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ABSTRACT

While maintaining core assets of a product line, product line engi-
neers may need to adapt the assets to accommodate new require-
ments and new devices from the changing and newly emerging
markets. Additionally, due to the emergence of new computing en-
vironments like autonomous systems (e.g., ubiquitous computing
and the Internet of Things), there is increasing demand for dynamic
adaptations of core assets, and this often needs to be managed with
minimum human intervention. We propose an approach for manag-
ing a distributed feature model in order to facilitate the adaptation
of self-adaptive dynamic software product lines (DSPLs). In addi-
tion, our approach allows the change of behaviours to promote the
long lifecycle of self-adaptive DSPL. The case study applied in this
paper is a baby care system (BCS). BCS assists people to monitor
a baby while they are sleeping. We tested our BCS in the follow-
ing scenarios: adding features, removing features and changing
behaviours. All these scenarios showed that it is possible to use our
approach to self-adapt DSPLs.
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1 INTRODUCTION

New features and devices emerge continuously during the life-
cycle of software systems to improve the quality of systems and
to provide new functionalities. In some cases, the introduction of
these features happens at runtime, i.e. they need to be adapted
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dynamically. This adaptation at runtime frequently exists in new
computing environments like ubiquitous computing [12], the Inter-
net of Things (IoT) [3] and autonomous computing [8]. In addition,
the dynamic adaptation needs to be managed in an autonomous
way.

In the literature, different approaches have been proposed to im-
plement the dynamic adaptation, including autonomous computing
[1], self-adaptive systems [5] and dynamic software product lines
[7]. Of these approaches, Dynamic Software Product Lines (DSPLs)
are based on the idea of software product line engineering (SPLE)
[10] and extend SPLE to manage product configuration changes at
runtime. DSPLs monitor their operating environments and adapt
at runtime in response to environmental changes.

There is increasing interest in combining self-adaptation with
DSPL to address new emerging challenges of distributed DSPLs
[4][6][11]. That is, a product line of distributed systems without a
central controller should have a self-organising capability so that
each constituting node knows how to self-coordinate to deliver
the overall functional/non-functional requirements. We have iden-
tified several challenges related to deploying new features and
composing them with existing features at runtime in the context of
self-adaptive DSPLs:

(1) Improved maintainability: the adaptation should occur with
a minimum human intervention. One of the characteristics
of self-adaptive systems is that a device may join and leave
the system boundary at runtime and this should be managed
autonomously, as users cannot be expected to continually
get involved in system configuration.

(2) Improved availability: a self-adaptive DSPL should contin-
uously deliver services with a minimum downtime. As we
expect frequent reconfiguration with small and mobile de-
vices, we should achieve seamless integration of new features
with continuous operation of overall services.

(3) Improved lifespan: the longevity of systems implies that de-
vices cannot be simply replaced when they become obsolete.
This means that they should be able to evolve and change
their behaviours to meet overall requirements that govern
how the devices work together.

Based on our experience and literature survey, we have identified
two critical issues to address the challenges. They are:

(1) An efficient and autonomous way to manage product config-
uration information after deployment - the system context
we are targeting is highly distributed, and each constituting
node may have limited resources. Therefore, we should find
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a none-resource-intensive way to recognise a changed prod-
uct context and adapt to it, if the new context is relevant;
and

Software architecture design to support seamless integration
with a new configuration - each distributed node should be
able to cope with changing contexts. As such, the architec-
ture design of each node should support context awareness
and autonomous behaviour changes.
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In this paper, we address the first issue by introducing a concept
of distributed feature model, called DisFM. This approach allows
us to divide a feature model into distributed and deployable sets
of features of a self-adaptive DSPL, and to deploy each set onto
a distributed node. Therefore, each node only manages its own
partial feature model (we call this set a feature unit) during its
lifecycle. Each node can communicate with nodes in the vicinity
and can perform matching and update operations on its feature
unit whenever it finds comparable and related feature units nearby.

To address the second issue of software architecture, we intro-
duce a software architecture model that supports two different
categories of behaviours. One is an active behaviour that controls
the interactions with other passive feature units (coordinator be-
haviour), and the other one is a passive behaviour that allows
other active feature units to control their behaviours (subordinate
behaviour). This architecture is called "Hybrid between Passive/
Active Behaviours" (Hy-PAB) [9] to refer to the software architec-
ture design needed to support these two extreme sets of behaviour.
Hy-PAB is a novelty in that it brings the two extreme feature unit
behaviours as the main driver in architecture design and provides a
basic mechanism to support the longevity of self-adapting DSPLs.

The remainder of this paper is organised as follows: section (2) in-
troduces the case study (baby care system) to evaluate the approach.
The next section 3 discusses the method concept, distributed feature
model, and Hy-PAB. Section 4 presents the related work. Finally,
Section 5 discusses and concludes this paper.

2 CASE STUDY - BABY CARE SYSTEM

We implemented a baby care system (BCS) to see the first results of
our proposed approach. A BCS is a system to monitor a baby when
parents are not around. BCS has characteristics of a self-adaptive
DSPL, such as: dynamic variability (e.g. parents can select which
function they want to monitor at runtime); distributed nodes (e.g.
each function of the BCS can be implemented in different nodes
such as room temperature detection, and sound detection can be im-
plemented in different nodes); and, high availability requirements.

A BCS has the following features: Sound detection is responsible
for detecting if a baby is making any sound; Room temperature
detection is responsible for detecting if the baby’s room is warmer
or colder than the limit set by the user; Light detection is responsible
for detecting if the baby’s room is brighter or darker than the limit
determined by the user. They trigger an alarm, in case the sensor
reading (e.g., sound decibel, temperature, and brightness) is out
of the user-set range. In addition, Video monitor is responsible for
displaying on a screen and recording through a camera the baby’s
image.

The next section presents the concept that is going to be tested
using BCS.
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3 METHOD CONCEPT

We propose an approach for managing a distributed feature model
to facilitate the adaptation when features are added, removed and
changed at runtime in self-adaptive DSPLs.

3.1 Distributed Feature Model

DisFM is a concept that we divide a feature model into feature units,
and each node of a self-adaptive DSPL manages its corresponding
feature unit. A feature unit is a subset of a feature model of a prod-
uct line and is determined by product line engineers. PL engineers
should consider a feature unit in a feature model according to some
suggested guidelines: (i) children of the root of a feature model
and their child are different feature units; (ii) optional/alternative
features and their child are considered a feature unit; (iii) features
that are child of multiple features are a feature unit; These guide-
lines are a recommendation of how to find out a feature unit, so
the engineers do not have to follow them strictly. For example,
Figure 1 depicts the feature units found in BCS. First, engineers
determine that Sleep Light, Monitoring Alert, and Video Monitor are
three different feature units. After this division, engineers search
for optional and alternative features that could be feature units,
such as Light Detection, Room Temperature Detection. As shown in
Figure 1, Record Video, Zoom Camera, Rotate Camera, Night Vision
were not divided into different feature units due to the option of
engineers to implement them. Finally, Alarm and Data Communi-
cation are children of different parents and are divided into two
different feature units. After the feature unit identification, each
feature unit can be implemented and deployed. A feature unit is
converted into a text format and encoded as a configuration file of
the system. This subset represents a service that is deployable in a
node. As such, a node can provide its own service independently,
but when the node discovers other nodes in its neighbourhood
at runtime, they exchange their feature unit information and per-
form a feature-name matching operation by comparing the feature
names in the feature units. If identical feature names are found,
they recognise them as points for interoperation and establish a
feature link so that one node controls other nodes or vice versa.

The feature matching happens at runtime when a feature unit
detects a message that was sent from another feature unit. The
message contains all the features that are in the feature unit. After
the process has received the message, the received feature unit
is analysed if the new features are part of the same product line,
i.e. it compares the roots of the feature model to verify if they
belong to the same product line by comparing the name of the
root. The comparison contrasts the name of both roots. After this
confirmation, the process determines if the emerged feature units
are new or if they are already known. Another scenario is where
the process identifies a feature unit that is no longer available. The
process needs to verify what it is going to be affected. It investigates
if there is any feature which is not going to work anymore.

3.2 Conceptual Architecture

In this section, we explain the Hy-PAB conceptual architecture
that enables the communication between feature units and the
change of feature unit behaviours. Hy-PAB proposes that the feature
units can have two different types of behaviour (active and passive
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Figure 1: Partial feature model of the Baby Care System.

behaviours). While the active behaviour is to provide a service by
itself and/or by using other available features in its vicinity, the
passive behaviour lets other features use its produced data (e.g.
sensor data) or control its behaviour (e.g. actuator control). The
feature units start their execution in the active behaviour, and there
is a possibility to change their behaviour when there is another
feature unit in their neighbourhood. The trigger to change the
feature unit behaviour is a priority rule. Priority rules that are
under engineers responsibility supplement the feature diagram
showing which features are going to be executed in active or passive
behaviour when they are connected with certain feature units.
For example, Figure 1 shows the priority rule for the BCS. In this
case, if Video monitor is connected with Sound detection in the
neighbourhood, Video monitor controls Sound detection, i.e. Sound
detection acts as passive behaviour and Video monitor as active
behaviour. Figure 2 depicts the conceptual architecture, and each
component is explained in the following:

e Neighbourhood Recogniser is responsible for monitoring if a
message has been sent from another node and to verify if
there is a removed feature unit.

Hybrid Manager checks if the new feature unit is part of
the same product line and if a new feature and/or a new
behaviour will emerge. After this check, the component de-
termines which behaviour will be enabled/disabled to work
with the new feature unit.

Active Manager | Passive Manager are components responsi-
ble for executing the active and the passive behaviour of a
feature unit.

Available external services ’

Neighbourhood

recogniser
Enable /Disable' Active
’7 Manager
Contextual changesb Hybrid Status
Manager update
Passive
Enable/DisabIe> Manager

Figure 2: Hy-PAB Conceptual Architecture.

The case study dealt with several combinations of features that
change dynamically at runtime. One of these combinations is the
addition of Video monitor and Sound detection. The Video Monitor
node has Video Monitor and Data Communication feature units;
and, the Sound detection node has Monitoring Alert, Alarm and Data
Communication feature units. The addition process occurs when
Sound detection node is providing its service, and Video monitor
node is switched on near the Sound detection node. Then Neigh-
bourhood Recogniser (NR) of the Sound detection node finds out
that Video monitor node is sending its feature unit. NR evaluates
the information of Video monitor, i.e. it checks if Video monitor has
already been detected or is a new feature unit. If it is a new feature
unit, Sound detection adapts itself to connect to Video monitor. As a
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result, Sound detection enables the passive behaviour and disables
the active behaviour to work with Video monitor, due to the priority
rules determined by the PL engineers. The same process occurs to
Video monitor when it identifies Sound detection, but Video monitor
will stay as active behaviour. It means that the control of Sound
detection is now delegated to Video monitor and Video monitor will
display the sound detection event instead of the alarm by Sound
detection.

4 RELATED WORK

Acher et al. [2] propose the slicing of feature models. Their idea
is to slice a feature model in order to decrease its complexity. Our
concept is not only to slice to decrease the complexity, but also
to divide a feature model into a distributed and deployable sets
of features (feature units) to facilitate the evolution of DSPLs at
runtime.

Abbas et al. [1] combine autonomic computing with the SPLs.
They model an autonomic SPL architecture based on autonomic
computing architecture supported by on-line training to deal with
dynamic variation product line evolution. However, their focus is
to show how the evolution should occur with the on-line training.
Our approach allows the evolution using the distributed feature
model and the adaptation at runtime by comparing feature units
of each node; in this way is possible to evolve a dynamic product
line without the training process. In addition, we contribute to
increasing the lifecycle of the system using the different types of
behaviours.

Quinton et al. [11] describe an evolution method based on DSPLs,
which uses a variability model to specify how the reconfiguration is
going to happen. Their idea is a more centralised variability model
to enable the adaptation as the system evolves, i.e. their architecture
maintains a variability model in one place and uses this to drive
runtime adaptation of the product line. By contrast, we propose
an approach (DisFM) to distribute parts of a feature model of the
system in different nodes.

Gamez et al. [6] create a framework (FamiWare) to adapt product
line in a mobile system context at runtime. FamiWare uses vari-
ability model to create the configurations to adapt the system at
runtime. Each mobile has these configurations to allow the adap-
tation. Meanwhile, DisFM proposes the use of parts of a feature
model that represents the services implemented in a node. Further-
more, DisFM introduces the change of behaviour between active (it
controls itself and others) and passive (others control it) behaviours.

5 DISCUSSION AND CONCLUSION

We proposed an idea to distribute a feature model of a dynamic prod-
uct line based on the concept of feature units in order to facilitate
the dynamic adaptation. The use of DisFM reduces the maintenance
effort of a DSPL by allowing the constituting nodes to self-adapt
through exchanging the feature unit information and matching
feature names. Also, it improves availability as the Hy-PAB archi-
tecture enables a feature unit to provide its service continuously
without any downtime for reconfiguration. Finally, the change of
behaviour (passive/active) of a feature unit enables its long lifecy-
cle: a node can change its behaviour and be combined with new
feature units. For example, Sound detection can be combined with
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Room temperature detection instead of Video monitor and the new
combination will provide a user with more accurate reason for the
sound (e.g., the baby could not sleep because the room was too hot).

DisFM presents the novelty that divides a feature model into dis-
tributed and deployable sets of features of a self-adaptive DSPL and
deploys each set onto a distributed node. Each node can communi-
cate with other nodes in the vicinity and can perform matching and
update operations on its feature unit, whenever it finds comparable
and related feature units nearby.

The initial experiments with the BCS showed that it is feasible
to apply DisFM for self-adaptive DSPLs. The evaluation process
of DisFM is still in progress and was not limited to the examples
mentioned in section 2. The next steps of this work includes the
comparison of the obtained results with the state-of-the-art tech-
niques and the evaluation of them according to the challenges
mentioned in Section 1.
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