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MORITA COHOMOLOGY
JULIAN V. S. HOLSTEIN

Asstract. We consider two categorifications of the cohomology of a
topological spac« by taking codicients in the category of flerential
graded categories. We consider both derived global setibaconstant
presheaf and singular cohomology and find the resultingadggories
are quasi-equivalent and moreover quasi-equivalent teseptations in
perfect complexes of chains on the loop spack.of

1. INTRODUCTION

In this paper we categorify the cohomology of topologicahcgs by
considering coicients in the category of fierential graded categories.
We begin with the calculation of derived global sectidti¥X, k), for k a
field and X a locally contractible space. By definition these are derive
global sections of a constant sheaf. We categorify by cemssig the
constant preshed not as a presheaf of rings, but as a presheaf of dg-
categories with one object, where we equip dg-categorids the Morita
model structure. In this model structlee: Chpe, which is fundamental to
our construction.

Hence we call categorified cohomolo@jorita cohomology We write
2M(X) for the dg-categorR'(X, k) computed with this model structure.
The following characterization as categorifi€géch cohomology follows
once we establish a local model structure on presheavesacdtégories.

Theorem [16. Given a good hypercovefU;}i; of X one can compute
%M(X) = h0|imi€|op Chpe.

To categorify singular cohomology we recall the action ofglicial sets on
dg-categories K, 2) — 2X. If we fix the second variable this construction
is well-known to give a Quillen adjunction froeSetto dgCat. Then

for a topological spacX one defines categorified singular conomology as
% (X) == Chpe>"® X, HereCh,, denotes perfect chain complexes over an
arbitrary commutative ring. We cal¥ (X) the category ofo-local systems
and we prove the following comparison theorem:

Theorem[22. The category#’M(X) is quasi-equivalent to the category of

oo-local systemg? (X).
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Homotopy invariance and a Mayer—Vietoris theorem are ea®stablish
for co-local systems and hence for Morita cohomology.

The category? (K) is closely related to the based loop spaceXpfs is
shown by the next result. Here we denote ®ly,~“** the category of
representations of the dg-algel@gQX) of chains on the space of (Moore)
loops which have perfect underlying complex.

Theorem [26. If X is a pointed and connected topological space, the
category? (X) is quasi-equivalent t€h e %),

We then establish a method of computi@lg,e“* if X is a CW complex.

One can compute the Hochschild homology of Morita cohomplog
several cases. For example for a simply connected dgate#M (X)) ~
H*(£X), where the right hand side is cohomology of the free loogspa
This follows from results available in the literature.

Let us also mention here that a very explicit description obrith
cohomology is proved in the companion paper [16]:

Theorem. Let X be a CW complex. Then the dg-categef§M(X) is
guasi-equivalent to the dg-category of homotopy locallgstant sheaves
of perfect complexes.

All of these results are from the author’s thesis.

Relation to other work. We collect some ideas and results from the
literature which are related to the constructions here and]. This is
not meant to be an exhaustive list.

Our results can be considered as a version of derived or higiteabelian
cohomology for topological spaces. Cohomology with higtetegorical
codficients is considered for example in [31] where Simpson coots the
higher non-abelian cohomology stack of the de Rham stacksmhaoth
projective variety as a certain internal hom-space in geéoostacks.
Considering a simplicial seK as a constant stack Toén and Vezzosi
construct a derived mapping stack MEpRPerf, where RPerf is the
moduli stack of perfect complexes. This appears for exanmd28]. The
construction ofco-local systems in Sectidd 4 is a non-geometric version
of this, which is already somewhat interesting and morddtae then the
mapping stack.

Morita cohomology is also closely related to the schematimbtopy type

of [20]. In fact, Morita cohomology is equivalent to the agbey of perfect
complexes on the schematic homotopy type, as follows ngdidim the
characterization as homotopy locally constant sheavesis (¥as pointed
out to me by Jon Pridham.) For ai@irent view of the schematic homotopy
type seel[29].
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There is an analogue of the main theorem[of [16] in the cohesetting:
Under suitable conditions global sections of the preshédfjecategories
associated to the structure sheaf of a scheme can be comasitdte
category of perfect complexes of coherent sheaves. Thigaappfor
example as Theorem 2.8 in [32] referring back ta [15].

The equivalence betweex-local systems and homotopy locally constant
sheaves that is obtained by combining this paper with [18] lisear and
stable version of results in [35] or [30], where the corregpng result
for presheaves of simplicial sets is proved by going via taeegory of
fibrations. Another view on locally constant functors isegivin |5].

Outline. After briefly recalling some technical results and defimtidn
Sectior 2 we define a local model structure on presheaves-céditggories
and define their conomologylin 3.1. We also characterizerfitpaesheaves
of dg-categories as hypersheaves. We then explicitly lsyyafify the
constant presheaf in 3.2 and use this to define Morita cohmgyol”™ (X)
and compute it as the homotopy limit of a constant diagrarh filier Ch pe
indexed by the distinct open sets of a good hypercover.

In Section[# we define a category ef-local systems from the cotensor
action of simplicial sets on dg-categories, and show it esvetent to
M(X) in [&1. We use this to identifyZM(X) with representations
of chains on the loop space, in_#.2. Sectlon] 4.3 is then coeder
with providing an explicit method for computing the categof co-local
systems. Ii_4]4 we collect some results about finitenesg8f(X) and
show how to compute Hochschild (co)homology in some cases.

We conclude by computing some explicit examples in Se€tion 5

Acknowledgements.| would like to thank lan Grojnowski for many
insightful comments and stimulating discussions.

2. PRELIMINARIES

2.1. Notation and conventions. We assume the reader is familiar with the
theory of model categories, but will try to recall all the desell-known
facts about them that we use.

In any model category we writ® for functorial cofibrant replacement and

R for functorial fibrant replacement. We write mapping spgeath values

in sSe) in a model category# as Map,(X,Y). All other enriched hom-
spaces in a category will be denoted as Hop(X, Y). In particular we use

this notation for diferential graded hom-spaces, internal hom-spaces and
hom-spaces of diagrams enriched over the target categatyould always

be clear from context which category we enrich in.
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We will work over the (underived) commutative ground rkngVe assume
characteristic 0 in order to freely useférential graded constructions. Most
of SectiorB will moreover assunkes a field.

Ch = Chy will denote the model category of chain complexes over the
ring k equipped with the projective model structure where fibretiare the
surjections and weak equivalences are the quasi-isonsmghi Note that
we are using homological grading convention, i.e. thedential decreases
degree. We writ€h . for the subcategory of compact objectdh, these
are exactly the perfect complexes.

Chyg denotes the dg-category whose object are fibrant and cafiblogects
of Ch. Note that there is a natural identification of the subcategd
compact objects i€hgg with Chye.

2.2. Differential graded categories.We recall some important definitions
and results about dg-categories. Basic references arafil37]. Many
technical results are proved in [33].

Let dgCat denote the category of categories enrichedCim. Given
2 € dgCat we define the homotopy categor(Z) as the category with
the same objects a8 and Homyy4) (A, B) = HoHom, (A, B). If Zis a
model category enriched @h we defineLZ as its subcategory of fibrant
cofibrant objects. We sa9 is a dg-model category if the two structures
are compatible, that is if they satisfy the pushout-proguabm, see for
example the definitions in Section 3.1 of [37]. ThE(Z) ~ Hy(L2),
where we take the homotopy category in the sense of modejaréte on
the left and in the sense of dg-categories on the right.

Recall that there are two model structuresdgCat. Firstly there is the
Dwyer—Kan model structurelenoteddgCatpy .

Recall the functory +— %-Mod sending a dg-category to its model
category of modules, i.e7-Mod is the category of functor9 — Ch and
strict natural transformations. This is naturally a cofitiha generated
model category enriched @h whose fibrations and weak equivalences are
given levelwise. We usually consider its subcategory oéfiband cofibrant
objects L(Z-Mod).

Remarkl. The construction of the model categap¢¥Mod follows Chapter
11 of [14], but there are some changes since we are congjdeninched
diagrams. We sketch the argument here for lack of a referdoeel and

J denote the generating cofibrations and generating triciBb@tions of
Ch. The generating (trivial) cofibrations @#-Mod are then of the form
eA — h*@Bfor A — B e | (resp.J), whereh* denotes the contravariant
Yoneda embedding. As in Theorem 11.6.1[0f|[14] we transferniodel
structure fromCh¥sce®?)  This works sinceh® is compact inZ-Mod
and so are its tensor products with the domaing,ensuring condition
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(1) of Theorem 11.3.2 holds. For the second condition we bawheck

that relativeJ ® h*-cell complexes are weak equivalences. Pushouts are
constructed levelwise. The generating trivial cofibragsiofCh are of the
form 0 — D(n). Since the pushoud « 0 — D(n) is weakly equivalent to

U we are done.

Remark2. In order to satisfy the smallness assumption we will always
assume that all our dg-categories are small relative to $arger universe.

The homotopy category of the model categary°’-Mod is called the
derived category o/ and denoted(2).

Definition. We denote bydgCat,,,, the category of dg-categories with the
Morita model structurei.e. the Bousfield localization algCat,, along
functors that induce equivalences of the derived categosiee Chapter 2
of [33].

Fibrant objects irdgCat,,,, are dg-categories?/ such that the homotopy
category of«/ is equivalent (via Yoneda) to the subcategory of compact
objects ofD(«) [21]. We can phrase this as: every compact object is quasi-
representable. An obje¢t € D(<) is calledcompactif Homp ) (X, -)
commutes with arbitrary coproducts. We denote By tf)e subcategory of
compact objects. Morita fibrant dg-categories are als@daliangulated
since their homotopy category is an (idempotent completaehdulated
category.

With these definitionZ — L(Z°P-Mod),., often denoted th&iangulated
hull, is a fibrant replacement, for examgpde-> Chpe.

The categorylgCatis symmetric monoidal with tensor produgtz & given

as follows. The objects are @bx Ob&” and Hom,_.((D, E), (D", E’)) :=
Hom, (D, D’) ® Hom,(E, E’). The unit is the one object categdtywhich

is cofibrant in either model structure.

While dgCat is not a monoidal model category there is a derived
internal Hom space and the mapping spacesdgCat,,, can be
computed as follows [36]: LeRHom(%’, ) be the dg-category of right-
guasirepresentabi€ ® 2°P-modules, i.e. functors : ¢ ® 2°° — Ch such
that for anyc € ¥ we have that(c, ) is isomorphic in the homotopy
category to a representable object 4t*-Mod and moreover cofibrant.
Then RHom is right adjoint to the derived tensor prod@it Moreover
Map(%, 2) is weakly equivalent to the nerve of the subcategory of quas
equivalences irrRHom(%, ). We will quote further properties of this
construction as needed.

We will need the following lemma relating the two model stures. It
follows sincedgCaty,,, is a left Bousfield localization, hence the derived




6 JULIAN V. S. HOLSTEIN

functor of the identity, given by fibrant replacement, pregsse homotopy
limits.

Lemma 1. Fibrant replacement as a functor frodgCat,,,, to dgCaty
preserves homotopy limits.

This means we can compute homotopy limitdgCat,,,, by computing
the homotopy limit of a levelwise Morita-fibrant replacerhendgCatpy .
We will abuse notation and write for the dg-algebrd as well as for the
1-object dg-category with endomorphism spRamncentrated in degree 0.
Recall that there is a model structure offetiential graded algebras over
with unbounded underlying chain complexes, which can beidened as
the subcategory of one-object-categoriedgCatyy .

Remark3. While we are working with dferential graded categories we
are facing some technicalfficulties for lack of good internal hom-spaces.
It would be interesting to know if another model of stableshn (o, 1)-
categories, e.g. [26], could simplify our treatment.

2.3. Simplicial resolutions. Model categories are naturally models fof
categories and in fact have a notion of mapping spaces. Evwemodel
category is not enriched BSetone can define mapping spaces$lio(sSe).
One way to do this is by defining simplicial resolutions, whiee will make
extended use of. Since this construction is crucial to osultse we recall it
here.

Let A be the simplex category and consider the constant diagraotdu
c: . # — #**. Then asimplicial resolution M for M e .# is a fibrant
replacement focM in the Reedy model structure o **. (For a definition
of the Reedy model structure see for example Chapter 15 ) [14

For example, this construction allows one to compute mapppaces: If
cB — Bis a simplicial resolution inZ*” andQA a cofibrant replacement
in .# then Map@, B) ~ Hom'(QA B) ~ R(Hom' (-, c-)), where the right-
hand side uses the bifunctor Hom# x .#** — Set*” that is defined
levelwise. The dual notion is@simplicial resolution

Recall that? is a symmetric monoidal model categoify it is both
symmetric monoidal and a model category and the structures a
compatible, to be precise they satisfy the pushout-prodxam, see
Definition 4.2.1 in[[18]. This means in particular that tenaad internal
Hom give rise to Quillen functors. We then call the adjunetiaf two
variables satisfying the pushout-product axio@uaillen adjunction of two
variables

Similarly amodel? -category.# is a model category# that is tensored,
cotensored and enriched ov&rsuch that the pushout product axiom holds.
We call a modeCh-category alg-model category
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For example a modedSetcategory, better known as samplicial model
category .# consists of the data#4, Map, ® map) where the enrichment
Map: .#°° x .# — sSet the cotensor (or power) mapSet’ x
M — # and the tensow: sSetx .# — M satisfy the obvious
adjointness properties (in other words, they form an adjancof two
variables). Here the pushout-product axiom says that theralamap
fog: A LIk B®K — B® L is a cofibration iff andg are and is
acyclic if f or g is moreover acyclic.

While not every model category is simplicial, every homgtaategory
of a model category is enriched, tensored and cotensorddio{sSe).
In fact, .# can be turned into a simplicial category in the sense that
there is an enrichment Map and there are a tensor and coteinscin
can be constructed from the simplicial and cosimpliciabhegons. Let a
cosimplicial resolutiorA* € .#* and a simplicial seK be given. Consider
AK, the category of simplices &, with the natural map: AK — A
sendingA[n] — K to [n]. We defineA*®K = colim,k A" to be the image of
A under colimo u*: € — €K — €. Similarly there isAX := mapK, A)
which is the image of the simplicial resolutign € .#*” under limo v*,
wherev: AKP — A%. This can also be written &° = lim,([Tx, An).

If .# is a simplicial category one can usRA)™" for A, and QA) ® A" for
A"

Remark 4. Note that AKX can also be written as a homotopy limit,
holimake An. This follows for example from Theorem 19.9.1 of [14], the
conditions are satisfied by Propositions 15.10.4 and 18.3.1

The functor A, K) — AKX is adjoint to the mapping space construction
A, B —» Hom(QB,A.) € sSet Similarly (B,K) —» B ® K is adjoint to
the mapping space constructiénB — Hom(B*, RA) € sSetf see Theorem
16.4.2in[14]. Hence on the level of homotopy categorieswhebifunctors
together with Map give rise to an adjunction of two variabl@is is of
course not a Quillen adjunction, but it is sensitive enoughhe model
structure to allow for certain derived functors. We will gedurther results
about this construction as needed.

2.4. Homotopy ends. We will freely use homotopy limits in model
categories, seé [14] for background. Since they are ledstigated in the
literature we recall the construction edbmotopy endsf bifunctors. Recall
that an end is a particular kind of limit. Lei(l) denote theawisted arrow
categoryof |: Objects are arrowsf,: i — j, and morphisms are opposites
of factorizations, i.e.{:i — j) = (g: " — J’) consists of mapg — i
andj — |’ such that their obvious composition withequalsg. Then
there are natural magsandt (for source and target) froma(l) to 1°° andl
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respectively. For a bifunctd¥: 1°° x| — % one defines the enﬁF(i, I)to
be lim,qy(sx t)*F. Then the homotopy end is:

f h F(i.i) := holim(sx t)'F

Details on this view on homotopy ends can be found (dually19j.

The canonical example for an end is that natural transfoomsifromF to

G can be computed aﬁ Hom(FA, GA). A similar example of the use of
homotopy ends is provided by the computation of mapping epat the
diagram category of a model category MapB.) = fih Map(A, Bi). The
case of simplicial sets is dealt with in [12].

In general, we have the following lemma. Assumg' exists with the
injective model structure and l&) and R denote cofibrant and fibrant
replacement in this model category.

Lemma 2. Consider a right Quillen functor H.Z°° x .# — ¥. Then
there is a natural Quillen functoffF, G) — fiﬂ(Fi, Gi) from (.#")°P x .#"
to ¥ whose derived functor is

(F,G) — fﬂ(QFi, RGI)

which is weakly equivalent to

(F.G) > fh RH(Fi, Gi)

Proof. The ¥ -structure exists by standard results [in/[22]. It is in fact a
model ¥ -category. One can check the pushout-product axiom legselwi
this is enough as cofibrations are defined levelwise. Heneedémived
functor is £, G) — [ H(QFi, RG).

On the other hang(ﬂ(Fi,Gi) is the composition of levelwise hom-spaces
with the limit,

lim Oﬂa(l) o(sxt)": (%')OPX /AN (%Opxﬁ)a(l) _ peQ) _y oy

But then the derived functor is the composition of deriveactors,
["RH(Fi, Gi).

This is a little subtle, since our aim is to avoid fibrantly lepng at the
level of diagram categories. However, the levelwise deritenctor RH
from (#°P)' x .#' to 7°") is a derived functor. This is the case since
levelwise fibrant replacement gives a right deformatioracdtin the sense
of 40.1 in [11] since ¢ x t)* preserves all weak equivalences and levelwise
H preserves weak equivalences between levelwise fibranttsbje O
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Remark5. A slight modification of the lemma implies the formula for
mapping spaces. We just have to repleicey Hont : .#Z°%°x .#** — sSet
and adjust the proof accordingly.

3. MoritaA COHOMOLOGY

3.1. Cohomology of presheaves of model categoriesn this section we
define what we mean by cohomology of a presheaf withfoments in a
model category. We also prove two technical results thaheeeled for the
computation of Morita cohomology in the next section.

Let us assumeZ is a cellular and left proper model category. The case we
are interested in is#Z = dgCaty,,, over a fieldk. It follows from [17] that
dgCat with the Morita or the Dwyer-Kan model structure is cellugard is
left proper if the ground ring is a field.

We will consider the category#” of presheaves on a catega$P with
values in a model category”. If .# is left proper and cellular then so
is .7, We will denote by.#; . the projective model structure ow/”
with levelwise weak equivalences and fibrations, and whadbrations
are defined by the lifting property. Ii# is cofibrantly generated this is
well-known to be a model structure, which is cellular and pebper if.#

is.

We are interested in enriching the model categofy, .. Let us start
by recalling the case where the construction is straigitiod. Let 7
be a monoidal model category and assume that it has a cofibraint
¥ = sSetCh are examples. Then if#Z is a model? -category, then it
is easy to check that so ig”. In particular if.# is monoidal then#”

is a model# -category. We can write Horfor the enriched hom-spaces,
and the functor Hom: ¢ ”)°° x .#° — . is right Quillen and there is
a derived functoRHom obtained by fibrant and cofibrant replacement, see
Lemmd2

If .# is monoidal and a model category, but not a monoidal modebcay,
then we can still construct am7-enrichment of #? . as a plain category,

: . proj = .
which will of course not be a model category enrichment. Wénde

Hom, (A, B) = [ Hom(A(j), B(j)), seel[22].

Note that this enrichment is not in general derivable, i @akvequivalences
between cofibrant and fibrant pairs of objects do not nedésgarto weak
equivalences. So defining a suitable substitute_idom takes some care,
see the proof of Lemmnid 6.

We have to consider this case since our example of interest is dgCat,
which a symmetric monoidal category and a model categoey[34, but
not a symmetric monoidal model category. (The tensor prodéi¢wo
cofibrant objects need not be cofibrant.)
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Now fix a locally contractible topological spac€ for example a CW
complex, and consider presheaveap{X). We consider the Grothendieck
topology induced by the usual topology of and write the site as
(SefPX” 7). In other wordg is just the collection of maps represented by
open covers. (We will not use any more general Grothendieg&lbgies
or sites.) We let]l = Op(X)°P. Our aim is to localize presheaves Omp(X)
with respect to covers in.

Recall that aleft Bousfield localizatiorof a model category/” at a set
of mapsS is a left Quillen functor.4~ — .45 that is initial among
left Quillen functors sending the elements $fto isomorphisms in the
homotopy category. We need to know that left Bousfield Iaedions of
M exist,

Lemma 3. Assume/” is a cellular and left proper model category and let
S be a set of maps. Thefg exists. The cofibrations are equal to projective
cofibrations, weak equivalences between are S-local weak/agnces
and fibrant objects are S -local objects.

Proof. This is Theorem 4.1.1 of [14]. O

Recall for future reference that an objdétis S-local if it is fibrant in.4
and everyf: A - B e S induces a weak equivalence MafB, P) =~
Map , (A, P). Amapg: C — D is anS-local weak equivalence if itinduces
a weak equivalence Map(D, P) ~ Map , (C, P) for everyS-local P.

Given a seiN we write N - M = IIyM € .# for the tensor oveBetand
extend this notation to presheaves.

Definition. Let ./ = (.4, denote the left Bousfield localization of

A 3,; With respect to

HT:{Sl///—>hwl///|S—>hWeT}
Hereh_ denotes the covariant Yoneda embeddxng Hom(—, X).

We have assumed and hence# " is cellular and left proper. Sinds, is

a set the localization? exists.

We have now localized with respect @ech covers. We are interested in
thelocal model structurevhich is obtained by localizing at all hypercovers.

Remark6. By way of motivation se€ |9] for the reasons that localizig a
hypercovers gives the local model structure on simpliciaspeaves, i.e.
weak equivalences are precisely stalk-wise weak equigaken

Definition. A hypercoverof an open setV c X is a simplicial preshedf.
on the topological spad&/ such that:
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(1) For alln > 0 the presheal, is isomorphic to a disjoint union of a
small family of presheaves representable by open subsi¥s dfe
can writeU,, = Liic;, h0 for a setl, where thel{) ¢ W are open.

(2) The mapgJ, — *isin, i.e. theU! form an open cover div.
(3) For everyn > 0 the mapU,,; — (coskU.),.1 is in 7. Here

(coskU)n 1 = MWU is the n-th matching object computed in
simplicial presheaves ovav.

Intuitively, the spaces occurring ld; form a cover for the intersections of
theUY, the spaces itv, form a cover for the triple intersections of thie’

etc. To everyCech cover one naturally associates a hypercover in which al
Uns1 — (coskU,)n.1 are isomorphisms.

Note that despite the notatidsy, is not an open set but a presheaf on open
sets that is a coproduct of representables.

We denote by = Ul, the category indexing the representables making up
the hypercover. Associated to any hypercover of a topotdgigace is the
simplicial spacen — 1l;¢; Ul which is also sometimes called a hypercover.
Hypercovers are naturally simplicial presheaves. We watk presheaves
with values in a more general model category. The obvioustavagsociate

to a simplicial object in a model category a plain object istdke the
homotopy colimit.

Definition. Let the set ohypercovers in#” be defined as
H, = thocolim(U. - 1.4) — hw - 1., | U, > hw & hypercover}

where we take the levelwise tensor and the homotopy colimit/”
with the projective model structure. Since disjoint uni@mmanutes with
cofibrant replacement we could equivalently take the lirhityg over AP,
the opposite of the simplex category.

Remark7. Note that the homotopy colimit does not change if instead we
use the localised model structuw?’.

Definition. Let the left Bousfield localization o7 at the hypercovers,
be denoted by and call it thelocal model structure

The localization exists just as before. The fibrant objentstiaeH,-local
objects of.Z".

Note that Honfhy, %) ~ .7 (W) if the model structure onz” is enriched
over.Z. So we sometimes write hypercovers as if they are open sets. F
example given a hypercovet, and a preshea# € .7~ we write 7 (Up)

for Hom(U,,, .%) etc. In particularZ (U,) = .Z (IUY) = [T, . ZUD).

To compute cohomology we need to compute the derived functgiobal
sections. First we need to know that pushforward is rightll@ui The
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arguments in the proofs of the following two lemmas are Psitpms 1.22
and 3.37 inl[2], we repeat them for the reader’s convenience.

Lemma 4. Consider a map rC — D of diagrams and a model category

M. Then there is a Quillen adjunctior,l:ngmj 2 Mo, r.

Proof. We definer* by precomposition. Then exists as a Kan extension.
Clearlyr* preserves levelwise weak equivalences and fibrations. 0O

Lemma 5. Given any map r. (C,7) — (D, o) that preserves covers and
hypercovers we get a Quillen adjunction M$ = M2 :r*. The same

adjunction works if we only localize with respectGech covers.

Proof. To prove the result for the localization with respect to gswee use
the universal property of localization applied to the mdp — MP — MP
which is left Quillen and sends hypercovers to weak equnads and hence
must factor throughM® — MC in the category of left Quillen functors,
giving rise tor, + r*.

To prove the result for the localization at hypercovers weeed the same
argument foM$ — M¢ etc. O

Consider now locally contractible topological spageandY with sites of
open sets@Qp(X), ) and Op(Y),o). Given a mapf: X — Y consider
f=1: (Op(X),7) — (Op(Y),o). Thenf, := (f1)* and by the above it is a
right Quillen functor.

As usual we writd” or I'(X, —) for (rx). whereny: X — x.

Definition. Let % be a presheaf with values in a model categafyand let
%" be a fibrant replacement f&f in the local model category#; defined
above. Then we define global sections as

RI(X, %) = €%(X)

In Sectior{ 3.2 we will comput&™ if ¢ is constant.

Since a hypersheaf satisfigs(X) = holim; .% (U;) for some covefU;} we
can also think of global section as a suitable homotopy liMtconcise
formulation of this will be given in Theorem 116.

Definition. Consider the presheéfthat is constant with valuk € dgCat
and letk” be a fibrant replacement flir Then we defindlorita cohomology
as

RI(X, K) == RO(X, Chye) = K¥(X)
in Ho(dgCaty,,,). We write s#M(X) := RI'(X, k).

One can also consider the version with unbounded fils&iGK, Ch).
Remark8. As usualRI'(2, k) ~ 0, the terminal object adigCat.
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Remark9. The term cohomology is slightly misleading as our constaunct
corresponds to the underlying complex and not the cohomy@omups. Itis

an interesting question whether there is an analogue togalahomology
and how it relates for example to semi-orthogonal decontiposas defined
in [4].

We finish this section with two lemmas on the fibrant objectd aeak
equivalences in the local model structure.

Definition. We call a preshea# ahypersheatf it satisfies
Q) F(W) ~ th)!gm 7 (U,) for every hypercoveU. of every openVN c X

The limitis overl ® = Ul,; we could write it holing holimi.,. .Z (UY) which
can be considered as holig.%#(U,) using the convention above. This
condition is also calledescentvith respect to hypercovers.

For the next Lemma we nee@ to have a certain homotopy enrichment
over itself. For simplicity we specialise t& = dgCat,,,,

Lemma 6. Levelwise fibrant hypersheaves are fibrant in the above model
structure.

Proof. We need to show that for a levelwise fibrant presheafthe
hypersheaf condition o implies that is H.-local, i.e. that whenever
e: hocolimU, -1) - hy -1 is in H, then Map(hocolim(, - 1),.#) =
Maphw - 1,.%). We will show that both sides are weakly equivalent to
Mapygca,, (1. F# (W)).

We need a suitable derived hom-space between hypersheéveg- o
categories with values in dg-categories. We defitiédon’(A.,B.) =

Lh RHom(Ay, By), whereRHom is Toén'’s internal derived Hom of dg-
categories.
First note that

RHor (hy - 1, %) = f

VcwW
The first weak equivalence holds singg(V) is just the indicator function

for V. c W and the second since the homotopy end over a bifunctor that is
constant in the first variable degenerates to a homotopy, lopicomparing

the diagrams. Then we observe hagli -7 (V) =~ .7 (W) if .7 satisfies the
hypersheaf condition.

We claim that this implies Map(, - 1,.#) ~ Map(l,.#(W)). Note that

in dgCat we have Mapf, B) ~ Map(l, RHom(A, B)), see Corollary 6.4

in [36]. Moreover the mapping space in diagram categoriggvisn by a
homotopy end, see Lemma 2.

h
RHom(L, 7 (V)) =~ holim 7 (V)
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Putting these together we see MapB.) = fvh Map(l, RHom(Ay, By)).
Then the claim follows since Map(—) commutes with homotopy limits
and hence homotopy ends.

Similarly we have

Map(hocolin{U; - 1), .%#) ~ holimMap(l, RHom' (U; - 1, .%))
| |
~ Map(l, holim h\;)ILiJm ZF(V))
| [@ V]

which is Map(, .#(W)) again by applying the hypersheaf condition
twice. O

Remark10. The theory of enriched Bousfield localizations fram [2] says
that in the right setting#_ is an enriched model category and fibrant
objects are precisely levelwise fibrant hypersheaves. Mexyéhis theory
requires that we work with a category” that is tractable, left proper
and a symmetric monoidal model category with cofibrant unithe
characterization of fibrant objects in particular dependsttee enriched
hom-space being a Quillen bifunctor. WhigCat,,,, is left proper and
equivalent to a combinatorial and tractable subcategdrjl1€], it is well-
knowndgCaty,,, is not symmetric monoidal. Tabuada’s equivalent category
Lp of localizing pairs has a derivable internal Hom object, isuhot a
monoidal model category either. In fact, tensor produchvaitcofibrant
object is not left Quillen. Consider the dg-catega#/(0) that is the
linearization ofa — b. The example”(0) ® .#(0) in dgCat gives rise
to

0c.70)e(®c.(0)~(Oc.0)e.7(0)

which is again a tensor product of cofibrant objects that iscedibrant.
Then Hon{.#(0), —) cannot be Quillen either.

Lemma 7. Let.# = dgCat. Assume that for two presheavésand .%’
there is a hypercover Mon which.# and.#’ agree and which restricts to a
hypercover of W for every open W. Th&hand.#’ are weakly equivalent
in ;.

Proof. We need to show that there i$fa-local equivalence betwee# and
F',1.e. Map,,,(#,9) =~ Map ,.(#',¥) for any fibrantG.

Specifically, we consider setsin the hypercover of agreement contained in
W. Then we know Map¥ (V),¥4(V)) ~ Map(#'(V),¥4(V)). To compute

Map(#,¥9) = mMap(ﬁ(\N),%(\N)) note that the homotopy end can be
computed as follows:

h
fw Map(F (W), Z(W)) ~ f Hom((@" 7)(W), RZ(W))
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Here we use fibrant replacement and a cosimplicial resaiutio.7".
But now holim, 4(V) = limyRY(V) by fibrancy of the diagranR¥.
So it sufices to considerﬂN Hom(@Q'F(W), R¢(W)) where R¢(W) =
limycw RZ(V)). But an end is just given by the collection of all compatibl
maps, and every map fro@'.# (W) to RZ(W) is determined by the maps
from Q.7 (W) to RZ(V), which factor throughQ'.# (V). So the end over
theV is the same as the end over\lland

Map(¥#,¥) ~ fHom(Q*ﬂ’(V), RZ(V))

\%
~ f Hom(Q".Z"(V), R%(V)) ~ Map(Z', %)
\Y

This completes the proof. O

Remarkll. If .# is a symmetric monoidal model category then by Remark
[10 fibrant objects are precisely levelwise fibrant hypergbgand are again
determined on a hypercover and Lenimha 7 holds again.

3.2. Sheafification of constant presheavesOur aim now is to compute a
hypersheafification of the constant presheaf with valuesnodel category.
Recall thatX is a locally contractible topological space and that we have
fixed a model category# that is cellular and left proper. We now assume
that .# is moreover homotopy enriched over itself and has a cofibrant
unit. We will also need that the derived internal hom-spamamutes with
homotopy colimits.

The example we care about is#7 = dgCat,,. The fact that
holimRHom(A;,B) =~ RHom(hocolimA;, B) in dgCat follows from
Corollary 6.5 of [36]. The one object dg-categdris a cofibrant unit.

We write P for the constant presheaf with fibBre .# .

First we need to quote two lemmas about comparing homotapisli
Given a functor: | — J, recall the natural mag;: (j | ¢) — J from

the undercategory, sending  — «(i)) to «(i).

Lemma 8. Let:: | — J be a functor between small categories such that for
every je J the overcategor{t | j) is nonempty with a contractible nerve
and let X J —» .# be a diagram. Then the mdmwlim; X — holim, ¢*X is

a weak equivalence.

Lemma 9. Let:: | — J be a functor between small categories and let
X: J — .# a diagram with values in a model category. Suppose that the
composition

X; — |(IJ_IB €(X) — h&ll)m €(X)
is a weak equivalence for every j. Then the natural rhatim; X —
holim, .*X is a weak equivalence.
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Proofs . For topological spaces these are Theorems 6.12 and 6.1}a0fd8
the proofs do not depend on the choice of model category. O

We will also rely on the following results from [10]. The firstatement is
Theorem 1.3 and the second is a corollary of Propositiongld&g basis is
a complete open cover.

Proposition 10. Consider a hypercover U— X of a topological space
as a simplicial space. Then the mapscolimU, — |U,| — X are weak
equivalences ifop.

The colimit here is over the catego®y®, but recall that hocoline Uy, =
hocolim U,

Proposition 11. Consider a basi¥l of a topological space X as a simplicial
space. Then the mdmcolim,; U — X is a weak equivalence ifop.

Let X be locally contractible. Then we can define the (nonemptyREes s
of all bases of contractible sets f&r

Definition. Fix a basis of contractible set® for X. Let P be a constant
presheaf with fibeP € .# and define a presheﬁm‘”ES by

Z5(U) = holim RRAV)

Vcu,veus

whereP — RPis a fibrant replacement inZ. Denote the natural map by
A: P — Z3. The restriction maps are induced by inclusion of diagrams.

We will be interested inZ;? ~ £, .

This construction proceeds via constructing rather largéd, so even the
value of Z* on a contractible set is hard to make explicit.

The following lemma is the first step towards showing thataamstruction
does indeed give a hypersheaf.

Lemma 12. Consider a constant presheafvidth fibrant fiber Pe .# on
Op(X). Then on any contractible set g Op(X) we havei”ES(U) ~ P.

Proof. Considerll as a category. We need to show that hgh® ~ P.
The crucial input is that the weak equivalencés — = give rise to
U =~ hocolim,cy V =~ hocolimy « via Proposition_111.

Now consider an\N € .# and a cosimplicial resolutioN*. Then we have
the functorK — N ® K defined in the introduction which is left Quillen, as
is shown in Corollary 5.4.4 of [18]. Hence it preserves haspgtcolimits
and we have:

N=N® hoc;PIim* ~ hoclg)lirr(N ® %) = hoc})limﬂ
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Finally, we use the fact tha# has internal hom-spaces. Replat@above
be the cofibrant unit. Then we conclude:

kL\JolllrpE(U) ~ hoI|m RHom(1, P(U))

e (o]
~ h(z)l!)lpm RHom(1(U), P) ~ RHom(hocl%)lim;, P)
~ RHom(1,P) ~ P

In the second line we use the fact tRitom(—, P) sends homotopy colimits
to homotopy limits. O

Proposition 13. For two choicesll' and U® there is a chain of quasi-
isomorphisms betweef} and .45. Hence there is a preshea#p well
defined in the homotopy category.

Proof. By considering the union of af andl! it suffices to show the result

if Utis a subcover ofls. By Lemma[® it then sflices to fixU; € U and
check that holim, P ~ P where is the natural inclusion map. But the
arrow category stands for the opposite of the category dhallelements

of U® contained inJ;. These form a basis and hence the homotopy limit is
given be Lemmal2. O

Proposition 14. For any choice ofI® the presheafZ? is fibrant, i.e. it is
H-local. -

Proof. By Lemmal[®, it is enough to showZy is levelwise fibrant
(immediate from definition) and satisfies the hypershealitmm.
Given a hypercovefW}ic; of U we may assume that any element6f
is a subset of one of th&/. Then we consider for everythe basis of
contractiblesit) for W, of elements ofI® that are contained iWV,. We
obtain the following:

hollm.Zs(W) ~ hoI|m holim P(U) « holimP(U)

€loP  yeusiop Uelrsor —

And our aim is to show the arrow on the right is a weak equivaen

By consideringRHom(1 ® hocolims, P) as in the proof of Lemmpg12 it
sufices to show hocolif hocolim,on V — hocolimycs U is a weak
equivalence. But if we apply Propositidnl11 this is weaklyigglent to
hocolim W, — X, which is a weak equivalence by Proposition 10. O

If X is locally contractible then it has a basis of contractibpem sets.
Moreover one can associate a hypercover to any basis. Faitsdet the
construction see Section 4 0f [10] and note that a basis isngplete cover.

Proposition 15. If & is constant then the natural mag — Z» is a weak
equivalence of presheaves.
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Proof. To show thatZ resolves?’ it is enough to observe that’,»(U) =~
2 for contractibled by Lemmd_1R. Now the contractible opens give rise to
a hypercover on whicl¥” and.Z» agree and that restricts to a hypercover
on every open set. By Lemrha 7 thatistes to prove the proposition. O

With Propositiori_ 15 we can compuRF'(X, P) as_Zp(X). Note that since
we have not used functorial factorization this is not a fonoin the level of
model categories but only on the level of homotopy categorie

Definition. We will call a cover in e, 1) a good coverif all its
elements and all their finite intersections are contragtiblorrespondingly
a good hypercovelis a hypercover such that all its open sé&t¥ are
contractible.

We will now consider a good hypercov@d;}i.;. For computations it is
easier not to consider the full simplicial presheaf givendpen sets in
the cover but only the semi-simplicial diagram of nondegataeopen sets,
obtained by leaving out identity inclusions.

Theorem 16. Let U, — hy be a good hypercover of a topological space X.
Let Pbe a constant presheaf on X. The(R, P) ~ holimje P ~ holim,gp P
where | indexes the distinct contractible sets of. U

Proof. We consider a fibrant replacemegt as in Definition[3.2. Let
index the connected open setd.hf Then we have:

RT(X, P) = .Zp(X) = holim.Z(U.)
~ h(l)(!lmDSfE(U,ﬂi)) ~ holimP

Here we use Lemniall2 to identifyfp(UY) andP. Now consider: 1 ¢
I°P and note that all the overcategories| i are trivial (anyi € | is
isomorphic to somg € lp) so by LemmaB we have

RC(X, U) ~ holgm P |

lo

Remark12. Note that we can of course take the hypercover associated to
a Cech cover in this theorem. In fact, since we are concernéulacally
constant presheaves we could also compute i€#eh model structure, but
considering hypercovers simplifies the theory.

We conclude this section with some results on functoriality

Lemma 17. Let f: X — Y be a continuous map and lej P, denote the
constant presheaf with fiber P on X or Y. Thar(R P) ~ RI'(Y, Rf.(P)).

Proof. The fact thaRI'oR f, ~ RI" follows immediately fromry.. o f. = 7x..
and the fact that all these maps preserve fibrations. O
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Lemma 18. With notation as above there is a functor from(R P,) to
RF(X’ EX)

Proof. I is a covariant functor. From Lemniall7 we have a natural weak
equivalencdI'(Y, Rf.(P,)) — RI(X, P,).

LetP, — Z, be afibrant replacement. It is then enough to construct a map
f*: Py —» RE(Px) of hypersheaves ovi. On any open sdil this is given

by P, (U) =P — f.P,(U) — f.Z2x(U). |

Remarkl3. With P = Chy, this gives functoriality for Morita conomology
if we use functorial factorizations.

Note that our computation using good covers is not functandess we
pick compatible covers. However XfandY have bases of contractible sets
which are suitably compatible there is a natural comparmap between
homotopy limits.

Remarkl4. The results of the last sections relied on the assumptian tha
dgCatis left proper, which is only the casekfis of flat dimension zero.
Nevertheless, one can consider the question of what Mooit@mology
should be over other ground rings and it is sensible tol¥e.%cn,.) as

our definitionof Morita cohomology ifk has positive flat dimension. All
pertinent results then still apply, in particular TheoteBndnd we can prove
equivalence with the category of-local systems in Sectidn 4.1.

4. INFINITY-LOCAL SYSTEMS

4.1. Singular cohomology with codficients in dgCat. We will now
consider the categorification of singular cohomology, gi®/ the dg-
category ofco-local systems. Here we consider dg-categories over an
arbitrary commutative ring.

Recall fron2.8 that while the model categoriesdgCat are not simplicial,
there is a bifunctosSet? x dgCat,, — dgCat,, that induces a natural
Ho(sSe) cotensor action oRlo(dgCatyk o mor)- Ve write this asK, ) —

9X.

Definition. We define thedg-category oko-local system®n a simplicial
setK asCh,e*. We write % (K) for Ch,e". For a topological spack we
recall the (unpointed) singular simplicial set Si) and define? (X) :=
% (Sing (X)). We also define?(K) = Chyy and#/(X) = Chgy>"* ™),

Remarkl5. We are using the Dwyer—Kan model structure for simplicity,
but of course we think o€h,. as a Morita fibrant replacement lofind one
can show that? (K) is weakly equivalent t&* as constructed idgCat,,,,,

cf. the proof of Theorern 22.



20 JULIAN V. S. HOLSTEIN

As we will mainly consider topological spaces via the fum@amg. in this
section we restrict attention to compactly generated Hauisdpaces so
that Sing is part of a Quillen equivalence.

Lemma 19. The functor Ki» #/(K) is a left Quillen functor fronsSetto
dgCat with right adjoint given by Mag-, Chye),

Proof. This follows for example from Theorems 16.4.2 and 16.5.7 in
[14]. O

As all simplicial sets are cofibrant we obtain the followirgyallaries:
Corollary 20. The functor K— #/(K) preserves weak equivalences.

Corollary 21. The functor K —» %/(K) sends homotopy colimits to
homotopy limits.

Since Sing sends cofibrations of topological spaces to cofibratiorsSiet
the lemma also holds fo# : CGHauss — dgCat},. Moreover, as Sing
is a Quillen equivalence it preserves weak equivalenceshamaotopy
colimits. Then the last result can be interpreted as a Mageteris
theorem:

Z(U V) =Z(U)Xzyunv) Z (V)

This definition ofco-local systems looks a little indirect. But note that an
co-local systems does provide us with an object ©h ), for everyn-
simplex ofK. One can consider an explicit simplicial resoluti@hge).. as
constructed in([17] to see this is the data one would expect.

Sectiori 4.2 will provide a more explicit way of looking@tlocal systems,
but first we show thato-local systems are equivalent to Morita cohomology.
Fix a topological spac¥ with a good hypercovelJilic,.

Theorem 22. The dg-categoriess#”M(X) and #/(X) are isomorphic in
Ho(dgCatpy).

Proof. By Propositior 1D there is a weak equivalence hoctlim- X. Let

| = Ul, by the indexing category. Then we can consider the data of the
categoryl as a simplicial set — I, with the induced face and degeneracy
maps, or in fact as a simplicial space where evgris considered as a
discrete space. Then we can consider the comparison mapUgpto
L1, = sending every connected open to a distinct point to get rogdJ,, ~
hocolim, I, where we take homotopy colimits of simplicial spaces. Then
|. considered as a simplicial space has free degeneracieg isetise of
Definition A.4 in [10]. Hence we can apply Theorem 1.2[of/[16Hdind

Il.| ~ hocolim, I,. So the simplicial sek. is weakly equivalent to SingK
and it sufices to analys€hp,".
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Hence by Remarkl4 and Theorém 16 we are left to compare polim,e
and holim,e»(Chpe)n. But the category is exactly the category of simplices
of the simplicial set, and the weak equivalenc&,. — (Chye), induce a
weak equivalence of homotopy limits. |

Remark16. This argument still applies if we replagehp. by any other
dg-categoryP. Hence we know thaR['(X,P) ~ PS¢ K  For example
RIC(X, Chgg) = #Y(X).

Corollary 23. The functor X— s#M(X) is homotopy invariant and sends
homotopy colimits to homotopy limits.

Proof. This is immediate from Theorem22 and the topological versiof
Lemmd_ 19 and its corollaries. O

Definition. With this equivalence in mind we can define thorita
homologys#,(K) of a simplicial seK asChe ® K.

Note, however, that computing this involves a cosimpliasiolution in dg-
categories which looks flicult to produce.

4.2. Loop space representations.In this section we move from the rather
abstract action of simplicial sets atgCat to representations of a dg-
algebra.

For this we will have to move betweeatgyCat and the category of linear
simplicial categories. First recall that the natural sntiamcation functor
750 from Ch to Ch, extends to a functor fromgCat to dgCat,,, which we
also denoter.o. This functor is right Quillen with left adjoint the inclusn
functor.

Further recall the categorysModCat, of categories enriched over
simplicial k-modules and the natural Dold—Kan or Dold—Puppe functor
DK: dgCat,, — sModCat that is defined hom-wise. DK and its
left adjoint N, normalization, form a Quillen equivalence between non-
negatively graded dg-categories asiModCat. For details see section 2.2
of [32] or [34].

In V.5 of [13] explicit looping and delooping functors fornsplicial sets
and simplicial groupoids are constructed. For arbitranymicial sets there

is a functorG: sSet — sGpd with right adjointW. Together they form

a Quillen equivalence. The obvious composition with thenmadization
functor NkG: sSet — dgCatyy is left Quillen. Essentially this lets us
consider a simplicial set as a dg-category. The restriafda to simplicial
sets with a single vertex is a Quillen equivalence with sioigl groups.

Next we consider the enriched hom-spaBglom(Z,Chgyg) of dg-
categories. As in the introduction, for any dg-categérywe consider
L(Z-Mod), whereL just restricts to the quasi-equivalent subcategory of



22 JULIAN V. S. HOLSTEIN

fibrant and cofibrant objects. Let us write this @Iadg@ . We note that
this is quasi-equivalent tRHom(Z, Chyg). This is immediate from the
definition if 2 is cofibrant. Otherwise consider a cofibrant replacement
j 1 2 - QZ and note thaZ-Mod andQ%-Mod are Quillen equivalent via
j* by the results of Section 4.1 in [37]. This shows that the canspn map
of underlying dg-catgeories is quasi-essentially sujectMoreoverj* is
compatible with shifts, so the equivalence of homotopygaties implies
that the hom-spaces 6f-Mod andQZ-Mod are quasi-isomorphic and this
proves thag* is a quasi-equivalence.

Similarly write Chpe@ for the subcategory dEhdg@ consisting of objects
whose underlying complexes are all perfect okerThis subcategory is
preserved byj* and its adjoint so we hav€h,.” ~ Ch,.*” and hence
Chpe” =~ RHom(Z, Chy).

Theorem 24. For a simplicial set K the dg-categori&h . andCh,¢N*¢K
are quasi-equivalent, as a@hgg* and ChggV X,

Proof. The proofs forChy,” andCh,” are identical, so let us abusively
write Ch for both.
By the Yoneda embedding it is enough to prove

MapdgcatDK (‘@’ ChK) = MapdgCatDK (9’ ChNkGK)

for arbitrary dg-categoriesy. (In fact an isomorphism of connected
components of the mapping space would be enough.)

The left-hand side is Mag.(K, Map,yc.(Z, Ch)) by the usual adjunction.
Meanwhile, for the right-hand side we have the following gatation. We
use the adjunctions" + RHom, ¢ 4 7+ (inclusion and truncation)\l 4+ DK

(Dold—Kan),k 4 U (free and forgetful) an@® 4 W (looping and delooping).
For legibility we contracDK o 7. to DK and suppressandU.

Map(Z, ChM®¥) ~ Map,yc,, (NKGK RHom(Z, Ch))
=~ MapPygcar,, (NKGK 720(RHOM(Z, Ch)))  as LHSc Im(rxo)
> Mapgyodca(KGK DK(RHom(Z, Ch)))
=~ Map,c(GK, DK(RHom(Z, Ch)))
=~ Map,gpi(GK, DK(RHom(Z, Ch))) as LHS is a groupoid
=~ Map;s(K, W(DK(RHom(Z, Ch))))

Hence it siffices to show thatV(DK(RHom(Z, Ch))) is weakly equivalent
to Map(@, Ch) = Map(l, RHom(Z, Ch)). Since any simplicial seK is
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weakly equivalent to Map( K) we consider the following.

Map,s(*, W(DK(RHom(Z, Ch)))) = Map,g,q(*, DK(RHom(Z, Chy))
~ MapPgyoaca(l, DK(RHom(Z, Chy))
~ MapdgcatDK (1, RHom(Z, Ch))

Here we use some of the same observations as before and neeveio
thatGs ~ x, the trivial simplicial groupoid. Here the uriitis the one object
category with morphism spad2K (k) respectivelyk. |

Notation. If X is a topological space we writd2X for N(kG Sing. (X)).

We can restrict from the dg-categdiyQX) to a more familiar dg-algebra if
X is connected and pointed. L&X denote the topological group of based
Moore loops orX. ThenC,(QX) = C.(QX, k) is a dg-algebra.

Lemma 25. Let X be a pointed and connected topological spacg€QX)
considered as a dg-category with one object is quasi-edgimdao NQX.

Proof. Sing. X is a connected simplicial set and by the existence of minimal
Kan complexes has a reduced mo#gli.e. there is a weakly equivalent
simplicial set with a single vertex.

Then we haveGSing X ~ GK as simplicial groupoids and thus as
simplicial categories. It follows thal(kG Sing. X) ~ NKGK. Finally, there

is a weak equivalence of simplicial groups betw&itand SingQX. 0O

Since quasi-equivalent dg-categories have quasi-egumvalategories of
modules by our earlier discussion we have the following ltainp

Theorem 26. The dg-categoriesChp,> ) and #(X) are Morita
equivalent, as ar€hgy~ ) and 27 4(X).

We can sum this up as a slogan: Morita cohomology is contrdie
chains on the loop space. We will construct explicit modelsG, (Q2X)
in Theoreni 2P.

Example 1. The category of loop space representationsStfis quasi-
equivalent to the category of bounded chain complexes witlegree
1 endomorphism. This follows since the homology algebraR6&f is
equivalent to a polynomial algebra on a single generatoegree 1. See
Sectiorl b for more examples.

4.3. Cellular computations. The previous computations correspond to
computing Cech cohomology and singular cohomology of topological
spaces. This is often not the modteetive way of computing, and it
becomes very cumbersome when we deal witHlooent categories.
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In this section we will write down a simpler way of computingrendel
for Chpe @ if X is a CW-complex. This model will be given by
representations of an algel#&(X) with a generator in degree-1 for every
e-cell (with an inverse ife = 1). One could think of this as categorified
cellular cohomology. The case f@hg,~* works exactly in the same
manner and for simplicity we writ€h® for both cases again.

Note that if X has no 1-cells an#l is a field one can construcg(X) as a
cofibrant dg-algebra weakly equivalent@o(QX).

For later reference we note:

Lemma 27. The functorZ — Ch? sends colimits to limits.

Proof. The constructior? — Z-Mod is the naive category of dg-functors
and is adjoint to the tensor produe® Ch. All objects are fibrant so we are
left to compare cofibrants in (colim#)-Mod with the limit of the categories
of cofibrants ine4-Mod. But since acyclic fibrations agree, the left lifting
property gives the same conditions on both sides. O

Next we compute an explicit model f@hN**_ The plan is to proceed by
induction on the cells oK. To perform this we first need good models for
the cofibrationgNQS"™* — NQB".

Let D(n) be the diferential graded algebddx, 1, X, | d%, = X,1]. Let
S(n) = K[x, | d%, = 0]. Thenk — S(n) andS(n - 1) — D(n) are the
generating cofibrations for the model structure on dg-akeb

First we observe tha(n— 1) ~ NQS" if n > 1. In other wordsS(n — 1)
provides a model for singular chains %" equipped with the Pontryagin
product. This is of course well-known, but one can also pribairectly
using our set-up, see Example 4 in Secfibn 5.

We also need to know that there is a niafm) — NQB" compatible with
S(nh - 1) — D(n). This follows by the lifting property of the cofibration
S(n - 1) — D(n) with respect to the trivial fibratioNQB" — .

These are the building blocks needed to associate to anyectathCW-
complexX a dg-algebraz(X) that approximates the way is glued from
cells.

The following result already appears in [1].

Theorem 28. Associated to every connected CW complex X with cells in
dimensior> 2 there is a cofibrant dg-algebr&?(X) with one generator in
degree n- 1 for every n-cell, that is quasi-equivalent tq@X).

In particular? (X) = Chpe?™ and#(X) ~ Chyy?™. In the next theorem
we will consider the case of 1-cells.

Theorem 29. Associated to every connected CW complex X there is a dg-
algebra #(X) with one generator in degree A 1 for every n-cell with
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n > 2, and with two inverse generators in degree O for every 1-ceith
that % (X) ~ Ch#™),

Proof. Let us defines*(0) = k[a,a}] andD*(1) = k[a,at,b+— a- 1] and
consider the cofibratio8*(0) < D*(0). Of courseD*(0) ~ k.

Then we have compatible quasi-isomorphisiQS! — S*(0) and
NQB? — D*(1). The first is induced by projection to connected
componentss Sing. S — Z, the second map exists sinBg(1) — 0 is

a trivial fibration andNQS* — NQB? is a cofibration.

Let X; be the 1-skeleton ok and defineZ(X,) = %(\/S?) = ®:5*(0)
which is weakly equivalent t€.(Q(\/sS?)) There is an obvious map from
S*(0) to Z(X,) for any attachment map® — X;. Assume first thaX is
obtained fromX; by attaching a 2-cell. Then we define

B(X) = colim(D*(1) « S*(0) - B(X))

Now % (X) is the homotopy pullback o (B?) « #(S!) — #(X,). But
this diagram is weakly equivalent @M% — ChN®S"  ChN®t which

is in turn weakly equivalent t&h® @ — ChS' @ « ch”*,

These are all pullback diagrams of fibrant objects with onp enfibration,
hence they are homotopy pullbacksdggCat, is right proper since every
object is fibrant. Since the diagrams are levelwise quasivatent their
pullbacks are quasi-equivalent, and thus also isomorphio(dgCaty,,, ).
But sinceZ — Ch? sends colimits to limits by LemniaR7 it also follows
that

% (X) = holim(# (B?) - #(S?) « (X))
= hoIim(ChD*(l) — ChS'O Ch:ﬂ(xl))

~|im (Ch®® - Ch¥'© — ch”0w)
~ Cheolm(D*(1)S" (0}~ #(X0))

The colimit in the exponent is how we have definggX).

Now consider the general case. First to obta#fX,) note that any
attachment map frorB?! factors throughx,, so we can repeat the previous
step as often as required. Attachment of higher-dimenbaails works in
exactly the same manner, we just have to replag®) by S(n - 1) and
D*(1) by D(n).

To extend to infinite CW-complexes we have to check the sagenaent
goes through for filtered colimits. Since the mads, — X., are
cofibrations the filtered colimit is a homotopy colimit andmoutes with
NQ. So NQX., =~ hocolim,.; NQX, and we can definezA(X.,;) as
colim,.; Z(X<,). O
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Remarkl7. To use this computation in practice we need to identify the
degreen — 1 elementy of %(X.,) that corresponds to the image $f.
Then we adjoin a new generatorvith dx = y. This can of course be quite
non-trivial. There are some examples in Secfibn 5.

Remark18. By construction#(X) is Morita-equivalent toNQX, but it
does not follow from the construction whether the two dgeblgs are
isomorphic inHo(dgAlg).

4.4. Finiteness and Hochschild homologylIn this section we consider
conditions for Morita conomology to satisfy some finitenpssperties, and
determine Hochschild (co)homology in several cases byiggatlevant
results from the literature.

Let us first make some definitions. HdRadenotes fibrant replacement in
dgCaty,,,. Specifically,RB= L(B°*-Mod)pe.

We say a dg-category is locally properif the hom-space between any
two objects is a perfect comple¥ is properif moreover the triangulated
categoryHy(RZ) has a compact generator, i.e. a compact object which
detects all objects.

Recall an objecX in a model category isomotopically finitely presented
if Map(X,—) commutes with filtered colimits. & is smoothif it is
homotopically finitely presented asZzf® ® Z-module. 7 is saturatedf it

is smooth, proper and Morita fibrant.

We say¥ is of finite typeif there is a homotopically finitely presented dg-
algebraB such thaRZ ~ R(B).

These definitions are Morita-invariant (except for the gbod of being
Morita fibrant). Toén shows in Lemma 2.6 of [38] that a dg-gatg
has a compact generator if and onlyRfZ? ~ RB® for some dg-algebra
B and is moreover proper if and only if the underlying compléxBois
perfect. Moreover any dg-category of finite type is smoottoesition
2.14 of [38)).

Remarkl9. Saturated dg-categories are precisely the dualizabletshje
Ho(dgCat,,). Another reason to be interested in this finiteness canditi
is that if a dg-category is saturated there is a nice modadiksof objects,
this is the main result of [38].

Proposition 30. The dg-category(X) is triangulated and has a compact
generator. If X is a finite CW-complex without 1-cells th&his smooth. If
moreover H(QX) is of finite type thewY(X) is saturated.

Proof. Note first that as a homotopy limiz ¥(X) is fibrant and the compact
generator is given bg. (QX).

Theorenm 2D implies that in the absence of 1-cells the dgbadg®(X) is
homotopically finitely presented. So the categd®¥(X) is of finite type
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and hence smooth. .(QX) is of finite type, then#(X) is a perfect
complex overk, and Z" is moreover proper and we find th&"(X) is
saturated. O

In fact Kontsevich shows in [23] that the dg-algebra of chan the loop
space of a finite connected CW complex is always of finite type.

By contrast if X is an infinite CW-complex them#(X) is usually not
homotopically finitely presented. For example considg(CP*) =~
k[x1]/(x3) wherex, is in degree 1.

Next we consider properness ff(X). The categorys#’™(X) is locally
proper if all cohomology groups of with codficients in local systems are
finite dimensional and concentrated in finitely many degréais is for
example the case X has a finite good cover. Then the hom-spaces are
finite limits of perfect chain complexes.

This is in contrast to Ext-groups of local systems, whichloatarge even if
Xis very well behaved, for exampleX is a smooth projective variety![7].
The exampleX = S! shows that we cannot expegt(X) to be proper
in general. chS' is the category of complexes @frepresentations, with
infinitely many connected components.

Proposition 31. If my(X) has only finitely many irreducible finite-
dimensional representations then there exists a compastrgeor A and
% (X) ~ L(EndA)°*-Mod),e. Moreover,Z/ (X) is proper if C(X, EndA)) is

a perfect complex.

Proof. We defineA to be the sum of all the irreducibles. This clearly
generates the dg-category. By Lemma 2.6 [of [B8 (X)°P-Mod) =
L(Endy (x)(A)°*-Mod). Since# (X) ~ L(# (X)°*-Mod),e we deduce that
% (X) is the subcategory of compact objects in Exdilod.

The second statement is clear. O

The proposition applies for example if the fundamental grisdinite. Then
we can takeA to be the group ring.

Example 2. Let X be simply connected. Then we can take= k and
find End@) ~ RHom,,, (k,k) = C*(X,k). The second quasi-isomorphisms
follows for example from results in [16]. In particulg (X) =~ C*(X,K)

in dgCaty,,,. Then#(X) is proper if and only ifC*(X k) is a perfect
complex. If C*(X,Kk) is homotopically finitely presented the# (X) is
moreover smooth and saturated.

If % (X) has a compact generator it becomes much easier to compute
secondary invariants. In particular we can compute Hodltsblomology
and cohomology. For definitions and background see [21]. ceSin



28 JULIAN V. S. HOLSTEIN

Hochschild homology and cohomology are Morita-invariané wan
compute them on a generator of a dg-category if there is one.
Example[2 implies the following proposition. HekeH stands for either
HH* or HH...

Proposition 32. Let X be simply connected, then K#(X)) =
HH(C*(X)).

So we can compute Hochschild (co)homology of Morita cohaggifrom
minimal models (in the sense of Sullivan).

Proposition 33. For any space X there are isomorphisms @' (X)) =
HH(C.(QX)) = HH(A(X)).

Proof. The first isomorphisms follows from Corollary 8.2 in_|36],eth
second isomorphism follows since Hochschild (co)homola@Morita-
invariant. O

The following applications follows from results readilyahable in the
literature.

Proposition 34. Let X be simply connected then HH/ (X)) = H*(ZX).

If M is a simply connected closed oriented manifold of direns then
HH*(#(M)) = H..q(ZM) as graded algebras with the Chas-Sullivan
product on the right hand side.

Proof. If X is simply connected it is well known (see [25]) that
HH.(C*(X, k)) = H*(ZX) where.Z X is the free loop space.

The second part follows since the Hochschild cohomology ansingular
cochains orM (with the cup product) is isomorphic to its loop homology
with the Chas-Sullivan product, cf./[6]. O

Note that we do not expect Hochschild homologyofX) to be particularly
tractable ifX is not simply connected. For exam#(S?) is equal to dg-
representations & and hagk*| simple objects with no morphisms between
them. Hence it follows from the explicit definition in_ [21]ahHochschild
homology consists dk*| copies ofHH..(k[y]) wherey lives in degree 1 and
has square 0.

Proposition 35. For any space HH#ZY(X)) = H.(ZX). If X is a
simply connected CW complex there is an isomorphism of graldgbras
HH*(#4(X)) = H*(ZX).

Proof. We findHH,.(#Y(X)) = HH,.Q(X) = H.(.ZX) from 7.3.14 in[24].
The result thaHH* Sing QX = H*(.¥X) as graded algebrasXis simply
connected is in[27]. O
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5. EXAMPLES

In this section we compute some examples of Morita cohonyoldg will
mainly use the characterization in termd®{QX) or the dg-algebrag(X)
defined in Section 413.

In the following whenever an element has a subscript, thisdenote its
degree.

Example 3. We begin with the cas¥ = S*. Clearly.s#M(S?) is equivalent
to the category of representationszof QS?.

This is also the category of bounded chain complexes of lggstems on
st

We can also characteriz#’M(S?) as the explicit homotopy limit

(Chpe)' ><?:hpe><chpe Chpe

HereChpe' is the path object in dg-categories, see for exarmiple [17¢ Th
limit then comes out as the category of paiMd, ¢ < Aut(M)) with
morphisms €,g,h): (M,¢) — (N,¢) in Hom(M, N)®2 @ Hom(M, N)[-1]
with differential

(f,g.h) = (df,dg dh— (-1)%gg¢ + y f)
In particular Honi(k, k) = k @ k[1], which is exactly cohomology d8*, as
predicted.
Note that the category?”’™(S?) is highly disconnected, in fact isomorphism
classes of simple objects are naturally in bijection WithOf coursek* has
a geometric structure, and one way of interpreting largeaf@somorphism
classes of objects is to consider a moduli stack of object#df(X). We
will not follow this direction here.

Example 4. If n > 1 thens#M(S") ~ Ch,.>", i.e. the category of perfect
chain complexes with an endomorphism in degreel.

Proof 1. This is a consequence of the quasi-isomorphiSfm) —
N(Q Sing. S") which follows form the well-known computation of
H.(Q Sing. S"). |

Proof 2. We can also computeZ(S?) using the method of Theorem]29
by gluing two copies ofB? along St. The resulting dg-algebra has
one invertible generator with two trivialising homotopi@ghich is quasi-
isomorphic tok[x;] = S(1).

Once we know the case= 2 we can inductively comput®” = D" g1 D"
and note thaB(n) ~ D(n) ®g,, D(n).

Note that we can use this constructiorgd(S") in the proof of Theorern 29.
There is no circularity as we only need a model for spheresnredsion
less tham to computeZ(S"). O
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Example 5. Next consider some more detail for = 2. Sincek is a
generator letA := RE_ndC*(QSZ) ~ C*(S?) =~ K[Xo, X3 it x2] and we can
characterize? (S?) as compact objects iA-Mod.

An example of an object dRworita(S?, K) is the chain complex associated
to the Hopf fibrationp: S* — S2. As a homotopy locally constant sheaf
we can consider this &p. Sing.(S®). As a representation 2S? this can
be written ak & k[-1] with the natural self-map of degree 1.

Since 1(S?) is trivial, we can also viewRI'y.(S? k) as generated by
the trivial local system and the informatiod*(S?,—) provides about
(iterated) extensions. This provides a slightlffelient viewpoint on Morita
cohomology.

Example 6. For a groupG it is clear that?#”M(BG) is just the dg-category
of perfect complexes with an action Gf

Example 7. The dg-category#M(RP?) is given by representations of
Z(RP?) on perfect complexes, an@(RP?) has generatora, a;*, b; such
thatdb, = ag0 a9 — 1. The identificatiordb;, = ago ay— 1 is induced by the
attaching map from the boundary of the 2-celRtiB. rationally good.

We can obtainZ(RP?%) from 2(RP?) by addingc, with dc, = 0.

If we are working over the fieldQ Morita cohomology has certain
similarities to rational homotopy theory, cf. the dualitgtiyeenC.,(QX)
andC*(X) in the simply connected case. On the other hand we se& Bfat
has trivial minimal model, but its Morita cohomology is a dgtegory with
two simple objects corresponding to the irreducible regméstions ofZ/2.

Example 8. Next we compute the map' : s#M(S?) — #M(S®) induced

by the Hopf fibration.

On the level of loop spaces we see that the map is induced by
Qp.: H.(QS? — H.(QS?) which is given byx, — y2 on the generators.

With this in mind we can work ou#’M(CP?) explicitly by considering the
following diagram:

MBY L eMs?) - eM(cpY
On the level of dg-algebras we have
D(3) <= S(3) % #(S?) = S(2)

The attaching map., is induced by the Hopf fibration. As we have just seen
it corresponds to the ma, (QS®) — H.(QS?) given by sending, — y2.
Hence we find:

%(CPZ) ~ K[ay, asz | dasz = af]
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Example 9. We can generalise this toP", every extension over a-2ell
corresponding to another magp_; in degree 2— 1. We findd: a3 - o3;
a5 > @31 + @13, @7 & asay + 04% + a5 etc.

It is well-known thatH. (QCP") is isomorphic toA(y:1) ® K[y»n] as a Hopf
algebra, in particular the Pontryagin products agree. Tadedhis to the
above description identify,, = axn1a1 + -+ - + @1a2n-1. The dg-algebra
A(X) is larger since it is quasi-free (i.e. the underlying gchdssociative
algebra is free), whiléd,.(QCP") is only quasi-free as a commutative dg-
algebra.

Example 10. Taking the limit we find%(CP*). Of course the homology
algebra of2CP™ is just that ofS. IndeedK[a, a3, . . .] with its differentials
is a quasi-free model fdqz].

We conclude with the following example of a space with tdividorita
cohomology.

Example 11. Consider Higman’s 4-groupl with the following presenta-
tion:

(a,b,c,d|aba=b? blcb=c? cldc=d? dlad=a?

This is an acyclic group without non-trivial finite dimensal representa-
tions. Its classifying spacBH is known to be a finite CW complex. For
references see e.gl/[3]. It is easy to see that the Moritarmoloyy of BH

is quasi-equivalent t€h ..
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