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Abstract—Traditionally, distributed computing concentrates on
computation understood at the level of information exchange and
sets aside human and organizational concerns as largely to be
handled in an ad hoc manner. Increasingly, however, distributed
applications involve multiple loci of autonomy. Research in
multiagent systems (MAS) addresses autonomy by drawing on
concepts and techniques from artificial intelligence. However,
MAS research generally lacks an adequate understanding of
modern distributed computing.

In this Blue Sky paper, we envision decentralized multiagent
systems as a way to place decentralized intelligence in distributed
computing, specifically, by supporting computation at the level of
social meanings. We motivate our proposals for research in the
context of the Internet of Things (IoT), which has become a major
thrust in distributed computing. From the IoT’s representative
applications, we abstract out the major challenges of relevance to
decentralized intelligence. These include the heterogeneity of IoT
components; asynchronous and delay-tolerant communication
and decoupled enactment; and multiple stakeholders with subtle
requirements for governance, incorporating resource usage, co-
operation, and privacy. The IoT yields high-impact problems that
require solutions that go beyond traditional ways of thinking.

We conclude with highlights of some possible research di-
rections in decentralized MAS, including programming models;
interaction-oriented software engineering; and what we term
enlightened governance.

Index Terms—Governance; Multiagent systems; Decentraliza-
tion; Sociotechnical systems; Norms

I. INTRODUCTION

This is the age of distributed computing. Distributed com-
puting has progressed dramatically since its inception and
research has been booming of late. However, despite shifts
in settings where distributed computing is applied—for exam-
ple, a greater number of powerful edge devices and greater
expectations for user control and privacy—the research area
has not changed quite as much as it could have and should
have to match these modern settings.

The thesis of this Blue Sky paper is that if we are to
take Distributed Computing as a research community to the
next level, we need to introduce new ways of thinking that
better appreciate the new problems and opportunities that are
at the heart of any research discipline. Specifically, we need
to expand the scope of computation as understood within
Distributed Computing to introduce human and organizational
aspects such as of autonomy and accountability. This is not

to step on the turf of humans-oriented academic disciplines
but to develop a computational understanding of these high-
level aspects that only Distributed Computing can offer, and to
incorporate that understanding into our models and methods.

In particular, the arrival of the Internet of Things (IoT)
forces problems upon us that require consideration of new
abstractions and techniques for distributed computing. The
main idea of the IoT, in simple terms, is to introduce things to
the Internet—so that they can be monitored and controlled and
information produced by them can be used by stakeholders for
better decision-making. Currently, to design an IoT-enabled
application (Iota, from here on, for brevity) is to figure
out (1) how to gather the requisite information, (2) how
to process it, and (3) how to take the appropriate action.
Such a conception though misses the crucial fact that the
typical Iota supports nothing but the enactment of a social
process involving multiple autonomous parties. For example,
the value of a health Iota does not lie in merely monitoring and
recording various health variables but in enabling healthcare
providers, patients, family members, and fitness instructors to
take better-informed healthcare decisions and thereby provide
better-informed services to each other. Notably, information
governance, which has to with privacy and security in settings
where stakeholders share resources, requires a computational
conception of Iotas as social processes. In the absence of such
a conception, these concerns can be addressed only in ad hoc
ways, typically through manual negotiation and control by
the parties involved. Providing a computational foundation for
governance is crucial to the expansion of Iotas.

Some of the enabling abstractions and techniques for a so-
cial process-oriented conception of an Iota relate to multiagent
systems (MAS), especially artificial intelligence. The idea of
a MAS as a system of interacting agents, each of whom rep-
resents an autonomous party is a powerful one. So is the idea
of high-level abstractions for capturing social relationships
among agents. However, traditional MAS research is framed
in ways that are not compatible with modern distributed
computing. Some works extend single-agent abstractions such
as beliefs, intentions, and goals to their multiagent (joint)
counterparts; however, in doing so, they effectively assume
a unitary perspective (usually undergirded by synchronous
communication). Some works assume a global repository of
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system state, making the system effectively centralized. In
general, challenges related to asynchronous communication
and decentralized enactments have been deemphasized in mul-
tiagent systems research. The gaps on both sides—distributed
computing and multiagent systems—lead us to propose the
notion of a decentralized multiagent system as a way to frame
the new problems and their solutions.

More broadly, the objective of this paper is to motivate a
conception of Iotas as social processes and to highlight the
kinds of methodologies, including languages and infrastruc-
tures, required to realize to Iotas. Specifically, we propose
that Iotas be realized as decentralized MAS constructed of
heterogeneous and autonomous entities, namely, agents, that
represent the autonomous participants. A computational model
of social processes will enable us, as a research community,
to systematically approach practical challenges that the IoT
poses, such as coordination among devices and across organi-
zations, and attendant concerns such as security and privacy,
and to identify new research advances that will help address
these challenges better than traditional computer science can.

Although the IoT raises several challenges [1], we concen-
trate in this paper on a few challenges that must be addressed
in order to incorporate decentralized intelligence into the very
heart of distributed computing. The contribution of this paper
is the motivation of these challenges, an introduction of a
new framework for thinking, and a discussion of promising
approaches based on decentralized intelligence. The paper
ends with a series of high-level research questions through
which we hope to influence future research in the community.

II. IOT PRIMER

We briefly discuss the salient aspects of the IoT relevant for
our present purposes.

A. Enabling Technologies

The IoT is enabled by a confluence of advances, primarily
in low-level technologies. Sensors of a rich variety now exist
and more are emerging. These sensors are able to obtain
readings not only of obvious attributes such as temperature,
air pressure, and location, but also detect specific chemicals
(such as ozone), vibrations, salinity, and so on. Though sensors
are inherently limited in the bandwidth that they support for
sending data out and receiving commands, their capacities
have been increasing. There have been major advances in low
power and passive technologies. Passive technologies, such as
RFID, rely upon an outside power source. It is not uncommon
for active sensors to last years on a single battery. And, there
are new technologies for power harvesting that can potentially
last forever. For example, it is possible to extract energy from
the temperature differential between the human skin and the
ambient air temperature.

Although the IoT is a modern phenomenon, the component
technologies that make it interesting have been developing for
years. First, the IoT shows a natural synergy with mobile
computing. Many low-power techniques were invented for
mobile computing. In a typical usage setting, IoT nodes work

in a low power mode and (high-power) mobile computing
techniques are used to receive information from and command
IoT nodes. That is, a conventional mobile computing node
serves as a gateway to IoT devices. A particular instantiation of
this pattern is where the IoT devices are wearables, embedded
in the user’s clothes or jewelry, and form a personal area
network with the user’s mobile phone, which stores and
forward data and commands from and to the IoT devices.
Likewise, research into ad hoc and fixed sensor networks, such
as for sensing in a large area, has fed into the IoT. In the same
spirit, typically in built environments, pervasive and ubiquitous
computing provides a foundation for some aspects of the IoT.

B. Representative Applications

What makes the IoT interesting is not its technology, but
the applications that it potentially sustains. These applications
range over the domains of manufacturing, civil infrastructure,
power systems, healthcare, and personal uses. Practically any-
thing could be a thing—industrial equipment, lakes, glaciers,
automobiles, roads, buildings, household appliances, personal
artifacts, trees, even animals and humans. A typical approach
is to place a networked device (sensor or actuator) on a thing
so that it can be accessed online. The IoT enables precise
monitoring of assets and other resources to help provide a
basis for evidence-driven decision making. In healthcare, uses
of the IoT include both the monitoring of infrastructure, such
as operating theaters and equipment, and of patients.

Personal uses include IoT nodes in the environment and
on a user’s person, such as through wearables or medical
implants. These applications involve providing an enhanced
user experience based on inferring attributes of the user’s
current context. For example, knowing if the user is in a public
place and in an environment with elevated ozone (as in smog)
may suggest a medical intervention to avert an asthmatic attack
(e.g., by advising the user to inhale some medication).

Another family of applications is of participatory sensing
in which users share information that their sensors obtain
[2]. Participatory sensing, which originated with users sharing
sensors on their phones, is proving effective in monitoring
our urban and natural environments. It can expand naturally
to sharing information from sensors on things at large.

Moreover, the IoT gains value through emerging user
interaction technologies. Specifically, augmented reality can
make it possible for users to “visually browse” the world
of things through augmentations of reality that are produced
based on sensor data obtained from IoT nodes. For example,
in monitoring a factory, an augmented reality interface may
show the temperatures of different objects or when they
were last repaired or how cracked they are. Such interfaces
can help provide users with actionable intelligence without
overwhelming them with raw data.

C. Architecture

Figure 1 illustrates some of the important architectural
concerns dealing with IoT. This figure highlights the main
components that undergird an IoT application. On one side,
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we place IoT devices, both sensors and actuators. On the other
side, we place end users of the target application. A crucial
feature of Iotas is their incorporation of subtle relationships
between users and resources, which are more pronounced than
in the case of traditional web applications, because Iota users
have direct relationship with the deployment and operation
of infrastructural elements, not only in the information ex-
changed.

Things Middleware Applications Users

Discovery
Selection

Sensors Storage User
Interface y

Actuators Monitoring Reasoner x
Control

IoT emphasizes ownership

Fig. 1. Main architectural elements of IoT.

In simple terms, an Iota consists of a user interface and a
reasoner, the latter being a locus of the decision making by the
application. The Iota deals with IoT devices, not directly, but
through extensive middleware. Some of the middleware pro-
vides abstractions for the IoT in the nature of monitoring (for
the sensors) and control (for the actuators). Some middleware
concerns storage and some concerns service selection, both of
which we expand on below.

The main enablers for practical IoT applications include the
following. First, data technologies, including storage, stream-
ing, and analytics, are a major enabler for the IoT. Since each
IoT node potentially produces data continually and there are
envisioned to be tens of billions of them, they can together
generate a lot of data. Of course, each specific environment
would have only a few IoT nodes, but the data generated by
them can add up to large volumes. Second, reasoning about
such data quickly enough to inform intelligent decision making
can be nontrivial but is becoming ever more tractable because
of improved technology and advances in algorithms. For this
reason, cloud computing, which provides elastic storage and
compute capacity to contend with the scale and variations in
the scale of IoT applications is also a key enabler. Third,
information semantics technologies, including linked data, as
a basis for sense making of the large amount of otherwise
uninterpreted data obtained from sensors. Fourth, to engineer
and maintain IoT applications requires ways of programming,
such as service abstractions for things and data.

III. WHAT THE IOT NEEDS

IoT needs ways for sharing, fusing, revising information
that can keep with multiple IoT devices continually providing

data, sometimes mutually contradictory and sometimes con-
veying revisions of previously provided data. Handling such
systematically requires evidential reasoning as well as ways
of capturing domain knowledge.

However, as we explained above, we would like to focus
here on challenges that are not the obvious ones of data
handling and analytics and instead lie at the core of distributed
computing. In that spirit, we next describe decentralized per-
spectives, decoupled enactment, and governance.

Currently, an Iota is realized via a conceptually unitary
machine—a single logical locus of control. We adopt the term
agent for a unitary machine to draw attention to the fact that
it performs application-level reasoning. Essentially, the agent
orchestrates computations as specified by its designer. In gen-
eral, it would run some variant of a sense-reason-act loop. The
agent is unitary despite the fact that its components may be
distributed and that it might be sitting on top of infrastructure
that is decentralized. In traditional computer science, entire
applications are typically modeled and implemented as unitary
machines, that is, as a single agent.

For concreteness, we return to our healthcare scenario. We
may imagine many agents, each corresponding to an inde-
pendently designed Iota. The health service’s agent enables
the recording of a patient’s health indicators via wearable
technology and facilitates the automated delivery of medica-
tions based upon analysis carried out by the health service. A
fitness center’s agent accesses its subscribers’ health indicators
via a service interface to the health service’s repository and
automatically calibrates exercise machines to fit a subscriber’s
health profile whenever he or she goes to the fitness center.
Other parties such as insurance companies, family members,
and research organizations have their own agents. The crucial
observation to make here is that although there are many
agents, there is no multiagent system—no two agents interact
with each other. Instead, following current software engineer-
ing practice, each agent sits atop a shared database, in our
example, of health indicators and other information.

We emphasize that the health service’s agent clearly has
a distributed implementation: it gathers information from a
variety of distributed sensors, stores and processes it in the
health service’s data center, and actuates the delivery of the
appropriate medication to the patient. However, it is a single
locus of control.

A. Decentralization

The Iota computational model in Figure 1, while hitting the
highlights, is overly simplistic. What truly characterizes Iotas
and sets them apart from conventional applications is that they
tend to involve multiple administrative domains, or parties. In
general, each party contributes (information from) a few things
and consumes information (from things) contributed by others
and provide services to others. The point is that the parties
interact with each other on the basis of the applicable rules of
encounter, that is, interaction protocols. Under this doctrine,
the application is modeled via the interactions between the
autonomous entities that feature in it, each of which is modeled
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as an agent, that is, a unitary machine (although it may
recursively exhibit internal structure). The interaction protocol
in fact specifies the MAS by capturing the social process that
the parties engage in via their agents. In the health scenario,
there may be rules of encounter that capture a patient’s
expectation that the health service share information only with
authorized third parties; a patient’s expectation of safe and
effective drug delivery; a regulator’s expectation that health
services monitor for potentially dangerous states of indicators
and intervene appropriately; and so on.

Specifying an application in terms of a protocol is the key
to decentralization. Each party that plays a role in the protocol
can implement its own agent to automate its decision-making
and facilitate its interactions with other parties. Whereas
following current methods, we would realize an Iota as a
single agent, in the interaction-oriented viewpoint, an Iota
is characterized by an interaction protocol in which agents
representing real-world parties adopt roles. In other words,
each Iota instantiation is inherently multiagent. As Figure 2
shows, IoT’s inherent decentralization calls for a multiple
machine, that is, a multiagent architecture. Here, each agent
represents an autonomous party and contains a reasoner. We
defer discussion of agent-agent interaction and the Org to the
next two subsections.

Org

User
Interface

User
Interface

Knowledge
Base

Agent Agent Knowledge
Base

Stream
Processing

Stream
Processing

Adapter
& Thing

Adapter
& Thing

Fig. 2. Toward a multiagent architecture for IoT.

B. Asynchrony and Decoupled Enactment

As Figure 2 shows, decentralization requires that agents
interact with one another. That is, the protocols we refer
to must be enacted through arms-length communications—
in other words, via messaging between the agents. Correct
decentralized enactment of protocols via messaging is a major
challenge in distributed computing [3]–[6]. The challenge
arises from the fact that messages may be lost, delayed, and
reordered in transmission; duplicates may be received; and in
general different agents would observe different messages in
incompatible orders. Further, concurrency means that distinct
instances (enactments) of a protocol may be interleaved.
These aspects entail that agents may potentially end up in
incompatible states during a protocol enactment, leading to a
failure in interoperability.

In current research, discussions of asynchrony in Iota mostly
arise in connection with low-level protocols, such as MQTT
[7] or CoAP [8]. At the application level, discussions of
asynchrony are limited to event processing architectures [9].
There is little discussion, however, of protocol enactments
where the end points are maximally decoupled from each
other. What the IoT needs in particular is a way of supporting
decoupled enactment that provides a high-level information
model characterizing the adopted protocol.

C. Governance: Security, Accountability, Privacy

Since a crucial feature of Iotas is their multiple stake-
holders, accommodating their diverse requirements is a major
challenge. Accordingly, we identify the need for governing
interactions to gain some assurance that a collaboration is
proceeding successfully, that is, in a manner that meets stake-
holder requirements (assumed to be suitably reconciled when
mutually inconsistent). Governance requires some measure
of social control. For concreteness, as Figure 2 shows, we
imagine that agent interactions take place within the scope of
the Org that regulates those interactions.

An Org provides a computational basis for representing
autonomy and accountability, which are the two fundamental
concepts in understanding how stakeholders relate with each
other in an Iota. Autonomy means each party is free to act
as it pleases; accountability means that a party may be called
upon to account for its actions. Mamdani and Pitt [10] use
autonomy and accountability as bases for distinguishing stake-
holders from their computational agents. In general, balancing
autonomy and accountability is crucial for ensuring that an
Iota would not devolve into the extremes of chaos or tyranny.

Accountability is classically understood, e.g., in political
theory [11] and healthcare [12], in terms of the standing
of one party—the account-taker—to expect certain behav-
ior from another—the account-giver. Although accountability
is increasingly recognized as an important theme, existing
computational approaches for accountability disregard its core
intuitive basis. Some approaches labeled “accountability” in
the traditional distributed computing and networking litera-
tures, e.g., [13], [14], address traceability of actions instead.
Traceability is an important mechanism for holding someone
accountable, but is neither necessary nor sufficient for account-
ability. Traceability is not necessary because accountability
holds even without adequate traceability and could be adequate
depending upon assumptions of trustworthiness. For example,
a patient may hold a health service accountable for loss of
privacy even if the loss was caused by an untraceable attacker
or by equipment failure. Traceability is not sufficient because
even perfect traceability can be circumvented through external
interactions. For example, if Alice circumvents traceability by
getting Bob to act on her behalf, she remains accountable. A
challenge is to align our computational models of rich concepts
such as accountability with what users expect, not merely to
develop artificial computational models that may be easier to
implement but miss the point of the original concept.
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To this end, it is crucial to develop computational repre-
sentations of the governance of stakeholder interactions as
these interactions reflect their respective requirements and
support successful interoperation. Such high-level represen-
tations would provide a basis for validating the technical
policies through which IoT devices and gateways carry out
their decision making in regards to how they interoperate.

Security and privacy are crucial concerns in the IoT since
devices gather valuable personal or corporate information. An
IoT device being compromised can have significant reper-
cussions on the privacy of those concerned and possibly on
their physical security. One aspect of this challenge falls
under the rubric of conventional (technical) cybersecurity.
Another aspect, dealing with privacy and acceptable use of
IoT resources is more a matter of governance, especially
accountability, than of conventional cybersecurity—we include
this aspect in our present scope. Along the same lines, the
representations of interest here lie above constructs such as
identity, including ways to pair devices [15].

IV. WHAT DECENTRALIZED MAS CAN OFFER

Multiagent systems provide important constructs that help
address the major challenges confronting Iotas.

A. Agents as Service Endpoints

First, MAS provides ways of dealing with autonomy and
heterogeneity. Autonomy refers to the idea that stakeholders,
especially IoT device owners, data aggregators, and end users,
are able to decide and act independently. Heterogeneity refers
to the idea that devices and datasets and data streams pertain-
ing to the devices are independently structured. In essence,
the information models underlying these resources are not
necessarily in agreement. In addition, MAS enables discovery
and selection of IoT devices and data resources. A usual
approach to deal with heterogeneity is through semantic ser-
vice descriptions and agents who adopt and apply a common
ontology as a basis for information interchange [16].

Second, MAS has developed approaches for trust. One
category of approaches deals with gathering, maintaining,
and disseminating reputation information. These approaches
can be adapted for IoT devices and their owners. The other
category engenders trustworthiness through incentives to align
autonomous parties’ interests with those of each other, e.g.,
so that self-interested providers of IoT devices behave in a
trustworthy manner. Such incentives can induce those who
own and configure IoT devices to, first of all, engage in a
particular application by contributing data from their devices
and, second, where appropriate to configure them to expend
the requisite power to obtain and transmit high-quality obser-
vations.

Third, we understand collective intelligence as how multiple
parties can jointly exhibit knowledge and decision making
superior to any of them individually. Collective intelligence,
which generalizes on crowdsourcing, applies in some im-
portant parts of the IoT application lifecycle. For example,
we might need to collectively maintain service descriptions,

specify protocols, create norms that address multiple stake-
holder concerns; and guide emergence of prosocial behaviors.
Along these lines, MAS provides approaches such as from
social choice theory. Specifically, we would apply judgment
aggregation to fuse not the raw data but the decisions made
using that data. Likewise, preference aggregation applies in
IoT where there is need for a collective decision, e.g., in
adopting standards for communication or determining what
attributes to sense and at what precision to sense them. It may
be achieved through various voting mechanisms.

B. Decentralization via Information Protocols

Because of the importance of autonomy and heterogeneity,
to realize IoT applications presupposes an ability to construct
decentralized MAS. Here, a decentralized MAS refers to a
MAS in which the agents maintain their goals separately and
privately and autonomously act as they deem appropriate. In
addition, we avoid assumptions of the infrastructure that would
interfere with the autonomy of the agents. In particular, the
agents do not wait for one another because of the infrastructure
though they may wait if the application demands waiting. This
leads to the idea of asynchronous communication where an
agent may send a message to another agent whenever it wants
to and an agent may work on a received message anytime after
it has received it.

Engineering a system under these constraints requires that
we precisely specify interaction protocols to enable interoper-
ation despite the decentralization. To this end, formal models,
languages, and techniques for protocols are valuable. The
established approaches (e.g., [17], [18]) are generally focused
on control flow structures, which are generally not well suited
to the modeling of IoT applications for two reasons. One, in
settings of autonomous parties, no one can directly control the
actions of another. Two, control flow abstractions such as loops
and conditionals are fine for sequential programs where an in-
struction executes fully before another the execution of another
begins; however, they are incompatible with asynchronous
enactments where the “instructions” are messages, which may
be lost or inordinately delayed, with the result that every party
may potentially see a different order of instructions.

The only currency in a computing system is information.
Therefore, all correctness requirements must be based on how
information flows or fails to flow. For decentralized systems,
we further separate the concern of information flow between
parties from the concern of information processing within
a party’s IT resources. The former concern is captured by
protocols. Even when the control flow is prominent in the
modeling, it must be mapped to information flow between
decentralized components in order to realize it and to verify
that it is correctly realizable. The components are referred
to as local perspectives (the control flow specification being
the global one) or role skeletons [3]–[6]. The control flow
approaches often apply sophisticated techniques but they fail to
contend with the basic limitation that there are two competing
standards: the control flow specification and the information
flow realization.
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In contrast, information-based protocols [19] make the mod-
eler directly responsible for specifying causality and integrity
as expressed in terms of information. The associated control
flow is any control flow that is compatible with causality and
integrity. Further, as causality and integrity determine the most
general set of correct flows, an information protocol would
typically be more flexible than any correct handcrafted control-
flow specification.

We now give a flavor of a declarative information protocol.
Listing 1 shows a simple request response protocol in BSPL
[19], an information-based protocol language.

Listing 1. A request response protocol in BSPL.
Request Response {

role Requester , Responder
parameter in ID key , out query , out answer

Requester 7→ Responder : request [ in ID, out query ]

Responder 7→ Requester : response [ in ID, in query , out
answer]

}

We highlight the salient features of Listing 1. Request
Response is the name of the protocol; request and response are
message schemas. The key ID uniquely identifies instances of
Request Response, request, and response. This protocol is not
enactable standalone because at least one parameter is pinq,
meaning that its binding must come from composition with
another protocol. An instance of request must precede any
instance of response with the same ID because query is poutq
in request but pinq in response. The autonomy of the parties
means that no message need occur. And, response must occur
for Request Response to complete because it binds answer
which is a parameter of Request Response.

The basic idea behind information-based protocols is that
an agent can send any message whose parameter bindings it
either knows or can generate. Notably, there is no specification
of control flow in Listing 1 (or in Listings 2 and 3 for that
matter).

Listing 2 shows a more complex sensor subscription setup
protocol. This protocol may be composed with the sensor data
transfer protocol in Listing 3. Composition is a strength of
BSPL.

Listing 2. A sensor subscription setup protocol in BSPL.
Subscription Setup {

role Publisher , Subscriber
parameter out sID key , out metadata , out rID

Subscriber 7→ Publisher : request [out sID , out metadata ]

Publisher 7→ Subscriber : accept [ in sID , in metadata , out
rID]

Publisher 7→ Subscriber : re jec t [ in sID , in metadata , out
rID]

}

Listing 3. A sensor data transfer protocol in BSPL.
Sensor Subscription {

role Sensor , Subscriber
parameter in sID key , out req key , out dataitem key

private end

Subscriber 7→ Sensor : s t a r t [ in sID , out req ]

Subscriber 7→ Sensor : stop [ in sID , in req , out end]

Sensor 7→ Subscriber : dataResponse [ in sID , nil end , in
req , out dataitem ]

}

C. Norms as a Computational Foundation

A norm captures an expectation, a standard for correct
interaction in a social setting [20]. Norms can be descriptive
(what is established practice) and regulative (what is expected)
[21]. We consider regulative norms, each of which involves at
least two parties: the account-taker and the account-giver [22],
[23]. Norms in this sense are a way to capture accountability
relationships between two parties. For example, we might
capture that Alice is committed to Bob that if Bob accepts
her offered price, she will provide her sensor stream to him.
Another example is of the prohibition placed on the health
service by patients on sharing data with third parties, which
means that the service is accountable to patients for the privacy
of their information.

Norms are important to Iotas because although we cannot
force autonomous parties to act in any particular way, norms
capture how each of them ought to act. That is, for a decen-
tralized system, instead of asking if the system is behaving
correctly, we ask which participant is behaving correctly, that
is, respecting the norms that apply to it. A norm is often
associated with a sanction, positive or negative, for complying
with or violating it [24].

A key idea is to treat norms, not merely as documentation
for the specification of an Iota, but as the key high-level
specification for an Iota.

D. Meaning-Based Protocols

A higher-level challenge than information protocols is to
assign meaning to the information exchanged. To this end,
formal semantics is an important and obvious requirement:
decentralization demands not only that we model interaction
but that we do so in rigorous terms.

Accordingly, we motivate meaning-based protocols, which
capture the social meaning associated with the messages to
be exchanged. Meanings are commonly expressed in terms of
norms, e.g., commitments [25] or norms such as authorization,
prohibition, and power [26].

Listing 4 shows a meaning-based protocol, specifically,
a commitment specification, in Cupid [27]. A Cardio Care
commitment from a nurse (the debtor) to a physician (the
creditor) is created when the nurse takes charge of a patient,
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that is, upon the occurrence of TakeCharge and detached
if a CardiacEvent above the specified threshold happens for
this patient within 180 minutes of taking charge. If it is
not detached then the commitment expires. The commitment
is discharged if CPR on this patient happens within five
minutes of the Cardiac Event, else it is violated. TakeCharge,
CardiacEvent, and CPR may all be messages specified in an
information protocol. Thus, meaning specifications may be
layered on top of information protocols. The idea is that the
state of a commitment instance progresses as messages are
observed and recorded in an agent’s local information store;
the state can be unambiguously computed from the observed
messages.

Listing 4. A commitment specification in Cupid.
commitment CardioCare nuID to phID
create TakeCharge
detach CardiacEvent [ , TakeCharge + 180]
where ceMagnitude >= tcThreshold

discharge CPR [ , CardiacEvent + 5]

V. PROMISING DIRECTIONS FOR RESEARCH

We have seen how the IoT is useful, what it relies upon,
what challenges it faces, and how decentralized multiagent
systems may help. Although MAS promises interesting ideas,
our understanding of decentralized intelligence is far from
complete. The IoT exposes new challenges that current re-
search does not address adequately.

These limitations suggest new directions for research, which
we frame as research questions, written in italics, below.

A. Programming Models for Agents

We posit a programming model that enables programmers
to conceive of agents in terms of how they process norms.
Each agent acts on behalf of a stakeholder. For example, an
agent may schedule the satisfaction of two commitments to
others in order of their deadlines (nearest deadline first) or by
the identity of the creditor (serving the most important creditor
first). Such a programming model has the potential to vastly
simplify programming by promoting high-level abstractions.
For example, the health service’s agent would be designed to
process the norms that the health service is party to. An agent
may be designed to satisfy norms. In general though, a party
would design an agent according to its preferences, which may
entail violating some norms. For example, the health service
may prefer to violate a prohibition on sharing information
with a third party if it determines doing so serves a legitimate
patient interest.

Our proposal represents a departure from mainstream
agent programming ideas. Agent programming languages,
e.g., 2APL [28], [29], remain largely based on concepts that
describe the cognitive (internal) states of agents and do not
support programming agents from specifications of protocols.
In general, works on declarative programming approaches for
agents, e.g., [28], [30], [31], are valuable. Some approaches
[32] provide mappings from commitments to plans based on
cognitive constructs such as beliefs, desires, and intentions.

These approaches suggest the promise and feasibility of a
norm-based programming model.

What are suitable abstractions for programming
agents in an Iota that support normative reasoning
and facilitate accountability?

Each agent computes the state of any norm instance relevant
to its decision making based solely on the events it has ob-
served, and the semantics of the norm in question. In general,
in the spirit of decentralization, we expect that the agents
would make different observations and may disagree on states
of some norm instances. For example, the user of some lab
testing equipment may infer that it has released the resource
in time, thereby satisfying its commitment to do so; however,
the owner may infer that the commitment was violated. Such
a misalignment reflects a potential interoperability problem
[33]. Therefore, a crucial requirement for interoperation is
to ensure that either such disagreements between agents are
not significant to their interoperation or can be resolved
through additional communication and computation. Ensuring
correct decentralized enactment for meaning-based protocols
is crucial to realizing the full value of norms as a human-level
architectural abstraction.

For what expressive Iota specifications can we auto-
matically and efficiently ensure alignment and under
what assumptions regarding decentralized enact-
ment?

B. Interaction-Oriented Software Engineering

In modeling interactions, protocols capture the interactive,
that is, the public part of the application logic. Languages such
as Cupid and BSPL are promising starting points for meaning-
based and information protocols, respectively. Specifying re-
alistically complex Iotas would require the development of
more expressive languages, e.g., those that naturally support
the streaming and aggregation of information. For example,
in auctions of sensor-acquired data, the fact that the highest
bidder is declared winner is public and would ideally be
specified in a protocol. Splee [34], an extension of BSPL,
exhibits features such as dynamic role binding, multiple agents
playing a role, and multicast communication to all agents
playing a role.

What are expressive information protocol specifica-
tions that capture the needs of realistic Iotas while
retaining ease of decentralized implementation?

Further, meaning-based protocols would be enacted via
information protocols. A rich direction of study is to study
the connection between the two. Ideally, we would like to gen-
erate information protocols from social-level specifications of
causality and meaning. At the social level, causality means that
a piece of information (e.g., the binding for some parameter)
must be declared [35] by some agent before it can be used by
any agent. The generated information protocols would ideally
guarantee meaning alignment. Success in this direction would
ensure that much of the technical architecture required to
support an Iota could be generated from specifications written
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using abstractions much closer to stakeholder vocabulary. By
contrast, most MAS approaches today deal only with syn-
chronous communication where each of the communicating
parties must wait for the other [36]–[38]. Not only does syn-
chrony conflict with autonomy (one party waiting for another
to progress), it also yields poor scalability—important since
there are potentially large numbers of devices communicating
with others in an Iota.

How can we reduce or eliminate the impedance
mismatch between information and meaning-based
protocols, specifically, supporting asynchrony while
providing a veneer of a system-wide view of an Iota’s
state?

We would need to develop a methodology around the
protocol languages that would support (1) refining stakeholder
requirements into protocols, e.g., as in [39], [40]; (2) pro-
tocol verification tools, e.g., to verify safety and liveness of
information protocols [34], [41] and to verify the satisfiability
and falsifiability of norms [27]; (3) middleware to ensure cor-
rect decentralized enactment [42]; and (4) interaction-oriented
programming models for agents, as described above. We
term this overall methodology Interaction-Oriented Software
Engineering (IOSE) [43] to distinguish it from Agent-Oriented
Software Engineering (AOSE). Whereas AOSE emphasizes
specifying and composing agents to build systems, IOSE
emphasizes specifying and composing interactions to build
systems.

How can we capture stakeholder requirements in a
manner that exposes the norms that impinge upon
the experience of others in their Iota while encap-
sulating internal decision making?

C. Enlightened Governance

As mentioned earlier, regulative norms yield accountability
relationships, whereas descriptive norms describe what prin-
cipals normally do in an Iota. The descriptive norms of an
Iota may deviate from its regulative norms. For example, third
parties are accountable for deleting patient data when they
decommission resources that have internal storage; however,
it may turn out that in practice they do not do so.

Descriptive norms inform adaptation of the Iota. Specifi-
cally, a motivation for adaptation would be to close the gap
between the descriptive and regulative norms. This is what we
refer to as enlightened governance. Enlightened governance
requires advances in many areas. We would need to be able
to infer the descriptive norms of an Iota from observations or
records of interactions [44], [45]. Further, once the descriptive
norms are known, stakeholders would decide whether and
how to close the gap. Many options may be available. The
stakeholders may drop some of the norms (if they are obsolete
with respect to current requirements) or introduce stronger
incentives (positive or negative) to promote their satisfaction.
The stakeholders could be supported in their reasoning by
simulations of what may emerge in the adapted Iota [46].
Deliberation technologies, e.g., to support participation in

discussion and debate and to extract actionable information
would also be highly useful [47], [48].

How can we evaluate the quality of the norms
underlying an Iota in terms of their support for
stakeholder requirements and their resilience to “at-
tacks” by noncooperative participants?
How can we support deliberation about Iotas lead-
ing to consensus regarding any proposed design or
redesign?

Research on operating systems has taught us much about the
management of resources in unitary machines, but it has little
to say about governance, which concerns the administration of
shared resources by autonomous stakeholders. To support en-
lightened governance, what we need is an “operating system”
that provides the computational infrastructure (e.g., messaging
services and norm stores), services (e.g., for recognition of
descriptive norms and determining gaps between the regulative
and descriptive norms), and protocols to support stakeholder
deliberation and judgment aggregation. Such an operating
system would be nothing like a traditional operating system
though because its “processes” would be autonomous parties.

What are possible architectural abstractions for gov-
ernance that support a computational representation
of Iotas and associated services to automate gover-
nance in Iotas?

VI. CONCLUSIONS

In a nutshell, the emergence of the IoT challenges the
field of distributed computing to support multiple stakeholders
engaging in complex interactions sometimes over highly con-
strained resources. Efforts on networking, data management,
and analytics will not be adequate by themselves. We need new
ways to support flexible reasoning, enactment, and governance
in the social sphere. To do so would require a deeper treatment
of how decentralized intelligence can be embedded into dis-
tributed computing. This means not merely patching existing
approaches but placing decentralized intelligence constructs
such as norms at the heart of modern distributed systems.

It is worth considering what makes the IoT an important
setting for the proposed research into distributed computing.
First, the IoT differs from previous IT advances such as
federated databases, the WWW, and service-oriented com-
puting in key respects. First, the IoT forces a distribution
of resources. Distribution is nominally demonstrated by the
above-mentioned application areas but mainly as a conve-
nience. In practice, distribution has been reduced in system
architectures. Instead of true distributed computing, it has been
economical to develop semicentralized architectures such as
cloud computing.

Second, the IoT is conducive to independent ownership and
independent operation of resources. This is because IoT de-
vices are physically distributed and cross jurisdictional bound-
aries and are therefore well aligned with business models
in which some of the ownership is likewise spread over the
stakeholders. Increasing recognition of privacy risks with the
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IoT brings up the need for incorporating governance within
an Iota, which is possible only if we develop computational
representations of the social sphere in which an Iota exists.
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