
Random matrix approaches to open
quantum systems

Henning Schomerus
Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK





Contents

1 Introduction 1
1.1 Welcome 1
1.2 Primer 2
1.3 Open systems 3
1.4 Preview 4

2 Foundations of random-matrix theory 6
2.1 Random Hamiltonians and Gaussian hermitian ensembles 6
2.2 Random time-evolution operators and circular ensembles 12
2.3 Positive-definite matrices and Wishart-Laguerre ensembles 14
2.4 Jacobi ensembles 15
2.5 Non-hermitian matrices 15

3 The scattering matrix 18
3.1 Points of interest 18
3.2 Definition of the scattering matrix 19
3.3 Preliminary answers 19
3.4 Effective scattering models 23
3.5 Merits 28

4 Decay, Dynamics and Transport 31
4.1 Scattering poles 31
4.2 Mode non-orthogonality 35
4.3 Delay times 37
4.4 Transport 40

5 Localization, thermalization and entanglement 45
5.1 Anderson localization 45
5.2 Thermalization and localization in many-body systems 47

6 Conclusions 51

Appendix A Eigenvalue densities of matrices with large dimen-
sions 52
A.1 Gaussian hermitian ensembles 52
A.2 Wishart-Laguerre ensembles 53
A.3 Jacobi ensembles 53
A.4 Ginibre ensembles 54

References 56



1

Introduction

1.1 Welcome

Open quantum systems come in two variants. The first variant (on which we will focus
more) are scattering systems in which the dynamics allow particles to enter and leave
(Newton, 2002; Messiah, 2014). One then normally defines a scattering region, out-
side of which particles move free of any external forces or interactions. This situation
is realised (at least to some level of approximation) in many decay or radiation pro-
cesses (Weidenmüller and Mitchell, 2009), but is also useful to describe phase-coherent
transport in mesoscopic devices (Datta, 1997; Beenakker, 1997; Blanter and Büttiker,
2000; Nazarov and Blanter, 2009) or photonic structures (Cao and Wiersig, 2015).
The second variant (which we will encounter only briefly) are interacting systems
in which the studied dynamical degrees of freedom are influenced by other degrees
of freedom in the environment (Breuer and Petruccione, 2002). This situation spans
from the quantum-statistical foundations of thermodynamics (Gemmer et al., 2010)
to the description of decoherence (Weiss, 2008), with ample applications to quantum
optics (Carmichael, 2009), quantum-critical phenomena (Sachdev, 1999) and quantum
information processing (Nielsen and Chuang, 2010).

While these two scenarios of openness are in many ways quite distinct, they have
some important features in common—in particular, in both scenarios we are led to
restrict our attention to a subsystem, while the processes that are involved often are
very complex (meaning that we have no realistic handles to describe them in detail),
be it due to underlying classical chaos, disorder, or uncontrolled interactions. Taken
together, these features lay the foundations for a statistical description where individ-
ual systems are replaced by an appropriate ensemble. These ensembles are typically
formulated in terms of effective models, e.g., for the Hamiltonian, the scattering ma-
trix, or the density matrix, in which only the fundamental symmetries and the most
essential time and energy scales are retained. Quantitative predictions then follow
from explicit calculations and often turn out to be universal, i.e., applicable to generic
representatives of the ensemble.

Over the past decades, a great body of theoretical and mathematical work has
been devoted to these random-matrix descriptions (Beenakker, 1997; Guhr et al., 1998;
Mehta, 2004; Stöckmann, 2006; Haake, 2010; Forrester, 2010; Akemann et al., 2011;
Pastur and Shcherbina, 2011; Beenakker, 2015). In these notes we review the phys-
ical origins and mathematical structures of the underlying models, and collect key
predictions which give insight into the typical system behaviour. In particular, we
aim to give an idea how the different features are interlinked. This includes a detour
to interacting systems, which we motivate by the overarching question of ergodicity.
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With this selection of topics, we hope to provide a useful bridge to the many excel-
lent advanced sources, including the monographs and reviews mentioned above, which
contain detailed expositions of the random-matrix calculations and further applica-
tions not covered here. In the remainder of this introduction, we provide some basic
background.

1.2 Primer

These lectures were delivered to a mixed audience of mathematicians and physicists. To
establish some common language, let us first review some basic notions of quantum
mechanics (Peres, 2002). This also gives us the opportunity to pinpoint the funda-
mental origins of the mathematical concepts and physical phenomena that we will
encounter throughout these notes—and further explain what these notes are really
about.

Let us recall, then, that quantum mechanics describes the physical states of a
system in terms of vectors |ψ〉, |φ〉, . . . in a complex Hilbert space H. The superposition
principle means that the vectors can be freely combined to yield new physical states
α|ψ〉+β|φ〉, α, β ∈ C. All vectors α|ψ〉 that differ only by a multiplicative factor α 6= 0
describe the same physical state, which is often exploited to impose the convenient
normalization 〈ψ|ψ〉 = 1. Following physics convention, we here use (what we term)
the scalar product with 〈φ|(αψ + βχ)〉 = α〈φ|ψ〉+ β〈φ|χ〉, 〈ψ|φ〉 = 〈φ|ψ〉∗, 〈ψ|ψ〉 > 0
unless |ψ〉 = 0, where ∗ denotes complex conjugation. Two states with 〈φ|ψ〉 = 0 are
called orthogonal, and a discrete basis with 〈n|m〉 = δnm is called orthonormal. For a
continuous basis, this is replaced by 〈x|x′〉 = δ(x− x′) with Dirac’s delta function. In
a given basis, states can be expanded as |ψ〉 =

∑
n ψn|n〉 where ψn = 〈n|ψ〉, with the

sum replaced by an integral when the basis is continuous.
Observables are represented by hermitian linear operators Â, with Â|ψ〉 ≡ |Âψ〉 ∈

H such that 〈φ|Âψ〉 = 〈Âφ|ψ〉. According to the measurement axiom, these operators
predict physical observations via the expectation values Eψ(A) = 〈ψ|Âψ〉/〈ψ|ψ〉, which
in reality are obtained by averaging the outcomes of experiments on systems in the
same quantum state. The associated uncertainty (variance) is obtained from ∆A =
[Eψ(A2)−E2

ψ(A)]1/2, which in general is finite. Denoting by Ea =
∑
n |ψa,n〉〈ψa,n| the

projector onto states that guarantee an outcome a with vanishing uncertainty ∆A = 0,
one finds that these are eigenstates with Â|ψa,n〉 = a|ψa,n〉. In a general state, the
probability of these outcomes |ψ〉 are then P (a) = 〈ψ|Ea|ψ〉/〈ψ|ψ〉; no outcomes other
than the associated eigenvalues are allowed. Beyond this probabilistic description,
outcomes of individual experiments are unpredictable. Finally, the measurement axiom
stipulates that right after the measurement with an outcome a, the quantum system
acquires the state Ea|ψ〉.

Adopting the conventional Schrödinger picture, the time dependence of the quan-
tum state arises from the Schrödinger equation

i~
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉. (1.1)

Here Ĥ is the Hamiltonian, a hermitian operator which represents energy, while
~ = h/2π is the reduced Planck’s constant. The general solution can be written as
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|ψ(t)〉 = Û(t, t′)|ψ(t′)〉, where Û(t, t′) is a unitary operator (Û is unitary if always
〈Ûφ|Ûψ〉 = 〈φ|ψ〉). If Ĥ is independent of time, we can separate variables as |ψ(t)〉 =
exp(−iEt/~)|φ〉 and arrive at the stationary Schrödinger equation E|φ〉 = Ĥ|φ〉. In
this case, Û(t, t′) = exp(−iĤ(t− t′)/~).

In order to describe the incoherent mixture of normalised quantum states |ψn〉 one
introduces the density matrix (statistical operator) ρ̂ =

∑
n pn|ψn〉〈ψn| with positive

weights pn summing to
∑
pn = 1, so that tr ρ̂ = 1. The expectation values Eρ(A) =

tr (Âρ̂) =
∑
n pnEψn

(A) are a combination of the quantum-mechanical average in each
quantum state and the classical average over the weights pn. The density operator is
hermitian and positive semidefinite, and for a pure state (with only one finite pn = 1)
becomes a projector, ρ̂2 = ρ̂. To capture the departure from this situation one can
consider the purity P = tr ρ̂2, which equals unity only for a pure state, as well as the
von Neumann entropy S = −tr ρ̂ ln ρ̂, which vanishes for a pure state.

1.3 Open systems

The superposition principle mentioned above is the origin of wave-like interference
effects, the complexity of which we will aim to capture in a statistical description. To
provide the states with some structure, we can often think of the state space being
divided into sectors (which we here call regions), H = H1 ⊕ H2. We then can start
to talk about local and non-local processes, within or between the regions, and intro-
duce basic notions such as the exchange of particles or energy. An additional layer
of complexity is added when we can view the system as being composed of separate
degrees of freedom (which we here call parts). The Hilbert space then takes the form
of a tensor product H = H1⊗H2, with proper symmetrization or antisymmetrization
if the parts are, in a physical sense, indistinguishable (e.g., when they describe iden-
tical bosonic or fermionic particles). Separable states are of the form |φ〉 ⊗ |χ〉, while
superpositions of such states lead to quantum correlations (entanglement) that deeply
enrich the behaviour of interacting systems. Based on these elements of structure, let
us now agree, within the confines of these notes, on two notions of open quantum
systems. These are systems in which we can naturally focus on some region or part
H1, which is either locally confined (as in H = H1 ⊕ H2) or constrained to some of
the degrees of freedoms (as in H = H1 ⊗ H2). We are then naturally led down two
roads: Scattering-like scenarios, which describe the exchange of particles between a
confined region and its surrounding environment, and scenarios dominated by the in-
teractions, which often concern the exchange of energy and creation of entanglement.
In order for this division to make some sense, the environment must be sufficiently
structureless—either because the dynamics are simple and predictable (typically, the
point of view taken in the case of scattering), or because they are so complex that they
can be described in a simple statistical picture (typically, the point of view taken in
the case of interactions). Physically, this requires that the rest of the system is large,
and of a nature where incoming and outgoing particles are only simply correlated, and
so is the energy flowing in or out of the system.
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Fig. 1.1 Quantum systems couple to their environment by the exchange of particles and en-

ergy, and thereby by processes connected to the kinetic freedom of motion and the interactions

of the various components.

1.4 Preview

With these concepts at hand, we can now define our mission—to provide a statistical
description of open quantum systems in terms of random matrices. This succeeds in
situations where we can apply statistical considerations also to the complex dynam-
ics in the region or part of interest, with constraints only arising from fundamental
symmetries. We describe both settings in their purest incarnation.

(i) Our main focus is the elastic scattering of a non-interacting particle, which
can undergo complex dynamics in the region of interest but enters and leaves in pre-
dictable ways. This is quantified in terms of the amplitudes of the incoming and out-
going waves, which are linearly related by a unitary scattering matrix S. As this pure
setting is stationary, we can work in the energy domain, while time scales follow when
we consider variations in energy. This setting also covers decay processes, where we
initially confine the particle within the region of interest—effectively, this is described
by a non-hermitian Hamiltonian, with eigenvalues that coincide with the poles of the
scattering matrix.

(ii) In a small detour at the end of these notes, we consider purely interacting
systems, with localized degrees of freedom that cannot move but evolve under the
influence of their mutual environment. We quantify this in terms of a reduced density
matrix, a hermitian, positive semidefinite matrix which represents the quantum state
when one ignores the other degrees of freedom. We again assume complex internal
dynamics, and consider entropies that quantify entanglement.

As indicated, we will encounter, amongst others, random hermitian Hamiltoni-
ans, unitary scattering matrices, positive semidefinite density and time-delay matrices,
and non-hermitian effective Hamiltonians. These are all naturally linked to canonical
random-matrix ensembles (not surprisingly, as many of these ensembles were devel-
oped with such applications in mind), which we review in Chapter 2. In Chapter 3
we formulate effective scattering models that link these ensembles to physical effects.
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Chapter 4 provides an overview of key results concerning the decay, dynamics and
transport, where we focus on systems with fully random internal dynamics. Chapter 5
describes how localizing effects in low dimensions let systems depart from this ergodic
behaviour, first for non-interacting systems and then in the context of interacting
systems. Chapter 6 gives a brief outlook, while the Appendix collects some simple
derivations of relevant eigenvalue densities.



2

Foundations of random-matrix
theory

In this chapter we review a range of classical random-matrix ensembles against the
backdrop of closed-system behaviour, which informs the subsequent applications to
open systems.

2.1 Random Hamiltonians and Gaussian hermitian ensembles

Random-matrix descriptions in quantum mechanics naturally start out with consider-
ations of closed systems. In this setting, the main object of interest is the Hamiltonian
Ĥ, whose eigenvalues give the energy levels. The energy spectrum can be characterised
very neatly if one manages to identify a number of conserved quantities that commute
with the Hamiltonian and amongst each other; considering joint eigenstates of these
quantities helps to bring some order to the spectrum. In sufficiently complex systems,
however, effects such as chaotic or diffractive scattering and interactions eliminate all
conserved quantities, and the energy spectrum lacks any apparent regularities. It is
natural to compare the resulting features with the case where the Hamiltonian can be
considered as random. This was first proposed in the 1950’s by Wigner (1956), who
sought ways to analyse resonances in heavy nuclei. The idea is to focus on a suitable
energy range, where the local spectral properties can then be studied by replacing the
full Hamiltonian with a randomly chosen M ×M -dimensional hermitian matrix (the
limit M →∞ can be imposed later on).

The quality of this descriptions depends on the identification of a suitable random-
matrix ensemble. To achieve this task we are allowed to incorporate any general feature
of the system. These are, in particular, fundamental symmetries, rough geometric
constraints such as dimensionality, as well as natural time and energy scales.

The consideration of fundamental symmetries leads to ten symmetry classes (Zirn-
bauer, 1996; Zirnbauer, 2011; Beenakker, 2015). These comprise the three Wigner-
Dyson classes based on time-reversal symmetry (Dyson, 1962a; Porter, 1965; Mehta,
2004; Guhr et al., 1998; Haake, 2010), three corresponding classes with chiral sym-
metry (Verbaarschot, 1994; Verbaarschot and Wettig, 2000), and four classes based
on a charge-conjugation symmetry (Altland and Zirnbauer, 1997). These classes are
developed in the present section, and listed in Table 2.1. We also describe the cor-
responding hermitian matrix ensembles for the simplest situation, geometrically fea-
tureless systems in which the only relevant energy scale is the mean level spacing ∆.
This reasonably applies when all system-specific information becomes indiscernible



Random Hamiltonians and Gaussian hermitian ensembles 7

after a short time Terg, which in particularly is much shorter than the Heisenberg
time TH = 2π~/∆ (the minimal observation time at which individual energy levels
can be resolved). Examples where this is realised are sufficiently featureless disordered
(Efetov, 1996) or classically chaotic systems (Stöckmann, 2006; Haake, 2010). The
short-ranged level statistics then becomes universal, and can be captured by ensem-
bles with Gaussian statistics of the matrix elements (Mehta, 2004; Guhr et al., 1998;
Haake, 2010; Forrester, 2010).

2.1.1 Time-reversal symmetry and the Wigner-Dyson ensembles

We start by considering the role of time reversal (Dyson, 1962a; Haake, 2010), in-
stituted by an anti-unitary operator T fulfilling 〈T φ|T ψ〉 = 〈ψ|φ〉 = 〈φ|ψ〉∗, which
consequently may square to T 2 = 1 or T 2 = −1.

If the Hamiltonian obeys a time-reversal symmetry T HT −1 = H with T 2 = 1, we
can adopt an invariant basis |n〉 in which 〈T n|ψ〉 = 〈n|ψ〉 for any |ψ〉. This implies
〈n|T ψ〉 = 〈n|ψ〉∗, so that the time-reversal operation T = K amounts to the complex
conjugation of the expansion coefficients ψn = 〈n|ψ〉 of any state. In this basis the
matrix elements Hlm = 〈l|Ĥ|m〉 = 〈T l|ĤT |m〉 = H∗lm are real, while hermiticity
implies that the matrix is symmetric, Hml = Hlm. This is known as the orthogonal
symmetry class (OE), to which we associate the symmetry index β = 1.

In absence of any time-reversal symmetry, matrix elements of the Hamiltonian are
in general complex, with Hlm = H∗ml because of hermiticity, which defines the unitary
symmetry class (UE) with symmetry index β = 2.

If we have a time-reversal symmetry T HT −1 = H with T 2 = −1 (symplectic
symmetry class SE with symmetry index β = 4), we can adopt a basis arranged in
pairs |n〉 = T |n̄〉, so that the Hilbert space dimension 2M must be even. In this basis,

Table 2.1 Fundamental symmetries of hermitian random-matrix ensembles

symmetries constraints realization (H∗mn = Hnm)

no symmetries none besides H = H† Hnm ∈ C
T = K H∗ = H Hnm ∈ R
T = ΩK H∗ = ΩHΩ−1 Hnm ∈ H
C = K H∗ = −H Hnm ∈ iR
C = K, T = ΩK H∗ = −H = ΩHΩ−1 Hnm = −σyHnmσy ∈ H
C = ΩK H∗ = −ΩHΩ−1 Hnm ∈ iH
C = ΩK, T = K H∗ = H = −ΩHΩ−1 Hnm = −σyHnmσy ∈ iH

X = τz ≡ diag (1M1
,−1M2

) H = −τzHτz H =

(
0 A
A† 0

)
, Anm ∈ C

X = τz, C = K (T = XC) H = −τzHτz = −H∗ H =

(
0 A
A† 0

)
, Anm ∈ iR

X = τz, C = ΩK (T = XC) H = −τzHτz = −ΩH∗Ω−1 H =

(
0 A
A† 0

)
, Anm ∈ iH
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T = ΩK where Ω = iσy⊗1M , while the blocks

(
Hlm Hlm̄

Hl̄m Hl̄m̄

)
= alm1+iblmσx+iclmσy+

idlmσz ∈ H can be reinterpreted as quaternions, with real coefficients alm, blm, clm, dlm
and Pauli matrices σr. Hermiticity requires that alm = aml forms a symmetric matrix
while blm = −bml, clm = −cml, dlm = −dml are antisymmetric. Expressed as an
M ×M -dimensional matrix of quaternions, H = H is then seen to be quaternion self-
conjugate, where by definition (H)lm = Hml = aml1− ibmlσx − icmlσy − idmlσz. For
such a matrix, all energy levels appear in degenerate pairs, a phenomenon known as
Kramers degeneracy; in all following considerations we count each pair as a single level.
In keeping with this, the quaternion trace is defined as trH =

∑
n ann (so differs by a

factor of two from the conventional trace), and the quaternion determinant is similarly
modified to maintain the relation det expA = exp trA, which makes it equivalent to
a Pfaffian (Dyson, 1970).

The symmetry index β = 1, 2, 4 mentioned above counts the real degrees of free-
dom in the matrix elements. The corresponding notions of orthogonal, unitary and
symplectic symmetry classes refer to the transformations H = U DU†, D = diag(En)
that diagonalise these Hamiltonians. For β = 1 the matrix U is orthogonal, UUT = 1,
and hence belongs to the group O(M); for β = 2 U ∈ U(M) is a unitary matrix
with UU† = 1, and for β = 4 the matrix is unitary symplectic, U ∈ Sp(2M) with
UU = 1. This ‘threefold way’ can be further justified within representation theory
(Dyson, 1962c).

Within these three Wigner-Dyson classes, the universal spectral features encoun-
tered in ergodic systems are captured by the Gaussian orthogonal, unitary, or symplec-
tic ensemble (GOE, GUE, GSE), where the Hamiltonian obeys a probability density
of the form P (H) ∝ exp(−cβ trH2) with cβ = βπ2/4M∆2. The spectral statistics can
then be determined from the joint probability distribution

P ({En}) ∝
∏
n<m

|En − Em|β
∏
k

exp(−cβE2
k), (2.1)

which follows by a change of variables from the Hamiltonian to its eigenvalues and
eigenvectors. This result can be obtained by sophisticated methods in the language
of differential geometry (Forrester, 2010), but in this specific incarnation also follows
from elementary means and then acquires a simple geometric meaning. Given that
dH = dUDU† + UdDU† − UDU†UU†, consider the squared line element∑

lm

|dHlm|2 = tr (dHdH) = tr (dXD −DdX)†(dXD −DdX) +
∑
m

(dEm)2, (2.2)

where D contains M real parameters (the eigenvalues) while dX = −iU†dU depends
on M(M−1)/2 real, complex or quaternion parameters in the set of eigenvectors. The
latter parameters can be associated with the rotations R(nm) in the nm plane of the
diagonalised system, spanned by the eigenvectors with eigenvalues En and Em. Each of
these rotations then translates into a line element in the space of Hamiltonians of length
∝ |En−Em|β , where the power arises from the fact that the rotation is parameterised
by β real variables. (In particular, if we rotate the basis in a degenerate subspace the
Hamiltonian does not change.) Hence dµ(H) ∝

(∏
n<m |En − Em|β

)
(
∏
k dEk) dµ(U),
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where µ(U) is the Haar measure arising from the form dX in the corresponding group
of transformations. This measure is uniquely defined by the requirement that it is
invariant under U → V ′UV for any fixed V , V ′ form the same group.

The main characteristics of (2.1) is a universal degree of level repulsion P (s) ∼ sβ
for small level spacings s = |En − Em| in the bulk of the spectrum. This feature was
first realised by Wigner, who put forward the famous surmise P (s) ∼ sβ exp(−cs2)
with a suitable scale factor c (Porter, 1965). As it turned out, this surmise is exact
only for M = 2, but provides a very accurate estimate for any M . The exact result
can be established by the method of orthogonal polynomials (here based on Hermite
polynomials), which provides the complete set of correlation functions (Mehta, 2004).
When applied to a particular system, these correlations describe the short-ranged
statistics in the bulk, i.e., over sufficiently small spectral ranges where the mean level
spacing ∆ is well defined (possibly, after some unfolding of the spectrum). In particular,
the amount of level repulsion is considered as a prime indicator of whether a system
displays the required ergodic dynamics, as further discussed in Chapter 5.

The mean level spacing itself is not universal; in real systems it varies systematically
with energy, but for any comparison we wish to have it well defined in any given
ensemble. In the Gaussian ensembles, this is guaranteed by the form of the eigenvalue
density, which for large matrix dimensions M → ∞ approaches the famous Wigner
semicircle law (Wigner, 1958)

ρ(E) =
1

∆

√
1− E2/E2

0 for |E| < E0 = 2M∆/π. (2.3)

A derivation of this classical result is given in the Appendix. It reveals that ∆ = 1/ρ(0)
is the mean level spacing at E = 0, defining the middle of the bulk around which
we then determine the universal spectral features. Universal level statistics are also
encountered around the spectral edges ±E0, whose actual positions are again system
specific.

2.1.2 Chiral symmetry

Additional positions within the spectrum deserve dedicated attention when further
symmetries come into play. In particular, this is encoutered when the Hamiltonian is
antisymmetric under a suitable unitary or antiunitary transformation, an effect which
often occurs in single-particle descriptions of fermions. Energy levels then appear in
pairs En, Eñ = −En, with the possible exception of levels pinned to the spectral
symmetry point E = 0.

If XHX = −H with a unitary involution X (such that X 2 = 1), we talk of a chiral
symmetry (Verbaarschot, 1994; Verbaarschot and Wettig, 2000). For a finite system
of dimension M = M1 + M2, we can choose X = diag (1M1

,−1M2
) ≡ τz, so that the

Hamiltonian takes a block form

H =

(
0 A
A† 0

)
(2.4)

where A is an M1 ×M2-dimensional rectangular matrix.
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The chiral symmetry arises in elementary particle physics (Verbaarschot and Wet-
tig, 2000; Akemann, 2017), but can also be realised as an effective symmetry in elec-
tronic (Brouwer et al., 2002), superconducting (Fu and Kane, 2008) and photonic
systems (Schomerus and Halpern, 2013; Lu et al., 2014; Poli et al., 2015). Given the
structure (2.4), the symmetry generally applies to systems with two sublattices, termed
A and B, when the couplings within each isolated sublattice vanish (Sutherland, 1986).
The mentioned electronic and photonic implementations naturally extend this idea to
suitably coupled subsystems.

An interesting aspect of these classes is the appearance of topological invariants,
associated with the number of eigenenergies pinned to the symmetry point (Lieb, 1989;
Verbaarschot, 1994; Brouwer et al., 2002). For a Hamiltonian of the form (2.4) with
some finite ν = M2 −M1 (so that A is not square), there are at least |ν| such zero
modes. If ν < 0 the associated eigenstates are of the form ψ = (ψA, 0)T with A†ψA = 0,
while for ν > 0 we have ψ = (0, ψB)T with AψB = 0. The remaining paired levels with
finite energy can be determined from the positive definite matrix A†A or AA†, whose
eigenvalues are given by E2

n.
In combination with considerations of time-reversal symmetry one can now define

chiral orthogonal, unitary or symplectic symmetry classes (chOE, chUE, chSE) (Ver-
baarschot, 1994; Verbaarschot and Wettig, 2000; Akemann, 2017), which are again
associated with a symmetry index β = 1, 2, 4. Taking A as a random matrix with real,
complex, or quaternion entries and P (A) ∝ exp(−cβ trA†A) then leads to the Gaus-
sian chiral ensembles (chGOE, chGUE, and chGSE), for which the positive energy
levels in each pair follow the joint distribution

P ({En}) ∝
∏

n<m,En,m>0

|E2
n − E2

m|β
∏

k,Ek>0

E
(|ν|+1)β−1
k exp(−cβE2

k). (2.5)

The terms E2
n −E2

m = (En −Em)(En +Em) include the repulsion from the negative-

energy levels, while E
(|ν|+1)β−1
k includes the repulsion from the mirror level at Ek̃ =

−Ek and from the zero modes. This modified repulsion follows again from the geo-
metric argument above, where the subspace to be explored by the rotations R(nm)

corresponds to the case M1 = |ν|+ 1, M2 = 1. In this space, A becomes a vector and
the eigenvalues and the squared eigenvalues E2

n = E2
ñ = |A|2 obey a χ2 distribution.

These modifications affect the eigenvalue density around E = 0 over a range of a
few level spacings,

ρ(E)− |ν|δ(E) ∝ |E|(|ν|+1)β−1 for small |E|, (2.6)

which now becomes a universal spectral characteristic of the system. For a macroscopic
number of zero modes with M2 � M1 � 1, the repulsion yields a hard gap around
the symmetry point, corresponding to the mean density

ρ(E) =
π

M1∆2E

√
(E2 − E2

−)(E2
+ − E2), E± =

M1∆

π
(
√
M2/M1 ± 1) (2.7)

for the M1 positive eigenvalues (this expression follows from the Marchenko-Pastur
law derived in the Appendix). For M1 = M2 � 1 this eigenvalue density reverts to a
Wigner semicircle law (2.3), normalised to 2M1 eigenvalues in the whole energy range
(the level repulsion (2.6) is not resolved as in this limit ∆→ 0).
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2.1.3 Charge-conjugation symmetry

If we admit for an antisymmetry CHC−1 = −H with an antiunitary operator C we
encounter four additional cases (Altland and Zirnbauer, 1997). Two of these arise
from the choices C2 = ±1, while the other two arise from an additional time-reversal
symmetry with T 2 = −C2.

If the antisymmetry is C = K (β = β′ = 2), the Hamiltonian is imaginary and
antisymmetric, H = −H∗ = −HT , and can be written in terms of matrix elements
Hnm ∈ iR. It is useful to denote this as the real symmetry class (RE) (Beenakker,
2015). If we have in addition a time-reversal symmetry T = ΩK (β = 4, β′ = 3) we
can write the Hamiltonian in the block form

H =

(
A B
B −A

)
, (2.8)

where A = −AT , B = −BT are antisymmetric and Anm, Bnm ∈ iR. This can be
usefully denoted as the time-invariant real symmetry class (T-RE).

For the antisymmetry C = ΩK (β = 2, β′ = 0) the Hamiltonian H = −H is
anti-selfconjugate, and thus can be written in terms of matrix elements Hnm ∈ iH.
If in addition we also have the time-reversal symmetry T = K (β = 1, β′ = 0), the
Hamiltonian takes the block form (2.8) with symmetric matrices A = AT , B = BT

and elements Anm, Bnm ∈ R. The two cases define the quaternion symmetry class
(QE) and the time-invariant quaternion symmetry class (T-QE)

In the two classes with C2 = 1, where the Hamiltonian can be made anti-symmetric
by an appropriate basis choice, a topologically protected zero mode exists if M is odd
(when we have an additional time-reversal symmetry with T 2 = −1 this mode is
Kramers-degenerate). The topological invariant counting such modes is then set to
ν = 1, while for even M we set ν = 0. No such symmetry-protected zero modes exist
in the two classes with C2 = −1.

Adopting again a Gaussian distribution P (H) ∝ exp[−(cβ/2) trH2] of matrix ele-
ments, these symmetry classes provide the joint probability density

P ({En}) ∝
∏

n<m,En,m>0

|E2
n − E2

m|β
∏

k,Ek>0

E
(|ν|+1)β−β′

k exp(−cβE2
k), (2.9)

where β′ modifies the repulsion from the mirror level as specified above (this follows
again from the geometric argument in the small subspaces spanned by a level pair and
any zero modes). As in the chiral classes, the spectral symmetry and the zero mode
thus directly affect the level statistics in the closed system.

The symmetry associated with C is known as a charge-conjugation or particle-
hole symmetry, and arises naturally in the context of superconducting systems. In
a mean-field description, excitations are described as quasi-particles that obey the
Boguliubov-de Gennes Hamiltonian

H =

(
H0 − EF −iσy ⊗∆
iσy ⊗∆∗ EF −H∗0

)
, (2.10)

where the blocks refer to the electron-like and hole-like degrees of freedom (addressed
by Pauli matrices τi), the Pauli matrix σy acts in spin space, and ∆ = ∆T is the
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s-wave pair potential. The charge-conjugation is of the form C = τxK and squares to
C2 = 1. If H0 = H+ ⊕ H− and ∆ = ∆+ ⊕ ∆− preserve the spin we can rearrange

the Hamiltonian into two systems with H± =

(
H± − EF ∓∆±
∓∆∗± EF −H∗±

)
, for which the

charge-conjugation symmetry C = ΩK with Ω = iτy squares to C2 = −1.
In this setting, the zero modes in the classes with C2 = 1 are associated with Majo-

rana fermions (Alicea, 2012; Leijnse and Flensberg, 2012; Beenakker, 2013), previously
elusive quasi-particles with possible applications for topological quantum computation
(Nayak et al., 2008). These concepts can be generalised to surface and interface states
in systems of specified spatial dimensions (Kitaev, 2009; Teo and Kane, 2010; Ryu
et al., 2010), which are encountered in topological insulators and superconductors
(Hasan and Kane, 2010; Qi and Zhang, 2011).

2.2 Random time-evolution operators and circular ensembles

To prepare how these considerations about the Hamiltonian translate to open systems,
it is useful to turn to the dynamics and identify the corresponding symmetry classes of
unitary matrices that exemplify the time evolution in the system. Of particular interest
is the time evolution over a fixed time interval T0, which also admits situations in which
the Hamiltonian is itself time-dependent with that period. With a nod to the notion
of a Floquet-operator in the latter setting, we denote this stroboscopic time-evolution
operator over a fixed time interval as F . Its eigenvalues zn = exp(−iεn) lie on the unit
circle, where the phases εn can be interpreted as quasi-energies. Similar considerations
apply to quantum maps (Haake, 2010) and quantum walks (Kitagawa et al., 2010).

As the time evolution is generated by the Schrödinger equation (1.1), we can sym-
bolically write F = exp(−iHT0/~) with a suitable effective Hamiltonian H. The sym-
metries of F then follow from the symmetries of H, and thus comply with the ten
symmetry classes described above (Zirnbauer, 1996). In the resulting spaces of unitary
matrices, some segments are smoothly connected to the identity, while others form
disconnected pieces. This once more provides scope for topological invariants (Fulga
et al., 2011; Beenakker, 2015), which we specify in the following explicit constructions.

For the time-evolution operator, time-reversal symmetry implies T FT −1 = F−1.
Given a time-reversal symmetry with T 2 = 1 (orthogonal symmetry class with β = 1)
and adopting a canonical basis where this is represented by T = K, we find that F
is symmetric under transposition, F = FT . In absence of any symmetries (unitary
symmetry class with β = 2), F is only constrained by F−1 = F †, so a member of the
unitary group U(M). For time-reversal symmetry with T 2 = −1 (symplectic symmetry
class with β = 4), the choice T = ΩK implies that F = F is quaternion self-conjugate.
The matrix FΩ = ΩF with elements FΩ,nm = iσyFnm, written as a normal 2M × 2M
matrix, is then antisymmetric, FTΩ = −FΩ. Notably, in the two classes arising from
time-reversal symmetry, even though denoted as orthogonal and symplectic, the spaces
of matrices differ from the groups of orthogonal and symplectic matrices encountered
in the diagonalisation of the corresponding Hamiltonians. Only in the case of broken
time reversal symmetry the space remains associated with the unitary group.

In each of these three spaces we can again determine a Haar measure µ(F ). This
is uniquely defined by the requirement that the measure is invariant under transfor-
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mations F → U ′FU , but now with unitary matrices U , U ′ that are subject to the
constraints U ′ = UT in the orthogonal symmetry class, and U ′ = U in the sym-
plectic symmetry class. Equipped with this measure, the corresponding ensembles are
known as the circular ensembles (COE, CUE and CSE) (Dyson, 1962a). The joint
distributions of phases ϕn in the unimodular eigenvalues zn = eiϕn is given by

P ({ϕn}) ∝
∏
n<m

|eiϕn − eiϕm |β , (2.11)

and their density is uniform.
Chiral symmetry implies XFX = F †, so that FX = XF is hermitian and only

has eigenvalues ±1. A topological invariant can then be defined as ν′ = 1
2 tr (FX) =

(M+−M−)/2, where M± counts the eigenvalues of either sign. One can again introduce
a Haar measure, which in combination with the possible constraints from time-reversal
symmetry leads to three chiral circular ensembles (chCOE, chCUE and chCSE).

A charge-conjugation symmetry implies CFC−1 = F . When we express C = K with
C2 = 1 this implies that F = F ∗ is real, and thus an element of the orthogonal group
O(M) (as the label OE is already taken this justifies the notion of the real symmetry
class RE). We then have the invariant ν′ = detF , where ν′ = 1 accounts for matrices
from SO(M). If in addition we have a time-reversal symmetry with T = KΩ (class
T-RE), such an invariant can be formulated with help of the Pfaffian ν′ = pfFΩ of the
real antisymmetric matrix FΩ = ΩF . For C = ΩK with C2 = −1, the constraint can be
written as FTΩF = Ω, which identifies F as symplectic (in quaternion language, FF =
1, which justifies the notion of the quanternion universality class QE). If in addition we
have a time-reversal symmetry with T = K (class T-QE), the matrix is furthermore
constrained to be symmetric. Equipped with a Haar measure, the corresponding real
and quaternion circular ensembles are denoted as CRE, T-CRE, CQE and T-CQE
(Beenakker, 2015).

In a specific mathematical sense, it can now be argued that these ten classes provide
a complete classification of random-matrix ensembles (Zirnbauer, 1996; Caselle and

Table 2.2 Classification of unitary matrix ensembles

symmetries unitary matrices space Cartan label

no symmetries F−1 = F † U(M) A

T = K F−1 = F ∗ U(M)/O(M) AI

T = ΩK F−1 = ΩF ∗Ω−1 U(2M)/Sp(2M) AII

C = K F−1 = FT O(M) D

C = K, T = ΩK F−1 = FT = ΩFΩ−1 O(2M)/U(M) DIII

C = ΩK F−1 = ΩFTΩ−1 Sp(2M) C

C = ΩK, T = K F−1 = F ∗ = ΩFΩ−1 Sp(2M)/U(M) CI

X = τz (XF ) = (XF )† U(M1 +M2)/U(M1)⊗U(M2) AIII

X = τz, C = K (XF ) = (XF )T = (XF )∗ O(M1 +M2)/O(M1)⊗O(M2) BDI

X = τz, C = ΩK (XF ) = (XF )† = Ω(XF )∗Ω−1 Sp(2M1 + 2M2)/Sp(2M1)⊗ Sp(2M2) CII
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Magnea, 2004; Zirnbauer, 2011)—they arise from the groups of unitary, orthogonal
and symplectic matrices and the associated compact symmetric Riemannian spaces,
as classified by Cartan and summarised in Table 2.2. The three Wigner-Dyson classes
with unitary, orthogonal and sympletic symmetry (UE, OE and SE) are the labelled
A, AI, AII; the corresponding chiral classes (chUE, chOE and chSE) are labelled
AIII, BDI, CII; the classes with charge-conjugation symmetry C2 = 1 and topological
invariants (RE and T-RE) are labelled D and DIII, while the remaining to classes with
C2 = −1 (QE and T-QE) are labelled C and CI.

2.3 Positive-definite matrices and Wishart-Laguerre ensembles

As we have seen in the construction of the ten Hamiltonian ensembles, it is often
useful to study the blocks of a matrix, and compose new matrices out from them.
This leads to natural extensions of the ensembles encountered so far, which can be
justified via their connection to orthogonal polynomials (Mehta, 2004; Forrester, 2010).
From this perspective, the Gaussian hermitian matrix ensembles in the Wigner-Dyson
classes are related to Hermite polynomials, while the other ensembles are related to
Laguerre polynomials. As mentioned for the chiral symmetry classes, these ensembles
are naturally related to positive semidefinite matrices W = X†X, where X is an
M ′×M -dimensional matrix. It suffices to consider the case M ≤M ′, as otherwise we
can simply study W = XX†.

We again use the symmetry index β = 1, 2, 4 to distinguish settings where the
matrix elements Xlm are real, complex or quaternion. A Gaussian distribution

P (X) ∝ exp(−c′β trX†X) (2.12)

then defines the Wishart-Laguerre ensemble for W , where we set c′β = β/2σ2. This
ensemble was first introduced by Wishart (1928) in the context of multivariate statis-
tics, which marks the historical beginnings of random-matrix applications. The joint
probability density of the eigenvalues λ of W is given by

P ({λn}) ∝
∏
n<m

|λn − λm|β
∏
k

λ
β(1+M ′−M)/2−1
k exp(−c′βλk), (2.13)

which relates to the previously encountered eigenvalue distributions by the substitution
λn = E2

n. As mentioned above, the resulting eigenvalue correlations can be expressed
in terms of Laguerre polynomials.

For large matrix dimensions the eigenvalue density approaches the Marchenko-
Pastur law (Marčenko and Pastur, 1967)

ρ(λ) =
MT0

2πλ

√
(λ− λ−)(λ+ − λ) for λ− < λ < λ+, (2.14)

where λ± = (
√
M ′ ±

√
M)2/σ2 defines the range where this density is finite. This

expression is derived in the Appendix.
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2.4 Jacobi ensembles

A third class of classical orthogonal polynomials appearing in random-matrix problems
are the Jacobi polynomials. These are associated with joint probability distributions
of the form (Forrester, 2010)

P ({µn}) ∝
∏
n<m

|µn − µm|β
∏
k

(1− µk)aβ/2(1 + µk)bβ/2, (2.15)

where µm ∈ [−1, 1], m = 1, 2, 3, . . . ,M .
Such distributions arise, for instance, when one considers the singular values of

an M ′ ×M dimensional off-diagonal block t of a suitable N ×N dimensional unitary
matrix F (Beenakker, 1997; Beenakker, 2015). In particular, setting N = M+M ′ with
M ′ ≥ M and generating F from the three standard circular ensembles (COE, CUE
or CSE), the eigenvalues Tn = (1 − µn)/2 ∈ [0, 1] of t†t obey a Jacobi ensemble with
a = M ′−M+1−2/β, b = 0; similarly, if F is taken from O(M+M ′) or Sp(2M+2M ′)
(symmetry class D or C) one finds the same a but b = 1− 2/β; the complete picture
is presented in Section 4.4.

Alternatively (Forrester, 2010), the quantities Tn can be interpreted as the eigenval-
ues of a so-called MANOVA matrix (X†X+Y †Y )−1X†X, where X and Y are matrices
of dimensions Mx ×M and My ×M , distributed as Gaussians with equal variance σ
according to Eq. (2.12). In this case, a = Mx −M + 1− 2/β, b = My −M + 1− 2/β.
As shown based on this realization in the Appendix, in the limit of a large matrix
dimension M with fixed cx = Mx/M , cy = My/M the eigenvalue density approaches

ρ(T ) =
M(cx + cy)

√
(T − T−)(T+ − T )

2πT (1− T )
, (2.16)

where

T± =
1

1 + λ∓
, λ± =

(√
cxcy ±

√
cx + cy − 1

cx − 1

)2

(2.17)

determines the range where the density is finite. In terms of the variables µn, this
takes the form

ρ(µ) =
M(cx + cy)

2π

√
(µ− µ−)(µ+ − µ)

1− µ2
, (2.18)

within the boundaries given by µ± = (λ± − 1)/(λ± + 1).

2.5 Non-hermitian matrices

The eigenvalues λn in the Wishart matrix W = X†X are the squared singular values
of the matrix X. For a square matrix of dimensions M ×M we can also study the
complex eigenvalues zn of X, obtained from Xvn = znvn with eigenvectors vn. This
leads to entirely different classes of random matrices (Ginibre, 1965; Khoruzhenko and
Sommers, 2011). Since X is in general not normal (in particular neither hermitian nor
unitary), there is no direct relation between the real singular values and the complex
eigenvalues zn. This key difference is intimately related to the fact that the eigenvectors
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vn are not orthogonal to each other, so that the spectral decomposition X = V DV −1

with D = diag(zn) involves a non-unitary matrix V . We therefore need to distinguish
the right eigenvectors vn, which form the columns of V , from the left eigenvectors
wn, which are obtained from wnX = snwn. Imposing the biorthogonality condition
wmvn = δnm, the left eigenvectors form the rows of V −1.

This biorthogonal set of eigenvectors is in general no longer normalised. The extent
of mode non-orthogonality can thus be quantified by the condition numbers (Chalker
and Mehlig, 1998; Janik et al., 1999; Schomerus et al., 2000)

Omn =
(v†mvn)(wnw

†
m)

(v†mw†m)(wnvn)
, (2.19)

which we have written in a way that does not rely on the chosen normalisation condi-
tion. In terms of the matrix V ,

Omn = (V †V )mn(V −1V −1†)nm. (2.20)

The diagonal elements Km = Omm are real and obey Km ≥ 1, with Km = 1
for all m only if V is unitary. These quantities become large in particular when two
eigenvalues approach each other closely, and indeed diverge at eigenvalue degeneracies,
so-called exceptional points (Berry, 2004; Heiss, 2012). Close to such a degeneracy with
a coalescing pair zn+1 = zn, X cannot be diagonalised but only be brought into a form
involving Jordan blocks (

zn 1
0 zn

)
. (2.21)

This means that the eigenvectors of the modes become identical, in sharp contrast
to hermitian systems where the eigenvectors remain orthogonal as one approaches a
degeneracy.

The probability distribution (2.12) for M × M -dimensional square matrices X
defines the Ginibre ensemble (Ginibre, 1965; Khoruzhenko and Sommers, 2011). For
the complex Ginibre ensemble (β = 2), the joint distribution of eigenvalues is

P ({zn}) ∝
∏
n<m

|zn − zm|2
∏
k

exp(−c′βz2
k). (2.22)

In the quaternion case β = 4 eigenvalues come in conjugate pairs, and the joint
distribution of eigenvalues in the upper half of the complex plane

P ({zn}) ∝
∏
n<m

|zn − zm|2|zn − z∗m|2
∏
k

|zk − z∗k|2 exp(−c′βz2
k) (2.23)

contains the expected self-repulsion terms. For the real case β = 1, much more com-
plicated expressions arise due to the accumulation of O(

√
M) eigenvalues on the real

axis (Lehmann and Sommers, 1991; Forrester and Nagao, 2007). What is common to
all three cases are the local spectral correlations of eigenvalues well inside the complex
support (away from the boundaries and spectral symmetry lines), which irrespective of
β are determined by the factors |zn−zm|2. This yields a cubic level repulsion P (s) ∝ s3
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for small spacings s = |zn− zm|, where one power of s arises from the area element in
the complex plane.

As shown in the Appendix for the complex Ginibre ensemble, for a variance scaled
to σ2 = 1/M and M → ∞ the eigenvalue density in the complex plane approaches
Ginibre’s circular law ρ(z) = M

π Θ(1 − |z|), where Θ denotes the unit step function.
As a side product of the calculation presented there (Janik et al., 1999), the condition
number Km|zm=z ∼ M(1 − |z|2) turns out to be large, unless one approaches the
boundaries of the eigenvalue support.

From the general perspective of commutation and anticommutation with unitary
and anti-unitary symmetries, non-hermitian matrices admit a very large number of
symmetry classes (Magnea, 2008). For a physical setting that illustrates this richness,
we can consider photonic systems with absorption and amplification (Cao and Wiersig,
2015). Without further constraints we may model these as a complex Ginibre ensem-
ble (β = 2) with different weights of the hermitian and non-hermitian contributions,
where the eigenvalue support becomes elliptic (Girko, 1986). Time-reversal symmetry
in optics (reciprocity) makes the matrix complex symmetric, H = HT 6= H∗, which
modifies the statistics but does not entail any spectral constraints. As a template for
the real Ginibre ensemble (β = 1), we can take a system with balanced amplification
and absorption, situated in regions that are mapped onto each other by a reflection or
inversion P (Makris et al., 2008; Rüter et al., 2010). We then obtain a non-hermitian
PT-symmetric system with PHP = H∗ 6= HT (Bender, 2007), which in a suitable ba-
sis is represented by a real asymmetric matrix. In combination with magneto-optical
effects, we can similarly construct PTT′-symmetric systems with PHP = H† 6= H
(Schomerus, 2013a). The spectrum remains symmetric about the real axis, and a
random-matrix analysis reveals a close connection to the real Ginibre ensemble, in-
cluding the same accumulation of O(

√
M) eigenvalues on the real axis (Birchall and

Schomerus, 2012). Further examples can be constructed by modifying the role of P .
In an optical system where P represents a chiral symmetry, we can realize the case
H = −PH∗P in which eigenvalues are symmetric with respect to the imaginary axis
(Schomerus and Halpern, 2013; Schomerus, 2013b; Poli et al., 2015), as well as the
case H = H∗ = −PHP in which eigenvalues are symmetric with respect to both the
real and the imaginary axis (Malzard et al., 2015). For a symmetry with P 2 = −1
(hence P = −PT , assuming P is real), two interesting cases are the so-called Hamil-
tonian ensembles with PHP = HT , as well as the skew-Hamiltonian ensembles with
PHP = −HT (these notions relate to the symplectic structure of classical Hamiltoni-
ans, generated by an antisymmetric involution such as P ; Beenakker et al. 2013). For
a real Hamiltonian matrix with Gaussian statistics, O(

√
M) eigenvalues accumulate

both on the real and on the imaginary axis; for a real skew-Hamiltonian matrix, all
eigenvalues are twofold degenerate and O(

√
M) of these pairs accumulate on the real

axis.
In the next Chapter we will see that non-hermitian matrices play a crucial role in

the description of open scattering systems, where additional constraints arise from the
physical constraints of unitarity and causality.
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The scattering matrix

In this chapter we develop effective models for the scattering matrix and use these to
identify the associated random-matrix ensembles.

3.1 Points of interest

Consider a particle moving through a scattering region with a spatially varying po-
tential energy V , as sketched for a simple one-dimensional setting in Fig. 3.1. The
corresponding Hamiltonian is Ĥ = T̂ + V̂ , where T̂ represents the kinetic energy. Here
are some natural phenomena that we may wish to consider: Decay, where we address
the escape rate of a particle inserted into the scattering region; transport, where we
address the probability for an incident particle to be transmitted or reflected; dynam-
ics, where we ask how long the particle engages with the scattering region and how
many internal states it explores. We may also wish to identify system-specific details
beyond the fundamental symmetries, such as regarding the role of different scattering

x

V
(a)

(b)

E

r
a(in),L

a(out),L

a(out),R

a(in),R
r′

t′

t

Fig. 3.1 (a) Sketch of a scattering region with a varying potential V (x) in a one-dimensional

system, with ideal leads attached to either side. Note that the potential does not need to be

identical in both leads. (b) Scattering processes relating the amplitudes of propagating waves

in the leads.
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subregions or the role of the contacts. All of these questions (and many more) can be
addressed with the help of a single object, the scattering matrix S(E).

3.2 Definition of the scattering matrix

To define the scattering matrix (Newton, 2002; Messiah, 2014) we stipulate that the
motion outside the scattering region is ballistic. At any energy E, we then have ac-

cess to a complete set of propagating scattering states |ψ(in)
n 〉 in which the particle

is approaching the scattering region (incoming channels), and a corresponding set of

propagating states |ψ(out)
n 〉 where the particle is moving away from the region (out-

going channels). These states are taken to be normalised to a unit probability flux
through any closed surface surrounding the scattering region. We may also encounter

a set of non-propagating (evanescent) states |ψ(ev)
m 〉 which decay away from the scat-

tering region and do not carry any flux. Outside the scattering region, we then can
write a state with a given energy as

|ψ〉 =

N∑
n=1

a(in)
n |ψ(in)

n 〉+

N∑
n=1

a(out)
n |ψ(out)

n 〉+
∑
l

a
(ev)
l |ψ(ev)

m 〉, (3.1)

where N fixes the number of scattering channels. We collect the expansion coefficients
into vectors a(in), a(out) and a(ev).

Inside the scattering region, we may expand the state in terms of any suitable
complete set of modes, |ψ〉 =

∑
m bm|χm〉 with a coefficient vector b. With help of

the stationary Schrödinger equation (1.1), the states inside and outside the scatter-
ing region are uniquely related. In particular, if we fix a(in) then the solution of the
Schrödinger equation uniquely fixes a(out), a(ev), and b, up to effectively decoupled
parts that can be treated as a separate system. These relations must be linear, so that

a(out) = S(E)a(in). (3.2)

This defines the scattering matrix. Flux normalization ensures that for real energies
S(E) is unitary, hence S(E) ∈ U(N). Causality ensures that the poles El of S at
complex energies are all confined to the lower half of the complex plane, ImEl < 0.
The number of propagating scattering channels N may change at certain energies,
which gives rise to branch cuts in the complex-energy plane.

3.3 Preliminary answers

The scattering matrix addresses the phenomena listed at the beginning of this chapter
in the following ways.

Decay.—The complex poles El = E′l− i~γl/2 of the scattering matrix provide solu-
tions where a(out) is finite while a(in) = 0. These quasi-bound states provide a funda-
mental description of decay and resonant scattering (Guhr et al., 1998; Weidenmüller
and Mitchell, 2009; Moiseyev, 2011). The time dependence of the quasibound states
follows from the amplitude factor A(t) = exp(−itEl/~) = exp(−itE′l/~) exp(−tγl/2),
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so that the corresponding intensity |A(t)|2 = exp(−tγl) decays with rate γl. For a
particle prepared in this state at t = 0, the Fourier signal

A(ω) =

∫ ∞
0

A(t)eiωt dt = i[(ω − E′l/~) + iγl/2]−1 (3.3)

delivers the resonance-like frequency-resolved signal

|A(ω)|2 =
1

(ω − E′l/~)2 + γ2
l /4

, (3.4)

a Lorentzian centred at E′l/~ with full width at half maximum γl. When the particle
is prepared in a superposition of quasi-bound states, the resulting decay for long times
depends on the characteristic decay rate γ0 = inf γl, defined such that γl ≥ γ0 for all
contributing states. If γ0 > 0 the decay becomes exponential, while for γ0 = 0 one
typically encounters a power-law.

Transport.—For a particle incoming in channel n, the probability to scatter into
the outgoing channel n′ is given by |Sn′n|2. The unitarity of the scattering matrix
guarantees that the sums of probabilities

∑
n |Sn′n|2 =

∑
n′ |Sn′n|2 = 1 are normalised.

This normalization also holds for an incident particle in any superposition of incoming
modes, |a(out)|2 = |a(in)|2. These features are at the heart of the scattering approach to
transport (Beenakker, 1997; Blanter and Büttiker, 2000; Nazarov and Blanter, 2009).

In many settings, we are let to group the scattering amplitudes into subcompo-
nents a(in),s, a(out),s, where s labels different asymptotic regions (leads). The scattering
matrix is then formed of blocks Ss′s describing transmission from lead s to lead s′,
and reflections back into lead s if s′ = s. The associated transmission probability is
quantified by the dimensionless conductance gs′s = tr (S†s′sSs′s). In the case of two
leads, designated as a left lead s = L with NL channels and a right lead s = R with
NR channels, we write the blocks as

S =

(
r t′

t r′

)
, (3.5)

where r and t describe the reflection and transmission of particles arriving from the
left, while r′ and t′ describe these processes for particles arriving from the right. This
designation is illustrated in Fig. 3.1(b). The dimensionless conductance is then given

by g = tr t†t = tr t′
†
t′ = NL− tr r†r = NR− tr r′

†
r′, where the stated identities follow

from unitarity.
The eigenvalues Tn ∈ [0, 1] of the hermitian matrix t†t are known as the transmis-

sion eigenvalues, and determine the dimensionless conductance via g =
∑
n Tn. The

quantities
√
Tn can be interpreted as the singular values of t, which generalises to the

polar decomposition of the scattering matrix,

S =

(
V 0
0 V ′

)(√
1− T

√
T√

T −
√

1− T

)(
V ′′ 0
0 V ′′′

)
, T = diag (Tn) (3.6)

with unitary matrices V , V ′, V ′′ and V ′′′.
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The transmission eigenvalues determine many other transport properties, including
the full counting statistics of electrons at low temperatures (Levitov and Lesovik,
1993), with the shot noise characterised by the second binomial cumulant (Büttiker,
1990; Blanter and Büttiker, 2000) ∑

n

Tn(1− Tn). (3.7)

Another example is the charge transport through a normal conductor into a con-
ventional superconducting lead (Beenakker, 1992; Beenakker, 1997), for which the
dimensionless conductance at vanishing magnetic fields is given by

gNS =
∑
n

T 2
n/(2− Tn)2. (3.8)

Dynamics.—Complementing the information about the scattering probabilities, the
phase ϕ of a scattering amplitude Sn′n = |Sn′n|eiϕ provides insight into the dynamics
(de Carvalho and Nussenzveig, 2002; Texier, 2016). For instance, for ballistic propa-
gation through a region of length L at a constant momentum p(E), the particle picks
up the dynamical phase ϕ = pL/~. The energy sensitivity ~dϕ/dE = L/v = τ of the
phase therefore gives an indication of the travel time. In a semiclassical description
of scattering from a slowly varying potential, we have ϕ = Scl/~, where the classical
action Scl again obeys dScl/dE = τ .

These observations lead to the formal definition of the delay time of a particle that
passes through the scattering region. For injection and extraction in individual chan-
nels, the delay time can be isolated by the logarithmic derivative ImS−1

n′ndSn′n/dE.
For multi-channel scattering this is generalised by the Wigner-Smith time-delay matrix
(Wigner, 1955; Smith, 1960)

Q = −i~S†dS/dE. (3.9)

The unitarity of S at any energy ensures that Q = Q† is hermitian, while causality
ensures that Q is positive semidefinite. Therefore, the eigenvalues τn of Q are real and
positive. These eigenvalues are known as the proper delay times.

Noting that v−1 = dp/dE also appears in semiclassical estimates of the accessible
phase-space volume, the delay times are intimately related to the density of states.
Indeed, the Wigner-Smith matrix directly quantifies the global density of states in the
system, in terms of the Birman-Krein formula (Birman and Krein, 1962)

ρ(E) =
1

2π~
trQ. (3.10)

Replacing the derivative d/dE by a local variation of the potential ∂/∂V (x), this
approach can be extended to obtain the local density of states (Gasparian et al.,
1996). Analogous variations with respect to other parameters deliver a wide range of
response functions, which can for instance be used to study adiabatic transport and
quantum pumping (Büttiker et al., 1994; Brouwer, 1998).

System-specific details.—When we separate the scattering region into subregions,
we can build up the total scattering matrix from the scattering problems of the sub-
regions (Datta, 1997; Beenakker, 1997; Nazarov and Blanter, 2009). This can be done
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exactly if we extend the scattering matrix to include evanescent states, and often still
very reliably if we only account for the propagating states. The simple idea is to in-
spect each interface and identify the amplitudes of outgoing states from one region
with the amplitudes of incoming states into the adjacent region.

For the case of two adjacent regions with scattering matrices S1, S2 of the form
(3.5), the wave-matching of propagating states leads to the composition law

S1⊕2 =

(
r1 + t′1r2(1− r′1r2)−1t1 t′1(1− r2r

′
1)−1t′2

t2(1− r′1r2)−1t1 r′2 + t2r
′
1(1− r2r

′
1)−1t′2

)
. (3.11)

This rule can be reformulated as a simple matrix multiplication M = M2M1 for the
transfer matrix

M =

(
t†−1 r′t′−1

r′†t†−1 t′−1

)
, (3.12)

which relates modes on the left and right according to(
aout,R

ain,R

)
= M

(
ain,L

aout,L

)
. (3.13)

Flux conservation translates to the property M†σzM = σz, so that M is complex
symplectic. The eigenvalues of M†M and (M†M)−1 = σzM

†Mσz are thus identical
and appear in reciprocal pairs, which are given by (

√
1/Tn ±

√
−1 + 1/Tn)2.

We note that in the composed system, according to Eq. (3.11) poles from the
multiple scattering across the interface arise from

det[1− r2(E)r′1(E)] = 0. (3.14)

Similarly, the role of a contact can be studied by inserting a static tunnel barrier
at the corresponding boundary of the scattering region (Brouwer, 1995; Beenakker,
1997). For example, the scattering matrix

SB =

(√
1− Γ2

√
Γ√

Γ −
√

1− Γ2

)
(3.15)

describes a barrier with uniform transparency Γ ∈ [0, 1] in all channels. If we send Γ→
0 for all contacts the system becomes closed. Poles approaching the real axis become
the energy levels of the closed system, while poles moving deep into the complex plane
are associated with direct reflection processes from the outside.

We can also artificially separate a closed system into two open systems joined by
an interface. For a left and a right region, this is described by scattering matrices
S1 = r′1 and S2 = r2, both only composed of a reflection block back to the interface.
The quantization condition (3.14) can then be rewritten as

det (S1(E)S2(E)− 1) = 0, (3.16)

which determines the energies of the closed systems. This scattering quantization ap-
proach becomes exact when one includes the evanescent modes into the scattering
description (Doron and Smilansky, 1992; Bäcker, 2003), and can be extended, e.g.,
to superconducting systems (Beenakker, 2005) and non-hermitian photonic systems
(Schomerus, 2013a).
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Fig. 3.2 Illustration of the stroboscopic scattering approach, in which particles are injected

and collected at regular intervals.

3.4 Effective scattering models

In practice, many methods are available to calculate the scattering matrix in specific
settings. This includes wave matching, Green function methods and the boundary
integral method, as well as iterative procedures based on the composition rule (3.11)
of scattering matrices, and analogous rules for the Green function (Datta, 1997). For
the purpose of a statistical description, however, we require a generic model that
captures the essential features of the internal dynamics and the coupling to the leads.
This is delivered by the Mahaux-Weidenmüller formula (Mahaux and Weidenmüller,
1969; Livsic, 1973; Verbaarschot et al., 1985; Guhr et al., 1998)

S(E) =
iπW †(E −H)−1W − 1

iπW †(E −H)−1W + 1
, (3.17)

where H is an effective internal Hamiltonian of dimension M×M while W is a suitable
M ×N -dimensional coupling matrix, specified fully in Eq. (3.40).

We provide a motivation of this formula via a detour to the stroboscopic scattering
problem (Fyodorov and Sommers, 2000; Tworzyd lo et al., 2003), which leads to its
close cousin

S(ε) =
KAKT − 1

KAKT + 1
, A =

1 + eiεF

1− eiεF
= −A†. (3.18)

Here F is an effective internal time-evolution operator over a fixed time period T0, ε
is the associated quasi-energy, and the coupling matrix K is fully specified in (3.34).
The Mahaux-Weidenmüller formula then follows in the continuum limit T0 → 0. We
present this construction because it gives rather direct intuitive insight into scattering
and decay problems, and also helps to isolate and justify the general features of the
scattering matrix described in the previous section.

3.4.1 Stroboscopic scattering approach

Stroboscopic ballistic decay. Our starting point is a simple, highly idealised scenario,
which nonetheless can be easily extended to capture a large range of other cases.
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Consider a situation where the coupling of the scattering region to the outside occurs
stroboscopically, at periodically spaced, discrete times t = nT0 ≡ tn, n = 0, 1, 2, 3, . . .
(see Fig. 3.2). Let us denote the state within the system just before these times as
|ψn〉 = |ψ(t−n )〉. This state evolves stroboscopically according to

|ψn〉 = FQ|ψn−1〉 = (FQ)n|ψ0〉, (3.19)

where F is the unitary operator that describes the time evolution when the system
is closed, while Q is a projector that describes what remains in the system when the
system is open. In other words, in each time interval, we lose some internal wave
amplitude according to the complementary projector P = 1−Q, while the remaining
amplitude is propagated by the unitary time evolution operator F . As we assume that
F andQ are independent of the time index n, we require that the details of the coupling
are otherwise time-independent and the internal dynamics are autonomous, or at least
themselves time-periodic with period T0. The fact that we take Q as a projector
means that the coupling is ballistic—the opening is fully transparent, without any
partial reflection of the passing wave. This is also called an ideal lead.

According to Eq. (3.19), the decay of the amplitude within this system is described
by the non-unitary operator FQ. In a basis where Q is diagonal this corresponds
to truncating the unitary operator F . Let us specify this for a system with a finite
internal Hilbert space of dimension M , coupled to N external channels such that
rankQ = M − N . In the basis where Q = diag(0, 0, 0, . . . , 0, 1, 1, . . . , 1) (N zeros
followed by M −N ones), FQ is then obtained from F by setting the first N columns
to zero.

In this setting, the quasibound states |φm〉 are obtained from the eigenvalue prob-
lem

FQ|φm〉 = zm|φm〉, = 1, 2, . . . ,M. (3.20)

Due to the projective nature of Q, there will by N vanishing eigenvalues, while the
remaining eigenvalues are in general complex and finite, with |zm| < 1. Each eigenvalue
describes the exponential stroboscopic decay of the associated quasibound state—if the
initial state is |ψ0〉 = |φm〉, the intensity within the system decays as

〈ψn|ψn〉 = |zm|2n〈ψ0|ψ0〉. (3.21)

Writing zm = exp[−i(εm − iγm/2)], the decay constant over a period T0 is given by
γm. As indicated, this decay constant is best viewed as arising from the imaginary part
of a complex quasienergy ε?m = εm− iγm/2, where the real part is defined modulo 2π.

Stroboscopic scattering with ideal contacts. We now turn the stroboscopic decay
problem into a stroboscopic scattering problem. This requires to define how the escape
from the system translates into particles detected outside, as well as how to feed
particles into the system. In other words, we need to define objects that connect
the state within the system (residing in the internal Hilbert space in which F and

Q operate) to the amplitudes of the N incoming modes (states |ψ(in)
n 〉) and the N

outgoing modes (states |ψ(out)
n 〉) outside the system.
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In the case of ballistic coupling that we study thus far, the outgoing state can be
taken of the simple form

|ψ(out)
n 〉 = P |ψn〉, (3.22)

with P such that P = PTP = 1−Q recovers the rank-N projector that complements
Q in the internal Hilbert space. It follows that PPT = 1 is the identity in the space of
the external scattering channels (the rank does not change under the reordering and
the resulting object is still a projector). Recall that the internal state refers to the
instance just before we open the system. Therefore, the incoming particle injected in
the previous step modifies this state according to

|ψn〉 = FQ|ψn−1〉+ FPT |ψ(in)
n−1〉

= (FQ)n|ψ0〉+

n−1∑
l=0

(FQ)lFPT |ψ(in)
n−l−1〉, (3.23)

which replaces Eq. (3.19). Combining these expressions, we find

|ψ(out)
n 〉 = P (FQ)n|ψ0〉+ P

n−1∑
l=0

(FQ)lFPT |ψ(in)
n−l−1〉. (3.24)

The first part recovers the decay of the initial state, while the remaining part describes
the scattering. The pure decay problem is characterised by the absence of the incoming
state, while the pure scattering problem is characterised by the absence of the initial
state.

Both these problems now turn out to be intimately related. For this, we revert

back to a continuous time variable, |ψ(out)(t)〉 =
∑
n δ(t−nT0)|ψ(out)

n 〉, and perform a
Fourier decomposition of the scattered signal,

|ψ(out)(ε)〉 =

∞∑
n=0

eiεn|ψ(out)
n 〉 (3.25)

=

∞∑
l=0

∞∑
n=l+1

eiεlP (FQ)leiεFPT eiε(n−l−1)|ψ(in)
n−l−1〉, (3.26)

hence

|ψ(out)(ε)〉 = S(ε)|ψ(in)(ε)〉 (3.27)

with the stroboscopic scattering matrix

S(ε) = P

∞∑
l=0

[eiεFQ]leiεFPT = P
1

1− eiεFQ
eiεFPT . (3.28)

We now observe that the poles of the scattering matrix coincide with the complex
quasienergies ε?m, as determined by the eigenvalue problem (3.20).
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It is convenient to bring the scattering matrix (3.28) into the equivalent form

S(ε) =
PAPT − 1

PAPT + 1
, A =

1 + eiεF

1− eiεF
= −A†. (3.29)

We then see that the scattering matrix is indeed unitary. Furthermore, this expression
nicely generalises to the case of non-ideal contacts, which we address next.

Stroboscopic scattering with non-ideal contacts. To account for non-ideal coupling
we insert an energy-independent scatterer at the place of the contact. The contact can
be viewed as a region with N channels coupled to the outside and N channels coupled
to the inside, and thus is described by a 2N × 2N -dimensional unitary scattering
matrix

SB =

(
rB t′B
tB r′B

)
. (3.30)

The blocks rB and r′B describe the partial reflection in the external and internal
channels, while tB and t′B describe the transmission into and out of the system. This
matrix is assumed to be energy-independent, meaning that the reflection and trans-
mission processes from the contact are instantaneous. The return of the particle to the
contact is described by the ballistic scattering matrix S0.

We can now match the waves at the contact according to Eq. (3.11), which results
in the total scattering matrix

S = rB + t′BS0(1− r′BS0)−1tB . (3.31)

This expression has a simple interpretation: The incident wave is either directly re-
flected according to rB , or enters into the system according to tB . Once in the system,
the wave undergoes a sequence of l events, each consisting of an internal scattering
round trip S0 followed by a partial reflection r′B , until after another return S0 to the
contact it escapes according to t′B . Equation (3.31) follows by summing over l, which
is of the form of a geometric series.

Inserting for S0 the stroboscopic scattering matrix (3.28) for ideal contacts, we find
that this can be written more directly as

S = rB + t′BP
1

1− eiεF (Q+ PT r′BP )
eiεFPT tB . (3.32)

To further simplify this expression we choose an appropriate basis for the internal
state, as well as for the incoming and the outgoing state. This follows from the polar
decomposition (3.6), which we need to adopt in the slightly more general form

SB =

(
V 0
0 V ′

)(
−Σ
√

1− Γ2
√

Γ√
Γ Σ

√
1− Γ2

)(
V ′′ 0
0 V ′′′

)
,

{
Γ = diag (Γn)
Σ = diag (σn)

.

(3.33)
Here Γn ∈ [0, 1] are the transmission eigenvalues of the contact, while σn = ±1 dis-
criminates two distinct ways to close a channel. The unitary matrices V , V ′, V ′′ and
V ′′′ can all be absorbed into the basis choice, which means that SB is block diagonal
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and real. Starting from (3.32), this basis choice results in the desired generalization of
Eq. (3.29),

S =
KAKT − 1

KAKT + 1
, A =

1 + eiεF

1− eiεF
= −A†, K = diag (κσn

n )P, (3.34)

where the contact is now characterized by the coupling coefficients

κn = Γ−1/2
n (1−

√
1− Γ2

n). (3.35)

These coefficients take the value κn = 1 for Γn = 1 and κn ≈
√

Γn/2 for Γn � 1. As
they enter the matrix K to the power σn, a semitransparent contact can be achieved
both by decreasing the coupling (σn = 1) or by increasing the coupling (σn = −1).
This completes the derivation of the stroboscopic scattering matrix (3.18).

3.4.2 Continuous-time scattering theory

To realize the time-continuous limit of the stroboscopic scattering theory, we set ε =
ET0/~, F = exp(−iT0H/~), and equate T0 ≡ 2π~/M∆ = TH/M to the dwell time in
a continuous system with M channels and mean level spacing ∆ (this is the mean time
for a round trip F in the system). In the leading orders of T0, we can approximate

eiεF ≈ 1− iT0(H − E)/2~
1 + iT0(H − E)/2~

, (3.36)

so that

A =
1 + eiεF

1− eiεF
≈ 2i~

T0
G(E), G(E) =

1

E −H
, (3.37)

where G(E) is the Green function (or resolvent) of the closed system. For the ideal
case with scattering matrix (3.29), we then have

S =
2i~
T0
P (E −H)−1PT − 1

2i~
T0
P (E −H)−1PT + 1

, (3.38)

while for non-ideal leads P is replaced by K. Inserting T0 completes the derivation of
the Mahaux-Weidenmüller formula (3.17),

S(E) =
iπW †(E −H)−1W − 1

iπW †(E −H)−1W + 1
, W =

√
M∆

π
K†, (3.39)

where the M ×M -dimensional hermitian matrix H represents the Hamiltonian of the
closed systems, while the M ×N -dimensional matrix W describes the coupling to the
N scattering channels. With our basis choice, W is diagonal, with elements

Wnn =

√
M∆

π
κσn
n (3.40)

specified according to Eq. (3.35). The form of W in the non-ideal case can also be
obtained by starting with the scattering matrix (3.38) for ideal contacts and adding
barriers by the construction (3.31).
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Fig. 3.3 Fundamental symmetries relate various states of motion, which constrains the scat-

tering matrix in accordance to the ten universality classes for unitary matrix.

Equation (3.39) can be rewritten in the equivalent form

S(E) = −1 + 2πiW †(E −H + iπWW †)−1W. (3.41)

According to this, the poles of the scattering matrix are given by the eigenvalues of
the effective non-hermitian Hamiltonian H − iπWW †. The poles all lie in the lower
half of the complex plane, as required by causality. Furthermore, the Wigner-Smith
time-delay matrix Q = −i~S†dS/dE takes the form

Q = 2π~W †(E −H − iπWW †)−1(E −H + iπWW †)−1W, (3.42)

which is explicitly positive semidefinite, as again required by causality.

3.5 Merits

Via the stroboscopic model (3.34), the orthogonal, unitary, or symplectic symmetry
of F in the three Wigner-Dyson classes with different form of time-reversal symmetry
translates directly into a corresponding symmetry of S. Via the continuous model
(3.41), one finds that this also agrees with the corresponding symmetry class for H.
In the symmetry classes with chiral or charge-conjugation symmetry, this translation
holds when the scattering matrix is evaluated at the spectral symmetry points E = 0
or ε = 0, π (away from these points, the symmetry reduces to the three Wigner-
Dyson classes). Thus, the ten symmetry classes listed in Table 2.2 directly apply
to the scattering matrix, with energy fixed to the symmetry point where required
(Beenakker, 2015).

It is instructive to verify these statements directly within the scattering picture (see
Fig. 3.3). For this, consider that the time-reversal operation T transforms incoming
modes into outgoing modes. If this is a symmetry of the Hamiltonian then the corre-
spondingly transformed scattering state must be described by the original scattering
matrix. For T = K this delivers

a(in)∗ = S(E)a(out)∗ = S(E)S∗(E)a(in)∗, (3.43)

such that ST (E) = S(E), as anticipated. Analogously, a time-reversal symmetry
with T = ΩK implies ST (E) = ΩS(E)Ω−1, hence [ΩS(E)]T = −ΩS(E). For a
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chiral symmetry X , we transform a solution at energy E into a solution at energy
−E. This inverts the group velocity of the propagating modes, thus again trans-
forms incoming modes into outgoing modes. It follows that XS(E)X = S†(−E),
and hence [XS(−E)]† = XS(E). For a charge-conjugation symmetry C, both ef-
fects on the propagation direction cancel such that S(−E) = S∗(E) if C = K, while
S(−E) = ΩS∗(E)Ω−1 if C = ΩK. This recovers all constraints in Table 2.2.

Based on this correspondence, the effective scattering models deliver an indepen-
dent view on the topological quantum numbers associated with the Hamiltonian (Fulga
et al., 2011; Beenakker, 2015; Schomerus et al., 2015). In systems with a chiral symme-
try, the matrix SX0 = XS(0) is unitary and hermitian, so that the trace ν0 = 1

2 trSX
quantifies the difference between eigenvalues ±1. According to Eq. (3.41) with a chiral
Hamiltonian of the form (2.4), this topological quantum number can then be expressed
as ν0 = [ν + (NA −NB)/2]|ν0|≤N/2, where NA and NB count the number of channels
coupled to the two different chiral sectors; as indicated by the brackets this saturates
at |ν0| = N/2 where N = NA + NB . In systems with a charge-conjugation sym-
metry, where the Hamiltonian can be made anti-symmetric by an appropriate basis
choice and displays a zero mode if M is odd (modulo possible Kramers degeneracy),
ν0 = detS(0) = ν (class D) and ν0 = pf ΩS(0) = ν (class DIII) remain directly related
to the internal topological quantum number.

Beyond the pure symmetry classification, and perhaps even more importantly, the
effective scattering models also determine the appropriate statistical ensembles for the
scattering matrix for ergodic internal wave propagation (Brouwer, 1995). For ideal
contacts, the circular ensembles for F translate via Eq. (3.28) into the corresponding
circular ensembles for the ballistic scattering matrix S, with energy again fixed to the
symmetry point where required. In the presence of a tunnel barrier, the Haar measure
is deformed according to Eq. (3.34). In the three Wigner-Dyson classes this takes the
form of a Poisson-kernel

P (S) ∝ |det (1− S†S)|−βN−2+β , (3.44)

where the non-ideal contacts are encoded in the average scattering matrix S = (1 −
KKT )/(1+KKT ). In the additional symmetry classes with chiral or charge-conjugation
symmetry, the analogue of the Poisson kernel can be constructed based on Eq. (3.31)
(Béri, 2009; Marciani et al., 2016), which we briefly illustrate in Section 4.3.

By carrying out the continuum limit for large M , one furthermore finds that the
internal Hamiltonian H in the Mahaux-Weidenmüller formula (3.39) complies with
the corresponding Gaussian ensemble (see again Brouwer 1995). In the three Wigner-
Dyson ensembles, the Cayley transform (3.36) implies at E = 0

F †dF = −iΣdHΣ†, Σ =
1

1 + iHT0/2~
, (3.45)

which allows to calculate the Jacobian for the transformation from F to H. This leads
to a Cauchy distribution

P (H) ∝ det (1 +H2T 2
0 /4~2)−(βM+2−β)/2, (3.46)

which for large M shares all leading p-point correlations functions with the corre-
sponding Gaussian ensemble.
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These considerations provide a solid link between the random-matrix models for
closed and open systems with ergodic internal dynamics. For ideal leads, the stationary
scattering at fixed energy is described by a unitary scattering matrix from a circular
ensemble, while the related Poisson kernel applies when the contacts are non-ideal.
Based on the appropriate Gaussian ensemble for H, the effective scattering model can
also be employed to study the energy-dependence, including the crossover between
symmetry classes as the energy is steered away from a spectral symmetry point. Guided
by the list of questions posed at the beginning of this chapter, we can now set out to
describe scattering and decay from a random-matrix perspective.



4

Decay, Dynamics and Transport

We now turn to the random-matrix description of the physical phenomena outlined in
Section 3.3.

4.1 Scattering poles

According to the Mahaux-Weidenmüller formula (3.41), the complex energies of the
quasibound states (poles of the scattering matrix) are obtained from the eigenvalue
problem

Em|φm〉 = Heff |φm〉, (4.1)

where the M × M dimensional effective non-hermitian Hamiltonian is of the form
Heff = H − iπWW † (Fyodorov and Sommers, 1997; Fyodorov and Sommers, 2003;
Fyodorov and Savin, 2011). This consists of a hermitian part H which represents
the dynamics in the closed system, and an anti-hermitian part involving a positive
semidefinite matrix WW † of rank N . The eigenvalues are therefore confined to the
lower half of the complex plane, where ImEm = −~γm/2 encodes the positive decay
rates γm. Analogously, the poles of the stroboscopic scattering matrix can be read off
Eq. (3.32), according to which they are obtained from the eigenvalue problem

zm|φm〉 = F (Q+ PT r′BP )|φm〉, (4.2)

with zm = exp(−iεm) confined by |zm| ≤ 1. The two problems are then related by
identifying εm = EmT0/~ with T0 = 2π~/M∆; see our discussion in Section 3.4.2.

In a random-matrix description with large matrix dimension M , one typically finds
that the eigenvalues populate a well-defined region, with universal statistics in the bulk
(Fyodorov and Khoruzhenko, 1999; Forrester, 2010; Khoruzhenko and Sommers, 2011).
In particular, well inside the eigenvalue support the level repulsion is typically cap-
tured by a factor

∏
n<m |En−Em|2, as already encountered for the Ginibre ensembles,

which then yields cubic level repulsion. For many physical applications, however, we
are mainly interested in the properties of the longest-living modes in a given energy
range, which approach the real axis closest from below, and are automatically situ-
ated at the boundary of the spectral support. These modes determine the noticeable
resonance patterns that one observes, e.g., in the scattering and decay of nuclei (Wei-
denmüller and Mitchell, 2009) or in the emission properties of optical microresonators
(Cao and Wiersig, 2015). To determine their properties we need to work directly with
the effective scattering models.

Particularly compact expression for the distribution of decay rates can be obtained
for the stroboscopic model (3.28) with ideal leads (Zyczkowski and Sommers, 2000).
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The quasi-bound states are then obtained from the eigenvalue problem (3.20) for the
truncated time-evolution operator FQ. We assume that F ∈ U(M) is a random unitary
matrix of dimension M ×M , distributed according to the Haar measure µ(F ), which
places us into the circular unitary ensemble (CUE) for systems without any further
symmetries. Averaging over this ensemble, it is then possible to determine the density
of eigenvalues zm in the complex plane. In a first step, one finds the joint distribution of
the nontrivial eigenvalues zm 6= 0, to which we assign the indices m = 1, 2, . . . ,M−N .
This joint distribution is given by

P ({zm}) ∝
M−N∏
i<j

|zi − zj |2
M−N∏
k=1

(1− |zk|2)N−1, (4.3)

where the first term signifies the expected level repulsion. The density of the eigen-
values in the complex plane follows by integrating out all but one eigenvalue, which
gives

ρ(z) ∝ (1− |z|2)N−1
M−N∑
l=1

(N + l − 1)!

(l − 1)!
|z|2l−2 for |z| < 1. (4.4)

E
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Fig. 4.1 (a) In a closed system, energy levels are constrained to be real, and random-matrix

theory focusses on the spectral fluctuations, e.g. of the level spacings s. These occur against

the non-universal backdrop of the mean density of states ρ(E), here illustrated as the Wigner

semicircle law (2.3). (b) Fundamental symmetries can introduce spectral symmetries which

induce universal aspects into the mean density of states. At the symmetry point, topologically

protected zero modes can appear. This is here illustrated for the case of the chiral symmetry,

with the mean density of states given by Eq. (2.7). (c) In an open system, the corresponding

energies are complex and attention shifts to the decay rates γ of the states, here given in

accordance to Eq. (4.10). (d) The states become non-orthogonal, which requires to introduce

a bi-orthogonal system as here illustrated for a pair of states.
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This density has several interesting limits. For M,N →∞ at fixed N/M = 1− µ,
the modulus r = |z| obeys

P (r) = (µ−1 − 1)
2r

(1− r2)2
Θ(µ− r2), (4.5)

while for M →∞ at fixed N we have, setting (1− r)/T0 → γ/2,

P (γ) =
γN−1

(N − 1)!

(
−d
dγ

)N
1− e−γTH

γTH
, (4.6)

where TH = 2π~/∆ is the Heisenberg time.
According to Eq. (4.5), in the considered limit all poles are confined to the region

r <
√
µ, thus do not approach the unit circle closely. Such a hard gap is also obtained

from large-N limit of equation (4.6) (thus 1� N �M), in which

P (γ) =
γ0

γ2
if γ > γ0, 0 otherwise. (4.7)

Here γ0 = N∆/2π~ = 1/TD coincides with the classical decay rate out of a system
with dwell time TD = TH/N . The corresponding energy scale ETh = ~/TD = N∆/2π
is known as the Thouless energy.

These results recover the main features earlier obtained by a direct analysis of the
non-hermitian eigenvalue problem (4.1). The most comprehensive insight is obtained
using supersymmetric integration techniques, which predict Eq. (4.6) for ideal cou-
pling and extend it to non-ideal leads (Fyodorov and Sommers, 1996; Fyodorov and
Sommers, 1997; Fyodorov and Sommers, 2003). The result is

P (γ) =
~π
∆
F1

(
~π
∆
γ

)
F2

(
~π
∆
γ

)
,

F1(y) =
1

2π

∫ ∞
−∞

dx e−ixy
N∏
n=1

1

xn − ix
, F2(y) =

1

2

∫ 1

−1

dx e−xy
N∏
n=1

(xn + x),(4.8)

where xn = −1 + 2/Γn encodes the transparency of the contact. For a barrier with
uniform transparency Γ (hence dimensionless conductance gc = ΓN), the distribution
function can be written compactly as

P (γ) =
∆

2π~γ2(N − 1)!

∫ Nγ/γ0

N(1−Γ)γ/γ0

dxxNe−x, (4.9)

where now γ0 = ΓN∆/2π~. The large-N limit (4.7) is then replaced by

P (γ) =
γ0

Γγ2
if γ0 < γ < γ0/(1− Γ), (4.10)

so that the decay rates are reduced according to the increased classical dwell time
TD = TH/(ΓN).
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The random-matrix results for the unitary symmetry class can be extended to the
other symmetry classes. As with the Ginibre ensembles, many of the common charac-
teristics remain unchanged, with the main modifications arising from spectral symme-
tries. In particular, in systems with time-reversal symmetry (orthogonal and symplectic
symmetry class) no further spectral symmetries arise (these cases are therefore quite
distinct from the real and symplectic Ginibre ensemble, which lends further justifi-
cation to their careful construction). The main modifications arise from the altered
level repulsion in the closed limit, which is felt by the longest-living states (Sommers
et al., 1999; Fyodorov and Savin, 2011). At large matrix dimensions N and M , these
modifications do not matter and a hard gap of order γ0 again emerges for the de-
cay rates (Haake et al., 1992; Lehmann et al., 1995; Janik et al., 1997). This induces
the emergence of classical exponential decay in the time domain (Savin and Sokolov,
1997).

In the classes with chiral or charge-conjugation symmetries, all poles come in pairs
El, −E∗l which are symmetrically arranged with respect to the imaginary axis ReE =
0. The exception are unpaired modes pinned to the imaginary axis, ReEl = 0, that
arise from the zero modes in the closed setting, and add a topological feature to the
complex spectrum (Pikulin and Nazarov, 2012; Pikulin and Nazarov, 2013). These
symmetry-respecting poles can only depart from the imaginary axis in pairs, involving
an exceptional point where two poles meet as described in Section 2.5. Thus, for an odd
number of zero modes at least one such pole is always confined to the imaginary axis.
For a superconducting system these poles describe Majorana zero modes that seep out
of the system (Pikulin and Nazarov, 2012; Pikulin and Nazarov, 2013; San-Jose et al.,
2016), while in a photonic setting they can be employed for selective amplification
(Schomerus and Halpern, 2013; Schomerus, 2013b; Poli et al., 2015). Within random-
matrix theory, we describe the consequences for the density of states in Section 4.3.

In the construction of the effective scattering models we noted that channels can
also be closed by increasing the coupling beyond a certain threshold (σn = −1 in
Eq. (3.34) or Eq. (3.40)). Physically this should again result in a reduced decay rate γ0

of the longest-living modes. The spectral decomposition of the effective Hamiltonian,
on the other hand, implies the sum rule

Im tr (H − iπWW †) = −πtrWW † =
∑
m

ImEm, (4.11)

so that the sum of all decay rates must grow. These two expectations can be rec-
onciled in a careful analysis which shows that N ′ strongly coupled channels result
in a corresponding number of poles with very short life time (Haake et al., 1992).
These poles are then well-separated from the poles describing the long-living states,
which retain a typical decay rate γ0 = ΓN∆/2π~. This nontrivial reorganisation of the
complex spectrum is known as resonance trapping (Rotter, 2009). In the symmetry
classes with charge-conjugation symmetry, it can affect the Majorana pole pinned to
the imaginary axis, which justifies to identify the case of ideal coupling as a topological
phase transition (Akhmerov et al., 2011; Marciani et al., 2016).

The appearance of the classical decay rate in these considerations indicates that
random-matrix theory is only applicable if the system-specific details become indis-



Mode non-orthogonality 35

cernible before the classical dwell time TD = TH/(ΓN). For a contact with dimension-
less conductance gc = ΓN � 1, this condition is more stringent than the requirement
in the closed system, where TD is replaced by TH . A common occurrence where this
condition is mildly violated are systems with ballistic decay routes, which result in
additional short-living states that often form interweaving bands deep in the com-
plex plane (Weich et al., 2014). In a classically chaotic systems, these routes apply to
trajectories that escape before the Ehrenfest time TEhr ≈ λ−1 lnN , where λ is the Lya-
punov exponent (Berman and Zaslavsky, 1978; Aleiner and Larkin, 1996; Schomerus
and Jacquod, 2005). In the limit of large N and M , the fraction of long-living modes
is then reduced by a factor exp(−TEhr/TD) = N−1/(λTD) (Schomerus and Tworzyd lo,
2004), a power-law which agrees with a picture where these states are confined to
the classical repeller (Lu et al., 2003; Keating et al., 2006). This modification due to
ballistic chaotic decay is known as the fractal Weyl law (Nonnenmacher and Zworski,
2005). In practice, random-matrix theory still provides a good description of the re-
maining long-living modes (Schomerus et al., 2009). Furthermore, partial reflections at
the contacts and disorder are very effective mechanisms to remove the ballistic decay
routes.

4.2 Mode non-orthogonality

Since the effective Hamiltonian Heff = H − iπWW † is non-hermitian, the quasibound
states |φm〉 from the eigenvalue problem (4.1) do not form an orthonormal basis. In a
given basis, we thus have a spectral decompositions Heff = V DV −1, D = diag (Em)
where the matrix V is not unitary. The extent of mode non-orthogonality is then
quantified by the condition numbers Omn introduced in Eq. (2.20).

In order to get insight into the significance of these objects we consider the divergent
part

trS†S ≈ tr2πW †(E−H−iπWW †)−12πW †W (E−H+iπWW †)−1W ≡ σ(E) (4.12)

of the scattering strength for a complex energy close to a pole, E → En (Schomerus
et al., 2000). Using the spectral decomposition for the effective Hamiltonian we find

σ(E) =
∑
nm

−(En − E∗m)2

(E − En)(E − E∗m)
Omn, (4.13)

where we used 2πWW † = iHeff − iH†eff = iV DV −1 − iV −1†D∗V †. Very close to

the pole, σ(E) ≈ (~γn)2

|E−En|2Kn describes a Breit-Wigner resonance with peak height

proportional to Kn = Onn. Thus, the factors Kn are directly related to the scattering
strengths of the quasibound states.

Energies in the complex plane are effectively probed in amplifying photonic sys-
tems, which can be described in a scattering approach that is amended to account
for radiation created within the medium (Beenakker, 1998; Schomerus et al., 2000;
Schomerus, 2009). Under ideal conditions, an active medium with amplification rate
γa can generate spontaneously amplified radiation with frequency-resolved intensity

I(ω) ≈ (2π)−1 tr (S†S − 1)|E=~ω−i~γa/2. (4.14)
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Close to the laser threshold, a single pole Em = ~ωm lies close to the real axis,
producing a well-isolated Lorentzian emission line

I(ω) ≈ Km

2π

γ2
n

(ω − ωm)2 + (γm − γa)2/4
. (4.15)

In this context, Km is know as the Petermann factor and signifies excess noise (Peter-
mann, 1979).

For lasers we can ignore magneto-optical effects, and thus are concerned with the
orthogonal symmetry class where the effective Hamiltonian inherits the symmetry
Heff = HT

eff . In this case we can normalise the right and left eigenstates so that
V −1 = V T and find

Km = |(V †V )mm|2. (4.16)

As described in Section 2.5 for the Ginibre ensemble, the Petermann factor of modes
in the bulk of the complex spectrum should be large. For the effective Hamiltonian
Heff with N,M � 1, this can be verified in the free-probability approach (Janik et al.,
1997), according to which

Km |γm=γ ≈ N
(
γ

γ0
− 1

)(
1− (1− Γ)γ

γ0

)
(4.17)

for decay rates well within the range γ0 < γ < γ0/(1−Γ). However, this result breaks
down close to the edges of the spectrum, where it violates the constraint Km ≥ 1, and
hence does not apply to the long-living states that become the lasing modes.

These restrictions can be circumvented by the same supersymmetric techniques
that address the poles (Schomerus et al., 2000). Equation (4.8) is then supplemented
by

Km |γm=γ = 1 +
2π~
∆

S(π~γ/∆)

P (γ)
, S(y) = −

∫ y

0

dy′ F1(y′)
∂

∂y′
F2(y′), (4.18)

which for identical transparencies Γn = Γ can be brought into a compact form using

S(πγ/~∆) =
∆2

(2π~γ)2(N − 1)!

∫ Nγ/γ0

N(1−Γ)γ/γ0

dxxN−1e−x
(
N(1− Γ)γ

γ0
− x
)(

x− Nγ

γ0

)
.

(4.19)
For large N , where we can apply a saddle-point approximation, it follows that the
Petermann factor Km |γm=γ0 ∼ Γ(

√
2N/π + 4π/3) of the long-living modes can still

be parametrically large in N . When a large number L of such modes compete for
the gain, the large-deviation tail of the decay-rate distribution (4.6) is probed, which
reduces Km by a factor ∼ 1/

√
lnL. For ΓN � 1, on the other hand, the system is

almost closed, and Km ∼ 1 as mode-orthogonality is restored. Similarly, for N = 1
the typical Petermann factor Km ∼ 1 + Γ~γm/∆ is also close to unity.

In all these cases, the Petermann factors of individual states can be much larger
than the typical values quoted above. This is the case because Km diverges if two
complex eigenvalues become degenerate, thus, as one approaches an exceptional point.



Delay times 37

E
E+dE

dφ ~ τ dE = dE / λ 

ρ(λ)

λ

(a)

(b)
dφ

Fig. 4.2 (a) The Wigner-Smith delay times τ extract dynamical information by considering

the energy sensitivity of the scattering phase in stationary scattering states. (b) Distribution

of rates λ = τ−1 from random scattering, as predicted by the Marchenko-Pastur law (2.14)

for the Wishart-Laguerre ensemble.

The cubic level repulsion makes such approaches rare, but long power tails still emerge
in the probability distribution of Km.

We mentioned that the Petermann factor signifies an enhanced sensitivity to noise
generated by spontaneous emission. Similar considerations apply when external pa-
rameters are changed. A perturbative treatment then reveals an enhanced response
compared to systems with orthogonal modes, which is again quantified by the mode
non-orthogonal matrix (Fyodorov and Savin, 2012). Close to an exceptional point,
where the eigenvectors become degenerate and Km diverges, the significantly enhanced
response can be exploited for sensors (Wiersig, 2014). This enhanced sensitivity also
applies to the topological spectral transitions in non-hermitian systems with a chiral
or charge-conjugation symmetry (where they occur on the imaginary axis), or non-
hermitian systems with a parity-time symmetry (where they occur on the real axis).
The radiation emitted from a parity-time symmetric photonic system indeed diverges
when one closes the system (Schomerus, 2010). For an open system close to an excep-
tional point, on the other hand, the formal divergence of the Petermann factor signifies
a change of the line shape from the Lorentzian (4.14) to a squared Lorentzian (Yoo
et al., 2011).

4.3 Delay times

We now turn to the Wigner-Smith time-delay matrix Q = −i~S†dS/dE, which ac-
cording to the Mahaux-Weidenmüller formula (3.41) can be written in the form (3.42),

Q = 2π~W †(E −H − iπWW †)−1(E −H + iπWW †)−1W. (4.20)
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This matrix is manifestly hermitian and positive-definite, as required by causality.
According to the Birman-Krein formula (3.10), the density of states is then given by

ρ(E) = trW †(E −H − iπWW †)−1(E −H + iπWW †)−1W, (4.21)

which is of a similar form as the scattering strength σ(E) in Eq. (4.12). Using the
spectral decomposition for the effective Hamiltonian we find

ρ(E) =
1

2π

∑
nm

i
(En − E∗m)

(E − En)(E − E∗m)
Omn

= − 1

π
Im
∑
n

1

(E − En)
, (4.22)

where we used
∑
nOnm =

∑
mOnm = 1. Close to an isolated resonance E ≈ En this

approaches ρ(E) ≈ 1
π

ImEn

|E−En|2 , which is a Lorentzian normalised to 1.

More direct insight into this problem is obtained from the proper delay times τn,
defined as the eigenvalues ofQ, which are all real and nonnegative. We first consider the
case of ballistic coupling. In the three standard classes (Brouwer et al., 1997), it is useful
to consider the matrix QS = S1/2QS−1/2, which has the same eigenvalues but whose
statistical distribution is the independent of S itself, so that P (S,QS) = P (S)P (QS).
Perturbation theory around the point where S = −1 then shows that the positive-
definite rate matrix Q−1

S follows the distribution

P (Q−1
S ) ∝ (detQ−1

S )Nβ/2 exp[−(βTH/2)trQ−1
S ], (4.23)

with the Heisenberg time TH = 2π~/∆. This resembles a Wishart-Laguerre ensemble
(2.12), but is directly expressed for QS and supplemented with a determinantal factor.
The joint distribution of rates λn = 1/τn is given by

P ({λn}) ∝
∏
n<m

|λn − λm|β
∏
k

λ
Nβ/2
k exp(−βλkTH/2), (4.24)

which indeed looks formally identical to the eigenvalue distribution (2.13) of a Wishart
matrix, albeit with half-integer dimensions if β = 4. This still constitutes a Wishart-
Laguerre ensemble.

The same independence of S and QS also occurs in the four classes with charge-
conjugation symmetry at the symmetry point E = 0 (Marciani et al., 2014), where

P ({λn}) ∝
∏
n<m

|λn − λm|βT

∏
k

λβ
′
T +NβT /2 exp(−β′′TλkTH/2) (4.25)

with βT = 1, 2, 4, 2, β′T = −1,−1, 2, 1, β′′T = 1, 2, 2, 1 in the symmetry classes D, DIII,
C, CI. In the classes C and CI all delay times occur in degenerate pairs, which in
Eq. (4.25) are only accounted for once.

In contrast, the chiral symmetry condition S(E) = XS†(−E)S† implies that the
hermitian unitary matrix SX0 = XS(0) commutes with Q(0), so that both matrices
share a common structure (Schomerus et al., 2015). Recall that SX0 has eigenvalues
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±1, whose frequency is captured by the topological quantum number ν0 = 1
2 trSX0 =

[ν + (NA −NB)/2]|ν0|≤N/2 (see Section 3.5). Correspondingly, the delay times can be
grouped into two sets, made of N+ = N/2 + ν0 delay times τ+

n = 1/λ+
n associated

with the subspace where the eigenvalues of SX0 are 1, and N− = N/2−ν0 delay times
τ−n = 1/λ−n associated with the subspace where the eigenvalues of SX0 are −1. These
two sectors can be made manifest by considering the reordered matrix

Q̃(E) = 2π~(E −H + iπWW †)−1WW †(E −H − iπWW †)−1, (4.26)

which has the same non-vanishing eigenvalues as Q. Inserting here the chiral Hamilto-
nian (2.4) and splitting the coupling matrix analogously into blocksW = diag (WA,WB)
describing NA and NB open channels, respectively, this reordered matrix becomes
block diagonal,

Q̃(0) = 2π~diag (Λ−1
− ,Λ−1

+ ) (4.27)

where

Λ− = π2WAW
†
A +A(WBW

†
B + 0+)−1A†, (4.28)

Λ+ = π2WBW
†
B +A†(WAW

†
A + 0+)−1A. (4.29)

In the subspaces where these two matrices are finite, we can write Λ± = X†±X± with an
N×N± dimensional matrix X. For large M , the matrix X tends to a random Gaussian
matrix, so that the two sets of decay rates are both obtained from a Wishart-Laguerre
ensemble,

P±({λ±n }) =
∏
n<m

|λ±n − λ±m|β
∏
k

λ
β/2−1+(β/4)|N∓2ν±NB∓NA|
k e−βλkTH/4. (4.30)

The two sets are independent of each other, whereby the full joint distribution fac-
torises according to P ({λ+

n , λ
−
n }) = P+({λ+

n })P−({λ−n }).
We note that the joint distribution (4.25) does not involve the topological quantum

number ν defined in classes D and DIII. In the chiral ensembles, on the other hand, the
topological zero modes directly affect the joint distribution (4.30). This dependence
also transfers to the mean density of states, which is given by

ρ =
1

∆

N/2(N/2 + 1− 2/β) + ν2
0

(N/2 + 1− 2/β)2 − ν2
0

for |ν0| < N/2, (4.31)

ρ =
1

∆

N/2

|ν − ν0 + (NA −NB)/2|+ 1− 2/β
for |ν0| = N/2, (4.32)

with the exceptions |ν−NB | ≤ 1 or |ν+NA| ≤ 1 (for β = 1) and ν = NB or ν = −NA
(for β = 2) where the ensemble-average diverges.

These considerations can be extended to non-ideal leads (Marciani et al., 2016),
where one relates the scattering matrix S via Eq. (3.31) to the scattering matrix S0 for
ballistic coupling. The time-delay matrix then changes from QS0 to QS = ΣQS0Σ†,
where Σ = (1 − S†rB)−1tB . The transformation of the probability measure follows
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Fig. 4.3 (a) Phase-coherent electronic transport is characterised by partition noise, gener-

ated by the transmission of charge carriers with probability T . This noise can be detected in

the current fluctuations I(t). (b) Mean density of transmission probabilities T from Eq. (4.37),

in accordance to the Jacobi ensemble of random-matrix theory.

from the analogous relation S†dS = Σ(S†0dS0)Σ†. For the standard symmetry classes,
the factorised distribution P (S0, Q

−1
S0 ) = P (S0)P (Q−1

S0 ) transforms into

P (S,Q−1
S ) = (det ΣΣ†)Nβ/2(detQ−1

S )Nβ/2 exp[−(βTH/2) tr Σ†Q−1
S Σ], (4.33)

while in the classes with charge-conjugation symmetry this takes the form

P (S,Q−1
S ) = (det ΣΣ†)NβT /2(detQ−1

S )NβT /2+β′
T exp[−(β′′TTH/2) tr Σ†Q−1

S Σ]. (4.34)

The density of states ρ = 2π~−1 tr ΣQS0Σ† can then be analysed directly using the
independence of S (appearing in Σ) and QS0. By definition, trQS0 = 2π~ρ0 is given
by the density of states for ideal coupling, while the scattering matrix itself follows
the Poisson kernel distribution P (S) ∝ |det (1− r†BS)|−βTN−2+βT−2β′

T (recovering the
result of Béri 2009). In class D, a barrier with mode-independent transparency Γ then
yields the mean density of states

ρ =
N

(N − 2)∆

(
1− 2

NΓ
[Γ− 1 + (−1)ν(1− Γ)N/2]

)
, (4.35)

which now depends on ν. More generally, in classes D and DIII a topological zero
mode remains visible as long as none of the couplings are fully ballistic.

4.4 Transport

Some of the best tested applications of random scattering matrices arise when one
considers the low-temperature transport of electrons through a mesoscopic device in
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response to a small bias voltage Vb. These applications have been covered in two
comprehensive reviews considering the standard ensembles (Beenakker, 1997) and the
additional ensembles with chiral or charge-conjugation symmetry (Beenakker, 2015),
supplemented by a detailed review on shot noise (Blanter and Büttiker, 2000), and we
refer to these sources throughout the section. In keeping with the rest of these notes
we remain focussed on situations where the details of the geometry do not matter
(this ignores the effects of Anderson localization, which we briefly pick up in the next
Chapter 5). For the scattering at a fixed energy we are then directly led to the circular
ensembles. This was first utilised by Blümel and Smilansky (1990), who found that
the statistics of phase shifts from chaotic scattering agree with Eq. (2.11), while the
applications to transport were pioneered by Baranger and Mello (1994) and Jalabert
et al. (1994).

In the scattering approach to transport, the device is modelled as a scattering
region attached to a left and a right lead, so that the scattering matrix is of the form
(3.5). The quantities of interest are the transmission eigenvalues Tn ∈ [0, 1] of t†t, with
the dimensionless conductance given by g =

∑
n Tn. We shall assume that the number

of channels NR ≥ NL so as to avoid NL−NR vanishing eigenvalues (otherwise we can
simply study the eigenvalues of tt†). In the three standard circular ensembles (COE,
CUE and CSE), the joint distribution of the transmission eigenvalues is then given by

P ({Tn}) ∝
∑
n<m

|Tn − Tm|β
∏
k

T
−1+β(1+|NL−NR|)/2
k , (4.36)

which can be interpreted as a Jacobi ensemble for variables µn = 1− 2Tn.
For large number of channels NL, NR � 1, the mean density of eigenvalues con-

verges to

ρ(T ) =
NL +NR

2πT

(
T − Tc
1− T

)1/2

(4.37)

for 1 > T > Tc = (NL −NR)2/(NL +NR)2; for NL = NR this takes the form

ρ(T ) =
NL
π

1√
T (1− T )

. (4.38)

In leading order of NL, NR � 1, Eq. (4.37) gives the ensemble-averaged dimen-
sionless conductance g = NLNR/(NL +NR), so that g−1 = N−1

L +N−1
R resembles the

series addition of two resistances. The exact result for finite NL and NR is

g =
NLNR

NL +NR − 1 + 2/β
, (4.39)

so that the next-to-leading reads

g − NLNR
NL +NR

≈ (1− 2/β)
NLNR

(NL +NR)2
for NL, NR � 1. (4.40)

This ensemble-dependent correction, known as weak localization (for β = 1) and as

weak anti-localization (for β = 4), can be related to the factors T
−1+β/2(1+|NL−NR|)
k
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in the joint distribution (4.36), which induce a bias of the transmission eigenvalues
to small or large values. The joint distribution also determines the variance of the
conductance within the ensemble,

var g ≈ (NLNR)2

β(NL +NR)4
for NL, NR � 1. (4.41)

Due to the repulsion ∼ |Tn−Tm|β of the eigenvalues this variance is small, but depends
on the symmetry class already in leading non-vanishing order.

In a more general picture, the transmission eigenvalues determine the full counting
statistics of the electrons that pass through the system. Let Q(s) be the accumulated
charge over a time interval s, via the arrival of electrons with elementary charge e. In
each eigenchannel, an incoming electron is transmitted with probability Tn, so that
the counting statistics are given by a Bernoulli process. Noting that these transmission
events occur with an attempt rate eVb/h (with h = 2π~), this process is described by
the cumulant-generating function (Levitov and Lesovik, 1993)

ln〈exp(pQ(s)/e)〉 =

∞∑
k=1

〈〈Q(s)〉〉 p
k

ekk!
= s(eVb/h)

∑
n

ln[1 + Tn(ep − 1)]. (4.42)

The average current follows from I = lims→∞ s−1e〈N(s)〉 = (e2Vb/h)g, while the
shot-noise power is P = lims→∞ 2s−1e2〈〈N(s)2〉〉 = (2e3Vb/h)

∑
n Tn(1 − Tn). If all

transmission eigenvalues are small, the shot-noise power is P = 2eI ≡ P0, while in
general P = fP0 with the so-called Fano factor f =

∑
n Tn(1− Tn)/

∑
n Tn ∈ [0, 1].

For NL = NR � 1 we can calculate the cumulant-generating function exactly
(Blanter et al., 2001),

ln〈exp(pQ(s)/e)〉 = s
eV

h

∫
dTρ(T ) ln[1 + T (ep − 1)] = 4sg

eV

h
ln[

1 + ep/2

2
]. (4.43)

The Fano factor is then given by f = 1/4. For NL, NR � 1 not necessarily equal, one
finds

f ≈ NLNR
(NL +NR)2

− (1− 2/β)
(NL −NR)2

(NL +NR)3
, (4.44)

where the weak-localization correction is seen to vanish if NL = NR.
As for the decay problem, these transport properties are modified by ballistic trans-

port routes. A wavepacket injected into the opening can leave without any noticeable
diffraction until the transport Ehrenfest time T ′Ehr = λ−1 lnN2/M (Silvestrov et al.,
2003), which results in transmission eigenvalues Tn close to 0 and 1. In particular, these
processes can yield a noticeable suppression of shot noise (Tworzyd lo et al., 2003).

In the chiral symmetry classes, the statistics of the transmission eigenvalues is
most conveniently expressed via Tn =

√
1− r2

n, where rn are the eigenvalues of the
hermitian matrix Rz = τzr (Macedo-Junior and Macêdo, 2002). We only consider the
case NL = NR with balanced coupling to both chiral subspaces (NA = NB), so that
ν0 = trRz determines the number of zero modes in the closed system. In this case
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one encounters |ν0| closed transmission channels with r2
n = 1, while the remaining

eigenvalues obey the joined distribution

P ({rn}) ∝
∏
n<m

|rn − rm|β
∏
k

(1− r2
k)−1+(|ν0|+1)β/2. (4.45)

In the symmetry classes with a charge-conjugation symmetry (Dahlhaus et al., 2010),

P ({Tn}) ∝
∏
n<m

|Tn − Tm|βT

∏
k

T
−1+βT (1+|NL−NR|)/2
k (1− Tk)β

′
T /2, (4.46)

where the parameters βT = 1, 2, 4, 2, β′T = −1,−1, 2, 1 (classes D, DIII, C, CI) are the
same as those encountered for the delay times. In the large-N limit, the eigenvalue
density becomes again ensemble-independent and approaches (4.37).

Note that the topological quantum number ν0 only appears in the joint distribution
(4.45) for chiral symmetry, but not in the joint distribution (4.46), so that any zero
modes due to charge-conjugation symmetry cannot be detected in the transport with
ideal leads—the same situation that we encountered for the density of states. This pro-
vides an incentive to consider the role of superconductivity and tunnel barriers in such
systems, which we here will discuss for the classes D and BDI (Pikulin et al., 2012).
Instead of applying the Poisson kernel, we consider the experimentally relevant situa-
tion (Mourik et al., 2012) where the tunnel barrier is placed into a normal-conducting
region, which is then interfaced with a superconductor.

In the context of such superconducting systems, the dimensionless conductance
g relates to the particle (or heat) transport, while the charge transport is modified
by the fact that holes carry an opposite charge. If a normal metallic region from
the orthogonal symmetry class is attached to a conventional superconductor, the di-
mensionless conductance for charge transport is given by Eq. (3.8), which applies to
systems with no magnetic fields and no spin-orbit scattering. The symmetry classes D
arises in the presence of spin-orbit coupling and broken time-reversal symmetry, where
only the charge-conjugation symmetry with C2 = 1 remains. The class BDI emerges
from an additional chiral symmetry X that commutes with C, which then also implies
a time-reversal symmetry T = XC with T 2 = 1. In these classes, the dimensionless
conductance at the Fermi level can be written as

gNS = tr Γ(1− U∗
√

1− ΓU
√

1− Γ)−1Γ(1− U†
√

1− ΓUT
√

1− Γ)−1, (4.47)

where Γ = diag (Tn) while the N ×N dimensional unitary matrix U accounts for the
mode-mixing from the spin-orbit scattering. For a large tunnel barrier in the normal
region, we can assume that all transmission eigenvalues are identical, Tn ≡ T , so that

gNS = T 2 tr
1

1− (1− T )X

1

1− (1− T )X†
=
∑
n

T 2

|1− (1− T )xn|2
(4.48)

is determined by the eigenvalues xn of X = U∗U .
The structure of X implies that all eigenvalues occur in complex conjugated pairs

xn, xn̄ = x∗n, with the exception of possible eigenvalues pinned to 1. In class D, where
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U is only constrained to be unitary, such an eigenvalue occurs if N is odd; we thus
have a topological index ν = N mod 2. The paired eigenvalues can be specified by the
quantities µn = (xn +xn̄)/2 = Rexn. Sampling U from the circular unitary ensemble,
these quantities then follow the distribution

P ({µn}) ∝
∏
n<m

(µn − µm)2
∏
k

1 + µk√
1− µ2

k

if ν = 0, (4.49)

P ({µn}) ∝
∏
n<m

(µn − µm)2
∏
k

√
1− µ2

k if ν = 1. (4.50)

In class BDI, U is unitary and hermitian, and the number of pinned eigenvalues |ν|
follows from ν = trU . Setting U = V †diag (1, 1, 1, . . . ,−1,−1,−1, . . .)V with V again
following the circular unitary ensemble, the paired eigenvalues are then described by
the distribution

P ({µn}) ∝
∏
n<m

|µn − µm|
∏
k

(1− µk)(|ν|−1)/2. (4.51)

The probability distributions (4.49) and (4.51) are both of the form of a Jacobi
ensemble (2.15). Including the next-to-leading order in the large-N limit, the density

ρ(µ) =
N

π

1√
1− µ2

+
1

2
δ(µ− 1)− 1

2
δ(µ+ 1) (4.52)

becomes independent of the symmetry class and the topological indices. In leading
orders, the ensemble-averaged dimensionless conductance is then given by

gNS =
NT

2− T
+

2(1− T )

(2− T )2
, (4.53)

again irrespective of the symmetry class.
Note that the joint distribution Eq. (4.45) of reflection coefficients in the classes

with chiral symmetry can also be interpreted as a Jacobi distribution, while the joint
distributions (4.36) and (4.46) can be brought into this form by a suitable shift
Tn = (1 − µn)/2 of the transmission coefficient. We take the appearance of this fi-
nal class of classical random-matrix ensembles as our cue to wrap up the discussion of
fully ergodic elastic scattering. Much more is known, both in terms of technical details
as well as in terms of practical applications. This includes the full physical implications
of superconductivity, such as Andreev reflection and Josephson currents (Beenakker,
1997; Beenakker, 2015), as well as the interpretation of zero modes in terms of Majo-
rana fermions (Alicea, 2012; Leijnse and Flensberg, 2012; Beenakker, 2013). Another
important aspect is the role of physical dimensions, which enters the full classifica-
tion of topologically protected states (Kitaev, 2009; Teo and Kane, 2010; Ryu et al.,
2010; Hasan and Kane, 2010; Qi and Zhang, 2011). In the following chapter 5, we
turn to one specific aspect of low-dimensional physics, the phenomenon of Anderson
localization which prevents the full exploration of phase space. We also take this as an
opportunity for a short detour into interacting systems, for which the related question
of thermalization can be addressed by the density matrix.



5

Localization, thermalization and
entanglement

To round off these notes we discuss a setting for random-matrix applications which
has significance also for interacting systems. This brings us back to the origins of
the field, which concerned the energy levels of heavy nuclei (Wigner, 1956; Porter,
1965; Weidenmüller and Mitchell, 2009). There, interactions are sufficient to effectively
couple a large number of many-body states, thus resulting in a random Hamiltonian.

Quite generally, statistical methods find broad applications to interacting systems,
where the dynamics becomes particularly interesting when one considers low dimen-
sions (Cardy, 1996; Sachdev, 1999). An interesting question is how such systems ther-
malize (Anderson, 1958; Deutsch, 1991; Srednicki, 1994; Gemmer et al., 2010). Even
in absence of interactions, the spread of energy and the propagation of particles can
be inhibited by the same wave-interference effects that we so far have taken as the
very justification for the application of random-matrix theory. These localization ef-
fects, first recognised by Anderson (1958), arise from the sparsity of the underlying
matrices, be it due to a reduced coordination number on a lattice, resulting in local-
ization in real space (Kramer and MacKinnon, 1993; Evers and Mirlin, 2008), or due
to the presence of interactions that only involve some few-body operators, resulting in
localization in Fock space (Basko et al., 2006; Altman and Vosk, 2015; Nandkishore
and Huse, 2015). The main question is when this sparsity can be felt, and how.

We first discuss this question briefly for non-interacting systems, where it can be
addressed by the impact on the transport properties described in the Section 4.4. We
then turn to the many-body setting, where we focus on aspects of thermalization and
entanglement.

5.1 Anderson localization

In random-matrix theory, systems with fully chaotic wave scattering are traditionally
termed zero-dimensional systems. This is because in practice these systems are often
realised by shrinking the size of two or three dimensional systems, as, e.g., in a planar
quantum dot or a metallic grain. From a different perspective, such systems could be
termed infinite-dimensional, as their main feature is the efficient dynamical coupling
of states in the accessible Hilbert space, which is also observed in lattices or graphs
with a fixed number of vertices and increasing coordination number. In properly scaled
units, we can then assume that all of Hilbert space is instantly explored (ergodic time
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Terg = 0), so that only one relevant dynamical time scale remains—the dwell time TD,
which characterizes how long a particle will reside within the scattering region.

This approach reaches its limit when the internal transport within the system be-
comes inefficient. Consider a system made of L random scattering regions placed in se-
ries, with contacts carrying N � 1 channels (Iida et al., 1990). While the dimensionless
conductance g ∼ N/2 of each individual region may be large, the overall conductance
gL ∼ N/(1 +L) of the composed system shrinks when L is increased. Once g . 1, one
finds that the conductance decays exponentially with L, ln gL ∼ −2L/ξ where ξ ∼ βN
is termed the localization length. The decay arises from a similar exponential decay
of the wave functions in the closed system. This phenomenon is known as Anderson
localization (Anderson, 1958; Kramer and MacKinnon, 1993; Evers and Mirlin, 2008).
Among its many signatures, it results in a significant reduction of the levels repulsion,
as energy levels of wave functions localized far apart can approach each other closely.
We describe the underlying mechanism in the quasi one-dimensional setting sketched
above, which is realised in a long and narrow disordered quantum wire or a disor-
dered wave guide. Anderson localization then occurs at any strength of uncorrelated
disorder.

For the detailed statistical description, one composes the system from slices of
length L0 that efficiently scramble all the modes according to a mean free path l, but
are small enough so that the effect of each slice can be obtained in perturbation theory
(Dorokhov, 1982; Mello et al., 1988; Beenakker, 1997; Nazarov and Blanter, 2009). For
β = 2, one obtains for each step

cn =
l

L0
δTn = −T 2

n + 2Tn(1− Tn)
∑
m6=n

Tm
Tn − Tm

, dn =
l

L0
(δTn)2 = 2T 2

n(1− Tn).

(5.1)
The result can be fed into a Fokker-Planck equation

Nl
∂

∂L
P ({Tn}) =

∑
n

∂

∂Tn

(
−cn +

1

2

∂

∂Tn
dn

)
P ({Tn}) (5.2)

for the joint distribution of transmission eigenvalues, then known (up to a change of
variables) as the Dorokhov-Mello-Pereira-Kumar (DMPK) equation. For this partic-
ular symmetry class, the joint distribution can be found exactly by a mapping to a
Schrödinger equation describing free fermions (Beenakker and Rejaei, 1993). DMPK
equations can also be formulated for the other symmetry classes, where they reveal
delocalizing effects near the spectral symmetry points (Brouwer et al., 2002; Brouwer
et al., 2005). In the many-channel limit N � 1, these equations make equivalent pre-
dictions to non-linear sigma models (Brouwer and Frahm, 1996; Efetov, 1996), both
in the diffusive regime l � L � ξ as well as in the localised regime L � ξ. This
convergence of models indicates a large degree of universality, which we describe next
(Beenakker, 1997).

In the diffusive regime l� L� ξ of a system with N � 1 channels, the density of
transmission eigenvalues becomes independent of the symmetry class and is given by

ρ(T ) =
Nl

2L

1

T
√

1− T
for T− < T < 1, T− ∼ 4 exp(−2L/l). (5.3)
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Including the next-order corrections, the ensemble-averaged dimensionless conduc-
tance is g = Nl/L + 1

3 (1 − 2/β) and the variance is var g = 2/(15β). Furthermore,

T (1− T ) = T/3 so that the shot-noise Fano factor is f = 1/3.
To capture the universal aspects of Anderson localization for L� ξ, it is useful to

recall that the transfer matrix (3.12) of a composed system follows by multiplication

of the transfer matrices of the components, M =
∏L
l=1Ml. These aspects are therefore

linked to products of random matrices (Crisanti et al., 1993; Comtet and Tourigny,
2016). For L→∞, the eigenvalues xn > 1 of M†M display an exponential dependence,
lnxn ∼ 2L/ξn with Lyapunov exponents ξn. The scaled exponents (lnxn)/L exhibit
diminishing fluctuations, which are captured by a log-normal distribution for xn.

These general features directly translate to the transmission eigenvalues Tn =
4/(xn + 2 + 1/xn). The details follow from the DMPK equation, which recovers the
log-normal behaviour of lnTn in the localised regime. When ordered by magnitude, the
transmission eigenvalues fall into a pattern 1 � T1 � T2 � . . . � TN , with lnTn ∼
−2L(1 +βn−β)/ξ and var lnT ∼ 4L/ξ. The dimensionless conductance is dominated
by the largest transmission eigenvalue, and also obeys a log-normal distribution.

These results indicate that the variance var ln g = −2ln g in the localized regime
is universal. This relation can also be obtained in a diagrammatic approach, where
it results from the random-phase approximation (Anderson et al., 1980), and only
breaks down when one approaches the band edges, while small corrections are observed
near spectral symmetry points in the clean system (Schomerus and Titov, 2003). The
strong universality of the log-normal distribution underpins qualitative descriptions
based on renormalization arguments, which extend the considerations to higher di-
mensions (Abrahams et al., 1979). For three dimensions, these arguments predict that
localization sets in at a finite disorder strength, which is well supported by numerical
investigations (Kramer and MacKinnon, 1993; Evers and Mirlin, 2008). However, an
accurate statistical description is still lacking.

5.2 Thermalization and localization in many-body systems

In a low-dimensional many-body system, the localizing properties of disorder can be
overcome by interactions. The paradigm is provided by thermal energy fluctuations
that can liberate a particle from a trapped state. Such processes are also facilitated by
the fact that the many-body level spacing is much smaller than the single-particle level
spacing—in fact, with increasing system size the number of available states proliferates
exponentially, which can be characterised by an entropy. On the other hand, this
proliferation also makes it harder to establish ergodic dynamics (Anderson, 1958; Basko
et al., 2006; Altman and Vosk, 2015; Nandkishore and Huse, 2015). For the description
of complex interacting systems it is therefore desirable to make contact with quantum
statistical mechanics, where the posed questions tie to the concepts of ergodicity,
entropy and entanglement (Peres, 2002; Gemmer et al., 2010).

Within the framework of quantum statistical mechanics, thermal equilibrium with
a heat bath at temperature T is described by the canonical ensemble with density
matrix ρ = Z−1 exp(−H/T ), where Z = tr exp(−H/T ) is the partition function. The
additional exchange of particles leads to the grandcanonical ensemble with density
matrix ρ = Z−1 exp((µN − H)/T ), where µ is the chemical potential and N the
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ρ(λ)

λ

(a)

(b)

Fig. 5.1 (a) Bipartite entanglement concerns the quantum correlations between a subsystem

and its complement. This information is captured in the eigenvalues λ of the reduced density

matrix. (b) Up to a small correction accounting for normalisation, the eigenvalues of a random

reduced density matrix follow the Marchenko-Pastur law (2.14) for the Wishart-Laguerre

ensemble.

fluctuating particle number. In this thermodynamic setting, the associated entropy
S = −tr ρ̂ ln ρ̂ is an extensive quantity, which scales linearly with the volume, S ∝
VS = O(Ld) for a system of size L in d dimensions. This implies that an exponential
number ∼ exp(cVS) of states are populated. Deviations from these predictions occur
when one departs from equilibrium. This includes systems in which thermalization is
inhibited, with the most notable example found in glasses.

Intriguingly, quantum statistical mechanics also covers the case of closed systems
with a fixed energy and particle number, which allows us to focus on the intrin-
sic quantum-mechanical properties. These systems are described by the microcanoni-
cal ensemble, where the density matrix ρ = M−1

∑
|En−E|<δE/2 |ψn〉〈ψn| gives equal

weight to M � 1 eigenstates residing in a classically small energy window δE around a
fixed energy E. The expectation that the microcanonical entropy S = lnM is extensive
indicates again that this involves an exponential number of available states.

The applicability of this description is intimately related to the question of ther-
malization in closed system, which in turn reveals whether the internal dynamics are
ergodic (Deutsch, 1991; Srednicki, 1994). These links become apparent when we ask
whether the microcanonical ensemble provides a good description of individual time-
dependent quantum states. More precisely, we form a generic superposition of the
states within the energy window and ask whether the time-averaged expectation values
of some well-behaved, preselected observables Ân agree with their ensemble averages.
As it turns out, a good agreement occurs when the matrix elements of the observ-
ables in the basis of participating eigenstates are sufficiently random. The ensuing
self-averaging leads to an approximate state-independence of the expectation values—
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a phenomenon known as eigenstate thermalization (Srednicki, 1994; Polkovnikov et al.,
2011; Nandkishore and Huse, 2015). Deviations from these predictions then serve as
an efficient tool to detect inefficient coupling within the system.

In a useful picture, the state of a system becomes mixed because it is entangled
with the environment. Given a pure state |ψ〉 =

∑
sb xsb|s〉 ⊗ |b〉 ∈ HS ⊗HB , with s

labeling basis states of the system and b labeling basis states of the environment, we
define the reduced density matrix of the system as ρ̂S =

∑
bss′ xsbx

∗
s′b|s〉〈s′| (Peres,

2002). For an observable Â = ÂS⊗1 that only depends on the state of the system, the
expectation value follows from Eψ(A) = tr (ρ̂SÂS). The information loss from ignoring
the environment can be quantified by the entanglement entropy

SS = −tr ρ̂S ln ρ̂S = −
∑
k

λk lnλk, (5.4)

where λk are the positive eigenvalues of ρS . As indicated, this entropy measures the
entanglement between the system and the environment; it vanishes when ρS describes
a pure state, which requires that |ψ〉 = |ψS〉 ⊗ |ψB〉 is separable.

To apply these concepts to the microcanonical setting of a closed system, we select
a subsystem with Hilbert space dimension M and consider the remainder of (still
finite) dimension M ′ as the environment, where for convenience we assume M ′ ≥M .
For each normalised eigenstate |ψn〉 =

∑
sb xsb|s〉⊗|b〉, we consider the coefficients xsb

as the elements of an M ×M ′-dimensional matrix x, so that in this basis the reduced
density matrix takes the form ρS = xx†, while ρB = x†x. Both are hermitian, positive
semidefinite matrices normalised to tr ρS = tr ρB = 1. The bipartite entanglement
entropy follows from Eq. (5.4). As we started out with a pure state for the total
system we have SS = SB . Indeed, the non-vanishing eigenvalues of ρS and ρB are
identical, so that we can pair each eigenstate |ψk,S〉 of ρS with an eigenstate |ψk,B〉 of
ρB . This determines the Schmidt decomposition |ψn〉 =

∑
k

√
λk|ψk,S〉⊗|ψk,B〉, which

reconstructs the underlying pure eigenstate.
The bipartite entanglement entropy is a useful characteristics if the interactions in

the system are local, and plays a central role in a broad range of physical situations,
including quantum information (Nielsen and Chuang, 2010) critical phenomena (Cal-
abrese and Cardy, 2009), and quantum gravity (Nishioka et al., 2009). In the ground
state of a many-body system with local interactions, the entanglement entropy is found
to be small, scaling with the surface area SS ∝ AS = O(Ld−1) instead of the volume
VS of the subsystem. This is termed an area law of entanglement. At phase transitions,
the entanglement entropy in the ground state increases, and in 1D is often found to
display a logarithmic dependence SS ∼ (c/3) ln(L), where c can be interpreted as the
central charge in a conformal field theory (Calabrese and Cardy, 2009).

These considerations can be naturally informed by random-matrix theory, now
applied directly to the structure of the eigenstates at a fixed energy. The simplest case
arises when we assume that the system displays eigenstate thermalization. This can be
modelled by a random reduced density matrix ρS = XX†/Z, Z = trXX†, where X
is distributed according to the Gaussian distribution (2.12) (Page, 1993). The density
matrix can then be interpreted as a Wishart matrix with posterior normalization
(Zyczkowski and Sommers, 2001; Majumdar, 2011). The joint probability density of
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the eigenvalues λn follows directly by constraining the Wishart-Laguerre ensemble
(2.13) to a normalised trace,

P ({λn}) ∝ δ

(
1−

∑
k

λk

) ∏
n<m

|λn − λm|β
∏
k

λ
β(1+M ′−M)/2−1
k . (5.5)

For 1 � M ≤ M ′, the trace
∑
k λk is self-averaging. The eigenvalue density then

approaches the Marchenko-Pastur law (2.14) with λ = 1/M ,

ρ(λ) =
1

2πλ

√
4MM ′ − (M +M ′ −MM ′λ)2 (5.6)

for (
√
M ′ −

√
M)2 < MM ′λ < (

√
M ′ +

√
M)2. The average entanglement entropy

follows as (Page, 1993)

SB = −
∫
dλ ρ(λ)λ lnλ = lnM − (M/2M ′), (5.7)

independent of the ensemble. This result signifies near-maximal entanglement. As the
Hilbert space dimension of a many-body system grows exponentially with system
size, the leading term corresponds to a volume law, SS ∝ VS , while the subleading
term vanishes in the thermodynamic limit M ′ → ∞. For highly excited states in an
ergodic system obeying eigenstate thermalization, we therefore recover the expected
thermodynamic behaviour.

Deviations from the eigenstate thermalization conditions should reduce the entan-
glement entropy. The expectation is that one recovers an area law when the disorder is
increased beyond a certain threshold, a phenomenon termed many-body localization
(Anderson, 1958; Basko et al., 2006). This transition is indeed confirmed in numerical
studies, which also detect a significant reduction of the levels repulsion (Altman and
Vosk, 2015; Nandkishore and Huse, 2015). As for the non-interacting case, a complete
statistical description of this transition is still missing.

Beyond this setting, many-body systems offer numerous deep applications of random-
matrix theory. For instance, the logarithmic scaling in critical one-dimensional systems
can be recovered from group integrals over unitary, orthogonal or symplectic matri-
ces equipped with the Haar measure (Keating and Mezzadri, 2005). The ubiquitous
appearance of such group integrals in field theories and other setting nicely leads us
away from the theory of open quantum systems—see other notes in this issue—so we
close here.
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Conclusions

As these notes illustrate, the applications of random matrices to open quantum sys-
tems are very diverse. Indeed, one can reasonably expect that this setting provides
natural physical applications for (almost?) any notable random-matrix result. After
all, matrices appear naturally in quantum mechanics, while openness liberates us from
some of the algebraic constraints otherwise encountered. The relevance comes from the
richness of complex dynamics, which helps to justify the approach for generic disorder
(Efetov, 1996) or underlying classical chaos (Haake, 2010), and confronts us with a
large number of interesting questions about the physical behaviour.

This richness already appeared in the two pure settings covered here—elastic single-
particle scattering, and purely interacting systems. The latter topic we only covered
briefly, and both effects can of course be combined. This is the subject of much ongoing
research—e.g., regarding many-body localization and the topological protection in in-
teracting fermionic systems, to mention just two examples. Furthermore, by combining
various effects, links can be established to many other areas that enjoy random-matrix
applications, as mentioned at various places in the text. As an example we recall the
case of photonic systems with amplification and absorption, for which we can set up
effectively non-hermitian descriptions of the wave dynamics. When driven to the laser
threshold, these systems provide means to directly probe the poles and residues of
the scattering matrix, which gives a physical meaning to the Petermann factor. We
can also define new, genuinely non-hermitian symmetries, including the mentioned
PT symmetry as well as non-hermitian variants of the chiral and charge-conjugation
symmetry, which all provide interesting topological effects. Such systems also display
nonlinear phenomena, for which entirely new descriptions need to be developed.

It is of course important to consider where the predictive power of random-matrix
descriptions may end. Take the design of small quantum devices. While their dedicated
functionality is beyond the scope, random-matrix theory can still help to determine
how well they may work—as is illustrated by our discussion of entanglement. Our sys-
tem may also be insufficiently ergodic. For instance, localization effects in low dimen-
sions lead to the search for new ensembles, a search that has not been completed. More
subtle effects can arise from ballistic dynamics. These are the short-time signatures
of classically deterministic motion captured by the fractal Weyl law, and dynamical
constraints as encountered in a classically mixed (partially regular and chaotic) phase
space. Given some suitable questions, random-matrix theory can often still be adapted
to such situations, and otherwise serves as a useful benchmark to quantify the system-
specific behaviour. In general, deviations from random-matrix predictions can indicate
exciting novel physics, leading to an endeavour that is nowhere near to end.



Appendix A

Eigenvalue densities of matrices with
large dimensions

In the limit of large matrix dimensions M , eigenvalue distributions can be obtained
very efficiently by applications of potential theory, which are based on the analogy
of eigenvalues with fictitious particles in a Coulomb gas (Dyson, 1962b; Dyson, 1972;
Beenakker, 1997; Forrester, 2010). In the case of the Gaussian ensembles, the leading
order can also be obtained from self-consistent equations for the Green function (or
resolvent) G (Pastur and Shcherbina, 2011). The latter approach links neatly to the
theory of free probability (Janik et al., 1997; Janik et al., 1999), as we exploit in the
following.

A.1 Gaussian hermitian ensembles

For the Gaussian ensembles of hermitian matrices H, we expand the Green function
G(E) = (E −H + iε)−1 in a geometric series

G = E−1
∞∑
n=0

(HE−1)n (A.1)

and average using Wick’s theorem, but only retaining non-crossing contractions,

G = E−1 + E−1ḢE−1

∞∑
n=0

(HE−1)nḢE−1

∞∑
n=0

(HE−1)n, (A.2)

where the dot denotes terms that remain to be contracted. Denoting the variance
|Hlm|2 = σ2 this gives in leading order G = E−1 + E−1σ2 (trG)G. In terms of the
trace g = trG, this leads to Pastur’s equation

E = σ2 g +M/g. (A.3)

The solution g = (1/2σ2)
√
E2 − 4Mσ2 determines the density of states via

ρ(E) = − lim
ε→0+

1

π
Im g(E + iε) =

2M

πE2
0

√
E2

0 − E2 (A.4)

for |E| < E0, where we identified σ2 = M∆2/π2 = E2
0/4M . This is the semicircle

law (2.3). In the language of free probability, Eq. (A.3) leads to the notion of a Blue
function Br(z) = σ2

rg+M/g, where for later reference we equipped the variance with
an index.
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A.2 Wishart-Laguerre ensembles

For the Wishart-Laguerre ensembles, we analogously write

G(λ) = (λ−X†X)−1 = λ−1
∞∑
n=0

(X†Xλ−1)n (A.5)

and express the non-crossing contractions as

G = λ−1 + Ẋ†(λ−XX†)−1ẊG = λ−1 + σ2tr(λ−XX†)−1G (A.6)

with |Xlm|2 = σ2. As XX† differs from X†X by M ′ −M vanishing eigenvalues, we
obtain

g = λ−1M + σ2(λ−1(M ′ −M) + g)g, (A.7)

where again g = trG. The solution

g =
1

2σ2
− M ′ −M

2λ
± 1

2λσ2

√
λ2 − 2λσ2(M +M ′) + σ4(M −M ′)2 (A.8)

gives the Marchenko-Pastur law (2.14) via ρ(λ) = − 1
π Im g.

Note that in the chiral ensembles with Hamiltonian (2.4), the eigenvalues E2
n can

be obtained from a Wishart matrix AA†; the joint distributions (2.13) and (2.5) are
thus related by a change of variables λn ∝ E2

n, and so are the densities (2.14) and
(2.7).

A.3 Jacobi ensembles

For the Jacobi ensembles, we base the considerations on the matrix (X†X)−1Y †Y ,
whose eigenvalues λn determine the eigenvalues of the MANOVA matrix (X†X +
Y †Y )−1X†X by Tn = 1/(1 + λn). Consider the Green function

G =

(
λ Y
Y † XX† − λ′

)
=

(
G11 G12

G21 G22

)
, g =

(
trG11 trG12

trG21 trG22

)
. (A.9)

This has matrix elements

G11 = [λ− Y (X†X − λ′)−1Y †]−1, G22 = (X†X − λ′ − Y †Y/λ)−1, (A.10)

with traces

g11 = (My −M)/λ+ g0, trXG22X
† = λ′g22 + λg0, (A.11)

where

g0 = tr[λ− (X†X − λ′)−1Y †Y ]−1. (A.12)

The eigenvalue density can then be obtained from ρ(λ) = −π−1Im g0|λ′=0.
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The non-crossing contractions give the relation

G =

(
1/λ 0
0 −1/λ′

)
+σ2

(
trG22/λ 0

0 −trG11/λ
′

)
G+(σ2/λ′)

(
0 0

0 Mx − trXG22X†

)
G,

(A.13)
while on average G12 = G21 = 0. For λ′ → 0, we therefore have

g11 = My/λ+ σ2g11 g22/λ, 0 = M + σ2[(1 + λ)g11 +M −Mx −My]g22, (A.14)

which determines

g0 =
(M +Mx)λ+M −My −

√
[(M −Mx)λ+M −My]2 − 4MxMyλ

2πλ(1 + λ)
. (A.15)

Denoting cx = Mx/M , cy = My/M , the eigenvalue density is thus given by

ρ(λ) =
M(cx − 1)

√
(λ− λ−)(λ+ − λ)

2πλ(1 + λ)
, (A.16)

where

λ± =

(√
cxcy ±

√
cx + cy − 1

cx − 1

)2

=

(
cy − 1

√
cxcy ∓

√
cx + cy − 1

)2

(A.17)

determines the range where the density is finite. In terms of the variables Tn, the
density is then given by Eq. (2.16).

A.4 Ginibre ensembles

As an example of non-hermitian matrix ensembles we consider the complex Ginibre
ensemble, defined by (2.12) with β = 2. The Green function has now to be extended
to the block form (Janik et al., 1999)

G(z, z∗) =

(
z −X iλ
iλ z∗ −X†

)−1

=

(
G11 G12

G21 G22

)
, g(z, z∗) = lim

λ→0+

(
trG11 trG12

trG21 trG22

)
,

(A.18)
which delivers the density of complex eigenvalues zm via

1

π

∂g11

∂z∗
= ρ(z) =

∑
m

δ(z − zm), (A.19)

while the Petermann factors Km are encoded in

− 1

π
g12g21 = O(z) =

∑
m

Kmδ(z − zm). (A.20)

We denote again |Xlm|2 = σ2 and employ the expansion
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G = Z−1
∞∑
n=0

(XZ−1)n, Z =

(
z iλ
iλ z∗

)
, X =

(
X 0
0 X†

)
, (A.21)

followed by the non-crossing approximation

G = Z−1 + Z−1ẊZ−1

∞∑
n=0

(XZ−1)nẊZ−1

∞∑
n=0

(XZ−1)n (A.22)

= Z−1 + Z−1σ2

(
0 g12

g21 0

)
G, (A.23)

where the dot denotes elements to be Wick-contracted. The trace gives

Z = M/g +
σ2

2
(g + g̃), g̃ =

(
1 0
0 −1

)
g

(
−1 0
0 1

)
. (A.24)

This agrees with the rules from free probability, according to which the Blue functions
of the real and imaginary parts are Br(A) = σ2

rA+M/A, Bi(A) = σ2
i Ã+M/A, while

the composition law reads Z = Br(g) +Bi(g)−M/g; here σ2
r = σ2

i = σ2/2.
Let us set σ2 = 1/M . For |z| < 1 the solution is then given by

g = M

(
z∗

√
|z2| − 1√

|z2| − 1 z

)
. (A.25)

From this we recover Ginibre’s circular law ρ(z) = M
π Θ(1−|z|), while O(z) = M2(1−

|z|2)/π. According to Eq. (A.20), the ratio O(z)/ρ(z) = M(1− |z|2) ∼ Km|zm=z gives
the average Petermann factor within the support of the spectrum.
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