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4 MORITA COHOMOLOGY

JULIAN V. S. HOLSTEIN

Abstract. We consider two categorifications of the cohomology of a
topological spaceX by taking coefficients in the category of differential
graded categories. We consider both derived global sections of a constant
presheaf and singular cohomology and find the resulting dg-categories
are quasi-equivalent and moreover quasi-equivalent to representations in
perfect complexes of chains on the loop space ofX.

1. Introduction

In this paper we categorify the cohomology of topological spaces by
considering coefficients in the category of differential graded categories.
We begin with the calculation of derived global sectionsRΓ(X, k), for k a
field andX a locally contractible space. By definition these are derived
global sections of a constant sheaf. We categorify by considering the
constant presheafk not as a presheaf of rings, but as a presheaf of dg-
categories with one object, where we equip dg-categories with the Morita
model structure. In this model structurek ≃ Chpe, which is fundamental to
our construction.
Hence we call categorified cohomologyMorita cohomology. We write
H M(X) for the dg-categoryRΓ(X, k) computed with this model structure.
The following characterization as categorifiedČech cohomology follows
once we establish a local model structure on presheaves of dg-categories.

Theorem 16. Given a good hypercover{Ui}i∈I of X one can compute
H M(X) ≃ holimi∈Iop Chpe.

To categorify singular cohomology we recall the action of simplicial sets on
dg-categories, (K,D) 7→ DK. If we fix the second variable this construction
is well-known to give a Quillen adjunction fromsSet to dgCat. Then
for a topological spaceX one defines categorified singular cohomology as
Y (X) ≔ Chpe

Sing* X. HereChpe denotes perfect chain complexes over an
arbitrary commutative ring. We callY (X) the category of∞-local systems
and we prove the following comparison theorem:

Theorem 22. The categoryH M(X) is quasi-equivalent to the category of
∞-local systemsY (X).
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2 JULIAN V. S. HOLSTEIN

Homotopy invariance and a Mayer–Vietoris theorem are easy to establish
for∞-local systems and hence for Morita cohomology.
The categoryY (K) is closely related to the based loop space ofX, as is
shown by the next result. Here we denote byChpe

C∗(ΩX) the category of
representations of the dg-algebraC∗(ΩX) of chains on the space of (Moore)
loops which have perfect underlying complex.

Theorem 26. If X is a pointed and connected topological space, the
categoryY (X) is quasi-equivalent toChpe

C∗(ΩX).

We then establish a method of computingChpe
C∗(ΩX) if X is a CW complex.

One can compute the Hochschild homology of Morita cohomology in
several cases. For example for a simply connected spaceHH∗(H M(X)) ≃
H∗(L X), where the right hand side is cohomology of the free loop space.
This follows from results available in the literature.
Let us also mention here that a very explicit description of Morita
cohomology is proved in the companion paper [16]:

Theorem. Let X be a CW complex. Then the dg-categoryH M(X) is
quasi-equivalent to the dg-category of homotopy locally constant sheaves
of perfect complexes.

All of these results are from the author’s thesis.

Relation to other work. We collect some ideas and results from the
literature which are related to the constructions here and in [16]. This is
not meant to be an exhaustive list.
Our results can be considered as a version of derived or higher non-abelian
cohomology for topological spaces. Cohomology with highercategorical
coefficients is considered for example in [31] where Simpson constructs the
higher non-abelian cohomology stack of the de Rham stack of asmooth
projective variety as a certain internal hom-space in geometric stacks.
Considering a simplicial setK as a constant stack Toën and Vezzosi
construct a derived mapping stack Map(K,RPerf), where RPerf is the
moduli stack of perfect complexes. This appears for examplein [28]. The
construction of∞-local systems in Section 4 is a non-geometric version
of this, which is already somewhat interesting and more tractable then the
mapping stack.
Morita cohomology is also closely related to the schematic homotopy type
of [20]. In fact, Morita cohomology is equivalent to the category of perfect
complexes on the schematic homotopy type, as follows readily from the
characterization as homotopy locally constant sheaves. (This was pointed
out to me by Jon Pridham.) For a different view of the schematic homotopy
type see [29].
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There is an analogue of the main theorem of [16] in the coherent setting:
Under suitable conditions global sections of the presheaf of dg-categories
associated to the structure sheaf of a scheme can be computedas the
category of perfect complexes of coherent sheaves. This appears for
example as Theorem 2.8 in [32] referring back to [15].
The equivalence between∞-local systems and homotopy locally constant
sheaves that is obtained by combining this paper with [16] isa linear and
stable version of results in [35] or [30], where the corresponding result
for presheaves of simplicial sets is proved by going via the category of
fibrations. Another view on locally constant functors is given in [5].

Outline. After briefly recalling some technical results and definitions in
Section 2 we define a local model structure on presheaves of dg-categories
and define their cohomology in 3.1. We also characterize fibrant presheaves
of dg-categories as hypersheaves. We then explicitly hypersheafify the
constant presheaf in 3.2 and use this to define Morita cohomologyH M(X)
and compute it as the homotopy limit of a constant diagram with fiberChpe

indexed by the distinct open sets of a good hypercover.
In Section 4 we define a category of∞-local systems from the cotensor
action of simplicial sets on dg-categories, and show it es equivalent to
H M(X) in 4.1. We use this to identifyH M(X) with representations
of chains on the loop space, in 4.2. Section 4.3 is then concerned
with providing an explicit method for computing the category of ∞-local
systems. In 4.4 we collect some results about finiteness ofH M(X) and
show how to compute Hochschild (co)homology in some cases.
We conclude by computing some explicit examples in Section 5.

Acknowledgements. I would like to thank Ian Grojnowski for many
insightful comments and stimulating discussions.

2. Preliminaries

2.1. Notation and conventions. We assume the reader is familiar with the
theory of model categories, but will try to recall all the less well-known
facts about them that we use.
In any model category we writeQ for functorial cofibrant replacement and
R for functorial fibrant replacement. We write mapping spaces(with values
in sSet) in a model categoryM as MapM (X,Y). All other enriched hom-
spaces in a categoryD will be denoted as Hom

D
(X,Y). In particular we use

this notation for differential graded hom-spaces, internal hom-spaces and
hom-spaces of diagrams enriched over the target category. It should always
be clear from context which category we enrich in.
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We will work over the (underived) commutative ground ringk. We assume
characteristic 0 in order to freely use differential graded constructions. Most
of Section 3 will moreover assumek is a field.
Ch = Chk will denote the model category of chain complexes over the
ring k equipped with the projective model structure where fibrations are the
surjections and weak equivalences are the quasi-isomorphisms. Note that
we are using homological grading convention, i.e. the differential decreases
degree. We writeChpe for the subcategory of compact objects inCh, these
are exactly the perfect complexes.
Chdg denotes the dg-category whose object are fibrant and cofibrant objects
of Ch. Note that there is a natural identification of the subcategory of
compact objects inChdg with Chpe.

2.2. Differential graded categories.We recall some important definitions
and results about dg-categories. Basic references are [21]and [37]. Many
technical results are proved in [33].
Let dgCat denote the category of categories enriched inCh. Given
D ∈ dgCat we define the homotopy categoryH0(D) as the category with
the same objects asD and HomH0(D)(A, B) = H0Hom

D
(A, B). If D is a

model category enriched inCh we defineLD as its subcategory of fibrant
cofibrant objects. We sayD is a dg-model category if the two structures
are compatible, that is if they satisfy the pushout-productaxiom, see for
example the definitions in Section 3.1 of [37]. ThenHo(D) ≃ H0(LD),
where we take the homotopy category in the sense of model categories on
the left and in the sense of dg-categories on the right.
Recall that there are two model structures ondgCat. Firstly there is the
Dwyer–Kan model structure, denoteddgCatDK.
Recall the functorD 7→ D-Mod sending a dg-category to its model
category of modules, i.e.D-Mod is the category of functorsD → Ch and
strict natural transformations. This is naturally a cofibrantly generated
model category enriched inCh whose fibrations and weak equivalences are
given levelwise. We usually consider its subcategory of fibrant and cofibrant
objects,L(D-Mod).

Remark1. The construction of the model categoryD-Mod follows Chapter
11 of [14], but there are some changes since we are considering enriched
diagrams. We sketch the argument here for lack of a reference. Let I and
J denote the generating cofibrations and generating trivial cofibrations of
Ch. The generating (trivial) cofibrations ofD-Mod are then of the form
hX⊗A→ hX⊗B for A→ B ∈ I (resp.J), wherehX denotes the contravariant
Yoneda embedding. As in Theorem 11.6.1 of [14] we transfer the model
structure fromChdiscrete(D). This works sincehX is compact inD-Mod
and so are its tensor products with the domains ofI , ensuring condition
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(1) of Theorem 11.3.2 holds. For the second condition we haveto check
that relativeJ ⊗ hX-cell complexes are weak equivalences. Pushouts are
constructed levelwise. The generating trivial cofibrations of Ch are of the
form 0→ D(n). Since the pushoutU ← 0→ D(n) is weakly equivalent to
U we are done.

Remark2. In order to satisfy the smallness assumption we will always
assume that all our dg-categories are small relative to somelarger universe.

The homotopy category of the model categoryLDop-Mod is called the
derived category ofD and denotedD(D).

Definition. We denote bydgCatMor the category of dg-categories with the
Morita model structure, i.e. the Bousfield localization ofdgCatDK along
functors that induce equivalences of the derived categories, see Chapter 2
of [33].

Fibrant objects indgCatMor are dg-categoriesA such that the homotopy
category ofA is equivalent (via Yoneda) to the subcategory of compact
objects ofD(A ) [21]. We can phrase this as: every compact object is quasi-
representable. An objectX ∈ D(A ) is calledcompactif HomD(A )(X,−)
commutes with arbitrary coproducts. We denote by ()pe the subcategory of
compact objects. Morita fibrant dg-categories are also called triangulated
since their homotopy category is an (idempotent complete) triangulated
category.
With these definitionsD 7→ L(Dop-Mod)pe, often denoted thetriangulated
hull, is a fibrant replacement, for examplek 7→ Chpe.
The categorydgCat is symmetric monoidal with tensor productD⊗E given
as follows. The objects are ObD × ObE and Hom

D⊗E
((D,E), (D′,E′)) ≔

Hom
D

(D,D′) ⊗ Hom
E
(E,E′). The unit is the one object categoryk, which

is cofibrant in either model structure.
While dgCat is not a monoidal model category there is a derived
internal Hom space and the mapping spaces indgCatMor can be
computed as follows [36]: LetRHom(C ,D) be the dg-category of right-
quasirepresentableC ⊗Dop-modules, i.e. functorsF : C ⊗Dop→ Ch such
that for anyc ∈ C we have thatF(c,−) is isomorphic in the homotopy
category to a representable object inDop-Mod and moreover cofibrant.
Then RHom is right adjoint to the derived tensor product⊗L. Moreover
Map(C ,D) is weakly equivalent to the nerve of the subcategory of quasi-
equivalences inRHom(C ,D). We will quote further properties of this
construction as needed.
We will need the following lemma relating the two model structures. It
follows sincedgCatMor is a left Bousfield localization, hence the derived
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functor of the identity, given by fibrant replacement, preserves homotopy
limits.

Lemma 1. Fibrant replacement as a functor fromdgCatMor to dgCatDK

preserves homotopy limits.

This means we can compute homotopy limits indgCatMor by computing
the homotopy limit of a levelwise Morita-fibrant replacement in dgCatDK.
We will abuse notation and writeR for the dg-algebraR as well as for the
1-object dg-category with endomorphism spaceRconcentrated in degree 0.
Recall that there is a model structure on differential graded algebras overk
with unbounded underlying chain complexes, which can be considered as
the subcategory of one-object-categories indgCatDK.

Remark3. While we are working with differential graded categories we
are facing some technical difficulties for lack of good internal hom-spaces.
It would be interesting to know if another model of stable linear (∞, 1)-
categories, e.g. [26], could simplify our treatment.

2.3. Simplicial resolutions. Model categories are naturally models for∞-
categories and in fact have a notion of mapping spaces. Even if a model
category is not enriched insSetone can define mapping spaces inHo(sSet).
One way to do this is by defining simplicial resolutions, which we will make
extended use of. Since this construction is crucial to our results we recall it
here.
Let ∆ be the simplex category and consider the constant diagram functor
c: M → M ∆op

. Then asimplicial resolution M∗ for M ∈ M is a fibrant
replacement forcM in the Reedy model structure onM ∆op

. (For a definition
of the Reedy model structure see for example Chapter 15 of [14].)
For example, this construction allows one to compute mapping spaces: If
cB→ B̃ is a simplicial resolution inM ∆op

andQA a cofibrant replacement
in M then Map(A, B) ≃ Hom∗(QA, B̃) ≃ R(Hom∗(−, c−)), where the right-
hand side uses the bifunctor Hom∗ : M op ×M ∆op

→ Set∆
op

that is defined
levelwise. The dual notion is acosimplicial resolution.
Recall that V is a symmetric monoidal model categoryif it is both
symmetric monoidal and a model category and the structures are
compatible, to be precise they satisfy the pushout-productaxiom, see
Definition 4.2.1 in [18]. This means in particular that tensor and internal
Hom give rise to Quillen functors. We then call the adjunction of two
variables satisfying the pushout-product axiom aQuillen adjunction of two
variables.
Similarly amodelV -categoryM is a model categoryM that is tensored,
cotensored and enriched overV such that the pushout product axiom holds.
We call a modelCh-category adg-model category.
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For example a modelsSet-category, better known as asimplicial model
category, M consists of the data (M ,Map,⊗,map) where the enrichment
Map: M op × M → sSet, the cotensor (or power) map:sSetop ×

M → M and the tensor⊗ : sSet× M → M satisfy the obvious
adjointness properties (in other words, they form an adjunction of two
variables). Here the pushout-product axiom says that the natural map
f�g: A⊗ L ∐A⊗K B⊗ K → B ⊗ L is a cofibration if f and g are and is
acyclic if f or g is moreover acyclic.
While not every model category is simplicial, every homotopy category
of a model category is enriched, tensored and cotensored inHo(sSet).
In fact, M can be turned into a simplicial category in the sense that
there is an enrichment Map and there are a tensor and cotensorwhich
can be constructed from the simplicial and cosimplicial resolutions. Let a
cosimplicial resolutionA∗ ∈M ∆ and a simplicial setK be given. Consider
∆K, the category of simplices ofK, with the natural mapu: ∆K → ∆

sending∆[n] 7→ K to [n]. We defineA∗⊗K = colim∆K An to be the image of
A∗ under colim◦ u∗ : C ∆ → C ∆K → C . Similarly there isAK

≔ map(K,A)
which is the image of the simplicial resolutionA∗ ∈ M ∆op

under lim◦ v∗,
wherev: ∆Kop→ ∆op. This can also be written asAK = limn(

∏

Kn
An).

If M is a simplicial category one can use (RA)∆
n

for An and (QA) ⊗ ∆n for
An.

Remark 4. Note that AK can also be written as a homotopy limit,
holim∆Kop An. This follows for example from Theorem 19.9.1 of [14], the
conditions are satisfied by Propositions 15.10.4 and 16.3.12.

The functor (A,K) 7→ AK is adjoint to the mapping space construction
A, B 7→ Hom(QB,A∗) ∈ sSet. Similarly (B,K) 7→ B ⊗ K is adjoint to
the mapping space constructionA, B 7→ Hom(B∗,RA) ∈ sSet, see Theorem
16.4.2 in [14]. Hence on the level of homotopy categories thetwo bifunctors
together with Map give rise to an adjunction of two variables. This is of
course not a Quillen adjunction, but it is sensitive enough to the model
structure to allow for certain derived functors. We will quote further results
about this construction as needed.

2.4. Homotopy ends. We will freely use homotopy limits in model
categories, see [14] for background. Since they are less well-treated in the
literature we recall the construction ofhomotopy endsof bifunctors. Recall
that an end is a particular kind of limit. Letα(I ) denote thetwisted arrow
categoryof I : Objects are arrows,f : i → j, and morphisms are opposites
of factorizations, i.e. (f : i → j) ⇒ (g: i′ → j′) consists of mapsi′ → i
and j → j′ such that their obvious composition withf equalsg. Then
there are natural mapss andt (for source and target) fromα(I ) to Iop andI
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respectively. For a bifunctorF : Iop× I → C one defines the end
∫

i
F(i, i) to

be limα(I)(s× t)∗F. Then the homotopy end is:
∫ h

i
F(i, i) ≔ holim

α(I)
(s× t)∗F

Details on this view on homotopy ends can be found (dually) in[19].
The canonical example for an end is that natural transformations fromF to
G can be computed as

∫

A
Hom(FA,GA). A similar example of the use of

homotopy ends is provided by the computation of mapping spaces in the
diagram category of a model category Map(A•, B•) ≃

∫ h

i
Map(Ai , Bi). The

case of simplicial sets is dealt with in [12].
In general, we have the following lemma. AssumeM I exists with the
injective model structure and letQ and R denote cofibrant and fibrant
replacement in this model category.

Lemma 2. Consider a right Quillen functor H: M op ×M → V . Then
there is a natural Quillen functor(F,G) →

∫

i
H(Fi,Gi) from (M I )op ×M I

to V whose derived functor is

(F,G) 7→
∫

i
H(QFi,RGi)

which is weakly equivalent to

(F,G) 7→
∫ h

i
RH(Fi,Gi)

Proof. The V -structure exists by standard results in [22]. It is in fact a
modelV -category. One can check the pushout-product axiom levelwise;
this is enough as cofibrations are defined levelwise. Hence the derived
functor is (F,G) 7→

∫

i
H(QFi,RGi).

On the other hand
∫

i
H(Fi,Gi) is the composition of levelwise hom-spaces

with the limit,

lim ◦ Hα(I) ◦ (s× t)∗ : (M I )op ×M
I → (M op ×M )α(I) → V

α(I) → V

But then the derived functor is the composition of derived functors,
∫ h

i
RH(Fi,Gi).

This is a little subtle, since our aim is to avoid fibrantly replacing at the
level of diagram categories. However, the levelwise derived functor RH
from (M op)I ×M I to V α(I) is a derived functor. This is the case since
levelwise fibrant replacement gives a right deformation retract in the sense
of 40.1 in [11] since (s× t)∗ preserves all weak equivalences and levelwise
H preserves weak equivalences between levelwise fibrant objects. �
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Remark5. A slight modification of the lemma implies the formula for
mapping spaces. We just have to replaceH by Hom∗ : M op×M ∆op

→ sSet
and adjust the proof accordingly.

3. Morita Cohomology

3.1. Cohomology of presheaves of model categories.In this section we
define what we mean by cohomology of a presheaf with coefficients in a
model category. We also prove two technical results that areneeded for the
computation of Morita cohomology in the next section.
Let us assumeM is a cellular and left proper model category. The case we
are interested in isM = dgCatMor over a fieldk. It follows from [17] that
dgCat with the Morita or the Dwyer-Kan model structure is cellularand is
left proper if the ground ring is a field.
We will consider the categoryM J of presheaves on a categoryJop with
values in a model categoryM . If M is left proper and cellular then so
is M J. We will denote byM J

pro j the projective model structure onM J

with levelwise weak equivalences and fibrations, and whose cofibrations
are defined by the lifting property. IfM is cofibrantly generated this is
well-known to be a model structure, which is cellular and left proper ifM J

is.
We are interested in enriching the model categoryM J

pro j. Let us start
by recalling the case where the construction is straightforward. Let V
be a monoidal model category and assume that it has a cofibrantunit.
V = sSet,Ch are examples. Then ifM is a modelV -category, then it
is easy to check that so isM J. In particular ifM is monoidal thenM J

is a modelM -category. We can write Homfor the enriched hom-spaces,
and the functor Hom: (M J)op ×M J → M is right Quillen and there is
a derived functorRHom obtained by fibrant and cofibrant replacement, see
Lemma 2
If M is monoidal and a model category, but not a monoidal model category,
then we can still construct anM -enrichment ofM J

pro j as a plain category,
which will of course not be a model category enrichment. We define
HomMJ(A, B) =

∫

j
Hom(A( j), B( j)), see [22].

Note that this enrichment is not in general derivable, i.e. weak equivalences
between cofibrant and fibrant pairs of objects do not necessarily go to weak
equivalences. So defining a suitable substitute forRHom takes some care,
see the proof of Lemma 6.
We have to consider this case since our example of interest isM = dgCat,
which a symmetric monoidal category and a model category, see [37], but
not a symmetric monoidal model category. (The tensor product of two
cofibrant objects need not be cofibrant.)
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Now fix a locally contractible topological spaceX, for example a CW
complex, and consider presheaves onOp(X). We consider the Grothendieck
topology induced by the usual topology onX and write the site as
(SetOp(X)op

, τ). In other wordsτ is just the collection of maps represented by
open covers. (We will not use any more general Grothendieck topologies
or sites.) We letJ = Op(X)op. Our aim is to localize presheaves onOp(X)
with respect to covers inτ.
Recall that aleft Bousfield localizationof a model categoryN at a set
of maps S is a left Quillen functorN → NS that is initial among
left Quillen functors sending the elements ofS to isomorphisms in the
homotopy category. We need to know that left Bousfield localizations of
M I exist.

Lemma 3. AssumeN is a cellular and left proper model category and let
S be a set of maps. ThenNS exists. The cofibrations are equal to projective
cofibrations, weak equivalences between are S -local weak equivalences
and fibrant objects are S -local objects.

Proof. This is Theorem 4.1.1 of [14]. �

Recall for future reference that an objectP is S-local if it is fibrant inN

and every f : A → B ∈ S induces a weak equivalence MapN (B,P) ≃
MapN (A,P). A mapg: C→ D is anS-local weak equivalence if it induces
a weak equivalence MapN (D,P) ≃ MapN (C,P) for everyS-local P.
Given a setN we write N · M ≔ ∐NM ∈ M for the tensor overSet and
extend this notation to presheaves.

Definition. Let M J
τ ≔ (M J

pro j)Hτ
denote the left Bousfield localization of

M J
pro j with respect to

Hτ = {S · 1M → hW · 1M | S→ hW ∈ τ}

Hereh− denotes the covariant Yoneda embeddingX 7→ Hom(−,X).

We have assumedM and henceM J is cellular and left proper. SinceHτ is
a set the localizationM J

τ exists.
We have now localized with respect toČech covers. We are interested in
thelocal model structurewhich is obtained by localizing at all hypercovers.

Remark6. By way of motivation see [9] for the reasons that localizing at
hypercovers gives the local model structure on simplicial presheaves, i.e.
weak equivalences are precisely stalk-wise weak equivalences.

Definition. A hypercoverof an open setW ⊂ X is a simplicial presheafU∗
on the topological spaceW such that:
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(1) For alln ≥ 0 the presheafUn is isomorphic to a disjoint union of a
small family of presheaves representable by open subsets ofW. We
can writeUn = ∐i∈InhU (i)

n
for a setIn where theU(i)

n ⊂W are open.

(2) The mapU0→ ∗ is in τ, i.e. theU(i)
0 form an open cover ofW.

(3) For everyn ≥ 0 the mapUn+1 → (cosknU∗)n+1 is in τ. Here
(cosknU)n+1 = MW

n U is the n-th matching object computed in
simplicial presheaves overW.

Intuitively, the spaces occurring inU1 form a cover for the intersections of
theU(i)

0 , the spaces inU2 form a cover for the triple intersections of theU(i)
1

etc. To everyČech cover one naturally associates a hypercover in which all
Un+1 → (cosknU∗)n+1 are isomorphisms.
Note that despite the notationUn is not an open set but a presheaf on open
sets that is a coproduct of representables.
We denote byI = ∪In the category indexing the representables making up
the hypercover. Associated to any hypercover of a topological space is the
simplicial spacen 7→ ∐i∈InU

i
n which is also sometimes called a hypercover.

Hypercovers are naturally simplicial presheaves. We work with presheaves
with values in a more general model category. The obvious wayto associate
to a simplicial object in a model category a plain object is totake the
homotopy colimit.

Definition. Let the set ofhypercovers inM J be defined as

Ȟτ = {hocolim
I

(U∗ · 1M )→ hW · 1M | U∗ → hW a hypercover}

where we take the levelwise tensor and the homotopy colimit in M J

with the projective model structure. Since disjoint union commutes with
cofibrant replacement we could equivalently take the limit of Un over∆op,
the opposite of the simplex category.

Remark7. Note that the homotopy colimit does not change if instead we
use the localised model structureM J

τ .

Definition. Let the left Bousfield localization ofM J
τ at the hypercoveršHτ

be denoted byM J
τ̌

and call it thelocal model structure.

The localization exists just as before. The fibrant objects are theȞτ-local
objects ofM J.
Note that Hom(hW,F ) ≃ F (W) if the model structure onM J is enriched
overM . So we sometimes write hypercovers as if they are open sets. For
example given a hypercoverU∗ and a presheafF ∈ M J we writeF (Un)
for Hom(Un,F ) etc. In particularF (Un) = F (∐iU

(i)
n ) ≔

∏

i F (U(i)
n ).

To compute cohomology we need to compute the derived functorof global
sections. First we need to know that pushforward is right Quillen. The
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arguments in the proofs of the following two lemmas are Propositions 1.22
and 3.37 in [2], we repeat them for the reader’s convenience.

Lemma 4. Consider a map r: C → D of diagrams and a model category
M. Then there is a Quillen adjunction r! : MC

pro j ⇄ MD
pro j : r∗.

Proof. We definer∗ by precomposition. Thenr ! exists as a Kan extension.
Clearlyr∗ preserves levelwise weak equivalences and fibrations. �

Lemma 5. Given any map r: (C, τ) → (D, σ) that preserves covers and
hypercovers we get a Quillen adjunction r! : MC

τ̌
⇄ MD

σ̌
: r∗. The same

adjunction works if we only localize with respect toČech covers.

Proof. To prove the result for the localization with respect to covers we use
the universal property of localization applied to the mapMC → MD → MD

σ

which is left Quillen and sends hypercovers to weak equivalences and hence
must factor throughMC → MC

τ in the category of left Quillen functors,
giving rise tor ! ⊢ r∗.
To prove the result for the localization at hypercovers we repeat the same
argument forMC

τ → MC
τ̌

etc. �

Consider now locally contractible topological spacesX andY with sites of
open sets (Op(X), τ) and (Op(Y), σ). Given a mapf : X → Y consider
f −1 : (Op(X), τ) → (Op(Y), σ). Then f∗ ≔ ( f −1)∗ and by the above it is a
right Quillen functor.
As usual we writeΓ or Γ(X,−) for (πX)∗ whereπX : X→ ∗.

Definition. Let C be a presheaf with values in a model categoryM and let
C # be a fibrant replacement forC in the local model categoryM J

τ̌
defined

above. Then we define global sections as

RΓ(X,C ) = C
#(X)

In Section 3.2 we will computeC # if C is constant.
Since a hypersheaf satisfiesF (X) = holimi F (Ui) for some cover{Ui} we
can also think of global section as a suitable homotopy limit. A concise
formulation of this will be given in Theorem 16.

Definition. Consider the presheafk that is constant with valuek ∈ dgCat
and letk# be a fibrant replacement fork. Then we defineMorita cohomology
as

RΓ(X, k) ≔ RΓ(X,Chpe) = k#(X)

in Ho(dgCatMor). We writeH M(X) ≔ RΓ(X, k).

One can also consider the version with unbounded fibers,RΓ(X,Ch).

Remark8. As usualRΓ(∅, k) ≃ 0, the terminal object ofdgCat.
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Remark9. The term cohomology is slightly misleading as our construction
corresponds to the underlying complex and not the cohomology groups. It is
an interesting question whether there is an analogue to taking cohomology
and how it relates for example to semi-orthogonal decomposition as defined
in [4].

We finish this section with two lemmas on the fibrant objects and weak
equivalences in the local model structure.

Definition. We call a presheafF ahypersheafif it satisfies

(1) F (W) ≃ holim
Iop

F (U∗) for every hypercoverU∗ of every openW ⊂ X

The limit is overIop = ∪In; we could write it holimn holimi∈In F (U(i)
n ) which

can be considered as holimn∈∆F (Un) using the convention above. This
condition is also calleddescentwith respect to hypercovers.

For the next Lemma we needM to have a certain homotopy enrichment
over itself. For simplicity we specialise toM = dgCatMor.

Lemma 6. Levelwise fibrant hypersheaves are fibrant in the above model
structure.

Proof. We need to show that for a levelwise fibrant presheafF the
hypersheaf condition onF implies thatF is Ȟτ-local, i.e. that whenever
ǫ : hocolim(U∗ · 1)→ hW · 1 is in Ȟτ then Map(hocolim(U∗ · 1),F ) ≃
Map(hW · 1,F ). We will show that both sides are weakly equivalent to
MapdgCatMor

(1,F (W)).
We need a suitable derived hom-space between hypersheaves of dg-
categories with values in dg-categories. We defineRHom′(A•, B•) ≔
∫ h

V
RHom(AV, BV), whereRHom is Toën’s internal derived Hom of dg-

categories.
First note that

RHom′(hW · 1,F ) ≃
∫ h

V⊂W
RHom(1,F (V)) ≃ holim

V⊂W
F (V)

The first weak equivalence holds sincehW(V) is just the indicator function
for V ⊂ W and the second since the homotopy end over a bifunctor that is
constant in the first variable degenerates to a homotopy limit, by comparing
the diagrams. Then we observe holimV⊂W F (V) ≃ F (W) if F satisfies the
hypersheaf condition.
We claim that this implies Map(hW · 1,F ) ≃ Map(1,F (W)). Note that
in dgCat we have Map(A, B) ≃ Map(1,RHom(A, B)), see Corollary 6.4
in [36]. Moreover the mapping space in diagram categories isgiven by a
homotopy end, see Lemma 2.
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Putting these together we see Map(A•, B•) =
∫ h

V
Map(1,RHom(AV, BV)).

Then the claim follows since Map(1,−) commutes with homotopy limits
and hence homotopy ends.
Similarly we have

Map(hocolim
i

(Ui · 1),F ) ≃ holim
i

Map(1,RHom′(Ui · 1,F ))

≃ Map(1, holim
i

holim
V⊂Ui

F (V))

which is Map(1,F (W)) again by applying the hypersheaf condition
twice. �

Remark10. The theory of enriched Bousfield localizations from [2] says
that in the right settingM J

τ̌
is an enriched model category and fibrant

objects are precisely levelwise fibrant hypersheaves. However, this theory
requires that we work with a categoryM that is tractable, left proper
and a symmetric monoidal model category with cofibrant unit.The
characterization of fibrant objects in particular depends on the enriched
hom-space being a Quillen bifunctor. WhiledgCatMor is left proper and
equivalent to a combinatorial and tractable subcategory, cf. [17], it is well-
knowndgCatMor is not symmetric monoidal. Tabuada’s equivalent category
Lp of localizing pairs has a derivable internal Hom object, butis not a
monoidal model category either. In fact, tensor product with a cofibrant
object is not left Quillen. Consider the dg-categoryS (0) that is the
linearization ofa → b. The exampleS (0) ⊗ S (0) in dgCat gives rise
to

(∅ ⊂ S (0))⊗ (∅ ⊂ S (0)) ≃ (∅ ⊂ S (0)⊗S (0))

which is again a tensor product of cofibrant objects that is not cofibrant.
Then Hom(S (0),−) cannot be Quillen either.

Lemma 7. Let M = dgCat. Assume that for two presheavesF andF ′

there is a hypercover V∗ on whichF andF ′ agree and which restricts to a
hypercover of W for every open W. ThenF andF ′ are weakly equivalent
in M J

τ̌
.

Proof. We need to show that there is aȞτ-local equivalence betweenF and
F ′, i.e. MapM J(F ,G ) ≃ MapM J(F ′,G ) for any fibrantG.
Specifically, we consider setsV in the hypercover of agreement contained in
W. Then we know Map(F (V),G (V)) ≃ Map(F ′(V),G (V)). To compute
Map(F ,G ) =

∫ h

W
Map(F (W),G (W)) note that the homotopy end can be

computed as follows:
∫ h

W
Map(F (W),G (W)) ≃

∫

Hom((Q∗F )(W),RG (W))
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Here we use fibrant replacement and a cosimplicial resolution in M J.
But now holimV G (V) = limV RG (V) by fibrancy of the diagramRG .
So it suffices to consider

∫

W
Hom(Q∗F(W),RG (W)) where RG (W) =

limV⊂W RG (V)). But an end is just given by the collection of all compatible
maps, and every map fromQiF (W) to RG (W) is determined by the maps
from QiF (W) to RG (V), which factor throughQiF (V). So the end over
theV is the same as the end over allW and

Map(F ,G ) ≃
∫

V
Hom(Q∗F (V),RG (V))

≃

∫

V
Hom(Q∗F ′(V),RG (V)) ≃ Map(F ′,G )

This completes the proof. �

Remark11. If M is a symmetric monoidal model category then by Remark
10 fibrant objects are precisely levelwise fibrant hypersheaves and are again
determined on a hypercover and Lemma 7 holds again.

3.2. Sheafification of constant presheaves.Our aim now is to compute a
hypersheafification of the constant presheaf with values in amodel category.
Recall thatX is a locally contractible topological space and that we have
fixed a model categoryM that is cellular and left proper. We now assume
that M is moreover homotopy enriched over itself and has a cofibrant
unit. We will also need that the derived internal hom-space commutes with
homotopy colimits.
The example we care about isM = dgCatMor. The fact that
holimRHom(Ai , B) ≃ RHom(hocolimAi , B) in dgCat follows from
Corollary 6.5 of [36]. The one object dg-categoryk is a cofibrant unit.
We writeP for the constant presheaf with fiberP ∈M .
First we need to quote two lemmas about comparing homotopy limits.
Given a functorι : I → J, recall the natural mapej : ( j ↓ ι) → J from
the undercategory, sending (i, j → ι(i)) to ι(i).

Lemma 8. Let ι : I → J be a functor between small categories such that for
every j∈ J the overcategory(ι ↓ j) is nonempty with a contractible nerve
and let X: J →M be a diagram. Then the mapholimJ X → holimI ι

∗X is
a weak equivalence.

Lemma 9. Let ι : I → J be a functor between small categories and let
X : J → M a diagram with values in a model category. Suppose that the
composition

X j → lim
( j↓ι)

e∗j (X) → holim
( j↓ι)

e∗j (X)

is a weak equivalence for every j. Then the natural mapholimJ X →
holimI ι

∗X is a weak equivalence.
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Proofs . For topological spaces these are Theorems 6.12 and 6.14 of [8] and
the proofs do not depend on the choice of model category. �

We will also rely on the following results from [10]. The firststatement is
Theorem 1.3 and the second is a corollary of Proposition 4.6 as any basis is
a complete open cover.

Proposition 10. Consider a hypercover U∗ → X of a topological space
as a simplicial space. Then the mapshocolimU∗ → |U∗| → X are weak
equivalences inTop.

The colimit here is over the category∆op, but recall that hocolim∆op Un ≃

hocolimI U i
n.

Proposition 11. Consider a basisU of a topological space X as a simplicial
space. Then the maphocolimU∈UU → X is a weak equivalence inTop.

Let X be locally contractible. Then we can define the (nonempty) set {Us}s∈S
of all bases of contractible sets forX.

Definition. Fix a basis of contractible setsUs for X. Let P be a constant
presheaf with fiberP ∈M and define a presheafL s

P by

L
s

P(U) = holim
V⊂U,V∈Us

RP(V)

whereP → RP is a fibrant replacement inM . Denote the natural map by
λ : P→ L s

P. The restriction maps are induced by inclusion of diagrams.

We will be interested inL s
k ≃ L s

Chpe
.

This construction proceeds via constructing rather large limits, so even the
value ofL s on a contractible set is hard to make explicit.
The following lemma is the first step towards showing that ourconstruction
does indeed give a hypersheaf.

Lemma 12. Consider a constant presheaf Pwith fibrant fiber P∈ M on
Op(X). Then on any contractible set U⊂ Op(X) we haveL s

P(U) ≃ P.

Proof. ConsiderU as a category. We need to show that holimUop P ≃ P.
The crucial input is that the weak equivalencesV → ∗ give rise to
U ≃ hocolimV⊂U V ≃ hocolimU ∗ via Proposition 11.
Now consider anyN ∈M and a cosimplicial resolutionN∗. Then we have
the functorK 7→ N ⊗ K defined in the introduction which is left Quillen, as
is shown in Corollary 5.4.4 of [18]. Hence it preserves homotopy colimits
and we have:

N = N ⊗ hocolim
U

∗ ≃ hocolim
U

(N ⊗ ∗) = hocolim
U

N
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Finally, we use the fact thatM has internal hom-spaces. ReplaceN above
be the cofibrant unit. Then we conclude:

holim
U∈Uop

P(U) ≃ holim
Uop

RHom(1,P(U))

≃ holim
Uop

RHom(1(U),P) ≃ RHom(hocolim
U

1,P)

≃ RHom(1,P) ≃ P

In the second line we use the fact thatRHom(−,P) sends homotopy colimits
to homotopy limits. �

Proposition 13. For two choicesUt and Us there is a chain of quasi-
isomorphisms betweenL t

P and L s
P. Hence there is a presheafLP well

defined in the homotopy category.

Proof. By considering the union of ofUs andUt it suffices to show the result
if Ut is a subcover ofUs. By Lemma 9 it then suffices to fixUi ∈ U

t and
check that holimi/ι P ≃ P where ι is the natural inclusion map. But the
arrow category stands for the opposite of the category of allthe elements
of Us contained inUi. These form a basis and hence the homotopy limit is
given be Lemma 12. �

Proposition 14. For any choice ofUs the presheafL s
P is fibrant, i.e. it is

Ȟ-local.

Proof. By Lemma 6, it is enough to showL s
P is levelwise fibrant

(immediate from definition) and satisfies the hypersheaf condition.
Given a hypercover{Wi}i∈I of U we may assume that any element ofUs

is a subset of one of theWi. Then we consider for everyi the basis of
contractiblesUs(i) for Wi of elements ofUs that are contained inWi. We
obtain the following:

holim
Iop

L
s

P(Wi) ≃ holim
i∈Iop

holim
U∈Us(i)op

P(U)← holim
U∈Usop

P(U)

And our aim is to show the arrow on the right is a weak equivalence.
By consideringRHom(1 ⊗ hocolim∗,P) as in the proof of Lemma 12 it
suffices to show hocolimi∈I hocolimV∈Us(i) V → hocolimU∈Us U is a weak
equivalence. But if we apply Proposition 11 this is weakly equivalent to
hocolimi∈I Wi → X, which is a weak equivalence by Proposition 10. �

If X is locally contractible then it has a basis of contractible open sets.
Moreover one can associate a hypercover to any basis. For details on the
construction see Section 4 of [10] and note that a basis is a complete cover.

Proposition 15. If P is constant then the natural mapP → LP is a weak
equivalence of presheaves.
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Proof. To show thatL resolvesP it is enough to observe thatLP(U) ≃
P for contractibleU by Lemma 12. Now the contractible opens give rise to
a hypercover on whichP andLP agree and that restricts to a hypercover
on every open set. By Lemma 7 that suffices to prove the proposition. �

With Proposition 15 we can computeRΓ(X,P) asLP(X). Note that since
we have not used functorial factorization this is not a functor on the level of
model categories but only on the level of homotopy categories.

Definition. We will call a cover in (SetOp(X)op
, τ) a good coverif all its

elements and all their finite intersections are contractible. Correspondingly
a good hypercoveris a hypercover such that all its open setsU(i)

n are
contractible.

We will now consider a good hypercover{Ui}i∈I . For computations it is
easier not to consider the full simplicial presheaf given byopen sets in
the cover but only the semi-simplicial diagram of nondegenerate open sets,
obtained by leaving out identity inclusions.

Theorem 16. Let U∗ → hX be a good hypercover of a topological space X.
Let Pbe a constant presheaf on X. Then RΓ(X,P) ≃ holimIop P ≃ holimIop

0
P

where I0 indexes the distinct contractible sets of U∗.

Proof. We consider a fibrant replacementLP as in Definition 3.2. LetI
index the connected open sets ofU∗. Then we have:

RΓ(X,P) ≃ LP(X) ≃ holimLP(U∗)

≃ holim
Iop

LP(U(i)
n ) ≃ holim

Iop
P

Here we use Lemma 12 to identifyLP(U(i)
n ) andP. Now considerι : Iop

0 ⊂

Iop and note that all the overcategoriesι ↓ i are trivial (any i ∈ I is
isomorphic to somej ∈ I0) so by Lemma 8 we have

RΓ(X,U) ≃ holim
Iop
0

P �

Remark12. Note that we can of course take the hypercover associated to
a Čech cover in this theorem. In fact, since we are concerned with locally
constant presheaves we could also compute in theČech model structure, but
considering hypercovers simplifies the theory.

We conclude this section with some results on functoriality.

Lemma 17. Let f : X → Y be a continuous map and let PX or Y denote the
constant presheaf with fiber P on X or Y. Then RΓ(X,P) ≃ RΓ(Y,R f∗(P)).

Proof. The fact thatRΓ◦R f∗ ≃ RΓ follows immediately fromπY,∗◦ f∗ = πX,∗

and the fact that all these maps preserve fibrations. �
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Lemma 18. With notation as above there is a functor from RΓ(Y,PY) to
RΓ(X,PX).

Proof. Γ is a covariant functor. From Lemma 17 we have a natural weak
equivalenceRΓ(Y,R f∗(PX))→ RΓ(X,PX).
Let P

•
→P• be a fibrant replacement. It is then enough to construct a map

f • : PY → R f∗(PX) of hypersheaves onY. On any open setU this is given
by PY(U) = P→ f∗PX(U) → f∗PX(U). �

Remark13. With P = Chpe this gives functoriality for Morita cohomology
if we use functorial factorizations.
Note that our computation using good covers is not functorial unless we
pick compatible covers. However, ifX andY have bases of contractible sets
which are suitably compatible there is a natural comparisonmap between
homotopy limits.

Remark14. The results of the last sections relied on the assumption that
dgCat is left proper, which is only the case ifk is of flat dimension zero.
Nevertheless, one can consider the question of what Morita cohomology
should be over other ground rings and it is sensible to useΓ(X,LChpe) as
our definitionof Morita cohomology ifk has positive flat dimension. All
pertinent results then still apply, in particular Theorem 16, and we can prove
equivalence with the category of∞-local systems in Section 4.1.

4. Infinity-local systems

4.1. Singular cohomology with coefficients in dgCat. We will now
consider the categorification of singular cohomology, given by the dg-
category of∞-local systems. Here we consider dg-categories over an
arbitrary commutative ringk.
Recall from 2.3 that while the model categories ondgCat are not simplicial,
there is a bifunctorsSetop × dgCatDK → dgCatDK that induces a natural
Ho(sSet) cotensor action onHo(dgCatDK or Mor). We write this as (K,D) 7→
DK.

Definition. We define thedg-category of∞-local systemson a simplicial
setK asChpe

K. We writeY (K) for Chpe
K. For a topological spaceX we

recall the (unpointed) singular simplicial set Sing* (X) and defineY (X) ≔
Y (Sing* (X)). We also defineY u(K) = Chdg

K andY u(X) = Chdg
Sing* (X).

Remark15. We are using the Dwyer–Kan model structure for simplicity,
but of course we think ofChpe as a Morita fibrant replacement ofk and one
can show thatY (K) is weakly equivalent tokK as constructed indgCatMor,
cf. the proof of Theorem 22.
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As we will mainly consider topological spaces via the functor Sing* in this
section we restrict attention to compactly generated Hausdorff spaces so
that Sing* is part of a Quillen equivalence.

Lemma 19. The functor K 7→ Y (K) is a left Quillen functor fromsSetto
dgCatop

DK with right adjoint given by Map(−,Chpe),

Proof. This follows for example from Theorems 16.4.2 and 16.5.7 in
[14]. �

As all simplicial sets are cofibrant we obtain the following corollaries:

Corollary 20. The functor K7→ Y (K) preserves weak equivalences.

Corollary 21. The functor K 7→ Y (K) sends homotopy colimits to
homotopy limits.

Since Sing* sends cofibrations of topological spaces to cofibrations insSet
the lemma also holds forY : CGHauss→ dgCatop

DK. Moreover, as Sing*
is a Quillen equivalence it preserves weak equivalences andhomotopy
colimits. Then the last result can be interpreted as a Mayer–Vietoris
theorem:

Y (U ∪ V) ≃ Y (U) ×Y (U∩V) Y (V)

This definition of∞-local systems looks a little indirect. But note that an
∞-local systems does provide us with an object of (Chpe)n for every n-
simplex ofK. One can consider an explicit simplicial resolution (Chpe)∗ as
constructed in [17] to see this is the data one would expect.
Section 4.2 will provide a more explicit way of looking at∞-local systems,
but first we show that∞-local systems are equivalent to Morita cohomology.
Fix a topological spaceX with a good hypercover{Ui}i∈I .

Theorem 22. The dg-categoriesH M(X) and Y (X) are isomorphic in
Ho(dgCatDK).

Proof. By Proposition 10 there is a weak equivalence hocolimU∗ ≃ X. Let
I = ∪In by the indexing category. Then we can consider the data of the
categoryI as a simplicial setn 7→ In with the induced face and degeneracy
maps, or in fact as a simplicial space where everyIn is considered as a
discrete space. Then we can consider the comparison map fromUn to
∐In∗ sending every connected open to a distinct point to get hocolim∆Un ≃

hocolim∆ In where we take homotopy colimits of simplicial spaces. Then
I∗ considered as a simplicial space has free degeneracies in the sense of
Definition A.4 in [10]. Hence we can apply Theorem 1.2 of [10] and find
|I∗| ≃ hocolim∆ In. So the simplicial setI∗ is weakly equivalent to Sing* X
and it suffices to analyseChpe

I∗ .
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Hence by Remark 4 and Theorem 16 we are left to compare holimIop Chpe

and holim∆Iop
∗

(Chpe)n. But the categoryI is exactly the category of simplices
of the simplicial setI∗ and the weak equivalencesChpe→ (Chpe)n induce a
weak equivalence of homotopy limits. �

Remark16. This argument still applies if we replaceChpe by any other
dg-categoryP. Hence we know thatRΓ(X,P) ≃ PSing* K. For example
RΓ(X,Chdg) ≃ Y u(X).

Corollary 23. The functor X7→ H M(X) is homotopy invariant and sends
homotopy colimits to homotopy limits.

Proof. This is immediate from Theorem 22 and the topological versions of
Lemma 19 and its corollaries. �

Definition. With this equivalence in mind we can define theMorita
homologyHM(K) of a simplicial setK asChpe⊗ K.

Note, however, that computing this involves a cosimplicialresolution in dg-
categories which looks difficult to produce.

4.2. Loop space representations.In this section we move from the rather
abstract action of simplicial sets ondgCat to representations of a dg-
algebra.
For this we will have to move betweendgCat and the category of linear
simplicial categories. First recall that the natural smarttruncation functor
τ≥0 from Ch to Ch≥0 extends to a functor fromdgCat to dgCat≥0, which we
also denoteτ≥0. This functor is right Quillen with left adjoint the inclusion
functor.
Further recall the categorysModCatk of categories enriched over
simplicial k-modules and the natural Dold–Kan or Dold–Puppe functor
DK : dgCat≥0 → sModCat that is defined hom-wise. DK and its
left adjoint N, normalization, form a Quillen equivalence between non-
negatively graded dg-categories andsModCat. For details see section 2.2
of [32] or [34].
In V.5 of [13] explicit looping and delooping functors for simplicial sets
and simplicial groupoids are constructed. For arbitrary simplicial sets there
is a functorG: sSet→ sGpd with right adjointW. Together they form
a Quillen equivalence. The obvious composition with the normalization
functor NkG: sSet→ dgCatDK is left Quillen. Essentially this lets us
consider a simplicial set as a dg-category. The restrictionof G to simplicial
sets with a single vertex is a Quillen equivalence with simplicial groups.
Next we consider the enriched hom-spaceRHom(D ,Chdg) of dg-
categories. As in the introduction, for any dg-categoryD we consider
L(D-Mod), whereL just restricts to the quasi-equivalent subcategory of
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fibrant and cofibrant objects. Let us write this asChdg
D . We note that

this is quasi-equivalent toRHom(D ,Chdg). This is immediate from the
definition if D is cofibrant. Otherwise consider a cofibrant replacement
j : D → QD and note thatD-Mod andQD-Mod are Quillen equivalent via
j∗ by the results of Section 4.1 in [37]. This shows that the comparison map
of underlying dg-catgeories is quasi-essentially surjective. Moreover j∗ is
compatible with shifts, so the equivalence of homotopy categories implies
that the hom-spaces ofD-Mod andQD-Mod are quasi-isomorphic and this
proves thatj∗ is a quasi-equivalence.
Similarly write Chpe

D for the subcategory ofChdg
D consisting of objects

whose underlying complexes are all perfect overk. This subcategory is
preserved byj∗ and its adjoint so we haveChpe

D ≃ Chpe
QD and hence

Chpe
D
≃ RHom(D ,Chpe).

Theorem 24.For a simplicial set K the dg-categoriesChpe
K andChpe

NkGK

are quasi-equivalent, as areChdg
K andChdg

NkGK.

Proof. The proofs forChdg
(−) andChpe

(−) are identical, so let us abusively
write Ch for both.
By the Yoneda embedding it is enough to prove

MapdgCatDK
(D ,ChK) ≃ MapdgCatDK

(D ,ChNkGK)

for arbitrary dg-categoriesD . (In fact an isomorphism of connected
components of the mapping space would be enough.)
The left-hand side is MapsSet(K,MapdgCat(D ,Ch)) by the usual adjunction.
Meanwhile, for the right-hand side we have the following computation. We
use the adjunctions⊗L ⊣ RHom, ι ⊣ τ≥0 (inclusion and truncation),N ⊣ DK
(Dold–Kan),k ⊣ U (free and forgetful) andG ⊣W (looping and delooping).
For legibility we contractDK ◦ τ≥0 to DK and suppressι andU.

Map(D ,ChNkGK) ≃ MapdgCatDK
(NkGK,RHom(D ,Ch))

≃ MapdgCatDK
(NkGK, τ≥0(RHom(D ,Ch))) as LHS⊂ Im(τ≥0)

≃ MapsModCat(kGK,DK(RHom(D ,Ch)))

≃ MapsCat(GK,DK(RHom(D ,Ch)))

≃ MapsGpd(GK,DK(RHom(D ,Ch))) as LHS is a groupoid

≃ MapsSet(K,W(DK(RHom(D ,Ch))))

Hence it suffices to show thatW(DK(RHom(D ,Ch))) is weakly equivalent
to Map(D ,Ch) = Map(1,RHom(D ,Ch)). Since any simplicial setK is
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weakly equivalent to Map(∗,K) we consider the following.

MapsSet(∗,W(DK(RHom(D ,Ch)))) ≃ MapsGpd(∗,DK(RHom(D ,Ch)))

≃ MapsModCat(1,DK(RHom(D ,Ch)))

≃ MapdgCatDK
(1,RHom(D ,Ch))

Here we use some of the same observations as before and note moreover
thatG∗ ≃ ∗, the trivial simplicial groupoid. Here the unit1 is the one object
category with morphism spaceDK(k) respectivelyk. �

Notation. If X is a topological space we writeNΩX for N(kGSing* (X)).

We can restrict from the dg-categoryN(ΩX) to a more familiar dg-algebra if
X is connected and pointed. LetΩX denote the topological group of based
Moore loops onX. ThenC∗(ΩX) ≔ C∗(ΩX, k) is a dg-algebra.

Lemma 25. Let X be a pointed and connected topological space. C∗(ΩX)
considered as a dg-category with one object is quasi-equivalent to NΩX.

Proof. Sing* X is a connected simplicial set and by the existence of minimal
Kan complexes has a reduced modelK, i.e. there is a weakly equivalent
simplicial set with a single vertex.
Then we haveGSing* X ≃ GK as simplicial groupoids and thus as
simplicial categories. It follows thatN(kGSing* X) ≃ NkGK. Finally, there
is a weak equivalence of simplicial groups betweenGK and Sing* ΩX. �

Since quasi-equivalent dg-categories have quasi-equivalent categories of
modules by our earlier discussion we have the following corollary.

Theorem 26. The dg-categoriesChpe
C∗(ΩX) and Y (X) are Morita

equivalent, as areChdg
C∗(ΩX) andY u(X).

We can sum this up as a slogan: Morita cohomology is controlled by
chains on the loop space. We will construct explicit models for C∗(ΩX)
in Theorem 29.

Example 1. The category of loop space representations ofS2 is quasi-
equivalent to the category of bounded chain complexes with adegree
1 endomorphism. This follows since the homology algebra ofΩS2 is
equivalent to a polynomial algebra on a single generator in degree 1. See
Section 5 for more examples.

4.3. Cellular computations. The previous computations correspond to
computing Čech cohomology and singular cohomology of topological
spaces. This is often not the most effective way of computing, and it
becomes very cumbersome when we deal with coefficient categories.
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In this section we will write down a simpler way of computing amodel
for Chpe

C∗(ΩX) if X is a CW-complex. This model will be given by
representations of an algebraB(X) with a generator in degreee−1 for every
e-cell (with an inverse ife = 1). One could think of this as categorified
cellular cohomology. The case forChdg

C∗(ΩX) works exactly in the same
manner and for simplicity we writeCh(−) for both cases again.
Note that ifX has no 1-cells andk is a field one can constructB(X) as a
cofibrant dg-algebra weakly equivalent toC∗(ΩX).
For later reference we note:

Lemma 27. The functorD 7→ ChD sends colimits to limits.

Proof. The constructionD 7→ D-Mod is the naive category of dg-functors
and is adjoint to the tensor product−⊗Ch. All objects are fibrant so we are
left to compare cofibrants in (colimi Ai)-Mod with the limit of the categories
of cofibrants inAi-Mod. But since acyclic fibrations agree, the left lifting
property gives the same conditions on both sides. �

Next we compute an explicit model forChNΩ(X). The plan is to proceed by
induction on the cells ofX. To perform this we first need good models for
the cofibrationsNΩSn−1 ֒→ NΩBn.
Let D(n) be the differential graded algebrak[xn−1, xn | dxn = xn−1]. Let
S(n) = k[xn | dxn = 0]. Thenk → S(n) andS(n − 1) → D(n) are the
generating cofibrations for the model structure on dg-algebras.
First we observe thatS(n− 1) ≃ NΩSn if n > 1. In other wordsS(n − 1)
provides a model for singular chains onΩSn equipped with the Pontryagin
product. This is of course well-known, but one can also proveit directly
using our set-up, see Example 4 in Section 5.
We also need to know that there is a mapD(n) → NΩBn compatible with
S(n − 1) → D(n). This follows by the lifting property of the cofibration
S(n− 1)→ D(n) with respect to the trivial fibrationNΩBn→ ∗.
These are the building blocks needed to associate to any connected CW-
complexX a dg-algebraB(X) that approximates the wayX is glued from
cells.
The following result already appears in [1].

Theorem 28. Associated to every connected CW complex X with cells in
dimension≥ 2 there is a cofibrant dg-algebraB(X) with one generator in
degree n− 1 for every n-cell, that is quasi-equivalent to N(ΩX).

In particularY (X) ≃ Chpe
B(X) andY u(X) ≃ Chdg

B(X). In the next theorem
we will consider the case of 1-cells.

Theorem 29. Associated to every connected CW complex X there is a dg-
algebra B(X) with one generator in degree n− 1 for every n-cell with
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n ≥ 2, and with two inverse generators in degree 0 for every 1-cell, such
thatY (X) ≃ ChB(X).

Proof. Let us defineS∗(0) = k[a, a−1] andD∗(1) = k[a, a−1, b 7→ a− 1] and
consider the cofibrationS∗(0) ֒→ D∗(0). Of courseD∗(0) ≃ k.
Then we have compatible quasi-isomorphismsNΩS1 → S∗(0) and
NΩB2 → D∗(1). The first is induced by projection to connected
componentsGSing* S1 → Z, the second map exists sinceD∗(1) → 0 is
a trivial fibration andNΩS1 → NΩB2 is a cofibration.
Let X1 be the 1-skeleton ofX and defineB(X1) = B(

∨

s S1) ≔ ⊗sS∗(0)
which is weakly equivalent toC∗(Ω(

∨

s S1)) There is an obvious map from
S∗(0) to B(X1) for any attachment mapS1 → X1. Assume first thatX is
obtained fromX1 by attaching a 2-cell. Then we define

B(X) = colim(D∗(1)← S∗(0)→ B(X1))

Now Y (X) is the homotopy pullback ofY (B2) ← Y (S1) → Y (X1). But
this diagram is weakly equivalent toChNΩB2

→ ChNΩS1
← ChNΩX1 which

is in turn weakly equivalent toChD∗(1) → ChS∗(0)← ChB(X1).
These are all pullback diagrams of fibrant objects with one map a fibration,
hence they are homotopy pullbacks asdgCatDK is right proper since every
object is fibrant. Since the diagrams are levelwise quasi-equivalent their
pullbacks are quasi-equivalent, and thus also isomorphic in Ho(dgCatMor).
But sinceD 7→ ChD sends colimits to limits by Lemma 27 it also follows
that

Y (X) ≃ holim
(

Y (B2)→ Y (S1)← Y (X1)
)

≃ holim
(

ChD∗(1)→ ChS∗(0)← ChB(X1)
)

≃ lim
(

ChD∗(1)
→ ChS∗(0)

← ChB(X1)
)

≃ Chcolim(D∗(1)←S∗(0)→B(X1))

The colimit in the exponent is how we have definedB(X).
Now consider the general case. First to obtainB(X2) note that any
attachment map fromS1 factors throughX1, so we can repeat the previous
step as often as required. Attachment of higher-dimensional cells works in
exactly the same manner, we just have to replaceS∗(0) by S(n − 1) and
D∗(1) by D(n).
To extend to infinite CW-complexes we have to check the same argument
goes through for filtered colimits. Since the mapsX<α → X≤α are
cofibrations the filtered colimit is a homotopy colimit and commutes with
NΩ. So NΩX≤λ ≃ hocolimα<λ NΩXα and we can defineB(X≤λ) as
colimα<λ B(X≤α). �
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Remark17. To use this computation in practice we need to identify the
degreen − 1 elementy of B(X<α) that corresponds to the image ofSn−1.
Then we adjoin a new generatorx with dx= y. This can of course be quite
non-trivial. There are some examples in Section 5.

Remark18. By constructionB(X) is Morita-equivalent toNΩX, but it
does not follow from the construction whether the two dg-algebras are
isomorphic inHo(dgAlg).

4.4. Finiteness and Hochschild homology.In this section we consider
conditions for Morita cohomology to satisfy some finitenessproperties, and
determine Hochschild (co)homology in several cases by quoting relevant
results from the literature.
Let us first make some definitions. HereR denotes fibrant replacement in
dgCatMor. Specifically,RB= L(Bop-Mod)pe.
We say a dg-categoryD is locally proper if the hom-space between any
two objects is a perfect complex.D is proper if moreover the triangulated
categoryH0(RD) has a compact generator, i.e. a compact object which
detects all objects.
Recall an objectX in a model category ishomotopically finitely presented
if Map(X,−) commutes with filtered colimits. D is smooth if it is
homotopically finitely presented as aDop ⊗D-module.D is saturatedif it
is smooth, proper and Morita fibrant.
We sayD is of finite typeif there is a homotopically finitely presented dg-
algebraB such thatRD ≃ R(Bop).
These definitions are Morita-invariant (except for the condition of being
Morita fibrant). Toën shows in Lemma 2.6 of [38] that a dg-category
has a compact generator if and only ifRD ≃ RBop for some dg-algebra
B and is moreover proper if and only if the underlying complex of B is
perfect. Moreover any dg-category of finite type is smooth (Proposition
2.14 of [38]).

Remark19. Saturated dg-categories are precisely the dualizable objects in
Ho(dgCatMor). Another reason to be interested in this finiteness condition
is that if a dg-category is saturated there is a nice moduli stack of objects,
this is the main result of [38].

Proposition 30. The dg-categoryY u(X) is triangulated and has a compact
generator. If X is a finite CW-complex without 1-cells thenY u is smooth. If
moreover H∗(ΩX) is of finite type thenY u(X) is saturated.

Proof. Note first that as a homotopy limitY u(X) is fibrant and the compact
generator is given byC∗(ΩX).
Theorem 29 implies that in the absence of 1-cells the dg-algebraB(X) is
homotopically finitely presented. So the categoryY u(X) is of finite type
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and hence smooth. IfH∗(ΩX) is of finite type, thenB(X) is a perfect
complex overk, andY u is moreover proper and we find thatY u(X) is
saturated. �

In fact Kontsevich shows in [23] that the dg-algebra of chains on the loop
space of a finite connected CW complex is always of finite type.
By contrast if X is an infinite CW-complex thenB(X) is usually not
homotopically finitely presented. For example considerB(CP∞) ≃
k[x1]/(x2

1) wherex1 is in degree 1.
Next we consider properness forY (X). The categoryH M(X) is locally
proper if all cohomology groups ofX with coefficients in local systems are
finite dimensional and concentrated in finitely many degree.This is for
example the case ifX has a finite good cover. Then the hom-spaces are
finite limits of perfect chain complexes.
This is in contrast to Ext-groups of local systems, which canbe large even if
X is very well behaved, for example ifX is a smooth projective variety [7].
The exampleX = S1 shows that we cannot expectY (X) to be proper
in general. ChS1

is the category of complexes ofZ-representations, with
infinitely many connected components.

Proposition 31. If π1(X) has only finitely many irreducible finite-
dimensional representations then there exists a compact generator A and
Y (X) ≃ L(End(A)op-Mod)pe. Moreover,Y (X) is proper if C∗(X,End(A)) is
a perfect complex.

Proof. We defineA to be the sum of all the irreducibles. This clearly
generates the dg-category. By Lemma 2.6 of [38]L(Y (X)op-Mod) ≃
L(EndY (X)(A)op-Mod). SinceY (X) ≃ L(Y (X)op-Mod)pe we deduce that
Y (X) is the subcategory of compact objects in End(A)-Mod.
The second statement is clear. �

The proposition applies for example if the fundamental group is finite. Then
we can takeA to be the group ring.

Example 2. Let X be simply connected. Then we can takeA = k and
find End(A) ≃ RHom

ΩX(k, k) ≃ C∗(X, k). The second quasi-isomorphisms
follows for example from results in [16]. In particularY (X) ≃ C∗(X, k)
in dgCatMor. Then Y (X) is proper if and only ifC∗(X, k) is a perfect
complex. If C∗(X, k) is homotopically finitely presented thenY (X) is
moreover smooth and saturated.

If Y (X) has a compact generator it becomes much easier to compute
secondary invariants. In particular we can compute Hochschild homology
and cohomology. For definitions and background see [21]. Since
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Hochschild homology and cohomology are Morita-invariant we can
compute them on a generator of a dg-category if there is one.
Example 2 implies the following proposition. HereHH stands for either
HH∗ or HH∗.

Proposition 32. Let X be simply connected, then HH(Y (X)) �

HH(C∗(X)).

So we can compute Hochschild (co)homology of Morita cohomology from
minimal models (in the sense of Sullivan).

Proposition 33. For any space X there are isomorphisms HH(Y u(X)) �
HH(C∗(ΩX)) � HH(B(X)).

Proof. The first isomorphisms follows from Corollary 8.2 in [36], the
second isomorphism follows since Hochschild (co)homologyis Morita-
invariant. �

The following applications follows from results readily available in the
literature.

Proposition 34. Let X be simply connected then HH∗(Y (X)) � H∗(L X).
If M is a simply connected closed oriented manifold of dimension d then
HH∗(Y (M)) � H∗+d(L M) as graded algebras with the Chas-Sullivan
product on the right hand side.

Proof. If X is simply connected it is well known (see [25]) that
HH∗(C∗(X, k)) � H∗(L X) whereL X is the free loop space.
The second part follows since the Hochschild cohomology ring of singular
cochains onM (with the cup product) is isomorphic to its loop homology
with the Chas-Sullivan product, cf. [6]. �

Note that we do not expect Hochschild homology ofY (X) to be particularly
tractable ifX is not simply connected. For exampleY (S1) is equal to dg-
representations ofZ and has|k∗| simple objects with no morphisms between
them. Hence it follows from the explicit definition in [21] that Hochschild
homology consists of|k∗| copies ofHH∗(k[y]) wherey lives in degree 1 and
has square 0.

Proposition 35. For any space HH∗(Y u(X)) � H∗(L X). If X is a
simply connected CW complex there is an isomorphism of graded algebras
HH∗(Y u(X)) � H∗(L X).

Proof. We findHH∗(Y u(X)) � HH∗Ω(X) � H∗(L X) from 7.3.14 in [24].
The result thatHH∗ Sing* ΩX � H∗(L X) as graded algebras ifX is simply
connected is in [27]. �
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5. Examples

In this section we compute some examples of Morita cohomology. We will
mainly use the characterization in terms ofC∗(ΩX) or the dg-algebraB(X)
defined in Section 4.3.
In the following whenever an element has a subscript, this will denote its
degree.

Example 3. We begin with the caseX = S1. ClearlyH M(S1) is equivalent
to the category of representations ofZ ≃ ΩS1.
This is also the category of bounded chain complexes of localsystems on
S1.
We can also characterizeH M(S1) as the explicit homotopy limit

(Chpe)
I ×h

Chpe×Chpe
Chpe

HereChpe
I is the path object in dg-categories, see for example [17]. The

limit then comes out as the category of pairs (M, φ ∈ Aut(M)) with
morphisms (f , g, h) : (M, φ) → (N, ψ) in Hom(M,N)⊕2 ⊕ Hom(M,N)[−1]
with differential

( f , g, h) 7→ (d f, dg, dh− (−1)|g|gφ + ψ f )

In particular Hom∗(k, k) � k ⊕ k[1], which is exactly cohomology ofS1, as
predicted.
Note that the categoryH M(S1) is highly disconnected, in fact isomorphism
classes of simple objects are naturally in bijection withk∗. Of coursek∗ has
a geometric structure, and one way of interpreting large sets of isomorphism
classes of objects is to consider a moduli stack of objects ofH M(X). We
will not follow this direction here.

Example 4. If n > 1 thenH M(Sn) ≃ Chpe
S(n), i.e. the category of perfect

chain complexes with an endomorphism in degreen− 1.

Proof 1. This is a consequence of the quasi-isomorphismS(n) →

N(ΩSing* Sn) which follows form the well-known computation of
H∗(ΩSing* Sn). �

Proof 2. We can also computeB(S2) using the method of Theorem 29
by gluing two copies ofB2 along S1. The resulting dg-algebra has
one invertible generator with two trivialising homotopies, which is quasi-
isomorphic tok[x1] = S(1).
Once we know the casen = 2 we can inductively computeSn = Dn∐Sn−1 Dn

and note thatS(n) ≃ D(n) ⊗L
S(n) D(n).

Note that we can use this construction ofB(Sn) in the proof of Theorem 29.
There is no circularity as we only need a model for spheres in dimension
less thann to computeB(Sn). �
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Example 5. Next consider some more detail forn = 2. Sincek is a

generator letA ≔ REndC∗(ΩS2) ≃ C∗(S2) ≃ k[x2, x3
d
→ x2

2] and we can
characterizeY (S2) as compact objects inA-Mod.
An example of an object ofRΓMorita(S2, k) is the chain complex associated
to the Hopf fibrationp: S3 → S2. As a homotopy locally constant sheaf
we can consider this asRp∗ Sing* (S

3). As a representation ofΩS2 this can
be written ask⊕ k[−1] with the natural self-map of degree 1.
Since π1(S2) is trivial, we can also viewRΓMor(S2, k) as generated by
the trivial local system and the informationH∗(S2,−) provides about
(iterated) extensions. This provides a slightly different viewpoint on Morita
cohomology.

Example 6. For a groupG it is clear thatH M(BG) is just the dg-category
of perfect complexes with an action ofG.

Example 7. The dg-categoryH M(RP2) is given by representations of
B(RP2) on perfect complexes, andB(RP2) has generatorsa0, a−1

0 , b1 such
thatdb1 = a0 ◦ a0− 1. The identificationdb1 = a0 ◦ a0− 1 is induced by the
attaching map from the boundary of the 2-cell toRP1. rationally good.
We can obtainB(RP3) from B(RP2) by addingc2 with dc2 = 0.
If we are working over the fieldQ Morita cohomology has certain
similarities to rational homotopy theory, cf. the duality betweenC∗(ΩX)
andC∗(X) in the simply connected case. On the other hand we see thatRP2

has trivial minimal model, but its Morita cohomology is a dg-category with
two simple objects corresponding to the irreducible representations ofZ/2.

Example 8. Next we compute the mapp∗ : H M(S2) → H M(S3) induced
by the Hopf fibration.
On the level of loop spaces we see that the map is induced by
Ωp∗ : H∗(ΩS3)→ H∗(ΩS2) which is given byx2 7→ y2

1 on the generators.
With this in mind we can work outH M(CP2) explicitly by considering the
following diagram:

H
M(B4)

i∗
−→H

M(S3)
p∗

←−H
M(CP1)

On the level of dg-algebras we have

D(3)
i∗
←− S(3)

p∗
−→ B(S2) � S(2)

The attaching mapp∗, is induced by the Hopf fibration. As we have just seen
it corresponds to the mapH∗(ΩS3) → H∗(ΩS2) given by sendingx2 7→ y2

1.
Hence we find:

B(CP2) ≃ k[α1, α3 | dα3 = α
2
1]
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Example 9. We can generalise this toCPn, every extension over a 2i-cell
corresponding to another mapα2i−1 in degree 2i − 1. We findd : α3 7→ α2

1;
α5 7→ α3α1 + α1α3; α7 7→ α5α1 + α

2
3 + α1α5 etc.

It is well-known thatH∗(ΩCPn) is isomorphic toΛ(y1) ⊗ k[y2n] as a Hopf
algebra, in particular the Pontryagin products agree. To relate this to the
above description identifyy2n = α2n−1α1 + · · · + α1α2n−1. The dg-algebra
B(X) is larger since it is quasi-free (i.e. the underlying graded associative
algebra is free), whileH∗(ΩCPn) is only quasi-free as a commutative dg-
algebra.

Example 10. Taking the limit we findB(CP∞). Of course the homology
algebra ofΩCP∞ is just that ofS1. Indeedk[α1, α3, . . . ] with its differentials
is a quasi-free model fork[z1].

We conclude with the following example of a space with trivial Morita
cohomology.

Example 11. Consider Higman’s 4-groupH with the following presenta-
tion:

〈a, b, c, d | a−1ba= b2, b−1cb= c2, c−1dc= d2, d−1ad= a2〉

This is an acyclic group without non-trivial finite dimensional representa-
tions. Its classifying spaceBH is known to be a finite CW complex. For
references see e.g. [3]. It is easy to see that the Morita cohomology ofBH
is quasi-equivalent toChpe.
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