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Highlights: 

 Explosive volcanic morphologies on Mercury are divided into three classes. 

 We present analysis of vent dimensions, locations, and stratigraphic ages. 

 We find evidence for formation into relatively recent mercurian history. 

 We use vent morphology and location to determine formation geometry. 

 We find support for eruptions both at and above critical gas volume fractions. 
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Abstract 

The MESSENGER mission revealed, for the first time, conclusive evidence of explosive 

volcanism on Mercury. Several previous works have cataloged the appearance and location of 

explosive volcanism on the planet using a variety of identifying characteristics, including vent 

presence and deposit color as seen in multispectral image mosaics. We present here a 

comprehensive catalog of vents of likely volcanic origin; our classification scheme emphasizes 

vent morphology. We have analyzed the morphologies of all vents in our catalog, and recognize 

three main morphologies: ―simple vent‖, ―pit vent‖, and ―vent-with-mound‖. The majority of 

vents we identify are located within impact craters. The spatial distribution of vents does not 

correlate with the locations of volcanic smooth plains deposits, in contrast to the Moon, nor do 

vents correlate with the locations of large impact basins (except for the Caloris and Tolstoj 

basins). Using the degradation state of the vent host crater as a proxy for maximum age, we 

suggest that vent formation has been active through the Mansurian and into the Kuiperian 

periods, although the majority of vents were likely formed much earlier in mercurian history. 

The morphologies and locations of vents are used to investigate a set of plausible formation 

geometries. We find that the most likely and most prevalent formation geometry is that of a dike, 

stalled at depth, which then explosively vents to the surface. We compare the vent and deposit 

size of mercurian pyroclastic deposits with localized and regional lunar pyroclastic deposits, and 

find a range of possible eruption energies and corresponding variations in eruption style. 

Localized lunar pyroclastic deposits and the majority of mercurian pyroclastic deposits show 

evidence for eruption that is consistent with the magmatic foam at the top of a dike reaching a 

critical gas volume fraction. A subset of mercurian vents, including the prominent Copland-

Rachmaninoff vent to the northeast of the Rachmaninoff basin, indicates eruption at enhanced 

gas volume fractions. This subset of vents shows a similar eruptive behavior to the lunar 
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Orientale dark mantle ring deposit, suggesting that the dikes that formed these vents and deposits 

on Mercury underwent some form of additional volatile build-up either through crustal volatile 

incorporation or magma convection within the dike. There also exists a population of mercurian 

vents that no longer retain a visible associated pyroclastic deposit; we hypothesize that the 

visible signature of the pyroclastic deposit has been lost through space weathering and regolith 

mixing processes. Together, these results provide a comprehensive analysis of explosive 

volcanism on Mercury, and inform continued research on the thermal history of Mercury and 

magma composition and evolution.  

 

Keywords: Mercury, Surface; Volcanism; Mercury 
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1. Introduction: 

Geologic investigations of the planet Mercury have benefitted immensely in recent years 

from the wealth of data returned by the MErcury Surface, Space ENvironment, GEochemistry, 

and Ranging (MESSENGER) mission [Solomon et al., 2007]. Volcanic processes on Mercury 

have been discussed since the Mariner 10 mission [Strom et al., 1975], which imaged 40% of the 

planet.  Returned images were suggestive of expansive, plains-style volcanism [e.g. Strom et al., 

1975] with additional  evidence suggested for both explosive volcanism [Robinson and Lucey, 

1997] and intrusive magmatic [Schultz, 1977] morphologies. However, a lack of albedo 

differences between units led to the contrasting interpretation that at least some of the smooth 

plains deposits were impact-related plains, similar to the Cayley Plains on the Moon [e.g. 

Wilhelms, 1976]. The debate about the nature of the smooth plains on Mercury remained 

unresolved and was a central question for the MESSENGER mission [Solomon et al., 2007]. 

Using MESSENGER’s Mercury Dual Imaging System (MDIS) instrument [Hawkins et al., 

2007], data from the first flyby of the MESSENGER spacecraft in 2008 revealed extensive 

evidence for smooth plains-style volcanism [Head et al., 2008; Head et al., 2009a], previously 

unobserved explosive volcanic deposits, and even a putative example of intrusive magmatic 

processes [Head et al., 2008]. The explosive volcanic features (vents and deposits) were first 

observed on the edge of the Caloris basin [Head et al., 2008]; other potential features were 

subsequently observed on the floors of craters and on plains deposits elsewhere [Kerber et al., 

2011]. The explosive volcanic features have been interpreted to be pyroclastic vents on the basis 

of their irregular and often elongated morphology, lack of associated raised rim, and the mantling 

morphology displayed by the surrounding deposit, though to be pyroclastic material [Kerber et 

al., 2009]. Morphometric analysis of these pyroclastic vents observed during the flybys indicated 
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that the features are significantly larger than observed lunar explosive vents, and the greater areal 

extent of the associated deposits on Mercury is interpreted to mean that pyroclastic material was 

emplaced with a higher gas mass fraction than pyroclastic material on the Moon [Kerber et al., 

2009]. This result is especially striking given that, prior to the MESSENGER mission, formation 

models for Mercury [Cameron, 1985; Benz et al., 1988; Boynton et al., 2007; Solomon et al., 

2007] suggested that the crust and mantle would be volatile-depleted. Thus, the observation of 

large numbers of pyroclastic deposits [Kerber et al., 2011] was a surprising result. 

In addition to analyses of the spatial sizes of explosively emplaced deposits on Mercury, 

assessments were also made of the spectral characteristics of the deposits [Goudge et al., 2014] 

using the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) [McClintock 

and Lankton, 2007] instrument. Like those of most of the mercurian surface, the deposit spectra 

are broadly featureless in the visible and near-infrared (VNIR) portion of the spectrum, 

indicating <2 wt% Fe [Izenberg et al., 2014]. The only identifiable feature in the spectra of 

Mercury’s pyroclastic deposits is a downturn in the UV portion of the spectrum; it was suggested 

that this feature is related to oxygen–metal charge transfer (OMCT) reactions in the deposits 

[Goudge et al., 2014]. This investigation also revealed evidence for space weathering of deposits 

and a gradual reduction in the strength of the UV downturn [Goudge et al., 2014]. The works of 

Kerber et al. [2011] and Goudge et al. [2014] focused primarily on deposits characterized by a 

large physical vent and associated color anomaly, and together identified 50 such explosive 

volcanic landforms in total.  

Thomas et al. [2014a] used a global MDIS image mosaic from the first year of orbital data to 

map all candidate pyroclastic deposits, focusing on the highly characteristic MDIS multispectral 

mosaic color anomaly found to be associated with pyroclastic deposits on Mercury [e.g., Kerber 
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et al., 2009]. The study identified 150 vents distributed across the surface of Mercury. Analysis 

of the correlation of pyroclastic vents with impact crater and basin edges suggested some local 

correlation (for the Caloris, Beethoven, and Tolstoj basins, and a proposed basin b54 [Fassett et 

al., 2012]); the authors further note that while the vents are not randomly distributed relative to 

each other (i.e. vents tend to form clusters), the cluster locations are not spatially correlated with 

specific geologic landforms [Thomas et al., 2014a]. These previous studies, it should be noted, 

focused either only on the morphology and eruption mechanism of a subset of the vents [Rothery 

et al., 2014, Thomas et al., 2015] or on the distribution of vents with no analysis of eruption 

mechanism [Kerber et al., 2011, Goudge et al., 2014, Thomas et al., 2014a]. Here we present an 

updated catalog of mercurian pyroclastic vents, with which we analyze vent morphology, discuss 

implications for eruption conditions, and present constraints on the timing of explosive volcanic 

activity within Mercury’s history. 

2. Morphology and Distribution of Mercurian Volcanic Vents 

 Explosive volcanic deposits on Mercury have been previously identified by various 

combinations of three distinct criteria (Fig. 1). The first criterion for identification is based upon 

the morphology of a suspected explosive vent: that is, a  depression without a raised rim, 

morphologically distinct from an impact crater, and often elongate along a single axis (Fig. 1A) 

[Head et al., 2009a; Kerber et al., 2009, 2011].  

The second criterion is the presence of a distinctive color anomaly associated with the 

deposit [Robinson et al., 2008; Blewett et al., 2009] and visible in processed MDIS color data 

(Fig. 1B) [Kerber et al., 2009]. As a result of the relative homogeneity of mercurian surface unit 

albedos, the MDIS team used principle component analysis (PCA) [Murchie et al., 2008; 

Robinson et al., 2008; Denevi et al., 2009] to develop a standard false-color composite image 
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that emphasizes different terrains on Mercury. The processing utilizes the following band 

channels: R: PC 2, G: PC 1, and B: 430/560 nm reflectance [Murchie et al., 2008; Robinson et 

al., 2008; Blewett et al., 2009]. With this multispectral processing technique, pyroclastic deposits 

have a bright orange/red color, sometimes called a ―red spot‖ (RS) anomaly, which is useful in 

identifying previously unrecognized deposits [Kerber et al., 2011, Goudge et al., 2014, Thomas 

et al., 2014a].  

The third possible identifying characteristic is a relatively high-reflectance annulus 

surrounding the vent structure (Fig. 1C) [Kerber et al., 2009]. This feature is analogous to the 

―dark halo‖ features on the Moon, which are low-albedo annuli surrounding pyroclastic vents, 

interpreted to be composed of pyroclastic material [e.g. Head, 1974; Heiken et al., 1974; Gaddis 

et al., 1985; Weitz, et al., 1998; Gaddis et al., 2003]. Although the pyroclastic halos on the Moon 

and Mercury have contrasting reflectance characteristics relative to the surrounding terrain (i.e., 

dark annulus but light highlands on the Moon, versus light annulus but dark plains on Mercury), 

the absolute reflectance values for the pyroclastic deposits suggests that they possess similar 

absolute albedos [Kerber et al., 2009]. 

 We began our analysis by combining the existing catalogs of mercurian pyroclastic vents 

from Kerber et al. [2009], Goudge et al. [2014], and Thomas et al. [2014a], giving a total of 170 

prospective explosive volcanic vents. We used a combination of MDIS WAC (wide angle 

camera) and NAC (narrow angle camera) monochrome images, as well as MDIS multispectral 

mosaics comprised of the entire mission data set [Denevi et al., 2013; Domingue et al., 2015] for 

our observations. This approach represents a significant improvement over the previous catalogs, 

which were limited to flyby data and data from the first year in orbit. The focus of our 

investigation was to examine the processes of generation and emplacement of pyroclastic 
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volcanism on Mercury; as such our catalog consists only of vents of clearly or highly probable 

explosive volcanic origin. Because of this, and the increased image coverage and resolution, 

many of the more speculative identifications of possible vents from Thomas et al. [2014a] were 

reclassified or removed as being of inconclusive explosive volcanic origin or lacking an 

observable physiographic vent structure. Our final catalog includes 52 more vents than that 

presented by Goudge et al. [2014], and 65 fewer candidates than Thomas et al. [2014a]. 

Because of our emphasis on features clearly of an explosive volcanic origin, we 

considered only those landforms with morphologies consistent with their being a vent, even 

though the morphological expression of a pyroclastic vent on Mercury varies. Specifically, the 

presence of a ―red spot‖ (RS) color anomaly was not required for a putative vent to be included 

in our catalog; similarly, regions with an RS anomaly, but no observable physiographic vent 

present, were not included in our catalog. Of the three criteria listed above, the high-reflectance 

annulus is the least consistently observable feature, being highly sensitive to illumination 

conditions and viewing geometry; as such, a high-reflectance annulus was not required to be 

present for a candidate depression to be identified as a vent. 

2.1 Morphology 

From our analysis of these existing pyroclastic vent catalogs, we identified five main 

morphologic feature types, of which we consider three to be clearly volcanic in nature. We 

assign the following adjectival descriptors to these five discrete morphologies: ―simple vent‖ 

(Fig. 2), ―pit vent‖ (Fig. 3), ―vent-with-mound‖ (VwM) (Fig. 4), ―shallow pits‖ (Fig. 5), and 

―irregular pitted terrain‖ (Fig. 6). Of these five classes, we regard those landforms with ―simple 

vent‖, ―pit vent‖, and ―vent-with-mound‖ morphologies to be unambiguously volcanic in origin. 
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Our final catalog contains 100 pyroclastic vents comprised of these three morphologic sub-types, 

with the breakdown of each provided in Table 1.  

The type of landform that morphologically corresponds to what we term a ―simple vent‖ 

(Fig. 2) is characterized by an elongate shape in plan view, with a semimajor axis resolvably 

longer than the semiminor axis, and walls sloping to a relatively narrow floor. We note that the 

adjective ―simple‖ does not refer to the formation history or setting of the vent, and it is intended 

solely as a morphological designator. The ―simple vent‖ morphology can occur as a single 

depression (Fig. 2A), or can occasionally characterize several discrete depressions, interpreted as 

individual vents, which overlap to form more arcuate features (Fig. 2B). These arcuate features 

show that it is possible for multiple eruptions to occur within the same region; although it is 

often difficult to interpret the temporal relationships between these vents. These vents may 

represent multiple phases of eruption within a single vent, forming a morphology akin to a 

terrestrial ―compound volcano‖ [Davidson and de Silva, 2000], as suggested by Rothery et al. 

(2014) for a vent within the Caloris basin (22.3° N, 146.2° E). In contrast, the vents in Fig. 2b 

suggest multiple discrete eruptions within the same crater, each eruption forming a discrete vent 

over some unknown interval of time. We determined that 57% of the pyroclastic vent catalog 

consists of ―simple vents‖. 

In contrast, landforms with a ―pit vent‖ morphology (Fig. 3) are characterized by more 

equant axis lengths and a wider floor profile, and comprise 36% of all landforms in the catalog. 

The ―pit vent‖ morphology contains features that are circular or elliptical (Fig. 3A), as well as 

those that have a more complex shape, such as the kidney-shaped pyroclastic vent and deposit to 

the northeast of the Rachmaninoff basin (Rachmaninoff- Copeland vent) (Weider et al., 2016) 

(Fig. 3B).  
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The final morphology included in our catalog of probable volcanic vents corresponds to 

the type of landform we label as ―vent-with-mound‖(VwM) (Fig. 4), in which a central mound of 

material is circumscribed by a prominent vent, and in all cases also has a RS color anomaly. The 

―VwM‖-type feature comprises 7% of the catalog and comes in two submorphologies: circular 

(Fig. 4A) and irregular (Fig. 4B). The irregular morphologies are situated within the Caloris 

basin, and the circular morphologies are located outside the Caloris basin (Fig. 4A).  

As noted above, two other morphologic classes (―shallow pit‖ and ―irregular pitted 

terrain‖) were observed during our characterization, although they were omitted from the final 

catalog because they could not be unequivocally linked to volcanic processes. The ―shallow pit‖ 

morphology (Fig. 5) is typified by several (i.e., >3) broadly circular, bowl-shaped pits that are 

relatively shallow (<200 m depth, or depth indeterminate at the scale of the topographic dataset). 

These ―shallow pits‖ are usually observed in association with a RS anomaly; where it is 

observed, however, the RS anomaly is not areally extensive, and a genetic link between the 

anomaly and the pits is unclear (Fig. 5B). It is possible that landforms displaying the ―shallow 

pit‖ morphology are highly degraded end-members of another volcanic morphology; however, 

because its origin is unclear, the ―shallow pit‖ morphology was omitted from our catalog of 

distinct volcanic vents, although the locations are provided in Table 2. 

We have named the final observed morphologic feature type ―irregular pitted terrain‖ 

(IPT) (Fig. 6) (previously described as ―pitted ground‖ by Thomas et al. [2014a]). This textured 

terrain has been observed physically on other vent morphologies (Fig. 6B), spatially near other 

vent morphologies, and as the sole morphologic indication of proposed volcanism in a region 

(Fig. 6A) [Thomas et al., 2014a]. This morphology can be composed either of multiple pits or a 

single pit that is irregular in outline and small on the scale of instrument resolution (e.g., pit 
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diameter of ~1 km compared with MDIS base map resolution of 250 m/pixel [Denevi et al., 

2013]). Irregular pitted terrain appears closely associated with RS anomalies, although it is 

unclear if this association is genetic, or if it is the result of observational bias (i.e., the pits that 

make up this terrain texture are so small that without a collocated RS anomaly the morphology 

would not otherwise be noticed). This morphologic feature type is only included in our catalog 

when the morphology directly overlaps, or has formed on the side of, a larger, more distinct and 

unequivocal vent (Fig. 6B). One of the major differences between our catalog and that of 

Thomas et al. [2014a] is that ours omits examples of irregular pitted terrain that occur in 

isolation or without one of the recognized volcanic morphologies. This terrain texture is 

morphologically similar to, although distinct from, the ―hollows‖ documented across Mercury 

(Fig. 6C) [e.g., Blewett et al., 2011; Thomas et al., 2014b], displaying the characteristic 

red/orange coloration in false color images unlike the blue color associated with hollows. 

Furthermore, clustered hollows appear to coalesce and form extended flat-floored depressions 

(Fig. 6C) [Blewett, et al., 2011], whereas IPT depressions do not categorically display flat-

floored morphologies. Given the broad morphologic similarity between irregularly pitted terrain 

and hollows, we agree with the suggestion of Thomas et al. [2014a] that irregular pitted terrain is 

the result of the sublimation of volatile species within young volcanic deposits (either explosive 

or effusive in nature). Regardless, this morphologic feature type is not, at this time, an obvious 

primary volcanic feature, and will not be discussed further in this work (although a listing of all 

currently identified IPT is provided in Table 3). 

2.2 Morphometric Analysis 

The majority (93%) of pyroclastic vent morphologies included in our catalog fit the 

morphologic definition of ―simple vent‖ and ―pit vent‖. We performed a morphometric 
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examination of these features (e.g., length, width, and depth) to determine if the morphologic 

differences between these feature types were a function of feature size, and thus perhaps 

indicative of differences in formation mechanism. From our catalog of 104 vents, we identified 

and measure 120 simple vent or pit vent segments, as some locations host overlapping, but 

distinct vents (e.g. simple vent shown in Fig. 2b consists of four simple vent segments in a single 

location). We used the ArcGIS software package and MDIS complete monochrome basemap 

(with a resolution of 250 m/pixel [Denevi et al., 2013]) and projected the data in a sinusoidal 

projection centered on the central longitude of each vent for all measurements. The long axis of 

the vent was measured to an accuracy of  500 m (i.e., two pixels, given the resolution of the 

base map). To measure vent depth, we used topographic data from both the Mercury Laser 

Altimeter (MLA) (both individual track data and interpolated DEM data) [Zuber et al., 2012], 

and a digital elevation model (DEM) derived from stereophotoclinometry and utilizing images 

acquired through the end of 2012 [original reference Gaskell et al., 2008]. Additionally, a global 

DEM was produced by the USGS; however, the resolution of 2 km/px was insufficient for our 

morphometric analysis. The German Aerospace Center (DLR) is in the process of producing 

DEMs based on previously defined Mercury quadrangles [Greely and Batson, 1990]; however 

this process is not complete, and the first quadrangles were made available after the submission 

of this manuscript, and consequently could not be included in our analysis. We gave preference 

to MLA individual track data, where possible, with all other observations supplemented by the 

interpolated MLA DEM and Gaskell DEM, the latter two datasets providing minimum estimates 

for vent depth. Vent depth was calculated by taking the average of three profiles across the 

deepest part of a given vent; this was done to avoid areas of obvious post-formation slumping 

and infall of material. Data from individual MLA tracks have a vertical accuracy of 1 m and a 
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horizontal resolution of 20 m [Zuber et al., 2012], whereas all other data (interpolated MLA and 

stereophotoclinometry-derived DEM) are approximated to the nearest 100 m. Depth data were 

collected for 106 of the 120 simple vent or pit vent segments.  

Morphometric measurements of simple vents and pit vents are provided in the first two 

rows of Table 4, including average vent length, standard deviation, median length, and mode. 

The significant overlap in the size range of simple vents and pit vents (Table 4, compare Fig. 7B 

with Fig. 7C) shows that the morphological differences between these two feature classes are not 

a function of the length of the feature, that is, simple vents are not characterized by small axes 

lengths and pit vents by large axes lengths, or vice versa. Instead, the data suggest that there is 

little morphometric difference in the size  of the two features (compare Fig. 7B with Fig. 7C), 

leading us to conclude that the features are different expressions of a similar formation process. 

A qualitative assessment of the morphology of what we term pit vents suggests that many of 

these landforms are more degraded than most simple vents, possessing visually rounded rims, 

broader floors, and overall muted morphology. For example, the crater Kipling (Fig. 2A) 

contains both a simple vent (north-south trending vent) and a pit vent (east-west trending vent); 

the simple vent has a well-defined rim, steep walls, and a narrow floor. In contrast, the pit vent 

has a more-rounded rim, shallower walls, and a broader floor. The degradation state of the pit 

vent appears consistent with that of the host crater, unlike the simple vent morphology, which 

appears fresher than the host crater and nearby pit vent. This raises the prospect that simple vents 

can degrade into pit vents through time primarily through mass wasting of material from the 

walls of the vent.   

We also examined the average depth of both simple vents and pit vents (Fig. 7D). 

Goudge et al. [2014] measured the depths of six prominent vents, including both simple vents 
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and pit vents, although Goudge et al. [2014] describe the landforms simply as ―source vents‖, for 

which MLA track data were available, and found depths of 1.2–2.4 km, with an average depth of 

1.8 km. Rothery et al. [2014] provided depth measurements for two vents inside the Caloris 

basin, and measured depths of 1.7 km and 1.3 km for the two investigated features. We measured 

depths for all of the 100 vents in our database and found an average depth of 0.6 km (Table 4), 

and an overall range of depths from 0.2 km-2.8 km. We suggest that the convergence of depths at 

0.5 km (Table 4) can be attributed to the average vertical resolution of  200 m for the Gaskell 

dataset. Our data indicate that vents on Mercury are considerably shallower than initially 

estimated; although because interpolated MLA data and stereophotoinclinometry tend to 

underestimate depth, these values should be seen as minimum estimates on depth. The depth 

measurements presented in Goudge et al. [2014] and Rothery et al. [2014] are consistent with our 

vent depth measurements for four of the six vents; however, our measurements for the 

Rachmaninoff-Copland vent (35.8°N, 63.8°E) and the unnamed vent located at 58.8°N, 160.6°E 

(RS-02 in Goudge et al., 2014) indicate these vents are up to 1 km deeper than previously 

measured. Overall, we attribute the differences in vent depths between the earlier study of 

Goudge et al. [2014] and our analysis to a numerically larger dataset, featuring the inclusion of 

vents representing a wide range of degradation states. 

2.3 Vent Distribution and Location 

The spatial distribution of pyroclastic vents can potentially yield important information 

about their formation mechanism(s). The global distribution of our identified pyroclastic vent 

population is shown in Figure 8. Unlike on the Moon, where volcanic features are located 

primarily in and around large impact basins on the lunar nearside and the farside South Pole–

Aitken basin [e.g. Wilhelms, 1987; Head and Wilson, 1992; Schultz, 1976; Jozwiak et al., 2012; 
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Gaddis et al., 1985; Gaddis et al., 2003; Hurwitz et al., 2013], spatial relationships of pyroclastic 

deposits on Mercury are not as clearly defined with respect to other prominent landforms. 

For example, the Caloris basin (the largest preserved impact structure on the planet) hosts 

several pyroclastic vents along its inner edge (Fig. 8C), and other basins such as Tolstoj feature 

some volcanic vents, but the number of such basin-situated vents is low compared with the rest 

of the global distribution. Figure 8B shows the global distribution of explosive volcanic vents 

compared with the global distribution of mapped smooth plains units [Denevi et al., 2013]; the 

smooth plains units are primarily volcanic in nature, although it is likely that impact ejecta-

derived smooth plains are also included in the distribution [Denevi et al., 2013]. There is no 

obvious correlation between the location of explosive volcanic vents and volcanic smooth plains, 

indeed, there is a striking lack of explosive volcanic vents associated with volcanic smooth 

plains. Additionally, there is no correlation between the location of explosive volcanic vents and 

most impact basins. There are only three vents located at the edge of the Borealis Planitia 

(formerly the northern volcanic plains), despite their being the most extensive and youngest 

volcanic plains on Mercury [Head et al., 2009a; Ostrach et al., 2015]. 

The majority of volcanic vents, 82%, are located inside impact craters and basins (81% of 

simple vents and 83% of pit vents), although only 10% of vents are located in impact basins (D > 

250 km) themselves. This similarity in distribution suggests that both types of landform share a 

similar formation mechanism (as was suggested by our morphometric analysis in Section 2.2), or 

that if these two classes of landform do indeed have different formation mechanisms, neither is 

strongly influenced by its regional geologic context. Within most host craters, vents are located 

in the middle of the crater floor, or adjacent to the central peak region. Of the vents in our 

catalog, 16% are located on or within ~10 km of lobate scarps, with 10% of the vents in our 
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catalog being on or at the leading edge of lobate scarps. Lobate scarps are shortening tectonic 

features interpreted as the surface deformation associated with thrust faults [Strom et al., 1975; 

Byrne et al., 2014].  Unfortunately, in cases where vents intersect shortening structures such as 

lobate scarps, the stratigraphic relationship between the two is often unclear. Goudge et al. 

[2014] assessed cross-cutting relationships between source vents and lobate scarps in four 

craters, and found clear cross-cutting relationships in two of the craters, but ambiguous cross-

cutting relationships in the other two. The use of cross-cutting relationships in this particular 

setting is particularly difficult as scarps can experience several periods of activation, just as vents 

may experience several periods of explosive activity. Thus, it becomes almost impossible to 

identify which structure was formed first, although one can, at times, determine which structure 

had the final stage of activity, as was done by Goudge et al. [2014]. Fassett et al. [2011] 

determined that more than 95% of the surface of Mercury is covered by craters greater than 20 

km in diameter, and so it might not be surprising that a majority of volcanic vents are located 

within craters. However, the large percentage (85%) of vents located within craters combined 

with the paucity of vents located in volcanic smooth plains (Fig. 8B) suggests that craters are a 

preferred formation environment for mercurian vents. Alternatively, the paucity of vents in 

smooth volcanic plains might suggest that resurfacing by smooth volcanic plains covered up 

vents and has inhibited further explosive volcanism in these regions. 

3. Timing of Volcanic Activity 

 The timing of explosive volcanic activity on Mercury has important implications for the 

thermal evolution of the planet. Dating of large volcanic smooth plains deposits on Mercury such 

as the Caloris interior volcanic plains [Fassett et al., 2009] and the northern volcanic plains 

[Ostrach et al., 2015] by crater size–frequency distribution methods suggests an age of ~3.8–3.7 
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Ga. Whitten and Head [2015a] performed crater density counts, which report the number of 

craters (N(D)) with diameter ≥D km per 10
6
 km

2
 [Crater Analysis Techniques Working Group, 

1979]. They compared N(20) values on the volcanic plains within Rembrandt basin and on the 

Caloris interior plains, and found comparable statistics, again suggesting an age of 3.8–3.7 Ga. 

Crater areal density measures of numerous smooth volcanic plains deposits yield ages not 

resolvably younger than about 3.5 Ga [Byrne et al., 2016]. This apparent cessation in effusive 

volcanism coincides closely with the onset of global contraction on Mercury, as given by cross-

cutting relations between shortening structures and volcanic plains [e.g., Banks et al., 2015], and 

it has been hypothesized that the globally compressive tectonic stress regime inhibited the further 

formation of smooth volcanic plains deposits [Solomon, 1978; Wilson and Head, 2008]. 

However, it is not yet clear how the explosive volcanic features are related to the evolution of 

volcanism on Mercury, and whether these features were confined to a specific ―volcanic period‖ 

on Mercury (akin to the main phase of lunar mare volcanism [e.g. Hiesinger et al., 2011]) or if 

volcanic vents formed throughout Mercury’s history. 

 Numerous complications arise when attempting to determine relative or absolute crater 

retention ages for individual pyroclastic deposits. These complications include mitigating the 

effects of unconsolidated pyroclastic material on impact crater size and preservation [e.g., 

Luchitta and Schmitt, 1974], as well as the small size of both vents and deposits, which 

challenge the likelihood of deriving statistically significant crater size–frequency distributions. 

We employed a proxy method of dating the physiographic vent structures, which relies upon 

using the inferred degradation state of the crater hosting the vent to place a bound on the oldest 

age for the feature; this relative stratigraphic method of dating is the same as that employed by 

Goudge et al. [2014]. Using the principle of superposition, a vent structure must be younger than 
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the host crater in which it is located; therefore, the relative age of the host crater places an upper 

bound on the age of the vent. We used the crater degradation state classification scheme of 

Prockter et al. [2016], in which craters with diameter greater than 40 km are assigned a 

degradation class from 1 (most degraded) to 5 (least degraded), following the USGS convention 

(earlier publications used the opposite numbering convention). Craters with diameter less than 40 

km were not investigated, as the morphologic markers used to assess degradation state (e.g. 

ejecta deposits) became too difficult to reliably identify. The crater degradation classes can then 

be qualitatively related to the five-age chronostratigraphic sequence for Mercury [e.g., Kinczyk 

et al., 2016], which includes (from oldest to youngest) the Pre-Tolstojan, Tolstojan, Calorian, 

Mansurian, and Kuiperian periods [Spudis and Guest, 1988]. Because this method relies upon the 

inferred degradation state of impact craters, we are not able to extend the analysis to vents that 

are not located in impact craters, or vents located in host craters with diameter less than 40 km. 

We were able to assign an oldest stratigraphic age limit on 70% of the craters in our catalog 

(69/104). Figure 9 shows examples of vents located in craters assigned to each of the five crater 

degradation classes.  

The size–frequency distribution plot for host crater age (Fig. 10A) shows that volcanic 

vents have formed in craters of all degradation states on Mercury, although most occur in craters 

the degradation states of which correspond to the Tolstojan and Calorian periods. This finding is 

similar to that by Goudge et al. [2014]. They observed explosive vents in nearly equal numbers 

of craters of inferred Mansurian, Calorian, and Tolstojan age; our expanded dataset indicates that 

pyroclastic vents are situated within a larger number of both Calorian- and Tolstojan-aged 

craters. Plotting the same data divided into simple vent and pit vent morphologies (Fig. 10B) 

does not reveal a resolvably different trend in vent-host-crater age distribution. However, when 
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the data are plotted as a percentage of the total crater population for each degradation class (Fig. 

10C), it becomes clear that pit vents are predominantly located in host craters of intermediate to 

older ages (i.e., classes 2–3), and simple vents are predominantly hosted by craters of 

intermediate to younger ages (i.e., classes 3–5).  

The observation of vents within craters with degradation states corresponding to classes 4 

and 5 provides evidence for the formation of vent morphologies relatively recently in mercurian 

history. Indeed, revised age constraints for the Mansurian and Kuiperian systems suggest that the 

Mansurian system began as recently as ~1.7 ± 0.2 Ga, and the Kuiperian began as recently as 

~280 ± 60 Ma [Banks et al., 2017]. The only vent located in a degradation class 5 crater 

(Tyagaraja, 3.75 °N, 148.8°W) is shown in figure 9E. Although Tyagaraja has been assigned to 

degradation class 5, it does not possess well-defined crater rays, the characteristic morphology 

associated with this class [Kinczyk et al., 2016]. Rather, Tyagaraja has been identified as a 

subset of class 5 craters distinguished by a bright halo, which could be associated 

morphologically with either degradation class 4 or 5; the authors thus suggest that these craters 

morphologically straddle the boundary of the Mansurian and Kuiperian periods [Kinczyk, 

personal communication]. There are ten vents located in craters with a degradation class of 4, 

associated with the Mansurian period, and images of all of the Mansurian and Kuiperian period 

host craters with associated vents can be found in the online supplemental material. However, 

this number should be viewed as a conservative number of Mansurian aged vents because of the 

previously mentioned limitations of the host-crater stratigraphic dating method. For example, it 

does not include the 27 km Kuniyoshi crater, suggested by Thomas et al. [2014] to be ―earliest 

Kuiperian‖ in age [Thomas et al., 2014] based on the well-preserved impact ejecta deposit and 

crisp terrace morphology. Although we would interpret Kuniyoshi as a Mansurian period crater 
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because the crater lacks the system-defining bright crater rays [Kinczyk et al., 2016]. In total, the 

observation of eleven vents in craters associated with both the Mansurian and early Kuiperian 

period provide continuing evidence for explosive volcanism extending into relatively recent 

mercurian history. 

The morphologies observed in the global pyroclastic vent population suggest a temporal 

evolution in vent morphology, and a qualitative assessment of vent morphologies supports a 

variety of degradation states. The apparent transition from simple vents to pit vents with 

increasing time is consistent with the hypothesis that the former can degrade into the latter with 

time, suggested in Section II. Despite observations of a qualitative range in vent degradation 

state, there is no established quantitative measure of vent degradation state, and there is currently 

no method by which to tie such degradation to the broader Mercurian stratigraphic history.  

We interpret the presence of vents in Mansurian and Kuiperian aged craters to suggest 

that Mercurian explosive volcanism did not cease at ~3.5 Ga but continued thereafter, consistent 

with the findings of Thomas et al. [2014].  The range of morphologic degradation displayed by 

the mercurian vents suggests that many are more degraded, and thus likely older, than those 

located in Mansurian and Kuiperian host craters. One example of this qualitative range in 

degradation state is observed by means of the presence or absence of a pyroclastic deposit 

associated with a given vent. Of the 100 vents in our catalog, 33 did not have associated 

deposits; this finding includes vents with no RS deposit as well as vents where the RS deposit 

was entirely contained within the vent structure. Plotting the host crater degradation class of 

those vents without deposits as a percentage of all vents of that age (as inferred from degradation 

state) (Fig. 11) shows that about 50% of those vents situated within class 2 host craters (and thus 

corresponding to the Tolstojian period) do not have associated deposits. 
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The onset of a globally compressive stress state does not appear to have inhibited the 

formation of explosive volcanic vents [e.g., Thomas et al. 2014a; Byrne et al., 2016]. However, it 

could be possible that the global compressive stress state thought to have prevailed as the planet 

began to contract affected other aspects of vent formation, resulting in an outcome such as a 

reduction in vent size. We examine how vent morphometric dimensions changed with time by 

considering host-crater degradation state as an upper bound on the timing of vent formation. 

Figure 12 displays the length of the main vent axis as a function of host crater degradation class. 

The data do not show a strong correlation between vent length and crater degradation class. 

Figure 13 illustrates three possible scenarios for vent formation through Mercurian 

history: 1) constant formation throughout the planet’s history, 2) episodic, interrupted formation 

corresponding to an older population and a younger population of vents, and 3) dominant 

formation early in mercurian history, with a declining rate of explosive vent formation following 

the transition to a globally compressive stress state and thus sporadic formation for the remainder 

of mercurian history. Of these scenarios we favor the third, the scenario that is most consistent 

with existing models for the volcanic evolution of one-plate tectonic planets. This scenario for 

Mercury would reflect the similarly proposed volcanic evolutionary sequence of the Moon 

(summarized by Head and Wilson, 2017), with a period of effusive and explosive volcanic 

features emplaced prior to the onset of global compressional stresses [Hiesinger et al., 2011; 

Hurwitz et al., 2013; Whitten and Head, 2015b], followed by the periodic emplacement of 

localized non-effusive volcanic structures (e.g. the Compton-Belkovich volcanic complex [Jolliff 

et al., 2011] and irregular mare patches (IMPs) [Braden et al., 2014]). On Mercury, this would be 

expressed as a widespread effusive volcanism and explosive volcanism (to an unknown extent) 
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prior to ~3.6 Ga. After ~3.6 Ga there was waning and cessation of effusive volcanism and either 

episodic or quasi-continuous (but probably waning) explosive volcanism.  

4. Modes of Formation 

Having surveyed the morphologies of mercurian pyroclastic vents, their deposits, 

regional settings, and possible timing of formation, we now investigate the plausible modes of 

formation. Specifically, we address the likely geometry of intrusive bodies and their subsequent 

eruption. We propose five candidate modes of formation: 1) a dike propagates to the shallow 

subsurface, stalls, and forms a sill/laccolith (Fig. 14A); 2) a dike propagates, stalls, forms a 

sill/laccolith with the dike-tip overshooting the upper level of the sill (Fig. 14B); 3) a dike 

propagates directly to the surface and erupts (Fig. 14C); 4) a dike propagates, stalls, and vents 

without concomitant formation of a sill/laccolith (Fig. 14D); and 5) a dike propagates and vents 

along a critically stressed thrust fault (Fig. 14E). In all cases we envisage dikes as linear features 

with an overall length greater than their thickness. As is the case with terrestrial dikes, eruptions 

and vents may form only over a small portion of the dike, where it has come closest to the 

surface. 

Due to the large number of vents situated in craters (85%), we first focus on the possible 

influences of the host crater environment on the siting of explosive volcanism. A frequency 

distribution plot of host crater diameter (Fig. 15A, B) shows no strongly preferred host crater 

diameter. We have not observed vents in craters with D < 20 km. However, the simple-to-

complex transition in crater diameter occurs on Mercury at ~10 km, and craters in the 10–20 km-

diameter range display a range of floor morphologies that have not yet fully transitioned to flat-

floored complex crater morphologies [Barnouin et al., 2012]. As a result, the identification of 

vent morphologies, especially of those lacking RS deposits, within such craters is challenging.  
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Plotting host crater diameter vs. vent length (Fig. 16A, B) also yields no obvious trend. Together, 

these findings indicate that the dimensions of a host crater have no observable effect on the size 

of a pyroclastic vent therein.  

Of the vents in our catalog, 62% are located in the middle of a crater floor—either at the 

physical center of the crater floor (i.e., amongst the central peaks/peak ring mountains) or in the 

broad central plains of a crater. This distribution is in contrast to the 11.5% of vents that are 

located along the edge of the crater floor, adjacent to the inner wall. This 11.5% total includes 

vents in five craters, with five vents located in a single crater, Sher Gil crater (45.1° S, 225.5° W) 

(Fig. 17). We observed no evidence of crater floor fracturing in the manner similar to that 

occurring in floor-fractured craters on the Moon [e.g. Schultz, 1976; Jozwiak et al., 2012].  

There are, however, sets of fractures present in the centers of certain basins that have 

been filled by lavas (e.g. Rachmaninoff: Prockter et al., 2010), with these structures interpreted 

to have resulted from the cooling and contraction of those volcanic plains deposits [Blair et al., 

2012; Freed et al., 2012]. Similarly, many ghost craters (craters that have been buried by 

volcanic flows and are identified by the ring-shaped deformational structures marking the rim 

location [e.g. Head et al., 2008; Watters et al., 2009]) in the northern volcanic plains exhibit 

fractured surfaces, features again likely to be related to the solidification of ponded lavas [Head 

et al. 2011; Freed et al., 2012; Watters et al., 2012]. The center of the Caloris basin also hosts an 

extensive, radial fracture network, Pantheon Fossae, which may be an extensional system formed 

in response to upwelling beneath the basin [Head et al., 2009b], possibly analogous to coronae 

on Venus [Squyres et al. 1992], although Klimczak et al. [2010] have suggested that the graben 

associated with Pantheon Fossae are not consistent with an intrusive magmatic formation. With 

the exception of those within Tolstoj and Rachmaninoff basins, and possibly some within Caloris 
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[Rothery et al., 2014], no vents are associated with these fracture structures. It may be that once-

visible fractures were covered by subsequent smooth plains emplacement (either volcanic or 

impact-derived), but we find it unlikely that resurfacing would cover signs of floor deformation 

(like fracturing and uplift) yet preserve pyroclastic vents and deposits. 

In our first proposed formation geometry, a dike propagates from depth, stalls in the 

shallow subsurface, and forms a sill/laccolith (Fig. 14A); this is the formation mechanism of 

floor-fractured craters on the Moon [Schultz, 1976]. In the lunar case, this intrusion geometry 

produces an uplifted/domed floor, concentric and/or radial floor fractures, and eruptions can lead 

to volcanic landforms such as mare deposits and pyroclastic deposits [Jozwiak et al., 2012; 

2015a]. The bending stresses associated with the edges of the sill/laccolith morphology result in 

the localization of volcanic features over these edges — that is, close to and parallel with the 

crater wall [Johnson and Pollard, 1973]. As discussed above, there is no evidence on Mercury for 

either uplifted/domed floors or wide-scale floor fracturing in craters that host pyroclastic vents. 

Furthermore, the majority of pyroclastic vents located in mercurian craters are located at or near 

the center of the crater floor, which is an unfavorable location for the propagation of a subsidiary 

dike from a sill. It is possible to explain the lack of surface uplift and fracturing by invoking 

either deeply seated sills [Thomas et al., 2015b] or a lopolith morphology (the inverse of a 

laccolith morphology, wherein the strata underlying the intrusion are deformed downward, as 

opposed to the upward deformation of strata associated with laccoliths). However, neither 

explanation accounts for most pyroclastic vents occurring in the center of craters. Although a 

shallow sill geometry is plausible for the vents in crater Sher Gil (Fig. 17), overall we find it 

improbable as a mechanism to explain the majority of explosive volcanic vents on Mercury. 
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The second formation model, the ―sill with dike overshoot‖ geometry (Fig. 14B), is 

similar to the first scenario (compare Fig. 14B to Fig. 14A) with the addition of the dike tip 

overshooting the level of sill formation. As before, the formation of a sill or laccolith in the 

shallow subsurface results in floor uplift and associated tectonic deformation, which is not 

observed in association with the mercurian pyroclastic vent craters. However, the overshoot of 

the dike tip would allow for eruptions and venting at any possible location within the crater, 

including in the center of the crater, although one would predict only one dominant eruption site 

in each crater. Thus, if paired with a deep-seated sill, this model geometry could plausibly 

recreate instances where there is a single volcanic vent within a host crater without associated 

doming (Fig. 18). Multiple, discretely located vents within a single crater are difficult to account 

for with this geometry because of the reliance on eruption of the dike tip to form the main vent, 

such that any subsequent vents would be confined to wall-adjacent positions from subsidiary 

diking from the edge of the sill. 

The next two model geometries are closely related and describe a dike propagating to the 

surface (Fig. 14C) or stalling in the shallow subsurface (Fig. 14D) before venting.  Several 

factors govern whether a dike will propagate to the surface or stall, including magma 

composition and volatile content, local lithospheric stress conditions, crustal thickness, and 

mechanical strength of the surrounding host rock [e.g. Rubin and Pollard, 1987; Rubin, 1995; 

Wilson and Head, 2017]. Magma composition and volatile content are particularly important, as 

these variables affect magma density, and volatile degassing also influences eruption style. As 

the dike approaches the surface, decreasing confining pressure leads to the degassing of any 

volatile species within the melt [e.g., Sparks 1978]. If the volume fraction of gas (in the form of 

bubbles) exceeds a critical gas volume fraction (60–90% [Vergniolle and Jaupart, 1990]) an 
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explosive eruption and dispersal of pyroclasts will take place. Head and Wilson [2017] illustrated 

how isolated pits with a variety of geometries (circular, elongated, or irregular) can be produced 

— by collapse along the top of a dike in response to volatile release, explosive dispersal of 

material in an eruption, or a combination of both processes, in which collapse follows explosive 

eruption of volatiles in the top of the dike. The final morphology of the vent is then a function of 

the width of the dike and the depth at which it stalled [Head and Wilson, 2016]. In cases where a 

portion of the dike reaches the surface, we predict a clear, simple vent morphology to result, with 

the long axis of the vent aligned with the portion of the dike that intersected the surface. In cases 

where the dike stalls in the subsurface before venting, we predict a wider range of vent 

morphologies including a less prominent elongation for both simple vents and pit vents.  

The vent geometries resulting from surface-breaking or shallow dikes (Fig. 14C, D) are 

capable of forming in a multitude of orientations relative to the host crater, because the dike 

orientation will not be strongly controlled by a local stress field. Shallow or surface-breaking 

dikes also allow for the formation of multiple vents in the same crater, each from a discrete 

feeder dike. Furthermore, unlike the sill models (Fig. 14A, B), the dike models would not be 

expected to cause widespread uplift of the associated host crater floor, satisfying a key 

observation of mercurian pyroclastic vent host craters. A primary expected morphologic 

difference between the two dike-only models is the formation of associated graben or pit crater 

chains, which may result from extension over a very shallowly seated dike [Head and Wilson, 

1993; Petrycki and Wilson 1999a, b; Wilson et al., 2011; Hardy, 2015; Head and Wilson, 2016]. 

The dike may remain stalled entirely within the crust (Fig. 14D), or some portion of the dike may 

intersect the surface and vent (Fig. 14C). Head and Wilson [2016] outlined several mechanisms 

by which shallowly stalled dikes may vent to form graben and pit crater chains. Under lunar 
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conditions, for example, dikes stalling within a few hundred meters of the surface are likely to 

produce graben [Head and Wilson, 2016]. We do not observe either graben or pit crater chains 

associated with the mercurian pyroclastic vents, leading us to favor a formation geometry of a 

dike stalled at greater than a few hundred meters below the surface. Consequently, the stalled 

dike venting model (Fig. 14D) can plausibly explain the morphologies of the majority of 

mercurian pyroclastic vents.  

The final model geometry we consider is propagation of a dike along a thrust fault (Fig. 

14E), either along the entire vertical extent of the fault, or in the immediate shallow crustal 

environment. It has long been suggested [Strom et al., 1975; Melosh and McKinnon, 1988], and 

new observations from MESSENGER confirm [Byrne et al., 2014], that the dominant global 

tectonic regime for the majority of Mercury’s history has been compressive. Net horizontally 

compressive environments inhibit magma ascent [e.g. Solomon 1977, 1978; Head and Wilson, 

1992], and because of this previous workers [Head and Wilson, 2008] suggested that volcanic 

activity on Mercury would cease following the transition to global compression. In terms of 

major effusive activity, this has been shown to be the case for Mercury [Byrne et al., 2016]. 

However, the discovery of young effusive volcanism in the Rachmaninoff basin [Prockter et al., 

2010] and the observations of explosive volcanic vents in stratigraphically young craters [Kerber 

et al., 2011; Goudge et al., 2014; Thomas et al., 2014a; this work] gives clear evidence for 

continued, albeit small-scale, volcanic activity into recent (~ 1 Ga) mercurian history.  

To accommodate magma transport in a compressive tectonic regime, previous workers 

suggested that magma would be most efficiently transported along pre-existing faults to reach 

the surface [e.g., Klimczak et al., 2013; Thomas et al., 2015b]. Klimczak et al. [2013] observed 

that, of the then-recognized volcanic vents and deposits, 37% were located within 30 km of a 
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thrust fault, which the authors interpreted as support for magma transport along critically stressed 

faults (i.e., faults whose stress state put them on the verge of slipping). Modeling work [e.g., Ziv 

et al., 2000] has been done on the problem of magma transportation along preexisting faults. Ziv 

et al. [2000] found that the process of magma transport along a preexisting fault is difficult to 

achieve, and is dependent on the ratio of effective ambient dike-normal stress (either 

compressional or tensile) and the host rock tensile strength, the ratio of shear stress resolved on 

the fault to the magma pressure, and the orientation of the fault itself relative to the least 

compressive stress. In the cases of mid-to-lower crustal depths, the effective ambient stresses on 

the propagating dike become much larger than the rock tensile strength, making it extremely 

difficult for the emerging dike to follow an existing fault [Ziv et al., 2000]. These workers 

suggested that dike propagation along a preexisting fault only becomes viable in environments 

where the ambient effective compressive stress is low and shear stress along the dike walls is 

small, such as the upper few kilometers of a planetary crust. These results suggest that the 

transport of magma along faults from the low-to-mid crustal depths is unlikely; this conclusion is 

amplified for earlier periods of Mercury’s history when a shallower brittle-ductile transition 

would have inhibited fault formation altogether in the lower crustal region. However, 

transportation along preexisting faults in the shallow subsurface might be tenable, especially if 

those faults are critically stressed (such that the resolved shear stress on the fault is low), and if 

the fault is oriented relatively close to perpendicular to the least compressive stress. The last 

point is particularly important for the mercurian setting, as many of the large thrust faults are 

suggested to have low dip angles [e.g. Watters et al., 2002], thereby orienting them perpendicular 

to a vertical least compressive stress, and making them more favorable to magma transport. 
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In our catalog, 10% of the vents were located on top of, or at the leading edge, of a lobate 

scarp (interpreted as the surface deformation associated with a thrust fault) (e.g. Fig. 19, 20)—

and these vents are candidates for near-surface magma transport along preexisting fractures (Fig. 

14E). For these 10% of vents, stratigraphic relationships between the vents and the faults are 

difficult to discern. Goudge et al. [2014] observed, for both the vent in Enheduanna crater 

(referred to as NE Derzhavin in Goudge et al., 2014) and the vent in Glinka crater, that the vents 

were cross-cut by the scarps, indicating that the vents pre-dated the last phase of scarp activity; 

however, for two additional vents the cross-cutting relationships were ambiguous. Thus, 

although those 10% of vents located along thrust fault-related landforms are candidates for near-

surface magma transport along faults, it is unlikely that all of the vents formed in this manner. 

For the remaining 90% of vents in our catalog that are not obviously spatially associated with 

scarps, formation by magma transport along preexisting fractures is unlikely.  

The dike-venting model (Fig. 14D) can plausibly produce both simple vent and pit vent 

morphologies by variations in parameters such as depth of dike stalling and dike width. The 

depth at which a dike stalls is correlated with the width of overlying negative-relief features such 

as graben, such that deeper stalled dikes yield wider and shallower graben [Head and Wilson, 

2016]. The primary morphologic difference between simple vents and pit vents is the difference 

in aspect ratio, with simple vents having more elongate forms, and pit vents having axes of more 

equant dimensions. While our morphometric analyses from Section 2 suggest that simple vents 

may degrade through mass-wasting processes into pit vent morphologies, this process is not 

plausible for all pit vents. Pit vents possessing particularly large, broad floors (in excess of 

several kilometers) (e.g. the Rachmaninoff-Copland vent, Fig. 3B), are not likely to have ever 

resembled simple vent morphologies. Applying the dimension criteria to the dike stalling model 
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suggests that simple vents form from venting of dikes that stalled in the relatively shallow 

subsurface (Fig. 21A), and broad-floored pit vents form from dikes that stalled at relatively 

greater depths (Fig. 21B).  

The circular vent-with-mound (VwM) (Fig. 4A) morphology remains enigmatic, and is 

not well explained by any of the proposed formation geometries examined above (Fig. 14). 

Thomas et al. [2015a] hypothesized that this morphology is the result of magma transport and 

eruption along faults circling the central peak of craters. In this scenario the eponymous 

―mound‖ is, in fact, the residual central peak of the crater, and the large volume of the mound 

arises from the volume of the central peaks combined with the excavation of material beneath the 

crater floor (i.e. the mound is formed by the removal of material from the crater floor, not the 

additional of material to form a mound). The model of Thomas et al. [2015a] is non-committal 

about whether the entire vent forms in a single eruption, or proceeds in a piecemeal fashion. Our 

morphologic analysis has observed several examples of vent formation adjacent to and partially 

encircling central peaks wherein the peaks retain both their morphology and their original 

elevation (Fig. 20). In these examples, several vents can also be identified that have overlapped 

to form the overall structure. This suggests that the VwM structure may be viewed as one end 

member of a continuum for eruptions in the central peak region of a crater. One extreme of the 

continuum contains a single vent (e.g. Fig. 18), and the other extreme contains several 

overlapping vents eventually surrounding the central peak of a crater (e.g. Fig. 4a). We would 

also suggest that the hypothesized sill formation is unnecessary, as there is little morphologic 

evidence for the floor deformation that would be associated with sill emplacement. Additionally 

there is no morphologic evidence for subsidence following the eruption of a large volume of gas-

rich magma. Thus, we support broadly the model of Thomas et al. [2015a], but without magma 
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storage, as a plausible mechanism for forming the VwM features, and as an extreme end-member 

of the dike-venting formation model for mercurian pyroclastic vents.   

For the irregular (non-circular) vent-with-mound (VwM) morphologies observed in the 

Caloris basin (Fig. 4B), we suggest that the initial vent is formed by eruption from a dike that 

reaches the surface, followed by a relatively smaller effusive phase that partially fills the vent, 

but does not breach the structure. This interpretation is supported by the initial simple vent 

morphology of the inner depression, such that the elevations of these mounds do not exceed the 

height of the depression in which they are located, and the observation that the infilling mound 

material does not extend to the edges of the host vent but rather collects in the center of the vent. 

Based on our morphologic analyses, we support a dike-venting model as the formation 

geometry for the majority of mercurian pyroclastic vents. We now turn to an analysis of the 

eruption process, and how understanding the eruption dynamics of these systems might help 

distinguish between dikes propagating to the surface before venting and those that stall in the 

shallow subsurface and vent some time later. 

5. Eruption Process 

The three possible sources for eruption-driving volatiles that we will examine are: 1) 

degassing of volatile species within the magma, sourced from the melting of the mercurian 

mantle; 2) formation of volatile species by chemical reactions within the melt (e.g., CO on the 

Moon [Sato, 1979; Fogel and Rutherford, 1995]) or between the melt and incorporated crustal 

material [Zolotov, 2011]; and 3) volatile build-up as a result of magma cycling and convection 

within a stalled dike [Head et al., 2002]. 
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Kerber et al. [2009] measured the deposit radius for the large pyroclastic deposit located 

to the northeast of the Rachmaninoff basin (referred to also as either the Rachmaninoff-Copeland 

vent or the NE Rachmaninoff vent by the MESSENGER team) (Fig. 3B). Using the maximum 

distance of pyroclastic material from the vent, the ballistic trajectory equation, and accounting 

for differences in gravity between the Moon and Mercury, the authors determined that emplacing 

the Rachmaninoff-Copeland vent deposit would require the equivalent ~5500 parts per million 

(ppm) CO compared with 2400 ppm CO on the Moon [Kerber et al., 2009]. The data thus 

suggest that, at the time of eruption, mercurian eruptions had a higher volatile content than lunar 

eruptions. We expanded this analysis to our catalog of pyroclastic vents, assessing deposit radius 

as a function of vent length. The deposit radius was measured using MDIS PCA color mosaic 

images. The plotted deposit radius is the average of 6 radial profiles measured at 60 degree 

intervals of azimuth from the center of the vent to the visually determined edge of the deposit.    

Figure 22A shows the deposit radius as a function of vent length for pyroclastic deposits 

on both the Moon (red squares) and Mercury (blue diamonds). The lunar data were collected in 

the same manner as the mercurian data, and represent localized pyroclastic deposits on the floors 

of the craters Alphonsus, Oppenheimer, Schrödinger, and Gauss [Gaddis et al., 2003]. We 

restricted our lunar analysis to these deposits as they have a clearly defined albedo anomaly and 

a distinct central vent.  

Analysis of the deposits in Alphonsus crater suggest that the eruptions had a gas volume 

fraction of 72.8% [Jozwiak et al., 2015b], consistent with experimental ranges for critical gas 

volume fractions necessary to initiate explosive eruptions [Jaupart and Vergniolle, 1989]. This 

finding in turn suggests that the trend defined by the lunar data represents eruptions driven by the 

collapse of a critically gas-rich magmatic foam. The data for Mercury show significantly more 
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scatter than the lunar data; the lunar data have an R
2 

value of 0.97 from a best fit trendline, while 

mercurian data have an R
2
 value of 0.13. Several mercurian deposits plot along the x-axis; these 

are vents for which there is no obviously associated deposit (discussed previously in Section 3). 

Such examples represent a notional vent end member, for which an associated deposit likely 

formed but was then weathered with time due to regolith mixing and is no longer detectable. In 

addition to space weathering processes, the increased regolith thickness on Mercury compared 

with that on the Moon, together with related mixing processes [Kreslavsky and Head, 2015] also 

act to decrease the observed deposit radius.  

The localized lunar pyroclastic deposits plotted in Fig. 22A are the smaller of the two 

recognized types of pyroclastic deposit on the Moon, the other type being regional pyroclastic 

deposits [e.g., Gaddis et al., 1985], which have areas >1000 km
2
. As described above, the 

localized pyroclastic deposits are assumed to be formed in short-lived vulcanian-style eruptions 

(gas-dominated eruptions driven by significant volatile enrichment and eruption through country 

rock) [e.g., Head and Wilson, 1979; Wilson and Head, 1981; Hawke et al., 1989; Weitz et al., 

1998].  Calculations of gas volume fraction for these lunar eruptions [Jozwiak et al., 2015b] 

indicate that such activity occurs after a critical gas volume fraction is reached. In contrast, 

regional pyroclastic deposits are hypothesized to form in the lunar equivalent of more energetic 

Hawaiian-style fire-fountain eruptions [Wilson and Head, 1981; Weitz et al., 1998] (e.g., 

Aristarchus plateau [Head and Wilson, 2016]) from dikes emplaced into the near-surface crust 

[Head et al., 2002; Wilson et al., 2011; Wilson et al., 2014]. In the latter case, wide dikes stall in 

the subsurface and convection within the dike allows magma in the lower part of the dike to 

degas, increasing the gas bubble concentration in the upper part of the dike [Head et al., 2002; 

Wilson et al., 2011; Wilson et al., 2014]; when the eruption finally occurs, the greatly increased 
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gas concentration ejects pyroclasts to distances beyond 100 km from the vent [Wilson et al., 

2014]. The Orientale Dark Mantle Ring Deposit (DMRD) (30° S, 97.7° W) is the type example 

of this eruption mechanism [Head et al., 2002]. Using the basis by which localized and regional 

lunar pyroclastic deposits are defined, we proposed two possible volatile evolution scenarios for 

Mercury: 1) gas exsolved locally from magma builds up until the critical gas volume fraction is 

reached, triggering foam collapse and eruption; and 2) gas continues to build up and thicken the 

magmatic foam region at the top of a trapped, pressurized dike, beyond the critical volume 

fraction, eventually triggering a more energetic eruption.  

To compare more directly the processes on the Moon and Mercury, we use the ballistic 

trajectory equation (Eq. 1) to calculate the pyroclast ejection velocity, v, from the radius, R, of a 

given deposit, using 

   
  

     
 
 

 ⁄                                                               Eq. 1 

The gravitational acceleration, g, is 3.7 m/s
2
 for Mercury and 1.62 m/s

2
 for the Moon. The angle 

of ejection, θ, is assumed to be 45°, representing the maximum dispersal distance. By plotting 

the ejection velocity for the pyroclastic deposits we effectively remove the effects of gravity 

scaling, and can more closely compare the trends for the lunar and mercurian data.  

Figure 22B shows the pyroclastic ejection velocity as a function of vent size for the lunar 

dark halo craters (red squares), Orientale DMRD (green triangle), and mercurian vents (blue 

diamonds). As before, we have plotted a trend line through the lunar dark halo craters, this trend 

representing eruptions at the critical gas volume fraction (scenario 1, wherein locally exsolved 

gas builds up until the critical gas volume fraction is reached). A considerable number of 

mercurian vents cluster around this trend, suggesting that the dikes feeding these eruptions 
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vented after reaching the critical gas volume fraction. Falling below the trend line (dashed black 

oval) is a cluster of data with  lower than predicted ejection velocity. We interpret these data to 

result from deposit erasure and mixing processes. It is unknown where these vents would have 

originally plotted, but we see no reason to attribute the perceived lower velocity to a separate, 

unusually volatile poor source magma, although our data cannot rule out that possibility. An 

example of the deposit erasure and mixing hypothesis interpretation can be seen in the crater 

Picasso (Fig. 23). The northernmost vent is associated with the most-prominent red spot deposit 

(Fig. 23A, black arrow), and also retains the freshest edge and interior morphology (Fig. 23C, 

black arrow). In contrast, the southernmost vent has little color evidence for a red spot deposit, 

and shows signs of morphologic degradation with subdued vent edges and wall material (Fig. 

23C, white arrow). 

There is also a population of vents plotting above the trend line (solid black oval), 

indicative of a higher-than-expected volatile content, consistent with scenario 2 (eruption 

following increases in gas concentration surpassing the normal critical gas volume fraction). As 

we would expect, the Orientale DRMD plots in the middle of this group. We suggest that the 

mercurian vents that plot in this field have also undergone additional gas concentration processes 

within a stalled dike, and that this accounts for the large eruption velocity and correspondingly 

large deposit radius. The NE Rachmaninoff vent plots within this population, which is consistent 

with unusually high gas content calculated by Kerber et al. [2009]. A scenario under which 

gasses become concentrated within the upper portion of a stalled dike, thus driving spatially 

extensive eruptions, does not appear to be confined to large mercurian vents, as numerous 

mercurian vents with diameters of about 10 km also plot within this field. 
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 The volatile species driving the eruptions are still not well characterized; however, recent 

results from the MESSENGER x-ray spectrometer (XRS) and neutron spectrometer (NS) suggest 

C and S as candidate elements. XRS observations targeted on the expansive pyroclastic deposit 

associated with the Rachmaninoff-Copeland vent show an anomalously low S/Si ratio [Weider et 

al., 2016]; similarly, NS measurements targeted on pyroclastic deposit indicate a 1–2 wt% 

depletion in C, relative to average mercurian values [Peplowski et al., 2015]. Weider et al. [2016] 

suggested that these depletions are attributable to oxidation of C and S in mercurian magmas; 

these volatile species are then explosively vented and lost, resulting in the observed depletions. 

Weider et al. [2016] estimated that 2.5 wt% S and 4.7 wt% CO were lost in the Rachmaninoff-

Copeland vent forming eruption, and these workers suggested that incorporation of country rock 

could serve as a source for the oxides necessary for volatile oxidation [e.g., Zolotov et al., 2011]. 

Our data are consistent with this interpretation, and the hypothesis of crustal assimilation as a 

source for additional volatiles [Zolotov et al., 2011] is a viable mechanism for the volatile build-

up processes necessitated by scenario 2. However, we strongly caution that our data also suggest 

that these values are not likely to be representative of, and are overestimations of, the 

concentration of volatiles in the source magma for the majority of mercurian pyroclastic 

eruptions. The amount of additional volatile build-up is likely to be unique to each deposit (for 

example, the regional lunar pyroclastic deposits display a wide range of eventual gas volume 

fractions [Head et al., 2002; Wilson et al., 2011; Wilson et al., 2014]), and thus the results from 

the Rachmaninoff-Copeland vent deposit are representative only of that singular eruption. Future 

work should seek to constrain the volatile percentage that can be incorporated from crustal 

materials for explosive volcanic activity on Mercury in general.  

6. Conclusions 
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 The discovery and confirmation of explosive volcanism on Mercury is one of the most 

important and unexpected results of the MESSENGER mission. Prior to that mission, models for 

the formation of Mercury [e.g., Cameron, 1985; Benz et al., 1988; Boynton et al., 2007; Solomon 

et al., 2007] predicted that the crust and mantle would be relatively poor in volatiles, making 

explosive volcanism extremely unlikely. In addition, the thin mantle and pervasive compressive 

stress regime [Strom et al., 1975; Melosh and McKinnon, 1988] would yield a volcanic history 

dominated by large effusive plains deposits that ceased formation upon the onset of global 

contraction [e.g., Solomon, 1978; Head and Wilson, 2008]. Thus the discovery [Head et al., 

2008] and subsequent ability to quantify [Kerber et al., 2009, 2011; Goudge et al., 2014; Thomas 

et al., 2014a] numerous examples of explosive volcanism was not expected. Our research has 

built on the identifications and distributions [Kerber et al., 2009, 2011; Goudge et al., 2014; 

Thomas et al., 2014a] of explosive volcanic vents to analyze morphology, morphometry, and 

distribution of the explosive volcanic vents and associated deposits to construct a robust catalog 

of mercurian pyroclastic landforms. We have also considered hypotheses relating to the 

formation of the geometries and eruption processes of these vents. We can summarize our 

findings as follows: 

1. Explosive volcanic morphologies can be divided into three major morphologic classes that we 

term simple vent, pit vent, and vent-with-mound. 

2. With the exception of vents located in the Caloris Planitia region, we observe no spatial 

correlation between mercurian pyroclastic vents and mercurian smooth plains deposits, unlike 

the association between pyroclastic deposits and maria on the Moon [Gaddis et al., 2003]. 
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3. The majority of volcanic vents are located within craters. We hypothesize that the resetting of 

regional compressive stresses around the crater helped to allow (and govern) dike propagation, 

and facilitated continued explosive volcanic activity under a stress regime otherwise unfavorable 

to magma ascent. The continued formation of explosive volcanic deposits after the transition to 

global contraction is evidenced by observations of vents and deposits in craters with degradation 

states that correspond to the Mansurian and Kuiperian periods. 

4. The morphologies and locations of a majority of pyroclastic vents on Mercury are consistent 

with the venting of relatively deeply (i.e., more than a few hundred meters) stalled dikes. 

5. An analysis of vent dimensions and pyroclastic deposit dimensions for both the Moon and 

Mercury suggests that vents on both bodies formed from the explosive venting of stalled dikes. 

Both bodies have evidence for vulcanian-style eruptions after gas volume fractions exceeded 

critical values, and both also show evidence for some vents having formed from the continued 

build-up of volatiles within a dike above the critical fractions observed in the smaller vulcanian-

style eruptions, leading to greater dispersal of pyroclasts than in the vulcanian-style scenario. 

Some mercurian vents also appear to have experienced partial or complete erasure of their 

associated pyroclastic deposits with time, likely because of space weathering and regolith 

mixing. 

 A comparative analysis has revealed interesting parallels between lunar and mercurian 

explosive volcanism, but differences between the two bodies also raise additional questions. 

Why do stalled mercurian dikes not form sills like those observed in floor-fractured craters on 

the Moon [Jozwiak et al., 2012; 2015, Thomas et al., 2015b]?  What is the source for the 

volatiles driving eruptions, especially in the cases of the mercurian vents where it appears no 
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additional volatile build-up processes have taken place? What has allowed the continuation of 

volcanic activity up to the relatively recent history of Mercury? This research has provided 

important new information about the history and character of volcanism on Mercury, and will 

help inform future efforts to explore the structure, composition, and thermal evolution of the 

planet, such as that by the upcoming BepiColombo mission to Mercury [Benkhoff et al., 2010]. 
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Figure Captions: 

Figure 1: The three identification criteria for pyroclastic vents on Mercury. A) Physical vent 

morphology that is distinct from that of a secondary crater. Vent located at 4.4° N, 137.7° W.  B) 

A ―Red Spot‖ color anomaly seen in MDIS false-color mosaic (shown here with. R: PC2; G: 

PC1; B:430/560 nm reflectance. C) High reflectance anomaly associated with deposit material. 

This example is what we term the Rachmaninoff–Copland vent (or the ―northeast Rachmaninoff‖ 

vent) (35.8° N, 63.8° E) (B, C). MDIS monochrome mosaic basemap (A, C). 

Figure 2: The ―simple vent‖ morphology is characterized by an elongate shape and steep walls 

sloping to a narrow floor. A) An example of the simple vent morphology from Kipling crater 

(21.1° S, 72.4° E). B) An arcuate simple vent, here characterized by several distinct subsidiary 

vents overlapping to form an overall curved feature. This example is in Picasso crater (3.45° N, 

50.4° E). MDIS monochrome mosaic basemap (A, B).  

Figure 3: The ―pit vent‖ morphology, characterized by approximately equal horizontal 

dimensions, although the axes are rarely truly equal. Floor profiles are often wider than those of 

simple vents. A) An elliptical pit vent with a bowl-shaped cross-sectional shape, located in 

Tolstoj basin (21.1° S, 163.02°W). B) An irregularly shaped pit vent, called the Rachmaninoff-

Copland vent (also called NE Rachmaninoff vent because of its proximity to the Rachmaninoff 

basin) (35.8° N, 63.8° E). MDIS monochrome mosaic basemap (A, B). 

Figure 4: The ―vent-with-mound‖ morphology, which is characterized by a central mound 

surrounded by a wide, annular depression interpreted to be a volcanic vent. A) An example of a 

circular vent-with-mound, situated outside of the Caloris basin at 3.5° S, 136.8° W. The central 

mound of material is surrounded by a wide, annular depression. The elevation of the central 
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mound it below that of the surrounding terrain [Thomas et al., 2015]. B) An irregularly shaped 

vent-with-mound example, with a strongly non-circular plan-view shape. The central mound is 

strongly illuminated and the circumscribing vent is seen entirely in shadow surrounding the 

mound. The elevation of the central mound is ambiguous; however, the illumination in the above 

image suggests that the mound height is at least comparable to the elevation of the surrounding 

terrain, if not elevated above the surrounding region. This vent is located at the northern edge of 

the Caloris basin (48.7° N, 159.5° E). MDIS monochrome mosaic basemap (A, B). 

Figure 5: The ―shallow pit‖ morphology is characterized by more than three overlapping, bowl-

shaped, circular depressions. It is unclear if this morphology is a primary volcanic feature and it 

is not included in our catalog. A) MDIS image of a ―shallow pit‖ morphology. B) MDIS false-

color mosaic image of that same feature; note the associated, diffuse, ―Red Spot‖ color anomaly. 

This example is located at 48.4° S, 6.4° W (image number EN1035095722M) (A, B). 

Figure 6: Examples of what we term here ―irregular pitted terrain‖, which is characterized by 

either individual or multiple pits that are irregular in outline and less than 1 km in diameter). 

Although commonly associated with RS anomalies, it is unclear if this surface texture is a 

primary volcanic landform; consequently, we do not include such instances in our catalog, 

although they may be present on vents that we do include. A) An example of irregular pitted 

terrain within the interior of the Rachmaninoff basin (26.2°N, 59.6° E), consisting of multiple 

pits that have coalesced to form an irregularly textured plain. This region also contains a RS 

anomaly and a high-reflectance anomaly. Image numbers EN0239705812M and 

EN0224338598M. B) Another instance of irregular pitted terrain located on a simple vent inside 

the Caloris basin (at 24.3° N, 179° W). Image number EN0258542735M. C) An example of 

―hollows‖ on Mercury, illustrating the small-scale pitted texture of these landforms. Hollows are 
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often surrounded by high-reflectance material and are flat-floored. Here, the floor of the crater 

deGraft is shown (at 22.1° N, 2.02° E); image number EN0250851946M. MDIS monochrome 

mosaic basemap (A, B). 

Figure 7: A) Frequency distribution of long axis lengths for both simple vents and pit vents. B) 

Frequency distribution for simple vent long axis lengths. C) Frequency distribution for pit vent 

morphology main axis length. D) Frequency distribution of average depth for both simple vents 

and pit vents.  

Figure 8: A) The global distribution of pyroclastic vents in our catalog. B) The global 

distribution of pyroclastic vents compared with the distribution of smooth plains deposits on 

Mercury [after Denevi et al., 2013]. C) The global distribution of pyroclastic vents compared 

with the locations of impact basins greater than 200 km in diameter [Fassett et al., 2011]. The 

Caloris and Tolstoj basins are labeled C and T, respectively (A, B, C) MDIS false-color basemap 

R: PC2; G: PC1; B:430/560 nm reflectance.    

Figure 9: Examples host crater degradation states and the associated inferred mercurian 

chronostratigraphic period. A) Crater located at 32.4° N, 88.2° E. B) Glinka crater located at 

14.9° N, 112.4° W. C) Crater located at 9.45° N, 137.7° W. D) Lermontov crater located at 15.8° 

N, 48.2° W. E) Tyagaraja crater located at 3.75° N, 148.8° W. MDIS monochrome mosaic 

basemap, 256 px/deg. 

Figure 10: The frequency distribution of inferred host crater ages for simple vents and pit vents. 

A) All examples of these landforms. B) Simple vents and pit vents separated by morphologic 

category. C) As for B), with vents shown as a percentage of the total mercurian crater population 

of that degradation class. 
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Figure 11: The frequency distribution of crater ages (inferred from their degradation states) for 

vents that do not have an associated RS deposit, plotted as a percentage of the number of vents 

with that host crater degradation class. Over half of the vents located in craters with a 

degradation class of 4 (and so corresponding to the Tolstojian period) lack associated RS 

pyroclastic deposits, attributed to erasure with time due to space weathering and regolith mixing 

processes. 

Figure 12: The length of the long axis for each vent plotted against host crater degradation class.  

Figure 13: Three proposed scenarios describing the history of explosive volcanism on Mercury. 

Scenario 1 describes sustained explosive volcanism throughout mercurian history. Scenario 2 

describes two pulses of explosive volcanic history. The initial pulse is centered on 3.7 Ga around 

the onset of global contraction, and accounts for the formation of all older volcanic vents. The 

second pulse is centered in relatively recent mercurian history and explains the formation of a 

few volcanic vents in craters though to have formed in the Mansurian and Kuiperian periods. The 

dotted line between these two pulses indicates no anticipated explosive volcanic activity in the 

intervening time. Scenario 3 predicts that the majority of explosive volcanic activity occurred 

early in mercurian history, tapering off after the transition to a global compressive stress state by 

about 3.5 Ga. The solid line indicates a continued pattern of explosive volcanic activity through 

the remainder of mercurian history, albeit at a reduced rate. 

Figure 14: Schematic representations of the five candidate formation geometries for mercurian 

explosive volcanic deposits. A) Sill/laccolith formation in the shallow subsurface beneath a 

crater, leading to uplift of the crater floor and peripheral diking from the edges of the sill. This 

geometry is based on lunar floor-fractured crater formation geometry [Schultz, 1976; Jozwiak et 
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al., 2012; 2015]. B) Sill/laccolith with dike-tip overshoot model. This geometry is similar to that 

in A, but includes an overshoot of the dike-tip above the upper margin of the sill. This geometry 

leads to uplift in the crater floor and localizes volcanic morphologies over the dike-tip region. C) 

Surface dike degassing model, characterized by a dike propagating to the surface without 

interruption and then explosively venting. D) Stalled dike degassing model geometry, 

characterized by a dike stalling at some depth beneath the crater and then degassing, either soon 

after formation, or after some time of sufficient volatile build-up. E) Thrust fault degassing 

model geometry, wherein a dike propagating from depth intersects an existing thrust fault 

causing the magma to continue propagation along the thrust fault and explosively vent at the 

surface along the leading edge of the thrust fault-related landform. 

Figure 15: The frequency distribution of vent host crater diameters. The data show no strongly 

preferred diameter for a crater to host a vent. No vents are observed in craters with diameters less 

than 20 km, although it is unclear if this is a result of formation mechanism or of data resolution. 

A) All vent host craters we identified. B) All vent host craters excluding those greater than 250 

km in diameter (i.e. impact basins). 

Figure 16: Vent semimajor axis length as a function of host crater diameter. The data show no 

correlation of these parameters, suggesting that the host crater diameter does not influence the 

vent formation process. A) All host craters in our study. B) All host craters excluding those 

greater than 250 km in diameter (i.e. impact basins). 

Figure 17: The vents within Sher Gil crater (D = 73 km, situated at 45.1° S, 134.5° E). The 

orientations of these four wall-adjacent vents, paired with a lack of observable tectonic 

deformation of the floor, make the vents in this crater candidate for formation by a deeply-seated 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

57 

 

subcrater sill/laccolith. Image numbers EN0251346958M, EN0231267985M, and 

EN0231267850M. 

Figure 18: An example of a single vent within a crater, which could be either the result of a dike 

tip overshoot or of a stalled/surface dike degassing. This vent is located at 9.45° N, 137.7° W. 

Image numbers EN0257620579M, EN0242462660M, and EN0212066694M. 

Figure 19: An example of a vent located along the leading edge of a thrust fault in the crater 89 

km-diameter Glinka (located at 14.9° N, 112.4° W). MDIS monochrome basemap. 

Figure 20: An arcuate vent encircling the preserved central peaks of the 100 km-diameter 

Catullus crater, sitauted at 22° N, 67.5° W. Image number EN1038845919M and MDIS 

monochrome basemap. 

Figure 21: A schematic illustration of the geometric differences between the formation of a 

simple vent (A) and a pit vent (B). A) During simple vent formation, the dike stalls closer to the 

surface and produces a relatively narrow, deeper depression. B) During pit vent formation, the 

dike stalls at a greater depth; the resulting infall of material does not reflect as closely as in the 

first example the underlying dike dimensions, and the result is a less elongated depression than a 

simple vent. 

Figure 22: A) Deposit radius as a function of vent length for mercurian vents (blue diamonds) 

and localized lunar pyroclastic deposits (red squares). A trend line fit to the eight localized lunar 

pyroclastic deposits shows a close correlation between these two parameters. In contrast, the 

mercurian data show considerable scatter. B) Ejection velocity as a function of vent length for 

mercurian vents (blue diamonds), localized lunar pyroclastic deposits (red squares), and the 

Orientale Dark Mantle Ring Deposit (ODMRD) on the Moon (green triangle). A trend line fit to 
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the localized lunar pyroclastic deposit data shows again a close correlation between vent length 

and deposit radius. We interpret vents along this line to represent eruptions triggered by foam 

collapse after the magmatic foam reaches the critical gas volume fraction. This describes all of 

the localized lunar pyroclastic deposits and a cluster of the mercurian vents. Several mercurian 

vents are located below this trend line (dashed black ellipse); we interpret this region to represent 

vents where the original deposit extent has been erased through space weathering and regolith 

mixing processes. Above the trend line there are numerous mercurian vents, including many 

small (< 20 km length) vents and the ODMRD. We interpret this region (solid black ellipse) to 

represent vents where a stalled dike underwent additional volatile build-up processes prior to 

eruption.  

Figure 23: The vents in the crater Picasso show variations in vent degradation correlating with 

observed pyroclastic deposit extent. The black arrow identifies the northern, less degraded vent, 

and the white arrow identifies the southern, more degraded vent. A) MDIS false color mosaic 

illustrating the localization of the pyroclastic deposit (characterized by the bright orange color) 

near the northernmost vent. B) MDIS monochrome mosaic of the crater. C) MDIS targeted 

image of the vents, compare the morphological freshness of the northernmost vent (black arrow) 

with the southernmost vent (white arrow). Image number EN0249929635M. 
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Table 1: Candidate Pyroclastic Vents 

Crater Name
1 

Center 

Longitude
2 

Center 

Latitude 

Host Crater 

Diameter 

[km] 

Degradation 

Class
3 

Morphology 

classification 

RS-05 (K2) -179 24.3 1532 3 Simple Vent  

Unnamed crater 

8 (G11) 

-167.6 -45.04 34.1 N/C Simple Vent 

Tolstoj S (G6) -163.02 -21.13 490.5 2 Pit Vent 

Unnamed crater 

4 (K36) 

-161.9 0.5 60.7 2 Pit Vent 

Tolstoj E (G5) -161.7 -16.7 490.5 2 Simple Vent 

Tolstoj SE (G7) -161.14 -19.88 34.5 2 Pit Vent 

Eitoku -156.926 -21.6354 104 2 Simple Vent 

 -156.461 -24.6265 50 4 Simple Vent 

 -155.945 -30.3481 98.5 1 Simple Vent 

 -154.646 -11.7315 54.3 3 Pit Vent 

Tyagaraja (G8) -148.88 3.75 98 5 Simple Vent 

 -139.488 5.08245 57 2 Simple Vent 
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 -137.787 4.43584 0 - Simple Vent 

 -137.764 9.45622 73.5 3 Simple Vent 

 -136.788 -3.54144 39.4 N/C VwM 

 -135.493 -8.41149 60.5 1 VwM 

 -129.994 -13.5333 94.1 3 Simple Vent 

 -113.785 -6.93635 66.2 3 VwM 

Glinka (K29) -112.4 14.9 93.5 2 Simple Vent 

To Ngoc Van 

(K10) 

-111.8 52.6 70.2 3 Pit Vent 

Gibran (K15) -111.3 35.8 104.2 2 Pit Vent 

Rumi -105.024 -24.1346 78.7 2 Pit Vent 

 -89.2117 -21.2196 57.2 3 Pit Vent 

 -81.9273 -26.7598 (944.7)
4 

- Simple Vent 

 -67.9205 8.59485 21.4 N/C Pit Vent 

Unnamed crater 

1 (K26) 

-67.5 22 100.1 4 Simple Vent 

Mistral NW -55.8 5.4 45.8 3 Simple Vent 
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(K33) 

Mistral SE 

(K18) 

-54.2 4.2 100.9 2 Simple Vent 

 -48.9 -27.5 0 - Pit Vent 

Lermontov NE 

(K7) 

-48.2 15.8 160.9 4 Simple Vent 

Kuniyosi -37.5289 -57.6204 25.7 N/C Simple Vent  

Enheduanna  

(K22) 

-33.7 48.4 108.1 2  Pit Vent 

Unnamed crater 

6 (G9) 

-32.9 58.8 32 N/C Simple Vent 

Hesiod a (K4) -31.7 -57.2 91.3 2 Pit Vent 

Hesiod c (K13) -30.9 -53.2 33.7 N/C Pit Vent 

Hesiod b (K14) -30 -55 0 - Pit Vent 

Geddes (K16) -29.5 27.2 85 3  Pit Vent 

Hesiod d (K32) -28.6 -52.2 0 - Simple Vent 

 -19.1131 -29.4306 0 - VwM 

 -13.0714 -6.06093 68.4 2 Pit Vent 
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Rilke -12.4139 -44.78 77.7 4 Simple Vent 

Abedin -10.9485 61.8274 118 4 Simple Vent 

Hemingway 

(K3) 

-2.7 17.6 122.5 3 SimpleVent 

 1.19122 27.5251 772.3 0 Simple Vent 

 2.26688 -48.9564 0 - Simple Vent 

 5.80077 -50.0023 0 - Simple Vent 

 10.2985 28.3662 (1392)
5 

- Simple Vent 

 10.7517 -49.8341 0 - Simple Vent 

 11.8058 -48.3247 0 - Simple Vent 

 17.7142 -52.7133 0 - Simple Vent 

 22.7546 32.1695 (1392)
5 

- Simple Vent 

 23.67 37.33 0 - Simple Vent 

 23.6707 -68.8936 0 - Pit Vent 

 24.4144 -51.6599 58.9 4 Simple Vent 

 45.6213 -37.5026 58.3 4 Simple Vent 

 49.9534 -33.261 (1445.5)
6 

- Pit Vent 
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Picasso (K37) 50.4 3.45 135.4 3 Simple Vent 

 51.1418 35.9417 27.8 N/C Simple Vent 

N 

Rachmaninoff 

(G4) 

57.3 36.1 0 - Pit Vent 

NE 

Rachmaninoff 

(K1) 

63.8 35.8 0 - Pit Vent 

 65.7418 -15.563 (1445.5)
6 

- Simple Vent  

Kipling W  (G2) 71.43 -19.21 169.6 2 Simple Vent 

Kipling N (G1) 72.03 -18.45 169.6 2 Simple Vent 

Kipling S  (G3) 72.4 -21.16 86 3 VwM 

Alver 76.16 -66.78 150.56 4 Pit Vent 

Unnamed crater 

7 (G10) 

88.2 32.4 113.3 1 Simple Vent 

 101.077 58.2096 210.5 2 Pit Vent 

Beckett (K34) 111.2 -40 57.9 3 Simple Vent 

 115.104 -41.9784 53.02 2 Pit Vent 
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 124.806 -40.0887 40.6 3 Simple Vent 

 133.703 -38.6423 35.9 N/C Pit Vent 

Sher Gil SW 134.4 -45.7 74.2 3 Simple Vent 

Sher Gil NW 134.65 -44.8 74.2 3 Simple Vent 

Sher Gil S 134.8 -45.78 74.2 3 Simple Vent 

 134.95 -38.93 43.5 2 Pit Vent 

Sher Gil N 135 -44.7 74.2 3 Simple Vent 

Sher Gil SE 135.45 -45.54 74.2 3 Simple Vent 

 135.69 -38.87 44.7 2 Pit Vent 

 136.546 -51.5263 25.9 N/C Simple Vent 

 136.61 -28.28 46.2 3 Simple Vent 

 137.633 -38.6292 36.4 N/C Pit Vent 

Unnamed crater 

5a (K38) 

138.6 -52 80.2 4 Simple Vent 

 140.58 -11.0137 66.6 2 Simple Vent 

Caloris 141.471 38.2797 1532 3 Pit Vent 

Unnamed crater 142.5 -55.1 41.2 2 Simple Vent 
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5b (K39) 

 143.04 -63.85  2 Simple Vent 

 143.593 -5.20355 82.5 2 Pit Vent 

Unnamed crater 

5c (K40) 

143.8 -56.2 0 - Pit Vent 

Caloris RS-03 

SE (K28) 

145.4 21.7 1532 3 Pit Vent 

Caloris RS-03 

(K5) 

146.2 22.3 1532 3 VwM 

 146.868 -28.2183 53.1 4 Simple Vent 

 147.151 -55.0409 44.4 3 Simple Vent 

 147.64 -65.52 34.7 N/C Pit Vent 

 147.86 -65.15 34.7 N/C Pit Vent 

Caloris 148.383 24.2069 1532 3 Pit Vent 

Caloris RS-03 

SE (K35) 

150.2 19.4 1532 3 Simple Vent 

Caloris 150.5 18.6 1532 3 Simple Vent 

 151.114 -32.5761 58.1 1 Simple Vent 
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 154.247 -65.9282 44.7 2 Pit Vent 

 154.509 -9.21725 73.4 1 Simple Vent 

Caloris 159.48 48.6929 1532 3 VwM 

Caloris 161.229 48.4023 1532 3 VwM 

Caloris RS-04d 

(K27) 

164 15 1532 3 Pit Vent 

 177.767 -25.3508 109.8 2 Simple Vent 

 

1
Crater names are listed for all craters with IAU-approved names. Unnamed craters identified in 

Kerber et al. [2011] and Goudge et al. [2014] are designated with (K) and (G), respectively, and 

maintain the designation from the original work for ease of comparison. Craters and locations 

with neither a formal name nor an informally applied name from previous works are left blank. 

2
East-positive longitude values. 

3
Crater degradation class from Kinczyk et al. [2016]. Class 1: most degraded; Class 5: least 

degraded. The designation ―N/C‖ indicates a vent located in a crater with diameter < 40 km and 

no associated crater degradation class. The designation  ― - ‖ indicates a vent with no associated 

host crater. 

4
 Probable basin Matisse-Repin (Fassett et al., 2012). 

5
 Probable basin b30 (Fassett et al., 2012). 
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6
 Suggested, but unverified basin b56 (Fassett et al., 2012). 

 

Table 2: Catalog of Shallow Pit morphologies 

Crater 

Name
1 

Center 

Longitude
2 

Center 

Latitude 

Host Crater 

Diameter 

[km] 

Degradation Class
3 

Morphology 

classification 

 -104.822 -22.0732 - 1 Shallow Pits 

Kuniyoshi -37.5289 -57.6204 26.5 0 Shallow Pits 

 -6.4235 -48.4267 119.5 4 Shallow Pits 

 13.0063 -70.6439 119.6 3 Shallow Pits 

 20.171 -53.0162 - - Shallow Pits 

 24.16 37.4 - - Shallow Pits 

 141.492 -59.6059 - - Shallow Pits 

 147.44 -65.28 35 0 Shallow Pits 

Liang Kai 175.655 -39.7556 144.9 2 Shallow Pits 

 177.55 -24.96 103.6 2 Shallow Pits 
1
Crater names are listed for all craters with IAU-approved names. Unnamed craters identified in 

Kerber et al. [2011] and Goudge et al. [2014] are designated with (K) and (G), respectively, and 

maintain the designation from the original work for ease of comparison. Craters and locations 

with neither a formal name nor an informally applied name from previous works are left blank. 

2
East-positive longitude values. 

3
Crater degradation class from Kinczyk et al. [2016]. Class 1: most degraded; Class 5: least 

degraded. 
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Table 3: Catalog of Irregular Pitted Terrain locations 

Crater Name
1 

Center 

Longitude
2 

Center 

Latitude 

Host Crater 

Diameter [km] 

Degradation Class
3 

Morphology 

classification 

Caloris -178.97 24.2694 1532 - IPT 

Tolstoj -163.391 -20.2439 390 2 IPT 

Zeami -147.242 -2.9716 128.5 4 IPT 

Scarlatti -100.813 41.1319 131.9 3 IPT  

 -98.5088 42.0109 - 0 IPT 

 -90.5563 -22.8582 68.1 3 IPT  

 -90.5563 -22.8582 68.6 3 IPT 

Raphael (K8) -74.4 -21 342.1 2 IPT 

 -67.9205 8.59485 20 0 IPT  

Chekhov -61.7467 -37.264 193.8 2 IPT 

Praxiteles -59.4069 26.6068 198.1 3 BIP 

 -56.085 3.7557 38.5 0 IPT 

Mistral -54.0909 4.18191 101.9 2 IPT 

Chaikovskij -51.3424 7.47479 171.01 2 IPT 

Lermontov -49.0076 15.0086 165.8 4 IPT 

 -44.2048 12.1812 - 1 IPT 

Enheduanna -33.9994 48.3288 105 2 IPT  

Namatjira -32.8942 58.8416 34 0 IPT 

Hesiod -31.6951 -58.0857 101.03 2 IPT 

Hesiod c (K13) -30.9 -53.2 94.4 0 IPT  

Hesiod b (K14) -30 -55 - - IPT 

Geddes -29.5 26.78 83.5 3 IPT  

Hesiod e (K24) -27.9 -51.5 37.4 0 IPT 

 -6.04293 -47.0739 120.8 4 IPT 

Melville -4.2 26.2 39.4 1 IPT 

 1.19122 27.5251 18.3 0 IPT  

 21.75 32.42 25.3 0 IPT 

 23.1669 35.5111 76.1 3 IPT  

 24.15 37.44 - - IPT 

Donelaitis 38.2961 -52.8102 84.5 4 IPT 

 55.2924 36.3165 20.1 0 IPT 

Rachmaninoff 

SE (K17) 

59.8 26.2 305.6 4 IPT 

 100.55 58.25 - 2 IPT 

Beckett 111.336 -40.3069 60.2 3 IPT  

 115.104 -41.9784 52.2 2 IPT 

Sher Gil center 135.03 -45.17 81.4 3 IPT 

 140.046 -52.28 84.9 4 IPT 
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 142.22 -35.16 101.2 2 IPT 

 142.317 -55.22 42 2 IPT 

 142.665 -63.5287 86.1 2 IPT 

Moody 144.9 -13.3 82.6 4 IPT 

 145.26 -59.833 53.5 2 IPT 

 146.88 -55.24 43.2 3 IPT  

Caloris 148.147 18.535 1532 3 IPT 

Caloris 150.557 46.8633 1532 3 IPT 

Caloris 152.572 17.6497 1532 3 IPT  

Caloris RS-04b 

(K20) 

156.9 16.7 1532 3 IPT 

Caloris RS-04a 

(K21) 

159.2 14.1 1532 3 IPT 

Navoi 160.686 58.8242 68.6 3 IPT 

Caloris RS-04c 

(K23) 

162.1 14.2 1532 3 IPT 

Caloris 162.362 13.7039 1532 3 IPT 

 168.064 60.8055 66.9 3 IPT 

Caloris 179.461 23.0499 1532 0 IPT 

 179.722 -23.6502 - 4 IPT 
1
Crater names are listed for all craters with IAU-approved names. Unnamed craters identified in 

Kerber et al. [2011] and Goudge et al. [2014] are designated with (K) and (G), respectively, and 

maintain the designation from the original work for ease of comparison. Craters and locations 

with neither a formal name nor an informally applied name from previous works are left blank. 

2
East-positive longitude values. 

3
Crater degradation class from Kinczyk et al. [2016]. Class 1: most degraded; Class 5: least 

degraded. 
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Table 4: Simple Vent and Pit Vent Morphometric Parameters 

 Average [km] Standard Deviation [km] Median [km] Mode [km] 

Simple Vent Length 13.6 8.03 12 7 

Pit Vent Length 13.3 9.17 9 4 

Vent Depth 0.6 0.5 0.5 0.5 

 

 


