On the origin of surface ozone episode in Shanghai over Yangtze River Delta during a prolonged heat wave

4 Jian-Bin Wu^{1,4,*}, Qian Wang², Huansheng Chen^{1,*}, Yuqia Zhang¹, Oliver Wild³

¹ State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,

Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

² Shanghai Environmental Monitoring Center, Shanghai 200235, China

³ Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

⁴ Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200135, China

9 10

1

2 3

5

6

7

8

11 Abstract

12

13 A heat wave with temperatures over 35°C and sunny stagnant meteorological conditions 14 occurred in Shanghai from 27 July to 5 August 2015, leading to a sustained episode of high ozone 15 lasting 12 days. We have conducted a detailed source apportionment of surface ozone, by 16 precursor source category and region, using a photochemical transport model. In this episode, a 17 southwesterly wind prevailed over the Yangtze River Delta, and therefore precursors from the 18 local Shanghai region and the region immediately to the south of Shanghai are the two major 19 contributors (in total 90%) to ozone in Shanghai. The source apportionment reveals that local 20 industrial sources and energy/biogenic sources in neighbouring regions are the principal causes 21 for the high levels of ozone. By examining the contributions from individual physical and 22 chemical processes, we show that ozone concentrations start to rise rapidly in the morning 23 because chemical production dominates as the solar radiation increases, and while there is little 24 removal by deposition when ozone remains low. In general, chemical production, horizontal advection and vertical diffusion contribute to increase ozone concentration during davtime, and 25 26 deposition and vertical advection reduce ozone concentrations.

27

28 *Keywords:* Ozone; Source apportionment; Process analysis; Heat wave; Shanghai.

29 30

^{*} Corresponding author.

E-mail address: Huansheng Chen (chenhuansheng@mail.iap.ac.cn), Jian-Bin Wu (wujianbin83@126.com)

31 INTRODUCTION

32

33 High ozone (O_3) episodes are one of the most severe air pollution issues experienced in megacities (Wild et al. 2004; Shao et al., 2006; Streets et al., 2007; Yang et al., 2008; Zhang et al. 34 35 2008). Severe O_3 pollution events in troposphere can cause adverse effects on human health, crop productivity and ecosystems (Feng et al., 2003; Fann and Risley, 2013; Landry et al., 2013). In 36 37 recent years, the O₃ concentrations exceeding moderately polluted level (the daily maximum 8-h 38 moving average O₃ concentration >100 ppbv defined by the National Ambient Air Quality 39 Standard of China) have been frequently observed in China (Wang et al., 2001, 2009; Wang et al., 2006a; Ding et al., 2008, 2013; Xu et al., 2008; Tang et al., 2009; Shao et al., 2009; Ran et al., 40 41 2009).

42 O₃ concentrations are affected by chemical formation and loss related to local precursors 43 emissions, and by transport of O₃ and its precursors from other regions. For chemical formation, O₃ is a secondary pollutant formed nonlinearly by chemical reactions involving nitrogen oxides 44 45 (NO_x) and volatile organic compounds (VOCs) in the presence of solar radiation (Crutzen et al., 46 1999; Kumar et al., 2008). High O₃ concentrations are also affected by favorable weather 47 conditions, such as extremely high temperature, strong solar radiation, low relative humidity and 48 weak wind speed (Shu et al., 2016). These weather conditions are usually accompanied by strong 49 subtropical high, and play a crucial role in transport, accumulation and fast chemical production of O₃ in the boundary layer. Shanghai as well as surrounding city cluster (namely as Yangtze River Delta, YRD), locate on the eastern coast of China, and are generally affected by the western Pacific subtropical high in summertime. Therefore, high-level O₃ events are observed in summertime with relationship to synoptic systems (Huang et al., 2006; Jiang et al., 2012; Ding et al., 2013; Xie et al., 2016).

55 O₃ pollutions in the YRD have been previously analyzed (Wang et al., 2006b; Geng et al., 56 2008; Ran et al., 2009; Jiang et al., 2012), but some properties controlling O_3 behavior in this area 57 remain uncertain, especially during a typical weather system in this region. Effective attainment 58 of ground-level O₃ concentration depends upon a reliable understanding of how O₃ responds to 59 control of its precursors (Cohan et al., 2007). In this study, we apply the Comprehensive Air 60 Ouality Model with Extensions model (CAMx) to study the typical weather system and the exact 61 formation mechanism of the O₃ pollution over YRD region. A better understanding of O₃ 62 source-receptor relationship in the YRD can be accomplished through the identification of the 63 geophysical sources as well as sectoral sources contribution. Such information is considerable for 64 designing adequate control strategies regarding tropospheric O_3 concentration. Furthermore, 65 process analysis tool provides an insight on qualitative and quantitative contributions of 66 individual atmospheric processes.

67

68 METHODOLOGY AND DATA

70 Model description and setup

We apply an air quality model CAMx v6.20 (ENVIRON, 2015) to simulate an O_3 episode 71 72 from 25 July to 6 August, 2015. CAMx simulates the emission, advection, dispersion, chemical transformation and physical removal of air pollutants on an Eulerian three-dimensional grid. Fig. 73 74 1 shows the model domain used in this study, which has a 265×265 grids at 9 km resolution on a 75 Lambert conformal map projection. Vertically, we use 20 terrain-following layers from the surface to 20 km, with the lowest 10 layers below 2 km. The meteorological conditions were 76 77 (WRF v3.2.1, provided from the Weather Research Forecasting model and 78 http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.2/ARWUsersGuideV3.pdf), using 79 NCEP/NCAR FNL reanalysis data (1°×1°) for initial and boundary conditions. Four-dimensional 80 data assimilation (Otte, 2009), based on 6-h 3-D analyses of temperature, water vapor mixing ratio and horizontal wind speeds, was used with a nudging coefficient of 3.0×10^{-4} for all the 81 above components over this domain. Monthly-average concentrations from the MOZART model 82 83 were used for chemical boundary conditions. The simulation was made from 14 July to 7 August 84 2015, using the first four days as a spin-up period.

The anthropogenic emissions in China were obtained from the Multi-resolution Emission Inventory for China (MEIC, http://www.meicmodel.org/) at 0.25°×0.25° resolution, while emissions in other countries were derived from the bottom-up Regional Emission inventory in Asia (REAS 2.1) (Kurokawa et al., 2013). To improve the distribution of anthropogenic

89	emissions at the 9 km resolution used here, we spatially reallocated the coarse resolution
90	emissions over East Asia based on relevant proxies. For example, residential emissions were
91	spatially allocated by population data; vehicle emissions were distributed according to road
92	length data; and agricultural emissions were allocated based on cropland intensity data. All the
93	static data including population, road length and land category data are obtained through
94	http://www.dsac.cn, with spatial resolution of 1km and data year of 2015. Biogenic emissions
95	were obtained from a biogenic emission model (MEGANv2) provided by NCAR
96	(http://accent.aero.jussieu.fr/database_table_inventories.php).
97	In this study, we use surface NO_2 and O_3 concentration measurements from a monitoring
98	network maintained by the Ministry of Environmental Protection (http://106.37.208.233:20035).
99	The locations of surface sites (273 sites within the model domain) are shown in Fig. 1. Hourly
100	meteorological variables (wind, temperature, relative humidity and solar radiation) were taken
101	from automatic meteorological stations operated by the Shanghai Meteorological Service, and the
102	data shown in Fig. 2 was collected at Pudong station (31.22°N, 121.55°E), which represents an
103	urban area in Shanghai.

105 Source apportionment

106 O_3 source apportionment technology (OSAT, Yarwood et al., 1996) uses multiple tracer 107 species to track the fate of O_3 and its precursors by monitoring the effects of emissions, chemical

reactions, transport, diffusion and deposition within CAMx. These tracers allow O3 formation 108 109 from multiple "source groupings" to be tracked simultaneously within a single simulation. A 110 source grouping is defined in terms of geographical area and/or emission category, and the 111 CAMx boundary conditions (BC) and initial conditions (IC) are tracked as separate source 112 groupings. OSAT employs four types of tracers for each source grouping: N_i and V_i (tracking 113 NO_x and VOCs originating from source grouping i, respectively), and O_3N_i and O_3V_i (tracking O_3 formation under NOx-limited and VOCs-limited conditions attributed to source grouping i, 114 115 respectively). The ratio of the production rates of hydrogen peroxide to nitric acid is used as an 116 indicator of the O₃ formation sensitivity to VOCs and NO_x. Sillman (1995) proposed that O₃ 117 formation is NO_x-limited when the ratio exceeds 0.35 and VOCs-limited when the ratio is less 118 than 0.35. The O₃N and O₃V tracers for each source grouping accumulate a weighted fraction of 119 the O₃ production (ΔO_3) that occurs in each grid cell at each time step (Δt): 120

$$O_3 N_i(t + \Delta t) = O_3 N_i(t) + \Delta O_3 \times N_i(t) / \sum_{i=1}^m N_i(t)$$
$$O_3 V_i(t + \Delta t) = O_3 V_i(t) + \Delta O_3 \times V_i(t) \times \kappa O H_i / \sum_{i=1}^m [V_i(t) \times \kappa O H_i]$$

121

122 Where t represents time, m is the number of source groupings, and κOH_i is the average OH rate 123 constant of VOCs for the i source grouping (ENVIRON, 2015).

125

Targeting a spatial-source analysis, we divide the model domain into eight source receptor areas based on province boundaries: Shanghai (SH), provinces north of Shanghai (NORTH2SH), provinces south of Shanghai (SOUTH2SH), northern China (NORTH_CHN), western China

Source regions and source categories

129 (WEST_CHN), southern China (SOUTH_CHN) and regions outside China (OUT_CHN) (see

130 Fig. 1). NORTH2SH consists of Jiangsu, Anhui and Shandong provinces and SOUTH2SH

131 consists of Zhejiang, Jiangxi and Fujian provinces.

Anthropogenic emissions from MEIC are categorized into industry, transport, residential, energy and agricultural sectors. Biogenic emissions are generated from the MEGAN model. These six categories, are defined as source groupings in the OSAT model. In addition, the initial

and boundary conditions (IC and BC) are treated as individual source groupings.

136

137 Process analysis

Process analysis (PA) allows for in-depth analysis of the contributions from individual physical and chemical processes operating within the model (Jeffries and Tonnesen, 1994). Using this approach, it is possible to investigate the complex interactions between different processes, and explain simulation results within the context of the model formulation. Integrated process rate analysis provides detailed rate information for each process in CAMx (i.e., advection, diffusion, 143 deposition, emissions and chemistry) for selected grid cells and selected species (Wang et al.,144 1995).

145

146 Sensitivity analysis

- Sensitivity analysis is a widely used approach in which sources are quantified by perturbing emissions one at a time and simulating the difference in pollutant concentrations compared to unperturbed control scenarios. There are four sensitivity simulations as well as control run (BASE). Each sensitivity simulation is compared to the BASE run in order to assess the response of O_3 to emission perturbations during the episode.
- 152

153 **RESULTS AND DISCUSSIONS**

154

155 The episode review and model evaluation

The daily maximum temperature is more than 35° C for sustained 10 days from 27 July to 5 August 2015, in which 4 days of maximum temperature are over 37° C, which is a very powerful heat wave in Shanghai (Fig. 2). In the meantime, a continuous (12 days) O₃ pollution episode was detected in Shanghai over the Yangtze River Delta (YRD) region, in which the daily maximum 8-h moving average O₃ concentrations in 4 days exceeded moderately polluted level (>100 ppbv), with the other 8 days exceeding lightly polluted level (>75 ppbv). The hourly maximum observed 162 O₃ concentration reached up to 130 ppbv, which significantly exceeded the moderately polluted 163 level. During this period, the western Pacific subtropical high stayed over YRD region, and 164 thereby leaded to this powerful heat wave in Shanghai. The relative humidity ranged from 40% to 80% and the total radiation, a key meteorological factor for O_3 formation, reached 1000 W/m², 165 indicating that skies were clear. There is typically a positive correlation between O_3 and 166 167 temperature because of a combination of meteorological and chemical factors. High temperatures lead to higher emissions of some O₃ precursors, greater electrical energy use, and more biogenic 168 169 VOC emissions.

170 Fig. 2 also compares the simulated meteorological and O₃ concentration with observations, to 171 assess the performance of the model. Before 27 July, there were lower temperatures, higher 172 relative humilities, lower total radiation and lower O_3 concentrations. The comparisons 173 demonstrate that the model can capture the temporal variation of meteorological variables over 174 the study period very well compared to observations. To evaluate how well the model captures 175 the diurnal cycle of O_3 , we calculate the episode-mean hourly O_3 concentrations, see Fig. 3. We 176 find that the model catches the high O₃ during daytime but underestimates O₃ at nighttime. This 177 may be due to overestimated NO emissions that leads to much chemical destruction at nighttime 178 (Awang et al., 2015).

179	Fig. 4 shows the weather charts (http://web.kma.go.kr/chn/weather/images/analysischart.jsp) at
180	00UTC (08LST) each day. A subtropical high pressure is noted near Taiwan on 30 July, and the
181	center moves north on 1 August. This synoptic pattern is disturbed when a typhoon approaches
182	from the Pacific Ocean. The left panels display the simulated wind fields at the corresponding
183	times (08:00LST), and daytime average O ₃ concentrations (from 08:00 to 18:00 LST). The wind
184	fields show that there was a high pressure over the ocean and the location is consistent with that
185	in the weather charts on 30 July and 1 August. A southwesterly wind was induced by the high
186	pressure prevailing along the east coast of China during the polluted heat wave period. The
187	spatial distribution of O ₃ shows that there were high concentrations in the north of China as well
188	as on the east coast. On 6 August, the approaching typhoon brought easterly winds to Shanghai
189	and the Yangtze River Delta region, along with cleaner marine air.
190	A suite of statistical metrics are considered to judge the performance of the model. We use the
191	correlation coefficient (R), mean value of the observation (Obs) and simulation (Mod), root mean
192	square error (RMSE) and mean bias (MB) of the hourly data over the full 20-day period. The
193	spatial distributions of R and RMSE for each city are displayed in Fig. 5. The simulation
194	generally agrees well with the observations and the correlation coefficients are greater than 0.7
195	for most of the cities. The RMSEs are below 15 ppbv in south China, but are 15-30 ppbv in north
196	China. Table 1 summarizes the statistical metrics for O ₃ and NO ₂ for each region separately

(region definitions are shown in Fig. 1). The correlation coefficients (R) for O₃ are typically 197 0.6-0.8, indicating that the model can reproduce the O₃ variations well in the study period. The R 198 199 values for NO₂ are lower than for O₃, with values of 0.5-0.7. The mean bias shows that simulated 200 O3 concentrations were underestimated over Shanghai (SH) and SOUTH2SH regions, but 201 overestimated for the other regions. NORTH CHN was the only region where NO₂ was 202 underestimated. In comparing different regions, it is worth noting that the model performed best 203 over Shanghai and least well over NORTH CHN. The NO_x emission over NORTH CHN may be 204 underestimated, and this is consistent with overestimation of O₃ due to less urban titration. In 205 general, based on this analysis, we infer that the CAMx model performs relatively well in 206 simulating observed O₃ concentrations.

207 Fig. 6 shows a scatterplot of hourly daytime O₃ from the model and the observations at some 208 points. The selected cities are Shanghai, Nanjing, Hangzhou, Hefei, Fuzhou, Nanchang, Jinan, 209 Beijing, Changsha, Wuhan, Guangzhou and Xi'an, which are capitals of each province, 210 respectively, over the east China (displayed in red points in Fig. 1). These data help to assess the model performance, showing that there is clearly a correlation between the model and 211 212 observations, with he averaged correlation coefficient (R) of 0.69. The standard linear least 213 square regression analysis reveals that the model somewhat overestimates the daytime O₃ 214 concentrations.

216 Source contribution analysis

Fig. 7 shows the daytime-average (08:00 - 18:00 LST) contributions to O₃ for Shanghai area 217 from different source regions and source categories. We find that Shanghai and SOUTH2SH are 218 219 the two regions that contributed the most to O₃ concentrations in Shanghai, together reaching as 220 much as 90%. This is a consequence of the southwesterly flow during the study period (see Fig. 2 221 and 4), which brought pollutants and precursor emissions to Shanghai. In this period, the 222 contributions from other regions were insignificant. The contributions of different emission 223 categories show that the industrial sector contributes the most, followed by energy, biogenic and 224 transport sectors. As expected, initial conditions (IC) were the major contributor at the beginning 225 of the simulation, and it decreased significantly over the period. The contribution of boundary 226 conditions (BC) was remarkably large on August 6, and this reflects the dominance of easterly 227 flow in the Shanghai area on this day (see Fig. 4(c)). Since Shanghai and SOUTH2SH are the dominant sources of O₃ in Shanghai during this 228

episode, it is interesting to examine the source apportionment by emission category from these two regions. For local emissions in Shanghai area (Fig. 8(a)), Industrial emissions were the largest source, with a contribution of 43%, and the contributions from energy, transport and biogenic sectors were 20%, 20% and 10%, respectively. In contrast (Fig. 8(b)), the largest source from SOUTH2SH region was not from industrial emissions but from energy and biogenic emissions which provided 28% and 28% of the O_3 from this region to Shanghai. The contributions from industry and transport tailed off to 25% and 11%, respectively. In addition, 5-6% of O_3 in Shanghai was attributed to initial and boundary conditions (IC+BC), and agriculture and residential emissions contributed very little.

238 The average diurnal O₃ contributions for Shanghai area from different source regions during 239 the episode period are shown in Fig. 9(a). It is clear that local and non-local emissions show 240 distinct characteristics. The contribution of local emissions in Shanghai is heavily peaked, 241 increasing during the morning, and with a maximum value around noontime. This is strongly 242 related to chemical formation of O₃ when solar radiation is high. The contributions from 243 non-local sources (mostly from SOUTH2SH) are greatest in the morning and afternoon. During nighttime O₃ is destroyed through titration by reaction with NO, and there is no O₃ formation 244 245 without solar radiation. Consequently, most of the O₃ in Shanghai originates by transport from 246 surrounding areas, and the contributions during nighttime are from non-local sources. The 247 contribution of different source categories is shown in Fig. 9(b). The contribution of industrial 248 emissions reveals similar features to the local emission in Shanghai, increasing during the morning, and reaching a maximum at noon. The contributions from energy, transport and 249 250 biogenic emissions remain relatively similar over the course of daytime.

To evaluate the source contributions in this study, and to inform mitigation strategies for O₃ in
Shanghai, several sensitivity simulations are conducted individually (described in Table 2). The

253	sensitivity simulation results show that if all anthropogenic emissions in Shanghai were reduced
254	by 50% (SH0.5), the O_3 levels in Shanghai would have decreased by 12% compared to the base
255	run (BASE). When industrial or transport emissions were reduced by 50% in both Shanghai and
256	SOUTH2SH (IND0.5 and TRA0.5), the decrease in O_3 concentrations was 11% or 6%,
257	respectively. If all industrial and transport emissions in both regions were reduced by 50%, the O_3
258	concentrations would decrease by 18%. This sensitivity analysis clearly demonstrates that the
259	response of O3 to emission reductions isn't linear. And this leads to discrepancy between
260	sensitivity analysis and source apportionment results. Because O3 are most formed by chemical
261	formations, the sensitivity simulations do not generate or lose equivalent concentrations of
262	secondary O ₃ when the simulations are run with fewer precursors. The Source apportionment
263	method, which does not change any physical and chemical processes, can objectively allocate
264	100% of the target O ₃ to specified sources. Besides, the reduction of O3 in IND_TRA0.5 run is
265	the biggest, even more significant than those in SH0.5 run. This illustrates that industrial and
266	transport emissions are the main source of precursors in generating O ₃ in Shanghai, and should be
267	considered as the major target sectors for emission controls.

269 Process analysis

The contributions of each modeled process to changes in O₃ in the model are calculated as average hourly values for each grid cell. Average rates in the surface layer for Shanghai area from July 27 0000 LST to August 5 2300 LST are shown in Fig. 10. The atmospheric processes that influence O_3 concentrations include chemistry, horizontal and vertical advection, horizontal and vertical diffusion and dry deposition. Positive values indicate that O_3 concentrations are increased by the process and negative values indicate a decrease. Note that there is no primary emission of O_{33} so this process makes no direct contribution to O_{33} .

277 The diurnal cycle of O_3 concentration reveals that the build-up of O_3 in the morning is typically 278 more rapid than the decline in the evening. During daytime, the model has a tendency to generate 279 a broad daytime O_3 maximum, with the highest concentrations reached at noon. In the morning, 280 chemical production dominates as the solar radiation increases, and there is little removal by 281 deposition while O₃ remains low. Consequently, O₃ concentrations start to rise rapidly in the 282 morning. The effect of chemical processes remains positive from 0600LST to 1600LST, while at 283 other times there is net chemical destruction of O₃ by titration. Horizontal advection of O₃ from 284 neighboring regions also keeps daytime concentrations high. In contrast, vertical advection 285 contributes to a decrease of O₃ as vertical mixing is enhanced during daytime, carrying O₃ away from the surface. The results also reveal that vertical diffusion has an important role in increasing 286 287 O₃ concentrations during afternoon and nighttime. We note above that the model underestimates 288 the low O₃ levels at nighttime. This may be due to too much chemical destruction, excessive dry 289 deposition, or to horizontal advection (see Fig. 9). While this may be a consequence of

290	overestimated NO emissions or errors in dry deposition parameters, it may also reflect
291	meteorological factors such as insufficient boundary layer mixing at nighttime. To summarize,
292	chemical production, horizontal advection and vertical diffusion are the main contributors to
293	increases in O ₃ concentrations during daytime, while deposition and vertical advection reduce O ₃
294	concentrations.

296 CONCLUSIONS

297

A sustained, 10-day episode of high O_3 occurred in the Yangzte River Delta from 27 July to 5 August 2015, with O_3 concentrations in the afternoon reaching more than 100 ppbv. During this O_3 episode, temperatures of more than 35°C and sunny stagnant meteorological conditions were observed, providing favorable conditions for O_3 formation. A numerical model was used to study this O_3 episode and comparisons between simulation and observations suggest that the model can reproduce the meteorological and chemical conditions during this O_3 episode well.

By applying source apportionment approaches, we have developed a detailed understanding of the precursor source region and source category contributions to surface O_3 in Shanghai. Spatially, precursors from local and nearby southerly provinces contributed 90% of O_3 concentrations in this episode. Normally synoptic high pressure systems in summertime over this region are associated with high temperatures and a southwesterly wind which brings O_3 and its precursors to Shanghai. Industrial emission was the largest local source, with a contribution of 41%, and the contributions from energy, transport and biogenic sectors were 19%, 19% and 12%, respectively. For precursors from southern provinces, energy and biogenic sectors were the largest sources, with contributions of 30% and 29%. Therefore, it is a priority to reduce industrial, energy and transport emissions through effective O_3 control strategies. However, biogenic emissions also play an important role in formation of O_3 at this time of year.

315 We have analyzed the contributions from individual physical and chemical processes during 316 this episode. It is interesting to note that the build-up of O_3 in the morning was much more rapid 317 than the decline in the evening. In the morning, chemical production made a large contribution in 318 the presence of sunlight, while the removal of O₃ was much smaller. The results revealed that 319 chemical production, horizontal advection and vertical diffusion contribute to the increase of O₃ 320 concentrations during daytime. The underestimation of O_3 at nighttime may be due to too much 321 destruction by chemistry, deposition or horizontal advection. This may be a consequence of 322 overestimated NO emissions or errors in dry deposition parameters, it may also reflect 323 meteorological factors such as insufficient boundary layer mixing at nighttime.

324

325 ACKNOWLEDGMENTS

327	This work is funded by the National Key Research and Development Program					
328	(2016YFC0208803), the National Natural Science Foundation of China (41505105, 41405119),					
329	the Environmental Public Welfare Research Project (201509014).					
330 331	REFERENCES					
332						
333	Awang, N.R., Ramli, N.A., Yahaya, A.S. and Elbayoumi, M. (2015). High nighttime					
334	ground-level ozone concentrations in Kemaman: NO and NO2 concentrations attributions.					
335	Aerosol Air Qual. Res. 15(4): 1357-1366.					
336	Cohan, D.S., Boylan, J.W., Marmur, A. and Khan, M.N. (2007). An integrated framework for					
337	multipollutant air quality management and its application in Georgia. Environ. Manage. 40:					
338	545-554.					
339	Crutzen, P.J., Lawrence, M.G. and Ulrich, P. (1999). On the background photochemistry of					
340	tropospheric ozone. Tellus B, 51: 123-146.					
341	Ding, A. J., Fu, C. B., Yang, X. Q., Sun, J. N., Zheng, L. F., Xie, Y. N., Herrmann, E., Nie, W.,					
342	Petäjä, T., Kerminen, VM., and Kulmala, M. (2013). Ozone and fine particle in the western					
343	Yangtze River Delta: an overview of 1-yr data at the SORPES station, Atmos. Chem. Phys., 13,					
344	5813–5830.					
345	Ding, A.J., Wang, T., Thouret, V., Cammas, J.P. and Nédélec, P. (2008). Tropospheric ozone					
346	climatology over Beijing: Analysis of aircraft data from the MOZAIC program. Atmos. Chem.					
347	<i>Phys.</i> 8: 1-13.					
348	ENVIRON (2015). The Comprehensive Air quality Model with extensions (CAMx), version					
349	6.20. (Available from <u>http://www.camx.com)</u> .					
350	Fann, N. and Risley, D. (2013). The public health context for PM2:5 and ozone air quality trends,					

- 351 *Air Qual. Atmos. Hlth.*, 6, 1–11.
- 352 Feng, Z. W., Jin, M. H., Zhang, F. Z., and Huang, Y. Z. (2003). Effects of ground-level ozone
- 353 (O-3) pollution on the yields of rice and winter wheat in the Yangtze River Delta, J. Environ.
- *Sci.-China*, 15, 360–362.
- 355 Geng, F. H., Tie, X. X., Xu, J. M., Zhou, G. Q., Peng, L., Gao, W., Tang, X., and Zhao, C. S.
- 356 (2008). Characterizations of ozone, NOx , and VOCs measured in Shanghai, China, *Atmos.*357 *Environ.*, 42, 6873–6883.
- 358 Huang, J. P., Fung, J. C. H., and Lau, A. K. H. (2006). Integrated processes analysis and
- 359 systematic meteorological classification of ozone episodes in Hong Kong, *J. Geophys.*360 *Res.-Atmos.*, 111, D20309.
- Jeffries, H.E. and Tonnesen, S. (1994). A comparison of two photochemical reaction mechanisms
 using mass balance and process analysis. *Atmos. Environ.* 28: 2991-3003.
- Jiang, F., Zhou, P., Liu, Q., Wang, T. J., Zhuang, B. L., and Wang, X. Y. (2012). Modeling
 tropospheric ozone formation over East China in springtime, *J. Atmos. Chem.*, 69, 303–319.
- 365 Kumar, U., Prakash, A. and Jain, V.K. (2008). A photochemical modeling approach to investigate
- 366 o3 sensitivity to NOx and VOCs in the urban atmosphere of Delhi. *Aerosol Air Qual. Res.* 8:
 367 147-159.
- 368 Kurokawa, J., Ohara, T., Morikawa, T. and Hanayama, S. (2013). Emissions of air pollutants and
- 369 greenhouse gases over asian regions during 2000–2008: Regional emission inventory in Asia
- 370 (reas) version 2. *Atmos. Chem. Phys.* 13: 11019-11058.
- 371 Landry, J. S., Neilson, E. T., Kurz, W. A., and Percy, K. E. (2013). The impact of tropospheric
- 372 ozone on landscape-level merchantable biomass and ecosystem carbon in Canadian forests,
- 373 Eur. J. Forest Res., 132, 71–81.
- 374 Otte, T.L. (2009). The impact of nudging in the meteorological model for retrospective air quality
- 375 simulations. Part I: Evaluation against national observation networks. J. App. Meteor. &

- 376 *Climatology* 47: 1853-1867.
- 377 Ran, L., Zhao, C.S., Geng, F., Tie, X., Tang, X., Peng, L., Zhou, G., Yu, Q., Xu, J., Guenther, A.
- 378 (2009). Ozone photochemical production in urban Shanghai, China: Analysis based on ground
- 379 level observations. J. Geophys. Res. 114: 4228-4240
- Shao, M., Tang, X., Zhang, Y. and Li, W. (2006). City clusters in china: Air and surface water
 pollution. *Front. Ecol. Environ.* 4: 353-361.
- 382 Shao, M., Zhang, Y., Zeng, L., Tang, X., Zhang, J., Zhong, L. and Wang, B. (2009).
- 383 Ground-level ozone in the pearl river delta and the roles of VOC and NOx in its production. J.
- 384 Environ. Manage. 90: 512-518.
- 385 Shu, L., Xie, M., Wang, T., Gao, D., Chen, P., Han, Y., Shu, L, Zhuang, B. and Li, M. (2016).
- 386 Integrated studies of a regional ozone pollution synthetically affected by subtropical high and
- typhoon system in the Yangtze River Delta region, China. Atmos. Chem. Phys. 16:
 15801-15819.
- Sillman, S. (1995). The use of no y , h2o2, and hno3 as indicators for ozone-no x -hydrocarbon
 sensitivity in urban locations. *J. Geophys. Res.* 100: 14175-14188.
- 391 Streets, D.G., Fu, J.S., Jang, C.J., Hao, J., He, K., Tang, X., Zhang, Y., Wang, Z., Li, Z. and
- Zhang, Q. (2007). Air quality during the 2008 Beijing Olympic Games. *Atmos. Environ.* 41:
 480-492.
- Tang, G., Li, X., Wang, Y. and Xin, J. (2009). Surface ozone trend details and interpretations in
 Beijing, 2001–2006. *Atmos. Chem. Phys.* 9: 8813-8823.
- Wang, H. X., Zhou, L. J., and Tang, X. Y. (2006b). Ozone concentrations in rural regions of the
 Yangtze Delta in China, *J. Atmos. Chem.*, 54, 255–265.
- 398 Wang, T., Cheung, V.T.F., Anson, M. and Li, Y.S. (2001). Ozone and related gaseous pollutants
- in the boundary layer of eastern china: Overview of the recent measurements at a rural site.
- 400 *Geophys. Res. Lett.* 28: 2373-2376.

- 401 Wang, T., Wei, X.L., Ding, A.J. and Poon, C.N. (2009). Increasing surface ozone concentrations 402 in the background atmosphere of southern china, 1994-2007. Atmos. Chem. Phys. 9: 403 6217-6227.
- 404 Wang, Z., Langstaff, J.E. and Jeffries, H.E. (1995). The Application of the Integrated Process Rate
- 405 Analysis Method for Investigation of Urban Airshed Model (UAM) Sensitivity to Speciation in
- 406 VOC Emissions Data. Air & Waste Management Association annual meeting, San Antonio, TX.
- 407 Wang, Z., Li, J., Wang, X., Pochanart, P. and Akimoto, H. (2006a). Modeling of regional high 408 ozone episode observed at two mountain sites (mt. Tai and Huang) in east china. J. Atmos. 409 Chem. 55: 253-272.
- 410 Wild, O., Prather, M.J., Akimoto, H., Sundet, J.K., Isaksen, I.S.A., Crawford, J.H., Davis, D.D.,
- 411 Avery, M.A., Kondo, Y., Sachse, G.W. and Sandholm, S.T. (2004). Chemical transport model
- 412 ozone simulations for spring 2001 over the western pacific: Regional ozone production and its 413 global impacts. J. Geophys. Res. 109:-.
- 414 Xie, M., Zhu, K. G., Wang, T. J., Chen, P. L., Han, Y., Li, S., Zhuang, B. L., and Shu, L. (2016).
- 415 Temporal characterization and regional contribution to O3 and NOx at an urban and a 416 suburban site in Nanjing, China, Sci. Total Environ., 551, 533-545.
- 417 Xu, X., Lin, W., Wang, T., Yan, P., Tang, J., Meng, Z., and Wang, Y. (2008). Long-term trend of 418 surface ozone at a regional background station in eastern China 1991-2006: enhanced 419
- variability, Atmos. Chem. Phys. 8, 2595-2607
- 420 Yang, H.H., Chen, H.W., Chi, T.W. and Chuang, P.Y. (2008). Analysis of atmospheric ozone
- 421 concentration trends as measured by eighth highest values. Aerosol Air Oual. Res. 8: 308-318.
- 422 Yarwood, G., Morris, R.E., Yocke, M., Hogo, H. and Chico, T. (1996). Development of a
- 423 Methodology for Source Apportionment of Ozone Concentration Estimates from a
- 424 Photochemical Grid Model. Presented at the 89th AWMA Annual Meeting, Nashville TN,
- 425 June 23-28.

- 426 Zhang, Y.H., Hu, M., Zhong, L.J., Wiedensohler, A., Liu, S.C., Andreae, M.O., Wang, W. and
- 427 Fan, S.J. (2008). Regional integrated experiments on air quality over pearl river delta 2004
- 428 (pride-prd2004): Overview. *Atmos. Environ.* 42: 6157-6173.
- 429
- 430
- 431

Species	Regions	N ^a	Obs^b	Mod ^c	\mathbf{R}^{d}	RMSE ^e	MB^f
	Shanghai(SH)	478	46.5	40.0	0.80	14.7	-6.5
	NORTH2SH	32962	32.8	41.4	0.71	21.6	8.6
O_3	SOUTH2SH	16108	26.9	23.9	0.76	13.6	-3.0
(ppbv)	NORTH_CHN	23400	36.5	46.9	0.61	28.7	10.4
	WEST_CHN	40000	32.1	38.7	0.78	21.2	8.5
	SOUTH_CHN	15768	21.1	25.9	0.68	15.7	4.8
	Shanghai(SH)	478	15.4	17.8	0.69	10.7	2.4
	NORTH2SH	32961	11.7	14.6	0.52	11.1	2.9
NO_2	SOUTH2SH	16110	9.1	12.8	0.63	12.9	3.8
(ppbv)	NORTH_CHN	23405	11.0	8.8	0.50	8.6	-2.2
	WEST_CHN	40093	10.2	12.5	0.52	13.0	2.2
	SOUTH_CHN	15771	7.9	10.7	0.58	10.4	2.8

432 Table 1. Statistical summary of the model results against observations between 00:00LST 18
433 July and 00:00LST 7 August.

434 ^a Number of valid paired data.

435 ^b Mean value of observations

436 ^c Mean value of simulations

437 ^d Correlation coefficient

438 ^e Root mean square error

439 ^f Mean bias

		Average O ₃ (ppbv)	Contribution of	
Simulation	Description	In Shanghai ^a	sensitivity (%) ^b	
BASE	With base emission	91.3	/	
SH0 5	50% reduced anthropogenic	80 4	-12	
010.0	emission in Shanghai (SH)	00.4		
	50% reduced industry emission			
IND0.5	in Shanghai (SH) and	82.3	-11	
	SOUTH2SH			
	50% reduced transport emission			
TRA0.5	in Shanghai (SH) and	86.3	-6	
	SOUTH2SH			
	50% reduced industry and			
IND_TRA0.5	transport emission in Shanghai	77.4	-18	
	(SH) and SOUTH2SH			

441 **Table 2.** Sensitivity analysis of emission perturbations in specific regions.

^a The O₃ concentration is averaged during daytime (08:00-18:00 LST) from July 27 to August 5
2015.

444 ^b Contribution = $\frac{Sensitivity - BASE}{BASE} \times 100\%$

447 Fig. 1. Model domain showing the sub-division into separate areas for geographic source
448 apportionment (shaded) and surface observation sites (black dot), and the red dots are the selected
449 cities for scatterplot.

452 Fig. 2. Comparison of hourly time-series for simulated (red) and observed (gray) wind, 2-m
453 temperature, relative humidity, total radiation and ozone concentration at Shanghai station from
454 18 July to 7 August 2015.

Fig. 3. Comparison of the diurnal cycle of simulated and observed O_3 at Shanghai station from 461 July 27 to August 5, 2015. Error bars (lines for simulation, shaded for observation) show the 462 standard deviation for each hour.

468 Fig. 4. Simulated wind (left) and surface synoptic charts (right, http://web.kma.go.kr/chn/weather/images/analysischart.jsp) at 08:00 LST on 30 July, 1 469 August and 6 August 2015. Daytime averaged (08:00-18:00 LST) simulated ozone 470 concentration (shaded) are also plotted on the left. 471

476 Fig. 5. Spatial patterns of correlation coefficients (R) and root mean square errors (RMSE) for

477 ozone between 00:00LST 18 July and 00:00LST 7 August.

480 Fig. 6. Scatterplot of observed and simulated O3 for daytime (08:00 – 18:00 LST) in the selected

481 cites.

observation sites in Shanghai. Note that the colors of the source regions are consistent with map

497

- 498
- 499

Fig. 8. O_3 source apportionment for Shanghai area by emission category from (a) Shanghai (SH) and (b) the SOUTH2SH region averaged for the episode period (daytime (08:00 – 18:00 LST) from July 27 to August 5) in grid cells corresponding to the observation sites in Shanghai. Note that the colors of the source categories are consistent with Fig. 7.

- 505
- 506

Fig. 9. Average diurnal O₃ contributions for Shanghai area from (a) different source regions, and

513 (b) different source categories during the episode (July 27 0000 LST to August 5 2300 LST) in

521 Fig. 10. Diurnal profile of O₃ concentration and the impacts of atmospheric processes on O₃ in

523 LST).