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Abstract

This paper investigates the price that the market pays in order to alleviate or dis-

sociate from the impacts of variations in intra-commodity correlations; in other

words, the correlation risk in commodity markets. Using a novel source from

Deutsche Bank Commodity Index (DBCI), a liquid, representative, straight-

forward and low-tracking-error index, and option data of all the index’s com-

ponents, this paper shows that i) Contrary to recent empirical findings of signif-

icantly priced correlation risk premium embedded in equity index options, our

findings are not supportive of the hypothesis that intra-commodity correlation

risk (as implied from options using model-free methodology) is a pricing factor;

ii) The above finding is robust against changes in assumptions; iii) The normal-

ity of correlations between extreme returns among energy, agricultural and metal

sectors can not be rejected, which is consistent with the finding that systemic

correlation risk is not priced. This paper’s finding is favorable towards the view

that commodities are still to a large extent priced as a distinctive asset class

rather than an asset that is fully financial.
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1 Introduction

The variance-covariance matrix of a basket of assets evolves over time, which represents

a major source of risk. For example, Bollerslev, Engle & Wooldridge (1988) sets up

a multivariate GARCH process for returns to bills, bonds, and stocks, finding that

the conditional covariances, which present large variations over time, are significant

pricing factors for the time-varying risk premium. In particular, such risks are most

pronounced in scenarios where volatilities and correlations of equity markets increase

simultaneously, jointly enlarging the systematic risk exposure of an equity portfolio,

such as the case of financial crises.1Hence, it is natural to hypothesize that the exposure

to such correlation risk exposure should be priced.

On the other hand, during the last decade, the demand for commodity derivatives by

either traditional commercial traders of commodities or by financial institutions holding

diversified portfolios has grown dramatically. It is therefore important to investigate

how correlation risk embedded in commodity portfolios is priced, and how it may

differ from the case of equity portfolios. The understanding of this research question

shapes the role of commodities in the context of a well-diversified portfolio: If the

cross-market-linkages among commodities are similarly priced as equities, then such

findings would provide additional support to the assertion that commodities are priced

more like financial assets than a seperate, segmented asset class. On the other hand,

if empirical evidence is not conclusive about whether intra-commodity correlations

attract a premium, such a conclusion has important implications on how commodities

and related derivatives fit into the asset allocation decision from an investor’s viewpoint

as a diversifier.

Instead of explicitly modelling the process of commodity returns and estimating

the price of correlation risk, this paper approaches the question through the lens of

index options, as pioneered by Driessen, Maenhout & Vilkov (2009). As a stylized

fact, stock index options tend to be more expensive than their corresponding index

components would imply. The premium of index options relative to individual options

is well-documented in equity markets, and the statistical and economic significance

of such pricing gaps attracts much research interest. This paper empirically revisits

1Specifically, Longin & Solnik (2001) model the distribution of stock return tails using extreme

value theory. They derive the empirical distribution of extreme correlation, finding that correlation

increases only in bear-tail but not in bull-tail states. Their conclusion is important in that extreme

correlation impacts the distribution of portfolio returns asymmetrically with an unfavorable fatter

left-tail but no boost to upside.
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the well-known index option premium puzzle using a novel option data of Deutsch

Bank Commodity Index (DBCI); a liquid, representative, straight-forward and low-

tracking-error commodity index, and the corresponding option data of all the index’s

components. There are two important characteristics of the commodity sector that

make this study a meaningful extension to the literature. First and foremost, the crash

fearing nature in stock market, or crashophobia in the sense of Rubinstein (1994),

features both a surge in volatility and correlations among stocks in bearish states, but

not in bullish states. In contrast, the idea of crashophobia can not be straightfowardly

transplanted without modification to the commodity sector: both a surge or a crash

in oil price, for instance, may cause crashophobia, hence potentially priced correlation

risk. Second, it is important to note that the commodity sector in general and the

energy markets in particular are characterized by more prevalent and dramatic jumps,

as well as higher capital and margin constraints of market intermediaries in response

to the jumps. Consequently, according to the demand pressure theory as Garleanu,

Pedersen & Poteshman (2009) suggest, the surge in cost of delta-hedging may result in

a pricing premium. One may therefore reasonably hypothesize that part of unhedgeable

risk may increase and hence a larger portion of risk to be priced according to demand

for insurance protection.

This paper contributes to the literature in two specific ways. Firstly, our finding

suggests that correlation exposure is not necessarily regarded as a risk factor in every

market. In fact, we show that despite the large magnitude of variance risk premium

embedded in 13 out of 14 commodity options that we have studied, it is statistically

very hard to extract any convincing risk premium that is conclusively attributable to

correlation risk. In order to understand why correlation risk is priced in equity markets

but likely not priced at all in commodity markets, we apply extreme value theory

and model the bivariate distribution of commodities from different sectors, namely

the energy, agricultural and metal sectors. We find that commodities from different

sectors demonstrate limited co-movement in either extremely positive or extremely

negative return scanarios, demonstrating excellent diversification during unfavorable

states. Hence, correlation risk is almost absent in commodity sectors.

The finding of this paper also provides an interesting aspect to evaluate the recent

emerging argument of commodity financialisation. In theory, the commodity financiali-

sation arguments would suggest favorable conditions for the existence of correlation risk

premium. Tang & Xiong (2012) show that since the early 2000s, prices of non-energy

commodity futures in the United States have become increasingly correlated with oil:
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a trend that is signicantly more pronounced for commodities in S&P Goldman Sachs

Commodity Index and Dow Jones-UBS Commodity Index. Cheng & Xiong (2013)

argued that investment inflows distort commodity prices by affecting risk sharing and

information discovery in commodity markets. Silvennoinen & Thorp (2013) find that

increases in VIX and nancial traders short open interest not only raise future-market re-

turns volatility for many commodities but also increases commodity returns correlation

with equity returns, hence closer return integration. Büyükşahin & Robe (2014) utilize

data on trader positions and show that the return correlation between investible com-

modity and equity indices rises following greater participation from speculators (and

hedge funds in particular) that hold positions in both equity and commodity futures

markets.2 To sum up, the financialisation literature points to the fact that commodity

markets have unprecedented exposure to marketwide correlation shocks. However, our

empirical finding is not supportive of the assertion of commodity financialisation at

least from the perspective of correlation risk: it is likely that commodities are still to a

large extent priced more as a segmented asset class rather than as financial assets. Our

extreme correlation study also pinpoints the important insight that the dependency

of joint distribution increases sharply for equities in bearish states when the return

exceedance is large and negative, a risk almost absent between two sectors of commod-

ity. The lack of equity-specific systematic risk discourages commodity financialisation

argument.

The rest of the paper is organized as below. Section 2 reviews literature related

to correlation risk and highlight the main progress and controversy as to the pricing

of correlation risks. Section 3 discusses the model-free procedure through which the

correlation risk can be measured. Section 4 studies the correlation patterns under

extreme, exceedance return scenario only using logistic function modelling, followed by

the conclusion.

2 The Correlation Risk Premium Puzzle

Formally, the variance risk premium (VRP) is defined as the excess of risk-neutral

expectation over physical/statistical expectation for future return variation.3 Similarly,

2Although in their recent paper, Bruno, Büyükşahin & Robe (2016) use a structural VAR model,

suggesting that financial speculation has shorter-lived and statistically insignificant impact.
3In some papers the variance risk premium is defined the other way around, that is the excess

of physical over risk-neutral measure. In this paper VRP is defined as the risk-neutral over physical
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the correlation risk premium (CRP) is defined as the difference between the realization

of the correlation and the risk-neutral expectation of correlation. Correlation risk and

variance risk are closely related ideas. Therefore, in this section, we start by reviewing

the variance risk premium. We then show how the variance risk premium relates to

the exposition of the correlation risk premium. Finally, we introduce the controversy

and puzzle about correlation risk.

2.1 Review of Variance Risk Premium

The variance risk premium has been theoretically modeled and empirically documented

in literature. For instance, Chabi-Yo (2012) derives a theoretically negative price for

market volatility based on investor’s risk aversion and skewness preference, establish-

ing an economic prediction for the existence of a negative variance risk premium. In

addition, the existence of VRP can also have an important implication on long-run risk

models such as in Bansal & Yaron (2004), which give the important insight that con-

sumption growth is very important for explaining equity risk premium and in particular

the volatility dynamics, suggesting a price for bearing equity market variance.

Inspired by such general equilibrium models, a growing number of empirical works

have been conducted to reconcile with the economic mechanism as suggested in those

theoretical models. For instance, Bollerslev, Tauchen & Zhou (2009) empirically test

for the VRP’s predictability of aggregate stock market returns, concluding that VRP is

a robust, nontrivial predictor of equity risk premium even standing along with popular

predictor variables such as the P/E ratio, the default spread and the consumption-

wealth ratio. Similar results are also documented in Bondarenko (2014) which syn-

thesizes S&P500 variance contracts for the two decades from 1990-2010, showing a

statistically significant and negative VRP that can not be well explained by option

returns or known risk factors. Bollerslev, Marrone, Xu & Zhou (2014) uses Monte

Carlo simulation to reinforce the statistical holding of the predictability of VRP for

U.S. stock market returns, suggesting that the striking empirical findings stand robust

against statistical biases due to a finite sample size. Londono (2014) extends the study

of VRP to an international level and suggests that despite the VRP (defined in that

paper as the difference between risk-neutral and physical expectation of total stock

variation) being positive and time-varying across different countries’ stock markets,

the predictive power of domestic stock returns is a peculiar feature for the U.S. VRP.

measure of variance unless otherwise specified.
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Recently, Londono (2014) points out the fact that the VRP is prevalent internationally

while the predictive power of returns may not hold in markets other than the U.S.

stock market. Bollerslev et al. (2014) disagree with the use of a country-specific model

to document the predictability of VRP for aggregate stock returns even outside the

U.S. market. 4 An understanding of the VRP’s predictive power is further deepened

by Bekaert & Hoerova (2014), who utilize volatility forecasting models to decompose

the (squared) VIX index (derived from S&P500 stock options) into two components:

the conditional variance component and a variance risk premium. Their findings rec-

oncile well with the literature that the VRP predicts stock returns. Interestingly, they

find that conditional variance has better predictive power for economic activities and

financial instabilities than VRP, suggesting a different informational content that con-

ditional variance and VRP bear. To sum up, empirical papers document statistically

robust, economically significant and internationally prevalent evidence that VRP in

stock markets may carry information contents that predict aggregate future market

returns and hence an important fraction of total equity risk premium.

There is another stream of VRP studies that focus on the determinants and char-

acteristics of VRP. For example, using variance swaps data, Ait-Sahalia, Karaman &

Mancini (2015) conducted a model-based analysis to demonstrate that the investors’

demand for insuring against variance risk (the reason why VRP is priced) increases

after market falls while such insurance demand decreases over time horizon of holding.

Therefore, the magnitude of the VRP is to some extent dependent upon prior returns

and such dependency decays over longer horizons. Their findings suggest that the VRP

has important term structure patterns, which respond differently to various economic

indicators. Recently, Konstantinidi & Skiadopoulos (2014) use actual S&P500 variance

swaps data 5 to study the time variation of VRP in the U.S. stock markets. They dis-

tinguish the variance swaps by investment horizons (from swap contracts’ maturities)

and conclude that the VRP becomes more negative when economic conditions and

trading activities deteriorate.

Despite that there are many empirical papers on the topic of variance risk premium,

4Although Londono (2014) states the predictability patterns are generally less pronounced than

in the U.S. case, the same basic return predictability pattern holds true for stock markets in France,

Germany, Japan, Switzerland, the Netherlands, Belgium and the United Kingdom. The results stand

robust out-of-sample even including the financial crisis period.
5In most related literature variance swap rates are synthesized using options data, for example in

Driessen et al. (2009), Prokopczuk & Wese Simen (2014). Synthesized variance swaps using options

data can be biased measurement of VRP due to investment horizon consideration.
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the majority of which focus on equity markets. In fact, the VRP is somewhat less

covered by literature in asset classes such as commodity. Doran & Ronn (2008) use a

parametric model to estimate the variance risk premia for major energy commodities

including crude oil, heating oil and natural gas, finding statistically significant and

negative variance risk premia respectively. From another aspect, Trolle & Schwartz

(2010) utilize variance swap data and discover that buying variance swaps of crude oil

and natural gas have negative expected returns, representing the premia investors pay

to hedge against volatility risk. More recently, Prokopczuk & Wese Simen (2014) apply

option data to create synthetic variance swaps for 21 commodity markets, finding that

18 out of 21 markets studied over their sample period demonstrate negative variance

risk premia.

To sum up the findings of empirical work on variance risk premia, we find that

in both equity markets and commodity markets, variance risk is priced as a negative

premium: in other word investors pay a premium for variance risk exposure. These

empirical findings are somewhat counterintuitive as investors tend to demand posi-

tive premia to compensate for risk exposure. In order to reconcile those findings with

theory, we turn our attention to the theoretical literatures explaining the pricing of vari-

ance risks. Theoretical studies propose two hypotheses regarding variance risk premia,

namely i) a diversification benefit hypothesis and ii) the insurance premia protecting

against bad economic states hypothesis. On one hand, a diversification benefit hypoth-

esis argues that it is the correlation between returns and volatility that determine the

sign of variance risk premia. In other words, if returns and volatility are negatively

correlated, such as in equity markets, investors are willing to pay a premium (thus neg-

ative variance risk premium) to hedge against price risk. Interestingly, commodities

such as crude oil demonstrate surges in volatility during both price surges and falls.

Thus, it is reasonable to suspect that investors may seek compensation for bearing

price risk. Hence, if the diversification hypothesis is correct, we may expect to find

positive variance risk premia in certain commodities.6

Theoretically, Bakshi & Madan (2006) suggest that rational risk-averse investors

avoid extreme loss states and buy protection against such unfavorable states. Hence,

variance risk premia can be viewed as insurance premia for unfavorable states, in other

words, the insurance premia hypothesis of variance risk. Modelling an equilibrium in

which investors have both uncertainty aversion and preference for early uncertainty res-

6Although this prediction has already been discouraged by empirical papers such as in Trolle &

Schwartz (2010).
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olution, Drechsler & Yaron (2011) confirm the intuition provided by Bakshi & Madan

(2006), predicting that investors who dislike increases in economic uncertainty are will-

ing to pay a premium to hedge variance risk. Given the model developed above, vari-

ance risk is predicted to be a negative pricing factor regardless of correlation between

returns and volatilities.

Interestingly, one major difference regarding the above two hypotheses lies in the

view that correlation between returns and volatilities plays a role in determining the

sign of variance risk premia. This important area of debate also motivates this paper as

commodities in certain cases differ from equities in their correlations between returns

and volatilities. Buraschi, Trojani & Vedolin (2014) derive a multivariate intertemporal

portfolio choice framework and show that the hedging demand is typically larger when

both volatility and correlation risk are stochastic. This paper highlights theoretically

how correlation risk impacts the optimal intertemporal portfolio choice problem in

terms of hedging cost. Importantly, the need for covariance hedging increases with the

persistence of variance-covariance shocks, the strength of leverage effects, the dimension

of the investment opportunity set, and the presence of portfolio constraints. Thus, the

correlation risk premium as a form of hedging demand is theoretically predicted to be

dependent on the market features as mentioned above.

2.2 Relating Variance and Correlation Risk

It is worth noting that the correlation risk premium (CRP) can be viewed as a spe-

cific decomposition of the VRP (see Driessen et al. (2009)). For a portfolio of assets,

correlation risk is a decomposition of variance risk, since portfolio variance changes

due to changes in individual variances and changes in correlations. To the extent that

individual variance risk and correlation risk are priced, the variance risk of a portfolio

of assets is priced.

In order to demonstrate how CRP is related to VRP, suppose that one holds an

index consists of a portfolio of assets. The realized variance of the index depends,

among others, on the realized variance of its constituents and the equicorrelation:

RVI,t+τ = ΣN
i=1ω

2
i,tRVi,t+τ + Σi,j 6=iωi,tωj,tρt+τ

√
RVi,t+τ

√
RVj,t+τ (1)

where RVI,t+τ is the realized variance of the index I at time t+τ , ωi,t is the mar-

ket capitalization weight of asset i at time t, RVi,t+τ is the realized variance of asset i
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at time t+τ , and ρt+τ is the equicorrelation at time t+τ . In other words, ρt+τ is the

equivalent correlation that yields the same variance for the index if all the pairwise

correlations are to be replaced by this equivalent correlation. Given the market

capitalization weights, the realized variance of the index and that of individual as-

sets, we can re-arrange Equation (1) to derive the formula for the equicorrelation as:

ρt+τ =
RVI,t+τ − ΣN

i=1ω
2
i,tRVi,t+τ

Σi,j 6=iωi,tωj,t
√
RVi,t+τ

√
RVj,t+τ

(2)

In Driessen et al. (2009) a similar expression holds under the risk-neutral measure:

EQt (σ2
I,t+τ ) = ΣN

i=1ω
2
i,tE

Q
t (σ2

i,t+τ ) + Σi,j 6=iωi,tωj,tEQt (ρt+τ )
√

EQ(σ2
i,t+τ )

√
EQ(σ2

j,t+τ ) (3)

where EQt (σ2
I,t+τ ) and EQt (σ2

i,t+τ ) respectively denote the risk-neutral expectations of

the future variance of the index and of asset i at time t, and EQt (ρt+τ ) is the risk-

neutral expectation of the future equicorrelation at time t.

By inverting Equation (3) we can express the risk-neutral expected correlation

as a function of observable quantities (See Driessen, Maenhout & Vilkov (2013)):

EQt (ρt+τ ) =
EQt (σ2

I,t+τ )− ΣN
i=1ω

2
i,tE

Q
t (σ2

i,t+τ )

Σi,j 6=iωi,tωj,t

√
EQt (σ2

i,t+τ )
√
EQt (σ2

j,t+τ )
(4)

Hence, the variance risk premium represented by the payoff of a variance swap

(V SPI,t+τ ) can be calculated as below:

V SPI,t+τ = RVI,t+τ − EQt (σ2
I,t−τ )

= ΣN
i ω

2
i,tV SPi,t+τ + Σi,j 6=iωi,tωj,t(ρt+τ

√
RVi,t+τ

√
RVj,t+τ

− EQt (ρt+τ )
√
EQ(σ2

i,t+τ )
√
EQ(σ2

j,t+τ )
(5)

By definition, the correlation risk premium, represented by the correlation swap

payoff (CSP), can be computed as the difference between the realization of the corre-

lation and the risk-neutral expectation of such correlation:

CSPt+τ = ρt+τ − EQt (ρt+τ ) (6)
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2.3 Controversy over correlation risk

Current empirical studies of index option premium puzzle can be classified into two

broad streams: risk-based explanations that attribute the premium of index options

to their exposure to correlation risks, and market-friction-based explanations that ac-

count for the pricing gap as compensation for intermediation hedging cost, which is

proportional to both the size of covariance exposure and the net positions of end-users

who create the demand for covariance hedging. Empirically, it is hard to quantitatively

identify or rule out either of the two explanations. Therefore, it is worthwhile to discuss

why correlation risk may deserve a price.

Firstly, we review the risk-based theory concluding a priced correlation exposure

compensation. The risk-based theory for the index option premium puzzle suggested

by for instance Driessen et al. (2009) is rooted in the economic argument related to

crashophobia in equity markets as suggested by Rubinstein (1994): financial crashes

feature both a surge in volatility and correlations among stocks, hence systemic corre-

lations is a likely pricing factor to reflect high state prices of such unfavorable states of

nature. However, this theory may prove difficult to verify empirically as the motiva-

tion of trading activities in option markets are almost impossible to document reliably:

whether it is risk-based or arbitrage-motivated. In addition, the theory proposed by

Rubinstein (1994) remains silent as to the time-series characteristics and evolution of

so called correlation risk premium. As an important complement to the understanding

of risk-based explanations, Buraschi et al. (2014) lucidly demonstrate the pricing of

the S&P 100 index versus its component individual options. Their novel equilibrium

model highlights the intuition that index option premium, interpreted as correlation

risk compensation, are strongly related to the investors’ level of disagreement. Hence,

the dispersion of subjective probabilities assigned by market participants (and hence

the perceived uncertainty) also play an important role in the determination of the

price of correlation risk. On the other hand, although market-friction-based expla-

nations can explain the pricing-gap puzzle well from end-users positions in stock and

stock-index options, they remain agnostic about the economic rationales of trading po-

sitions. In short, both theories need to be challenged against more empirical findings

and particularly in different marketplaces, such as the commodity sector in this paper.

Numerous studies account for the premium of an index option relative to its com-

ponent options as compensation for additional variance and/or correlation exposure

that index options bear. For instance, Krishnan, Petkova & Ritchken (2009) empir-
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ically test the hypothesis that investors pay a premium for an asset that performs

well in states of high market overall correlation (in other words, low diversification).

Their findings confirm the above hypothesis after controlling for risk factors such as

asset volatilities, hence supporting the existence of correlation risk premia (CRP). The

rationale behind this stream of thinking is that index options can be utilized as a

hedging tool which provides insurance against correlation changes and hence volatility

contagion among individual index components in unfavorable states. Therefore, from

a risk-based viewpoint, one can hypothesize that index options carry a premium to

reflect the additional hedging benefit against correlation shocks: a favorable feature

not available by simply holding a portfolio of corresponding index-component options.

The benefit of this method is that firstly, it is independent of model specification and

the signs and magnitudes of such premium can be empirically calculated and tested

against the hypothesis. In addition, one can also account for microstructure factors

and transaction costs to examine the possibility of arbitrage on this pricing factor.

Despite the benefits of this method, it also has the drawback of limited statistical

power as to what exactly the observed pricing gap is. As with equity markets, Driessen

et al. (2009) employ model-free volatility measures and empirically document a large

premium for stock index options over a corresponding portfolio of component stock

options written on identical underlyings to the index. The finding of a large pricing

gap is explained as the compensation for correlation risks. However, they clearly point

out the possibility of non-risk-based explanations which are impossible to rule out under

such a setting.7 To overcome the limitation of conclusive power under that particular

research framework, in their later paper, Driessen et al. (2013) switched from the

model-free implied volatility method to go one step further by explicitly modelling the

correlation dynamic to demonstrate the predictive power of option-implied correlations

on future stock market returns. Hence, correlation risk as implied under their semi-

parametric model is to a large extent a pricing factor.

As pointed out by Driessen et al. (2009), market frictions in stock markets result

from the unhedgable part of risk exposures. In such cases, the pricing of the unhedge-

7In fact, Driessen et al. (2009) explicitly state that the pricing gap can also be due to other factors

such as segmentation of option markets. They point out that it is possible that market frictions

prevent arbitrage taking advantage of the documented pricing gap. They estimate the market frictions

explicitly and confirm that the pricing gap may not be profitable to arbitrage. It is worth noting that

such frictions could potentially be large, due to that hedging cannot be continuously executed, that

volatility is stochastic, that jumps are prevalent, and that intermediaries that make the market have

capital and margin constraints.
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able part of risks is a function of the demand for insurance against such risks. Specif-

ically, there is a particular stream of studies that try to reconcile the option pricing

gap problem with demand and supply conditions of each individual equity option. For

example, Garleanu et al. (2009) distinguishes the option market participants between

end-users (defined as agents who have a fundamental need for option exposure) and

the intermediaries (defined as those being the counter-parties of end-users), suggest-

ing that higher demand pressure from end-users for long positions in a specific stock

option increases the compensation that intermediaries can ask for. Hence, under their

specific setting, due to the fact that some states of nature are not possible to replicate,

such states are priced according to end-users demand for hedging. They also found

a net long position of end-users for stock index options while a net short position for

single-stock options, suggesting that it is a higher demand for hedging index volatility

than individual stock volatility that results in the premium of index options.

Regarding correlation risk in commodity markets, there are numerous papers that

model the correlations between commodities futures. For instance, Behmiri, Manera

& Nicolini (2016) explicitly estimate the dynamic conditional correlations between 10

commodities futures markets with a DCC-GARCH model. They find that macroe-

conomic factors are significantly correlated with agriculture-energy and metals-energy

dynamic conditional correlations. In contrast, numerous papers (see for example Cha-

trath, Miao & Ramchander (2012)) find little evidence of an announcement-price re-

action in mean energy returns. Moreover, Chan & Gray (2016) find no evidence of

influences of macroeconomic announcements to jump dynamics of energy prices. We

note that different model specifications result in sharply contrasting conclusions regard-

ing how correlations react to macroeconomic announcements in particular and market

innovations in general.

To sum up, the pricing of correlation risk is a topic of contraversy in both equity

markets and commodity markets, the latter being even less investigated by current

studies.

3 Price of Correlation Risk in Commodity Markets

3.1 Estimating VRP Model-free

In general, the variance risk premium (VRP) reflects the compensation that investors

require to be exposed to stochastic changes in the variance of a risky asset. More
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specifially, Bollerslev & Todorov (2011) highlighted the fact that risk-averse investors

require such premia when facing stochastic volatilities and jumps in prices. In partic-

ular, they found that a large fraction of variance risk premia is attributed to fear of

rare, unfavorable events and crashes.

Volatility risk premia are empirically studied by three broad streams of method-

ologies: parametric, semi-parametric or model-free. The parametric approach requires

the specification of a data-generating process whereas volatility risk premia, if any, are

estimated as parameters of the parametric model. Consequently, specification errors

presents a major threat to the validity of such type of models since the conclusion

of any variance risk premia is a joint test of both model specification and parameter

significance. In particular, when examining the presence of variance risk premia in

markets with prices that jump (as the cases in many commodity markets), the para-

metric models rely heavily on the data-generating process with jumps in prices, as

Broadie, Chernov & Johannes (2007) has empirically demonstrated. Hence, given the

prevelance of jumps in commodity markets, this paper intends to avoid the misspeci-

ficiation issues that are introduced by parametric type of models. On the other hand,

semi-parametric models rely partially upon a specific finance model, such as a hedging

model as in Bakshi & Kapadia (2003), to infer the existence of variance risk premia. As

a result, the dependence of such specific finance models opens semi-parametric models

to criticism of mis-specification. Therefore, we employ model-free method to estimate

VRP for our commodity option dataset.

The detailed procedure as how to calculate the model-free variance measure from

options is provided in the Appendix.

3.2 Option Data

We obtain dataset on options of 14 commodities and 1 commodity index, downloaded

from Datastream. All option data obtained are of daily frequency. The option data

obtained date back to January 2011 until January 2016 for each commodity. It is

highlighted that the relative short sample period is due to the novelty of commodity

index option data. Consequently, the sample is used upon overlapping observations

that potentially underestimate the standard errors and overestimate the significance

of the test. However, this is less a concern given our finding of inconclusive correlation

risk premium. In other words, even a less powerful test is unable to conclude the

significant existance of a risk premium.
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The Deutsche Bank Commodity Index (DBCI) ETF tracking fund options are se-

lected as close approximations to options written on the DBCI. The Fund seeks to

track the performance of the DBIQ Optimum Yield Diversified Commodity Index Ex-

cess Return. The Index is a rule-based index composed of futures contracts on 14 of the

most heavily traded and important physical commodities in the world.8 The date of

initialization of this option contract is 24 March, 2011. For each individual commodity

and index option, we obtain daily information on Black-Scholes implied variance, delta,

market close price, bid and ask prices, trading volumes, open interests, strike prices

and maturities. The underlying prices are obtained from a constant maturity futures

time series by linear interpolation of futures contracts maturing at τ1 and τ2, where τ1

and τ2 are the nearest two available maturities. (Details of the linear interpolatation

are shown in equation 17).

Table 5 reports all PowerShares Deutsch Bank Commodity Index (DBCI) ETF

tracking fund’s underlying commodities. The first column show the sector and name

of specific commodities. The DBCI is a commodity index composed of three broad sec-

tors of commodities, namely the energy sector (55% of base-weight), the metal sector

(22.5% of base-weight) and the agricultural sector (22.5% of base-weight). The index is

annually rebalanced in each November back to the base-weights as indicated in the last

column of the table. The second column displays the exchange where the underlying

future contracts are traded, namely NYMEX for energy commodities considered, while

COMEX and CBOT for metal and agricultural commodities respectively.9 The third

column indicates the maturity months each future contract is scheduled, alone with

the minimum tick size in column 4. Column 5 shows the average annual option volume

traded as of year 2010-2011, which is the starting year when DBCI option is traded

on ARCA electronic platform on NYSE. The volumes of those contracts indicate the

liquidity and hence ease of tracking of those commodities. The futures contract in-

8PowerShares DBCI tracking fund is an ETF that tracks changes in the level of the DBIQ Optimum

Yield Diversified Commodity Index Excess Return. The annual tracking error is farily low (< 2%).

By design, the ETF roll over futures contracts based on the shape of the futures curve (instead of

following a fixed schedule) and intends to minimize the effects of contago and to maximize the effects

of backwardation. The option contracts are electronically traded on ARCA electronic platform based

in NYSE, which is a deep market with adequate liquidity and reasonably low trading costs. In short,

PowerShares DBCI ETF is a cost-effective way to track the risk exposure of DBCI.
9All commodity future contracts listed are traded in the U.S markets where time-zone issue and

exchange-rate issue are not present. In fact, those are the important advantages of the Deutsch Bank

Commodity Index as it is easy to construct, simple yet representative of the commodity sector.
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formation are extracted from DBCI ETF tracking fund newsletter and corresponding

exchanges’ websites.

The options data retrieved from Datastream are summarized in Table 6, which

presents a detailed description of out-of-the-money (OTM) options data we retrieved

from Datastream. For each commodity and the Deutsch Bank Commodity Index op-

tion, only OTM options with maturities ranging from 14 to 170 days are retained.10

To mitigate the effect of market micro-structure issues such as infrequent trading,

following the practice of Driessen et al. (2009) we only retain options expiring beyond

12 days. Further, we retain the options with prices lower than five times the minimum

tick size reported in the last column of Table 5. The options data are filtered so as

to ensure OTM contracts with extreme values are excluded. Our filters are set with

reference to those in Driessen et al. (2009) and Prokopczuk & Wese Simen (2014). There

are several aspects of important differences between equity options and commodity

options. For instance, equity options as considered by Driessen et al. (2009) have

infinite-life underlyings and are more frequently traded with a wide array of maturities

available, especially for options written on widely traded indices, such as the S&P

500, while commodity options may have lower trading frequencies. In addition, the

underlyings of commodity options are calculated from futures contracts with finite

maturity. Jumps in certain commodities require a more stringent filter, for instance, to

account for extreme outliers that distort the findings. Specifically, we discard options

with zero open interest or zero bid prices. We delete calls with Black-Scholes delta

below 0.6 and puts above -0.6. We set the moneyness of option to be within the range

of 0.7 to 1.3, thus options outside this range are excluded. We further limit the options

maturities to be within 170 days, so as to enable the linear interpolations of model-free

implied variance outputs from options maturing at τ1 and τ2, so as to obtain the model-

free implied variance over a constant maturity of interest, namely τ . Specifically, for

10Regarding commodity index options, the chosen DBCI ETF tracking fund options have two ad-

vantages over other potential candidates such as the UBS-Dow Jones (UBS-DJ) commodity index

options. Firstly, the NYSE ARCA is a liquid electronic trading platform and provides better liquidity

relative to for example Eurex in Frankfurt. In addition, all the components commodities on DBCI

have their corresponding U.S-based, dollar-denominated option markets, whereas other commodity

indices considered are joint outputs from both U.S-traded and European-traded commodities markets.

In cases where an index is composed of commodities futures traded in two time zones and/or in two

currencies, it becomes a time lag issue and exchange rate issue.

15



τ1>τ>τ2, we have:

MFIVt,t+τ =
τ − τ1
τ2 − τ1

(MFIVt,t+τ2 −MFIVt,t+τ1) +MFIVt,t+τ1 (7)

where τ1 and τ2 are the nearest two available maturities before and after our desired

maturity horizon τ respectively, and MFIVt,t+τ is the model-free implied variance

at time t maturity in τ days (calculated from equation 16 and under corresponding

interpolation and extrapolation assumptions discussed above). In this paper, τ is set

equal to 60 and 90 days. Hence, we obtain the time-series of 60 and 90 days-to-maturity

model-free implied variance measures for each of the commodity and index.

3.3 Extracting CRP from VRP

The variance risk premium (VRP) is calculated as VRP=
√
RV -
√
MFIV as explained

in equation 10 in the Appendix. Visually, we can see in Figure 1 and 2 that the model-

free implied variance of DBCI is consistently above its realized variance measure under

either 60 or 90 days horizon from 24 March, 2011 to 1 January, 2016. Table 1 and Table

2 summarizes statistics of the estimated commodity volatility risk premium (VRP) over

60 and 90 days maturity horizon under spline cubic method of interpolation.

We observed that 13 out of the 14 commodities considered (other than soybeans)

demonstrate a statistically significant and negative VRP, indicated by their realized

variance being consistently lower then their option-implied variance. In other words,

most of the commodities options investigated are overpriced with regard to the physical

measures. The p-value presented in Table 1 and Table 2 correspond to the Newey-West

corrected t-statistics of the hypothesis H0: RV t - MFIV t=0. Despite having slightly

higher p-value under 60-day horizon, all of the commodities and index investigated

demonstrate a statistically strong presence of negative (other than soybeans) VRP

at 5% significance level. In particular, commodities with the heaviest weights in the

index, including Brent crude, heating oil, light crude and RBOB gasoline, are robustly

negative for most periods in the time-series. The above results are robust against

changes in assumptions. Therefore, it is clear that VRP is significantly negative across

most of the individual commodities markets, as well as for the DBC index.11.

Next, we construct a replica option portfolio using options written on each of the

14 individual commodities. The component weights change dynamically according to

11Robustness checks include different interpolation methods (linear or cubic spline) and truncation

points (8 or 10 standard deviations away from observed futures contacts). Detailed robustness checks

results are presented in the Appendix
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the price changes of each commodity. The goal of the replica portfolio is to closely

track the aggregate variance risk exposure of the DBCI. Specifically, CRP is defined

in Equation (6), where the equicorrelation of commodity portfolio is calculated from

Equation (2) and the risk-neutral correlation estimated from Equation (3). As shown

in Table 1 and Table 2, the magnitude of CRP that we find is relatively small and we

can not statistically distinguish the existence of CRP from random variation.

To sum up, DBCI index options imply significantly negative VRP, just as the case

of S&P 100 documented by Driessen et al. (2009). However, 13 out of 14 commodities

options imply significantly negative VRP while individual stock options do not imply

a negative VRP. Our finding is consistent with that of Prokopczuk & Wese Simen

(2014), which documents that 18 out of 21 commodities carry significantly negative

VRP. Given we find that both commodity index and individual commodities carry

significantly negative VRP, the pricing gap between DBCI index and its replica port-

folio constructed from commodities options is fairly limited, excluding the chance for

a significant compensation for systemetic correlation risk exposure to exist.

17



Table 1: 60-day Variance Risk Premium Summary. This table summarizes the

statistics of the estimated commodity variance risk premium (VRP) over 60-day hori-

zon from 24 March, 2011 to 1 January, 2016. We apply the cubic spline interpolation

technique. The VRP is calculated as VRPt=
√
RVt -

√
MFIVt whereas the p val-

ues correspond to the Newey-West corrected t-statistics of the hypothesis H0: RV t -

MFIV t=0. The correlation risk premium (CRP) is calculated as CRPt=VRPIndex,t -

VRPIndividual,t whereas the p-value correspond to the Newey-West corrected t-statistics

of the hypothesis H0:CRP t=0.

Sector Initial Weight Mean RV Mean MFIV Mean VRP† p value* Median Std Dev Obs

Energy

Brent Crude 12.37% 0.3742 0.4082 -3.36% 0.05 -3.32% 0.079 1497

Heating Oil 12.37% 0.3782 0.4082 -2.95% 0.02 -3.04% 0.075 1539

Light Crude 12.38% 0.3712 0.3992 -2.87% 0.05 -2.85% 0.135 1478

RBOB Gasoline 12.38% 0.2882 0.3162 -2.87% 0.04 -2.86% 0.119 1421

Natural Gas 5.50% 0.4542 0.5512 -9.71% 0.00 -9.70% 0.151 1563

Metal

Gold 8.00% 0.3892 0.4012 -1.22% 0.01 -1.25% 0.037 1256

Aluminum 4.16% 0.1322 0.1562 -2.36% 0.03 -2.53% 0.104 1368

Copper-Grade A 4.17% 0.2272 0.2522 -2.46% 0.05 -2.65% 0.086 1255

Zinc 4.17% 0.1072 0.1182 -1.06% 0.02 -1.12% 0.067 1187

Silver 2.00% 0.3012 0.3132 -1.19% 0.03 -1.31% 0.051 1198

Agricultural

Soybeans 5.63% 0.1262 0.1092 1.68% 0.01 1.80% 0.155 1740

Sugar #11 5.62% 0.2052 0.2302 -2.46% 0.02 -2.39% 0.077 1756

Wheat 5.62% 0.0462 0.0532 -0.68% 0.04 -0.64% 0.042 1601

Corn 5.63% 0.1362 0.1592 -2.30% 0.02 -2.14% 0.038 1624

Index

DBC Index 0.1752 0.1992 -2.53% 0.01 -2.39% 0.093 1187

Replica Option Portfolio 0.1692 0.1972 -2.74% 0.03 -2.82% 0.119 1187

Implied CRP Mean CRP p value** Median Std Dev Obs

CRP †† 0.14% 0.03 0.21% 0.061 1187

Notes:

* H0: RVt - MFIVt=0

** H0: CRPt=VRPIndex,t - VRPIndiv,t=0
† VRPt=

√
RVt -

√
MFIVt

† † CRPt=VRPIndex,t - VRPIndividual,t

18



Table 2: 90-day Variance Risk Premium Summary. This table summarizes the

statistics of the estimated commodity variance risk premium (VRP) over 90-day hori-

zon from 24 March, 2011 to 1 January, 2016. We apply the cubic spline interpolation

technique. The VRP is calculated as VRPt=
√
RVt -

√
MFIVt whereas the p val-

ues correspond to the Newey-West corrected t-statistics of the hypothesis H0: RV t -

MFIV t=0. The correlation risk premium (CRP) is calculated as CRPt=VRPIndex,t -

VRPIndividual,t whereas the p-value correspond to the Newey-West corrected t-statistics

of the hypothesis H0:CRP t=0.

Sector Initial Weight Mean RV Mean MFIV Mean VRP† p value* Median Std Dev Obs

Energy

Brent Crude 12.37% 0.3772 0.4102 -3.31% 0.02 -3.12% 0.084 1467

Heating Oil 12.37% 0.3752 0.4052 -3.02% 0.02 -2.82% 0.078 1509

Light Crude 12.38% 0.3732 0.4012 -2.74% 0.02 -2.93% 0.126 1448

RBOB Gasoline 12.38% 0.2902 0.3192 -2.87% 0.00 -2.96% 0.129 1382

Natural Gas 5.50% 0.4642 0.5622 -9.77% 0.04 -9.76% 0.158 1533

Metal

Gold 8.00% 0.3982 0.4112 -1.23% 0.04 -1.17% 0.037 1226

Aluminum 4.16% 0.1402 0.1642 -2.41% 0.04 -2.27% 0.108 1338

Copper-Grade A 4.17% 0.2232 0.2472 -2.45% 0.02 -2.54% 0.078 1225

Zinc 4.17% 0.1222 0.1342 -1.20% 0.00 -1.12% 0.070 1157

Silver 2.00% 0.2952 0.3072 -1.27% 0.05 -1.39% 0.041 1168

Agricultural

Soybeans 5.63% 0.1202 0.1022 1.85% 0.05 1.79% 0.153 1710

Sugar #11 5.62% 0.2132 0.2382 -2.50% 0.01 -2.36% 0.075 1726

Wheat 5.62% 0.0462 0.0542 -0.83% 0.02 -0.64% 0.043 1571

Corn 5.63% 0.1362 0.1582 -2.21% 0.05 -2.14% 0.047 1594

Index

DBC Index 0.1782 0.2032 -2.55% 0.03 -2.62% 0.097 1157

Replica Option Portfolio 0.1722 0.1982 -2.68% 0.03 -2.83% 0.128 1157

Implied CRP Mean CRP p value** Median Std Dev Obs

CRP †† 0.10% 0.04 -0.01% 0.069 1157

Notes:

* H0: RVt - MFIVt=0

** H0: CRPt=VRPIndex,t - VRPIndiv,t=0
† VRPt=

√
RVt -

√
MFIVt

† † CRPt=VRPIndex,t - VRPIndividual,t

19



4 Extreme Correlation of Commodity Sectors

Our results so far have demonstrated a significantly negative and robust risk premium

for DBCI and for most (13 out of 14) individual commodities.12In addition, our results

show that the replica option portfolio, which is constructed to capture the identical

aggregated variance risk exposure as of DBCI, does not contain a systematic risk pre-

mia to compensate for the additional correlation risk exposure that the replica option

portfolio bears. Therefore, it is very unlikely that correlation risk is priced in com-

modity markets that we have studied, because it is impossible to have a significant

factor loading on correlation risk even before considering the cost associated with a

correlation trading strategy. In other words, risk-based explanations for the equity

index option premium can not explain the case of commodity. This important finding

motivates us to revisit the risk-based explanations for index option premium in the

context of commodity markets.

Risk-based explanations for the equity index option premium view such premia as

insurance against unfavorable states of nature (and to a large extent tail events). It

is a stylized fact that correlation between stocks increases and hence diversification

benefits deteriorate in such unfavorable states. To be more specific, Longin & Solnik

(2001) highlight a key finding that correlation increases only in left-tail states but

not in right-tail states. In other words, correlation increases in bear markets, but

not in bull markets. Hence, extreme correlations impact the distribution of portfolio

returns asymmetrically with an unfavorable fatter left-tail but no boost in the right-

tail. Consequently, their finding suggests that exposure to correlation risk has only

detrimental impacts on equity portfolio value without any potential upside benefit. In

other words, a portfolio with exposure to correlation risk is stochastically dominated

by a portfolio without such risk exposure, hence CRP is a priced factor. In short,

the asymmetric correlations pattern during bear and bull equity markets documented

by Longin & Solnik (2001) is not only a strong finding that supports the risk-based

rationale of equity index option premium, but also a lucid empirical footnote to the

catastrophobia idea of Rubinstein (1994).

Instead of explicitly modelling how macroeconomic factors impact the cross-commodity

12Prokopczuk & Wese Simen (2014) also document similar results with their large panel of com-

modity option dataset, finding 18 out of 21 commodities demonstrated significantly negative VRP

during 1989 to 2011. This finding is sharply contrasting with the case in equity, such as in Driessen

et al. (2009), which empirically document a significantly negative risk premium for only equity index

variance risk, but not for individual stock’s variance risk.
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sector correlations, our paper focus on examining how cross-commodity-sector corre-

lations behave in scenarios of correlated extreme returns. Interestingly, there is no

literature that specifically estimates the extreme correlations for a commodity portfo-

lio in the same measure as for an equity portfolio and it is not clear how correlations

react to bear and bull markets in the commodity sectors. In addition, our findings

strongly suggest that correlation risk is not significantly priced in commodity markets.

Hence, in order to reconcile for the difference that CRP is significantly priced in equity

markets but not in commodity markets, it is important to investigate tail-return depen-

dency of commodities and consequently how risk-based explanation applies differently

to the commodity sectors. Indeed, extreme correlation will provide us a risk-based

insight to the understanding of why correlation risks are to a less extent priced in

commodity sector, a finding we have just robustly documented.

In this section, our aim is to estimate the bivariate-distribution dependency of

extreme returns among three major sectors of the commodity markets, namely the

energy, metal and argricultural sectors. The rationale is to investigate how correlated

extreme returns between two commodity sectors impacts the value of a commodity

portfolio, hence to determine whether there is a risk-based rationale for correlation

risk exposure to be priced.

In order to draw a conclusion about the above question, we need to adopt the

extreme value theory (see for example Galambos & Galambos (1978)) and empiri-

cal practices employed by Longin & Solnik (2001) to test the bivariate normality of

extreme-return correlations between each two sectors. It is important to note that

supirious relationships between correlation and variance can result in misleading re-

sults regarding how correlations react during volatile times. For instance, Ang &

Bekaert (1999) demonstrate that even a general asymmetric GARCH model can not

produce the asymmetric correlations pattern that Longin & Solnik (2001) have docu-

mented. Therefore, our paper employ the logistic function proposed by Gumbel (1961)

to model the bivariate distribution of extreme returns. In particular, following Behmiri

et al. (2016) which uses DCC-GARCH model to demonstrate that agriculture-energy

and metals-energy correlations react to marcroeconomic announcements, our paper ex-

plicitly examines how those commodity subsectors interact when censoring returns at

different thresholds. The extreme returns correlations between commodity subsectors

will demonstrate how diversification benefits of investing across a basket of commodities

evolve. More importantly, the study will highlight the difference between commodities

correlations and equities correlations during extreme-return states, hence reconciling
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the pricing difference of CRP that we have documented.

4.1 Data

We calculate the daily returns for each of the three major sub-class of commodities:

energy, argricultural and metals respectively from 24 March, 2011 to 1 January, 2016,

according to their composition weights on the DBCI index. Detailed index composition

is presented in Table 5.

Furthermore, to check the robustness of our analysis against changes in index con-

struction, in the Appendix, we also employ an alternative set of commodity data,

namely the Standard and Poors Goldman Sachs Commodity Index (GSCI). Specifi-

cally, the energy sector returns are represented by GSCI Energy (log total return). The

agricultural sector returns are represented by GSCI Agricultural and Livestock (log to-

tal return). The metal sector returns are obtained from GSCI All Metals Capped (log

total return). The data span the period from 1 January, 2010 to 1 October, 2016. A de-

scription of the components of each of the three sub-index is available from Thomsons

One Banker Eikon.

4.2 Parameters Estimation

In order to model and investigate extreme return correlation between two assets, this

paper adopted the logistic function as in Gumbel (1961) to capture asymptotic depen-

dency between two tail-distributions. Specifically, we censored the return of an asset

at a threshold θ, meaning that a return will convey information to the logistic func-

tion only if it hits threshold θ. More specifically, for an asset i and a pre-determined

threshold θi, we have :

T θiRi(xi) = (1− pi) + piU
θi
Ri

(xi) (8)

where T θiRi(xi) represents the tail distribution for asset i either from (1-pi) probability of

non-tail event or pi probability from the limit univariate distribution, which is further

governed by three parameters: 1) p for tail event probability, 2) σ for second moment

or dispersion measure, and 3) ξ for tail distribution characteristics.

Following Ledford & Tawn (1997), we write the bivariate joint distribution of return

exceedences as:

T θR(x1, x2) = exp(−Dl(−1/logU θ1
R1

(x1),−1/logU θ2
R2

(x2))) (9)
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where joint distribution T θR(x1, x2) is determined by a logistic dependency function

Dl which is further determinated by the correlation of extreme returns, captured by

parameter ρ. Hence, by the method of maximum likelihood, one can estimate the

bivariate distribution subject to 7 parameters mentioned above (namely p1, σ1, ξ1, p2,

σ2, ξ2 and ρ1/2). A detailed derivation of the likelihood function is available in the

Appendix of Longin & Solnik (2001).

To estimate the parameters, we firstly determine five discrete levels of threshold

for both positive and negative extreme return comovements, namely ± 0%, ± 3%, ±
5%, ± 8%, and ± 10%. We set threshold simultaneously and symmetrically for each

pair of commodity returns series. Then, due to the central importance of energy sector

in commodity portfolio and following Behmiri et al. (2016), we explicitly examine two

pairs: energy/argricultural (denoted by E and A) and energy/metals (denoted by E

and M).

The first step is to estimate each individual sector’s univariate parameters, that is

URi . Then, using the parameters estimated as starting value, we estimate the joint

distributions that maximize the univariate likelihood function. The results are sum-

marized in Table 11 for energy/argricultural and Table 12 for energy/metal.

It is observed that the correlation coefficients of return exceedances are only influ-

enced by the size but not the sign of the thresholds used to define the extremes. This

finding is significantly different to the case of equity-exceedence-return dependency,

which is higher under left-tail while lower or even independent under right-tail. To

illustrate that point, Figure 3 and Figure 4 show that positive or negative exceedance-

return correlations are roughly symmetric. We can not conclude from the finding above

any systematic impact, either positive or negative, that return exceedance at any spec-

ified level has over the value of a well-diversified commodity portfolio, in other words,

the three sub-sectors of commodity remain excellent diversifiers for each other, even

in face of the potential financialisation trend in commodity sector that some literature

may argue.

4.3 Normality Test

In this section we estimate the bivariate distribution of return exceedances and test

the null hypothesis of normal distribution of extreme-return correlations. Specifically,

the normality test has the null hypothesis H0: ρ=ρnor=0. Wald tests on the correlation

coefficient are carried out with the corresponding p values reported in brackets. Figure
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3 and 4 demonstrate that the correlation of return exceedances against the normal

correlation simulated based on univariate sample parameters. From the two figures,

one can not conclude that return exceedances are more pronounced under any threshold

scenarios for each pair. The above finding is critical to our understanding of correlation

risk in commodity markets: there is no convincing evidence or systematic patterns that

correlated return exceedances in either surging or falling markets may harm commodity

portfolio value. As reported in Table 3 and Table 4, Wald tests on the correlation

coefficients are carried out for each threshold θ respectively. The W test compares

the estimated correlation of return exceedances to their theoretical value as predicted

unter the null hypothesis of bivariate-normally-distributed returns. The normality null

hypothesis cannot be rejected at moderate to large threshold levels, revealing that

despite the distribution of commodities concerned may deviate far from normal, when

censored at extreme returns, however, bivariate distribution can no be rejected. It is

also found that correlations drop rapidly when there is either large negative returns or

large price surges.

This finding contrasts sharply with the case of equity, a market that we observe

empirically and model theoretically the evaporation of diversification benefits through

correlation increase. In particular, Longin & Solnik (2001) shows that the correlations

of return exceedances for international stock markets in the left-tail are much higher

than implied by the simulated correlations under the assumption that the two series

are bivariate-normal distributed. In contrast, our results show that commodity corre-

lations do not increase systemetically in either bearish or bullish commodity markets.

In conclusion, the extreme correlation structure is symmetric for commodities from

different sub-class while it is unfavorably asymmetric for equities.

Our finding is important because it provides a convincing new aspect on the risk-

based explanation for the price of correlation risk. Although Driessen et al. (2009)

documents a large pricing gap between index option and portfolio of options, market

frictions associated with trading costs prevent an economic factor loading on the CRP,

which they hypothesized from a risk-based pointview. Our paper demonstrates that

in commodities markets, where correlations do not increase in either bullish or bearish

markets (hence no risk-based rationale for CRP to be priced), we document little

evidence of the existence of CRP, even though the market frictions in commodities

markets are arguably larger than in equities markets. Therefore, our paper provides

empirical supports in favor of the risk-based argument of CRP.
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Table 3: DBCI Energy and Argricultural Return Exceedances Distribution.

This table demonstrates the maximum likelihood parameters for the bivariate distribu-

tion of the DBCI energy and argricultural total return exceedances, defined by a range

of arbitrary threshold θ. The threshold θ takes value ranging from -10% daily return

to +10% daily return. There are 7 parameters estimated by maximizing the likelihood

function, namely for each of the two return series, 1) p for tail event probability, 2)

σ for second moment or dispersion measure, 3) ξ for tail distribution characteristics,

and lastly 4) ρ for the correlation of return exceedances between the two observed

series, which is used in the logistic function to model the extreme returns correlation.

Standard errors are shown in parentheses. The normality test has the null hypothe-

sis H0: ρ=ρnor=0. Wald tests on the correlation coefficient are carried out with the

corresponding p values reported in brackets.

Threshold H0: ρ=ρnor=0

θ pE σE ξE pA σA ξA ρE/A W test

-10% 0.027 3.022 0.891 0.027 2.171 0.327 0.149 0.426

(0.003) (0.423) (0.572) (0.006) (1.239) (0.301) (0.139) [0.715]

-8% 0.031 3.240 0.245 0.192 3.918 0.153 0.154 0.273

(0.006) (0.491) (0.419) (0.127) (1.421) (0.258) (0.132) [0.835]

-5% 0.142 2.399 0.168 0.419 3.427 0.125 0.216 0.421

(0.029) (0.391) (0.164) (0.088) (0.381) (0.325) (0.108) [0.624]

-3% 0.211 3.080 -0.019 0.271 3,426 -0.123 0.301 0.847

(0.215) (0.217) (0.081) (0.012) (0.421) (0.024) (0.065) [0.224]

-0% 0.608 2.413 0.180 0.489 4.231 0.434 0.327 1.919

(0.024) (0.661) (0.331) (0.033) (0.214) (0.210) (0.049) [0.073]

+0% 0.549 3.415 0.245 0.573 3.422 0.142 0.316 1.891

(0.016) (0.253) (0.020) (0.042) (0.239) (0.001) (0.051) [0.076]

+3% 0.241 2.439 -0.294 0.241 2.531 0.231 0.304 1.372

(0.079) (0.147) (0.234) (0.128) (0.120) (0.918) [(0.067) [0.211]

+5% 0.061 3.188 -0.291 0.048 3.251 -0.113 0.214 0.871

(0.032) (0.773) (0.142) (0.023) (0.661) (0.439) (0.087) [0.851]

+8% 0.023 0.939 0.721 0.027 0.921 0.219 0.161 0.813

(0.014) (0.972) (0.199) (0.007) (0.949) (0.030) (0.177) [0.820]

+10% 0.029 0.313 -0.119 0.014 0.444 0.344 0.139 0.022

(0.015) (2.880) (0.193) (0.003) (3.104) (0.091) (0.184) [0.871]
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Table 4: DBCI Energy and Metal Return Exceedances Distribution. This

table demonstrates the maximum likelihood parameters for the bivariate distribution

of the DBCI energy and metal total return exceedances, defined by a range of arbitrary

threshold θ. The threshold θ takes value ranging from -10% daily return to +10%

daily return. There are 7 parameters estimated by maximizing the likelihood function,

namely for each of the two return series, 1) p for tail event probability, 2) σ for second

moment or dispersion measure, 3) ξ for tail distribution characteristics, and lastly 4)

ρ for the correlation of return exceedances between the two observed series, which is

used in the logistic function to model the extreme returns correlation. Standard errors

are shown in parentheses. The normality test has the null hypothesis H0: ρ=ρnor=0.

Wald tests on the correlation coefficient are carried out with the corresponding p values

reported in brackets.

Threshold H0: ρ=ρnor=0

θ pE σE ξE pM σM ξM ρE/M W test

-10% 0.023 1.234 0.341 0.211 4.119 0.121 0.183 0.249

(0.003) (0.711) (0.328) (0.302) (2.322) (0.339) (0.362) [3.440]

-8% 0.034 2.104 0.945 0.200 3.118 0.202 0.241 0.111

(0.013) (0.230) (0.329) (0.347) (2.110) (0.334) (0.388) [5.212]

-5% 0.203 2.301 0.291 0.214 2.301 0.201 0.343 0.428

(1.239) (1.391) (0.412) (0.001) (1.281) (0.029) (0.199) [2.831]

-3% 0.239 3.001 -0.149 0.301 3.162 -0.299 0.335 0.421

(0.001) (0.381) (0.149) (0.008) (0.300) (0.040) (0.035) [2.782]

-0% 0.814 3.215 0.316 0.712 9.234 0.439 0.426 5.129

(0.361) (0.261) (0.421) (0.410) (0.320) (0.110) (0.249) [0.004]

+0% 1.239 5.255 0.591 0.391 2.519 0.411 0.431 21.129

(2.203) (0.153) (2.219) (3.111) (0.320) (2.009) (5.249) [0.000]

+3% 0.110 -0.002 -0.281 0.397 2.119 1.219 0.325 10.251

(0.001) (0.381) (0.149) (0.008) (0.300) (0.040) (0.035) [0.000]

+5% 0.415 3.331 0.331 0.251 -3.152 0.555 0.219 0.510

(1.239) (1.391) (0.412) (0.001) (1.281) (0.029) (0.199) [2.231]

+8% 0.054 2.235 1.191 -0.200 1.211 0.310 0.121 0.190

(0.013) (0.230) (0.329) (0.347) (2.110) (0.334) (0.388) [5.003]

+10% 0.152 2.315 0.293 0.135 10.231 0.014 0.115 0.031

(0.214) (0.322) (0.158) (0.392) (4.112) (0.512) (0.331) [12.320]
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5 Conclusion

Using a novel source of data, this paper shows that i) both commodity index (DBCI)

options and individual commodity options imply significantly negative VRPs. This

contrasts sharply with the case of equities, as only equity index options but not indi-

vidual options imply significantly negative VRP. ii) contrary to recent empirical find-

ings of significantly priced correlation risk premium in equity index options, there is

no supporting evidence to the hypothesis that intra-commodity correlation risk is a

pricing factor. Even before considering market-friction factors, it is unlikely to have

a risk factor loading on CRP, hence strongly suggesting the non-existence of CRP

in commodity markets. iii) our censored distribution using extreme value theory and

logistic function considers only large return outliers’ correlations. We demonstrate nor-

mality of extreme-return correlations between energy-argricultural and energy-metals

sectors. This feature differs significantly from the case of equity markets, where bear

markets trigger significantly larger extreme-return correlations than normality assump-

tions would imply. In contrast, extreme-return correlations between subsectors of com-

modities markets are symmetric and normal, inducing no rationale for insuring against

correlated extremely negative returns.

The findings of this paper contribute to the literature in the following ways. First

and foremost, our paper provides a convincing and new aspect on the risk-based ex-

planation for the price of correlation risk. Although Driessen et al. (2009) documents

a large pricing gap between index option and portfolio of options, they also demon-

strate with their trading strategy that market frictions limit factor loadings on CRP,

hence it is impossible to distinguish whether risk-based explanations or market-friction

explanations account for the observed pricing gap (or to what extent). Our paper

demonstrates that in commodities markets, where correlations do not increase in ei-

ther bullish or bearish markets (hence no risk-based rationale for CRP to be priced), we

document little evidence of the existence of CRP, even though the market frictions in

commodities markets are pronounced. Therefore, our paper provides empirical support

in favor of the risk-based argument of CRP.

Another contribution of this paper is that our finding is against the hypothesis

of commodity financialisation in the sense that commodity’s correlation risks do not

attract insurance premium as financial assets do. Hence, this paper’s finding is favor-

able towards the view that commodities are generally priced as a distinctive asset class

rather than financial assets.
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To sum up, commodity markets retain diversification benefits across subsectors

during either bull or bear commodities markets. The correlation risk compensation

is currently an equity-specific feature resulting from the asymmetric distribution of

equity-extreme correlations. Commodities markets which feature normality in extreme-

return correlations do not demand compensation for correlation risk exposure. The

price of correlation risk, therefore, is to a large extent the price of insurance against

unfavorable states of correlated negative returns, rather than just compensation for

market frictions.

As for future research, one could explore the predictive power of the correlation

risk premium for future returns in commodity markets and test for additional infor-

mation content that correlation risk premium carry over variance risk premium. A

macro-based study such as Kilian & Vega (2011) would help us to understand the dy-

namics underlying commodity futures that specifically impact the pricing of variance

and covariance risk. The term structure and time variation of correlation risk premium

is also a research avenue of interest.
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Table 5: DBCI Tracking Fund Component Future Contracts. This table re-

ports all Deutsche Bank Commodity Index (DBCI) ETF tracking fund’s underlying

commodities. The first column show the sector and name of specific commodities. The

DBCI is a commodity index composed of three broad sectors of commodities, namely

the energy sector (55% of base-weight), the metal sector (22.5% of base-weight) and

the agricultural sector (22.5% of base-weight). The second column displays the ex-

change where the underlying future contracts are traded, namely NYMEX for energy

commodities considered, while COMEX and CBOT for metal and agricultural com-

modities respectively. All commodity future contracts listed are traded in the U.S

market where time-zone issues and currency issues are not in presence.The third col-

umn indicates the maturity months each future contract is scheduled, alone with the

minimum tick size in column 4. Column 5 shows the average annual option volume

traded as of year 2011, which is the initialization year (24 March, 2011) when DBCI op-

tion is traded on ARCA electronic platform on NYSE. The volumes of those contracts

indicate the liquidity and hence ease of tracking of those commodities. The index is

annually rebalanced in November back to the base-weights as indicated in column 6 of

the table. Last column shows the days of trading as spanned by our sample data. The

future contracts information are extracted from DBCI Powershare ETF tracking fund

newsletter and corresponding exchanges’ websites.

Sector Exchange Available Future Maturities Tick Size Volume Base Weight in DBCI Trading days

Energy 55.00%

Brent Crude NYMEX Jan-Dec 0.01 35,901,515 12.37% 1497

Heating Oil NYMEX Jan-Dec 0.0001 891,918 12.37% 1539

Light Crude NYMEX Jan-Dec 0.01 46,761,573 12.38% 1478

RBOB Gasoline NYMEX Jan-Dec 0.01 739,641 12.38% 1412

Natural Gas NYMEX Jan-Dec 0.001 25,995,473 5.50% 1563

Metal 22.50%

Gold COMEX Feb, Apr, Jun, Aug, Oct, Dec 0.1 8,905,621 8.00% 1256

Aluminum COMEX Mar, May, Jul, Sep, Dec 0.005 11,673 4.16% 1368

Copper-Grade A COMEX Mar, May, Jul, Sep, Dec 0.005 12,203 4.17% 1255

Zinc COMEX Mar, May, Jul, Sep, Dec 0.005 16,879 4.17% 1187

Silver COMEX Mar, May, Jul, Sep, Dec 0.5 1,882,170 2.00% 1198

Agricultural 22.50%

Soybean CBOT Jan, Mar, May, Jul, Aug, Sep, Oct, Dec 0.25 11,641,356 5.63% 1740

Sugar #11 CBOT Mar, May, Jul, Oct, Dec 0.01 7,713,957 5.62% 1756

Wheat CBOT Mar, May, Jul, Sep, Dec 0.25 4,588,187 5.62% 1601

Corn CBOT Jan, Mar, May, Jul, Aug, Sep, Nov, Dec 0.25 28,650,380 5.63% 1624
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Table 6: Summary of Options Data. This table presents a description of out-of-

the-money (OTM) options data we retrieved from Datastream. For each commodity

and the Deutsche Bank Commodity Index option, only OTM options with maturities

ranging from 14 to 170 days are retained. The first column report the sectors and

commodities included. The second column records the longest available date of each of

the options, with energy commodities options dating back as early as year 1989 while

the DBCI option dating only back to March of 2011. Hence, we retrieve all commodity

option data since 2007 and index option data since initialization in 2011. As shown in

column 5, there are 2827 trading days of observation for each commodity option while

1247 days of observations for the index option. The last two columns documents the

average available number of maturities available for call and put contracts at a point

of time. For example, there are 51 difference maturities of call options for natural gas

calls while 27 maturities of puts. In particular, there are around 8 calls and 7 puts

of different maturities for DBCI options, spanning a range of maturities as long as 2

years.

Sector Available Since Starting Date Ending Date Sampled Days Calls Puts Opening Interest Availability

Energy

Brent Crude 16-Jan-89 01-Jan-07 01-Jan-16 2827 27 22 Yes

Heating Oil 11-Jan-89 01-Jan-07 01-Jan-16 2827 29 24 Yes

Light Crude 11-Jan-89 01-Jan-07 01-Jan-16 2827 28 26 Yes

RBOB Gasoline 03-Jul-91 01-Jan-07 01-Jan-16 2827 20 18 No

Natural Gas 02-Oct-92 01-Jan-07 01-Jan-16 2827 51 27 Yes

Metal

Gold 03-Jan-89 01-Jan-07 01-Jan-16 2827 16 13 Yes

Aluminum 03-Jan-89 01-Jan-07 01-Jan-16 2827 11 15 No

Copper-Grade A 12-Dec-89 01-Jan-07 01-Jan-16 2827 12 14 Yes

Zinc 03-Dec-89 01-Jan-07 01-Jan-16 2827 13 15 No

Silver 03-Mar-89 01-Jan-07 01-Jan-16 2827 24 32 Yes

Agricultural

Soybean 24-Feb-89 01-Jan-07 01-Jan-16 2827 Yes

Sugar #11 06-Mar-90 01-Jan-07 01-Jan-16 2827 20 14 Yes

Wheat 24-Feb-89 01-Jan-07 01-Jan-16 2827 18 13 Yes

Corn 24-Feb-89 01-Jan-07 01-Jan-16 2827 19 13 Yes

Index

DBCI 11-Mar-11 11-Mar-11 01-Jan-16 1247 8 7 Yes
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6 Appendix

6.1 Model-free Procedures of Estimating VRP

The model-free approaches of estimating variance risk premia are based on a simple

fundamental idea: given a proper sample size, the unconditional variance risk premia

during the period spanning from time t to t + τ shall be equal to the mean variance

swap pay-offs, which can be calculated as the differences between the realized variance,

RVt,t+τ , and the risk-neutral expectation of variance over interval period τ , denoted

as EQt (Vτ ). Moreover, under no-arbitrage argument, the risk-neutral expectation of

variance must equal to the pay-off of the corresponding variance swap, denoted SVt,t+τ .

The variance swap pay-offs can be further synthesized by a proper model-free estimator,

MFIVt,t+τ , which exploits option information. Hence under no-arbitrage argument,

we have:

V RPt,t+τ = RVt,t+τ − EQt (Vτ ) = RVt,t+τ − SVt,t+τ = RVt,t+τ −MFIVt,t+τ (10)

Based on the above foudamental idea, the model-free approach estimates the risk-

neutral expected integrated variance of the return on asset α ∈ {1, ..., i, ..., N} over the

discrete time interval from t to t+τ , as below:

EQt (Vα,τ ) = EQt
[∫ t+τ

t

φ2
α(s)ds

]
,

α ∈ {1, ..., i, ..., N}
(11)

In order to estimate the risk-neutral expected integrated variance in equation 11,

this paper adopt the methodology which is rooted in the work of Breeden & Litzen-

berger (1978) and is widely adopted by recent empirical work of variance risk premia

(see Driessen et al. (2009); Prokopczuk & Wese Simen (2014)). This procedure has

the advantage of being model-free relative to the widely used Black-Scholes implied

volatilities. It derives the theoretically correct implied variance given that prices are

continuous and variance is stochastic. Let us denote the price of a European call option

written on asset α with maturity equals to τ and strike price of K at time t as Cα(K, t).

Given a continous range of strikes K which spans from 0 to infinity, the model-free

implied variance of an asset α at time t can be theoretically defined as below:

EQt (Vα,τ ) ≡MFIVα,t,τ ≡ 2

∫ ∞
0

Cα(K, t, τ)−max(S(t)−K, 0)

K2
dK. (12)

Based on the relationship in equation 12, Britten-Jones & Neuberger (2000) further

expand the above relationship by including both call and put prices, as well as a futures
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price in the calculation. This expansion is meaningful because including both call and

put options increases the availability of strikes and hence abundence of option data.

As a result, one can achieve more satisfactory approximation to the assumption of con-

tinuous strike prices. In addition, the inclusion of futures prices instead of spot prices

has particular relevance to this paper because commodity options that we investigate

are written on futures contracts with finite maturities. The relationship is derived as

below:

EQt (Vα,τ ) ≡MFIVα,t,τ =
2ertτ

τ

[∫ Ft,t+τ

0

Pα(K, t, τ)

K2
dK +

∫ ∞
Ft,t+τ

Cα(K, t, τ)

K2
dK

]
(13)

where rtτ denotes the annualized discount rate over the maturity interval τ , and Ft,t+τ

denotes the futures contract price at time t with maturity of τ .

In practice, however, options usually have relatively limited array of available

strikes, which is far from the assumption of being continous with range from zero

to infinity. Fortunately, Jiang & Tian (2005) show that the approximation from equa-

tion 13 is resonably accurate given a relatively large number of strikes. In addition,

they found equation 13 holds against jump diffusion processes, a feature commodity

prices usually demonstrate. Hence, regardless of the type of data-generating processes,

the approximation procedure stands robust.

Specifically, we follow similar procedure in Carr & Wu (2009), which utilitze both

call and put options along with futures contracts as underlyings, to create synthetic

variance swap over a fixed maturity. We firstly obtain all the out-of-the-money (OTM)

options for both a basket of commodities and for a commodity index. In order to get a

time series of synthetic variance swap prices which matures in τ days, we find the two

closest to τ days maturity future contracts with maturities of τ1 and τ2 respectively.

We filter out trading days which fail to meet the above requirement. Detailed filtering

criteria will be discussed in the data section. Furthermore, put options with relatively

low strikes and call options with relatively high strikes, in other words, calls and puts

deep out-of-the-money, are excluded for being not reflective of the implied volatilities.

Specifically, following ?, we arbitrarily determine the lower and higher truncation points

for strikes as KL and KH respectively as below:

KL = Ft,τe
−10στ (14)

KH = Ft,τe
10στ (15)

where σ refers to the average implied variance of all OTM options. Hence, equation
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13 after truncation is rewritten as follow:

EQt (Vα,τ ) ≡MFIVα,t,τ =
2ertτ

τ

[∫ Ft,t+τ

KL

Pα(K, t, τ)

K2
dK +

∫ KH

Ft,t+τ

Cα(K, t, τ)

K2
dK

]
(16)

The continuous integrals shown above in equation 16 are approximated by a finite

number of synthetically created implied volatilities. The synthetic implied volatili-

ties are calculated under the interpolation and extrapolation assumptions. The ob-

tained Black-Scholes implied volatilities are interpolated using cubic spline techniques

across their moneyness (defined as strike over future price, K/Ft,t+τ ). On the other

hand, suppose the highest and lowest available strikes are denoted Kl and Kh respec-

tively, we assume constant implied variance for strikes that satisfy K ∈ [Kh, KH ] or

K ∈ [KL, Kl]. Under this approach, we synthetically created 1,000 equidistant implied

volatilities ranging between strike KL and KH . Finally, we linearly interpolate between

two implied volatilities from two maturities to obtain the model-free implied volatilities

over a fixed maturity, τ .

Lastly, as shown in equation 10, the variance risk premia is defined as the differ-

ence between realized variance and the risk-neutral expectation of variance which is

approximated by the calculated model-free implied volatilities. The realized variance

(RV) over τ days horizon is calculated from time-series of future prices. It is worth

noting that commodity options are written either on a single or a basket of futures con-

tracts with finite maturities. Therefore, the time series of the nearest contracts may

exhibit spikes on rollover dates. In order to avoid that, suppose we need to calculate

the τ days maturity future price, we linearly interpolate two future contracts with the

nearest available maturities to τ , namely τ1 and τ2, as below:

Ft,t+τ =
τ − τ1
τ2 − τ1

(Ft,t+τ2 − Ft,t+τ1) + Ft,t+τ1 (17)

Hence, the realized variance (RV) over τ days horizon from time-series of future prices

in equation 17 can be calculated as below:

RVt,t+τ =
252

τ
Σt+τ
t+1

(
log

Ft+1,t+τ

Ft,t+τ

)2

. (18)

where τ is the time to maturity, Ft,t+τ denotes the futures contract observed at time t

expiring in τ days.

6.2 Robustness Checks

We evaluate the robustness of our VRP and CRP results by altering several important

assumptions of the model-free implied variance measure. Firstly, both 60-day and
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90-day maturity horizon results are presented so as to reveal different information

sets related to different investment horizons. Our results stand robust across the two

horizons.

Next, we apply the cubic spline interpolation technique as our baseline method

while comparing the results with linear interpolation. As shown in Table 7 and Table

8, the column named after Corr is the correlation between the variance risk premium

based on the linear interpolation and those based on spline cubic interpolation (our

base method). It is obvious that variance risk premia trend very closely under the two

interpolation methods.

Finally, we check against the assumption of truncation points. Table 9 and Table

10 present the variance risk premium under tighter truncation points and compares

that case with our baseline case. Considered in equation 14 and 15, we originally set

our truncation points at 10 standard deviations above and below an observed futures

contract. To check for the robustness of this assumption, following Prokopczuk &

Wese Simen (2014) we changed the truncation points by narrowing the highest and

lowest truncation points to 8 standard deviations, as below:

KL = Ft,τe
−8στ

KH = Ft,τe
8στ

where we arbitrarily determine the lower and higher truncation points for strikes as KL

and KH respectively and σ refers to the average implied variance of all OTM options.

The results in Table 9 and Table 10 confirmed that given tighter truncation points

(and hence even less impacts from extreme outlier values), our results are robust since

correlations between the variance risk premium calculated under the two methods are

closely correlated.
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Table 7: 60-day Variance Risk Premium Under Linear Interpolation. This

table summarizes statistics of the estimated commodity variance risk premium (VRP)

over 60-day horizon from 24 March, 2011 to 1 January, 2016 using linear interpolation.

The column named after Corr is the correlation between the variance risk premia

based on the linear interpolation and those based on cubic spline interpolation (our

base method). The VRP is calculated as VRPt=
√
RVt -

√
MFIVt whereas the p

values correspond to the Newey-West corrected t-statistics of the hypothesis H0:RV t

- MFIV t=0. The correlation risk premium (CRP) is calculated as CRPt=VRPIndex,t-

VRPIndividual,t whereas the p value corresponds to the Newey-West corrected t-statistics

of the hypothesis H0:CRP t=0.

Sector Initial Weight Mean RV Mean MFIV Mean VRP† p value* Median Std Dev Corr Obs

Energy

Brent Crude 12.37% 0.3752 0.4102 -3.45% 0.03 -3.50% 0.085 99.95 1497

Heating Oil 12.37% 0.3812 0.4122 -3.10% 0.05 -2.97% 0.067 99.97 1539

Light Crude 12.38% 0.3792 0.4072 -2.77% 0.03 -2.81% 0.126 99.91 1478

RBOB Gasoline 12.38% 0.2872 0.3142 -2.72% 0.03 -2.81% 0.121 99.99 1412

Natural Gas 5.50% 0.4662 0.5642 -9.85% 0.04 -9.84% 0.145 99.90 1563

Metal

Gold 8.00% 0.3992 0.4112 -1.22% 0.05 -1.28% 0.034 99.92 1256

Aluminum 4.16% 0.1252 0.1502 -2.47% 0.07 -2.66% 0.104 99.92 1368

Copper-Grade A 4.17% 0.2132 0.2372 -2.45% 0.01 -2.45% 0.088 99.90 1255

Zinc 4.17% 0.1052 0.1172 -1.17% 0.05 -1.08% 0.066 99.90 1187

Silver 2.00% 0.3012 0.3122 -1.11% 0.04 -0.97% 0.041 99.99 1198

Agricultural

Soybeans 5.63% 0.1252 0.1062 1.87% 0.04 1.73% 0.159 99.99 1740

Sugar #11 5.62% 0.2002 0.2252 -2.51% 0.02 -2.47% 0.075 99.95 1756

Wheat 5.62% 0.0412 0.0482 -0.78% 0.00 -0.67% 0.039 99.97 1601

Corn 5.63% 0.1322 0.1542 -2.17% 0.04 -2.00% 0.043 99.99 1624

Index

DBC Index 0.1812 0.2072 -2.64% 0.03 -2.79% 0.091 99.97 1187

Replica Option Portfolio 0.1672 0.1942 -2.75% 0.03 -2.87% 0.128 99.91 1187

Implied CRP Mean CRP p value** Median Std Dev Corr Obs

CRP †† 0.23% 0.02 0.12% 0.056 99.96 1187

Notes:

* H0: RVt - MFIVt=0

** H0: CRPt=VRPIndex,t - VRPIndiv,t=0
† VRPt=

√
RVt -

√
MFIVt

† † CRPt=VRPIndex,t - VRPIndividual,t
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Table 8: 90-day Variance Risk Premium Under Linear Interpolation. This

table summarizes statistics of the estimated commodity variance risk premium (VRP)

over 90-day horizon from 24 March, 2011 to 1 January, 2016 using linear interpolation.

The column named after Corr is the correlation between the variance risk premia

based on the linear interpolation and those based on cubic spline interpolation (our

base method). The VRP is calculated as VRPt=
√
RVt -

√
MFIVt whereas the p

values correspond to the Newey-West corrected t-statistics of the hypothesis H0:RV t

- MFIV t=0. The correlation risk premium (CRP) is calculated as CRPt=VRPIndex,t-

VRPIndividual,t whereas the p value corresponds to the Newey-West corrected t-statistics

of the hypothesis H0:CRP t=0.

Sector Initial Weight Mean RV Mean MFIV Mean VRP† p value* Median Std Dev Corr Obs

Energy

Brent Crude 12.37% 0.3882 0.4222 -3.39% 0.02 -3.63% 0.104 99.91 1467

Heating Oil 12.37% 0.3872 0.4182 -3.11% 0.04 -3.19% 0.070 99.99 1509

Light Crude 12.38% 0.3822 0.4092 -2.69% 0.03 -2.93% 0.135 99.79 1448

RBOB Gasoline 12.38% 0.2862 0.3132 -2.71% 0.04 -2.70% 0.126 99.93 1382

Natural Gas 5.50% 0.4682 0.5652 -9.71% 0.02 -9.87% 0.148 99.63 1533

Metal

Gold 8.00% 0.3952 0.4082 -1.32% 0.01 -1.42% 0.038 99.93 1226

Aluminum 4.16% 0.1272 0.1512 -2.40% 0.01 -2.43% 0.102 99.35 1338

Copper-Grade A 4.17% 0.2142 0.2392 -2.46% 0.04 -2.40% 0.078 99.15 1225

Zinc 4.17% 0.1132 0.1252 -1.19% 0.05 -1.10% 0.073 99.92 1157

Silver 2.00% 0.2962 0.3092 -1.26% 0.05 -1.39% 0.035 99.85 1168

Agricultural

Soybeans 5.63% 0.1212 0.1042 1.70% 0.03 1.52% 0.156 99.26 1710

Sugar #11 5.62% 0.2142 0.2392 -2.53% 0.04 -2.39% 0.069 99.74 1726

Wheat 5.62% 0.0482 0.0562 -0.78% 0.03 -0.66% 0.047 99.60 1571

Corn 5.63% 0.1312 0.1522 -2.14% 0.01 -1.96% 0.036 99.93 1594

Index

DBC Index 0.1912 0.2162 -2.59% 0.05 -2.53% 0.086 99.19 1157

Replica Option Portfolio 0.1742 0.2012 -2.64% 0.03 -2.55% 0.116 99.32 1157

Implied CRP Mean CRP p value** Median Std Dev Corr Obs

CRP †† 0.04% 0.05 0.13% 0.063 99.45 1157

Notes:

* H0: RVt - MFIVt=0

** H0: CRPt=VRPIndex,t - VRPIndiv,t=0
† VRPt=

√
RVt -

√
MFIVt

† † CRPt=VRPIndex,t - VRPIndividual,t
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Table 9: 60-day Variance Risk Premium Under Tighter Truncation Points

This table presents the variance risk premium under tighter truncation points over

60-day horizon from 24 March, 2011 to 1 January, 2016, and compares that case with

our baseline case (using cubic spline interpolation). Consider in equation 14 and 15,

we originally set our truncation points at 10 standard deviations above and below an

observed future contract. In this table, we changed the truncation points by narrowing

the highest and lowest truncation points to 8 standard deviations, as below:

KL = Ft,τe
−8στ

KH = Ft,τe
8στ

where we arbitrarily determines the lower and higher truncation points for strikes as KL

and KH respectively and σ refers to the average implied variance of all OTM options.

Sector Initial Weight Mean RV Mean MFIV Mean VRP† p value* Median Std Dev Corr Obs

Energy

Brent Crude 12.37% 0.3872 0.4212 -3.42% 0.01 -3.49% 0.081 99.92 1497

Heating Oil 12.37% 0.3922 0.4222 -3.06% 0.01 -3.22% 0.076 99.64 1539

Light Crude 12.38% 0.3972 0.4242 -2.72% 0.04 -2.82% 0.132 99.23 1478

RBOB Gasoline 12.38% 0.2762 0.3042 -2.80% 0.05 -2.98% 0.128 99.98 1412

Natural Gas 5.50% 0.4532 0.5512 -9.87% 0.05 -9.92% 0.147 99.51 1563

Metal

Gold 8.00% 0.3992 0.4122 -1.33% 0.02 -1.26% 0.033 99.29 1256

Aluminum 4.16% 0.1232 0.1472 -2.38% 0.05 -2.48% 0.115 99.61 1368

Copper-Grade A 4.17% 0.2162 0.2412 -2.52% 0.01 -2.39% 0.082 99.79 1255

Zinc 4.17% 0.1092 0.1202 -1.18% 0.01 -1.31% 0.074 99.82 1187

Silver 2.00% 0.3052 0.3172 -1.15% 0.05 -1.04% 0.041 99.03 1198

Agricultural

Soybeans 5.63% 0.1202 0.1022 1.76% 0.02 1.60% 0.149 99.28 1740

Sugar #11 5.62% 0.2012 0.2262 -2.46% 0.05 -2.65% 0.070 99.12 1756

Wheat 5.62% 0.0492 0.0572 -0.84% 0.01 -0.99% 0.042 99.99 1601

Corn 5.63% 0.1342 0.1562 -2.20% 0.05 -2.20% 0.041 99.91 1624

Index

DBC Index 0.1842 0.2092 -2.55% 0.02 -2.64% 0.095 99.43 1187

Replica Option Portfolio 0.1882 0.2152 -2.68% 0.03 -2.58% 0.118 99.51 1187

Implied CRP Mean CRP p value** Median Std Dev Corr Obs

CRP †† 0.09% 0.02 0.05% 0.057 99.10 1187

Notes:

* H0: RVt - MFIVt=0

** H0: CRPt=VRPIndex,t - VRPIndiv,t=0
† VRPt=

√
RVt -

√
MFIVt

† † CRPt=VRPIndex,t - VRPIndividual,t
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Table 10: 90-day Variance Risk Premium Under Tighter Truncation Points

This table presents the variance risk premium under tighter truncation points over

90-day horizon from 24 March, 2011 to 1 January, 2016, and compares that case with

our baseline case (using cubic spline interpolation). Consider in equation 14 and 15,

we originally set our truncation points at 10 standard deviations above and below an

observed future contract. In this table, we changed the truncation points by narrowing

the highest and lowest truncation points to 8 standard deviations, as below:

KL = Ft,τe
−8στ

KH = Ft,τe
8στ

where we arbitrarily determines the lower and higher truncation points for strikes as KL

and KH respectively and σ refers to the average implied variance of all OTM options.

Sector Initial Weight Mean RV Mean MFIV Mean VRP† p value* Median Std Dev Corr Obs

Energy

Brent Crude 12.37% 0.3862 0.4192 -3.31% 0.04 -3.47% 0.082 99.58 1467

Heating Oil 12.37% 0.3892 0.4192 -3.04% 0.05 -3.05% 0.077 99.71 1509

Light Crude 12.38% 0.3882 0.4162 -2.79% 0.00 -2.97% 0.127 99.76 1448

RBOB Gasoline 12.38% 0.2842 0.3112 -2.72% 0.01 -2.63% 0.115 99.30 1382

Natural Gas 5.50% 0.4622 0.5602 -9.79% 0.02 -9.94% 0.153 99.19 1533

Metal

Gold 8.00% 0.3992 0.4112 -1.20% 0.01 -1.12% 0.038 99.94 1226

Aluminum 4.16% 0.1412 0.1652 -2.49% 0.03 -2.54% 0.099 99.77 1338

Copper-Grade A 4.17% 0.2232 0.2482 -2.58% 0.04 -2.40% 0.088 99.79 1225

Zinc 4.17% 0.1082 0.1202 -1.23% 0.01 -1.34% 0.070 99.80 1157

Silver 2.00% 0.3012 0.3122 -1.11% 0.03 -0.96% 0.048 99.58 1168

Agricultural

Soybeans 5.63% 0.1212 0.1022 1.85% 0.05 1.88% 0.160 99.92 1710

Sugar #11 5.62% 0.2152 0.2412 -2.59% 0.03 -2.71% 0.073 99.61 1726

Wheat 5.62% 0.0432 0.0502 -0.68% 0.02 -0.66% 0.046 99.96 1571

Corn 5.63% 0.1282 0.1502 -2.13% 0.04 -1.98% 0.035 99.21 159

Index

DBC Index 0.1892 0.2152 -2.63% 0.04 -2.81% 0.087 99.80 1157

Replica Option Portfolio 0.1832 0.2102 -2.86% 0.05 -2.86% 0.124 99.39 1157

Implied CRP Mean CRP p value** Median Std Dev Corr Obs

CRP †† 0.23% 0.04 0.25% 0.061 99.66 1157

Notes:

* H0: RVt - MFIVt=0

** H0: CRPt=VRPIndex,t - VRPIndiv,t=0
† VRPt=

√
RVt -

√
MFIVt

† † CRPt=VRPIndex,t - VRPIndividual,t
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Table 11: GSCI Energy and Argricultural Return Exceedances Distribution.

This table demonstrates the maximum likelihood parameters for the bivariate dis-

tribution of the GSCI energy and argricultural log total return exceedances, defined

by a range of arbitrary threshold θ. The threshold θ takes value ranging from -10%

daily return to +10% daily return. There are 7 parameters estimated by maximizing

the likelihood function, namely for each of the two return series, 1) p for tail event

probability, 2) σ for second moment or dispersion measure, 3) ξ for tail distribution

characteristics, and lastly 4) ρ for the correlation of return exceedances between the

two observed series, which is used in the logistic function to model the extreme returns

correlation. Standard errors are shown in parentheses. The normality test has the null

hypothesis H0: ρ=ρnor=0. Wald tests on the correlation coefficient are carried out with

the corresponding p values reported in brackets.

Threshold H0: ρ=ρnor=0

θ pE σE ξE pA σA ξA ρE/A W test

-10% 0.012 2.192 0.719 0.061 3.871 0.235 0.152 0.376

(0.004) (0.823) (0.772) (0.009) (1.082) (0.311) (0.156) [0.824]

-8% 0.029 3.120 0.245 0.192 3.918 0.153 0.164 0.287

(0.008) (0.491) (0.419) (0.127) (1.421) (0.258) (0.132) [0.912]

-5% 0.113 2.399 0.168 0.419 3.427 0.125 0.246 0.388

(0.019) (0.391) (0.164) (0.088) (0.381) (0.325) (0.108) [0.714]

-3% 0.209 3.080 -0.019 0.271 3,426 -0.123 0.317 0.921

(0.201) (0.217) (0.081) (0.012) (0.421) (0.024) (0.065) [0.182]

-0% 0.514 2.413 0.180 0.489 4.231 0.434 0.361 2.019

(0.016) (0.661) (0.331) (0.033) (0.214) (0.210) (0.049) [0.088]

+0% 0.612 3.415 0.245 0.573 3.422 0.142 0.285 1.982

(0.012) (0.253) (0.020) (0.042) (0.239) (0.001) (0.051) [0.076]

+3% 0.237 2.439 -0.294 0.241 2.531 0.231 0.274 1.372

(0.091) (0.147) (0.234) (0.128) (0.120) (0.918) [(0.067) [0.211]

+5% 0.055 3.188 -0.291 0.048 3.251 -0.113 0.184 0.871

(0.029) (0.773) (0.142) (0.023) (0.661) (0.439) (0.087) [0.866]

+8% 0.019 0.939 0.721 0.027 0.921 0.219 0.166 0.813

(0.007) (0.972) (0.199) (0.007) (0.949) (0.030) (0.177) [0.890]

+10% 0.019 0.313 -0.119 0.014 0.444 0.344 0.147 0.012

(0.005) (2.880) (0.193) (0.003) (3.104) (0.091) (0.194) [0.941]
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Table 12: GSCI Energy and Metal Return Exceedances Distribution. This

table demonstrates the maximum likelihood parameters for the bivariate distribution of

the GSCI energy and metal log total return exceedances, defined by a range of arbitrary

threshold θ. The threshold θ takes value ranging from -10% daily return to +10%

daily return. There are 7 parameters estimated by maximizing the likelihood function,

namely for each of the two return series, 1) p for tail event probability, 2) σ for second

moment or dispersion measure, 3) ξ for tail distribution characteristics, and lastly 4)

ρ for the correlation of return exceedances between the two observed series, which is

used in the logistic function to model the extreme returns correlation. Standard errors

are shown in parentheses. The normality test has the null hypothesis H0: ρ=ρnor=0.

Wald tests on the correlation coefficient are carried out with the corresponding p values

reported in brackets.

Threshold H0: ρ=ρnor=0

θ pE σE ξE pM σM ξM ρE/M W test

-10% 0.023 1.234 0.341 0.211 4.119 0.121 0.183 0.249

(0.023) (0.711) (0.328) (0.302) (2.322) (0.339) (0.362) [3.440]

-8% 0.034 2.104 0.945 0.200 3.118 0.202 0.241 0.111

(0.013) (0.230) (0.329) (0.347) (2.110) (0.334) (0.388) [5.212]

-5% 0.203 2.301 0.291 0.214 2.301 0.201 0.343 0.428

(1.239) (1.391) (0.412) (0.001) (1.281) (0.029) (0.199) [2.831]

-3% 0.239 3.001 -0.149 0.301 3.162 -0.299 0.335 0.421

(0.001) (0.381) (0.149) (0.008) (0.300) (0.040) (0.035) [2.782]

-0% 0.814 3.215 0.316 0.712 9.234 0.439 0.426 5.129

(0.361) (0.261) (0.421) (0.410) (0.320) (0.110) (0.249) [0.004]

+0% 1.239 5.255 0.591 0.391 2.519 0.411 0.431 21.129

(2.203) (0.153) (2.219) (3.111) (0.320) (2.009) (5.249) [0.000]

+3% 0.110 -0.002 -0.281 0.397 2.119 1.219 0.325 10.251

(0.001) (0.381) (0.149) (0.008) (0.300) (0.040) (0.035) [0.000]

+5% 0.415 3.331 0.331 0.251 -3.152 0.555 0.219 0.510

(1.239) (1.391) (0.412) (0.001) (1.281) (0.029) (0.199) [2.231]

+8% 0.054 2.235 1.191 -0.200 1.211 0.310 0.121 0.190

(0.013) (0.230) (0.329) (0.347) (2.110) (0.334) (0.388) [5.003]

+10% 0.152 2.315 0.293 0.135 10.231 0.014 0.115 0.031

(0.214) (0.322) (0.158) (0.392) (4.112) (0.512) (0.331) [12.320]
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Figure 1: Deutsche Bank Commodity Index 60-day Implied versus Realized Variance

Figure 2: Deutsche Bank Commodity Index 90-day Implied versus Realized Variance
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Figure 3: Correlation between GSCI Energy and Argricultral return ex-

ceedances. This figure depicts the correlation structure of return exceedances between

the GSCI Energy log total return and the GSCI Agricultural and Livestock log total

return. The solid line shows the correlation between realized return exceedances ob-

tained from the bivariate distribution modeled with the logistic function, as in Table 11.

The dotted line dipicts the simulated correlation by assuming a multivariate-normally-

distributed return with parameters set to be the sample point estimates. The horizontal

axis represents the threshold θ above which a return is defined as exceedance.

Figure 4: Correlation between GSCI Energy and Metal return exceedances.

This figure depicts the correlation structure of return exceedances between the GSCI

Energy log total return and the GSCI All Metals Capped log total return. The solid line

shows the correlation between realized return exceedances obtained from the bivariate

distribution modeled with the logistic function, as in Table 12. The dotted line dipicts

the simulated correlation by assuming a multivariate-normally-distributed return with

parameters set to be the sample point estimates. The horizontal axis represents the

threshold θ above which a return is defined as exceedance.
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