Sonic Landau levels and synthetic gauge fields in mechanical metamaterials
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Mechanical strain can lead to a synthetic gauge field that controls the dynamics of electrons in
graphene sheets as well as light in photonic crystals. Here, we show how to engineer an analogous
synthetic gauge field for lattice vibrations. Our approach relies on one of two strategies: shearing
a honeycomb lattice of masses and springs or patterning its local material stiffness. As a result,
vibrational spectra with discrete Landau levels are generated. Upon tuning the strength of the
gauge field, we can control the density of states and transverse spatial confinement of sound in
the metamaterial. We also show how this gauge field can be used to design waveguides in which
sound propagates with robustness against disorder as a consequence of the change in topological
polarization that occurs along a domain wall. By introducing dissipation, we can selectively enhance
the domain-wall-bound topological sound mode, a feature that may potentially be exploited for the
design of sound amplification by stimulated emission of radiation (SASERs, the mechanical analogs

of lasers.)

Electronic systems subject to a uniform magnetic field
experience a wealth of fascinating phenomena such as
topological states [1] in the integer quantum Hall ef-
fect [2] and anyons associated with the fractional quan-
tum Hall effect [3]. Recently, it has been shown that
in a strained graphene sheet, electrons experience exter-
nal potentials that can mimic the effects of a magnetic
field, which results in the formation of Landau levels and
edge states [4, 5]. Working in direct analogy with this
electronic setting, pseudo-magnetic fields have been en-
gineered by arranging CO molecules on a gold surface [6]
and in photonic honeycomb-lattice metamaterials [7, 8].

In this article, we apply insights about wave propaga-
tion in the presence of a gauge field to acoustic phenom-
ena in a nonuniform phononic crystal, using the appropri-
ate mechanisms of strain-phonon coupling and frictional
dissipation, in contrast to those present in electronic and
photonic cases. The acoustic metamaterial context in
which we implement gauge fields provides us with signifi-
cant control [9-11] over frequency, wavelength, and atten-
uation scales unavailable in the analogous electronic real-
izations. For example, a metamaterial composed of stiff
(e.g., metallic) components of micron-scale length may
be suitable for control over ultrasound with gigahertz-
scale frequencies, whereas cm-scale metamaterials may
provide control over kHz-scale sound waves. We develop
two strategies for realizing a uniform pseudo-magnetic
field in a metamaterial based on the honeycomb lattice,
i.e., “mechanical graphene” [12]. In the first strategy,
we apply stress at the boundary to obtain nonuniform
strain in the bulk, which leads to a Landau-level spec-
trum, whereas in the second strategy, we exploit built-
in, nonuniform patterning of the local metamaterial stiff-
ness. This second strategy shows how the unique control-
lability of metamaterials can lead to novel designs inac-
cessible in the electronic context, and may be useful in
scaling up these phenomena to long acoustic waveguides.

We explore acoustic phenomena associated with the
Landau-level spectrum. For example, the acoustic ana-
log of Shubnikov-de Haas oscillations [13] corresponds
to a sharp peak in the phonon density of states at the
Landau-level frequency. In addition, sound modes are
confined within a length scale set by the analog of the
magnetic length. Even stronger confinement of sound
modes can be engineered at a domain wall associated
with a change in the effective mass of the phononic exci-
tations, which localizes phonon modes that are analogous
to the topological domain-wall states in the Su-Schrieffer-
Heeger model of polyacetylene [14]. We show how this
domain-wall-bound mode exhibits robustness against a
type of disorder that may come in the manufacturing
of acoustic metamaterials—disorder in the stiffness of
each component. Like other realizations of topological
states [15, 16] in mechanical [17-27], acoustic [28-36], and
photonic [37] metamaterials, this characterization may
help with the design of robust devices. We show that
introducing dissipation on just one of the two sublattices
enhances the domain-wall-bound sound mode. This fea-
ture may be implemented in the acoustic context using a
material immersed in a viscous fluid (appropriate for low-
Reynolds number, e.g., micro-scale metamaterials), or by
including dampers (e.g., small dashpot dampers at every
components for cm-scale realizations) within the material
design. We suggest this feature may be exploited for the
design of acoustic couplers, rectifiers, and sound amplifi-
cation by stimulated emission of radiation (SASERs).

Mechanical graphene. We begin with a minimal, mi-
croscopic model of an acoustic metamaterial—a set of
nodes positioned at the vertices of a honeycomb lattice
and connected by rods to their nearest neighbors (see
Fig. 1a) [12]. The compressional stiffness of the rods & is
determined by their fixed Young’s modulus FE, variable
cross-section area S, and length a via ES/a. We assume
the rods to be so slender that their bending stiffness is



. . . MU B W
o‘\ "o o"‘."o I I I I >1
/ﬁ:l.‘\".?.‘v'. .I.I.I.I
S s e ed I
(a) (b) I : : :

%

A A A A T T T T T T T T T A T A YA
N A A A A A A A A A A YA T A YA YA

A AT A A A T T T T a Y Y

FIG. 1: (a) Mechanical graphene—a set of rods and nodes
based on the honeycomb structure. The dashed line indi-
cates the shape of a unit cell. (b) The lattice with a pure
shear strain. (c¢) The shift of a Dirac point within the phonon
spectrum of mechanical graphene due to the applied strain
can be used to define an effective vector potential. (d) An
externally applied nonuniform pure shear deformation that
corresponds to a constant magnetic field. The external stress
is applied by a torque 7 on the boundary rods. (e) A non-
uniform patterning of the local material stiffness that leads
to a constant magnetic field. We consider periodic boundary
conditions along x and free boundary conditions along y.

significantly lower than their compressional stiffness. We
model the rods as central-force harmonic springs, whose
elastic energy U is given in terms of the strain dr/a by
U(6r) = 1k (|r + or| — a). For small strains, this energy
can be linearized in terms of node displacements u; and
up as Uug,up) = 2k(e-[uy —uy))?, where e = r/|r|
is the unit vector along the spring. (In Fig. la, we de-
fine the initial configuration for the node positions and
stiffnesses.) Given this potential, we examine the linear
equation of motion for acoustic vibrations of the lattice:

.o OU o
—mif = 5% =) Difuj, (1)
Y B

where u$* are the a = x,y components of displacement
of the ith site and Df‘jﬂ are components of the dynam-
ical matrix. In a periodic lattice, the solutions to this

equation of motion are plane waves uqei(”(q)t_q‘x), where
both the dispersion relation w(q) and the normal modes
uq are found from the corresponding eigenvalue problem
for each wavevector q.

To lowest order in perturbation theory around point K
[defined by qx = (0,47/3v/3a)], the dynamical matrix
for the two bands near the frequency wy = +/3x/2m
reduces to [38]

1
D= fiwg(aaq +A) o+ (1+V)wil, (2)

where [ is the 2 x 2 identity matrix, dq = q—qg, and o =
(04,0,) contains Pauli spin matrices. The gauge field
A and potential V' are both zero for the homogeneous
honeycomb lattice. From the structure of Eq. (2), we
note that the dispersion around qj has the form of a
Dirac cone, i.e., two bands touch at the Dirac point [39].
Synthetic gauge field. We now proceed to show that
unlike uniform lattice deformations that merely shift this
Dirac cone in wavevector space, nonuniform deformations
can lead to an effective synthetic gauge field for sound.
For uniform strain (Fig. 1b), A and V are both constant
throughout the lattice. On the other hand, for a nonuni-
form but slowly varying strain, the position of the local
Dirac point varies from one region to another (Fig. 1c),
which corresponds to spatially dependent fields A and V.
In terms of the affine component U and nonaffine compo-
nent W of the displacement denoting, respectively, com-
mon and relative displacements of the two sublattices,

A(z,y) =a(ag - VIU + 3 (€ps, —€zy) + (Wy, =W3)/a,

and V = %Tre, where €;; = (0;U; + 0,;U;)/2 is the linear
affine strain and eps = (€y5 — €yy)/2 is its pure shear
component.

To simplify the design of an acoustic device based on
this strained lattice, we now consider those lattice strains
that can be obtained by applying forces only on the
boundary. Such a configuration requires that the forces
in the bulk of the material balance each other. In the
material we consider, this force-balance condition is sat-
isfied provided that the nonaffine displacements depend
on the affine strain via W, = e;ya and W, = €psa. Thus,
we obtain the following expression for the gauge field in
a boundary-strained material:

A(z,y;¢) = alqg - VIU + 4 (€ps, —€y) - (3)

For acoustic systems, we can also follow a second strat-
egy: patterning the local material stiffness to achieve a
spatially dependent gauge field A. For example, we can
smoothly vary the composition or thickness of the rods
to change their effective spring constants to k; = k+ 0k,
where ¢ = 1...3 labels springs in the lattice unit cell.
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FIG. 2: Mechanical Landau levels: (a) A pseudo-magnetic
field leads to Landau levels around the Dirac point. (b) As
the magnetic field increases, the zeroth-Landau-level band
flattens. Band flatness can be characterized by the inverse
magnetic length £71. (c) The inverse magnetic length scales
as the square root of the magnetic field. (d) Density of states
for the zeroth Landau level, for the same values of B as in (b).
The peak at the Dirac frequency rises as the bands flatten.
(e) Visualizations of the zeroth Landau level at two different
wavevectors. For q = qp, this mode has a Gaussian profile
around the waveguide center, whereas far from this point, at
q = 0, the mode decays exponentially away from the edge.

We find that the gauge field and potential are given by

A(z,y;0k) = <—;25/€1 t (i:z + 5”3’ 552\/;5&3) 7

5,€1 + 5’%2 + 6/{3
kit E———— 4
3K (4)

To obtain a Landau-level spectrum, we select A and
V such that (for units in which a = 1)

v

V x A = BZ =const; V =0. (5)

For any selection satisfying the conditions of Egs. (5), the
dynamical matrix in Eq. (2) has the form of the Hamilto-
nian for a Dirac electron in a plane with a constant mag-
netic field B applied perpendicular to that plane [40, 41].
Let us now consider two practical solutions to Eqs. (5):
(i) an externally applied nonuniform pure shear deforma-
tion, and (i) nonuniform patterning of the spring con-
stants along the y-direction.

For case (i), we find the particle displacements
throughout the lattice by substituting Eq. (3) into
Egs. (5) and solving the resulting partial differential
equation: 0,U, + 0,U, = —Bx/2, with the additional
constraint 0,U, = 9,U, = 0, which corresponds to non-
volumetric pure shear deformations. The resulting dis-
placements satisfy: U, = 0 and U, = —Bz?/4. Note that
for the honeycomb lattice, this condition can be realized
using the boundary stresses illustrated in Fig. 1d.

For case (i), we substitute Eqgs. (4) into Egs. (5) to find
the condition \/381(5/{2 — 0K3) — Oy(dk2 + Ok3) = 3kB
for the spatial dependence of the spring constants. We
consider a material uniform along the z-direction. This
condition is satisfied for spring constants given by
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which is visualized in Fig. le.
Mechanical Landau levels. Now that we have proposed
metamaterial architectures that realize the acoustic ana-
log of a constant magnetic field, we go on to explore the
physical consequences of this field for sound waves. To
proceed, we focus on an architecture that is peculiar to
the acoustic context, i.e., we select the realization of a
patterned metamaterial waveguide described by Egs. (6).
Such a quasi-one-dimensional waveguide is uniform along
the z-axis, graded along the y-axis, and is subject to no-
stress boundary conditions on its top and bottom (see
Fig. 1le). The constant pseudo-magnetic field leads to a
Landau-level spectrum for frequencies near wy (Fig. 2a).
Let us focus on the acoustic band corresponding to
the most prominent Landau level: n = 0. In Fig. 2b, this
band is plotted for several values of the pseudo-magnetic
field B; as the pseudo-magnetic field increases, the band
flattens over a larger region in wavevector space, which
leads to an increasing peak in the density of acoustic
states (Fig. 2d). The width of this flat region defines an
inverse length scale /=1, which scales as £=! ~ \/B/a
(Fig. 2¢). This length scale is the acoustic analog of the
magnetic length in a Landau level [39]. An acoustic mode
in a Landau level has a Gaussian profile with a trans-
verse confinement given by ¢ (Fig. 2e¢). The transverse
location of this mode within the waveguide is controlled
by the mode wavenumber g¢,, in contrast to an index-
graded waveguide in which the location is determined
by mode frequency. Consequently, in our case, the loca-
tion of sound at a targeted frequency can be significantly
tuned via the mode wavenumber (Fig. 2e and [39]).
Sublattice-polarized domain wall modes. The n = 0
Landau level at ¢, = gr,» = 27/3a has frequency wg,
is located at the waveguide center, and involves displace-
ments exclusively on one sublattice. Modes with these
properties generically appear in regions across which A,
changes sign, i.e., their local dispersions have Dirac cones
on opposite sides of point K. As an example, we con-
sider a waveguide with two domain walls that separate



m(y)

Sublattice B
amplitude

(d

EIO .--u-unu.‘..“‘.

) : 3

= 0.9 HERAS T

o i o4 S
S ' g ----- > ..........-........-
%OY »>» N=50 00 - 00 -0

3 **Nzloo 0. 'OA.-..-'..-....
= 0.6 f|« « N=150 P Y S
wn oo N =200 H -o o' .--.‘4- ..

0.5 i
0.00 0.05 0.10 0.15 0.20
Disorder strength

FIG. 3: (a) Waveguide with two domain walls separating two
regions with x4 = 0.08 from a central region with y = —0.08.
Bonds are colored according to their spring constants as in
Fig. le. Periodic boundary conditions are applied along x.
(b) Variation of the effective Dirac mass m(y) (dashed line)
and midgap-mode amplitude for ¢, = 27/3a on either sub-
lattice (solid lines). (c) Visualization of midgap mode with
sublattices distinguished, showing strong sublattice polariza-
tion. Each point on the A (B) sublattice is represented by
a green (blue) disc whose area is proportional to the am-
plitude of the midgap mode. (d) Sublattice polarization of
the domain-wall-bound mode in the presence of disorder in
the spring constants [39]. (e) Even in the presence of strong
(14%) disorder, we observe sublattice polarization due to the
topological origin of the mode.

a uniform central region with spring constants set by
u = —0.08 from two regions, one above and one below,
that each have p = 0.08 (Fig. 3a). At ¢, = ¢k, the
spectrum as a function of g, near point K is described
by a gapped 1D Dirac Hamiltonian centered about wg,
with effective mass proportional to A, [39]. The “spin”
degree of freedom corresponds to the two sublattices of
the honeycomb lattice: eigenstates of o, with eigenvalue
+1 involve displacements solely on one sublattice. When
the mass m(y) varies spatially, domain walls at which
m(y) changes sign harbor exponentially localized midgap
modes that are “spin-polarized”, i.e., confined to a single
sublattice [14, 42]. The sublattice on which the mode
is localized is determined by the sign of the change in
mass upon crossing the domain wall. Fig. 3b—c shows

FIG. 4: Single-mode response x of Landau-level states in me-
chanical graphene, including the effect of damping on one sub-
lattice and for pseudo-magnetic field values (a) B = 0.0 and
(b) B = 0.3. Colors correspond to the different Landau-level
bands identified in Fig. 2a. Insets: wavenumber-dependent
attenuation rate n of the corresponding bands. (c) The
steady-state response (for B = 0.3) to external periodic forc-
ing with frequency close to the Dirac frequency and at an edge
that is situated 50 unit cells to the left of the section shown.
Each point is represented by a disc whose area is proportional
to the amplitude of the response. (d) Zoom-in of (c) shows
that the Landau-level mode is selectively enhanced due to the
presence of sublattice-biased damping.

the numerically-obtained midgap mode for the domain
wall geometry in Fig. 3a, whose components on sublat-
tice A (B) fall off exponentially from the top (bottom)
domain wall. The robustness of the sublattice polariza-
tion under disorder in the spring constants is shown in
Fig. 3d-e and is explained in the SI [39].

Selective enhancement. The sublattice polarization of
the Landau-level states can be used to selectively en-
hance these modes under external drive by employing
site-dependent damping. For example, for positive mag-
netic fields, the Landau-level states live only on the A-
sublattice of the honeycomb unit cell [4, 40]. If we in-
troduce damping of the form —~yug into the equation of
motion, Eq. (1), such that only the displacements of the
B-sublattice are damped, then the Landau-level acoustic
waves would not be attenuated, whereas the rest of the
sound waves, which generically are split between the A
and B sublattices, would have a nonzero attenuation [39].
To characterize this selective enhancement, we study the
attenuation rate n(q) as a function of mode wavevector,
as well as the self-response function y(w) which mea-
sures the displacements in response to a drive at fre-
quency w [39]. In Fig. 4a-b, we plot x(w) and n(q) for
the Landau-level bands with —2 < n < 2, in response



to an oscillatory drive that is proportional to the cor-
responding mode displacement vector. In the absence
of the pseudo-magnetic field B, the response is under-
damped, but no mode stands out as having a largest
peak in x (Fig. 4a), whereas for nonzero B, x exhibits a
strong peak at a frequency wg, corresponding to the ze-
roth Landau-level (Fig. 4b). Therefore, when an edge of
the metamaterial is driven near wq, the pseudo-magnetic
field combined with selective damping leads to selective
enhancement of acoustic Landau-level modes (Fig. 4c—d)
relative to the rest of the attenuated acoustic spectrum.
Towards mechanical lasers. This phenomenon is the
acoustic analog of selective enhancement of microwave
modes realized in Ref. [43]. Just as selective enhancement
for light waves may lead to the design of novel parity-
time-symmetric [44, 45] and topological [8] lasers, anal-
ogously, selective enhancement of sound waves may be
useful in the design of sound amplification by stimulated
emission of radiation (SASERs), i.e., the acoustic ana-
log of lasers, acoustic couplers and rectifiers. The design
of such devices [46] would involve acoustic resonators,
acoustic drive, and nonlinearity of response. A potential
architecture for this device may involve resonators at ev-
ery node in the metamaterial, with an external acoustic
source populating the states within each resonator.
Note added. After our work was submitted, we learned
about Ref. [47] that examines Landau levels in metama-
terials composed of acoustic resonant cavities.
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