristic Parameter

p=0.0
p=0.1
p=0.2
p=0.3
p=0.4
p=0.5
p=0.6
p=0.7
p=0.8
p=0.9
p=1.0

0 0.2 0.4 0.6 0.8 1

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6
LLH7

LLH11

Next Low Level Heuristic

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6
LLH7
LLH11

14%

7%

21%

30%

14%

3%
3%

7%

Utilisation Rate

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6
LLH7

(b) PS

0 0.2 0.4 0.6 0.8 1

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6
LLH7
LLH8

Acceptance Strategy

AS=1
AS=2

0 0.2 0.4 0.6 0.8 1

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6
LLH7
LLH8

Heuristic Parameter

p=0.0
p=0.1
p=0.2
p=0.3
p=0.4
p=0.5
p=0.6
p=0.7
p=0.8
p=0.9
p=1.0

0 0.2 0.4 0.6 0.8 1

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6
LLH7
LLH8

Next Low Level Heuristic

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6
LLH7
LLH8

8%

7%

86%

Utilisation Rate

LLH6
LLH7
LLH8

(c) TSP

Figure 4: Mean emission and transition probabilities and utilisation rate of each low level heuristic considering
only moves which improve on the best-of-run solution from 10 runs while solving an arbitrary instance from
each problem domain

[11] J. H. Drake, E. Özcan, and E. K. Burke. An improved
choice function heuristic selection for cross domain
heuristic search. In C. A. C. Coello, V. Cutello,
K. Deb, S. Forrest, G. Nicosia, and M. Pavone, editors,
Parallel Problem Solving From Nature (PPSN XII),
volume 7492 of Lecture Notes in Computer Science,
pages 307–316. Springer Berlin Heidelberg, 2012.

[12] H. Fisher and G. L. Thompson. Probabilistic learning
combinations of local job-shop scheduling rules. In
J. F. Muth and G. L. Thompson, editors, Industrial
Scheduling, pages 225–251, New Jersey, 1963.
Prentice-Hall, Inc.

[13] P.-C. Hsiao, T.-C. Chiang, and L.-C. Fu. A VNS-based
hyper-heuristic with adaptive computational budget of
local search. In IEEE Congress on Evolutionary
Computation (CEC ’12), pages 1–8, 2012.

[14] M. Larose. A hyper-heuristic for the CHeSC 2011. In
The 53rd Annual Conference of the UK Operational
Research Society (OR53), 2011.

[15] H. R. Lourenço, O. C. Martin, and T. Stützle.
Iterated local search: framework and applications. In
M. Gendreau and J.-Y. Potvin, editors, Handbook of
Metaheuristics, volume 146 of International Series in
Operations Research and Management Science, pages
363–397. Springer US, 2010.

[16] D. Meignan. An evolutionary programming
hyper-heuristic with co-evolution for CHeSC1́1. In The
53rd Annual Conference of the UK Operational
Research Society (OR53), 2011.

[17] M. Misir, K. Verbeeck, P. De Causmaecker, and
G. Vanden Berghe. A new hyper-heuristic
implementation in HyFlex: a study on generality. In
J. Fowler, G. Kendall, and B. McCollum, editors,
Proceedings of the 5th Multidisciplinary International
Scheduling Conference: Theory and Application
(MISTA2011), pages 374–393, 2011.

[18] M. Mitchell, J. H. Holland, and S. Forrest. When will
a genetic algorithm outperform hill climbing. In J. D.
Cowan, G. Tesauro, and J. Alspector, editors,
Advances in Neural Information Processing Systems 6,
pages 51–58. Morgan Kaufmann, 1994.

[19] G. Ochoa, M. Hyde, T. Curtois, J. A.
Vazquez-Rodriguez, J. Walker, M. Gendreau,
G. Kendall, B. McCollum, A. J. Parkes, S. Petrovic,
and E. K. Burke. HyFlex: a benchmark framework for
cross-domain heuristic search. In J.-K. Hao and
M. Middendorf, editors, Evolutionary Computation in
Combinatorial Optimization, volume 7245 of Lecture
Notes in Computer Science, pages 136–147. Springer
Berlin Heidelberg, 2012.

[20] E. Özcan, B. Bilgin, and E. E. Korkmaz. A
comprehensive analysis of hyper-heuristics. Intelligent
Data Analysis, 12(1):3–23, 2008.

[21] W. Van Onsem, B. Demoen, and P. De Causmaecker.
HHaaHMM: a hyper-heuristic as a hidden Markov
model. http://www.hyflex.org/chesc2014/, 2014.

