Canary: An Interactive and Query-Based Approach
to Extract Requirements from Online Forums

Georgi M. Kanchev
Lancaster University

g.kanchev @lancaster.ac.uk pkmvse @rit.edu

Abstract—Interactions among stakeholders and engineers is
key to Requirements engineering (RE). Increasingly, such inter-
actions take place online, producing large quantities of qualitative
(natural language) and quantitative (e.g., votes) data. Although a
rich source of requirements-related information, extracting such
information from online forums can be nontrivial.

We propose Canary, a tool-assisted approach, to facilitate
systematic extraction of requirements-related information from
online forums via high-level queries. Canary (1) adds structure to
natural language content on online forums using an annotation
schema combining requirements and argumentation ontologies,
(2) stores the structured data in a relational database, and
(3) compiles high-level queries in Canary syntax to SQL queries
that can be run on the relational database.

We demonstrate key steps in Canary workflow, including
(1) extracting raw data from online forums, (2) applying annota-
tions to the raw data, and (3) compiling and running interesting
Canary queries that leverage the social aspect of the data.

I. INTRODUCTION

Online interactions between stakeholders and engineers,
e.g., on social media and product discussion forums, contain
a variety of requirements-related information. Often, such
information is unorganized and too noisy to be readily valu-
able for RE [3]. However, our observations [2] suggest that
online discussions have a naturally emerging structure that
can be leveraged to extract requirements-related information.
A typical discussion starts with a problem description, which
can be about a missing or a poorly-implemented feature of
a target application. In response to the problem, other users
may propose solutions, express support, or rebut the problem
or solutions by pointing out unnecessary or unfeasible aspects.
In addition to discussions in natural language, online forums
include information such as votes and users’ reputation.

We develop Canary, a tool-assisted approach for systemati-
cally extracting requirements-related information from online
forums. Canary addresses two key challenges. It includes
(1) an ontology for annotating online forums with entities of
interest to RE, including requirements, solutions, and argu-
ments (supports and rebuttals); and (2) a high-level language
in which an engineer can query both technical (e.g., require-
ments) and social (e.g., most supported solution and least
controversial requirement) information from online forums.

We demonstrate Canary’s key tools, including those for
acquiring discussions and annotations, a relational database for
storing annotated discussions, and the Canary query compiler.

Pradeep K. Murukannaiah
Rochester Institute of Technology

Amit K. Chopra Pete Sawyer
Lancaster University Aston University
amit.chopra@lancaster.ac.uk p.sawyer@aston.ac.uk

II. DESIGN AND IMPLEMENTATION

In this section, we describe the key steps in Canary and the
technologies used in those steps.

1) Data Extraction: The first step in Canary is to extract
information from an online forum. For this demo, we focus on
Reddit. We used a custom-built java script using the JRAW
Java API wrapper version 0.9.0 [1]. Our script extracts all
relevant data and metadata from Reddit and stores them in a
MySQL database, preserving the comment-reply tree structure.

2) Annotations: The second step is to annotate the raw data
acquired from the online form. In our annotation scheme each
comment in a discussion can have one of the four annotations
of interest: requirement, solution, support, and rebuttal.

In practice annotations can be obtained efficiently and
inexpensively via crowdsourcing. For this demo, we employed
annotations from two experts (first two authors of this paper).
The experts annotated each discussion in three rounds, com-
municating conflicts after each round, until complete agree-
ment. We store the annotations, too, in a MySQL database.

3) Compiler: Given an annotated discussion, we can write
queries in a high-level language to extract requirements-related
information. Since the discussions and annotations are in a
relational database, we need a compiler to translate queries in
the high-level language to SQL.

We implemented a compiler for Canary syntax in Java.
We used Eclipse XText (version 2.9) language definition
and parsing library. Xtext is a framework that generates a
recursive compiler for a given domain language grammar. We
programmed the compiler to take queries written in Canary
grammar and generate SQL queries. We selected MySQL as
a dialect for the compiled queries.

4) Propagation: Forum discussions are naturally nested.
Their comment-reply structure creates large trees of inter-
action. The challenge for Canary is to traverse the whole
tree in order to make an assumption about an object of
interest. Consider, for example, a requirement followed by two
rebuttals; here, the second rebuttal is a rebuttal to a rebuttal and
is thus a support to the requirement. Such nesting can be of
arbitrary length. Canary’s hierarchical queries systematically
propagate support and rebuttals, and their corresponding votes.

III. EXAMPLE QUERIES

In this section, we describe how users can run queries that
follow the Canary grammar. In order to run the code generated

from the high level queries, we use a MySQL server running
on MySQL workbench 6.4 CE.

Next, we show some interesting queries. Figure 1 shows
an example discussion using real data from social media on
which we run Canary queries. Figure 2 shows the query to
select all requirements from the discussion.

John UR:103 Score: 4325 Depth: 1

requirement

Amazon should have an option to donate money to get you over the
free shipping threshold.

Mary UR:715 Score: 472 Depth: 2

solution

Some non-profit organizations that have wish lists on amazon...

rebuttal Henry UR:138 Score: 182 Depth: 3

They do, but half the point is to get the items shipped directly to the
recipient org.

solution Amanda UR:2781 Score: 424 Depth: 2
| already do this, | donate $99/year to the Amazon and always get free
shipping.

support Alex UR:2374 Score: 115 Depth: 3
Yes. Yes. The delivery god is pleased by annual donations. He even
grants unlimited cloud storage for photos.

support Andrew UR: 18273 Score: 20 Depth: 4

And some pretty good things on amazon prime video.

Stuart UR:221 Score: 24 Depth: 2

requirement

Or the option to throw the change into your account and spend it
later. Donating is probably better though.

Fig. 1. Example discussion with real data from Reddit.com

requirement
text annotation | user | UR | score | depth
donate money | requirement | John | 103 | 4349 1
account credit | requirement | Stuart | 221 24 2

Fig. 2. Canary requirement query

Requirements are the only objects of interest that stand
alone. A solution must solve a requirement, and support and
rebuttals must be toward another object of interest.

Figure 3 shows a query to select solutions for requirements
that mention ‘donate money’.

solution (

requirement where text regexp ‘donate money’

)
text annotation user UR | score | depth
non-profit wish list solution Mary 715 290 2
Amazon Prime solution Amanda | 2781 | 559 2

Fig. 3. Canary solution query and results

Figure 3 shows two interesting query elements.

(1) It shows conditions, which can be applied to objects of in-
terest to leverage various metadata associated with them,
such as score, natural language text (with support for
regular expressions and fuzzy matching), user reputation
or role, time of creation, and depth in discussion.

(2) It shows the value propagation brings to queries. In the
original discussion ‘...wish list’ has a bigger score than
‘Amazon Prime’, but with propagated values the score of
‘Amazon Prime’ increases drastically because of it’s two
(nested) supporting arguments.

Figure 4, queries for popular requirements; this is an
example of what we refer to as aggregator queries. The idea
of popular is to select requirements which caused a large
amount of positive interaction. As positive interaction we take
score, supporting arguments, derived objects. Canary is able to
propagate support through nested positive interaction entities
(support of support, support of derived, and so on).

popular (solution (requirement where regexp
‘save address’))

user UR
Amanda | 2781

annotation
solution

text
Amazon Prime

score | pop score
559 >1

Fig. 4. Canary aggregator query and results

Popularity is measured using ratios. The calculation is done
by summing quantitative data about positive interaction and
dividing it by the sum of negative interaction.

Yo PV(@) xn

Z;’;O NV(@) x m’

where n is the number of children with positive semantics
and PV(i) the number of votes for a given child ¢, and m is
the number of children with negative semantics and NV(i) the
number of votes for a given child .

Popularity Score =

IV. CONCLUSION AND FUTURE WORK

Systematic understanding of requirements from the crowd
can be crucial for development process of many software
projects. In order to achieve that we propose Canary, a tool-
assisted approach for systematic inclusion of requirements-
related information from social media. It is designed to com-
bine ontologies from two different fields of research (RE and
argumentation) so that queries can fully leverage all aspects
of social interaction found in online forums. In its’ current
implementation Canary is still heavy on manual work, an
interesting future direction the application of machine learning
algorithms for further automation.

REFERENCES

[1] JRAW: The Java Reddit API wrapper. https://github.com/thatJavaNerd/
JRAW. Accessed: 2017-03-20.

[2] Georgi Kanchev and Amit Chopra. Social media through the requirements
lens: A case study of google maps. First International Workshop on
Crowd-Based Requirements Engineering, 2015.

[3] Walid Maalej, Maleknaz Nayebi, Timo Johann, and Guenther Ruhe.
Toward data-driven requirements engineering. IEEE Software, 33(1):48—
54, 2016.

APPENDIX

Our demo consists of two main parts: (1) a slideshow
presentation and (2) a real time showcase of querying in
Canary with viewer participation.

A. Slideshow Presentation

We intend to have the slideshow presentation running
throughout the demo. The slideshow includes an overview of
extracting raw data and applying annotations (the first two
major conceptual steps) in the Canary methodology. These
two steps are manually intensive and are not suitable for a
real time demo. The slideshow also introduces the viewers to
the Canary query language so that they can compose creative
queries, later, in the interactive part of the demo.

1) Extracting Raw Data: Section II describes the extraction
of raw data using a custom java algorithm. In the demo,
we intend to (1) show a brief overview of the algorithm
using pseudocode; (2) describe the subtleties of extracting the
data such as preserving hierarchical structure and the relevant
quantitative metadata; and (3) highlight the interesting aspects
of the relational database schema used to store the information.

2) Applying Annotations: We showcase two strategies for
applying annotations.

Expert annotation involves two or more participants with a
good understanding of requirements engineering principles
to process the raw data independently and highlight sections
that contain one of the objects of interest (requirement,
solution, support, and rebuttal). After completion the two
experts synchronize their results and debate any remaining
inconsistencies until complete agreement is reached.

Crowdsourcing annotation is more scalable than expert an-
notation. In a recent experiment, we evaluated the effective-
ness of using crowdsourcing (namely Amazon Mechanical
Turk workers) in annotating discussions found in social
media. We present important results from that study.

3) Query Language Overview: In the last part of the
slideshow, we introduce participants to Canary basics, includ-
ing full syntax, keyword explanation, and examples. Being
familiar with the syntax and the power of Canary keywords
allows participants to understand the interesting examples we
have prepared for the next part of the demo. The purpose
of the examples is to promote creativity when participants
are allowed to compose and run their own Canary queries
by introducing them to the common uses of the language.

B. Interactive Querying with Real Data

Canary creates an abstract, requirements-oriented view over
potentially large amounts of real data in natural language.
Manually extracting pertinent information from such datasets
is non-trivial and error-prone. The most powerful aspect of
Canary is its ability to reduce such data using a powerful query

language. For the main part of this demo, we will allow the
participants to see Canary applied on a fairly large dataset and

run their own queries on it in real time. The dataset is a result
of careful expert annotation on five discussions extracted from
social media. Table I provides a summary of these discussions.

Disc. Comments Source Discussion title

1 141 Reddit Feature Google Now should add:
”Nearest x that is still open”

2 184 Reddit There is no way to properly save
an address in Google Maps

3 79 Reddit Google Maps should use your av-
erage walking speed from Google
Fit to calculate walking times

4 261 Reddit Google maps should have an 1
need gas” feature. ..

5 218 Google Make ‘avoid tolls’ option sticky

Forum otherwise directions are wrong

TABLE I: Online discussions available to query in the demo

The aim of this demo is to show the usefulness of Canary.
We will show the highlights of the language features to the
participants and allow them to exercise the features.

The demo can be interesting and engaging to the participants
because they will be able to observe the application of the
entire Canary methodology and get a first hand feeling of
how the query language can leverage large amounts of data
using powerful high-level abstractions from two different fields
of research. Giving participants freedom of interaction with
a novel querying approach will likely spark their creativity
to come up with their own interesting queries. Each partici-
pant might emphasize on a different strength of Canary and
therefore have a different output from running their queries.
Given that Canary is a new concept, this demo may expose a
limitation of the language as well as open up new avenues for
future research.

In Figure 5 we show what we might include in the presen-
tation when explaining how the Canary methodology works.
On the top part we have a simple Canary query, shown
as is in Xtext. When the compiler is run it generates SQL
code that can be executed on our relational database schema.
The generated SQL from that example is shown in the same
figure below, separated by a blue line. The output code is
slightly modified for the purposes of this example. The SQL
is in the MySQL dialect and the example is shown being
executed in MySQL Workbench. The database used in this
example is loaded with the same real data as the one we
will be using for actual the demo. The output from this
query is also shown. We modified the output query so we
can showcase two things. First, The hierarchical structure of
the data (each nested reply has added indentation to show it’s
parents). Second, Canary would usually apply propagation and
merge all these rows into one, using the metrics to calculate
aggregated popularity. Special attention will be given to the
stored procedure connect new(), where all the logic behind
the non-trivial task of hierarchical querying in MySQL is. All

test.canary |Z| testl.canary02 &3

requirement where regexp ='rely on cuardinatesl'
MEH 7 FAOQIB B | Limto S000ws ~ | 45 | ¥ @ (1) 2

1 ® drop table if exists temp;
2
N SELECT *
4 FROM (
5 SELECT connect_new(vars.id) A5 id
& FROM (
7 SELECT comment.id from comment
8 join requirement on comment.idcomment = requirement.idcomment
a where requirement.idrequirement is not NULL
1@ and comment.body regexp "rely on coordinates’
11) vars
12 WHERE id IS NOT NULL
13) hoj
14
15 @ % select CONCAT{REPEAT(' ', level), temp.tree_item) as id,

16 comment.body, comment.score, comment.author from temp
17 join comment on temp.tree_item = comment.id
£
| Result Grid | HH 4% Fiter Rowes: | Export: B | wrap call content: T8
id bady score author
p |22 You mirrored my gripes! Anoth... 108 TomMado
23 Google's approach to ULis if... 37 zoidberg_crab
24 I will say other tech companie... 5 idiot_proof
25 Microsoft is actually the oppos... 7 Jigsus
26 Eh, sometimes. Remember ho... -1 idiot_proof
27 It's because the entire tech w... & Jigsus
28 Okay bit extreme. Personally,... 7 idiot_proof
Result 22 Result 23 x

Fig. 5. Screenshot showing separated by a blue line (1) Canary query in Xtext and (2) generated SQL code and output

these things will be explained and shown more clearly and in

more detail in the presentation during the demo.

