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What is a macrophyte patch? Patch identification in aquatic 1 

ecosystems and guidelines for consistent delineation  2 

  3 

Abstract 4 

Patches are of central interest to many areas of environmental science because they provide a lower 5 

limit of structural detail in synoptic studies, and an upper limit of contextual structure for point 6 

measurement-based studies. Identification and delineation of macrophyte patches however, is 7 

often arbitrary and case-specific. In this paper we propose a widely-applicable set of guidelines 8 

for delineating a “patch” and “patch matrix” – the latter implying a collection of interacting patches 9 

– which could standardize future research. To support this proposal, we examine examples from 10 

eco-hydrological studies, focusing on interactions between plants, water flow, sediment, and 11 

invertebrates. We discuss three aspects that are key to the delineation of a patch: (1) constitution 12 

(variable(s) whose values define the patch), (2) extent (patch boundaries), and (3) distinction (of 13 

isolated single patches from multiple separate-but-interacting patches). The discussion of these 14 

aspects results in guidelines for identifying and delineating a patch which is applicable to any 15 

aquatic habitat, and covers a broad range of disciplines such as plant and animal ecology, 16 

biogeochemistry, hydraulics, and sedimentology. 17 
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Self-organised patch formation is a process whereby large-scale ordered spatial patterns emerge 24 

from disordered initial conditions through local interactions between organisms and their 25 

environment (Rietkerk & Van de Koppel 2008). This process has recently gained increased 26 

scientific attention because it has important implications for ecosystem functioning. Patchiness 27 

may be interpreted as an early warning sign of tipping points in ecosystems at which a sudden shift 28 

to a contrasting regime may occur (Scheffer et al. 2009). Self-organised patch formation can also 29 

increase ecosystem productivity as well as resilience and resistance to global environmental 30 

change, compared to spatially homogeneous ecosystems (Rietkerk & Van de Koppel 2008). 31 

Patches are also important in facilitating the colonization of initially bare landscapes and their 32 

subsequent bio-geomorphic evolution (Gurnell 2014; Vandenbruwaene et al. 2011), and they also 33 

have a role in regulating fluxes of water (Rietkerk et al. 2004) and sediments (van Wesenbeeck et 34 

al. 2008). Correct delineation of patches is therefore extremely important (Li & Reynolds 1995), 35 

especially in multidisciplinary studies where every specialist may define patches differently 36 

(O'Hare 2015).  37 

 38 

The term “patch” is commonly used in aquatic ecology to distinguish, for instance: (i) patches of 39 

vegetation from surrounding bare areas, e.g. within rivers and lakes (Kleeberg et al. 2010; Naden 40 

et al. 2006; Schoelynck et al. 2014; Schoelynck et al. 2012), on river floodplains (Francis et al. 41 

2009; Gurnell 2014), in riparian wetlands (Opdekamp et al. 2012), or on intertidal floodplains 42 

(Bouma et al. 2009; Bouma et al. 2013; Bouma et al. 2007; Vandenbruwaene et al. 2011), (ii) 43 

diatom aggregations from bare tidal mudflats (Weerman et al. 2012); (iii) zones with fine sediment 44 

from zones with coarser grain sizes (Gibbins et al. 2007); (iv) nutrient-rich from nutrient-poor 45 

zones (Hodge 2004; Hutchings & Wijesinghe 2008); (v) zones of high hydrodynamic stress from 46 



3 
 

more quiescent zones (Lancaster & Hildrew 1993); (vi) coral reefs from sea grass beds (Maldonado 47 

et al. 2010); (vii) food-rich from food-depleted locations (Thums et al. 2013), (viii) zones of high 48 

variability in populations of soil organisms from zones with less variability (Ettema & Wardle 49 

2002) and even (ix) areas modified by ecosystem engineers (Wright et al. 2002), from areas not 50 

modified in this way. The implication common to all of these examples (and the many others in 51 

which the term is used (Townsend 1989)) is that patches are areas characterised by values of a 52 

parameter of interest that are relatively high or low compared to the mean value across the whole 53 

area being studied. As such, patches tend to be viewed in two ways. Firstly, in synoptic scale 54 

studies, they are identified as the lower limit of structural detail, for example where a landscape is 55 

characterised in terms of the size and shape statistics of patches of a certain kind of habitat (e.g. 56 

Visser et al. (2015), who used low-altitude imaging to map submerged aquatic vegetation patches). 57 

Secondly, in studies executed via point measurements, they are identified as the upper limit of 58 

contextual structure, for example where comparisons are made between measurements within and 59 

outside of patches. Thus, a patch has a finite spatial extent (distinguishing it from a “point”) but is 60 

smaller than the entire study area. 61 

  62 

2. Examples of macrophyte patches in aquatic environments 63 

In some cases, macrophyte patches are easily and rather unambiguously defined, whereas in many 64 

other situations, especially in aquatic habitats, the delineation of patches is less straightforward 65 

(Kolasa 2014). For example: plant patches identified in aquatic environments can be categorised 66 

into four groups. In the first category, plant patches are easily recognised (Figure 1a). These consist 67 

of a single species at a relatively high density within patches whose edges are sharp. This category 68 

appears especially in subaqueous systems (Figure 1b). It is also frequently found on mudflats 69 
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where patches of pioneer plants are formed by the establishment of a few individual plants that 70 

then expand clonally (Figure 1c). In the second category (Figure 1d), patches still consist of a 71 

single species, but the edges are less sharp because the density of shoots does not change quasi-72 

discontinuously as in the first category; instead the patch fades into areas better identified as 73 

collections of isolated individual shoots. This configuration is often found in subaqueous systems 74 

where a group of individuals emerges from a seed bank (Figure 1e), and can also occur at the edges 75 

of lakes or marshes (Figure 1f). In the third category (Figure 1g), patches consist of two or more 76 

species. This is common in subaqueous systems where single shoots of different species grow in 77 

amongst each other, or where stands of different species are interwoven (Figure 1h). Finally, in 78 

the fourth category (Figure 1i), two or more patches of the same or of different species grow 79 

separately, but interact with each other in such a way that they can be regarded as one under certain 80 

circumstances (see later). This category is frequently found in the field (e.g. Figure 1j), and 81 

includes situations where it is difficult to demarcate the outer edges of the region of the patches’ 82 

mutual interaction with the flow of water, and hence its size. From these four categories, we 83 

identify three characteristics of patches which will form the basis of our guidelines: (a) their 84 

constitution – i.e. the variable(s) whose values define the patch; (b) their extent – i.e. 85 

identification of patch boundaries; and (c) their distinction – i.e. distinguishing multiple separate-86 

but-interacting patches from single patches. 87 

 88 

Because patch identification and consistent delineation is very often ambiguous, calculating 89 

statistics of patch size and shape can be problematic, and can cause difficulties with determining 90 

whether measurement points are truly within or outside of patches. The intention of this paper, 91 

therefore, is to review situations in which patches are identified in aquatic environments and 92 
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provide a clear and widely-applicable set of guidelines for defining the term “patch” using the 93 

three identified patch characteristics. This will enable researchers a standardised way of comparing 94 

different studies that use this term, or comparing studies that use field measurements, laboratory 95 

experiments or numerical models. 96 

 97 

3. Guidelines for defining a patch 98 

Guideline 1: define the constitution of the patch 99 

We illustrate the issues that may cause problems or ambiguities in relation to this characteristic of 100 

patches with an example of the relationships between aquatic plants, water flow, sediment and 101 

macroinvertebrates. Sand-Jensen (1998) demonstrated the entrapment of fine sediment by mono-102 

specific patches of submerged macrophytes in rivers due to their reduction of the near-bed flow 103 

velocity. Gibbins et al. (2007) concluded that, in this context, hydrological disturbance can 104 

influence benthic invertebrate density distribution, because the high erodibility of the fine sediment 105 

patches causes entrainment of benthic invertebrates from the patches into the flow. The size of the 106 

macrophyte patch, however, does not need to correspond exactly to the size of the habitat with 107 

similar substrate conditions for benthic macroinvertebrate species: the latter may extend upstream 108 

and downstream of the macrophytes because of wakes, or be fragmented due to local erosion 109 

within the macrophyte patch itself. So, in this situation, the “patch” has a different shape depending 110 

on whether it is defined in terms of the macrophytes, the sediment or the benthic macroinvertebrate 111 

habitat.  112 

 113 

It is clear from this examples that researchers need to state explicitly the variables they use to 114 

define a patch. As a result, we cannot simply talk about “patches” but need instead to use a 115 

qualifying prefix which identifies the measurement variable. They also imply a need for clear 116 
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thinking about the research questions or hypotheses that provide the motivation for studies. For 117 

instance, consider a researcher who wishes to compare the species richness of the 118 

macroinvertebrate community in an area of a river colonised by macrophytes to the community 119 

elsewhere in the same river. The sampling locations need to be determined according to whether 120 

the question being asked is about the effect of the macrophytes in forming regions of low 121 

hydrodynamic energy, or the direct effect of the plants (e.g. as physical anchorage sites) 122 

themselves. In the former case, the ‘patch’ needs to be defined by hydrodynamic parameters; in 123 

the latter case, it needs to be defined by macrophyte density. Thus, our guideline in terms of this 124 

first characteristic of patches requires structuring research questions or hypotheses and sampling 125 

strategies, and identifying the appropriate parameter for defining the patch accordingly. 126 

  127 

Guideline 2: define the extent of the patch 128 

This spatial characteristic of patches is problematic because without agreement on it there is no 129 

clear way of defining where patches begin and end. This can be a problem for studies that wish to 130 

compare parameters in- and outside patches, although in many cases these take point 131 

measurements at locations that are unequivocally in- or outside a patch. However, where mean or 132 

total values of parameters across patches are required, for example when measuring nutrient 133 

stocks, knowing where the edge of a patch occurs is crucial. Moreover, in synoptic scale studies, 134 

interest is often focused on parameters such as patch size, shape, perimeter length etc. In these 135 

cases, clear definition of patches is absolutely required. 136 

  137 

Problems of patch edge definition also arise when we want to translate laboratory or numerical 138 

model results into field contexts or vice versa, because the patches in experiments or models may 139 

be different in this sense from the real patches in the field. Patches in models or experiments tend 140 
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to have constant densities and quasi-discontinuous edges. In the field however, patches rarely have 141 

either of these characteristics: density (of whatever variable defines their constitution) varies 142 

within them, and fades out gradually and three-dimensionally. This can lead to inconsistent 143 

definitions of patch edges. But experimental results can imply a need to delineate patches in a 144 

concise and objective way. For example, Morris et al. (2008) and Bal et al. (2013) each reported a 145 

laboratory flume experiment studying spatially-explicit ammonia uptake rates in the presence of 146 

homogeneous, sharp-edged seagrass and river macrophyte patches, respectively. Both found that 147 

these uptake rates were highest at the patch edges. Therefore, estimation of the impact of natural 148 

vegetation on nutrient cycling relies on the ability to delineate patches in the field in the same way 149 

as both research teams did in their flume. This is an illustration of the fact that, without an objective 150 

approach to defining patch edges, the translation of experimental results to field situations is 151 

complicated. 152 

  153 

To address this issue, we now provide a practical guideline for defining and delineating patches. 154 

We first identify relevant scales that contextualise our definition. At the upper end, the “domain” 155 

scale is the scale of the entire region of interest – for example, the experimental section of a 156 

laboratory facility or mesocosm, the entire domain of a numerical model, or the field site in which 157 

we are working. At the lower end, the “individual element” scale is the smallest scale of objects 158 

we are focusing on - for example, single shoots if we are studying vegetation, or single sediment 159 

particles if we are studying bed material. The “measurement” scale depends on the mode of 160 

measurement and consists of a resolution and a footprint. The resolution is the density of 161 

measurement points within the domain (e.g. the number of sediment cores per transect). The 162 

footprint is the area covered by the measurement point (e.g. the cross-sectional area of the corer).  163 

We assume that the measurement scale (both resolution and footprint) is coarser than the individual 164 
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element scale, thus enabling meaningful measurement of the density of individual elements. If this 165 

is not the case, we would not define the observed distribution to be patchy, but as being made up 166 

of isolated individual elements. 167 

  168 

We define the patch scale to be smaller than the domain scale, but larger than the individual 169 

element scale and measurement scales. Thus, patches are distinguished from both individual 170 

elements and phenomena that are homogeneous at the domain scale. We illustrate our method for 171 

delineating a patch using a simple example (Figure 2). We first identify a point where the variable 172 

under consideration has a local maximum, and thus is unequivocally located inside the patch. We 173 

then project an array of radial lines emanating from that point. We then identify a local minimum 174 

of the variable under consideration on each line, such that all of these local minima are co-175 

contiguous. For example, if there is a small gap within a macrophyte patch, the minimum in shoot 176 

density within that gap is not contiguous with the minima in shoot density around the patch, and 177 

only the latter ones will be considered. Along each radial, we then select the point between the 178 

local maximum and the first local minimum at which the gradient in our variable of interest is 179 

greatest. Finally, if these all are co-contiguous, we join up all of these maximum-gradient points 180 

to create the patch boundary. Note that in cases where patches consist of low values compared to 181 

the surroundings (e.g. flow velocities in a wake), then the terms minimum and maximum in this 182 

description would need to be switched. 183 

 184 

Thus, our guideline in terms of this second characteristic of patches enables distinction between 185 

the spatial extent of patches of different constitutions (in the sense defined above) using practical 186 

steps for defining and delineating patches. Note also that in cases where two regions of high plant 187 

density are separated by a region in which the plant density is slightly lower, such that the flow 188 



9 
 

skims unaltered over both the patches and the region between them, this method would identify 189 

two vegetation patches, but only one hydrodynamic patch.  190 

  191 

Clearly, deployment of this guideline for patch delineation will differ depending on the context. In 192 

numerical models, and many laboratory flume setups, it can be used objectively and precisely, and 193 

may well be trivial. In the field, however, because of the increased complexity of the setting, an 194 

objective and precise approach might involve unnecessary time and costs, and we envisage that 195 

our guidelines’ use would be guided by expert, but subjective, judgment. Nevertheless, modern 196 

techniques allow to acquire detailed information about in-stream plant patch sizes and distribution 197 

by digital cover photography (Verschoren et al. 2017), or flow fields through particle imaging 198 

velocimetry (Creëlle et al. in press). 199 

  200 

Guideline 3: define the distinction or interaction between patches 201 

The patch characteristics that have been defined so far are appropriate for individual patches. 202 

Patches of organisms may however, have an influence on their surrounding environment, i.e. 203 

beyond the patch edges. For example, vegetation patches in aquatic environments influence flow 204 

velocities and sediment deposition next to and behind the patches (wakes); allelopathic interactions 205 

between Stratiotes aloides and filamentous algae and competition for nutrients cause gaps in the 206 

algae mats surrounding the plants (Mulderij et al. 2009); patches (i.e. tussocks) of riparian wetland 207 

plants influence their environment by shading (Opdekamp et al. 2012; van de Koppel & Crain 208 

2006). We define circumstances where the zones of patches’ influence overlap of each other as 209 

interaction between patches. Furthermore, we define cases where multiple patches interact in some 210 

way and thus form a different, larger spatial structure as “patch matrices” (see e.g. (Turner et al. 211 

2001; Wagner & Fortin 2005), and we need to distinguish matrices of interacting patches from 212 
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both isolated patches, and phenomena that are homogeneous at the domain scale. Our guideline in 213 

terms of this third characteristic of patches requires a combination of the information of all 214 

parameters in question and detect if any relevant interaction exists among them. It is illustrated 215 

with three distinct situations, in each of which two variables – occurrence of aquatic vegetation 216 

and flow field characteristics – are discussed (Figure 3). 217 

  218 

In Figure 3a, the areas of vegetation are well-separated from each other. Thus, it is appropriate to 219 

consider each of these areas as an individual patch of vegetation. In this scenario, all of the 220 

hydrodynamic wakes are also independent as the occurrence of one wake has no influence on any 221 

other wake. Each wake is therefore an individual hydrodynamic patch. In Figures 3b and 3c, 222 

despite the vegetation patches being closer together, there is still space in between them. Hence, 223 

using the patch delineation guidelines proposed above, the vegetation can still be defined as a 224 

cluster of distinct vegetation patches. However, this is not the case for the hydrodynamic wakes as 225 

they now merge with each other and cannot be considered spatially separated. Figure 3b shows the 226 

clearest form of interaction. Here the individual wakes are not indistinguishable at the 227 

measurement scale and become one large wake, i.e. one large hydrodynamic patch. In Figure 3c, 228 

the intermediate situation between Figures 3a and 3b is depicted. Here, the wakes are distinct 229 

upstream, but subsequently merge to a certain extent downstream. We define this case, where the 230 

vegetation patches are distinct, but their hydrodynamic influence zones are not, as a 231 

“hydrodynamic patch-matrix” or “a matrix of hydrodynamic patches”. We must distinguish (e.g. 232 

for the purposes of sampling or modelling) between the region of several individual hydrodynamic 233 

patches (wakes) and the region of one merged hydrodynamic patch. Matrices of patches are made 234 

up of distinct patches which nevertheless interact in some way. These distinctions can be seen as 235 

analogous to those between ‘isolated roughness flow’ (c.f. Figure 3a), ‘skimming flow’ (c.f. Figure 236 
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3b) and ‘wake interference flow’ (Figure 3c), which were first proposed in the engineering 237 

literature (Morris 1955) and which have been adopted in the ecohydrology literature more recently 238 

(Davis & Barmuta 1989; Folkard 2011; Young 1992). 239 

  240 

These different levels of interaction are illustrated by Sukhodolova (2008) and Sukhodolov and 241 

Sukhodolova (2010), who studied the effect of different distributions of submerged vegetation (at 242 

different times in the annual growth cycle in the same river reach) on turbulent flow structure in a 243 

lowland river. Variation in the extent of 233 vegetation patches over the growing season changed 244 

the interaction between the hydrodynamic wakes. In the summer cases there was relatively little 245 

separation between the patches, producing one combined hydrodynamic wake patch (c.f. Figure 246 

3b). In the early spring situations, when the vegetation was less developed, individual vegetation 247 

patches producing individual hydrodynamic patches were observed (c.f. Figure 3a). Finally, at 248 

intermediate vegetation patch separation, the individual vegetation patches produced 249 

hydrodynamic patches which were at first distinct but subsequently merged, i.e. a hydrodynamic 250 

patch matrix (c.f. Figure 3c). Another example of how systems can move from one of these 251 

configurations to the others over time is provided by Vandenbruwaene et al. (2011), who 252 

investigated the evolution of a tidal landscape undergoing colonisation by vegetation patches that 253 

are laterally expanding in size and therefore grow closer to each other. Initially, the situation they 254 

observed corresponded with Figure 3a, where the vegetation formed non-interacting patches (see 255 

also Figure 1c). As the vegetation patches grew bigger and closer to each other, the high level of 256 

influence between the hydrodynamic wakes made it impossible to define isolated hydrodynamic 257 

patches, hence they moved first to the situation in Figure 3c, and ultimately to that in Figure 3b. 258 

  259 
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The often complex interactions between vegetation, fauna, hydrodynamics and sedimentary 260 

processes that are studied in multidisciplinary studies imply that changes in any one of them can 261 

alter the patch/patch-matrix structure in the others. Careful patch definition is particularly 262 

important in measuring and modelling this kind of multi-faceted situation (Marion et al. 2014). An 263 

example of this is provided in Figure 4. 264 

 265 

4. Outlook 266 

We now revisit the examples presented in Figure 1 and apply the 3 guidelines we have defined in 267 

Section 3 to each of them. The Category I examples (Figures 1b and 1c) show patches whose 268 

constitution is defined by vegetation shoot density, whose extents are defined by sharp edges, and 269 

which are individual patches in a shoot-density sense, but which may form inter-connected 270 

matrices in terms of hydrodynamic, sedimentary conditions, macroinvertebrate communities 271 

and/or substrate nutrient distributions. If these individual patches grow, they will move from 272 

patches that are isolated in every sense (c.f. Figure 3a) to interacting matrices of individual patches 273 

(c.f. Figure 3c, then Figure 3b) to single, merged patches. Thus, while the delineation of the 274 

vegetation patches, for example for the purposes of measuring their size and shape, is relatively 275 

unambiguous, their sampling for macroinvertebrate, sediment or hydrodynamic parameters 276 

requires careful consideration of the extent to which they form a matrix in these terms. Moreover, 277 

understanding the role they play in affecting hydrodynamic, sedimentary or macroinvertebrate 278 

conditions requires an appreciation of their matrix-scale interactions. 279 

  280 

The Category II examples (Figures 1e and 1f) show patches defined again by vegetation shoot 281 

density. How to delineate them is less clear than for Category I cases, but the guideline defined in 282 

Section 3b provides an unambiguous way of achieving this. Interactions between patches in 283 
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situations such as these are likely to be enhanced by the presence of regions of lower vegetation 284 

density between defined patches, and thus matrix-scale structures are likely to be more important 285 

here than in Category I cases. 286 

  287 

The Category III case shown in Figure 1h contains what may be considered to be a single 288 

vegetation patch, or a series of separate patches of different vegetation species, depending on how 289 

the constitution of the patches is defined. Macroinvertebrate, sedimentary and hydrodynamic 290 

parameter patch configuration in these conditions may be similar or different between the patches 291 

of different species depending on the similarity or difference of the plants’ morphologies and their 292 

interactions with these parameters. As with Category II, although the extent of each patch may 293 

appear difficult to define at first sight, the guidelines we provide give a clear way of identifying 294 

the edge of each patch, depending on the parameter that defines it. 295 

  296 

Finally, the Category IV example shown in Figure 1j can be clearly described in terms of the 297 

guidelines for investigating patch interactions (Section 3c) as two vegetation patches and one 298 

hydrodynamic patch matrix (with flow direction, visualised by the tracers shown, as the 299 

hydrodynamic parameter under consideration). These are also likely to have merged, matrix-scale 300 

configurations of sediment and macroinvertebrate communities. 301 

  302 

Thus, our guidelines of patch and matrix-scales provide a comparative framework within which 303 

understanding of these disparate contexts can be brought together. They also imply the need for 304 

further numerical and laboratory modelling efforts. Investigations are required of the matrix-scale 305 

connectivity of patches in terms of the wide variety of variables considered above. Studies of the 306 

effects of gradual changes in parameters such as shoot density, rather than the sharp-edged patch 307 
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configurations that have heretofore been used in physical and numerical modelling studies are 308 

required. Studies of mixed patches (for example, patches made up of more than one 309 

species/morphology of vegetation) are also virtually non-existent in the literature and require 310 

attention. In some cases, absolute-value thresholds might be appropriate (e.g. a fixed altitude to 311 

delineate bathymetry), while boundaries defined by gradient-maxima, absolute gradient values or 312 

other measures might be more appropriate in other situations. This variety of threshold definitions 313 

can be easily accommodated within GIS-software packages. Once patches are defined, other 314 

software can be used to analyse them (e.g. Fragstats). 315 

  316 

In conclusion: we provided a relatively rigid method to approach the identification and delineation 317 

of patches and patch-matrices, which also serves as a platform for consistency across studies. We 318 

have provided a framework that can give consistent guidance in situations where patch definition 319 

may be ambiguous. Our intention is that, as well as providing a framework within which studies 320 

from different environmental contexts can be meaningfully compared and mutually enhanced, the 321 

definitions and guidelines proposed here also provide a means for strengthening the mutual support 322 

of field, physical and numerical modelling studies of complex interacting systems such as those 323 

considered in this paper. 324 
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Figure captions 441 

Figure 1. Examples of different vegetation patch categories. White arrows indicate mean flow 442 

direction. (a) Category I, well-delineated, single species patches, e.g. (b) Ranunculus sp. in a river; 443 

(c) Cord-grass [Spartina anglica] on tidal mudflats. (d) Category II, single species patches, poorly 444 

delineated (circles represent single shoots), e.g. (e) Bur-reed [Sparganium emersum] in a river; (f) 445 

Bulrush [Typha latifolia] by a lake. (g) Category III, multiple species growing together, e.g. (h) at 446 

least five different submerged species in a river. (i) Category IV, delineated vegetation patches 447 

acting hydrodynamically as one, e.g. (j) two reed canary grass patches [Phalaris arundinacea] 448 

with a combined effect on the flow (visualised by white tracers).  449 
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Figure 2. Definition diagram for patch edge identification method. Panel (a) shows the side view 450 

of the spatial distribution of vegetation. The vegetation on the left side is quite straightforward to 451 

identify as a patch, but the cluster of vegetation on the right side is somewhat ambiguous. To 452 

determine the patch edges, we choose the local maximum within each patch (yellow line in panel 453 

a, yellow dot in panel c), and draw radial lines in all directions (black dashed lines, panel c). The 454 

points where the change of the variable of interest (panel b) is at its maximum (vertical grey dashed 455 

lines) are joined up to create the patch boundary (panel c). As a result, we have now identified and 456 

delineated three distinct patches following the same guidelines. 457 

  458 
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Figure 3. Guideline diagram to distinguish individual patches from patch matrices. Blue arrows 459 

indicate the angle of attack of the incoming flow. Panel (a) shows 10 distinct vegetation patches 460 

(green circles) and 10 distinct hydrodynamic patches (grey triangles). Panel (b) shows 10 461 

individual vegetation patches and 1 hydrodynamic patch (dark grey triangle). Panel (c) shows 10 462 

distinct vegetation patches and 1 hydrodynamic patch matrix because the different hydrodynamic 463 

wake zones interact.  464 
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Figure 4. (a) Plan view sketch illustrating interactions between vegetation, hydrodynamic, 465 

macroinvertebrate and erosion patches. Blue arrows show flow direction; green circles indicate 466 

macrophyte patches; grey triangles indicate hydrodynamic patches (wakes) according to figure 3b; 467 

black areas indicate erosion patches (scour zones); black dashed lines indicate patches of low-flow 468 

favouring limnophilic macroinvertebrates such as Asselus aquaticus; white dashed lines indicate 469 

patches of high-flow favouring rheophilic macroinvertebrates such as Rhitrogena germanica. (b) 470 

Higher flow has a negative effect on the connectivity of the low-flow macroinvertebrates, but may 471 

cause stronger merging of the erosion patches with a positive effect on the connectivity of high-472 

flow macroinvertebrates. 473 


