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Abstract

Sensor devices are regularly used on unmanned aerial vehicles (UAVs) as reconnaissance
and intelligence gathering systems and as support for front line troops on operations. This
platform provides a wealth of sensor data and has limited computational power available for
processing. The objective of this work is to detect and identify objects in real-time, with
a low power footprint so that it can operate on a UAV. An appraisal of current computer
vision methods is presented, with reference to their performance and applicability to the
objectives. Experimentation with real-time methods of background subtraction and motion
estimation was carried out and limitations of each method described. A new, assumption free,
data driven method for object detection and identification was developed. The core ideas of
the development were based on models that propose that the human vision system analyses
edges of objects to detect and separate them and perceives motion separately, a function
which has been modelled here by optical flow. The initial development in the temporal
domain combined object and motion detection in the analysis process. This approach was
found to have limitations. The second iteration used a detection component in the spatial
domain that extracts texture patches based on edge contours, their profile, and internal
texture structure. Motion perception was performed separately on the texture patches using
optical flow. The motion and spatial location of texture patches was used to define physical
objects. A clustering method is used on the rich feature set extracted by the detection method
to characterise the objects. The results show that the method carries out detection and
identification of both moving and static objects, in real-time, irrespective of camera motion.
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Glossary

Term Description

Candidate objects Candidate objects are texture patches that represent
objects of interest.

CEDAS Online clustering process defined in [57]
Computer Vision The field is interdisciplinary that deals with how

computers or artificial devices can gain a high level
of understanding from images or video streams

Edge clustering The same process as edge linking, the terms may be used
interchangeably.

Edge linking The process of joining contiguous edge pixels together to
form texture patches

F-measure Measures the average squared colour error of the segments,
penalizing over-segmentation by weighting proportional to
the square root of the number of segments. It requires no
user-defined parameters and is independent of the contents
and type of image.

Texture patch Used to describe the area of textured pixels linked together
by the edge linking of WISE. They form candidate objects

Unmanned Aerial Vehicle (UAV) An unmanned aircraft that is typically used by the military
and border protection services to gain advanced
reconnaissance. They usually have on-board cameras, and
limited computational processing power.

WISE Within-Image Spatial Edge Flow algorithm



Chapter 1

Introduction

This chapter introduces the scope of the research undertaken in this thesis. Firstly it considers
the wider field of data analysis and data gathering through the use of optical devices, and
then considers application specific problems. How computer vision as a whole is employed
in a variety of ways to tackle these problems is introduced followed by scoping the particular
problem area of this research and the questions associated with it. The scope of the work
is condensed into the specific research conducted throughout the remainder of the thesis.
Chapter 2 specifically deals with the research papers relevant to the field of research, and
how existing research can contribute to resolving the questions proposed here.

1.1 Scope

Data analysis is a wide ranging field that can be applied to any number of data gathering
and output problems. It can be summarised as a series of data inputs, data recording, data
processing and some kind of information output, figure 1.1. The sub domains of data
analysis are dependent on the type of data input, the type of processing to be performed and
the expected information output. The research conducted in this thesis is centred around
analysing video data obtained from a scene, determining the objects and their type that are
present in the scene.
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Fig. 1.1 The process of data analysis

The general emphasis of the investigation task is to be initially as broad as possible,
incorporating as many computer vision concepts and their application potential to the problem.
Many of the topics are overlapped with each other (e.g. classification and behavioural
analysis) and using multiple concepts can reinforce the end objective. Many of the complex
computer vision systems draw from all criterion, and many of the categories to form coherent
objective solutions. Examples such are facial recognition [127] and motion estimation [145].
There are also system level applications using computer vision algorithms to support a
wider system, for example the work by Luo et al [82] is a prosthetic eye system that uses
elements of the computer vision field for its operation. It is important to consider each
system level algorithm for its constituent components because the systems can compensate
for any individual algorithm short coming. For example with the case of using background
subtraction as part of the motion estimation; whilst the individual algorithms perform the
designed job well when combined into a system of components the design performance
hinders overall performance. Possible reasons for this scenario are that the algorithms are
being used outside their designed operation or the algorithms are not ideal, but are being
used as a "best-fit" solution when the ideal solution is not available. In either case, there is
an argument for redesign of either the algorithm, or the system in which it is trying to be
used. Consequently, it is important for us to understand the goals that drive the algorithms.
There are many goals in computer vision, primarily motivated by whatever system it is being
integrated with. However one overarching goal of the field as research is the ability for
computers to perceive their environment as good as, if not better than, human vision. The
next section considers the motivation for the research proposed in this thesis.
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1.2 Motivation

In a world where sensors for data acquisition are used on an ever expanding scale, there is a
requirement to efficiently process and interpret the data into meaningful information. There
are millions of cameras; in the UK alone there are an estimated 5.9 million surveillance
cameras in operation [142]. A much greater number of optical cameras are included on
mobile phones, and are now estimated to outnumber the human population on the earth
[20]. Additionally, cameras are gathering data from vehicles (such as aircraft, border patrol
teams, satellites, unmanned aerial and ground vehicles, and amateur video recordings). The
total volume of data gathered by these devices is astronomical, and far outweighs the time
available to humans to review all of the gathered data. This all contributes to the mass
volumes of video data being recorded and stored, some with useful information or important
observations that, at present, require human observers to extract them. Considering just the
CCTV context of the UK, over 141 million hours of video is recorded every day. That means
everyone in the population would have to watch 2.2 hours of surveillance video each day to
get through the entire recorded data. The number of hours each person would have to watch
to cover all the gathered CCTV data is large and impractical. There are, in reality, many less
operators to view all this information and many will need to review several cameras at once
to try to identify problems, issues and incidents [63]. This is without taking into account
the human factors such as attention span and sleep requirements of an operator [133]. The
automation of surveillance camera systems would go a long way to ensuring that security
requirements are met, such that useful information or important observations are not missed;
as well as to reduce the load and pressure on operators. To this end, there is the goal of
enabling computers to interpret visual data from these optical devices and process the data in
a meaningful way to produce useful information as its outputs. The field of research into this
technology is collectively known as computer vision.

Cameras are regularly used as sensors on unmanned aerial vehicles (UAVs) as recon-
naissance and intelligence gathering systems [49] [103] and used for support of front line
troops on operations [31]. The cameras on these vehicles can be of the order of 1 – 2
gigapixels with frame rates of the order of 25 -100 frames per second, meaning the data is
gathered at terapixels per second, that is 3 -5 terabytes of information per second [9]. As
this reconnaissance data is gathered, operators on the ground have to sift through each frame
looking for important objects or points of interest to support the operations [31]. Figure 1.2
shows an example of a frame from a UAV, and the small object of interest that each operator
is expected to see.

The proposed application area of the research is on Unmanned Aerial Vehicles (UAVs).
This platform provides a wealth of sensor information and has limited computational power
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Fig. 1.2 An example frame from which operators need to detect this small target

that promotes algorithm efficiency. The potential application is however not limited to
the UAV environment, and would be suitable to any sensor application that would require
detection and tracking of features of interest. The outline of the research is to:

Returning to the UAV application, using the cameras on board the UAV, :

• Develop systems to automatically detect and track dynamic objects or features of
interest in a real time live video stream environment. The development would be highly
computationally and memory efficient, lending itself to being used on platforms with
limited computing power such as UAVs.

• Combine these highly computational efficient online, real-time information extraction
algorithms with capable self-learning algorithms that can detect and track objects in a
live sensor environment with dynamically changing scenery.

1.3 Computer Vision Goals and Human Replication

The aim of the decision making component of computer vision analysis is to achieve similar,
if not better recognition of objects autonomously by computers than by humans. The major
obstacle to this goal is that computers are “dumb” terminals. A stream of bits looks exactly
the same to the computer as another stream of bits; if a computer is just given a stream of
RGB pixels, the output on the screen will simply be a visual display of the scene the sensor is
pointed at, plus some error component. Errors are introduced by flaws in the camera detection
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and signal transfer to the output display. Software in the modern era is sufficiently advanced
to enable computers to take a set of inputs, process them and provide a set of intelligent
results that gives the impression of autonomous behaviour. Research into computer vision
has allowed computers to take or receive a visual input as stimuli (data), conduct some
processing (compute) and provide intelligent results on its output (information). The visual
stimuli for the purposes of this work are data from colour cameras; and is referred to as
simply a camera from herein. The generated image from this camera is made up of red, green
and blue picture elements (RGB pixels).

In humans, vision is the main sensory input used to assess an environment. The other
senses are used to enhance the detail of the environment, but vision is a supremely efficient
method of assessing one’s surroundings. There are many articles of research into how the
human vision system may work, with several differing opinions. Given the efficiency of
human vision systems, and being the central component to assessing surroundings it is widely
accepted that an efficient computer based vision system will go a long way to achieving
autonomous environment understanding by the wider artificial intelligence field. One of
the most important parts of human vision, and thus computer vision, is object separation
and discrimination. The process of computer vision may include augmenting the existing
video data such that humans can interpret the data faster [112]. For example, colour profile
analysis augments the information available within the image to show the distribution and
variance of colour in an image. There are also techniques that manipulate the colour palette
of the image; this type of technique can suppress colours of a certain type and augment
others based on specific highlighting goals. For the most part, these algorithms are used
to augment images such that humans can interpret them quicker, and can identify target
objects quicker. Computer vision can also be built into a wider autonomous system where
the computer makes decisions based on the processed video stream. The difference with
current computer vision algorithms, compared to humans, for autonomous detection and
identification is that the algorithms do not inherently detect and identify everything in a
scene. Each algorithm has specific objectives in terms of what it needs to detect and identify.
For example, in the case of Edge Detection, the objective is to detect contrast contours in
the frame. The algorithms do not do anything with textures or object formation, they focus
on detecting the contours and later algorithms are used for identifying objects and textures.
Alternatively, image segmentation algorithms are focussed on detecting objects and textures.
The ultimate goal is to achieve all types of detection and identification in one system, which
would bring the computer vision implementation closer to that of humans. The next chapter
presents some of the existing vision systems that are components that make up small parts
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of a vision system, and other techniques bring together many components to achieve an all
round detection and identification system.

1.4 Real-time algorithms

In this research there is a consistent reference to real-time processing or real-time analysis.
Real-time systems provide a constraint on the computer system in which the data must be
analysed and the results outputted. This is also known as computational deadlines [108].
Being correct and real-time does not mean just outputting a correct calculation, it is also
dependent on being within the time constraint [130]. The time constraint can be hard (safety
critical systems for example), whereby missing any time deadlines constitutes a system failure,
firm (network packets for example) where by missing some time deadlines are tolerable but
the service or operational speed of the system may be degraded. The work packet is useless
if the time deadline is missed (e.g. retransmission of network packet if arrival deadline is
missed). Finally there are soft real-time systems, whereby the performance is degraded if
the time deadline is missed, and the usefulness of the work packet is degraded if the time
deadline is missed - e.g. system fault and condition data. It is important to identify that brute
force processing does not necessarily yield a real-time system [136]. A computer may have
high data and processing throughput (such as a Cray supercomputer [123]), however the
results may still not be provided for several minutes (complex protein folding for example
[147]). Conversely a low power system, with limited processing capacity may be considered
as real-time, despite its limited capacity, if the result of the system is returned in sufficient
time to immediately affect its environment e.g. temperature regulation of a green house -
the windows and heaters are controlled in real-time to regulate the internal temperature of
the green house. Referring back to the brute force type processing, the computing power
industry is consistently following Moore’s Law, and in some cases exceeding it [93]. In the
graphic shown in figure 1.3, the cost per GFLOP [104] is decreasing at rapid rate, and is
expected to continue in the immediate future. There is therefore scope for using parallelism
on existing computer vision algorithms (such as optical flow, or image segmentation) using
the brute force of this computational power to make them operate in real-time, [110]. There
are some drawbacks to this approach.

• There is only so far the processing power can be optimised, and eventually the ad-
vancement of processing capability will slow (earliest estimates are 2020 or 2022 [83]
[66] [132].
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Fig. 1.3 The progress of computing measured in cost per million standardized operations per
second (MSOPS) deflated by the consumer price index [104]
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• If the image resolution is sufficiently large, even with the huge processing capabilities,
real-time capability will eventually be reduced or unattainable.

• Not all application areas will be able to utilise the high powered processing due to
other system or environmental constraints (e.g. the power capacity of a UAV is limited,
thus the processing power available will also be limited).

• Despite the cost per GFLOP reducing, using a brute force approach does not address
the requirement of cost outlay for high powered computing systems that would be
required to make some algorithms real-time capable

• The complexity of some algorithms are such that not all aspects are necessarily suitable
for parallelism. Thus the gains are not necessarily directly proportional to the increase
in processing power.

It is important to note that real-time is often confused with an on-line system, or at least
the terminology is used independently. Whilst they are similar, and both relate to the time of
the processing, they are also distinctly different. Online or offline processing refers to when
the system begins processing the data. An online system is continuously processing data as it
arrives into the system, and does not wait for a collection or data set to be gathered before
processing the available data. Conversely an offline system waits for the entire dataset to
be gathered, and then subsequently processes the data. An offline system can be real-time,
provided that it yields the results of the processing in a timely manner after the data has
begun being processed / analysed. Equally an on-line system does not have to be real-time,
whilst the data processing is continuous and begins as soon as a data sample is received, the
result may not have to be returned with some time constraint. An example of a system that is
on-line yet not real time is the SETI program, whereby the data samples are processed as
they are received from the Archiebo telescope, yet the results of the analysis of the particular
data set are not outputted for several hours [99].

Given the analysis of brute force approaches, over the coming chapters, the research
focusses on the development of true real-time computer vision algorithms that are capable of
running on low power computing processors, yet can be scaled on high power computing
devices should there be a requirement to do so. For the requirements established earlier in
the chapter, the system developed must both be real-time and online.
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1.5 Autonomy or Intelligence

Humans could be considered either a very lazy species, or one that likes to optimise tasks
such that other tasks can be accomplished simultaneously. There are clear examples of
both in the technological world that we live in [44]. To that end, many of the electronic
systems that we see in daily life can be considered, to a degree, autonomous. That is, the
machines are given a task to do, and they will conduct the processing required until the task
is complete and provide and output, without any intermediate intervention. If you consider
the use of a washing machine, the user puts in clothes and the washing powder, selects a
cycle, and presses go. This could be considered an initialisation of the autonomous system.
During the wash cycle, provided no error occurs, the machine will autonomously (i.e by
itself) wash the clothes and discard the dirty water. However, the automation is limited
such that it cannot compensate for unknown or unforeseen scenarios [138] [11]. To address
these scenarios, input from the user is required. Intelligent systems address this by having
a flexible interpretation of the input and have ability to handle unexpected or unknown
scenarios, autonomously without necessarily having human intervention [42]. Some of
these can be supervised systems, such that there is an intelligent agent yet operators feed in
additional information or parameters to support the decision making process [124]. Other,
fully unsupervised techniques, do not require the input of parameters or intervention by users
to learn about new and unknown scenarios [115]. The intelligence is often referred to as
machine learning, whereby the system is interpreting its environment and creating new rules
or constraints for autonomous operation based on different and changing inputs.

Referring back to computer vision and the work presented in this book, autonomy is
needed to satisfy the UAV conditions and constraints. A level of intelligence is also required
such that interpretation of new or unknown images is possible by the system. Given the
diversity of the world environment, the expected level of intelligence is a semi-supervised
approach similar to that of Zhu [159] such that object separation is conducted yet classification
of the objects is conducted with the assistance of operator input.



Chapter 2

Computer Vision and Existing Research

Computer Vision has grown exponentially over the last 30 years such that it is a large research
field, with many approaches that are derived to solve a wide range of vision problems. Latterly,
the human objective to employ autonomous agents such as driver-less cars and unmanned
surveillance vehicles has fuelled more research and funding into the field of computer vision.
This chapter looks through the wealth of computer vision techniques available and what
benefits and drawbacks some of the techniques have.

2.1 The Field of Computer Vision

The field itself can broadly be broken down into a number of sub categories, each of which
have their own objectives in terms of data analysis and output. That is:

• Image Enhancement - image denoising, brighness and Gamma corrections, histogram
analysis

• Transformations - Homography, Affine transforms, Warping, Data space manipulation

• Filtering, Fourier transforms and Image Compression - Image analysis, optimisation
and size reduction (compression)

• Colour Vision - Colour mapping, colour management, colour profile analysis

• Feature extraction - Edge Detection, Corner Detection, Key-point Detection

• Pose Estimation - visual geometry, orientation and angle estimation, projections and
modelling

• Registration - cross correlation, image segmentation, optical flow, particle filters
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• Visual Recognition - feature transforms (SURF, SIFT), object recognition, posture and
gesture recognition, facial and finger print recognition

The sub-categories fit three main criteria of image and video processing:

• Image manipulation. In this criteria, the processing is focussed on filtering, denoising
and optimising the image itself without any notion of "what" is in the image. The
processing may augment or highlight certain objects, and de-emphasis others, but this
is mainly a process where the augmentation and de-emphasis are tuned based on the
objects the user wants to see more or less of. The categories that fit into this criteria
are Image Enhancement, Filtering, and Colour Vision although there may be some
crossover from Registration and Transformations

• Detection. This criteria primarily focussed on detecting features, key-points and
candidate objects in the image. The detection phase is an essential part of image
understanding such that computer systems can understand and interpret a scene. In
some cases detection can be pixel feature extraction [50] [75] and detection of contours
and edges [33] [23]. It can also be in the form of detecting important points in the
image such as keypoint detection [78] [14] [2] and optical flow detection [81] [55]
[157] [149] or detecting the pixels potential associated together (candidate objects)
such as background subtraction [137] [37] [4]. The categories that fit this criteria are
Feature Extraction, Registration, and Visual Recognition

• Image Understanding. Technically, this criterion could not exist without the existence
of one or both of the previous criteria. It is to do with interpreting and analysing the
image such that situational and environmental understanding of the scene or image can
be achieved. The understanding can be achieved following some image manipulation;
for example if the result of the manipulation yields two distinct image colours, a
level of understanding (provided appropriate rules are present) of the image can be
achieved. Similarly if there are a series of candidate objects present from the detection
phase, an understanding of these objects can be achieved through further processing.
Categories in this criteria are pose recognition, visual recognition and transformations.
Whilst the latter two are also applicable to the previous criterion, aspects of them are
directly applicable here (such as facial recognition; the keypoint detection extracts the
appropriate detections, and then this phase applies the matching analysis to a database
or reference image)

The scope of the project as defined in the brief is such that a number of solutions, with
components in computer vision, could be assessed. These are:
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1. Novelty detection in a moving image plane

2. Object identification

3. Behaviour analysis – anomaly detection, trajectory analysis

4. Tracking of one or more detected objects in the image frame

5. Collaborative (swarm) of UAVs working together to achieve a common goal

6. Exploration of parallelisation in software agents

Each aspect contains different types of research, and over the next paragraphs the details
of each area are explored.

2.1.1 Novelty Detection

Novelty detection is the first phase of computer vision image processing. The principle is to
detect a foreground novelty from the clutter of the background. One of the most commonly
used methods is background subtraction using KDE (Kernel Density Estimation). This relies
on generating a statistical model of the background of an image that is representative and
discriminates from new foreground novelties in the image [37]. The complexity required
increases markedly when the background itself is not constant (as it would be with a moving
camera). Here, two distinct problems exist and define the direction of the research:

1) The offline computational requirement of KDE is not suitable for UAV applications; the
requirement is to have an online, real-time processing of the image data.
2) With the background no longer a constant, subtraction of the background using the
traditional KDE will result in high noise, potentially leading to false detections.
The computational requirement can be reduced through using recursive algorithms to estimate
the density of a pixel based on the similarity to the pixels at the same position in previous
image frames. A recursive algorithm can discard the frame once it has been processed,
and the density information for each pixel can be accumulated over time. The memory
requirements are, therefore, much smaller, and consequently the volume of data to process
is significantly reduced. Research into the background modelling of a moving image may
take some input from algorithms such as SIFT [78] and SURF [14] and likewise (BRISK
[74] and FREAK [2] also have some interesting aspects, and are more accessible from an
IPR point of view). These algorithms are able to discriminate between background and
an initialised object to enable the tracking of the object through a moving image frame.
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These approaches, however, assume the objects are to be initialised manually. Research into
merging or combining both recursive background subtraction and SIFT / SURF approaches is
a possible progression which could yield a highly discriminatory novelty detection capability
in a dynamic video stream which is both robust and computationally efficient [78] [14]. One
particular development area of interest is to detect novelties in terms of a new patch / object
even if it is not moving. For example, comparing with a previous days images and identifying
that this new patch / object was not there previously (examples of such could be mobile SAM
sites, military camp, hostages etc.).

2.1.2 Object Identification

Whilst detection of novelties in an image frame is an important first stage in image analysis,
there is nothing at this stage to identify whether this is an object of interest or not – one
could say that the information itself has not yet been extracted, just “potential” information
areas. To identify foreground objects, some sort of clustering and/or classifier or labeller is
needed to clearly distinguish objects. A common approach to identifying key areas is image
segmentation using clustering and/or classification of the feature space. Image segmentation
is a method to partition the feature space by labelling pixels that share similar visual features
or properties, and connecting the pixels with the same labels in some meaningful way [102].
There are approaches such as region growing, watershed, clustering and fuzzy set techniques,
which are either for a specific domain or image field, and require significant offline processing
to work. In the work of Othman et al [107] it is proposed that an Evolving Fuzzy Inference
System is used to classify objects within a static MRI. This approach is based on the eClass
semi-supervised classifier [4]. An alternative is to consider supervised learning, with an
expert user inputting feedback to indicate “correct” results during the training phase [40].
The classifier can evolve to incorporate the fed-back information, which in turn improves the
classifier performance. Work has also been done using evolving clustering and classification
to remove the supervised element of the object identification, and also to be “online” –
analysis in real time [4] but this was not applied to video analytics. The difficulty with these
approaches are that:

1) They consider ideal, static camera environments with little or no noise. One of the
investigative areas will be to look at techniques that are robust at identifying and discrimi-
nating individual objects when the background and platform is dynamic (the motion causes
increased noise, novelty occlusion, interference from the proximity of other potential novelty
detections, false detections).
2) The majority of solutions either require supervision or are offline learning classifiers.
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3) In the case of the evolving clustering / classification, whilst objects are identified, because
of the online nature there is no determination as to what importance the identified objects
have. There is also no indication of whether the behaviour of the identified object is “correct”
(see behaviour analysis later). Whilst the evolving, unsupervised model is desirable in an
unknown environment from the point of view of identifying previously unseen objects, an
element of domain “correctness” is required for the UAV application. As a result, we plan to
investigate a semi-supervised / unsupervised model which would suit the application area
better. This means that identification of the objects in the video stream is proposed to be
conducted in an unsupervised manner, but with the proviso that the operator / analyst can
review the identified objects and update the classifier with “correctness” measures in an
ad hoc manner (i.e. not required to update the model for every data sample, but review it
when it is convenient, reducing the demand on the operator compared with a fully supervised
classifier, whilst increasing domain “correctness” of the model).

2.1.3 Behaviour Analysis

It follows that (as alluded to earlier) analysis and classification of the behaviour of novelties
or identified objects in the video stream is also desirable (behaviours can be, but are not
limited to, kinematic – motion in the video stream, or perhaps visual – dynamic brightness /
hue / saturation / illumination changes). This is beneficial so that when two objects of very
similar initial visual properties appear in the video stream, they can be classified separately
according to their behaviour. Classifying the objects according to appearance in a video
stream is the first part; classifying similar objects by discriminating behaviour over a series
of images is an extension of this. The plan is to extend the detection and identification
techniques developed early on to explore the potential of identifying and classifying of
behaviours. By studying behaviours it will be possible to identify normal and abnormal
behaviours of an object in a video stream (behaviour “correctness”). Equally, it is desirable
to identify objects with certain behavioural patterns so that future predictions on the objects
trajectory or visual variance can be inferred – further aiding the capability to detect, identify
and discriminate specific objects in the video frame.

2.1.4 Tracking

The investigations into the discussed areas leads the work into another area of interest and
has already been considered for stationary cameras [6] – tracking. Currently, the solutions
that exist do not efficiently track more than one object in a moving image, or only track
more than one object in a video stream that is stationary. Many of the current approaches
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that are used are cumbersome or processor intensive tasks that are not well suited to the
UAV application which is in a dynamically changing environment and is computationally
limited. There is scope to advance and develop this area of research, working with methods
such as SIFT (Scale invariant feature transform) [78] and SURF (Speeded up robust features)
[14] which currently require manual initialisation of the objects of interest (BRISK [74] and
FREAK [2] are also applicable). It holds that if the object can be autonomously identified
through successive image frames, and the feature morphing or change of the object detected
over these images, logically it will be possible to accurately track this object across the video
stream.

2.1.5 Collaboration and Parallelisation

Further work is proposed in the area of both collaborative (swarm) operation of UAVs
working together to achieve a common goal; augmentation of individual capabilities through
information sharing, and the exploration of parallelisation in software agents; not just for the
UAV application. Collaboration is a capability that has been attempted before using mobile
robots for localization [43] (2006 patent). Sharing information and experience between
UAV or sensor platforms could lead to augmented detection, identification and tracking
capabilities beyond what is possible with a single sensor platform. In addition, specific to
the UAV application, it could, potentially, allow the operator to be able to direct and control
more than one UAV at the same time; each having a task within a global goal / objective.
An extension of this would be to automatically identify tasks by the UAVs for a particular
goal or objective with no operator input. In addition, approaches that utilise the concepts
of image stitching [87] [72] could be developed to work across the collaborative platform
suggested here. In the field of camera surveillance, such as road traffic cameras or CCTV
monitoring cameras, the collaborative nature could lead to cross-camera coordination to track
a vehicle or subject of interest across multiple cameras without the need for the operator to
intervene. This would be an invaluable capability, considering that currently when a subject
of interest moves out of the field of view the operator must manually identify which direction
the subject of interest is moving in order to continue surveillance.

2.2 Relevant Research

Computer vision is a wide-ranging field covering a multitude of image analysis scenarios. It
is necessary to explore the different research already in existence that can contribute to the
goals set out in this project. The initial scoping suggested exploring areas such as tracking
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and parallelisation, along with behaviour analysis. Some of this has been explored in terms
of current research, however given the scope of the project the main focus of the research
is into detection and identification of objects. In some cases, there are several components
that make up the solution (e.g. Motion Estimation), and the relevant research covered here
looks at both the solution level and the individual algorithms. The material also considers the
importance and relevance of real-time and autonomous algorithms.

2.2.1 Novelty Detection

In order to achieve a goal in computer vision and analysis, one must understand what is
being analysed and why. If you take a moment to look around the room, your eye, brain,
and associated neural connections quickly identify various objects around the room within
a fraction of a second. The identification process uses multiple features, understanding
object behaviour, and trajectory; and at a higher level, its threat level. Humans then interpret
the output image on the display and identify objects in the field of view of the camera by
linking appropriate pixels that form objects. A computer is somewhat different; there is
no immediately apparent link between each RGB pixel on the screen and thus recognition
of the objects in the field of view is not possible. Novelty detection is a method of low
level detection such that a link between pixels can be detected autonomously by a computer.
The process of linking pixels also allows for higher level analysis by non-computer vision
algorithms. Novelty detection can broadly be divided into two domains, static images or
moving images. In the static images, the analysis is conducted across the image space and
spatial domain. The location of pixels are fixed and reference points in the scene remain
constant. In moving images the analysis is conducted over spatial, temporal or both domains.
The main activity is to identify differences between two images temporally separate. A
further complication can arise in this scenario of the camera also being in motion. This
provides additional challenges due to there being no fixed spatial reference points. The
following are leading techniques in static image analysis:

• Edge Detection

• Corner Detection

• Keypoint Detection

• Image Segmentation

The leading techniques in moving image analysis:

• Background Subtraction
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• Optical Flow

When the camera is also moving, the following are leading techniques:

• Dense Scene Optical Flow

• Image Stitching

• Motion Estimation

2.2.2 Edge Detection

Edges form one of the several features that compose an image, and the edge detection
methodology focuses on analysing a scene or frame estimating the edges of objects. Edges,
in terms of a visual scene, are significant contrast changes in one direction or another, and
can typically form the boundary between objects. Interestingly, edge detection also appears
in signal processing (usually 1-D edge detection), and so much of the maths used to derive
edges in signals can be transferred in some capacity to the 2-D image space (such as Gaussian
convolution, Laplacian transforms and Gabor filters). In general, edges can be classified as
two different types, ramp or roof type edges (see figure 2.1).

Fig. 2.1 One-dimensional edge profiles. [58]

It is unlikely, or certainly rare in real world signals, to get a crisp step or line edge due to
contrast boundaries not being as sharp as these. This is mostly down to the capture technology
which interpolates and adds low frequency components to the boundaries yielding the ramp
or roof style edge. Both step and line type edges can be generated in artificial test images.
Measuring of correctly detected edges can be subjective if just a visual reference of the image
is taken. A better more quantifiable method is edge counting. This is where each edge in a
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scene is counted, and the resultant output of the edge detector is counted. These can yield
true positives (actual edges in the scene that were detected), false positives (detected edges
that do not appear in the scene) and false negatives (edges that are in the scene but were not
detected). In a real world scenario, it is difficult to describe a true edge vs a false edge due to
the complexity of textures and image angles, and therefore it is common practice to describe
the performance of an edge detector against a known artificial image. The gradient magnitude
of an edge in its simplest form is the differential of the intensity against a particular axis, so
in the x-axis this would be the formula:

G( f (x)) =
(dI)
dx

(2.1)

For continuous, non-digital images it is usual to define the x and y directions in terms of
maximum gradient (thus the x-axis is the angle along the maximum gradient). The interest
for this project is in digital imagery however, and thus the x and y axis remain as the digital
axis depicted by pixels. One of the earliest examples of utilising gradients to detect edges in
an image is the Roberts Cross operator, which uses the above principle in 2-Dimensional
space to extract gradients [121]. Roberts proposed the equation:

G( f (i, j)) = | f (i, j)− f (i+1, j+1)|+ | f (i+1, j)− f (i, j+1)| (2.2)

which results in intensity changes in a diagonal direction. The equation can be shown as
two kernels [58] figure 2.2

Fig. 2.2 Roberts Operator. [58]

The computed gradients are provided at the interpolated point
[
i+ 1

2 , j+ 1
2

]
The Roberts

operator is simple and efficient but lacks noise tolerance, and its simplicity with respect to
modern day computers does not offset its lack of noise tolerance. A method by Erwin Sobel,
[135] was introduced which avoids the necessity for an interpolation point by using a 3x3
operator. The Sobel operator is computed with partial derivatives:

sx = (a2 + ca3 +a4)− (a0 + ca7 +a6)sy = (a0 + ca1 +a2)− (a6 + ca5 +a4) (2.3)
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and the gradient magnitude calculated by:

G =
√

s2
x + s2

y (2.4)

Similar to the Roberts operator the Sobel operator is used as a convolution mask with
images:

Fig. 2.3 Sobel Operator. [58]

This operator uses a constant with the partial derivatives such that the pixels directly
adjacent to the center mask pixel have more of an emphasis.

In contrast to the Sobel operator, Prewitt [114] developed an operator that also uses a 3x3
kernel, but does not place any emphasis on neighbouring pixels. An excerpt from [58] shows
the comparison of edge gradient extraction over the operators discussed which can be seen in
figure 2.4
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Fig. 2.4 A comparison of Edge Detectors. a) Original image b) Filtered image, c) Simple
gradient using 1 x x2 and 2 x 1 masks, d) Gradient using 2 x 2 masks, e) Robert cross
operator, f) Sobel operator, g) Prewitt operator [58]

Further work in Edge Detection has been done by using the second derivative of the
gradient. The advantage of using the second derivatives is that at the zero crossing point,
this indicates a local maxima in the gradients. The Laplacian is used in the two-dimensional
version to obtain the second derivative of the gradients. The Laplacian of f (x,y) is

∇
2 f =

d2 f
dx2 +

d2 f
dy2 (2.5)

The following partial differential equations can be approximated:

d2 f
dx2 = f [i, j+1]−2 f [i, j]+ f [i, j−1] (2.6)

d2 f
dy2 = f [i+1, j]−2 f [i, j]+ f [i−1, j] (2.7)

This yields a mask that can be used to approximate the Laplacian, or second order
derivative of the gradient 2.5.
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Fig. 2.5 Laplacian Operator, derived as the second order differential [58]

One of the limitations in using the Laplacian second order differential is that it is highly
sensitive to noise, and any noise artifacts apparent in the first order derivatives are going to
provide a zero crossing detection in the second derivative. In the paper by [86], they propose
a solution to the noise problem of zero-crossing second derivatives by adding a Gaussian
filtering stage and smoothing, and following this with a Laplacian to obtain the zero-crossing
points. The filtering removes the noise, but also widens potential edges and as such the
zero-crossing local maximas are important to extract. The zero-crossing Laplacian output is
then convolved with the image to yield the edges, which should be relatively noise free. The
Gaussian filter and subsequent Laplacian zero-crossing is shown here:

LoG(x,y) =− 1
πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 (2.8)

The limitation of using the Gaussian filter is primarily down to the smoothing constant which
is applied to σ . Widening the filter reduces the noise further but also smooths the edge
gradients which can lose resolution.

In the work by Canny [23], the problem of error smoothing and edge definition loss
is addressed through the use of non-maxima suppression. The image is convolved with a
Gaussian, as with Marr and Hildreth [86], and results in a smoothed image. The gradient
of the smoothed image is then approximated using first difference approximations, usually
using the Sobel or Prewitt operator.

One of the limitations of using these kinds of edge detectors is that little is suggested
about the internal structure of any objects. The early methods such as Roberts operator [121]
analysed edges but were susceptible to noise. The later edge detectors are less susceptible to
noise, and define clear edges. All the methods throughout the convolution are either losing
information (the sharp edges lose the gradient information) or are susceptible to noise. As
mentioned earlier, the Edge Detection methodology can be likened to signal processing.
Gabor filters used in conjunction with images, proposed by Mehrotra et al [88] provide an
optimal balance between frequency resolution and time / spatial resolution. By convolving
the filters with an image, at multiple angles across the image it extracts feature descriptors of
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edges in each direction. The Gabor filter is a linear filter, and the frequency and orientation
representations successfully model the visual cortex of mammalian brains (thus linked to the
thought of similarities in human perception) [85] [30].

2.2.3 Corner Detection

Edge detection can be used as a component of corner detection. A corner is thus defined
where two edges intersect, or a point where there are two or more different edge directions in
a local region. Corner detection has also been called detection of interest points, however
this can lead to confusing terminology. Corner detection, along with key point detection
is often used in conjunction with image understanding activities such as motion detection,
video tracking, image segmentation and object recognition. An early example of corner
detection are Moravec corners [94]. In this work, Moravec describes the existence of
corners as neighbouring overlapping regions with low similarity. The similarity is calculated
through the sum of square distances measure. The logic of this derivation is that pixels
with overlapping regions of similar intensity will most probably be part of texture or some
uniform area, pixels with overlapping regions that are different, but with parallel regions
being similar are likely to indicate the pixel is on an edge, where as where overlapping
regions intensities are most different indicate the presence of one or more edges, suggesting
a corner in the local region. The issue, identified by Moravec in the work, is that it is not
isotropic; an edge is must be present in the direction of the neighbours (horizontal, vertical,
or diagonal), otherwise incorrect interest points will be selected [95]. Harris and Stephens
[51] improve on the Moravec corner detection, by removing the dependence on isotropic
patches. Instead, they propose taking the differential of the corner score with respect to the
direction of the intensity gradient. The Harris operator or matrix used to calculate the corner
gradient similarity is formed from a weighted sum distances equation:

G(x,y) = σuσvw(u,v)(I(u+ x,v+ y)− I(u,v))2 (2.9)

where I is the two-dimensional image, (u,v) is an image patch area, and (x,y) is the
patch shifting distance. The equation, through using the Taylor expansion method can be
approximated to:

G(x,y)≈ ∑
u

∑
v

w(u,v)(Ix(u,v)x+ Iy(u,v)y)2 (2.10)

G(x,y)≈ (xy)M

(
x
y

)
(2.11)
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Where M is the structure tensor [19] where the angle brackets denot averaging over (u,v):

M = ∑
u

∑
v

w(u,v)

[
I2
x IxIy

IxIy I2
y

]
=

[ 〈
I2
x
〉 〈

IxIy
〉〈

IxIy
〉 〈

I2
y
〉 ] (2.12)

As with the Moravec corners, a large variation in all directions (x,y) characterises a corner.
Given that M is the structure tensor [67], the eigenvalues of the matrix M can represent
interest points based on their value. If λ1 ≈ 0 and λ2 ≈ 0 there is no point of interest at the
location; if λ1 ≈ 0 and λ2 is large this generally indicates the presence of an edge (gradient
in the perpendicular direction, small or no gradient in parallel direction); and if λ1 and λ2

are large this indicates the presence of a corner (as with Moravec, large differences in each
direction). Calculating the Eigenvalues can be computationally expensive (as identified by
[51]). To improve on computational efficiency they propose calculating the determinant and
trace of M, with an empirically derived tuning parameter (n) applied to the trace:

Mc = λ1λ2 −n(λ1 +λ2)
2 (2.13)

Jianbo and Tomasi [60] observe intensity variations are bounded by the maximum
allowable pixel value in the window such that λ cannot be arbitrarily large, thus they propose
only accepting corner indications where the condition min(λ1,λ2)> ρ holds, where ρ is a
predetermined constant.

2.2.4 Key point detection

The concept of key point detection is widely used in computer vision for a variety of
applications, and is a mathematical extension of the concept of edge detection and corner
detection; unique feature points in an image space. A common use of keypoint detection
is fingerprint recognition [90] [131], although some early methods use Harris [51] corners
or Smith’s method [134]. As with corner detection, the objective is to identify points in
the image that are robust and consistent descriptors of invariant points in an image. Scale
Invariant Feature Transform (SIFT) [78] is a scale and rotation invariant key point detector.
The method is applied over several stages, the first of which is the detection of scale-space
extrema through the use of a difference of Gaussian function. The objective here is to identify
the areas of an image that are invariant to scale, that can be repeatably assigned from different
views of the same object. The continuous scale space function was introduced by Witkin
[155]. The scale space of an image is found by the convolution of a variable scale Gaussian
function with an input image. To detect stable key point locations, a difference of Gaussian
function is computed between two nearby scales separated by a constant. Several octaves of
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this scale space are used, and between scale octaves, the Gaussian image is down sampled
by two and the DoG process is repeated. Sampling in the spatial and scale space domain
are applied after local extrema detection in order to identify the most robust scale space key
points. The accuracy of SIFT is improved by increasing the number of scale samples the
key points are detected over, at the sacrifice of processing efficiency. The work conducted in
[74] is an advancement on the existing SIFT methodology described above. The objective
is still the same, to detect key points and assign descriptors (features) that are invariant of
scale or rotation. The authors identify that one of the limitations with the SIFT approach
is the extensive dimensional vectors produced for interest points. The processing of high
dimensionality is proposed as the weakness. Other methods as [62] apply PCA to the high
dimensionality that yield faster computations, although they suffer from being less distinctive
features than the original SIFT approach. The detector in SURF uses a Hessian matrix, and
the determinant of the Hessian to derive location and scale for the detector. This optimises the
computational complexity and thus the processing speed. For efficiency, the Gaussian filters
are approximated as this has been found not to degrade performance; they are approximated
with box filters. Similarly with the descriptors, the complexity is reduced significantly/
The Haar wavelet responses are reduced to the vertical and horizontal sample points. The
responses are weighted with a Gaussian centred at the interest point to increase robustness to
geometric deformity. It was shown in Bay et al [14] that the so called fast Hessian detectors
reduced processing compared to Difference of Gaussian by a factor of 4, and a factor of 6 for
Hessian-Laplace detectors. The Hessian threshold can be adapted to increase robustness, at
the cost of computational performance.

2.2.5 Image Segmentation

Image segmentation [143] is used to divide and classify detections within the visual scenes
without applying the assumption of motion; in fact, there is no motion preservation in
image segmentation techniques. Image segmentation is applied to a single image and can
be achieved sequentially over a sequence of frames to achieve detection in a video stream.
There are a number of different methods employed to achieve image segmentation, each to
achieve a particular goal. One of the simplest versions of image segmentation is thresholding.
This effectively turns the image into a binary image based on some feature clip level (colour,
brightness, hue for example). Extended methods of this thresholding appear in Otsu’s method
and some simple clustering techniques (k-means for example). Otsu’s method relies on
establishing the intra-variance of each class, and selecting a threshold such that this is
minimised. The method requires a search of the entire image space for the threshold that
minimises this variance. The algorithm can be computed effectively by using a recursive



2.2 Relevant Research 26

update of the probabilities and means, however the search of the algorithm still provides a
cumbersome method that yields only a binary separation. Similarly, clustering can be used to
segment an image based on the image features such as colour, intensity, pixel location and any
derived features such as density or saturation. With the k-means algorithm a preconception of
how many clusters into which to divide the image is required, as this is the starting parameter.
Other, more complex techniques, do not require initialisation to define the clusters and can
autonomously divide the data space into any number of clusters. An important drawback of
clustering an image space directly is that short of simple or artificial imagery, the clustering is
not guaranteed to yield complete objects given luminance and positional variances (such as an
inclined light shining onto one corner). Other image segmentation methods use classification
to derive detections. The classifiers are trained on a variety of versions of the objects, and then
tested on previously unseen footage. This methodology is offline processing however it has
been found to be an effective way to detect specific objects [109] [33]. Adaptive Texture and
Boundary Encoding, [117], models a region boundary using a Gaussian distribution which is
encoded by an adaptive chain code. The limitation is the assumption of a normally distributed
boundary for a texture, and whilst the method works well in simple imagery, a complex image
with several varying textures can lead to missed texture boundaries and over fitting. Malik et
al divides the image [84] into regions of brightness and textures. This is achieved by using
the brightness and texture cues as a measure of similarity for neighbouring pixels which are
subsequently linked if they show similarity. To describe textures they use a component coined
"textons" which is a measure of the texture property through observing filter responses. The
technique can produce good segmentation of greyscale images which is one of the limitations.
Also by relying on filter responses for the definition of a texture, in cases where the texture
is similar to a neighbouring object (but is a different object), the method can miss these
and group them together as a single texture. Efficient Graph-Based Image Segmentation is
a method introduced in the work of Felzenwalb and Huttenlocher [39], they measure the
evidence for a boundary between two regions using graph-based representations of the image.
The result is a method that can discriminate its textures dependent on the variability of said
textures. Contour Detection and Hierarchical Image Segmentation, [10], is a commonly seen
image segmentation approach which uses a contour detector that combines multiple local
cues into a globalization framework using spectral clustering. The segmentation algorithm
consists of generic machinery for transforming the output of any contour detector into a
hierarchical region tree. This leads to the reduction in the problem of image segmentation to
that of contour detection. A number of research papers look into improving each of these
methods, by the accuracy of the detections or decreasing computational load to achieve the
same results on hardware with a lower computational capability [68], [24], [71], [26], [150].
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2.2.6 Background Subtraction

The techniques discussed in this section are all mono-modal (pixel-wise) background subtrac-
tion techniques [37] [137] [125] [156]. Pixel-wise techniques treat each pixel independently
from all the others. This maybe a rash assumption (because there may be underlying pixel
interdependency that pixel-wise techniques will not detect) but it does lend itself to some very
fast techniques that can be optimized using multithreaded processing. All the approaches
considered here perform well (produce tangible results) in static observation environments
only. Dynamic observations are much more complex; background subtraction techniques do
not fare well and tend to produce false detections. Extra techniques are used to compensate
for dynamic observation platforms which are commonly grouped as motion estimation tech-
niques. Other non-pixel-wise techniques can use texture / edge based detections which exploit
local spatial information for extracting the structural information. Noriega, [105], divides the
scene into overlapping square patches for detections (the overlapping is a non-mono-modal
approach) whereas Heikkila, [52], describes a model of local texture characteristics and uses
fixed circular regions of pixels for comparison. Another style of approach is sampling based
which evaluates a wide local area around the pixels to perform complex analysis. A spatial
sampling mechanism is employed by Cristiani, [29], using pixel-region mixing. Barnich,
[12], uses spatial neighbourhood sampling to refine per-pixel estimates and is loosely based
on a Parzen windows process. These approaches tend to be processor intensive and do not
lend themselves to efficient multithreaded implementations due to the need to compare pixels
across the frame. A popular pixelwise technique (Kernel Density Estimation), which is not a
real time technique, is introduced for comparison purposes with the approaches discussed.

Kernel Density Estimation (KDE)

More recently, a probability density estimation technique has been proposed in Kernel
Density Estimation (KDE) [37]. This technique is not real-time however it is an important
consideration as it is a common offline method for background subtraction. It is also
non-parametric once it has been initialized, which is especially important for autonomous
algorithms; this technique does require external input from a user or device at initialization,
limiting the initial autonomous capability and opening the model to subjectivity. The KDE
technique estimates the probability density function of each pixel based on a number of
consecutive frames (the number of frames, or ‘window’, is fixed throughout the operation of
the algorithm). The probability density function (PDF) of each pixel is calculated for the
defined window of frames using a Gaussian kernel, shown in eq (2.14).
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P(xt) =
1
N

N

∑
i=1

d

∏
j=1

1√
2πσ2

j

e
− 1

2
(xt, j−xi, j)2

σ2
j (2.14)

Where xt is a d-dimensional colour feature, xi is the mean of this colour feature over N
frames and σ is the bandwidth or standard deviation in the jth dimension. Each pixel in the
current frame is compared with the PDF; if the pixel is sufficiently different from the mean
of the probability density function, it is considered to be foreground; otherwise the pixel is
considered to be background. The threshold (sigma multiple) used to determine if a pixel is
sufficiently different and therefore foreground is required to be pre-selected as part of the
initialization. An important consideration for KDE is the selection of the kernel bandwidth
(scale). If the bandwidth is too narrow false foreground detections become a problem because
of the ragged density estimate for the pixel, too wide and the density estimate will be overly
smooth leading to missed detections. In Elgammal et al [37] the bandwidth is autonomously
defined for each pixel, and is adaptive throughout the operation. By measuring the deviations
between two consecutive intensity values, in most cases, it can be assumed that the two pixels
come from the same local-in-time distribution (as only very few pixel intensity pairs are
expected to come from different distributions). If the local-in-time distribution is assumed
to be Gaussian, the deviation distribution (x¬xn+1) is also Gaussian N. For a symmetric
distribution the median of the absolute deviations is defined as eq (2.15).

Pr(N(µ,σ2)> m) = 0.25 (2.15)

Thus the bandwidth of the distribution can be estimated in eq (2.16).

σ =
m

0.68
√

2
(2.16)

Where m is the median over the frames in the colour space, and σ is the bandwidth or
standard deviation. The approach can be extended to include “Probabilistic suppression of
False Detections” [37] which considers pixels that are neighbouring the pixel currently being
analysed. This increases the robustness to noise (e.g. leaf fluttering), but also increases the
processing time required for each pixel. As this process requires analysing neighbouring
pixels it limits the effectiveness of multi-threaded implementations. This review is specifi-
cally focusing on pixel-wise approaches and consideration of neighbouring pixels or local
region approaches is beyond the scope of the investigation. The approach makes some
assumptions about the real world. The distribution of colour (or other feature) for each pixel
is modelled with a Gaussian and this assumption increases the susceptibility of the model
to false detections and noise, because real world features are not necessarily distributed as
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a Gaussian distribution. Another assumption made by this method is that the background
is sufficiently static to avoid being considered as foreground, however, rapid illumination
changes or leaves blowing in the breeze can introduce noise or false detections. When
considering real-time applications there are drawbacks to this technique. Most importantly,
the model will not run in real-time because of the window of frames that is required to be
read in order to generate the probability density for each pixel. If the window is moved in an
overlapping manner on the receipt of new frames the approach can get closer to true real time
simulation. The approach also has a high memory cost (because of the number of frames
required to be remembered).

Gaussian Mixture Models (GMM)

Despite being proposed chronologically before KDE, adaptive background mixture models
allow real time analysis of a video stream by using multiple Gaussian kernels [137] to
represent the colour distribution of each pixel. Each pixel is assigned to one of the Gaussian
probability density functions (the number of PDFs is defined at initialization) depending on
how closely the pixel properties match the PDF. The number of functions used to describe a
pixel determines how robust the technique is with busy or multi-modal scenes. Typically 3 to
5 Gaussian functions are used describe background and foreground pixels but generally this is
problem specific (more would be defined for a motorway than a green field for example). As
the number of functions used to represent each pixel is increased, the required processing also
increases which can affect the real-time capability of the approach. This technique is useful
when there is a multimodal background, with the multiple Gaussians able to represent several
different modes of pixels. In a very busy scene the detection performance of the approach
decreases due to the number of Gaussians used being insufficient to represent each mode of
the pixels. This can be improved by increasing the number of Gaussian representations at the
expense of processing and memory requirements. Using a recursive method, the Gaussian
functions are updated in real-time removing the need to remember every point of the history
and a window of frames; the Gaussian function that the pixel matches closest is updated with
the current pixel value, and once updated, the pixel value is discarded eq (2.17)

P(Xt) =
K

∑
i=1

ωi,t ∗η(xt ,ui,t ,Σi,t) (2.17)

Where xt is the current data sample, K is the number of distributions, ωt is an estimate of the
weight (what portion of the data is accounted for by this Gaussian) of the ith Gaussian at time
t, µi,t is the mean value of the ith Gaussian in the mixture at time t, Σi,t is the co-variance
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matrix of the ith Gaussian at time t, and η is the probability density function defined in eq
(2.18).

η(Xt ,µ,Σ) =
1

(2π)
n
2 |Σ| 1

2
e−

1
2 (xt−µt)

T Σ−1(xt−µt) (2.18)

With the aim of saving computational memory and speed the covariance matrix is assumed
to be of the form eq (2.19)

Σi,t = σ
2
k I (2.19)

Which assumes independence between the feature variables and that they have the same
variances. These assumptions are not necessarily valid in the real world, but the approach
avoids processing intensive matrix inversions at the expense of accuracy eq (2.20).

ωi,t = (1−α)ωi,t−1 +α(Mi,t) (2.20)

Where α is the learning constant and M is defined as 1 for the Gaussian that was matched
and 0 for the remaining functions. The Gaussian Mixture Model (GMM) [137] is a para-
metric technique requiring both the learning constant and sigma threshold to be pre-defined
at initialization. The sigma threshold for assigning a match to a Gaussian distribution is
(according to [137]) normally set to 2.5. Parameters for unmatched distributions are not
changed. The matching distribution is updated with the new observations in eq (2.18). When
a match is not found for any of the distributions, the least likely distribution is discarded and
a new distribution is introduced with the current pixel value as its mean. The technique was
improved by [61] to enable shadow detection and the approach later optimized by [160] to
increase robustness.

Recursive Density Estimation (RDE)

As a departure from the probabilistic methods, RDE introduces a new approach to background
subtraction [125] [7] [5] [116]. There is no prior assumption about the underlying distribution
of a pixel’s feature value. The approach calculates how near (dense) a pixel value is to all
the previous pixels that have been before it. The pixel history is stored as the mean and
standard deviation of the pixels from all previous frames. The mean and standard deviation
are updated recursively using the formula in eq (2.21). A Cauchy type kernel is used to
calculate the density of the current pixel compared with the history [5]:

D =
1

1+ ||xt −µt ||2 +Xt −||µt ||2
(2.21)
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Where xt is the current data sample, µt is the mean of all previous data samples; Xt is the
scalar product of the previous data samples. Both, the mean and the scalar product can be
updated recursively as shown in eq (2.22) and (2.23) [5].

µt =
t −1

t
µt−1 +

1
t

xt ; µ1 = x1 (2.22)

Xt =
t −1

t
Xt−1 +

1
t
||xt ||2;X1 = ||x1||2 (2.23)

Where t is the number of frames read, including the current frame. If there is no change
in the scene, the pixel density does not change, and therefore the pixel is considered as a
background. When there is a change in the scene, the proximity of the value of the pixel in
the current frame compared to all previous frames (mean and standard deviation) changes. If
this change is significant enough (large enough difference in value) the pixel is considered as
a foreground. The threshold for the difference is defined using the standard deviation (sigma)
of all previous frames. Usually a threshold of 2 or 3 sigma is used; by increasing the sigma
there is a reduction to the sensitivity to change in the scene thus reducing the number of false
detections. Too high a sigma value and the system will start to miss detections. It is a realtime,
recursive technique which is highly computationally efficient. As an aside observation, the
accuracy of RDE (given the variable nature of real world environments) could be improved
through using a semi-supervised approach where the sigma value is updated on an ad hoc
basis.

2.2.7 Moving camera domain

The moving camera domain is a more recent area of research. The principle is to achieve the
same detection capability at a similar level of robustness and performance when the camera
is moving, to the static camera equivalent. This is harder to achieve because there are no
static reference points in the sequence of frames to conduct background subtraction. Two of
the fields for analysing moving camera scenarios are Optical Flow and Ego Motion. Optical
flow analyses the flow of pixels through the scene; that is it models the brightness pattern
changes between frames. Ego-motion on the other hand simplifies the scene over several
frames by overlapping the similar areas between frames. This overlap creates an effective
static frame to conduct novelty detection as if the domain was static.
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2.2.8 Optical flow

Optical flow in a video stream is a particular type of analysis that assigns a vector of motion to
a local region in the video stream [56] [81]. Optical flow works by tracing pixel illumination
changes through a scene, and assigning a vector to the apparent motion between the points
that are tracked over time. The ordered sequence of frames enables the calculation of image
velocities, or object displacement over the sequence of frames. The basis of the works assume
that the brightness of a point in the frame is constant:

dE
dt

= 0 (2.24)

With the chain rule for differentiation [55]:

δE
δx

dx
dt

+
δE
δy

dy
dt

+
δE
δ t

= 0 (2.25)

By letting the differential of x and y with respect to t equal u and v respectively a linear
equation is obtained:

Exu+Eyv+Et = 0 (2.26)

This forms the basis of optical flow with the magnitude of the movement in the direction
of brightness change is:

M =− Et√
E2

x +E2
y

(2.27)

Horn, [55], continues to explain additional measures such as smoothness by minimising
the square of the magnitude of the gradient of the optical flow. Horn also explains a second
smoothness measure can be obtained through the sum of the squares of the Laplacians in
each of the x and y components. This technique is useful because it does not categorise
pixels in the image as foreground or background, it assigns a vector of motion to it, therefore
making no assumptions about which pixels are background or foreground. Thus, objects that
may be of interest but are static within the video stream are not considered uninteresting, just
that they have a different vector of motion to other objects. The vector of motion is applied
to all pixels in the video stream, and in the general case, contiguous pixels with the same
or similar vector of motion, that are in spatial proximity (high density), can be considered
the same object. An extension of this technique uses stereoscopic video streams to provide
3D disparity of pixels, enabling the separation of occluded objects [149]. The primary
disadvantage of this technique is that it can take 3 to 4 seconds to process a video frame.
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Also, it requires a window of several frames to conduct the analysis to provide a coherent
output, utilising more system resources and extending processing time. An advantage to this
technique is that it does not stitch frames together so the noise and false detections created
by the ego-motion approach (described below) are not present in optical flow techniques.
Additionally, in Bigun and Granlund [19], there is a suggestion that the human visual system
may use techniques similar to optical flow to assign motion patterns to objects. Optical flow
is the detection and tracking of brightness pattern changes in the scene. Originally developed
by [55] and [81] it has proven to be a powerful method of understanding object movements
in a scene. One of the drawbacks of optical flow is the high processing demand, and thus
lack of real-time analysis across an entire scene. An improvement to optical flow using a
derivative called "TV-L1 dense optical flow" [157] significantly improves the parallelisation
capability of optical flow and thus where brute force processing power is available, provides
a very good and reliable solution to moving object detection and tracking. In some cases
optical flow has been used in conjunction with stereoscopic cameras, and utilising the 3D
disparity between camera viewpoints increases the accuracy of detections [149].

2.2.9 Motion Estimation - egomotion

Motion estimation does not suffer from the same limitations as optical flow. The motion
estimation concept works by warping the current frame into the perspective of the previous
frame and stitching the frames together; the overlapping areas of both images provide a
static viewpoint. The initial phase is to detect key points in consecutive frames using an
algorithm such as SURF, SIFT, or BRISK. The matching phase comes next, where each
key point is matched in the sequence of frames. These matched key points are used to
generate a homography matrix which is applied to the current frame, transforming the
pixel locations into the coordinate system of the previous frame. This overlapped area can
be analysed in a similar manner to the static frame with the objective of simplifying the
problem into the original static camera domain. Conducting background subtraction on a
series of frames without this correction leads to several novelty detections being part of
the background due to the edges of the background objects “appearing” to move relative
to the sensor platform (figure 1). The main aspects of this technique can be found in the
work of Fischler and Bolles [41]. This technique has some advantages; primarily, that it is
faster compared to other techniques; it is real-time in some test scenarios. It also allows
background subtraction methods to be used to provide comparable results with that of static
video streams. At the current level of maturity there are several fundamental flaws that
interfere with the performance, robustness and reliability of this approach. There is a margin
of error when warping one frame into the perspective of another. If the homography matrix
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is not exact, there will be a variation in the pixel geometry values when it is applied to a
frame. This variation will cause pixels in both frames not to line up precisely. This can lead
to completely artificial novelty detections being introduced at the boundary of the misaligned
pixels. Further, the approach relies on the detection of key points and matching of these key
points between two neighbouring frames. Should the key point matches drop below four
(minimum required to calculate homography) the system will not be able to warp the two
frames and, thus, a frame will have to be discarded. Thirdly, key point detection is carried
out over the entire image; should there be key points matched on a moving object within
the two frames the image will be warped not just on the background changes but also on
the motion of the moving object; adding to the homography distortion and thus the pixel
alignment variance of what the true perspective warp should be. Whilst the approach can be
run in real-time in certain scenarios, the lengthy processing chain of this approach (feature
extraction, key point matching, homography, image warping / stitching and background
subtraction) does not lend itself to scaling very well. The key point detection and matching
take most of the processing time. A significant increase in image size or density of key points
leads to a dramatic reduction in processing speed. This can be a significant disadvantage
when trying to conduct additional real-time behavioural analysis on detected objects because
the majority of the processing resource is taken up creating the static scene to enable novelty
detection.

2.3 Research Questions

The background research into computer vision exposes several gaps in the capability of
existing algorithms. These gaps can be highlighted through the postulation of research
questions:

• The processing time for detecting novelties and objects increases markedly as the
resolution of an image increases. How can the detection of objects remain real-time as
the resolution of the images increases without the use of brute force computing?

• Can the accuracy of novelty detection be improved without an increase in processing
time?

• Each existing technique makes assumptions about what is a detected object and what is
considered noise (usually due to detection errors). Can an algorithm be developed such
that the assumptions on detection vs noise are removed until a higher level semantic
reasoning stage?
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• Image segmentation techniques divide a static frame into objects with no appreciation
of motion. Background subtraction extract moving objects from a sequence of frames.
How can the detection capabilities of image segmentation be combined with the speed
and motion retention of background subtraction techniques to achieve a real-time static
and moving object detection algorithm?

2.4 Hypotheses

Based on the research questions and the background research it is possible to formulate
hypotheses on the outcomes.

1. By combining the benefits of image segmentation with background subtraction, a
solution that is capable of detecting static and moving objects in real-time should be
possible.

2. Removing assumptions on detections will mean that the algorithms will detect all
object transitions in an image. It is therefore reasonable to predict that the algorithm
will be able to operate irrespective of the camera motion.

3. Once the objects are detected in an image, with the number of features available, it
should be possible to type each object based on their features (cluster each object).
The type association may not correlate with human differentiation of objects due to the
underlying features that are being clustered.

4. The algorithms should allow for a feedback mechanism such that a higher semantic rea-
soning section can adapt or tune a previous layer based on detection and identification
objectives.

2.5 Research Objectives

This section describes the research life-cycle. There are two main research ethoses that can
be considered going forward:

1. A wide ranging project that includes many features and core functionalities not devel-
oped to full maturity, exhibiting some areas for improvement.

2. A mature project with the elements that are included in the project developed thor-
oughly providing a robust system that works in many scenarios, but not exploiting
many techniques.
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A wide ranging solution is an attractive prospect given the broad range of methods the
approach could yield, however developing several arms to the work concurrently could lead
to poor results and lack of robustness in the final product. Developing features progressively
to a mature state has the advantage of being more robust when a new functionality is added
(should give more reliable results). The mature approach means there will be less features
and functionality in the final solution at the conclusion of the research. A major factor in this
choice is the potential for realising poor results by opting for the “wide ranging” approach
due to the immaturity of each solution. Based on this, the research will follow the mature
solution ethos and will add new functionality as each reaches a performance level that is
sufficient. As sufficient maturity is reached each new functionality is added to an already
solid, working foundation leading to a greater likelihood of good, reliable results in the final
solution.

The objectives of the research are informed by a set of constraints from the context of
Unmanned Aerial Vehicles (UAVs). Currently the gathered data is sent back to the Ground
Station (GS) for analysis, in order to extract important information from the image data
[28]. Data traffic of this magnitude is not only costly in terms of bandwidth, it is power
intensive and, thus, range limiting for the UAV [128] [38]. From the returned data, some of
the analysis is conducted by off-line computation, and some by operators and analysts in
real-time. To aid operators, systems such as ARGUS [72] are used to bring many images
together into a single large viewpoint image to help identify targets and objects of interest in
real-time. As seen in figure 1.2, a large image provides a wide viewpoint of the scene, but it
is extremely difficult to spot the small object of interest; the concentration and observation
skill demands on the operator are significant. The way the UAV GS works currently, even
with a multiple frame analysis technique, there is a large volume of wasted data; only a small
percentage of the data returned by the UAV actually contains useful information or important
observations.

The UAV constraints require the focus to be on efficient operation, and the environment
analysis to be assumption free; the UAV will be operating in unknown environments and
assumptions made about the scenario may lead to missed information. The scope of the work
will progressively explore novelty detection, object identification, behaviour analysis and
tracking, with a focus on the efficiency and assumption free methodology. The objectives, pre-
requisite requirements and key performance indicators provide dependencies and performance
targets that indicate a sufficient level of maturity for a given function, listed in the following
subsections.
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2.5.1 Novelty detection in moving camera environments

Detection of stationary (background) objects

In many of the approaches currently used for novelty detection in both static and dynamic
sensor platforms, any stationary object that does not dynamically move within the image
frame is classed as background by the algorithm. This can lead to missed points of interest,
and highlights a key flaw in the background subtraction techniques. This effect is amplified
in dynamic sensor platforms when an object is moving precisely at the same velocity as the
sensor platform; the object appears to the algorithm as background and is not detected as
foreground. Further, in a scenario such as a police chase from the perspective of an on-board
car sensor, all the cars at the same relative speed will not be in dynamic movement (or at
least very little) relative to the sensor platform; the objects (cars) of interest will often be
missed by current approaches.

Objective
Reliably detect relatively stationary objects of interest whilst maintaining background dis-
crimination
Pre-requisite Requirements (PrR)
Ability to distinguish between a background object and background scenery
Key Performance Indicators (KPI)

1. Discriminate a stationary object from the background scenery in a simple (plain)
environment

2. Detect several stationary objects in a simple environment

3. Detect a stationary object in a scene with a complex background

4. Detect a camouflaged stationary object

5. Perform analysis within a 10ms window per 2 MP frame

Novelty detection in the video stream without image matching or stitching

An approach to detect novelties on a dynamic sensor platform is motion estimation or
ego-motion of the scene and is described in section 2.2.7. Despite the motion estimation
technique being one of the fastest currently available, the analysis is marginally real-time for
images >1 mega pixel, and video frames larger than this are not real-time (2 mega pixel takes
approximately 500ms per frame). This time is mostly taken up by detecting and matching
key points between images to enable the warping and stitching of two consecutive frames.
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Objective
Develop a novelty detection approach that avoids warping and stitching images together with
an aim to increase robustness and speed of the approaches.
PrR
Association of consecutive frames without the need to co-locate pixels from both frames
KPI

1. Autonomously detect a single novelty in a simple dynamic scene without stitching
images

2. Autonomously detect multiple novelties in a simple dynamic scene without stitching
images

3. Apply a detection method to a more complex scene

4. Operate within the performance window of <100ms for a 2 MP frame

Specific region analysis

The aim of this is to conduct local analysis on a specific region within a frame. The purpose
is to reduce the overall processing required when conducting video analysis; if an area of
interest is already known, then conducting analysis solely on this region can reduce the total
pixels required to process. This approach should also reduce unwanted noise in the analysis
that is likely to be introduced when whole frame processing is conducted e.g. leaves rustling
in a separate area of the frame. Each segment can be analysed separately for novelties, points
of interest, or specific features.

Objective
Autonomous analysis of local regions of interest within a frame
PrR
Frame divided into regions of interest (segmentation)
KPI

1. In a frame with a single object of interest divided into local regions of interest; suc-
cessfully detect the object of interest

2. In a frame with a multiple objects of interest divided into local regions of interest;
successfully detect the objects of interest

3. Apply to a complex environment scene

4. Operate within the performance window of <10ms for a 2 MP frame
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2.5.2 Object analysis and advanced tracking

When novelty detection is complete clustering techniques can be used to identify the individ-
ual objects in the screen. Each object will have certain characteristics or behaviour that can
help contribute to the classification of the object.

Object identification accounting for occlusion

A significant difficulty in object identification is when two objects move behind each other
and become occluded.

Objective
Distinguish objects in an occluded environment
PrR
Mature novelty detection algorithm as defined in section 2.5.1
KPI

1. Separate two objects that are occluded in a simple, sparse scene.

2. Apply to multiple objects in a simple, sparse scene.

3. Distinguish multiple occluded objects in a complex, busy scene

4. Maintain analysis performance of <100ms for a 2 MP frame.

Analysis of object velocity

One of the objectives of detecting objects and novelties in a scene is to derive their behaviour.
Analysis of the velocity of the objects is an important feature to be able to determine
behaviour.

Objective
Successfully identify the velocity of objects traversing the scene.
PrR
Mature novelty detection algorithm as defined in section 2.5.1
KPI

1. Determine the image / pixel velocity of an object.

2. Determine the relative velocities of two or more objects.
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3. Determine the absolute real world velocity of an object.

4. Achieve analysis performance of <10ms for a 2 MP frame.

Assessment of object behaviour

The analysis of the behaviour is a variable concept as objects can have eccentric movements
within a scene. The purpose of this is to extract features to enable the classification of objects
based on their behaviour.

Objective
Extract features that define the behaviour of an object within a scene.
PrR
Mature velocity model defined in section 2.5.2
Robust classification method available
KPI

1. Analysis of the behaviour of a single object in a simple scene.

2. Analysis of the behaviour of multiple objects in a simple scene.

3. Classify the objects based on extracted behavioural features with a minimum of 80%
classification accuracy. This value arrived at from what can be expected from the
ground truth of human observation (see table 5.1)

4. Analysis and classification of object behaviour to be within the performance envelope
of <20ms per 2 MP frame.

Auto object classification utilising rich feature set

The previous objectives extract rich features from detected novelties and objects. This feature
set can to enable improved autonomous classification of objects that are visually similar, but
have distinctly different behavioural patterns.

Objective
Autonomously classify objects within a scene in real time utilising the advanced feature sets
PrR
Rich feature sets available in a mature state
KPI
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1. Separate classification of two similar objects that have different behaviours.

2. Classification of multiple objects within a scene based on behaviour with a minimum
of 80% classification accuracy.

3. Achieve classification online, within a performance envelope of <10ms for a 2 MP
frame.

Classification of objects based on dynamic change in shape or size

Some objects exhibit dynamic changes in size or shape (despite being the same object),
either due to activity or change in camera perspective. Detecting this change proves to be
challenging, even for the human visual system [120], the difficulty is recognising the object
as being the same as a previously seen object despite some dimensional change. There is
scope to investigate using the dimensional variance as a separate feature set for behaviour,
and classify based on object shape / size variance.

Objective
Autonomously classify objects within a scene based on features derived from object change.
PrR
Mature novelty detection technique as defined in section 2.5.1
KPI

1. Re-classify a single object in a simple scene as the same object after changing its
physical dimensions.

2. Re-classification of the object in a complex scene

3. Conduct the analysis <10ms for a 2 MP frame.



Chapter 3

Methodology and Initial Approach

3.1 Methodology

In order to address the research questions and hypotheses proposed in 2, the approach will
initially explore existing research and the limitations on the capability. Because the work
is focussed on video streams, the research that focuses on analysing video streams will be
used. Despite reviewing the work in 2, this exploration will underpin why the limitations of
these techniques exist; operation in moving camera scenarios or why only moving objects
are detected. Each technique will be applied to a series of videos, and the results of the
detections analysed. The analysis is both objective and subjective - the objective results are
the number of objects detected. Subjectivity comes in when determining what a detection is;
does it represent an object or is it a representation of noise. Measures of accuracy against
processing speed will be made such that an appreciation of an algorithms real-time capability
can be made. The plan of the research, once this assessment is made, is to draw parallels
with the way human eyes work. This is because human eyes work in real-time and are
excellent at detecting and discriminating between static and moving objects. By drawing
parallels, the adaptation or development of a new novel approach to object detection should
be possible. The new approach that is developed will be compared and contrasted with a
wide ranging set of existing methods which operate in single frame analysis or video stream
analysis. The reason for comparing the both single frame analysis and video stream analysis
methods is the detection capability is generally better in a single image detection method
where as the video stream analysis maintains a temporal (and therefore) motion component.
The research aim, as stated in the hypotheses, is to achieve similar or better performance in
terms of single frame detection whilst maintaining the characteristics of a temporal video
stream in order to establish object motion. The results will be analysed against a somewhat
subjective outcome. Each test image or video sequence will have a ground truth established
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by a human (how many objects can the human detect). The number of detected objects by
the algorithm compared to the ground truth will provide a measure of the performance of
the algorithm in terms of detection. In addition to this, the real-time performance of the
algorithms will be measured by calculating frame rate. For a single image this is the time
taken to process a single frame. The results from this testing will be collated together to
provide an overall assessment of how well the developed approaches work compared with
the existing approaches.

Given the constraints and objectives described in chapter 1, the simplest place to start
working with a method is background subtraction because of its well established methodology
of detecting object pixels in a static camera scenario. In chapter 2, KDE, GMM and RDE
were introduced. The calculation of exponential functions is computationally expensive,
more powerful machines are able to mask this expense, but in low power boards it can be a
problem. Recursive Density Estimation does not use a Gaussian kernel, or any exponential
in its calculations which therefore gives it a computational advantage and may help with
meeting our computational efficiency constraints.

3.2 Experiments with Recursive Density Estimation

The concept, originally introduced by Angelov [5], is a data driven approach based on a
Cauchy kernel to find the relative density of data points within some data space, in a recursive,
and on-line manner. The output of the technique is the density of the current sample relative
to all the samples that have come before. It uses a statistically not empirically derived
threshold which is designed to exclude noise. The result outputs are the most eccentric
pixels in the video stream. The threshold is an assumption that some of the pixel density
data is noisy or invalid - typically anything outside 3-sigma [116]. One of the cornerstones
of this research is to reduce the assumptions made by novelty detection algorithms so that
decisions on discarding information can be made by the semantic reasoning component.
The first experiment explores removing the threshold, with the purpose being to address the
assumptions made by this algorithm.

3.3 RDE Greyscale

Removing the threshold reveals pixels that have a density (detected) but are artificially
hidden when the density threshold is in place. A side effect of this is that any pixels of no
interest or noisy, which have some movement within the scene, will also become visible as
detections. The results of the greyscale output is compared with a number of scenes. The
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use of multiple scenes enables the comparison between the thresholded and non-thresholded
RDE in environments of varying complexity.

The Video Sequences

Simple rotating rectangles
This video sequence is a simple, artificial sequence of two counter rotating rectangles inside
each other. It has been selected because it is a simple sequence of multiple moving objects
moving differently to one another, and the objects only move in one plane of motion (in
this case rotational). The sequence is named "TwoRectangle.avi" on the accompanying data
device.

Fig. 3.1 Simple rotating rectangles

Vehicle accident scene
This video sequence is a real world scene of a car accident. It has been selected because there
are a limited number of moving items in the scene, such that the complexity is maintained at a
low level. Also, the aftermath of the impacts yield minor moving bits that may be considered
as noise with the thresholded method. The sequence is named "TrafficCam.wmv" on the
accompanying data device.
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Fig. 3.2 Vehicle accident scene

Busy Walkway
This video sequence is a busy scene of people moving in multiple directions on a walkway. It
has been selected as it increases the complexity of motion in the scene. There are also some
smaller movements in the scene such as a person opening a car boot and cordon tape blowing
in the wind. The smaller movements may be considered as noise with the thresholded method,
and the complexity of the scene may effect the non-thresholded method. The sequence is
named "768x520.avi" on the accompanying data device.

Fig. 3.3 Busy people scene

Z-axis Perspective Occlusion
This video sequence is a scene of a path in the background with people on it, and a car on a
road passing in front of the path. It has been selected to test both methods in z-axis occlusion
scenarios (objects passing in front of each other). Occlusion scenario testing is important
because it is desirable to maintain novelty detections of objects after the occluding object has
passed. The sequence is named "SOvid.mp4" on the accompanying data device.
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Fig. 3.4 Z-axis perspective occlusion

3.3.1 Results of Experiments with RDE and Greyscale

The results shown here are from applying RDE, and the non-thresholded RDE greyscale to
each of the video sequences from above.

(a) RDE (b) Greyscale

Fig. 3.5 A comparison of RDE and Greyscale applied to rotating rectangles
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(a) RDE (b) Greyscale

Fig. 3.6 A comparison of RDE and Greyscale applied to a traffic accident

(a) RDE (b) Greyscale

Fig. 3.7 A comparison of RDE and Greyscale applied to a busy walkway
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(a) RDE result before occlusion (b) RDE result after occlusion

(c) Greyscale result before occlusion (d) Greyscale result after occlusion

Fig. 3.8 A comparison of RDE and Greyscale results before and after an occlusion event.
The red circle indicates the detection of the person with a white jersey walking down the
path, see figure 3.4

3.3.2 Exploring the Results of RDE and Greyscale

In figure 3.5, the RDE detection of the two rotating rectangles misses some of the edges,
where as the greyscale method defines all of the rectangle edges. The missed edges in the
RDE experiment is because the visible detections are showing the density change (change in
colour) of only that which is above the 3-sigma threshold. Any smaller density changes that
occur will be below 3-sigma, and thus not shown as a detection. As an object of different
colour to a pixel passes through the pixel location, the density of colour of the pixel changes.
After the object has passed, the colour of the pixel returns to its original background colour.
The colour density thus gradually returns to near its original value (the colour change from
the passing object has less and less effect as more samples of the background arrive). If
another object of differing colour passes the pixel, this will cause another colour density
change. However, the density change will be less immediate and may not change sufficiently
to break the 3-sigma threshold again because the density is already different to when it
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started. Despite another object passing the pixel, the detection has been lost in the averaging
effect of the recursive algorithm. This effect is visible on the rectangles of figure 3.5. The
edge parts that are missing, are pixels that are being passed by other pixels of the black
rectangle (or white in the case of the centre one) as it rotates. The density does not change
sufficiently to break the 3-sigma threshold and show as a detection. The contrails surrounding
the greyscale experiment show the effect of the lingering density averages as pixels create an
initial detection and then gradually average back to their original value. The dark to light
grey pattern shows this; the darkest part is the leading edge of the rotational movement (the
black edges of the rectangle are moving into white space), and the light grey indicates where
the rectangle was when it first started moving.

The historical trails are clearer in the next set of images. In figure 3.6. The greyscale
shows the historical path of the lorry that is hitting the car. The RDE image only shows the
pixels of objects that are moving at that moment. The other pixels, are averaging back to
their original density values, and are not breaking the 3-sigma threshold of density change.
By removing the threshold, the decay of densities is visible (figure 3.6b). As a result, the
lorry and car vehicles are clearer for longer and the passing car in the bottom left can be seen
more clearly.

In the busy people scenario 3.7 the RDE result shows all or part of the moving people
and the car boot opening in the top right. The moving people suffer from the same problem
of density decay and thus are not clearly defined in some cases (their whole bodies do not
break the 3-sigma threshold). There are pixels that are also considered noise in the RDE
result. By removing the threshold, the noise turns out to be a part of a moving cordon tape
in the background of the scene. The greyscale in a busy people scene, figure 3.7, can cause
undesirable effects as well. The people are defined clearly, but the trails leave grey patches
around the image, with no obvious pattern or trail to a particular object or person. This is
because many of the trails from the people moving in the scene overlap where more than one
person has crossed a point. Whilst the trails are useful in less congested scenarios (such as
figure 3.6), in this scenario the trails introduce a significant amount of noise.

This noise is also apparent in the occlusion scenario, figure 3.8. Because the camera that
took this video sequence was not perfectly still, the slight vibrations show detections of static
objects such as the window frames because of the relative movement between frames. In the
RDE result, the majority of these extra detections are removed by the the 3-sigma threshold.
The greyscale also has a negative effect on the occlusion scenario (before and after images
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shown). In the RDE case the detection of the person walking down the path, whilst small,
remains consistent before and after the car goes passed. In the greyscale case, the detection
of the person before the occlusion event is slightly stronger than with RDE. However, after
the vehicle goes passed, the greyscale trail left by the vehicle overlaps with the detection of
the person, thus diminishing the definition of the person detection after the occlusion event.

3.3.3 Discussion of the RDE and Greyscale methods

In some cases the application of a threshold has assisted with removal of genuine noise,
and has cleared up some detections; figures 3.8, 3.7. In contrast, there are places where
the threshold does not detect enough of a moving object, or assumes noise where there is
an object moving; figures 3.5, 3.2. In these scenarios greyscale was useful to define better
detections and illustrate the historical path of object motion. The conclusion is that the
removal of the threshold helps with the base detection of objects in a scene by not assuming
that detections are noise, however the trails of historical motion interfere too much in busy or
occlusion scenes. The trails interfere because it is a historical representation of all the density
samples of a pixel since the algorithm started to run. In another background subtraction
technique, KDE (see chapter 2), a window of samples is used and this is adapted based on
the speed of the motion in the scene - too large a window in a fast moving scene can lead
to detection overlaps. As the problem with greyscale is that the trails overlap in busy or
occluded scenarios, a windowed approach to this will give the good effects of greyscale
without the problem of overlapping object trails.

3.4 Windowed Density Estimation

The historical density is caused by the continuous recursive nature of the RDE algorithm, it
retains an ever diminishing weight of previous samples. In some scenarios, the additional
information of the history has been demonstrated to be of some use, and as such the aim is not
to get rid of them completely. This windowed estimation approach applies an modification to
the recursive update of the mean and scalar product equations. For reference, the recursive
update equations from Chapter 2 have been repeated in (3.1) and (3.2) [5].

µt =
t −1

t
µt−1 +

1
t

xt µ1 = x1 (3.1)

Σt =
t −1

t
Σt−1 +

1
t
||xt ||2 Σ1 = ||x1||2 (3.2)
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where t is the number of samples, µ is a vector mean, x is a pixel vector and Σ is the
scalar-product.

To update the mean on a sliding window basis, the mean must be taken for the last n
samples, where n is the window size. The historical mean is represented by µt−1, the sample
from n frames prior is xt−n and the current sample is xt such that:

µt = µt−1 + xt − xt−n µ1 = x1 (3.3)

µt−1 represents the mean of n prior samples, therefore scaling is required such that the
new sample does not weight the mean towards the new sample:

µt = µt−1 +
xt − xt−n

n
µ1 = x1 (3.4)

Similarly applied to the scalar product recursive update equation:

Xt = Xt−1 + ||xt ||2 −||xt−n||2 (3.5)

and scaling with respect to n:

Xt = Xt−1 +
||xt ||2 −||xt−n||2

n
(3.6)

The experiments conducted with the sliding Windowed Density Estimation (WiDE) use
a window size of two and a window size of five. The minimum selection possible is two,
because there must be at least two frames to obtain a comparison. The detections from a
two frame comparison is expected to yield the leading edge of the detections only with the
trail indicating the position of the moving object in the previous frame. A window size of
three or four is not expected to show enough detail of the trail to be compared with a window
size of two. A larger window size than five is expected to be closer to the original greyscale
representation, causing some trail overlap in the more complex scenes. Thus a window size
of five is selected for the second experiment.

3.4.1 Results of Experiments with WIDE

The results shown here are from applying WiDE to each of the video sequences from above,
with a window size of 2.
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(a) Window Size 2 (b) Window Size 5

Fig. 3.9 Windowed density estimation applied to the two counter-rotating rectangles

(a) Window Size 2 (b) Window Size 5

Fig. 3.10 Windowed density estimation applied to the busy walkway.

(a) Window Size 2 (b) Window Size 5

Fig. 3.11 Windowed density estimation applied to the road traffic accident scene.
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(a) Window Size: 2, before occlusion (b) Window Size: 2, after occlusion

(c) Window Size: 5, before occlusion (d) Window Size: 5, after occlusion

(e) Window Size: 10, before occlusion (f) Window Size: 10, after occlusion

Fig. 3.12 Windowed density estimation applied to the occlusion scenario. The images show
before and after the occlusion
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3.4.2 Analysing the WIDE Experiments

The application of the WiDE technique to the rotating rectangle sequence, figure 3.9 shows
that a window size of two suffers from the same missing edges. The central rotating rectangle
is barely visible. With the window size set at five, the outline of the outer rectangle is
complete, and has some historical trails. The internal rectangle still has gaps in the perimeter.
At the fulcrum of the rotation, the pixels of the rectangle do not move, or move very slightly -
sometimes not a whole pixel every frame. With a two frame analysis window, there is no
motion detected near to the fulcrums because of this lack of motion over two frames and
therefore a density change at these points is not detected. With a window size of five, there is
sufficient motion over the five frames such that the pixels forming the outer rectangle move
sufficiently to have a density change. The central rectangle gaps means there is not sufficient
motion of this rectangle over a five frame window to show density changes near the fulcrums
of rotation. The results from the window size of two are similar to the result of thresholded
RDE for the outer rectangle. The thresholded method detected more of the central rectangle
perimeter. The window size of five wide has improved detections from both the thresholded
and window size of two, completing the external boundary of the rectangle with some
history and mostly detecting the internal rectangle. The greyscale method performs better by
completing the perimeter of both rectangles. The greyscale method has an additional trail
apparent around the perimeter which does not impart any additional information because of
the trail overlap (it is noise).

WIDE with a window size of two has a similar result to the RDE experiment in the accident
scenario, figure 3.11. The immediate motion of the vehicles is detected, but any parts of the
vehicles that have stopped moving are no longer detected. If there is no motion of a pixel
within two frames the density of the pixel will remain at zero (unchanged) over two frames.
At the window size of five, the outline of the vehicles becomes clearer and some motion
history of the lorry and the car in the bottom left is shown with the trails. The greyscale
method has a longer history of motion, and the definition of each vehicle is clearer without
windowing the density output. Because this scenario is a quiet scene with not much overlap
in motion, there is no issue with greyscale historical trails overlapping.

In the walkway scene with busy people, figure 3.10, the window size of two completely
removes the greyscale trails seen in figure 3.7. The outline of each moving person is detected
and the car boot opening in the top right is partially detected. The partial detection is because
not all parts are moving over a two frame period. The cordon tape moving in the wind is not
detected at all. There is a missed detection, but it is not a partial detection which appears as
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noise as with the thresholded RDE approach. The window size of five successfully detects
the cordon movement without it appearing as noise, along with the people and car boot
movements being detected. The additional information of motion history is detected as trails
behind the people moving. The window size of five means the trails are short enough so they
do not overlap with other people as with the greyscale method, figure 3.7b.

The windowed approach does not detect small moving objects as successfully in the
occlusion scenario, figure 3.12. With a window size of two, the car is detected but the person
walking down the path does not have sufficient movement between pixels to be detected over
two frames. The window size of two does however attenuate the noise of the background
caused by the camera shake. The window size of five frames also does not detect the motion
of the person before the occlusion event of the car as there is insufficient motion over five
frames for the detection (a combination of the object being small, and lack of motion over
five frames). After the car has gone through, the persons movement is sufficient such that a
faint detection is achieved. In this set of experiments the window size was increased again
so that a detection can be made with the windowed approach before the arrival of the car.
Through empirical experimentation, a window size of ten was found to be the minimum
required to detect the person before the car arrives. With this size of window, after the car
occlusion, the person detection is mixed in with the trails associated with the car movement.
Thresholded RDE and greyscale both achieve better detection resolution of the person and
car than any of the windowed methods.

3.4.3 Appraising the WIDE Method

The results from the WIDE experimentation are mixed. In the busy scenario of moving
people, the detection performance of the greyscale method was achieved at a window size
of 5, without the noise created from the continuous historical trails creating noise when
they overlapped; historical movement can be extracted from the shorter trails. The poor
performance of WIDE with the occlusion scenario can be explained with the geometry of
the movements in the scene. The person is coming towards the camera at a slow rate, with
little lateral movement. From the perspective of the camera, the only motion detected will
be when the person moves closer to the camera in the z-axis. The motion detected is the
person getting larger with respect to the camera perspective. Over a small window size such
as two or five, the enlargement through perspective is not sufficient to appear as motion on
pixels (the enlargement may be in subpixel scale), and therefore density detections are not
made. The threshold and greyscale methods work because the pixel density is taken over a
large number of frames, and the enlargement motion over a number of frames is sufficient to
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show a density change over the pixels. The geometry problem in the z-axis is a well known
problem that occurs in computer vision [122]. WIDE discriminates noise, but at the cost of
missing other desirable detections. Each of the four techniques that have been analysed over
the last two sections have positives in some scenarios and drawbacks in others. The most
consistent is the greyscale technique, but it introduced noise into the walkway scenario, as
well as interfering with the person in the occlusion scenario. For a static camera environment,
the use of each technique is scenario specific.

The experiments in sections 3.3 and 3.4 are applicable to the static camera environment,
and there are many varying background subtraction techniques available for this application
some of which are discussed in chapter 2. The occlusion scenario, figures 3.4, 3.8, 3.12, had
noise introduced by the camera shake (the platform was moving, such that the background
appears as a detection with the background subtraction techniques). The objective to use
detection algorithms on UAV will also encounter the movement problem, as the aircraft is not
still and will be traversing across terrain. This leads to a more complex scenario to consider;
detecting objects in a moving camera. Background subtraction will detect the background as
moving well as objects in the foreground. The next set of experiments explores the technique
of motion estimation, which is a technique of warping consecutive frames into the same
perspective and stitching them together so that background subtraction can be performed on
the static overlapping areas of the frames.

3.5 Motion Estimation Accuracy

As described in Chapter 2 motion estimation warps two or more consecutive frames into
the same perspective, and stitches them together to create a static overlapping region. Au-
tonomous Real-Time Object Detection (ARTOD) is a method that extends the motion esti-
mation to include background subtraction [126], applied to the static region. This approach
uses the Recursive Density Estimation (RDE) background subtraction method [5]. Motion
estimation introduces artificial noise at the stitching boundary; at the 3-sigma threshold, RDE
excludes most of the artificial noise from its detections. The drawback of having a threshold
(as seen in 3.3) is that pixels that make up an object of interest can be suppressed, reducing the
clarity of the object detections. RDE increases the overall frame processing time by a margin
of between 20 – 50 ms per frame, depending on the processing cores and image dimensions
used. The motion estimation components use the majority of the processing time, typically
each component takes betweeen 50 - 100ms per frame. The objective of the experiments in
this section is to explore the accuracy and computational performance of each component,
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and to identify any trade-offs. The artificial noise introduced by motion estimation is due to
the discrete nature of pixels and the double-precision result usually associated with geometric
calculations [1]. The sub-pixel localisation of warping of the frames causes mismatches in
alignment, introducing the noise. Further artificial errors are introduced by the alignment
function not being precise enough - even without the sub-pixel problem, pixel localisation
can be inaccurate. This noise can be minimised by optimising the alignment function, which
is done by optimising key point localisation and matching. Adding in extra optimisation
methods increases the processing resource requirements; increasing processing time. The
processing speed can be optimised by minimising the complexity or the number of key
point localisation and matching processes. To explore the optimisation characteristics of
motion estimation, experimentation was conducted on the following components of motion
estimation:

• Key point Detection

• Key point Matching

• Key point Filtering

• Homography (affine transform)

Both the RANSAC method for selecting keypoints for the homography matrix, and
the homography generation are based on sound mathematical principles [36] [41]. The
components also contribute the least in terms of processing time consumed. At this point,
it was decided not to experiment with modifying these components, as the above list of
components have a greater impact on both processing time and matrix accuracy.

Key Point Detection

The accuracy of the homography matrix (the matrix used to warp a frame into the perspective
of a reference frame), is determined by the accuracy and validity of the key points that are
detected and the matching algorithm used to associate key points between two frames. In
the work by Sadeghi-Tehran and Angelov [126], the SIFT algorithm from [78] is used as
the keypoint detector. This experimentation will explore the use of different octave values
with SIFT ([126] does not specify the octaves used for the experimentation). Additionally,
different keypoint recognition algorithms will be explored. The four keypoint methods
experimented with here are SIFT [78], SURF [14], BRISK [74], and ORB [2]. These key
point methods are used because the development is chronologically progressive, and the code
to run these algorithms is readily available in OpenCV (the Application Platform Interface
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(API) that is used by this project). The OpenCV implementation of each should provide a
consistent code base so the code implementation doesn’t artificially affect the running time.

Key Point Matching

The speed of the matching process is slower if the video stream represent an environment that
produces a large number of key points. Utilising a brute force matching approach leads to a
fast matching result but may require greater filtering post-matching. The brute force matcher
takes a sample from the first frame and it is matched with all other samples in second set
using some distance calculation (typically Euclidean), the closest match (shortest distance
measure) is returned. A number of different feature comparartors could be used to conduct
keypoint matching [73, 77, 89, 2], however the Functional Link Artificial Neural Network
(FLANN) is readily available in the software API being used and will form a consistent
code set to the experiment. The objective here is to experiment with the effect of matching
algorithms on speed and accuracy of the final stitching process, not appraise the matching
algorithms themselves. The FLANN based method [91], uses a feature classifier to match
the keypoints and is a single layer feed forward neural network.

Key Point Filtering

The output from the matching process can produce tens or hundreds of matches, some of
which are outlier matches; they are not close in distance, but are matched because they are the
closest match from the available keypoints. This experiment looks at the effect of keypoint
match filtering, using two different types of match filter and how they effect the end result
accuracy. The filtering process removes matches that are outliers based on some distance
measure. One filter is a simple match filter that uses a distance threshold such that the
distance measure of a match must be below this threshold. Anything outside the threshold is
rejected and the match is discarded. This can be useful in scenarios where the motion of the
scene between frames is known or is constrained such that a threshold does not exclude valid
matches. A second filter, when the motion is unknown, calculates cross matches of keypoints.
The matches from frame 1 to 2 are calculated, and then the matches from frame 2 to 1 are
calculated. Only the keypoint matches that agree in both cases are retained as keypoints, with
the remainder discarded. If there are only a few keypoint detections in a scene, this method
can lead to over-filtering such that there are not enough keypoints remaining to construct the
homography matrix.
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Homography

The sub-pixel alignment problem introduces artificial noise. This experiment considers
interpolation as a method to optimise the alignment to minimise the artificial noise created
by the stitching process. Simple nearest value interpolation is used in the ARTOD proposal,
which is insufficient to avoid misalignments of pixels which result in false detections around
the edges of objects in video sequences moving in more than one plane. Utilising bi-cubic
interpolation [64] (because the warped frame does not align to discrete pixel values) during
the stitching of frames could improve the alignment in sequences with more than one plane
of motion. This method has been selected because it is efficient on modern hardware that
could improve accuracy whilst being unlikely to introduce a large performance penalty.

The Video Sequences

Helicopter chase
This is a video sequence where the camera is moving in one plane of motion, translational,
following a motorbike and a car. This sequence has been selected because translational
motion is less prone to noise on stitching and there is a limited complexity to the moving
objects (two objects, in mostly a straight line).

Fig. 3.13 Helicopter chase scene with a motorbike and car

Street panning
This is a video sequence of a fixed camera moving in a rotational axis about the y-axis.
This sequence has been selected because stitching of rotational motion is more prone to
artificial errors than translational movement (because a 3-D component must be taken into
account). The beginning of the sequence has no moving objects, so misalignments and noise
can be seen clearer. Later in the sequence there are three moving cars which tests the noise
performance when motion is introduced.
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Fig. 3.14 Panning motion of a street scene

3.6 Results of Motion Estimation Experiments

In this section single frames of the video sequences are shown with the various stages of
motion estimation applied. Each stage has different methods applied and the results displayed
illustrate the differential between each method.
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3.6.1 Keypoint detection

(a) SIFT, Helicopter (b) SURF, Helicopter

(c) BRISK, Helicopter (d) ORB, Helicopter

(e) SIFT, Panning (f) SURF, Panning

(g) BRISK, Panning (h) ORB, Panning

Fig. 3.15 Different key point detection algorithms used for motion estimation on the Heli-
copter and Panning videos
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(a) SIFT, Z-axis (b) SURF, Z-axis

(c) BRISK, Z-axis (d) ORB, Z-axis

Fig. 3.16 Different key point detection algorithms used for motion estimation on the Z-axis
video
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3.6.2 Key point matching

(a) Flann, SURF, Helicopter video (b) Brute Force, SURF, Helicopter video

(c) Flann, SURF, Panning (d) Brute Force, SURF, Panning

Fig. 3.17 Key point matching algorithms used for motion estimation on the Helicopter and
Panning videos
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3.6.3 Key point filtering

(a) KNN Filter, BF, SURF, Helicopter (b) Radius Filter, BF, SURF, Helicopter

(c) KNN Filter, BF, SURF, Panning (d) Radius Filter, BF, SURF, Panning

(e) Outlier Filter, BF, SURF, Helicopter (f) Outlier Filter, BF, SURF, Panning

Fig. 3.18 Filtering algorithms used for motion estimation on the Helicopter and Panning
videos
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3.6.4 Homography Interpolation

(a) Linear Interpolation, BF, No filter, SURF, He-
licopter

(b) Cubic Interpolation, BF, No filter, SURF, Heli-
copter

(c) Linear Interpolation, BF, No filter, SURF, Pan-
ning

(d) Cubic Interpolation, BF, No filter, SURF, Pan-
ning

(e) Linear Interpolation, BF, No filter, SURF, Ex-
tended panning

(f) Cubic Interpolation, BF, No filter, SURF, Ex-
tended panning

Fig. 3.19 Interpolation algorithms used for motion estimation on the Helicopter and Panning
videos
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3.7 Analysing Motion Estimation Experiments

3.7.1 Keypoint detection

The results shown in figures 3.15 and 3.16 are of different key point detection algorithms
applied across three separate scenes. The objective of this experimentation was to explore
the effectiveness of motion estimation, and the variation of results from the algorithms. Each
frame was selected based on the difficulties motion estimation had at eliminating noise. In
each video sequence there are several frames where the image stitching is good enough so
that no extraneous noise is found. However, in a comparison scenario, it was desirable to
have frames where all permutations of the algorithm exhibit noise to an extent. The helicopter
frame provides for some disparity between the methods. Both SIFT and BRISK exhibit the
noise of the road markings on the right clearer than SURF and ORB. BRISK eliminates the
road markings to the left completely, as does ORB. Whilst the SURF algorithm detects both
verge lines, it has a fainter detection than all others for this line (a fainter detection means a
smaller shift in alignment). ORB is the most noise free in this scenario. The panning scenario,
which should not have any detections (no moving objects) is fairly consistent across all four
techniques, each exhibiting small detections of background. SIFT and BRISK both detect
some line noise in the bottom right of this frame. ORB has small detections in this region,
and the SURF algorithm is the least noisy as there is no noise detected in the bottom right.
The z-axis motion is the most noisy result, with each algorithm producing many detections.
This is highlighting a weakness in the motion estimation approach; it is susceptible to noise
and cannot detect moving objects when the camera motion is in scale space. Notice how the
cars in the Z-axis frame do not register as even noise. In this scenario, both SURF and ORB
are slightly better at discriminating background noise. In terms of performance, both BRISK
and ORB perform the keypoint detection faster than SIFT or SURF, with SIFT being the
slowest and ORB being the quickest. Despite SIFT being the slowest, SURF detects the most
keypoints, followed by BRISK and then ORB. In terms of image size scaling, despite being
the second fastest, BRISK scales the worst with the times increasing by order of magnitudes
between video sequences. ORB maintains a log-linear scalability with image size.

3.7.2 Key point matching

Figure 3.17 shows the comparison of matching algorithms used in this experiment. For
consistency, the SURF algorithm is used as a baseline key point detector. The algorithm is
used because the output provides a large number of keypoints that lends itself to filtering the
matches in the next process. If there are too few matches, a homography matrix cannot be
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generated. In pure matching, the FLANN algorithm provides the same number of matches as
the brute force algorithm. It is consistent that with the same matches, the resultant output
videos are the same. The computational performance of the brute force method is faster in
both scenarios than FLANN, and scales better - only increasing by 11ms for a more complex
frame compared to 17ms increase by FLANN.

3.7.3 Key point filtering

Figure 3.18 shows a comparison of filtering algorithms applied to the keypoint matches.
The objective is to remove keypoint matches that are inaccurate matches and will skew the
homography generation. SURF and the brute force matcher are used in these examples. The
KNN and radius filters are both cross check filters, and the outlier filter is a simple distance
measure filter. In the Helicopter video the radius filter has slightly better noise reduction than
the KNN filter. The verge line on the right is less pronounced in KNN filtering compared
with the radius filtering. In the panning scenario, there is little difference between both cross
check filters. The outlier filter removes noise even further on the Helicopter video, with
much reduced noise on the left compared with KNN or radius cross check filtering. The
result suggests that the frames were warped together slightly differently because the verge
line on the right is more pronounced towards the bottom of the frame compared with a higher
up detection of the verge. The panning sequence is barely affected by the filtering. The
computational performance of both cross check filters is comparable with each other with
the radius filter being 4ms slower than KNN in the helicopter video. The filters are almost
identical in terms of performance in the panning sequence. The outlier filter adds very little
performance overhead to the matching process, and removes similar numbers of matches
compared with KNN and radius matching.

3.7.4 Homography Interpolation

The interpolation results are shown in figure 3.19. In the simple translational movement of
the helicopter video, the centroid interpolation errors are difficult to spot because of the single
direction of scene movement, the cubic performance is fractionally better than the linear
interpolation. In the video scene with the camera panning from a fixed spot, two tests were
conducted. One with no moving objects and the second with an extreme panning motion.
The linear interpolation appears to perform fractionally better in the helicopter scene than
the cubic interpolation with less distortions, but in the panning scene the cubic interpolation
performs the best. It is difficult to draw conclusions directly from these results and they do
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not show whether the interpolation method makes a significant impact or not. A possible
reason for this is the homography matrix generated is not perfectly accurate in the first place.

3.7.5 Conclusions on the Motion Estimation Approach

With all the accuracy improvements in-place, the processing time of the approach increases
by approximately 250ms for each frame. Over the experiments shown here, and others with
different combinations of components, it is apparent that the motion estimation approach is
reaching the limit of manipulation with the trade-off being between alignment accuracy and
speed. A full table of the results for motion estimation experiments can be seen in Appendix
A. The optimal solution is heavily dependent on the application of the technique. In simple
scenarios, where there is only transitional movement, the filters and interpolation used to
improve robustness not necessarily due to the limited affine transform required. In very
stable scenarios the key point detection method changed to the faster but less accurate BRISK
algorithm with little or no effect on the result accuracy providing a computational speed
benefit. However, scenarios where there is significant movement beyond transitional (such
as camera jitter, rotation, and panning), a reduced filtering set and faster but less accurate
key point detection can lead to noisy results. In this case the improved accuracy methods
should be used, at the cost of processing speed. However, the accuracy improvements seen
over the experiments is quite small, despite a large offset in computational performance.
In these experiments, the keypoint detection algorithm has been shown to be the largest
factor in accuracy or speed, with the filtering, matching and interpolation contributing minor
improvements.

3.8 Hierarchical Framework

The methods looked at so far use a hierarchical framework model such as motion estimation
[126]. In computer vision, a traditional analysis approach is to use the hierarchical model;
there is the initial detection of pixels of interest at the low-level, extending up to the high
level semantic reasoning for behavioural or tracking analysis (which uses features derived
from lower levels). Figure 3.20 shows an example hierarchical model that can be typically
seen in computer vision systems [15] [47] [129] [59].
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Fig. 3.20 Computer Vision hierarchical model

The hierarchical model is also common amongst other computer science applications.
Examples of uses in computer science; the networking OSI model 3.21, operating system
kernels 3.22, and computer game design 3.23.

Fig. 3.21 OSI network model

Fig. 3.22 Typical operating system kernel hierarchy
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Fig. 3.23 Example hierarchy for game design

3.8.1 What are the limitations?

Despite being a successful model in these applications, the hierarchical model has limitations.
Each component interacts with the components directly above or below them, they have no
connection to any other components. The lack of interaction between other components
means that components at different levels of the hierarchy have no influence over the data
input into other components. If there is a noise component in the low-level detection phase,
either the noise will be present in the input data to the next component, or there will have
been a noise filtering process. The next component may also introduce noise of its own,
and possibly accentuate existing noise in the data passed to it. At the top level of semantic
reasoning components may have incorrect information based on the accumulation of errors
and noise. A problem with using a hierarchical analysis models is that the scope gets smaller
and is more constraining. Higher level analysis can only use the data provided by the
previous levels, with no influence on the data that is gathered at levels below. If a component
discovers information that may be useful to the components below, there is no method to
pass this information to these components. The outcome of this is that the number of objects,
behaviours or tracks can only be equal, or less than the number of data samples detected at
the lowest level.

3.8.2 Developing the framework

The computer vision framework is as important as the algorithms used within it. It is the
framework that decides what organises the types of operations, and how each operation or
task might interact at each stage. A framework that is not susceptible to the limitations and
problems of hierarchical models could lead to better overall performance of computer vision
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systems. Software development is a good example of a field in computer science that uses
other types of frameworks; the V model where the top components of each side of the model
have an interaction as well as with the layers below them [92], seen in figure 3.24; "Agile
Development" [32] which is a cyclic approach to the problem as seen in figure 3.25.

Fig. 3.24 V-Model for software development

Fig. 3.25 AGILE model for software development

Using these models to influence the development of a new framework has led to the
development of the cyclic framework for computer vision 3.26
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Fig. 3.26 A cyclic framework proposed for computer vision

This model allows "higher level" analysis to feedback information to "lower level"
components to help optimise the information gathering. This could be providing localisation
information on objects of interest meaning the detection phase focuses on only a particular
region of the image. This has the potential to lead to improved performance, and lends itself
to self-learning techniques and evolving analysis (such as autonomous parameter selection).

3.9 Understanding the Limitations

Before a method can be used to solve the problems set out in this project there is a requirement
to understand the limitations of the current approaches. This section summarises limitations
of the techniques that have been looked at (both in review and experimentally). Each of
the techniques analyse each pixel several times to obtain an assessment of its novelty. The
novelty is assigned based on pixels that change significantly in the scene (usually moving
objects) in some feature space (e.g. gradient, colour, brightness). Having to analyse a pixel
several times to obtain a measure of its novelty repeatedly uses processing resources, slowing
the efficiency of the method. The performance of the algorithms is also proportional to the
frame size as a result. In the case of optical flow, the gradient analysis must process each
pixel’s value a minimum of 8 times for a 3x3 analysis grid (usually it is larger) and therefore
only achieves frame rates of around 2 or 3 seconds per frame. Motion estimation must
analyse the scene for key points, filter the key points and match them between frames. The
homography matrix is then applied to every pixel in the scene, and in the case of ARTOD
[126] further analysis is conducted on each pixel to determine its novelty using RDE. This
is analysing the frame a minimum of 5 times (depending on how many key points were
found and in the case of SURF, the hessian value used). A recent improvement [8] uses
optical flow on the key points to determine their importance and has reduced the number of
times the frame needs to be analysed to determine novelty pixels. However, given the optical
flow processing time (despite being on a reduced number of points), the frame rates for
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processing are still only around 3 frames per second. Both motion estimation and optical flow
techniques make the assumption of a novelty being a moving or dynamically changing object.
Important objects within a scene may well be stationary for an extended period of time or the
object of interest may be a static object. To enable a system to operate fully in an unknown
environment (such as that a UAV operates in), there needs to be very little assumption about
the environment being analysed. The assumption that an object must be dynamic to be a
novelty can open the system up to exploitation, and can leave out important detections. This
effect also manifests in moving camera environments when an object is moving precisely at
the same velocity as the camera; the object appears to the algorithm as background and is
not detected as foreground. The methods that are capable of detecting static objects are the
edge detection and image segmentation methods. These have the limitation of only being
spatial analysis, and do not calculate any motion perception. Coupled with the limitations
highlighted with the hierarchical framework, there is scope to develop a technique that
encapsulates the limitations described here.

3.10 Next Steps

A new idea based on the pixel vectors in optical flow is to initially use greyscale RDE on a
dynamic video stream, which will produce edge detections on all objects within the frame.
As explained in section 3.3 the greyscale RDE leaves a trail behind based on the previous
detections. If the gradient (optical flow) from light to dark of the trails is obtained it is
possible to assign a vector of motion to the pixels, where the darkest line of pixels is the
leading edge of the object in the frame. By assigning a vector of motion to each pixel in the
frame it will be possible to determine the typical vector of motion seen in the video stream.
All pixels conforming to this typical vector can either be removed (so only dynamic objects
are seen) or allocated a particular shade or property to isolate these pixels. Any pixels that are
eccentric to the typical vector can be considered part of a foreground or dynamic object and
each variation of motion vectors can be assigned a separate colour or property to differentiate
them. The next chapter explores the concept further.

At this stage a precis of the objectives of the work can be made:

• Develop a novelty detection approach that avoids warping and stitching images together
with an aim to increase robustness and speed of the approaches.

• Association of consecutive frames without the need to co-locate pixels from both
frames
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• Reliably detect relatively stationary objects of interest whilst maintaining background
discrimination

• Ability to distinguish between a background object and background scenery

There is scope to explore a new concept to achieve the objectives set out above. There
are some already existing approaches that contribute to the development of a new computer
vision algorithm.



Chapter 4

A New Way of Thinking - Edge Flow and
WISE

4.1 Human Vision - Models of Biederman and Wertheim

Humans can easily identify objects e.g. simply looking out of the window, or glancing
around the office there are several objects; some inert, some in motion, and others partially
occluded or unclear. The focus of this project is not how the biological system achieves
the interpretations, rather what are the factors that allow visual differentiation of objects.
What features define the coats on a peg are not part of the peg? Biederman [18] posed a
similar problem and proposed a framework to describe the object detection process. In this
framework the first suggested activity is edge extraction by reaction to colour and luminance
changes in surfaces and textures; defining the boundaries of the textures. Biederman goes
on to describe further analysis of the detection based on the properties of the edges. The
framework diagram for this analysis is shown in figure 4.16. This is a simplified model and
Wertheim [153] with commentary from Büttner and Straube [22] goes further and proposes
a model that describes how we deal with motion perception in conjunction with object
detection, and subsequently knowledge of object motion relative to us. Wertheim proposes
that the processes of motion detection and object detection are separate parallel processes. In
the work, the action of motion detection and perception appears to be reference surface based
and independent of what the object is detected to be. Specifically with motion perception
[80] postulate models that describe the way in which the motion extraction occurs. The ideas
of Lu and Sperling [80] are not too dissimilar to the concepts of optical flow (first order
brightness differentiation). This understanding of human vision has been used to inform
the construction of a new approach which uses the edge contrasts within the optical field
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of a camera to define particular texture patches. Optical flow has been applied in a parallel
paradigm to provide motion perception and understanding.

4.2 Edge Flow - A new concept in novelty detection

Looking out of a window people can see a myriad of various objects in the scene ranging
from trees, to fields, to buildings and cars. An analyst looking at a video stream with a mix of
moving and static objects would find it difficult to focus solely on an important object, static
or otherwise. The method described here is a new data driven method to novelty detection
and object definition in dynamic video streams that detects boundaries of all object textures,
static or moving, and extracts detail about the internal structure of each texture patch. The
thinking behind the proposed approach is not to make assumptions about the content of the
video stream, and to model the human vision system proposed by Biederman [18] in an
effort to emulate the model in computer vision. The approach also maintains the philosophy
of model separation proposed by Wertheim [153] by conducting the detection and motion
perception separately. The method described here, dubbed Edge Flow, detects texture patches
in a scene and then uses optical flow to give motion perception to each texture patch. The
WIDE method is used to detect texture patch edges, Sobel filtering is used to extract gradient
of the edges, contiguous edge linking is used to define objects and optical flow is used to
define the motion of the texture patches.

Figure 4.1 illustrates the components of the proposed method:

Fig. 4.1 Edge flow components, and in green, the output at each component stage
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Fig. 4.2 Greyscale RDE applied to moving camera to define object texture edges

Fig. 4.3 WIDE applied to moving camera to define object texture edges

Windowed Density Estimation

The component utilises WIDE, described in chapter 3 however it is not used for the purposes
of background subtraction. In WIDE, as with greyscale, density detections are seen across
the entire scene, not just when the density reaches a threshold. The density of a pixel changes
over time depending on the movement of colour textures over it. Each texture in the scene is
referred to as a texture patch. The leading edge of the texture patches that are moving will
yield a sharp density change, as with foreground moving objects in background subtraction.
Similarly, the historical trails are seen in 3.4 are also present with reducing density change the
more historical the texture patch movement is. The greyscale method, section 3.3, showed
densities allowed to build up over an infinite number of frames. When the camera is moving
as well as objects in the scene, this leads to the entire scene averaging out to a small range
of densities that represent the colour patterns of the image (effectively making the output
frames greyscale replicas of the input frames, figure 4.2). Using WIDE in this scenario is
useful because historical contribution to the density is only over n frames (where n is the
window size of WIDE). The effect of using WIDE with moving cameras is that each edge
that is moving relative to the camera platform will be detected (static or otherwise) with
a leading edge and a short historical trail. All the edges in the scene will be detected; the
exception is texture patches that are in synchronous movement with the camera, there is no
pixel density change relative to the camera.

Figure 4.3 shows the effect of applying WIDE to a moving camera scenario.
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Fig. 4.4 X and Y Sobel filters

Fig. 4.5 Left, gradient values assigned for an x-plane Sobel filter. Right, gradient values
assigned based on a y-plane Sobel filter

Gradient Estimator

A method to isolate the magnitudes of the gradients of each edge detected is required to
characterise the edge profiles in order to provide internal texture information. To establish
the gradients of each edge, a Sobel operator [135] is applied to the resultant edges in both
the x and y planes. There are a number of mathematical operators and solutions available to
calculate the gradient of the edges, including modern variants [141]. The Sobel operator has
been selected because of its low computational complexity, and because it does not make
assumptions or distribution predictions about the gradient profile. Figure 4.4 shows the Sobel
operator used. The size of the Sobel operator (illustrated is 3x3) determines the local area
over which the gradient is calculated. A small Sobel operator is more sensitive to large local
changes in pixel value. A large Sobel operator (say, 7x7), on the other hand, smooths the
gradient profile of large local changes. The size of operator is a parameter that allows the
method to be tuned to application specific scenarios.

The Sobel filters are applied in both the x and y axis. If there is a positive gradient,
this indicates a gradient going from low to high, and similarly a negative value indicates a
gradient going from high to low. In the case of this application, because non-edges of object
textures (background) are defined as white and edges of object detections are a grey value
between the white and the black, positive gradients indicate transition from a leading edge
of an object texture and negative gradient values indicate transition to a leading edge of an
object texture.
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Fig. 4.6 Result of a Sobel filter in the y-plane applied to RDE image. The gradient values
have been coloured for a better visual effect – blue indicates large gradient changes, whilst
green is a smaller gradient value. Yellow indicates areas of no edge gradients (and therefore
no edges – the texture of an object).

The Sobel filters, in both cases, are applied from top-left to bottom right. Thus the first
encountered edge of a texture patch will always be negative, and the final edge of the texture
patch will be positive. The absolute value of the Sobel filter output indicates the magnitude
of the gradient at the pixel. A large value (positive or negative) indicates a large gradient.
The approach is novel through combining the first two components, and the processing speed
surpasses any available algorithm for novelty detection in a moving camera scene. The
processing of a 640x480 video frame is done at a real-time speed of 40 frames per second
(25ms per frame) on an Intel i7 2.6 Ghz processor.

Contiguous Edge Linking

At this stage there are two outputs from the initial frame input – the x-plane and y-plane
Sobel filter gradients for each of the edges in the scene. To extract the texture patches from
the information derived, a linking method, dubbed Contiguous Edge Linking is used. Each
contiguous pixel on an edge defined by a gradient is tested for neighbouring similarity. If a
neighbouring edge pixel is within a specified tolerance, it is linked to the current pixel. The
approach is made faster by avoiding processing every pixel within the frame; only the pixels
that have a gradient assigned to them are considered (the body of a texture patch will not
have a gradient – it is not an edge). The procedure for this edge linking method is as follows:

1. Working from the top left of each image (x-plane and y-plane Sobel images) find the
first pixel with a non-zero gradient value.

2. Create a region of influence of 1 pixel either side of the candidate pixel. The region is
the area the edge linking considers contiguous for new candidate pixels. The Sobel
images are stacked so the area of influence also applies to the other Sobel image in a
3-D plane. This results in the combination of both images into one set of linked edges
on the original frame.
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3. Assess the surrounding pixels within the area of influence of the pixel (except for
image edges) for pixels (or linked edges where this pixel overlaps an existing pixel
area of influence) within the same gradient range. The gradient range is a pre-defined
parameter on initialization (currently not autonomously defined).

(a) If this pixel is within the gradient range of an edge pixel, and it is within its area
of influence, add to the edge.

(b) Otherwise, if not the first pixel being assessed, create a new edge, and if a
neighbouring pixel is within the gradient range, and is contiguous (within the
area of influence), add to the newly created edge.

(c) If there are no neighbouring pixels within its gradient range, do not remove the
edge, and leave as a singleton. It is either a very small texture patch (a mole
hill in a field for example), or it will be absorbed by another edge as its area of
influence expands.

4. Adjust the area of influence of the edges that were affected by 3. See Figure 6 for an
illustration.

(a) The minimum x and y influence are the lowest pixel coordinates that is a member
of the edge, minus one in both directions.

(b) The maximum x and y influence are the highest pixel coordinates that is a member
of the edge, plus one in both directions.

(c) Update the mean gradient value of the edge – this will be used for assessing the
proximity of new pixels to the gradient value of each edge.

5. Flag any pixels that were assigned to a edge to avoid re-linking these pixels.

6. Find next pixel with a non-zero gradient and repeat steps 3 to 5 until all non-zero
gradient pixels have been assigned – from both images. It is not important which Sobel
image is processed first (as there will be crossovers from the images anyway).
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Fig. 4.7 Pixels linked in an edge, and the area of influence of the edge.

Optical Flow

Optical flow applies motion perception to the texture patches detected in the scene. Optical
flow is chosen because the similarities of the method to the human motion perception model
proposed by Lu and Sperling [80]. The output of optical flow will indicate the magnitude
and direction of motion of texture patches in the scene. The optical flow algorithm is not
applied to the entire image because this is computationally resource heavy and defeats the
purpose of the Edge Flow approach. Five pixels are selected within each cluster, one from
the centre and four from the extremities of the edges that make up the texture patch. The five
points are chosen because this is the minimum required to represent the 8 degrees of freedom
of movement in a three dimensional plane. Optical flow [81] is applied to these individual
points which yields a flow vector for each of the individual points within a texture patch. By
calculating the movement vector of each texture patch, we can determine the similarity of
movement between texture patches. If the motion vectors are similar, and the texture patches
overlap in x-y proximity in both frames (two frames required for optical flow), the texture
patches could be considered to belong to the same physical object. The optical flow output
also allows separation of texture patches that are in spatial proximity, if they have different
vectors of motion. A car moving along the road and a crack in the road is a nice example; the
car texture patch will have a different motion vector to the crack in the road despite being in
spatial proximity when the car goes over the crack, so despite visually occluding the crack,
they can be considered as separate objects and will not merge as the same object (unless the
crack is completely occluded).
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Fig. 4.8 (a) Contiguous clustering of gradients from Sobel stage (b) Result of optical flow
applied to clusters

Fig. 4.9 Two separate scenarios for texture patches with optical flow calculated for each of
the 5 pixels within them.

The optical flow method is used both for motion information on texture patches, and to
define which contiguous texture patches form candidate physical objects. Optical flow, as
mentioned in chapter 2, can be used independently to detect and identify objects and their
movement. However without large computational resources, it does not operate in real time.
This usage of optical flow is made tractable compared to the sole use of it in video processing
by limiting the number of pixels used in the optical flow calculation (five pixels of a texture
patch), usually resulting in one or two thousand points in total. This is a significant reduction
to the number of pixels in an entire image. A 640x480 image contains over 300,000 pixels,
and optical flow would be applied to all of these pixels when directly to the source image.
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Table 4.1 Characteristics of some sample novelty detection algorithms

Algorithm: KDE RDE Dual TVL1 OF ME (ARTOD) Edge Flow WISE
Static Object N N N N N Y

Static Viewpoint
Static Object N N N N Y Y

Dynamic Viewpoint
Dynamic Object Y Y Y Y Y Y
Static Viewpoint
Dynamic Object N N Y Y Y Y

Dynamic Viewpoint
FPS 640 x 360 3.00 98.20 0.17 4.60 58.00 32.90

Multi Object Detection Y Y Y Y Y Y
Static / Dynamic N N N N Y Y

object discrimination

4.3 Experimental Results for Edge Flow

Table 4.1 shows the characteristics of a selection of algorithms used in novelty detection in
video streams. Both KDE [37] and RDE [5] are only suitable for static camera scenarios;
these are included to show the capability differences between applications designed for static
and dynamic camera scenarios. Optical flow [55][81] and Motion Estimation [145] are well
known examples of algorithms that detect moving objects in a dynamic camera environment.
One of the latest Optical Flow algorithms is the Duality Based Optical Flow TVL1 algorithm
proposed in Zach et al [157] and will be used as a comparison with the proposed approach
for Optical Flow. Motion estimation was proposed in [151] and has been improved on
several occasions to enable reliable novelty detection [151][8][126]. The motion estimation
comparison uses the ARTOD version [126]. KDE and RDE are not compared in the video
sequences, because they are unsuitable for dynamic camera scenarios. A selection of videos
were used to demonstrate performance across different scenario types and resolutions. The
practical implementation of Edge Flow has parameters that can be changed to yield the best
results for a particular scenario i.e. its sensitivity to minor objects can be adjusted. The
parameters that can be adjusted are:

• A threshold range for a gradient to be considered an edge; a minor gradient change
can be a texture oscillation and not a true edge. This parameter adjusts the sensitivity
of object detection based on gradient magnitude.
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• A threshold range defining the gradient differential an adjacent pixel needs before being
considered a separate object. This parameter adjusts the sensitivity of the algorithm to
occluded objects.

• A window size for the windowed background subtraction section (RDE)

Each parameter was pre-selected for consistency with the other algorithms. The parameters
were selected based on optimum performance for the videos used [148, 96, 118].

• Threshold range for object detection sensitivity: +/- 20.

• Threshold range for occlusion sensitivity: +/- 20.

• WiDE frame window size: 3.

The testing of detections in video streams can be subjective; what constitutes an object
in a video stream? The subjectivity is exacerbated with the proposed approach because it
is designed to detect static objects as well as moving objects. With algorithms that detect
moving objects false positives are detections that do not correspond to a moving object, and
false negatives are missed detections of moving objects. In order to minimise the subjectivity
and obtain repeatable, quantifiable results, constraints on what constitutes a detection are
applied to the experiments.

• True positive novelty detections, which are larger than 10 pixels width and 10 pixels in
height. These values are chosen because a size smaller than this with either motion
estimation or optical flow appears as noise, not a clear object. A filter is applied to
Edge Flow to show objects greater than this size. Edge flow has the capability to show
more than this (minor objects such as disturbed earth from planted IEDs for example)

• False positives are defined as detections that do not represent an object; detections on
areas with no distinct contrast with the background. Edge flow has the capability to
handle occluded objects, and as a result shows detections within detections. These
are not considered as false positives unless it is clear the nested detection does not
represent an object or an internal structure of the object

• False negative detections are defined by objects that have not been detected that meet
the criteria of a true positive detections (including static objects).

The full videos used in this work can be observed on You-tube [148, 96, 118].
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4.3.1 Video 1 - Helicopter chase with car and motorbike

The first test video is the helicopter and motorbike video which has been used consistently
throughout experiments in this work. It provides for a reliable motion pattern with known
objects present.

Fig. 4.10 Motion estimation result from scene (left) Edge flow result from scene (right). Red
boxes are included on edge flow to highlight detections more clearly. 640 x 360 pixels

(a) Edge Flow (b) Motion Estimation (c) Optical Flow

Fig. 4.11 A comparison of Edge Flow with Motion Estimation and Optical Flow on the
Helicopter video

The scene used in this experiment is shown in figure 4.10.

Table 4.2 Detection performance for video 1

Algorithm Total Detections TP FP FN

Motion Estimation 2 2 0 13

DF TVL1 OF 3 2 1 13

Edge Flow 11 9 2 6

WISE 1069 1069 0 3
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Figure 4.10 shows the motion estimation result which identifies two objects, the motorbike
and car. Edge flow detects other objects as well; the static white objects on the right of the
road, the road defects, road markings and the road verge. Table 4.2 shows the empirical
results from each algorithm. The detection with Edge Flow are limited because of the filtering
condition applied to the detections, below 10 pixels width or 10 pixels in height, and with
the filtering removed it detects a much wider range of objects although the number of false
positives increase. One of the limitations of the technique is the requirement to specify the
parameters to achieve the desired level of detection detail.

4.3.2 Video 2 – Dashboard mounted

The frame from this video sequence is shown in figure 4.12.

Fig. 4.12 Second test video, dashboard mounted camera

(a) Edge Flow (b) Motion Estimation (c) Optical Flow

Fig. 4.13 A comparison of Edge Flow with Motion Estimation and Optical Flow on the
dashboard video
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Table 4.3 Detection performance for video 2

Algorithm Total Detections TP FP FN

Motion Estimation 29 3 26 37

DF TVL1 OF 11 6 5 34

Edge Flow 52 37 15 3

WISE 1932 1932 0 40

The significantly more complicated scene yields a higher detection rate for all algorithms.
Table 4.3 shows the detection outcomes of each algorithm. One of the limitations of the
clustering component is that it can include multiple objects in the same cluster, as in this case
with the white van and the white road markings. Otherwise several static and moving objects
have been distinguished separately.

4.3.3 Video 3 – Drone launch, multiple motion vectors

The video is a high density complex scene of static objects with the occasional small moving
object (cars / vans), shown in Figure 4.14. The results of the detections are shown in Table
4.4. The algorithm is capable of discriminating between groups of houses, other landmarks
and excluding the general background (the forest in this case). The poor performance by
both the optical flow and motion estimation techniques is due to the image warping or the
brightness pattern tracking not being able to keep up with the rate of change of the camera
perspective, another important limitation of existing methods.
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Fig. 4.14 Video 3 scene - drone flying with multiple axis of motion

(a) Edge Flow (b) Motion Estimation (c) Optical Flow

Fig. 4.15 A comparison of Edge Flow with Motion Estimation and Optical Flow on the UAV
video

Table 4.4 Detection performance for video 3

Algorithm Total Detections TP FP FN

Motion Estimation 15 2 13 125

DF TVL1 OF 5 4 1 123

Edge Flow 141 119 22 8

WISE 6932 6932 0 71
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Table 4.5 illustrates the processing performance comparisons between each algorithm.
The results were obtained by processing each video sequence for 500 frames and recording
the minimum, maximum and average frame rate.

Table 4.5 Performance analysis of each algorithm across each test video stream

Algorithm FPS Dual Flow TVL1 OF ME (ARTOD) Edge Flow WISE

640 x 360 Min 0.16 2.84 19.59 24.97

Max 0.17 8.48 82.77 43.85

Avg 0.17 4.58 58.01 32.99

848 x 480 Min 0.14 1.00 7.31 11.03

Max 0.16 5.38 39.44 21.69

Avg 0.15 2.60 24.35 18.69

1920 x 1080 Min 0.04 0.22 0.66 0.80

Max 0.04 1.09 6.25 5.10

Avg 0.04 0.35 1.85 3.81

Using this new approach, the detection of texture patches can be carried out accurately
and in real-time. In this work we demonstrate the capabilities of the algorithm on video
scenarios, and show that object textures in the scene are reliably detected. We are able to
show clearly the capability of the algorithm to be robust in occlusion scenarios; working in
real-time, and defining clear objects where other techniques attribute such small detections to
noise. The method set out in this work is novel in its approach to addressing / approaching the
moving camera problem in detecting all objects in a scene. All existing techniques assume
that foreground objects of interest must be moving or changing in some way and can only
detect such objects. This method enables both moving and static (unchanging) objects to
be detected. This is a significant step forward, paving the way for detections of small minor
objects as well as the large moving parts of a scene. Also, the method does not make any
prior assumptions about the scene, and is wholly data driven. The latter statement is critical;
what other techniques dismiss as noise or unimportant, this technique extracts and highlights
it as an object texture. This enables retention of information which would otherwise be
lost at the detection stage, which can be filtered and analysed as required. Key objects or
people can easily disappear into the background if the detection algorithm dismisses small or
“noise-like” novelties early on. This can later be filtered out based on the object parameters
the analyst is looking for (type, size, motion, texture etc. of the detected object).
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The direction and relative speed can be associated with the edge gradients – a sharper
gradient indicates a higher relative speed, with the sharper gradient being the leading edge
of the object texture. This form of clustering is robust and combined with the first two
components is resistant to occlusion. Should an texture patch be occluded partially by
another texture patch, they will remain separate clusters unless the object is completely
occluded. Further, once the occluding object has moved on, the cluster will return to being a
separate texture patch.

Currently, the approach is parametric, requiring a magnitude range to be defined. This
magnitude defines the similarity of candidate pixel gradients required to be linked together
as an edge. In principle it is possible to autonomously define a gradient magnitude range
but this will be left for the future. Through this method each similar and proximate edge are
clustered together, resulting in a contiguous object being defined for each different texture
(object with edges); an object is defined as an area of similar texture, not as an isolated object
per se. For example, a car may be defined as 3 separate texture patches in edge flow – the
bonnet which is of a particular texture, the roof which is a different texture, and the boot
which is the same texture as the bonnet but separated by the roof. The main innovations of
this approach are; A motion vector can be extracted from each texture patch within a scene in
real-time. Objects which are moving in different directions but are spatially proximal can be
clearly separated despite any occlusion in the scene. The motion vector is a representation of
the relative velocity of an object compared to the camera platform; later, given the platform
velocity, this can be used to determine the absolute velocity of all the objects within a scene.
With the inclusion of optical flow in the method, the average processing time remains around
20 frames per second (50ms per frame) for a 640x480 video stream. As with the clustering
technique the processing time changes slightly dependent on how many objects are detected.
The following advantages are introduced by Edge Flow:

1. It works well with partially occluded texture patches and keeps them separate until
completely occluded,

2. It rediscovers the texture patches post-occlusion,

3. Static and moving texture patches are clearly separable, and

4. The processing speed combined with the first two components of Edge Flow remains
real time (between 25 – 40 fps depending on the number of texture patches discovered
in a scene).

This is significantly faster than other methods, and still permits some head room for additional
processing. An example of the occlusion discrimination capabilities can be seen in figure
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4.11; if a car drives over a crack in the road (both of which have been clustered and identified)
the clusters will remain entirely separate unless the car completely occludes the road crack.
Once the crack appears the other side of the car it is immediately re-discovered and clustered
as a separate object texture.

4.4 Discussion of the Edge Flow Algorithm

A new approach to video analysis has been demonstrated in this chapter. It has the following
main components:

1. WiDE

2. Gradient Estimator using Sobel Filters

3. Contiguous Clustering

The computational performance of the proposed Edge Flow has been demonstrated to be
in an order of magnitude faster than motion estimation and optical flow. The capability of
the algorithm to detect static objects as well as those that are moving are also demonstrated
here. A limitation of the approach is the parameters applied to Edge flow, without correct
selection, in complex scenarios, is that it can yield a cluttered environment; unlike optical
flow and motion estimation which are excellent at isolating the moving objects in a scene.
Edge flow can detect both static and moving objects and discriminate between occluded
objects. One limitation suffered by all algorithms is that objects which have motion in
synchronisation with the camera platform make detections somewhat more difficult - there is
no change between frames to allow detection. The limitations of scene clutter (caused by
“over-detection” of objects) can be overcome through parameter selection according to the
type of object to be detected. Further work will focus on optimising this method for specific
applications, and introducing an improved contiguous clustering method.

4.5 Within Image Spatial Edge Flow (WISE)

Humans can easily identify objects for example simply looking out the window, or glancing
around the office there are several objects; some inert, some in motion, and others partially
occluded or unclear. As explained in section 4.1 Biederman [18] posed a similar problem and
proposed a framework to describe the object detection process. In this framework the first
suggested activity is edge extraction by reaction to changes in colour and textures; defining
the boundaries of the textures. Biederman then goes on to describe further analysis of the
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detection based on the properties of the edges. The framework diagram for this analysis is
shown in figure 4.16. Edge Flow applied this but used a temporal component for motion
which aligns with the Biederman model but not that of Wertheim (because in his model, he
proposed separating temporal and spatial information, applying them in separate processes).
This new method explores the application of Edge Flow concepts in the spatial domain, and
restoring temporal information (to allow for motion perception), after texture patches have
been detected.

Fig. 4.16 Conceptual framework for human object detection, [18]

Working with this information, we can construct an artificial equivalent that focuses on
extracting the edge contrasts within the optical field of a camera and determines particular
textures. Separately we can apply motion perception and understanding in an independent
parallel paradigm to the object detection and identification. Some methodologies take a
different approach and consider detection as a computational modelling perspective.

4.5.1 Traditional object detection and image segmentation

There are many widely used approaches for object detection in camera produced images,
with broad contextual differences. Background subtraction, [111], works where the camera
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is stationary and the aim is to detect the moving objects in the scene. The aim in motion
estimation [145] and optical flow [55] is similar to the background subtraction but com-
pensating for any camera motion [126]. In each of the detection schemes, assumptions
are made about the content of a scene [48] or apply contextual restrictions on the scene
based on holistic viewpoints [54] or probabilistic modelling [144]. Each technique targets
the detection of moving objects. The constraints applied when making assumptions about
a scene enables a measure of success for many of these techniques. However, in a busy
surveillance scene the number and different types of objects can be broad and unpredictable.
This can result in false detections and misrepresentations of objects using these approaches.
Image segmentation [143] is used to divide and classify detections within the visual scenes
without applying the assumption of motion; in fact, there is no motion preservation in image
segmentation techniques. Image segmentation is applied to a single image and can be carried
out sequentially over a sequence of frames to achieve detection in a video stream. A number
of research papers look into improving each of these methods, by the accuracy of the detec-
tions or decreasing computational load to achieve the same results on hardware with a lower
computational capability [68], [24], [71], [26], [150].

4.5.2 Edge Detectors

Edge detection [23] is used as an object boundary detector and can be used in isolation in
both static and moving environments or to reinforce segmentation [140, 101]. The edge
detector described by Canny [23] uses a Gaussian kernel convolved with an input signal
to determine the location of an edge. In the case of a one-dimensional signal it finds the
peaks, troughs and changes in the signal. There are many different types of edges, and the
method can distinguish between ”square” edges, ”roof” edges and other profiles. In the two
dimensional plane, i.e. an image, the kernel also has to be convolved in two dimensions. The
resultant values are then assessed by using a Sobel operator to fully understand the gradient
directions and magnitudes of the convolution. The complexity of the calculation is in the
kernel convolution, with the Sobel operator being a relatively low cost action. One of the
limitations of using these kinds of edge detectors is that little is suggested about the internal
structure of any objects. The detector does not impart which edge is part of which object or
whether it is part of any object at all. Therefore, to consider finding objects or texture patches
in a scene, some additional edge or object boundary information is important.

The proposed new approach does not make assumptions about the video stream, and
concentrates on emulating what the human vision system does to separate objects whilst
maintaining the separation described by Wertheim [153]. The primary function of the method
described here, which we have dubbed Edge Flow, is edge or boundary detection between
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textures, and imparting greater detail about the internal structure of each texture. Whilst
the Canny solution detects edges, it does not extract further gradient information, merely
whether it is an edge or not, and of what type (ramp, roof etc.). Edge Flow extracts the
magnitude of the change in contrast and the rate of change (gradient) of this magnitude which
provides a much more detailed information set about the texture patch. The ultimate goal of
the Edge Flow method is to replicate the framework set out by Biederman [18] in an artificial
environment.

4.6 Methodology

To solve the identified limitations of Edge Flow and to follow the Wertheim visual perception
model, the framework is modified by changing from the time domain to the spatial domain.
This method, which has been dubbed Within-Image Spatial Edge Flow (WISE), is more
capable than the Edge Flow technique [98] because of the ability to detect static objects
when the camera platform is also static. Throughout the work presented, there have been
many references to existing techniques that assume foreground objects of interest must be
moving or changing in some way and can only detect such objects. The improvements of the
Edge Flow method do the opposite; at the detection phase all object edges are important until
a semantic process deems otherwise. The analysis differs in that it uses a single frame as
opposed to a sequence of frames as with the time domain analysis. That effectively means
that every object in the scene is stationary. The motion of objects is restored at a later stage
by applying optical flow; referring back to the logical steps of human vision, where the
detection of objects and relative motion are thought to be treated separately [152]. As with
the Edge Flow method, density estimation [7] is used in this method. The modification is a
change to how the density estimation is applied to the image. The changes are outlined in the
updated flow chart for WISE, see figure 4.17.
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Fig. 4.17 WISE components, and in green, the output at each component stage

4.6.1 Windowed Density Estimation applied in the spatial domain

The application of the WiDE technique in the XY plane is detecting changes in pixel colour
density in the X and Y spatial directions yielding two density estimation images. The WiDE
equations remain the same as in the Edge Flow method (section 4.2, [98]). However, the
window no longer represents how many frames the density is observed over, it is how many
pixels the density is observed over.

4.6.2 Gradient Estimator

The gradient estimator is applied to the XY plane images in a similar manner to the Edge
Flow method. The X plane density estimation is applied with the Y Sobel operator, and
similarly the Y plane density estimation is applied with the X Sobel operator. This is because
the X plane density estimation will only detect significant lateral changes from objects
orientated between vertical and 45 degrees from vertical. As observed from the previous
gradient estimation, it is the Y filter that best represents these transitions. The same principle
applies with the Y plane, X Sobel operator application.
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4.6.3 Contiguous Edge Linking

WISE uses an updated edge linking method which groups adjacent pixels that are within a
set gradient range as before, however, this method does not make the assumption that each
texture patch is rectangular. It maintains an irregular area of influence around the contiguous
pixels to enable the merging of adjacent edges with the same parameters. The update to
the method ensures that edges not part of a texture patch cannot be inadvertently added to
an edge due to its rectangular nature; a problem that is present when using the Edge Flow
edge linking. Each pixel now has its own single pixel area of influence which is not adjusted
in all dimensions each time a new pixel is linked with an edge; the edge shape changes to
incorporate the new pixel, without over-extending the area of influence of the existing pixels.
Figure 4.18 illustrates how the edge area of influence updates. The edge linking method still
has the two parameters associated with it and they operate in exactly the same manner as the
Edge Flow contiguous edge linking.

Fig. 4.18 An illustration on how the edge influence (and thus membership) propagates across
the image

Computationally, to enable the irregular edge shape, a modification to the linking proce-
dure is also required. The pixels adjacent to the current pixel are not immediately added to
the edge; a flag is set instead indicated to which edge this pixel should be added. The pixel is
only added to the edge when it is the current pixel being analysed - consequently its area
of influence is also then assessed. The proposed methodology can be summarized in the
following steps:
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1. Working from the top left of each image (x-plane and y-plane Sobel images) find the
first pixel with a gradient value outside the acceptable gradient exclusion range.

2. If the pixel does not have an edge flag set, create a new edge starting at this pixel;
otherwise link the pixel to the edge indicated by the flag. In this case, update the edge
mean gradient.

3. Assess the area of influence; 1 pixel either side of the pixel. Important: The area of
influence extends into both Sobel images - this enables the merging of objects from
the x and y shifted images into a single frame. If a neighbouring pixel is within the
density adjacency range of the edge and has no flag set; set the flag of the pixel to be a
member of this edge. If a flag is already set, add the edge number of the current pixel
and the edge number of the neighbouring pixel to the merge list. Later, this list is used
to establish which edges overlap each other for the merger purposes.

4. Repeat steps 2 to 4 until all pixels in both images have been linked.

5. Filter the edge merge list to only include single instances of a pairing.

6. Merge overlapping edges into a single edge by adding pixels from one edge into the
other.

7. Calculate the centre point of each edge boundary, this is done by assuming a rectangular
formation to simplify the calculation for each texture patch.

At present, the WISE edge linking method lacks full autonomy due to the requirement
of setting a gradient similarity parameter to inform the linking process. However, with the
deployment of the system in scenarios with different detection objectives it may be preferable
to provide the analyst or operator with a manual ability to adjust the gradient parameters
on system initialisation. The parameters are not fixed for the life of the system, and can be
changed on-line should the objectives of a scenario change.

4.7 Results of Experiments with WISE

The WISE method was tested against the same experimental scenarios as Edge Flow. The
experiments are presented in two sections. Section one tests the core components of the
algorithm (edge detection and edge linking) with existing methods (edge detection and image
segmentation), and section two focuses on the overall performance compared to the results
seen with Edge Flow, Motion Estimation and Optical Flow.
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4.7.1 Edge Detection Results

(a) (b) (c)

Fig. 4.19 This set of images shows the results of the WISE technique when applied with
different window sizes. (a) is with window size 2, (b) is a window size of 3, and (c) is a
window size of 4. The Sobel filter has a consistent size of 7x7 for each image

(a) (b) (c)

Fig. 4.20 This set of images shows the results from changing the size of Sobel filter from 3x3
(a), 5x5 (b) and 7x7 (c) with the WiDE window size set to 3.

For the edge detection results, a false colour overlay has been used to illustrate the varying
gradient magnitudes and directions of the density from the Sobel filter application. In
each case, the actual false colour value varies due to the colouring algorithm selecting the
distribution of colour based on the maximum and minimum gradient values across the input
frame. Where there is little variance the colour scheme appears similar. The purpose of this
is to highlight the importance of gradient variance and uniqueness to produce an interpretable
dataset. The first set of results is WISE tested on the helicopter video scene. In each of
these figures a 7x7 Sobel filter is used, and different levels of windowing across pixels to
show the variance of quality as the window size changes. The combined image is created
using additive distancing with the X and Y Sobel images such that the negative gradient
information is not lost. When a window of 2 pixels is used, the image is poorly defined and
some edge components are missed, figure 4.19(a). In figures 4.19(b) and 4.19(c) the window
size of WiDE is extended to 3 and 4 respectively. We can see that as the window size is
increased each of the detected edges are more defined and pronounced than that of figure
4.19(a). The window size of 4 is such that some of the edges are defined thicker than the
edge boundary in the frame however the definition of the fainter lines such as the yellow road
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markings are more pronounced with a larger window size. The results suggest that in a scene
where the requirement is to detect faint texture patches in a scene, a larger WiDE window size
should be used. Conversely, in a scene with small, narrow texture patches, a smaller WiDE
window size should be used to avoid the overly large line thickness interfering with the output
definition. Adjusting the size of the Sobel filter has a different effect to the change in density
estimation window size. The Sobel filter influences the local area of a pixel and its density
disparity across the frame. With a larger Sobel filter, there will be a smaller distribution, of
higher variance of pixel gradients in the frame, and with a smaller filter there will be a larger
distribution of smaller local variance of gradient values. The effect of modifying the Sobel
filter size is shown in figures 4.20(a), 4.20(b) and 4.20(c). A consistent window size of 3
pixels is used in each case and the filter sizes are 3x3, 5x5 and 7x7 respectively. The colour
scheme, as before, represents the distribution of density values across the input frame. In
figure 4.20(a), the gradient values have a sufficiently small distribution so that the colour
variance across the scene is similar and does not yield clear differentiation of the output
gradients. As the filter size is increased to 5x5, figure 4.20(b), the distribution of gradients
and thus separation of the gradient edges is greater and clearer. Extending to 7x7 yields a
sharp, crisp display of varying gradients in different areas across the scene, figure 4.20(c).
If this is the trend, the question is why not use an infinitely sized Sobel filter to achieve the
greatest gradient separation? The drawback with larger and larger Sobel filters is that there
would be no consistent edges from which to cluster given the increased global variance that a
larger Sobel filter yields. A frame sized Sobel filter, for example, would not only increase the
processing requirements, but the locality of the change would also be lost; no longer would a
pixel’s gradient be a locally based variance. It is therefore important to achieve a balance
between the locality of gradients and the distribution of gradients across the scene. In all
cases of the spatial domain analysis, the ghosting problem in Edge Flow has been resolved.
In these examples we can also see the groundwork of how the approach is able to be robust
in occlusion scenarios. In the analysis of the road cracks imagery, note that the gradients or
colour change accelerations between the motorbike, car and the road cracks are significantly
different, figure 4.20(c). This factor provides an excellent feature differentiation when it
comes to clustering, allowing both objects to be distinguished separately.
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4.7.2 Edge Linking Results

(a) (b) (c)

Fig. 4.21 Here is a range of visualisations for the clustering results of WISE. The first (a)
is a view of the clustering, using a bounding rectangle to include the pixels that represent
and individual texture. The bounding box image is included to highlight the extent of each
cluster and reinforce that the clusters are separate distinguishable textures. Both the (b), and
(c) images show the actual pixels of a cluster represented with a colour overlay.

(a) (b) (c)

Fig. 4.22 Clustering results for WISE applied to the busy road intersection scene, introducing
a greater 3D differential for the algorithm to handle. Figure (a) shows the rectangular cluster
representation. Figures (b) and (c) show the clusters pixel-wise using a colour overlay. One
is just the cluster pixels (b), and the other is the cluster pixels overlayed onto the original
image (c)

The clustering results are displayed in two different styles to aid with visualisation. The red
rectangular clustering shows the extreme boundaries of each dimension (x and y), and the
colour overlay visualisation shows the actual boundaries of the clusters as they are arbitrary
shapes. For the colour overlay, false colours are used. Due to the number of clusters formed,
the colour values can be similar enough to look as if they are part of the same cluster. The
two representations are necessary to illustrate the cluster separation (figures 4.21(a) and
4.22(a) and to show that the actual cluster dimensions are irregular not rectangular (figures
4.21(b), 4.21(c), 4.22(b), and 4.22(c). When clusters are narrow, 2 pixels or less wide, the
bounding box method cannot draw the bounding box however the clusters are shown in the
overlay images. This is particularly observable with the yellow road markers in figure 4.21.
In figure 4.21(a) there is an example of the occlusion separation capability of the algorithm.
The road crack is shown to be moving underneath the car, however there are two clusters
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formed despite this occlusion; the car cluster and the bounding box representing the road
defect cluster.

To produce these results, the full WISE algorithm was operating at 60ms per frame on an
Intel Sandy Bridge 2700k processor, using four cores for the density estimation component
and a single core for the remainder of the components.

The WISE algorithm is compared with the Canny edge detector, Edge Flow, and two
image segmentation techniques, Mean shift and Grab Cut, to explore the difference in
performance and fidelity of the work. The reason for the selection of these techniques for
comparison is that they do not make any assumptions about the scene, nor do they have any
semantic derivation component.

4.7.3 Edge Detection Comparison

(a) (b) (c)

Fig. 4.23 Edge detection results for WISE (a), Edge Flow (b) and Canny Edge Detector (c)
applied to the helicopter scene

(a) (b) (c)

Fig. 4.24 Edge detection results for WISE (a), Edge Flow (b) and Canny Edge Detector
(c) applied to the busy road intersection scene, introducing a greater 3D differential for the
algorithms to handle

The Canny edge detector, figure 4.23(c), successfully detects the main edges in the helicopter
scene and joins up the boundary of the textures. The car and motorbike are distinguishable
along with the white side object and the road markings. A drawback however is that all
other minor colour variances are detected as edges including differences in grass texture.
This yields a cluttered set of detections and masks clear definition of road defects and earth
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disturbances on the verge. In contrast, both the WISE and Edge Flow technique create a
clearer separation of the textures of the scene. Edge Flow introduces some ghosting of edges,
and some edges are wider than the definitions in WISE. The Canny Edge Detector has already
made the connection of boundary edges such as the car, motorbike and object on the side
of the road whereas WISE and Edge Flow have not made that determination at the edge
detection stage. In the more complex scene 4.24(c), the edges of the houses, the lamp post
and foreground car are well defined and clearly separable. The difficulty with the Canny
edge detector comes where the minor variations in cloud cover have all been considered as
edges as well as some of the other objects combining together to form an unclear picture.
The performance of WISE in the simple picture is much clearer and more interpretable than
the Canny approach and separates static, moving and occluded edges The ghosting effect
with Edge Flow is much more apparent in this scene leading to multiple lamp posts being
visible in the results. Some of the detections from WISE appear as partial edges at this stage.
The definition of partial edges is improved during the edge linking process.

4.7.4 Edge Linking (Texture Patches) Comparison

(a) (b) (c)

Fig. 4.25 These images show the comparison of Grab Cut (a), Mean Shift (b), and WISE (c)
on the helicopter scene

(a) (b) (c)

Fig. 4.26 These images show the comparison of Grab Cut (a), Mean Shift (b), and WISE (c)
on the helicopter scene

When considering the image segmentation approaches, the grab cut algorithm does not
perform well with an entire scene. Both 4.25(a) and 4.26(a) are whole scene selections
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with grab cut. In the case of the first frame, the road is identified as a separate segment
and so is the white object on the side of the road. There is however no clear separation of
the car and motorbike from the road. Object separation was only achievable when grab cut
is applied to a selected small area of the scene. Similarly, in the second image very few
objects are segmented by the algorithm. Only when the selection area is reduced does the
grab cut algorithm extract the house and car as separate objects. The processing time of the
Grab Cut technique was 2 seconds per whole frame, and reduced to 500ms when smaller
areas of the frames were selected. Mean-shift has more success with both of the images
4.25(b) and 4.26(b). The simpler scene is well segmented with the verge, car, bike and white
object all separated. The road markings and defects are also segmented well. The image
is somewhat over-segmented, detectable by the many internal false colours to each texture
patch, suggesting that the mean-shift algorithm is detecting the minor variances in surface
texture or luminance and creating smaller internal segments. The more complex scene is
segmented well with the houses, car and lamp post easily distinguishable. The light blue
area represents an area where the dark side of the house and the hedge row have not been
separable and are thus represented by one large segment. Despite excellent segmentation
performance, the processing time is an order of magnitude slower than any of the other
techniques (>5 seconds using an Intel Sandy Bridge i7 2700k processor). The texture patch
segmentation of WISE in the first frame performed better than Grab Cut, and was similar
in performance to Mean Shift segmentation. There was less over-segmenting of objects,
which makes the scene appear less cluttered. Over segmentation can be avoided by WISE by
adjusting the clustering parameters. The complex scene is different with foreground objects
segmenting well into textures. The glass part of the car, bodywork, and wheels are segmented
into different areas, along with road markings and the house being clearly separate texture
patches. Further into the 3-dimensional depth of the scene the texture patches are less clear,
however parked cars and buildings are consistently separable. The processing performance
of the WISE algorithm was 80ms per frame using an Intel Sandy Bridge i7 2700k processor.
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4.7.5 Overall performance results

(a) WISE showing texture patch extremes (b) WISE showing the pixels that make up the
texture patch

Fig. 4.27 WISE applied to the helicopter scene.

(a) WISE showing texture patch extremes (b) WISE showing the pixels that make up the
texture patch

Fig. 4.28 WISE applied to the dashboard scene.

(a) WISE showing texture patch extremes (b) WISE showing the pixels that make up the
texture patch

Fig. 4.29 WISE applied to the UAV scene.
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4.7.6 Analysis of the WISE Method

The WISE algorithm divides a scene into many more texture patches than the original
Edge Flow approach.The results are appended to the Edge Flow tables 4.2, 4.3 and 4.4.
WISE operates at a slower frame rate compared to Edge Flow (see table 4.5) and this
can be attributed to the number of texture patches WISE is detecting. The computational
performance of the method is proportional to the number of texture patches that are detected
and defined (edge linked) in the frame, not the resolution of the frame as with many of
the other pixel based approaches (e.g. [97], [126], [150]). Typically in a higher resolution
image, there will be more texture patches to detect but this is not always the case. This
performance correlation means careful management of the number of texture patches detected
is required by adjusting the edge linking parameters - making the approach less assumption-
free than desired. As a result the parameters used in WISE can have a large effect on the
performance of the algorithm. If the candidate edge gradient parameter is too small, the
technique detects every minor texture change in the scene, and each shows as a separate
texture patch. The WiDE component of WISE increases linearly with the increase in the
number of pixels processed. Empirically (over thousands of frames, with three different
resolutions) processing time was found to increase by 79% for every 100% increase in pixels.
However WiDE only makes up a small proportion of the processing time required (circa
20%). Experiments with processing time relative to the number of objects in a frame show
that on average the algorithm takes 29.8 µs per object with a standard deviation of 6 µs.
The object processing time calculation was conducted over a several hundred frames with
three video sequences (the videos used for comparison here). The table for the WISE time
performance for each frame in this testing can be found in Appendix B. In the results, the first
two frames and the last frame are not counted. This is because on initialisation the processing
time for the first two frames is longer, and on completion the final frame also takes a longer
processing time. Including these frames in the object processing time comparison would
incorrectly bias the results. In the experiments, the candidate edge gradient parameter was
set at 5.0. That is gradients have to be within +/- 5.0 of the pixel being processed to be linked
into an edge. The selection of this parameter was empirically derived through observations in
several video sequences. A higher value begins to link clearly separate objects, and a lower
value divides the scene into too many small individual textures that do not form large objects,
and a large overhead in terms of processing. The Helicopter video, figure 4.27 shows several
more smaller detections, and individual objects (such as car or motorbike) are divided into
smaller text patches. Two display methods are used for this set of results, the first which
is the same as Edge Flow, is done to enable direct comparison with the Edge Flow results.
The rectangles do not represent the actual edge boundary, just the min / max of x and y
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of each texture patch. The second display shows the actual extent of each texture patch,
which is an irregular convex hull of the pixels in the texture patch. The colour scheme is a
simple RGB rainbow that cycles through each texture patch that has formed (hence some
clusters appearing as the same colour). The results throughout produce tighter results around
textures that are different in the scene, and the texture patch linking over occluding objects
that happened in Edge Flow does not happen. For example, in figure 4.27(a) the road crack
under the motorbike is clustered separately to the motorbike, even though for a period of
time the motorbike occludes the crack. In figure 4.28 the white van is no longer clustered
with part of the white line as with Edge Flow, it is a separate texture patch. It is in fact several
separate texture patches, making up the perimeter of the van and a separate texture patch
for the van writing, the van latch handle and the light clusters. In the UAV scene, figure
4.29 the algorithm detects the main scene texture patches such as the paths, the lake, the
buildings and town and cars on the road. Where there is a common texture, such as the
forest, only major darkness changes are detected as texture patches, due to the parameter
selection made for the experiment (insufficient density gradient to form an edge). There is
one lake on the edge of the forest that is not detected. Compared with Edge Flow there is a
greater number of detections, and more of them are true positives. However, because of the
parameter selection, there are also a large number of false positives where a texture patch has
a partial edge detected but the entire edge is suppressed by the parameter exclusion.

4.8 Discussing the WISE algorithm

The development of the WISE algorithm set out to address issues and drawbacks with current
available detection algorithms whilst maintaining a real-time performance capability. In the
case of object detection, many of the current approaches detect only moving objects in a video
stream whether the camera is moving or not (section 2.2.6) and are not robust in occlusion
scenarios, section 3.3. WISE has demonstrated the capability to detect both static and moving
objects independent of relative motion and that it is robust in object occlusion scenarios.
When compared with edge detection or image segmentation techniques the algorithm’s visual
fidelity is at least as good as existing techniques. The additional benefit of WISE is that it
extracts information about the context of each texture or segmented object by describing the
colour boundary properties of each edge. This information could later be used in conjunction
with semantic reasoning modules to identify the objects in a scene. The WISE algorithm
proposed here has advantages over the algorithms to which it has been compared because the
algorithm:

• Detects both static and moving texture patches independent of the motion of the camera
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• Is robust to occlusion

• Reduces in edge clutter in complex scenes

• Produces feature-rich edges that improves texture patch differentiation appropriately
for later stage semantic derivation

• Is real-time

The limitation of WISE is in the parameter selection required for texture patch detec-
tion and definition. A different parameter selection value produces different results. This
parameter selection at the moment is application specific and is an assumption made by this
method. Chapter 1 discusses the feedback methodology proposed with the cyclic framework,
and the intention is, in future work, to develop this such that the parameters of WISE are au-
tomatically selected based on the detection constraints or requirements of semantic reasoning
components. At this stage, part of the model proposed by Wertheim [153] has been emulated
with WISE but no motion perception has been done. In order to complete the model in [153]
motion perception is required.

4.9 Motion Perception with WISE

For the most part, optical flow is an intractable real-time component for object detection
due to the number of pixels required to analyse. This problem can be reduced if optical
flow is only applied to a subset of pixels of an image. In order to get motion perception, the
proposal is to use four extreme points and the centre point of each texture patch as pixels for
optical flow. The reduction in calculation points allows modern optical flow to be applied in
real-time with little overhead to the processing chain. Optical flow was initially proposed by
Horn and Schunck [55] and Lucas and Kanade [81]. There are many variants of optical flow,
many of which are used on stereo cameras [149] [146]. For this task, an efficient monocular
optical flow method is required. [157] is an up to date real time optical flow method called
TV-L1 optical flow which represents an improvement in accuracy and processing speed and
is later improved by Wedel [150] which optimises the algorithm further and this is the optical
flow used for this experiment. The component model of WISE is also updated to reflect the
motion perception component, figure 4.30
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Fig. 4.30 WISE components with optical flow addition

To maintain consistency, the video sequences used in the WISE experimentation are also
used to show the results of optical flow added to the WISE components.

4.9.1 Performing Experiments with the Motion Perception Restora-
tion

Fig. 4.31 WISE and Optical Flow applied to the helicopter video
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Fig. 4.32 WISE and Optical Flow applied to the dashboard video

Fig. 4.33 WISE and Optical Flow applied to the UAV video
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Fig. 4.34 Additional frame with greater UAV motion

4.9.2 Analysis of the Motion Perception Component

To remove some clutter, only the centre point optical flow is shown in the images (the optical
flow was applied to 5 points of each object, extreme corners and the centre point). The results
show point wise optical flow applied to each of the candidate objects. In figure 4.31 the
motion of the camera gives stationary objects such as disturbed earth and the white object on
the side of the road a flow in the opposite direction to the camera movement. Meanwhile the
motion of the car and bike are different due to their motion relative to the camera. The motion
perception will allow the separation of the car and bike objects from occluded scene objects
around them (such as the crack in the road). The second test video, figure 4.32 contains
more motion variables as the dashboard is completely stationary relative to the camera, the
road furniture is moving in a z-axis direction toward the camera and the cars are moving at a
similar speed to the dashboard camera, with some lateral motion as well. There are also six
erroneous points that are not representative of objects motion (identified by the large optical
flow vectors on the left of the image), and can be considered as noise. Because the car is
travelling around a bend in the road, the motion vectors of the road furniture on the left are
of greater magnitude than that on the right of the frame. The UAV video, figure 4.33, has
multiple axis of motion, however in this particular frame it happens that the UAV motion is
minimal (hence barely visible motion vectors on the stationary objects). The moving objects
to the bottom left have a magnitude that is different because these objects are moving along
the road, and thus relatively different to the UAV motion. The full videos with the optical
flow of other frames which show the motion of the UAV is available from Morris [96]. An
additional frame has been included in these results to show the usual motion vectors seen by
the UAV. In figure 4.34, the UAV is moving in a rotational pattern. Thus the motion vectors
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of stationary objects in each quadrant of the image are different. Objects that are moving
do not have the rotational motion vectors, and could be separated out from the other objects.
The application of optical flow is not image size dependent, it is number of objects dependent.
Thus in a high resolution frame of only a few objects, the performance penalty is the same as
a low resolution frame with the same number of objects. In these experiments, it happens
that the UAV scene, which is 1920x1080p resolution also has the highest number of objects
in it. An estimate for the optical flow penalty per object is 3 ms per object. This is based
on a calculation of the time increase of processing a frame with optical flow divided by the
number of objects in the scene, and averaged over each result.

4.9.3 Conclusions on Motion Perception

The addition of optical flow to the processing shows motion perception of each object,
which will be useful when characterising objects later on. Isolation of static objects and
other moving objects can become difficult in rotational scenarios where static objects in
different quadrants of the image exhibit different motion directions, figure 4.34. The usage
of optical flow for motion perception is suboptimal with the quadrant issues and further
work to improve the motion perception could be carried out to solve this problem. One
possible area for exploration is the unification the Edge Flow (time domain) and WISE
(spatial domain) methods so that the optical flow calculation for motion perception is not
necessary or required. This would remove the estimation error factor of optical flow and
reduce the processing resources needed. This proposition could aid in solving the motion
disparity issue of 2-dimensional cameras. The motion perception as it is, can be used as
features for building semantic reasoning models that can characterise and distinguish between
the texture patches across the scene however care will need to be taken in complex motion
scenarios on the interpretation of motion.



Chapter 5

Comparative Results

The previous chapter analysed the functional performance of Edge Flow and WISE in iso-
lation, with some references to existing techniques for illustration. This chapter provides
a comprehensive set of comparisons with existing techniques and the analysis of perfor-
mance of WISE in the context of what each algorithm sets out to achieve. In some of the
comparisons there is a strict detection requirement (object segmentation methods), that have
been predefined by the authors of the work. They predominately use some form of training
to achieve the object selection. In each case, the data set used in the corresponding work
is applied to WISE, such that a representative comparison can be provided with the work
presented in their respective papers.
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5.1 Edge Detection

5.1.1 Experiments With Different Edge Detection Methods

(a) (b)

(c) (d)

(e) (f)

Fig. 5.1 (a) Original Image (b) Fuzzy Edge Detector [65] (c) ACO edge detector [79] (d)
Neural Network edge detector [13] (e) Genetic Algorithm edge detector [17] (f) Universal
Gravity edge detector [139]. Images obtained from [1]
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(a) (b)

(c) (d)

Fig. 5.2 (a) WIDE with window 2, (b) WIDE with window 3, (c) WIDE with window 4, (d)
WIDE with window 5
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Fig. 5.3 Edge detection results from [33] for fast edge detection using structured forests

(a) (b) (c)

Fig. 5.4 (a) WIDE on people with window of 4, (b) WIDE on barn picture with window of 4,
(c) WIDE with window of 6 on coyote picture

5.1.2 Performance Analysis of Edge Detection Results

The overall technique of WISE is designed for object detection. WIDE, a component of
WISE, is an edge detection method and forms the basis of object detection (much like the edge
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Table 5.1 The performance of different edge detection techniques on the BSD500 [10] data
set obtained from [33] and compared with the WIDE technique over 3 different window sizes

Algorithm ODS OIS AP FPS

Human .80 .80 - -
Canny .60 .64 .56 15

Felz-Hutt [39] .61 .64 .56 10
Hidayat-Green [53] .62 - - 20

BEL [34] .66 - - 1/10
gPb + GPU [25] .70 - - 1/2

gPb [10] .71 .74 .65 1/240
gPb-owt-ucm [10] .73 .76 .73 1/240
Sketch tokens [76] .73 .75 .78 1

SCG [119] .74 .76 .77 1/280
SE-SS, T=1 [33] .72 .74 .77 60
SE-SS, T=4 [33] .73 .75 .77 30
SE-MS, T=4 [33] .74 .76 .78 6

WIDE, (a) .76 - - 250
WIDE, (b) .78 - - 250
WIDE, (c) .69 - - 250
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detection in some image segmentation methods [10]). Because of this, a comparison with
existing edge detection methods was made. The comparison is over a range of different edge
detection methods, from early methods such as shown by Canny [23] to the latest hierarchical
learning methods [10]. Figure 5.1 shows the methods when applied to a stationary image
obtained from the OpenCV database. The methods presented here apply their edge detection
to greyscale images and as such the source image must be converted into greyscale, the
other detection methods presented work with contrast and brightness boundaries. In each
of these samples, clarity of the object boundaries in the image is lost with the universal
gravity detector performing the best in terms of clarity. Figure 5.2 shows the WIDE technique
applied to the same image over 2, 3, 4 and 5 window sizes. These sizes were selected to show
the progression of edge clarity over several window sizes. The window size of two provides
very faint edges which highlight texture edges more than the outline object boundaries (for
example the hair is more pronounced than the figure outline). Window sizes of 3 and 4
provide a clearer output of edges with the window 4 giving slightly better defined edges
around the hat rim and background textures. A window size of 5 provides the clearest outline
of the edges, but the problem of overly thick edges begins to creep in and distorts the clarity
of the hair texture due to this over thickness, much like that seen in figure 5.1 where the
thickness of edge boundaries interfere with object textures. The edge detection methods
shown in figure 5.1 outperform the WIDE method in terms of definition of each edge that is
detected. This is because the edge is defined as binary - present or not, where as the WIDE
method provides a measure of significance to each edge shown by the varying greyscale
output.

A newer edge detection technique, using Hough Forests [33], is shown in figure 5.3. In this
figure, obtained from [33], there are three source images, three ground-truth images obtained
by manual input by humans, a Sparse Code Gradients (SCG) method developed in [119] and
the results for the Hough Forests method. Figure 5.4 shows the results for WIDE applied to
the source images. Table 5.1 shows the comparison results of these methods, and a selection
of other edge detection methods. The table lists two F-measures (defined in nomenclature)
of the results and the average performance (AP). The first F-measure is the optimal dataset
scale (ODS) and the second f-measure is the optimum image scale (OIS). A number of the
techniques use image scales to aid with edge and boundary definition, similar to the keypoint
detection techniques of SIFT [78] or SURF [14] reviewed in chapter 2. WIDE does not use
scale space measurements, and thus the result compared to the ground truth is listed in the
ODS column only, a separate result for each image; the table results obtained from Dollár and
Zitnik [33] show the optimum results from the three images, and the average amalgamates
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the results from each source. Because there is no scaling in WIDE, it was decided to list each
image result separately, given the varying difference between the results for WIDE. In the
first two images (left to right) the WIDE technique performs better than the SCG method,
and is comparable to the Hough Forests (SE) method at both single scale and multi-scale.
The SE method has better definition of the primary edges much like the ground truth image
whilst WIDE provides greater detail on the internal textures of the boundaries, at the same
time maintaining good discrimination of key edges. The ground-truth images do not take
texture edges into consideration and thus the comparison is limited to the primary edges
in this case. In the third image, the WIDE technique needed to have an extended window
size to produce any meaningful results, and the window size of 6 was arrived at through
experimentation (4 did not produce significant boundary edges). Compared to the ground
truth and the SCG method, WIDE produces a similar level of result with some extra texture
boundary information. SE performs better in this case, with well defined edges around the
animals. One possibility of the poorer performance of WIDE in this image is the texture
similarity. Given that the method is designed to extract texture differentials, the gradients of
the changes across the image will be smaller. Thus the greyscale produces much fainter lines,
that whilst not white, are close enough to look like missed edges.

The final column in the table shows the processing time of each method. This is where the
WIDE method shows the designed performance characteristics by being significantly faster
(more than 30 fps) than any other method tested here. The hardware used for the performance
comparison was a 2.6 Ghz Intel i7 using a single processing core. The headroom afforded by
the efficient processing allows additional components to be introduced into the processing to
extract objects from the scene, as described in chapter 4.
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5.2 Image Segmentation

5.2.1 Experiments With Image Segmentation Methods

(a)

(b)

(c)

Fig. 5.5 A selection of varying Image Segmentation techniques applied to the BSD database.
(a) Ultrametric Contour Map [10], (b) Edison and IHS Image Segmentation methods [158],
(c) Bottom Up Aggregation [3], SWA V1 [46], Normalised cuts [84], Mean-shift [27]
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.6 WISE applied to the images used by other techniques. The leftmost image is the
actual pixels of the detected texture patches overlaid on the original image. The rightmost
image is the individual texture patch boundaries. (a) and (b) Giraffe, (c) and (d) Woman with
a baby, (e) and (f) Surfer
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.7 WISE applied to the images used by other techniques. The leftmost image is the
actual pixels of the detected texture patches overlaid on the original image. The rightmost
image is the individual texture patch boundaries. (a) and (b) Eagle, (c) and (d) Bear, (e) and
(f) Ostrich
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Table 5.2 The performance of different image segmentation techniques on the BSD500 [10]
data set obtained from [10] and compared with the WISE technique over 3 different window
sizes

Algorithm ODS OIS Best

Human .73 .73 -
gPb-owt-ucm [10] .59 .65 .75
Mean Shift [27] .54 .58 .66
Felz-Hutt [39] .51 .58 .68

NCuts [84] .44 .53 .66
SWA [3] .47 .55 .66

Total Var [35] .57 - -
T+B Encode [117] .54 - -

Av. Diss [16] .47 - -
ChanVese [16] .49 - -
WISE, W=3 .73 - -
WISE, W=4 .79 - -
WISE, W=5 .78 - -

5.2.2 Analysis of the Image Segmentation Methods

Figure 5.5 shows a image results of a range of image segmentation techniques applied to the
BSD 500 dataset. Figures 5.6 and 5.7 show the results of WISE applied to the images of the
dataset. Each of the image segmentation techniques manages to separate the main textures of
each object in the scene, however details on the textures of the objects is lost. In the case of
figure 5.5 (a) the woman, baby and giraffe are well segmented as well as some of the objects
in the background. However any facial details and background texture details are lost such
that earth disturbances are not detected (dark earth to the bottom left of the image of the
woman). The Edison method in figure 5.5 (b) does well at segmenting the eagle and the sky
with better cloud resolution compared with the IHS technique. The result is different in the
surfer picture, with no surfer detection with the Edison method, but a good surfer detection
with IHS. This suggests that the Edison method is better at segmenting when the textures
of the objects in the image are similar. The bottom-up aggregation method in figure 5.5 (c)
performs better than the other comparative image segmentation techniques, with the animals
being clearly separated from the background.
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When compared with WISE, there are clear differences in what is detected. Similar to the
edge detection, the methods of image segmentation provide outlines of the major features
but the detail of each object is lost. WISE detects major objects but also separates the major
objects into smaller texture patches, such as eyes, hair and other object textures. Furthermore,
the technique of WISE does not need a greyscale input image as is the case with some of the
techniques presented here (Bottom Up Aggregation, SWA, Normalised Cuts, Mean shift).
The table 5.2 shows the empirical comparison of WISE with the methods presented in the
images as well as some other older techniques. The results in the table were obtained from
Arbeláez et al [10]. Compared to the ground truth, obtained from a human, the techniques
do not perform as well apart from UCM in its best possible outcome. WISE on the other
hand performs better than both the human and the other image segmentation techniques in
all image types. In terms of performance speed, WISE performs at 10 frames per second on
a single core of an Intel i7 2.6 Ghz processor. In the literature for the image segmentation
techniques presented here, there was no indication of the computational speed, however it is
possible to derive that the UCM method (the best of the rest in terms of accuracy) does not
perform at this frame rate (the Edge Detection component runs at 0.5 fps - see table 5.1).
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5.3 Detection by Classifier

5.3.1 Results of Image Segmentation by Classifier

(a)

(b)

Fig. 5.8 Results from different object detection by classifiers methods, applied to the YouTub-
Objects database [113]. (a) Hough Forest Object Detection [45], (b) Fast object segmentation
[109]
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.9 WISE applied to the datasets used by the methods presented above. The leftmost
image is the actual pixels of the detected texture patches overlaid on the original image. The
rightmost image is the individual texture patch boundaries.

5.3.2 Analysis of Detection By Classifier Methods

The detection by classifier methods are inherently offline methods - training data is required
before successful object classification can be made. Therefore the focus of this comparison
is more on the accuracy of the detections than speed of processing. The methods shown in
figure 5.8 show results where specific objects have been required to be detected. The Hough
Forest object detection shows that the classifier can detect specific objects such as people,
cars and horses with a low error rate. Three of the frames here show erroneous detections.
The fast object segmentation frames also show the capability of separating specific objects
from the scene. The accuracy of the methods are compared in table 5.3 and 5.4, with the
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Table 5.3 Comparison of the results presented by [45] with WISE over 3 different window
sizes

Algorithm UIUC-Single UIUC-Multi

Implicit Shape Model [70] .91 -
ISM+verification [70] .975 .95

Boundary Shape Model [106] .85 -
LayoutCRF [154] .93 -

Mutch and Lowe [100] .999 .906
Lampert et al. [69] .985 .986
Hough Forest [45] .985 .986

HF - Weaker supervision [45] .944 -
WISE, W=3 .95 -
WISE, W=4 .98 -
WISE, W=5 .98 -

Table 5.4 Comparison of the results presented by [109] with WISE over 3 different window
sizes

Algorithm Average F-measure

Clustering Tracks [109] .347
Automatic Segment Selection [21] .267

Fast [113] .653
WISE, W=3 .73
WISE, W=4 .79
WISE, W=5 .78
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former showing the classifier accuracy applied across a series of frames, and the latter the
f-measure for the fast object segmentation method - the measures are presented based on the
information available in the papers of each method. To compare with classifier accuracy, the
WISE method accuracy is determined on whether the object was detected or not - despite
other objects being detected by WISE. The results show that WISE consistently detects the
desired object at the same or better accuracy rating than Hough Forests, with the added
advantage that many other objects are separated and detected in each scene. The accuracy
with a smaller window size of 3 drops off, which is likely due to less well defined edge
boundaries before the edge linking process (see examples of smaller window size in section
5.1.1. The less than perfect accuracy can be attributed to the over-detection in some frames
by the WISE algorithm. For example in the cat video, the example shown shows several
texture detections on the cat, but no overall detection of the cat as a whole object. This can
be because the smaller detections do not have contiguity of an edge when the edge linking
process was carried out, thus forming several smaller texture patches of the main object. The
binary classification measure (detected or not) is insufficient to include the detections out with
the main object in the image, thus the F-measure is used (as seen in the other comparisons)
and this was also used in the fast object segmentation paper [109]. The measure for the
fast segmentation method is solely for the moving objects, static objects are not included in
the measure. For the WISE results, the measure was extended to all scene objects. When
compared with the Fast object detection method, WISE consistently outperforms the method
in all video sequences by detecting the moving objects as well as objects in the background.
In some frames the green box in the bird scene is a missed detection, which is because there
are several surrounding texture patches for the carpet detections. When there are as many
detections as there are for the carpet, the edge linking process can link to the incorrect edges
isolating some objects from registering as texture patches.

5.4 Conclusions on the Comparisons With WISE

The comparisons shown here demonstrate that WISE is an efficient new technique for
object detection, that operates in real-time whilst maintaining accuracy levels comparable
to competing techniques. The existing approaches shown here have specific, constrained,
detection criteria that limits the flexibility of these techniques in unknown environments. The
image segmentation and classifier techniques both need to be trained to detect or segment an
image according to predefined criteria. In contrast, WISE does not need training and enables
the detection of multiple object types in all scenarios regardless of camera or object motion.
Detections by classifier also make the assumption that the objects of interest are moving
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and do not perform well on objects that are static. Both the Edge Detection and Image
Segmentation methods here are applied to single image frames, and motion information
on the objects is not retained - this needs to be calculated separately. WISE on the other
hand maintains motion information through the usage of optical flow. The edge detection
performance of structured forests [33] out performs the WIDE technique in terms of accuracy,
however WiDE operates significantly faster in terms of frame rate. In applications where
computational speed is not a limiting factor it could be beneficial to explore the usage of
structured forests in the edge detection component of WISE. Some limitations of WISE were
exposed in the edge linking process where some texture patches were missed, and in some
cases the object is divided into several smaller texture patches but not a complete object.
The complete object formation from texture patches can be improved through using feature
analysis to link the similar and overlapping texture patches together.



Chapter 6

Working with WISE features

A UAV mounted video source conventionally sends the image to a ground based operator
who will identify objects of interest and make appropriate decisions. The more information
available on each object, the better the decision the operator can make, reducing operator
load and increasing system performance. This chapter describes the application of some
experimental concepts to the texture patches defined by WISE to better define objects in
the scene, and also to impart more information to each object. The methods described here
are not fully tested, however some example testing is presented to provide a demonstration
of concept. In each case, the focus is on real-time performance and an assumption free
methodology.

6.1 Online clustering providing temporal linkage

For any given video sequence, WISE detects objects and the instantaneous velocity of the
objects through optical flow (Chapter 4). The limitation is that the link between objects
detected in frame m and objects detected in frame n, is the calculated optical flow on the
pixels. This means a link between consecutive frames exists but not over a series of frames.
If the object between frames was to change size or move in an unexpected way such that
optical flow on some points produces errors, the link between objects, and thus contiguity
of recognised objects over a series of frames would fail. Linking the motion values over a
series of frames will also maintain the contiguity of texture patches forming the objects (see
chapter 3), instead of new texture patches having to be linked at each optical flow iteration.
The methodology proposed here offers a solution to this problem, by using a clustering
technique that evolves as new samples arrive. That is, should the direction and magnitude of
the motion from optical flow change, the cluster that currently represents that object will also
change to reflect the new spatial and temporal information for the object, yet maintaining
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the same object (cluster) identification. The limitations of the clustering techniques that
operate in an on-line, sequential operation are that they can be order dependant, do not run in
real-time, and cannot form clusters of arbitrary shapes (they are always a regular polygon
shape). A recently developed method by Hyde and Angelov [57] for clustering, named
CEDAS, operates differently and forms arbitrary shaped clusters that update in real-time.
The clustering of this method is also not order dependant. Applied to the candidate objects
outputted by the WISE method, the on-line clustering technique takes the spatial location
and motion magnitude and direction as input features. As the candidate objects move in
the scenario, the cluster centres are updated in an on-line manner with the new location and
optical flow information. By applying clustering in this context, it will allow tracking of
objects through a scene maintaining a cohesive object link between frames.

The concept was tested on a UAV video that produces a lot of WISE objects due to
mottled grass surface, and a person running in eccentric patterns. The mottled grass texture
also produces some optical flow values due to the vibration and slight motion of the camera
on board a test UAV. The video sequence was used because it is a simple scene with one
object of interest. The person runs in different motion patterns, in order to show that the
clustering of motion and location evolve along with the motion of the person. The results are
shown in figures 6.1 and 6.2.

6.1.1 Experimenting With CEDAS Clustering

Fig. 6.1 WISE objects detected, with optical flow and object boundaries
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Fig. 6.2 Clustering of the optical flow results using CEDAS. The x-axis shows angle of
motion (−π to π), and y-axis shows magnitude of motion, normalised between 0 and 1.
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(a) Frame 1270 (b) Frame 1271 (c) Frame 1272

(d) Frame 1273 (e) Frame 1274 (f) Frame 1275

(g) Frame 1276 (h) Frame 1277 (i) Frame 1278

(j) Frame 1279 (k) Frame 1280 (l) Frame 1281

Fig. 6.3 A series of consecutive frame analysis results from CEDAS, applied to the scene
with the person running in circles

6.1.2 Analysis of the CEDAS Results

Figure 6.1 shows the objects detected in the video sequence along with the optical flow
applied to each object. There are several detections because the grass has large tufts that
are different in texture to the regular grass patches. The person is running in a circle,
and generates different motion perception to the stationary objects such as the grass. The
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clustering method separates the large motion differences from the stationary objects, and
creates separate clusters to illustrate this, figure 6.2. This graph shows all the samples over
all the frames (dark blue points), green points represent the active samples for the frame,
and the coloured circles represent the micro-clusters that make up a cluster (clusters of the
same colour are the same cluster). The samples over the entire sequence are shown such that
over each of the frames here it can be seen where the samples are overall, and the evolution
of clusters as active samples influence the clustering. There are two outlier micro clusters
with the moving person, and the stationary grass creates separate clusters along the x-axis.
Clusters close to the x-axis are likely to be due to camera shake because the magnitude of
motion due to shake is small, but the angle of motion will be in different directions; if it
is rotational shake top left objects will appear to move in a different direction to bottom
right pixels. There are a number of active samples that are not clustered (green). They are
not clustered because the density is insufficient to create a new micro-cluster. A possible
explanation is that whilst the person was running quickly (high value on y-axis) the micro
clusters were formed, but as the person is slowing down (lower values on the y-axis) new
samples are yet to be incorporated until the person remains for a few frames at this slower
speed.

6.1.3 Discussing the CEDAS Method

The test results from using CEDAS shows that an adaptive separation of object movement
is possible. As the person moves around the scene the clusters update and mostly stay as a
cohesive cluster - but updating as the motion of the person changes. This has the benefit of
being able to maintain objects as being the same object over a series of frames as opposed to
just between two consecutive frames. In this particular test, motion magnitude (y-axis) and
motion direction (x-axis) were the features used. If there were two objects moving with the
same motion pattern but in different spatial locations, this method would have clustered them
together, which is undesirable unless we just want to characterise motion and not separate the
objects. By adding spatial location information to the feature set of the clustering it should
be possible to separate out the two objects.

6.2 Characterisation of objects

The aim of object characterisation is to apply a type to each object detected, based on its
feature set. This is achieved through the use of clustering. The objects that are detected by
WISE have a rich feature set that could be used to discriminate and assign a type to each of
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the objects. A large feature set implies that there can be greater division (number of clusters)
between objects, due to the increase in variance higher dimensions bring.

6.2.1 Available Features for Object Characterisation

The output from the WISE algorithm has several different features which provide a detailed
description of candidate objects, the internal texture and the perceived motion. There are
also features that can be mathematically derived to provide more dimensions to improve
object type separation (where needed). The following features have been extracted from the
detected objects:

• Length - A pixel-wise measure of the objects length. This is in the 2-dimensional
perspective of the camera

• Width - A pixel-wise measure of the objects width. This is in the 2-dimensional
perspective of the camera

• Area - A pixel-wise measure of the objects area. This is in the 2-dimensional perspec-
tive of the camera

• Number of pixels - The number of pixels that constitute the object.

• Size ratio - The height - width ratio of the object, in the 2 dimensional perspective of the
camera. Used in conjunction with motion, this could be used to derive 3-dimensional
size.

• Motion magnitude (pixels) - A measure of the optical flow magnitude for the object.

• Motion direction - A 2-dimensional orientation for the optical flow of an object. A
3-dimensional orientation could be achieved through the use of homography, similar
to that in 3

• Mean edge gradient - the mean gradient value constituting the perimeter of the object

• Standard deviation of edge gradient - the standard deviation of the perimeter gradient
of the object

• Mean colour (RGB) - the mean colour of the pixels constituting the object

• Standard deviation colour (RGB) - the standard deviation of the pixels constituting the
object
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• Spatial location (x, y) - the location of the object in the frame. This location is the
centre of the object, defined by the intersection of diagonal lines from the maximum
and minimum x,y coordinates of the object.

6.2.2 Clustering of features

In order to establish separation between object types, some method of clustering the object
features is required. If all the features are clustered it is likely that every object that has been
detected will be determined as a different type (similar objects will likely have a different
background). This means the features being clustered need to be pre-selected based on
some characterisation requirement based on operator or user interest. For example, a user
may be looking for small regular sized objects and thus the clustering could be performed
on the length, width, area and size ratio features. The clustering method used needs to be
real-time, and parameter free such that the selection of cluster parameters does not influence
the characterisation. An example of undesirable parameter selection could be cluster radius
or number of expected clusters because the spread of the data or the number of object types
in a scene is unknown. This removes some clustering techniques from consideration such
as k-means and fuzzy c-means which both use parameter selection to define the number of
clusters expected. Subtractive clustering and similar derivatives are not real-time and also
use a cluster radius parameter. Evolving c-means clustering is data order dependant which
is undesirable in an unknown environment, and mean-shift clustering is also dependant on
known data. The data is clustered on a frame by frame basis, so the technique used does
not have to be adaptive or on-line; all the data samples that need clustering will be available
at the time of clustering. On-line clustering methods typically require samples to arrive
sequentially, and with several objects and pixels to analyse, this can slow the processing
down. Therefore a clustering method that processes the entire frame of samples as a batch is
required. A new density based clustering technique named DDC is capable of clustering in
real-time and does so in a batch manner. It requires an initial parameter of cluster radius but
the radius adapts based on the data distribution, and therefore this initial parameter is not as
limiting as previously suggested.

6.2.3 Test videos

The results here are testing the capability of DDC applied to some of the features of objects
extracted by WISE.

Helicopter Video
The helicopter police chase video was used as it is a fairly simple scenario with little object
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interference or complexity. It also has a large variation of sizes in objects in order to test the
characterisation using size based features. Additionally this video sequence has been used in
previous tests and will provide some level of comparison with previous steps in the chain.

Fig. 6.4 Helicopter police chase video

UAV Video This video is a UAV video with multiple axis of motion. This video has an
extremely small moving aircraft, along with other some moving objects originating from
the ground such as smoke and cars. This video was used to test the discrimination in a
complex moving environment, with objects of interest that are extremely difficult detect.
The original image is in greyscale, and this will also test the performance of the WISE and
characterisation algorithms on non-RGB frames.

Fig. 6.5 UAV flight video



6.3 Results of Object Characterisation 137

6.3 Results of Object Characterisation

6.3.1 Clustering on Helicopter video

(a) Clustering of objects based
on motion

(b) Clustering of objects based
on dimensions and size

(c) Overlay of clustering when
both motion and dimension fea-
tures are used

Fig. 6.6 Clustering of objects in the helicopter video, resulting in the characterisation of
different object types.

6.3.2 Clustering on UAV video

(a) Clustering of the UAV video
based on motion features

(b) Clustering of motion features
overlayed on the orignal image

Fig. 6.7 Clustering of objects in the UAV video based on motion features

6.4 Analysis of Object Characterisation Results

In figure 6.6 there are three separate outputs showing the clustering results in two different
feature sets. The first two images are both cluster plots obtained from Matlab, whilst the
third is an overlay image of cluster results from the second feature set. Figure 6.6(a), shows
the clustering on perceived motion magnitude and direction of the objects. In this result,
the car and bike are characterised as the same type, as they are the moving objects, and the
majority of the other objects detected are clustered separately. There are also some outliers
shown, indicating some kind of motion separation. Figure 6.6(b) shows the clustering results
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using motion features and the length, width and size ratio of the objects. The results show
that some increased object separation is achieved, with the white object on the side of the
road characterised differently than when just motion features are applied. Some of the road
cracks are also defined separately and more clearly. The samples on the Matlab figures
are individual objects, such that the size of each object and their bounds is not clear. As
seen in the WISE edge linking phase, the car and bike consist of several separate objects
that are defined by the textures of each surface (the car has a white roof and dark bonnet)
Figure 6.6(c) shows the result of this clustering clearer with the colour overlay on the original
image, so that the extent of the characterisation can be seen overlayed onto visual objects.
In this image, the long lines that are the road verge, the markings and long road cracks are
characterised as the same type of object. The white object and disturbed earth are typed
differently and the smaller cracks on the road are also separate from the larger, longer cracks.
Both the car and the motorbike are typed the same, different to the rest of the surroundings.
The second video sequence is limited in the number of permitted frames, figure 6.7. The
clustering is applied to motion features only because in this scenario, there is one small
moving object of interest with the remainder being object detections of scene objects inherent
to the WISE technique. The Matlab plot, figure 6.7(a) shows several different motion types.
The motion type of the object of interest has been circled (orange cluster). Because the motion
of the UAV (and hence the camera), is in all 8 degrees of freedom for three-dimensional
movement, when the camera rotates or pans with lateral motion, many of the objects in the
scenario are moving in the same real direction but in a different relative direction. A filter is
applied to compensate for this differential in relative motion, and the results of the remaining
motion are shown in figure 6.7(b), where the results have been overlayed onto the original
frame, with the objects separated by motion highlighted. The result in this case, shows that
there are a couple of moving road objects, the moving object of interest, and detects the
motion of the smoke emanating from the chimneys.

6.5 Discussing Object Characterisation

The additional clusters seen in figure 6.6 that do not represent moving objects yet are clustered
as moving separately to the other stationary objects can be explained by three dimensional
camera movement. For the most part, the camera motion appears to be translational, but
there are some small deviations in the rotational and z-axis planes. With objects being in
different locations, the direction and magnitude of the motion of each object will vary when
the camera movement is outside translational movement. Some objects will appear to move
differently to the other stationary background, but the motion is the relative differential
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perceived by the camera when moving in a three dimensional plane. Some of this incorrect
motion perception is carried over to the second feature set that also uses object size features.
The only difference between the two cluster groups is the white object on the side of the
road, meaning the disturbed earth and the smaller cracks in the road appear as separate
object characterisations because of the camera motion differential, not as a result of sufficient
size deviation. The filter to counteract the motion differential in the UAV scenario helps to
remove this misconception of motion due to camera movement, and can be explained using
an example. In a simple rotational motion the objects in the top left have similar magnitude
but different relative rotation (in a 360 degree sense) to objects in the other corners. The
filter used reduces the direction range to a single quartile (90 degrees). This is achieved by
inverting directions in the opposite quartile (flipping), and offsetting the directions in the
adjacent quartiles by either adding or subtracting 90 degrees depending on the quartile. This
does not compensate for all variations in three dimensional movements, but it does allow the
filtering of rotational variances based on location from the frame centre. Figure 6.7(b) shows
an overlay of the UAV frame, with the direction filtering applied to the clusters. The frame
only shows objects identified to have different-to-stationary motions, and is not showing
clustering differences between these other types. That is because when clustering is applied
after the direction filtering, even a slight deviation of an object from another object can cause
a separate cluster. This may be useful in some scenarios but it was considered to confuse the
point the frame overlay is making.



Chapter 7

Conclusions and Future Work

7.1 Summary of the research

The research developed a real-time detection algorithm in a moving camera environment
capable of feature rich object analysis and identification. The direction of the research ended
up focussing on the development of the novelty detection algorithms Edge flow and WISE.
The result of the research is real-time novelty detection algorithms that detect both static and
moving objects in moving or static camera scenarios. As demonstrated in chapter 5, WISE is
capable of real-time performance operating in the region of ten frames per second, without
the need for a GPU or brute force processing. Due to the lengthy investigation work into
the novelty detection aspect, limited progress was made in object identification and analysis.
Built into the WISE method is the output of rich features that describe the characteristics of
the objects, such as texture gradient, object composition, size and ratio, along with 2D image
based velocity components.

7.2 Addressing the Research Questions

The research initially explored existing techniques to understand if extending the algorithms
can help in answering the research questions.

7.2.1 Experimenting with existing work

Experimentation with existing work showed that there was a trade-off with speed and accuracy.
It also laid the foundation work to adapt the techniques such that assumptions about detections
were not made (RDE greyscale and WIDE). It was found that each method individually had
limitations, and could not definitively answer any of the research questions. The outcomes
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of the existing methods, and experimentation with them, showed that extending them or
adjusting the processing methods had limited effect on improving accuracy or processing
time. The existing research could not be speeded up sufficiently to not need brute force
processing at higher resolutions, nor could it detect static or moving objects.

7.2.2 Framework review

The review and experimentation with some of the existing methods highlighted a that the
computer vision framework was linear, and prone to errors by passing noise to the next
level of processing (detection to identification for example). The identification of multiple
components led to an analysis of the computer vision framework with the aim of better
inter-component data passing such that any assumptions made at a detection phase are not
carried through permanently to the semantic reasoning components. A cyclic framework was
proposed such that feedback from higher level semantic reasoning components can automate
parameter value selection to optimise application specific performance.

7.2.3 Edge Flow and WISE

For temporal based methods, the limitations were that they required too much computational
power (optical flow for example) or they could only detect objects that were moving. The
system would fail as soon as the objects were motionless. For image segmentation based
methods they were able to derive objects from static frames, without motion information.
In all cases assumptions were being made about the scenarios before any detections were
made. In an unknown scenario, this can lead to the removal of information that would
otherwise have been useful (the example of the cordon tape blowing in the wind in chapter
3). The algorithms developed in this research was addressed the research questions by not
making assumptions on the scene detection, providing real-time performance that scales
well with resolution changes, able to detect both static and moving objects in any sequence
of frames regardless of the camera motion and combined the best features of the existing
background subtraction and image segmentation techniques (contour detection, pixel-wise
density estimation, and efficient use of optical flow). These enhancements to computer vision
allow the algorithms to run on low power systems and also the minimises of assumptions
made at the detection phase. The concepts of Edge Flow and WISE are a new way of
addressing computer vision detection problems. One of the most important steps with the
Edge Flow and WISE is that they do not discriminate between detections. The decision
tree of "interesting" objects or detections has been removed somewhat from the lower level
detection phase and enables higher level semantic reasoning sections to decide if a detection
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is interesting or uninteresting. The other advantage of the new methodology is that it lends
itself to adoption of the feedback mechanism proposed in chapter 3. Each component can be
fed input from a higher level to adjust the detection parameters. For example the window
size of WiDE can be changed if the feature extraction layer requires more granular detail of
the texture changes, or the cluster membership values changed to isolate a subset of objects
based on their features. One of the limitations with the research is the visualisation of the
detections. It is difficult to show the edge linked boundaries and the arbitrary shapes of the
candidate objects in one cohesive image which is why there are different representations
presented through this work.

7.3 Performance Achievements

Chapter 1 and 2 illustrated the various angles the research could focus on. Each objective
that was detailed also had a performance indicator associated with it. This section assesses
the performance of the research compared with the objectives highlighted in chapter 2.

7.3.1 Detection of stationary objects

The first objective set out for the work was to develop a reliable novelty detector that detects
both static and dynamic objects within a scene. In addition there was a requirement to
perform the analysis in real-time within an envelope of 10ms per frame on a 2 megapixel
image. This is so that object detection algorithms built on the novelty detection have sufficient
available processing time such that the overall result remains real-time. By developing the
WIDE approach in chapter 3, the novelty (object boundary) detection capability was able to
meet each of the criteria. The hardest part was to detect camouflaged object boundaries. In
the comparison chapter 5, the scene with the two coyotes demonstrated that by adjusting the
parameters of WIDE, camouflaged object boundaries can be detected by this method. During
the comparison phase, it was found that there are some better object boundary detectors, such
as the Hough Forests, in terms of overall accuracy and detail. However, to attain this level
of detail significant processing time had to be sacrificed. The level of accuracy achieved by
WIDE is only slightly less than that of the Hough Forests whilst maintaining the faster-than
10 ms processing time per frame.

7.3.2 Novelty detection without image stitching

The second objective was to extend the concept of detection of stationary objects to the
moving camera domain. When image stitching is used to create an overlapped region errors
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are introduced. The aim was to continuously analyse the frames of a scene, maintaining
relative motion information, without stitching or manipulating the scene such that unwanted
noise was introduced. The complete WISE algorithm successfully avoids image manipulation
whilst detecting both static and moving objects irrespective of camera motion. The WISE
algorithm also operates in real-time, capable of processing frames faster than 100ms for a 2
mega-pixel frame. One current difficulty with the WISE method is that it is parametrized,
so to detect specific novelties for an application the parameters need to be adjusted. The
parameter design is for future development of feedback from semantic reasoning components
such that the detection regime is adaptable to unknown environments.

7.3.3 Rich feature extraction

The specific region analysis goal was replaced with the extraction of a rich-feature set.
The specific region analysis would have focused on analysing small regions of the image
that contained an object of interest. This was more applicable to methods that are high in
processor usage such that reducing the processing area improves their speed. Edge Flow
and WISE do not need this reduction in processing area to maintain real-time processing, so
the focus switched to obtaining a rich feature set on the global scene (not narrowing focus,
which would potentially remove points of interest unintentionally) The new objective was
designed to promote the development of an algorithm that extracts a wealth of features such
that object analysis and semantic reasoning can be performed at a later stage. Direct features
such as size and movement of objects was extracted as well as derived features such as
edge gradient profile and mean and variance of the boundary density change. As the object
characterisation phase showed, these features can be used to characterise and separate out
the objects detected by the WISE algorithm. There is no additional processing required for
the direct features, and minimal processing for the derived features meaning that the rich
feature set has been extracted within the processing envelope of WISE. Chapter 5 showed the
detection improvement of WISE over other techniques. The rich feature set provides another
advantage that WISE has over competing techniques as the extraction of this feature set is
part of the algorithm.

7.3.4 Object detection accounting for occlusion

By utilising WISE which includes frame analysis and optical flow to give object motion
perception, separation of objects that are moving in different directions has been possible.
Occlusion occurs when two or more objects cross paths because they are on a different
trajectory to others. Examples in chapter 4 and 5 show the separation of objects despite
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crossing one another. In the motorbike and car video, the cracks on the road are maintained
as separate objects despite the car and bike passing over them frequently. This is in contrast
to existing techniques which group occluded objects together.

7.3.5 Characterisation of objects

The characterisation of objects is a way of separating each object detected by WISE by their
features. Chapter 6 describes the utilisation of clustering which groups features together into
different object types. The utilisation of CEDAS clustering allowed the separation of a person
moving from the minor movements of grass blades due to camera shake. The clustering
process also separated out arms of the person moving if they were moving differently to the
person’s body. The prototyping done in this area showed the capability of the output of the
WISE algorithm to detect and separate objects by type. Further work and experimentation is
needed to find out the limitations of the object characterisation, and the robustness in a wide
range of scenarios.

7.3.6 Classification

This is an element that will form part of the future development of the project. At present, a
selection of behavioural assessments are made with the rich feature set (chapter 6) through
separating object types. However there is no determination on what the objects are. The
rich feature set retained in the output from WISE should be sufficient to enable a start on
developing an object classification capability.

7.3.7 Computational performance

The theme throughout the work has focussed on the constraints provided by the UAV
application area. These were assumption free, detection of objects in unknown environments
without assuming specific movement patterns or texture make up of the objects of interest.
The performance envelope of the work is real-time - processing the same or faster of the rate
at which frames are received; without the need for a GPU brute-force approach. The work
also has aspects of autonomy maintained, with the only input needed being initial parameters
to specify the edge linking tolerance. This is usually application specific and does not need
constant adaptation.
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7.4 The research applied in the UAV context

The established path of the research was informed by a set of constraints from the context of
Unmanned Aerial Vehicles (UAVs) such as low power and a moving camera. In chapter 1 the
intended objectives and workload were outlined. The algorithms that this work has yielded
paves the way for the development of application specific improvements to the following
areas of UAV operation:

• Reduction of bandwidth

Less volume of video data returned by the UAV to the ground station

Lower data size of the images returned in the data stream.

Send information, not data, back to the ground station.

• Increased image analysis performance and capability

Analysis of high resolution imagery

Fast accurate detection of novelties

Tracking of objects across imagery

Real-time online analysis of the video data (links in with reducing data volume).

• Reduced Operator Load

The imagery sent back to the operator needs to be pre-processed and have novelties
or objects identified to limit analysis required by operator.

Autonomous online identification and classification of interesting objects / novel-
ties so that constant supervised input by operators is not necessary is a key requirement.

7.5 With reference to the Hypotheses

The original hypotheses stated:

1. By combining the benefits of image segmentation with background subtraction, a
solution that is capable of detecting static and moving objects in real-time should be
possible.

2. Removing assumptions on detections will mean that the algorithms will detect all
object transitions in an image. It is therefore reasonable to predict that the algorithm
will be able to operate irrespective of the camera motion.
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3. Once the objects are detected in an image, with the number of features available, it
should be possible to type each object based on their features (cluster each object).
The type association may not correlate with human differentiation of objects due to the
underlying features that are being clustered.

4. The algorithms should allow for a feedback mechanism such that a higher semantic rea-
soning section can adapt or tune a previous layer based on detection and identification
objectives.

The hypotheses were based on knowledge of the field, life experience and with the
knowledge that nature has had a robust vision system for animals in place for Aeons. Some
of the hypotheses were able to be answered completely by the research whilst some were
only partially shown. The algorithm separately detects objects, and then restores motion to
each object to provide temporal information and achieves this in a real-time manner. The
realisation of a visual feedback method was not able to be shown, however a framework has
been laid out for future work to explore the possibility. The ability to clearly distinguish
between types of objects that have been detected was partially realised through the research
shown in 6, where the clustering of object features separates the object types. Additionally
the CEDAS algorithm is able to track the changes of the object features whilst maintaining
an appreciation of the objects themselves such that should the features of an object change
sufficiently over time, the object is still identified as the same object as previous merely with
a different feature set.

7.6 Further work

The exploration of a model of the human vision system has led to a new technique that
operates in real-time and detects objects in a video sequence without the assumption of any
object features. There are many desirable extensions to the work that were out with the time
scale of the project. A real-world velocity calculation capability was discussed using the 3D
affine transform of optical flow, and also scope for relative trajectories - even with a 2D frame
(having the degrees of freedom for each object could allow 3D inference of the environment).
There is also further validation work to be done with the object characterisation and behaviour
analysis. The usage of online clustering for the behaviour analysis also lends itself to tracking
objects through a scene. Given the feature set and the characterisation, the online clustering
method could be used to track not just objects, but also the evolution of objects as their
characteristics change in the environment - for example texture changes based on changes in
illumination, or changes in object dimensions like the unfurling of a missile platform. The
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research was able to establish a framework for the future development of a feedback system
which would remove the need for manual setting of the WISE parameters. The idea is that
the parameters can be autonomously tuned based on the criteria or requirements of another
module - feature extraction for example. The input criteria might be, for example, to refine the
detections to a person with a red jacket. The system could have an autonomous component
that took this feedback information and adapted the parameters of the algorithms in an
autonomous fashion. There is also scope for further research into the human eye replication
concept. The methodology followed in this thesis was based on work that theorises about how
the eye system works. The theories have allowed for a level of replication in the computer
vision world, however there may be more definitive ways to demonstrate that the separation
of object detection and motion is the correct theory to apply for human replication. In
association with this, one area the research did not explore was the effect of shadows in a
scene. The human vision system is able to detect objects, and motion, and also separate
out shadows from actual objects. This provides for challenging future questions on how to
handle shadows, and how the human system manages to cope with them. Is it a simple case
of learned experience such that the system ignores shadows when one is perceived? Or is
there a component within the vision system that specifically handles shadows?
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Appendix A

Motion Estimation Experiments

Fig. A.1 Summary results of the experiments conducted with Motion Estimation



Appendix B

WISE Performance Analysis

This section contains a table of results showing the WISE performance over several hundred
frames, and the processing time per object



0.029803515 0.00606977

Frame No Num Obj Time in S Time per obj (ms) Frame No Num Obj Time in S Time per obj (ms) Frame No Num Obj Time in S Time per obj (ms)
1 542 0.024711 0.045592435 1 2272 0.090669 0.039907262 1 4601 0.21079 0.045813519
2 533 0.025619 0.048065478 2 2051 0.065034 0.031708532 2 4021 0.20715 0.05151803
3 533 0.022805 0.042785178 3 2104 0.060556 0.028781274 3 4330 0.20092 0.046401155
4 541 0.024581 0.045435675 4 2087 0.061708 0.029567897 4 4177 0.20645 0.049424707
5 536 0.025251 0.047109515 5 2095 0.056979 0.027197375 5 4335 0.20847 0.048090196
6 537 0.02395 0.0446 6 1972 0.055523 0.028155527 6 4764 0.20813 0.043688917
7 567 0.024551 0.0433 7 2022 0.054243 0.026826261 7 4737 0.20437 0.043142284
8 555 0.024131 0.043479459 8 1880 0.053547 0.028482447 8 4874 0.20883 0.042845917
9 556 0.023366 0.042025 9 1848 0.053251 0.02881553 9 5117 0.21175 0.041381278

10 554 0.025325 0.045712996 10 1750 0.051142 0.029223714 10 5061 0.20744 0.040988342
11 600 0.026264 0.0437735 11 1700 0.052191 0.030700647 11 5258 0.20912 0.039771206
12 580 0.025199 0.043447241 12 1732 0.051468 0.02971582 12 5620 0.20866 0.037128648
13 595 0.027789 0.046703529 13 1640 0.050975 0.031082378 13 5472 0.20938 0.038264254
14 557 0.025463 0.045713645 14 1714 0.050514 0.029471237 14 5796 0.21242 0.036648551
15 557 0.025751 0.046231418 15 1540 0.054805 0.035587338 15 6481 0.22411 0.034579849
16 545 0.024838 0.045574128 16 1633 0.050226 0.030756705 16 6450 0.21422 0.033212713
17 547 0.02457 0.044917733 17 1531 0.05045 0.032952384 17 6744 0.23608 0.035006524
18 540 0.025946 0.048047407 18 1486 0.050421 0.03393035 18 7250 0.23785 0.03280731
19 540 0.023803 0.044079259 19 1439 0.049196 0.034187491 19 7356 0.24802 0.03371683
20 541 0.026465 0.048919039 20 1439 0.047099 0.032730229 20 7603 0.25372 0.033371169
21 527 0.025516 0.048417078 21 1621 0.048846 0.030133128 21 8411 0.28171 0.033493164
22 527 0.024293 0.046096964 22 1421 0.047619 0.033510978 22 8487 0.25766 0.030359844
23 546 0.025709 0.047086813 23 1367 0.055538 0.040627725 23 8897 0.26417 0.029691694
24 564 0.02499 0.04430922 24 1585 0.053214 0.033573754 24 9550 0.25632 0.026839791
25 563 0.023614 0.041942451 25 1613 0.057564 0.035687291 25 9498 0.27685 0.029148136
26 566 0.024932 0.04405 26 1533 0.054891 0.035806001 26 9817 0.27018 0.027521239
27 548 0.026204 0.047818248 27 1551 0.054154 0.034915667 27 10626 0.27541 0.025918408
28 548 0.024126 0.044024818 28 1358 0.051616 0.038009057 28 10405 0.25686 0.02468592
29 556 0.027484 0.049430935 29 1364 0.05369 0.039361877 29 10391 0.28351 0.027284284
30 538 0.0259 0.048140892 30 1339 0.05714 0.042673413 30 10926 0.27099 0.024802581
31 597 0.025811 0.043234338 31 1332 0.050239 0.037717117 31 10683 0.26564 0.024865862
32 608 0.026547 0.043662664 32 1352 0.050537 0.037379142 32 10880 0.27926 0.025667371
33 569 0.025114 0.044137083 33 1381 0.05148 0.037277625 33 11699 0.28206 0.024109582
34 732 0.0264 0.036065574 34 1377 0.052462 0.03809862 34 11535 0.2902 0.025158474
35 742 0.025531 0.034408625 35 1452 0.055171 0.03799635 35 11329 0.30207 0.026663165
36 742 0.024061 0.032427493 36 1493 0.055881 0.037428667 36 11997 0.30741 0.025623989
37 708 0.026523 0.037462147 37 1498 0.054778 0.036567156 37 11922 0.2999 0.025155511
38 708 0.027696 0.039118927 38 1576 0.059982 0.038059518 38 12086 0.28963 0.023964008
39 550 0.026481 0.048147273 39 1538 0.049336 0.032078023 39 12581 0.29974 0.023824815
40 552 0.026072 0.047231341 40 1634 0.050698 0.031026805 40 12301 0.28844 0.023448094
41 550 0.024179 0.043961636 41 1587 0.049988 0.03149811 41 12643 0.2949 0.023324765
42 532 0.024638 0.04631203 42 1589 0.051421 0.03236073 42 12872 0.30944 0.024040009
43 693 0.026783 0.038647619 43 1741 0.053758 0.030877657 43 12890 0.29377 0.022790225
44 693 0.025941 0.037433333 44 1715 0.056256 0.032802274 44 12860 0.29315 0.022795179
45 698 0.025818 0.036987966 45 1935 0.061139 0.031596124 45 13494 0.3084 0.022854528
46 564 0.027383 0.04855195 46 1828 0.055399 0.030306018 46 13550 0.31906 0.02354679
47 561 0.024044 0.042858824 47 1847 0.059904 0.032433297 47 13728 0.31769 0.023141827
48 581 0.02724 0.046885198 48 1895 0.061901 0.032665435 48 13776 0.31837 0.023110119
49 690 0.028023 0.040613478 49 1842 0.057272 0.031092074 49 13882 0.30723 0.022131609
50 712 0.026543 0.037279494 50 1824 0.056461 0.030954715 50 13784 0.30198 0.021907719
51 573 0.02523 0.044031763 51 1963 0.057653 0.029369995 51 14329 0.32751 0.022856724
52 573 0.026238 0.045789878 52 2002 0.054473 0.027209291 52 14473 0.32641 0.022552961
53 655 0.026568 0.040561679 53 2142 0.057681 0.026928525 53 14145 0.31312 0.022136727
54 638 0.026739 0.041911129 54 1757 0.059708 0.033982698 54 13625 0.32751 0.024037651
55 639 0.026335 0.04121252 55 1573 0.052336 0.033271265 55 13947 0.30854 0.02212232
56 708 0.02738 0.038672458 56 2134 0.063398 0.029708294 56 13547 0.30631 0.022611132
57 707 0.026058 0.036856436 57 1953 0.057077 0.029225243 57 13358 0.30346 0.022717323
58 726 0.02803 0.038609366 58 2104 0.059121 0.028099477 58 13809 0.29982 0.021711565
59 718 0.027765 0.038670334 59 1952 0.056444 0.028915984 59 13396 0.30043 0.022426471
60 718 0.026614 0.037066992 60 2151 0.057626 0.026790516 60 12610 0.30589 0.024258049
61 618 0.027486 0.044475081 61 2051 0.055212 0.026919649 61 12855 0.31625 0.024601089
62 611 0.026643 0.043606056 62 2004 0.055422 0.027655489 62 12639 0.29859 0.023624575
63 610 0.028964 0.047481148 63 2062 0.057327 0.027801406 63 11832 0.30233 0.02555164
64 613 0.027907 0.045524796 64 2115 0.056213 0.026578203 64 12431 0.29792 0.02396557
65 627 0.028075 0.044777352 65 2140 0.057335 0.026791822 65 12217 0.30301 0.024801997
66 633 0.028076 0.044353555 66 2117 0.057867 0.027334247 66 12168 0.30326 0.024922337
67 637 0.024526 0.038502041 67 2124 0.057503 0.027072834 67 12745 0.30268 0.023748529
68 577 0.027048 0.046876776 68 2127 0.057766 0.02715858 68 11697 0.29493 0.025213901
69 622 0.025547 0.04107299 69 2073 0.057426 0.027701737 69 11191 0.27503 0.024576088
70 627 0.027141 0.043287241 70 1987 0.057062 0.028717614 70 11661 0.28299 0.024268416
71 628 0.024301 0.03869586 71 1973 0.054878 0.027814496 71 11406 0.27642 0.024234613
72 655 0.026715 0.040786565 72 2309 0.06109 0.026457471 72 11259 0.28293 0.025129052
73 606 0.025429 0.041962541 73 2099 0.057587 0.027435588 73 11506 0.29293 0.025459152
74 609 0.025649 0.042116585 74 2290 0.058945 0.025740218 74 11845 0.28568 0.02411794
75 621 0.026319 0.042381643 75 2017 0.057613 0.028563907 75 11188 0.27279 0.024382106
76 621 0.024674 0.039733172 76 2150 0.05907 0.027474419 76 11154 0.28776 0.025798817
77 642 0.025683 0.04000514 77 1741 0.057412 0.032976163 77 11763 0.29743 0.025285386
78 573 0.027614 0.048191274 78 1846 0.054703 0.029633207 78 10367 0.27656 0.026676859
79 573 0.023408 0.040852007 79 1755 0.053495 0.030481197 79 10160 0.27485 0.027052264
80 561 0.025435 0.045338324 80 1771 0.052408 0.029592095 80 10819 0.27565 0.02547851
81 550 0.025524 0.046406727 81 1770 0.05173 0.029226045 81 10595 0.27612 0.026060878
82 581 0.02563 0.044113597 82 1464 0.05092 0.034781557 82 10402 0.27116 0.026067583
83 633 0.027378 0.043251343 83 1658 0.051651 0.031152413 83 10269 0.27281 0.026566754
84 624 0.027288 0.043730929 84 1824 0.055279 0.03030625 84 11254 0.28137 0.025002133
85 641 0.025584 0.039912949 85 1493 0.048006 0.032153717 85 11392 0.28663 0.025160376
86 603 0.026033 0.043172471 86 1457 0.048825 0.033510501 86 11454 0.29845 0.026056138
87 657 0.026805 0.040799543 87 1371 0.047235 0.034453027 87 11946 0.28838 0.024140549
88 637 0.027397 0.043009576 88 1425 0.047952 0.033650316 88 11902 0.29245 0.024571333
89 584 0.027155 0.046497432 89 1397 0.049708 0.035582105 89 11858 0.29526 0.024899983
90 583 0.026285 0.045086449 90 1470 0.048098 0.032719388 90 12193 0.2928 0.024014024
91 646 0.025574 0.039587461 91 1594 0.050895 0.031928858 91 10441 0.27729 0.026557705
92 643 0.025685 0.039946034 92 1370 0.050319 0.036729197 92 9896 0.26719 0.026999697
93 662 0.026222 0.03960997 93 1457 0.05903 0.040515031 93 10676 0.26632 0.024945392
94 670 0.02464 0.036776119 94 1405 0.048662 0.034634947 94 10219 0.26263 0.025699971
95 689 0.024882 0.036113353 95 1449 0.04839 0.033395652 95 10008 0.2782 0.027797562
96 671 0.024724 0.036846051 96 1415 0.048917 0.034570247 96 10780 0.2622 0.02432282
97 739 0.026223 0.035483897 97 1392 0.046859 0.033662787 97 9745 0.26717 0.027416521
98 738 0.024675 0.033434553 98 1349 0.046223 0.03426464 98 10404 0.2774 0.026663014
99 745 0.027294 0.036636242 99 1491 0.048603 0.03259772 99 10379 0.27282 0.026285288

100 744 0.029088 0.039096237 100 1590 0.051109 0.032144088 100 10213 0.26177 0.025631058
101 744 0.02677 0.03598078 101 1637 0.050573 0.030893708 101 9881 0.26346 0.026663293
102 840 0.026449 0.031486905 102 1599 0.050013 0.031277548 102 10109 0.27272 0.026977743
103 857 0.028179 0.032880863 103 1643 0.052379 0.031880219 103 9684 0.25937 0.026783354
104 906 0.028973 0.031978587 104 1617 0.050302 0.031107978 104 9847 0.26898 0.027315832
105 893 0.02885 0.032306495 105 1658 0.052393 0.031600121 105 10522 0.26179 0.024879871
106 894 0.027137 0.03035481 106 1724 0.05216 0.030255162 106 10161 0.27964 0.027521012
107 963 0.028135 0.029216096 107 1673 0.052649 0.031469576 107 10218 0.26377 0.025814641
108 908 0.029365 0.032340198 108 1854 0.057211 0.030858037 108 10564 0.26531 0.025114729
109 907 0.028465 0.031383241 109 1744 0.053628 0.030750229 109 9947 0.25417 0.025552428
110 944 0.028839 0.03054947 110 1755 0.05361 0.030546895 110 10374 0.26622 0.025662425
111 943 0.027667 0.029338812 111 1889 0.054913 0.029069931 111 10521 0.25981 0.024694421
112 960 0.027475 0.028619688 112 1903 0.056651 0.029769522 112 10108 0.26245 0.025964088
113 1031 0.028401 0.027547333 113 1876 0.053847 0.028703198 113 10567 0.27578 0.02609823
114 1031 0.027455 0.026629292 114 1923 0.056689 0.029479199 114 10586 0.25826 0.024396278
115 1034 0.028841 0.02789236 115 1941 0.055923 0.02881118 115 10551 0.26232 0.024861719

Helicopter Video (640 x 360) Dashboard Video (848 x 480) Drone Video (1920 x 1080)
Avg time per obj over all frames: Standard Deviation:
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Avg time per obj over all frames: Standard Deviation:

116 1036 0.027953 0.026981274 116 1930 0.055546 0.028780104 116 10464 0.26255 0.025090979
117 1035 0.027634 0.026699614 117 2058 0.05807 0.02821691 117 10923 0.26302 0.02407974
118 1018 0.031152 0.030600982 118 1783 0.059775 0.033525014 118 10258 0.25392 0.024753071
119 969 0.030736 0.031719092 119 1737 0.054141 0.031169142 119 10130 0.25778 0.025447581
120 969 0.029214 0.030148194 120 1938 0.057819 0.029834469 120 10954 0.2681 0.024474895
121 963 0.027724 0.028789408 121 1828 0.0545 0.029814168 121 10943 0.26694 0.024393402
122 1014 0.030952 0.030524556 122 1961 0.058096 0.029625548 122 10443 0.25591 0.024505602
123 1048 0.029683 0.028322996 123 1841 0.057738 0.031362412 123 11272 0.26523 0.023530252
124 1002 0.030147 0.030086527 124 1889 0.05586 0.029571255 124 10556 0.25859 0.024496495
125 1005 0.027907 0.027768259 125 1997 0.056022 0.028052929 125 10758 0.25929 0.024101785
126 1085 0.031352 0.028895945 126 2014 0.056254 0.027931281 126 11681 0.2688 0.023011386
127 1161 0.029716 0.025595263 127 2080 0.054999 0.026441731 127 11402 0.26491 0.02323338
128 1162 0.030899 0.026590792 128 2045 0.056737 0.027744108 128 11283 0.26046 0.023084197
129 1138 0.032353 0.028429525 129 2030 0.055927 0.027550345 129 12077 0.26457 0.021906517
130 1141 0.02904 0.025451183 130 2228 0.0566 0.02540377 130 11307 0.26135 0.023114354
131 1199 0.029736 0.02480025 131 2083 0.058431 0.028051224 131 11600 0.27529 0.023731983
132 1205 0.032019 0.026572033 132 1961 0.059631 0.03040821 132 12473 0.27573 0.02210647
133 1214 0.029901 0.024630478 133 1879 0.054354 0.028926929 133 11420 0.26548 0.023246848
134 1270 0.032367 0.025485827 134 2038 0.056262 0.027606428 134 11567 0.26988 0.023332065
135 1307 0.031785 0.024319051 135 1874 0.055775 0.029762593 135 12122 0.26571 0.021919898
136 1307 0.029189 0.0223329 136 1862 0.056145 0.030153008 136 11679 0.26522 0.022708794
137 1157 0.031553 0.027271219 137 1946 0.057444 0.029518756 137 11956 0.2722 0.022766477
138 1323 0.032102 0.024264777 138 1907 0.056033 0.029382853 138 12645 0.28683 0.022682958
139 1337 0.033442 0.025012341 139 1860 0.055667 0.029928226 139 11918 0.26115 0.021911982
140 1355 0.033724 0.024888561 140 1797 0.056964 0.031699444 140 12282 0.28109 0.022886338
141 1364 0.033328 0.024433871 141 2003 0.056796 0.028355267 141 13302 0.27286 0.02051263
142 1473 0.033677 0.022863136 142 2074 0.057429 0.027690116 142 12548 0.2704 0.021549012
143 1506 0.034272 0.022756707 143 2087 0.059742 0.028625922 143 12793 0.27478 0.021478699
144 1503 0.032371 0.021537525 144 2073 0.060045 0.028965461 144 13669 0.28958 0.021185164
145 1408 0.032753 0.02326179 145 2117 0.058656 0.027707085 145 12712 0.2722 0.021412681
146 1410 0.031172 0.02210773 146 2063 0.058527 0.028369898 146 13021 0.27855 0.021392597
147 1433 0.032296 0.022537544 147 2150 0.061543 0.028624465 147 13627 0.29558 0.021690688
148 1570 0.034505 0.021977962 148 2033 0.05703 0.028052287 148 12915 0.27777 0.021507859
149 1569 0.03254 0.020739069 149 2097 0.062856 0.029974154 149 12967 0.27773 0.021418215
150 1561 0.035408 0.022683024 150 2173 0.061187 0.028157708 150 13646 0.27778 0.020356222
151 1360 0.034812 0.025597059 151 2188 0.059887 0.027370795 151 12966 0.27925 0.021537406
152 1362 0.031682 0.023261307 152 2354 0.063232 0.02686147 152 12952 0.28483 0.02199143
153 1342 0.034022 0.025351639 153 2368 0.061482 0.025963598 153 13784 0.29311 0.021264292
154 1290 0.033035 0.025608217 154 2226 0.063625 0.028582839 154 12749 0.27621 0.021664993
155 1289 0.031599 0.024514042 155 2219 0.059975 0.027027941 155 12761 0.27857 0.021830107
156 1306 0.033371 0.025551914 156 2141 0.060362 0.028193274 156 13707 0.29207 0.021308383
157 1282 0.033636 0.026237051 157 2026 0.058185 0.028719348 157 13006 0.28644 0.022023528
158 1329 0.033564 0.02525538 158 2113 0.056297 0.026642972 158 12904 0.27796 0.021540453
159 1333 0.033311 0.024989347 159 2020 0.056892 0.028164356 159 13617 0.28407 0.02086157
160 1333 0.031473 0.023610653 160 1970 0.055906 0.028378426 160 13081 0.28743 0.021973091
161 1444 0.040055 0.027739127 161 1901 0.055272 0.029075329 161 13317 0.28806 0.021630923
162 1477 0.033456 0.022651185 162 2030 0.05611 0.027640296 162 14097 0.29399 0.020854721
163 1481 0.032946 0.022245847 163 1924 0.054443 0.02829657 163 13190 0.27784 0.021064519
164 1468 0.034977 0.02382609 164 2066 0.057511 0.027836689 164 13558 0.28389 0.020938708
165 1467 0.032674 0.022272597 165 2141 0.057056 0.026649183 165 14106 0.29666 0.021031051
166 1487 0.034048 0.022897108 166 2223 0.057754 0.025980387 166 13296 0.28232 0.021233228
167 1437 0.034269 0.02384746 167 2263 0.061218 0.027051834 167 13683 0.29607 0.021637726
168 1427 0.032419 0.02271808 168 2194 0.062447 0.028462397 168 14336 0.29625 0.02066469
169 1445 0.034885 0.024141661 169 2280 0.060486 0.026529035 169 13541 0.28086 0.020741526
170 1462 0.035946 0.024587004 170 1984 0.059151 0.029814163 170 13342 0.2937 0.022012892
171 1439 0.031846 0.022130577 171 2079 0.058362 0.02807215 171 14125 0.28759 0.020360071
172 1412 0.034173 0.024201983 172 2080 0.055607 0.026733894 172 13346 0.28943 0.021686348
173 1363 0.0344 0.025238151 173 1875 0.054664 0.02915424 173 13481 0.2975 0.022068244
174 1316 0.034197 0.02598579 174 2167 0.057576 0.026569543 174 14059 0.30059 0.021380895
175 1378 0.035241 0.025574311 175 2146 0.058782 0.027391426 175 13471 0.2792 0.020726004
176 1304 0.0328 0.025153374 176 2125 0.057553 0.027083529 176 13339 0.28337 0.021243571
177 1258 0.03242 0.025771304 177 2033 0.058047 0.028552238 177 14071 0.29559 0.021006965
178 1322 0.035359 0.026746445 178 2098 0.058212 0.027746568 178 13305 0.27931 0.02099316
179 1328 0.032982 0.024835617 179 2136 0.05674 0.026563624 179 13199 0.27634 0.020936738
180 1358 0.033206 0.024452209 180 2071 0.058161 0.028083679 180 13901 0.297 0.021365441
181 1344 0.034217 0.025459375 181 2226 0.058136 0.026116801 181 13197 0.27257 0.020653558
182 1346 0.032135 0.02387422 182 2156 0.056046 0.025995269 182 13092 0.27922 0.021327452
183 1418 0.034587 0.024391537 183 2077 0.05703 0.027457824 183 13751 0.30062 0.021861319
184 1417 0.031767 0.022418701 184 2150 0.057324 0.026662419 184 12978 0.27565 0.021240022
185 1429 0.032933 0.023046256 185 2010 0.057042 0.028379154 185 13216 0.28025 0.021205281
186 1487 0.035262 0.023713786 186 2007 0.056798 0.02829995 186 14101 0.28771 0.02040373
187 1478 0.031649 0.021413261 187 1941 0.056154 0.028930654 187 13045 0.28802 0.022079264
188 1339 0.035432 0.026461763 188 1951 0.055864 0.028633316 188 13211 0.29242 0.022134282
189 1394 0.033747 0.02420868 189 1865 0.056169 0.030117426 189 13551 0.27907 0.020594052
190 1394 0.033093 0.02373967 190 1934 0.056708 0.029321355 190 13145 0.2946 0.022411715
191 1367 0.035119 0.025690856 191 1763 0.053314 0.030240669 191 13137 0.27517 0.02094603
192 1338 0.033624 0.025129821 192 1788 0.055269 0.030910906 192 13674 0.28069 0.020527059
193 1355 0.033418 0.024662878 193 1837 0.052516 0.028587861 193 12945 0.30433 0.023509231
194 1349 0.033742 0.02501275 194 1750 0.05265 0.0300856 194 12811 0.27072 0.021131606
195 1333 0.032569 0.024433008 195 1810 0.053382 0.029492541 195 13403 0.28224 0.021058047
196 1321 0.032757 0.024796745 196 1788 0.055401 0.030985123 196 12593 0.27268 0.021653458
197 1339 0.033342 0.024900971 197 1645 0.051764 0.031467538 197 12581 0.2838 0.022557984
198 1338 0.031513 0.023552466 198 1621 0.050484 0.031143553 198 13175 0.27421 0.020813207
199 1275 0.033817 0.02652298 199 1673 0.051957 0.031055888 199 12467 0.27364 0.021949386
200 1280 0.032811 0.025633906 200 1740 0.051948 0.029855287 200 12412 0.27065 0.021805672
201 1424 0.035258 0.024759831 201 1781 0.05124 0.028770241 201 13088 0.2725 0.020820523
202 1425 0.031047 0.021787439 202 1651 0.049149 0.02976911 202 12264 0.27274 0.022238829
203 1421 0.034979 0.024615834 203 1639 0.050364 0.030728493 203 12341 0.2732 0.022137671
204 1421 0.032941 0.023181562 204 1886 0.053097 0.028153022 204 12914 0.27862 0.02157519
205 1466 0.033728 0.023006821 205 1826 0.051191 0.028034447 205 12142 0.26555 0.021869956
206 1346 0.033174 0.024646434 206 1661 0.049698 0.02992071 206 13183 0.28101 0.021316316
207 1417 0.033639 0.023739661 207 1619 0.049615 0.030645213 207 12564 0.27696 0.022043935
208 1328 0.034673 0.026108886 208 1558 0.051163 0.032839024 208 12559 0.28384 0.022600685
209 1266 0.034113 0.026945577 209 1574 0.048476 0.030798221 209 13244 0.28192 0.021286394
210 1286 0.033231 0.02584028 210 1525 0.048717 0.031945574 210 12394 0.27263 0.021997095
211 1412 0.03283 0.023250992 211 1605 0.048783 0.030394143 211 11967 0.26475 0.022123088
212 1418 0.032377 0.022832511 212 1671 0.051571 0.030862059 212 12622 0.27395 0.021704167
213 1347 0.034592 0.025680772 213 1689 0.049611 0.029372765 213 11809 0.26362 0.022323651
214 1358 0.033145 0.024407364 214 1766 0.050084 0.028359853 214 11853 0.26939 0.022727664
215 1260 0.032418 0.02572881 215 1752 0.054289 0.030986587 215 12321 0.27204 0.022079377
216 1306 0.033528 0.025672358 216 1894 0.053664 0.028333844 216 12351 0.26358 0.021340377
217 1307 0.030764 0.02353772 217 1780 0.053409 0.030005112 217 12064 0.26831 0.022240302
218 1343 0.034109 0.025397468 218 1799 0.051199 0.028459589 218 11931 0.26239 0.02199254
219 1334 0.034623 0.025954423 219 1812 0.051669 0.028514625 219 12295 0.26392 0.02146588
220 1334 0.031001 0.02323928 220 1764 0.053648 0.030412528 220 11518 0.27496 0.023872026
221 1462 0.034415 0.023539672 221 1826 0.051459 0.028181325 221 11576 0.26299 0.022718296
222 1431 0.034171 0.023879245 222 1799 0.053114 0.029523958 222 12272 0.26621 0.021692797
223 1445 0.03244 0.022449896 223 1782 0.052122 0.029249158 223 11366 0.25409 0.022355358
224 1330 0.031381 0.023594962 224 1827 0.056399 0.030869513 224 11541 0.27215 0.023581232
225 1343 0.034665 0.025811616 225 1801 0.052412 0.029101832 225 12159 0.27537 0.022647422
226 1365 0.03418 0.025040513 226 1856 0.052678 0.028382705 226 11477 0.27404 0.023877233
227 1302 0.033876 0.02601851 227 1815 0.052907 0.029149642 227 11790 0.26458 0.022441221
228 1366 0.034017 0.024902709 228 1907 0.055429 0.029065915 228 12129 0.26645 0.021968093
229 1294 0.032549 0.025153864 229 1828 0.053205 0.029105744 229 11744 0.26267 0.022366144
230 1318 0.031511 0.023908422 230 1729 0.052807 0.030541932 230 11409 0.25986 0.02277693
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231 1312 0.029522 0.022501601 231 1839 0.054492 0.029631321 231 12208 0.27535 0.022554472
232 1263 0.030671 0.024284244 232 1768 0.054367 0.030750452 232 11587 0.27296 0.023557435
233 1261 0.028954 0.022961142 233 1860 0.053029 0.028510054 233 11689 0.26044 0.022280691
234 1193 0.032223 0.027009891 234 1872 0.053794 0.028735844 234 12333 0.29164 0.023646801
235 1209 0.032453 0.026842928 235 1741 0.05241 0.030103619 235 11825 0.25975 0.021966258
236 1204 0.030563 0.025384635 236 1783 0.054268 0.030436119 236 11629 0.2577 0.022159945
237 1222 0.032486 0.026583879 237 1863 0.052535 0.028199087 237 12473 0.26874 0.021545659
238 1196 0.03312 0.027692642 238 1786 0.054063 0.030270381 238 11596 0.26648 0.022980683
239 1207 0.030225 0.025041425 239 1772 0.052801 0.029797235 239 11710 0.26685 0.022788386
240 1173 0.032254 0.027496675 240 1985 0.058718 0.029581058 240 12385 0.27066 0.021854098
241 1226 0.033615 0.027418108 241 1873 0.054274 0.028976775 241 11726 0.28277 0.024114702
242 1237 0.030942 0.025013743 242 1872 0.054517 0.029122062 242 11687 0.25765 0.022045692
243 1313 0.0324 0.024676161 243 2069 0.05779 0.027931174 243 12307 0.26826 0.021797676
244 1267 0.034462 0.027199684 244 1957 0.057041 0.029147113 244 11574 0.28396 0.024533869
245 1284 0.032638 0.025418692 245 2026 0.055955 0.027618608 245 11856 0.25749 0.02171778
246 1244 0.033347 0.026806029 246 2047 0.056032 0.027372692 246 13044 0.26925 0.020641751
247 1241 0.030989 0.024971313 247 1893 0.056952 0.03008579 247 11936 0.26241 0.02198492
248 1229 0.030783 0.02504703 248 1863 0.055126 0.029589748 248 12195 0.27679 0.022697335
249 1240 0.032845 0.026487581 249 1779 0.051808 0.029122147 249 12574 0.26817 0.021327581
250 1228 0.031296 0.025485016 250 1832 0.055991 0.030562664 250 11906 0.26452 0.022217201
251 1254 0.032833 0.026182456 251 1792 0.054581 0.030458092 251 12458 0.27419 0.022009392
252 1247 0.029387 0.023566159 252 1970 0.058808 0.029851777 252 12682 0.27002 0.02129191
253 1287 0.031723 0.024648485 253 1904 0.053742 0.028225945 253 12111 0.25846 0.021340517
254 1333 0.032956 0.024723481 254 1939 0.05644 0.029107994 254 11959 0.26533 0.022186303
255 1332 0.030734 0.023073724 255 1892 0.05853 0.030935254 255 12883 0.27181 0.021098269
256 1363 0.03439 0.025231181 256 1959 0.054561 0.027851506 256 11944 0.25974 0.021746735
257 1404 0.035044 0.024959758 257 2018 0.056559 0.028027403 257 12216 0.27067 0.022156843
258 1426 0.032831 0.023023001 258 2005 0.054672 0.027267681 258 12959 0.28926 0.022321398
259 1439 0.035431 0.024622029 259 2010 0.057338 0.028526567 259 12353 0.26387 0.021360479
260 1445 0.03756 0.025993149 260 1887 0.05376 0.028489613 260 11869 0.27033 0.022775887
261 1566 0.037499 0.023945849 261 1820 0.053582 0.029440549 261 13030 0.28162 0.021613047
262 1504 0.037371 0.024847872 262 1840 0.054784 0.029773641 262 12512 0.26537 0.021209159
263 1530 0.036541 0.023883137 263 1898 0.054455 0.028690832 263 11528 0.26444 0.022938931
264 1492 0.036149 0.024228753 264 1872 0.056825 0.030355128 264 12023 0.26506 0.022045912
265 1553 0.036073 0.023227688 265 1917 0.056361 0.029400626 265 11075 0.25767 0.023265463
266 1553 0.033529 0.021589955 266 1939 0.05825 0.030041362 266 10909 0.26321 0.024127601
267 1569 0.036789 0.023447355 267 1994 0.056324 0.028246891 267 11533 0.26263 0.022772219
268 1570 0.034577 0.022023503 268 1928 0.059221 0.030716234 268 11064 0.26077 0.023569234
269 1570 0.036771 0.023420828 269 1964 0.057186 0.029117057 269 11258 0.25747 0.022869693
270 1528 0.037648 0.024638874 270 2053 0.056019 0.027286556 270 12223 0.26343 0.021551747
271 1526 0.032859 0.021532634 271 1919 0.054516 0.02840839 271 11136 0.26102 0.023439655
272 1451 0.036784 0.02535093 272 1772 0.054774 0.030910892 272 11452 0.26614 0.023239783
273 1366 0.036049 0.02639041 273 1900 0.054174 0.028512632 273 12554 0.27164 0.021637645
274 1368 0.034384 0.025134357 274 1876 0.052659 0.028069989 274 12086 0.28296 0.023412212
275 1374 0.03485 0.025363828 275 1836 0.054969 0.029939651 275 12263 0.26865 0.021907445
276 1321 0.034397 0.026038759 276 1985 0.056794 0.028611385 276 13368 0.28078 0.02100389
277 1325 0.032772 0.024733509 277 1877 0.054854 0.029224241 277 12743 0.2691 0.021117084
278 1403 0.035559 0.025344761 278 1819 0.053645 0.029491699 278 13125 0.27122 0.020664
279 1296 0.036507 0.028169136 279 1907 0.053276 0.027937074 279 13645 0.27776 0.020356394
280 1366 0.035001 0.025623133 280 1924 0.054612 0.028384459 280 12896 0.27503 0.021326458
281 1343 0.035191 0.026203202 281 2030 0.055381 0.027281034 281 12862 0.27289 0.021216918
282 1338 0.034992 0.026152317 282 1934 0.057941 0.029959307 282 13623 0.30514 0.022398664
283 1320 0.033905 0.02568553 283 1977 0.055002 0.027821143 283 12876 0.27678 0.021495961
284 1252 0.033719 0.026931709 284 1952 0.054857 0.028103176 284 12834 0.27467 0.021401667
285 1252 0.032209 0.025725958 285 2056 0.059188 0.028787792 285 13351 0.30725 0.023012958
286 1227 0.03421 0.027880929 286 1970 0.053218 0.027014162 286 12567 0.27125 0.021584547
287 1231 0.032201 0.026158408 287 1930 0.053024 0.027473731 287 12851 0.26778 0.020837289
288 1276 0.034249 0.026841223 288 2174 0.058614 0.026961546 288 13652 0.27931 0.02045942
289 1289 0.034408 0.026693173 289 2100 0.056502 0.026905762 289 12676 0.28823 0.022738088
290 1286 0.032296 0.025113453 290 2040 0.055191 0.027054167 290 12694 0.26725 0.021053017
291 1200 0.033903 0.028252167 291 2046 0.054936 0.026850244 291 13615 0.27768 0.020395299
292 1159 0.033054 0.028519068 292 1903 0.053927 0.028338098 292 12874 0.27142 0.021082492
293 1158 0.033462 0.028896114 293 1825 0.05222 0.028613918 293 12900 0.26756 0.02074093
294 1103 0.032971 0.029892112 294 1905 0.053355 0.028007664 294 13463 0.27865 0.020697244
295 1176 0.034503 0.029339371 295 1835 0.054779 0.029852207 295 12660 0.47307 0.037367141
296 1185 0.031965 0.026974515 296 1678 0.052948 0.031554052 296 12544 0.28557 0.022765784
297 1114 0.032288 0.028983483 297 1727 0.053656 0.031068674 297 13466 0.27479 0.020406208
298 1149 0.032962 0.028687119 298 1619 0.050613 0.031261581 298 12294 0.41961 0.034131121
299 1121 0.033897 0.03023818 299 1648 0.053873 0.032689867 299 12380 0.26566 0.021459128
300 1137 0.033072 0.029087247 300 1793 0.055839 0.03114261 300 13211 0.28148 0.021306336
301 1138 0.031557 0.027730316 301 1534 0.049784 0.032453977 301 12384 0.37063 0.029928133
302 1182 0.033827 0.02861819 302 1558 0.049089 0.031507766 302 12484 0.28387 0.022738946
303 1182 0.032543 0.027532318 303 1626 0.050716 0.031190652 303 12774 0.26339 0.020618913
304 1178 0.030953 0.026275637 304 1765 0.051883 0.029395241 304 11808 0.3628 0.030725186
305 1063 0.032999 0.031042992 305 1745 0.050295 0.028822464 305 11947 0.27049 0.022640747
306 1063 0.032227 0.030317121 306 1829 0.052348 0.028621104 306 12896 0.2636 0.020440059
307 1038 0.031333 0.030186031 307 1711 0.050549 0.029543483 307 12169 0.38555 0.031682965
308 1115 0.032453 0.029105919 308 1623 0.050696 0.031236106 308 12133 0.27274 0.022479519
309 1116 0.029255 0.026214247 309 1771 0.052181 0.029464088 309 12833 0.2682 0.020898855
310 1071 0.031464 0.029378058 310 1956 0.053736 0.027472495 310 12033 0.38661 0.032128896
311 1011 0.032307 0.031955391 311 1950 0.054467 0.027931846 311 11799 0.25395 0.021523265
312 1012 0.029141 0.028795751 312 1904 0.053505 0.028101208 312 12399 0.26192 0.021124204
313 1048 0.031969 0.03050458 313 1891 0.05217 0.027588472 313 11356 0.38829 0.034192585
314 1033 0.031988 0.030966215 314 1728 0.052657 0.030472743 314 11083 0.27101 0.024452585
315 958 0.032049 0.033453653 315 1706 0.055482 0.032521454 315 12080 0.27307 0.02260505
316 1021 0.031369 0.030723506 316 1709 0.054826 0.032080866 316 11273 0.34409 0.030523286
317 940 0.030213 0.03214117 317 1701 0.050913 0.029931041 317 11692 0.26251 0.022452446
318 940 0.032256 0.034314468 318 1675 0.050151 0.029941134 318 11951 0.25979 0.021738181
319 928 0.030137 0.032475431 319 1677 0.050427 0.030069887 319 11188 0.38291 0.034225063
320 927 0.02907 0.031359008 320 1729 0.051314 0.029678485 320 10933 0.25228 0.023075002
321 949 0.029666 0.03126059 321 1741 0.050262 0.028869673 321 11550 0.25691 0.022243203
322 949 0.027926 0.02942687 322 1782 0.050845 0.028532435 322 10594 0.26484 0.024998962
323 944 0.031486 0.033354237 323 1811 0.051531 0.028454224 323 10910 0.40101 0.036755912
324 861 0.029536 0.034304297 324 2117 0.056937 0.026895324 324 11329 0.26943 0.023782417
325 862 0.028217 0.032734687 325 2103 0.054908 0.026109368 325 10393 0.4861 0.046771673
326 956 0.030278 0.031671025 326 2145 0.056319 0.026255991 326 10781 0.25911 0.024033485
327 860 0.02986 0.034720814 327 1997 0.055321 0.027701953 327 11319 0.26354 0.023282622
328 861 0.028491 0.033091057 328 2074 0.054501 0.026278255 328 10375 0.26897 0.02592453
329 883 0.030261 0.034270102 329 2127 0.053945 0.025362106 329 10525 0.28378 0.026962755
330 821 0.029385 0.035791352 330 2239 0.054507 0.02434435 330 11070 0.28606 0.025841012
331 827 0.028004 0.033861548 331 2164 0.055793 0.025782116 331 10338 0.42219 0.04083904
332 829 0.030138 0.036355127 332 2130 0.057836 0.027152958 332 10479 0.27701 0.02643487
333 907 0.030608 0.033746196 333 2282 0.057503 0.025198379 333 11007 0.27412 0.02490397
334 976 0.031014 0.031776127 334 2189 0.058121 0.026551211 334 10511 0.36715 0.034929788
335 974 0.030672 0.031490965 335 2192 0.056026 0.025559489 335 10887 0.27812 0.02554588
336 938 0.030684 0.032712154 336 2307 0.05911 0.025621803 336 11815 0.28138 0.023815658
337 879 0.029333 0.033370762 337 2219 0.054287 0.024464443 337 11048 0.28123 0.025455014
338 894 0.030378 0.033979642 338 2187 0.057573 0.026324966 338 11319 0.2565 0.022660747
339 888 0.028572 0.032175676 339 2139 0.057191 0.026737447 339 11439 0.24911 0.021777078
340 905 0.030637 0.033852597 340 2153 0.055047 0.02556758 340 11211 0.24886 0.022198198
341 905 0.028965 0.032005193 341 2304 0.055998 0.024304688 341 12175 0.28013 0.023008789
342 875 0.030387 0.034727886 342 2164 0.056913 0.026300046 342 11611 0.25351 0.021833262
343 871 0.030459 0.03496992 343 2079 0.056402 0.027129437 343 11343 0.27045 0.023842987
344 872 0.028715 0.032930046 344 2092 0.055734 0.026641539 344 12260 0.40982 0.033427162
345 909 0.03062 0.033685369 345 2139 0.057286 0.026781627 345 11410 0.27594 0.024183611
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Avg time per obj over all frames: Standard Deviation:

346 843 0.030097 0.035702254 346 2051 0.059917 0.029213749 346 11602 0.25264 0.021775556
347 844 0.028752 0.034066114 347 2236 0.058695 0.02625 347 12357 0.40141 0.032484098
348 775 0.029889 0.038566194 348 2166 0.058304 0.02691759 348 10930 0.25116 0.022979323
349 769 0.029256 0.038043563 349 2074 0.057344 0.027649132 349 11058 0.26133 0.023632935
350 764 0.027221 0.03562945 350 1992 0.056891 0.028559639 350 11867 0.29277 0.024671273
351 742 0.029165 0.039306469 351 1929 0.054765 0.02839015 351 11336 0.27658 0.02439873
352 741 0.029281 0.03951525 352 1859 0.056518 0.030402313 352 11404 0.27422 0.02404551
353 742 0.028448 0.038339084 353 1813 0.054632 0.03013337 353 10561 0.24773 0.023456964
354 752 0.028997 0.038559973 354 1724 0.054706 0.031731845 354 11360 0.27556 0.024256866
355 751 0.027202 0.036220373 355 1936 0.054078 0.027932851 355 10726 0.24302 0.022657375
356 717 0.028505 0.03975523 356 1857 0.054618 0.02941217 356 11141 0.36611 0.032861682
357 729 0.028948 0.039709328 357 1918 0.05703 0.029734046 357 11681 0.28365 0.024283109
358 731 0.027482 0.037594528 358 1959 0.054922 0.02803563 358 10859 0.28539 0.026281702
359 766 0.028048 0.036615927 359 1923 0.054943 0.028571555 359 10953 0.2941 0.026851
360 766 0.027248 0.03557154 360 1903 0.056604 0.029744824 360 11708 0.4064 0.034711565
361 731 0.027557 0.037697811 361 2020 0.059764 0.02958599 361 11094 0.27712 0.024979178
362 766 0.028667 0.037424543 362 1873 0.054835 0.029276508 362 11361 0.27804 0.024473374
363 766 0.027176 0.035478198 363 1731 0.052527 0.030344656 363 11861 0.28253 0.02382042
364 740 0.02735 0.036959054 364 1727 0.052803 0.030575043 364 10950 0.26923 0.02458758
365 748 0.027359 0.036575936 365 1732 0.051419 0.02968776 365 11129 0.25347 0.022775541
366 747 0.027887 0.037331995 366 1915 0.053741 0.028062977 366 11971 0.26656 0.02226748
367 775 0.029809 0.038463226 367 1818 0.052759 0.029020077 367 11290 0.25042 0.022180248
368 797 0.028886 0.036243538 368 1874 0.053729 0.028670598 368 11128 0.25301 0.02273661
369 783 0.028918 0.036932439 369 1830 0.054086 0.029554918 369 11672 0.25464 0.021816655
370 749 0.028326 0.037818825 370 1946 0.057676 0.029638335 370 10958 0.3952 0.036064519
371 740 0.029303 0.039597973 371 1787 0.053734 0.030069334 371 11073 0.26825 0.024225323
372 746 0.02956 0.039624263 372 1838 0.054409 0.029602285 372 11675 0.26268 0.022499186
373 794 0.028213 0.03553262 373 1836 0.053801 0.029303595 373 10851 0.27818 0.025635886
374 792 0.027217 0.034364394 374 1827 0.054761 0.02997318 374 11008 0.26733 0.024285065
375 809 0.029938 0.037006304 375 1644 0.051961 0.031606569 375 11570 0.25808 0.022306137
376 810 0.028241 0.034865802 376 1625 0.051717 0.031825908 376 10917 0.24211 0.02217688
377 800 0.029317 0.036646375 377 1634 0.053889 0.032979621 377 10465 0.27716 0.02648409
378 816 0.029559 0.036223652 378 1676 0.051364 0.030646957 378 11212 0.25253 0.022523279
379 816 0.028109 0.034446814 379 1654 0.050827 0.030729504 379 10506 0.25042 0.023835998
380 798 0.029581 0.037069424 380 1618 0.049975 0.030887021 380 10033 0.283 0.028207216
381 819 0.030992 0.037841514 381 1596 0.050405 0.031581892 381 11653 0.27907 0.023948511
382 819 0.028112 0.034324542 382 1569 0.048845 0.031131549 382 10939 0.24343 0.022253405
383 801 0.027612 0.034471411 383 1665 0.050116 0.03009988 383 11323 0.36749 0.032454915
384 697 0.028825 0.041355667 384 1710 0.052219 0.03053731 384 11918 0.29515 0.024765397
385 697 0.028175 0.040423242 385 1597 0.050733 0.03176794 385 11377 0.28903 0.025404676
386 799 0.029003 0.036299124 386 1613 0.049835 0.030896094 386 11266 0.29314 0.026019528
387 753 0.029983 0.039817795 387 1639 0.05113 0.031196095 387 12054 0.30224 0.025073668
388 788 0.027699 0.035150888 388 1599 0.050547 0.03161182 388 11293 0.27548 0.024394227
389 788 0.02935 0.037246574 389 1636 0.050868 0.031092726 389 11283 0.26522 0.023505805
390 797 0.029675 0.037232873 390 1715 0.051002 0.029739009 390 12127 0.26558 0.021900223
391 832 0.030373 0.036505649 391 1662 0.0486 0.029242118 391 11338 0.265 0.023373082
392 885 0.030972 0.03499661 392 1594 0.050777 0.031855207 392 11522 0.25331 0.021984985
393 885 0.027832 0.031448701 393 1659 0.05486 0.033068234 393 12019 0.3133 0.026066811
394 880 0.030532 0.034695341 394 1704 0.052817 0.030995599 394 11151 0.25291 0.022680746
395 880 0.028002 0.031820341 395 1647 0.051576 0.031314876 395 11189 0.26129 0.0233524
396 891 0.031031 0.034826599 396 1752 0.05354 0.030559532 396 12003 0.26485 0.022065484
397 890 0.02889 0.032460225 397 1924 0.053532 0.027823285 397 11136 0.27826 0.024987698
398 890 0.028705 0.032253034 398 1837 0.053402 0.029070005 398 11255 0.2631 0.023376544
399 862 0.029039 0.033688399 399 1701 0.051096 0.030038801 399 12134 0.36848 0.03036715
400 860 0.030801 0.035815465 400 1699 0.050409 0.029669806 400 11218 0.30871 0.027519522
401 872 0.027411 0.03143406 401 1602 0.049714 0.031032522 401 11581 0.2749 0.023736983
402 859 0.02908 0.033853434 402 1666 0.050282 0.030181152 402 12031 0.29895 0.024848142
403 859 0.029997 0.034920838 403 1617 0.048311 0.029876871 403 11491 0.26294 0.022882604
404 855 0.028847 0.033739649 404 1622 0.049534 0.030539088 404 11424 0.25648 0.022451331
405 836 0.028335 0.033893062 405 1605 0.049367 0.030757944 405 12156 0.25723 0.021161073
406 803 0.029308 0.03649863 406 1556 0.049856 0.03204081 406 11324 0.25963 0.022927499
407 817 0.028818 0.035273072 407 1506 0.047237 0.031365936 407 11538 0.26543 0.0230052
408 799 0.028812 0.036060325 408 1581 0.050769 0.032111891 408 12195 0.25895 0.021234194
409 808 0.028783 0.035622525 409 1531 0.049042 0.032032724 409 11423 0.24997 0.021882955
410 719 0.02876 0.040000139 410 1548 0.047893 0.030938307 410 11212 0.27023 0.024102123
411 758 0.028578 0.037701715 411 1562 0.049187 0.031489565 411 12063 0.40306 0.033412833
412 762 0.026735 0.035085827 412 1572 0.049113 0.031242494 412 11196 0.25988 0.023211861
413 849 0.030527 0.035956655 413 1539 0.049623 0.0322436 413 11395 0.27265 0.023927161
414 849 0.027253 0.032100471 414 1454 0.047484 0.032657497 414 12193 0.29936 0.02455212
415 853 0.027788 0.032577022 415 1583 0.049058 0.030990208 415 11926 0.29008 0.024323159
416 799 0.028776 0.036014894 416 1528 0.048475 0.031724607 416 11855 0.28721 0.024227246
417 799 0.027586 0.034525031 417 1540 0.048306 0.031367338 417 12451 0.28741 0.023083046
418 716 0.028818 0.040248743 418 1571 0.049534 0.03153049 418 11641 0.28619 0.024584658
419 804 0.030699 0.038182338 419 1546 0.047294 0.030590944 419 11681 0.28097 0.02405342
420 805 0.026086 0.032405342 420 1626 0.051697 0.031793665 420 12190 0.28119 0.023067104
421 802 0.028248 0.03522207 421 1637 0.049244 0.030082101 421 11329 0.27702 0.024452202
422 767 0.029365 0.038284876 422 1605 0.050367 0.031381184 422 11418 0.27631 0.024199772
423 733 0.028766 0.039243656 423 1692 0.049939 0.029514953 423 12526 0.27771 0.022170605
424 738 0.028303 0.038350407 424 1642 0.049245 0.029990987 424 11471 0.2518 0.02195092
425 767 0.028394 0.037019296 425 1592 0.050235 0.031554523 425 11613 0.25422 0.021890984
426 756 0.027595 0.036500794 426 1882 0.050771 0.026976886 426 12390 0.25718 0.020757224
427 808 0.028451 0.035211262 427 1920 0.052376 0.027279375 427 12131 0.25043 0.020643805
428 805 0.027547 0.034220124 428 1974 0.052147 0.026416667 428 11650 0.24985 0.021446009
429 807 0.02836 0.035142379 429 1985 0.052449 0.02642272 429 12287 0.25418 0.020687068
430 798 0.027716 0.034732206 430 1793 0.051693 0.028830229 430 11894 0.25826 0.021713301
431 811 0.029641 0.036549199 431 1650 0.048816 0.029585273 431 12156 0.25974 0.021367308
432 821 0.029572 0.036019367 432 1649 0.051491 0.031225652 432 13051 0.26668 0.020433913
433 821 0.028023 0.03413313 433 1696 0.050289 0.029651238 433 11992 0.29225 0.024370664
434 830 0.02995 0.036084819 434 1746 0.051662 0.029588889 434 11916 0.28768 0.024142665
435 905 0.029245 0.032315138 435 1722 0.049876 0.028964053 435 12865 0.27192 0.021136106
436 905 0.026799 0.029612597 436 1633 0.050878 0.031156154 436 11775 0.25514 0.02166828
437 874 0.029505 0.03375881 437 1765 0.052487 0.029737507 437 11545 0.31859 0.027595409
438 878 0.031078 0.035396697 438 1686 0.05079 0.030124733 438 12383 0.3859 0.031163369
439 879 0.027272 0.031025597 439 1736 0.052074 0.029996659 439 11344 0.26469 0.023332951
440 965 0.030681 0.031793264 440 1866 0.052647 0.028213666 440 11567 0.28886 0.024973113
441 937 0.031098 0.033188474 441 1764 0.056092 0.031798413 441 12612 0.29674 0.023528624
442 930 0.032222 0.034647312 442 1680 0.051401 0.030595833 442 11544 0.2934 0.025415367
443 821 0.029008 0.035332278 443 1724 0.051998 0.030161485 443 11899 0.28521 0.023969493
444 861 0.030447 0.035362834 444 1786 0.053554 0.029985274 444 12427 0.28873 0.023234248
445 888 0.029276 0.032968919 445 1932 0.053242 0.027557971 445 11684 0.28138 0.024082677
446 939 0.031105 0.033125453 446 1817 0.051217 0.028187397 446 12161 0.27946 0.022980018
447 937 0.028615 0.030539061 447 1845 0.051772 0.028060705 447 12691 0.28054 0.022105508
448 890 0.031283 0.035148876 448 1782 0.051805 0.029071156 448 11880 0.27571 0.023207828
449 849 0.028685 0.033787279 449 1755 0.050989 0.029053561 449 11791 0.28671 0.024315664
450 718 0.02826 0.039359749 450 1784 0.053154 0.029794787 450 12301 0.27332 0.022219088
451 743 0.028992 0.039020727 451 1848 0.052605 0.028466017 451 11586 0.25886 0.022342482
452 743 0.028515 0.038378331 452 1862 0.052286 0.028080559 452 11233 0.24501 0.02181127
453 737 0.028576 0.038772863 453 1795 0.05316 0.02961571 453 12244 0.25085 0.020487177
454 798 0.029003 0.036345113 454 1860 0.053233 0.028619839 454 11084 0.24782 0.022358625
455 789 0.028156 0.035686185 455 1923 0.054281 0.028227249 455 11036 0.24578 0.02227075
456 759 0.028062 0.036971805 456 2037 0.057255 0.028107707 456 12101 0.25059 0.020708289
457 769 0.029062 0.037792328 457 2081 0.059574 0.028627439 457 11338 0.27547 0.024295996
458 770 0.027417 0.035605844 458 2066 0.053661 0.025973282 458 10880 0.24359 0.022388327
459 859 0.028497 0.033174156 459 2063 0.05354 0.025952254 459 11651 0.26514 0.022756759
460 852 0.029881 0.035071479 460 2115 0.05692 0.026912719 460 11081 0.25762 0.023248714
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461 852 0.033904 0.039793662 461 2033 0.054575 0.026844368 461 10812 0.26965 0.024939419
462 789 0.029273 0.037101267 462 1990 0.053762 0.027015829 462 11591 0.26658 0.022999224
463 789 0.027073 0.034312801 463 2019 0.054594 0.027040267 463 10510 0.24802 0.023598287
464 778 0.027673 0.035568766 464 1947 0.054807 0.028149563 464 11118 0.29036 0.026116028
465 820 0.029067 0.035448049 465 1864 0.054744 0.029369313 465 11701 0.26715 0.02283104
466 820 0.02817 0.034353415 466 1955 0.053854 0.027546803 466 10871 0.24382 0.022428479
467 719 0.027674 0.038490125 467 2018 0.054575 0.027044252 467 11083 0.36276 0.03273121
468 720 0.027104 0.037644444 468 2048 0.056984 0.027824219 468 11806 0.26809 0.022707776
469 783 0.028096 0.035882503 469 1961 0.054829 0.02795951 469 10880 0.24807 0.022800368
470 743 0.028386 0.038204441 470 2038 0.055556 0.027259814 470 10588 0.28015 0.026458916
471 743 0.027801 0.037417631 471 2019 0.054429 0.026958296 471 11826 0.31127 0.02632048
472 893 0.031024 0.034741097 472 1951 0.05571 0.028554587 472 11049 0.2826 0.025576704
473 958 0.030143 0.031464718 473 1981 0.055546 0.028039576 473 11427 0.29011 0.025388291
474 960 0.028052 0.029220521 474 1892 0.05413 0.028609778 474 12022 0.34259 0.028496922
475 978 0.030943 0.031639264 475 1822 0.052566 0.028850549 475 11021 0.28392 0.025761728
476 965 0.030119 0.031211088 476 1804 0.053572 0.029695953 476 11906 0.29797 0.025026541
477 948 0.029282 0.030887658 477 1931 0.053571 0.027742465 477 11178 0.27357 0.024474146
478 968 0.029574 0.03055155 478 2039 0.056397 0.027659343 478 11054 0.28826 0.026077076
479 993 0.030757 0.030973515 479 1848 0.05353 0.02896645 479 11822 0.2798 0.023667484
480 988 0.0304 0.030769231 480 1907 0.055906 0.029315941 480 10872 0.26395 0.02427787
481 984 0.030437 0.030931606 481 1939 0.055073 0.02840263 481 11255 0.26704 0.0237259
482 981 0.028555 0.029108053 482 1928 0.053327 0.027659025 482 12175 0.30127 0.024745216
483 936 0.030235 0.032302564 483 1916 0.053142 0.027735752 483 11031 0.25664 0.023265524
484 938 0.028623 0.030514499 484 1946 0.054277 0.027891418 484 10944 0.25563 0.023358279
485 967 0.030035 0.03106029 485 1935 0.054625 0.028229819 485 11550 0.2671 0.023125368
486 1021 0.03181 0.031155632 486 1937 0.053399 0.02756763 486 12154 0.25708 0.021151966
487 1021 0.028361 0.027778061 487 1887 0.052145 0.027633969 487 11324 0.31937 0.028202755
488 990 0.031951 0.032273333 488 1927 0.054249 0.02815205 488 11253 0.25374 0.022548831
489 961 0.031493 0.032771176 489 1956 0.053274 0.027235992 489 11789 0.26431 0.022420053
490 959 0.029231 0.030481126 490 1903 0.054037 0.028395849 490 11028 0.32727 0.029676369
491 955 0.031547 0.033033717 491 1957 0.052814 0.026987123 491 10916 0.36846 0.033754397
492 940 0.0303 0.032234468 492 1918 0.055569 0.028972106 492 11461 0.2603 0.022711456
493 939 0.028194 0.030025453 493 1850 0.053249 0.028783081 493 10485 0.24751 0.023605627
494 971 0.031742 0.032690422 494 1795 0.052922 0.029483231 494 10943 0.24663 0.022537969
495 966 0.030996 0.032086646 495 1758 0.055421 0.031524915 495 11777 0.25073 0.021289547
496 927 0.029792 0.032137648 496 1757 0.05218 0.029698179 496 10988 0.26669 0.024270841
497 877 0.030579 0.034867161 497 1709 0.052005 0.030430135 497 11512 0.25737 0.022356411
498 1010 0.030817 0.03051198 498 2011 0.054455 0.027078667 498 11966 0.26108 0.021818653
499 982 0.030386 0.030943075 499 2025 0.052769 0.026058815 499 11395 0.25391 0.022282492
500 934 0.029653 0.031748715 500 1963 0.052019 0.026499694 500 11300 0.24568 0.021741947
501 937 0.028995 0.03094461 501 1965 0.051294 0.026103613 501 12093 0.24835 0.020536426
502 933 0.028399 0.0304388 502 1899 0.050424 0.026552712 502 11174 0.24546 0.021967335
503 937 0.028764 0.030698399 503 1672 0.057411 0.034336543 503 11553 0.24618 0.021308924
504 900 0.030506 0.033895333 504 1677 0.052717 0.031435063 504 12177 0.26881 0.022074813
505 971 0.029106 0.029974974 505 1607 0.049251 0.030647604 505 11160 0.26955 0.024153047
506 962 0.02811 0.029220166 506 1622 0.049295 0.030391245 506 11210 0.25087 0.022378858
507 930 0.029138 0.03133086 507 1545 0.048331 0.031282201 507 11515 0.25834 0.02243465
508 877 0.03033 0.034583352 508 1513 0.048527 0.0320731 508 10785 0.35292 0.032723227
509 878 0.027976 0.031863212 509 1418 0.048846 0.034446968 509 10948 0.2471 0.022569876
510 934 0.030916 0.033100107 510 1372 0.047233 0.034426166 510 11607 0.26288 0.022648574
511 920 0.030223 0.032851522 511 1465 0.04883 0.033331331 511 10876 0.30218 0.027783744
512 922 0.026852 0.029123536 512 1501 0.048576 0.032362092 512 10929 0.28041 0.025657425
513 891 0.028881 0.032413692 513 1466 0.048035 0.032765825 513 11930 0.29178 0.024457837
514 938 0.030963 0.033009915 514 1461 0.04834 0.033086721 514 11034 0.39475 0.035775965
515 854 0.02868 0.033583021 515 1381 0.049109 0.035560681 515 10656 0.27042 0.025376877
516 855 0.030775 0.035993567 516 1616 0.050567 0.031291708 516 11654 0.27696 0.023764973
517 866 0.028562 0.032981178 517 1531 0.047074 0.030747159 517 10718 0.26598 0.024816104
518 872 0.029443 0.033764564 518 1391 0.046977 0.033772178 518 10680 0.2683 0.025121348
519 882 0.029809 0.033797052 519 1418 0.051159 0.036077927 519 11536 0.26995 0.023400745
520 886 0.027638 0.031193792 520 1417 0.046952 0.033134651 520 10862 0.26353 0.024261278
521 902 0.029397 0.032590798 521 1424 0.04703 0.033026475 521 10887 0.27072 0.024866079
522 902 0.028606 0.031713525 522 1481 0.046378 0.031315463 522 11646 0.26497 0.02275219
523 868 0.029713 0.034231106 523 1394 0.049378 0.035422023 523 10896 0.25107 0.023042768
524 903 0.032562 0.036059468 524 1434 0.046448 0.032390307 524 10971 0.24277 0.022128338
525 898 0.028198 0.03140078 525 1491 0.048803 0.032731522 525 11618 0.24682 0.02124419
526 875 0.028928 0.033060114 526 1485 0.046694 0.031443973 526 10749 0.24844 0.023112941
527 874 0.031194 0.035690618 527 1545 0.049163 0.031820971 527 11154 0.2432 0.021803748
528 875 0.028273 0.032312343 528 1627 0.052817 0.032462999 528 11493 0.24798 0.021576699
529 881 0.028887 0.032788309 529 1602 0.048779 0.030448564 529 10417 0.25795 0.024762504
530 844 0.029648 0.035128199 530 1630 0.050133 0.030756135 530 10454 0.24026 0.022982495
531 920 0.030615 0.033277065 531 1426 0.046317 0.032480084 531 11303 0.24427 0.021611431
532 900 0.031195 0.034660889 532 1546 0.047857 0.030955304 532 10414 0.2399 0.023036393
533 847 0.029309 0.03460307 533 1581 0.04649 0.029405693 533 10407 0.23911 0.022975593
534 868 0.028599 0.032948041 534 1484 0.047462 0.031982412 534 11214 0.24065 0.021459782
535 866 0.030777 0.035539145 535 1534 0.054706 0.035662125 535 10181 0.2501 0.024564974
536 867 0.026555 0.030628374 536 1701 0.049736 0.029239153 536 10352 0.27511 0.026575638
537 938 0.031384 0.033458529 537 1514 0.049385 0.032618626 537 11155 0.25848 0.023171762
538 869 0.031373 0.036102877 538 1714 0.049646 0.028965111 538 10714 0.24172 0.022561135
539 869 0.026977 0.031043959 539 1728 0.05079 0.029392303 539 10637 0.25257 0.023744383
540 915 0.031014 0.033894536 540 1689 0.0523 0.03096495 540 11255 0.27087 0.024066726
541 915 0.029179 0.031889836 541 1822 0.050552 0.027745554 541 10473 0.24675 0.02356068
542 896 0.028175 0.031445313 542 1774 0.049607 0.027963191 542 10629 0.24419 0.022973751
543 954 0.029843 0.031281866 543 1777 0.052393 0.029483737 543 11116 0.27195 0.024465005
544 954 0.027203 0.02851478 544 1736 0.050481 0.02907909 544 10506 0.26114 0.024856463
545 925 0.028672 0.030996757 545 1709 0.0497 0.029081042 545 10251 0.2434 0.023743537
546 941 0.028812 0.030618278 546 1663 0.050168 0.030167168 546 11161 0.3861 0.034593316
547 941 0.029127 0.030952922 547 1704 0.052298 0.030691432 547 10120 0.27847 0.027516897
548 975 0.0316 0.032410462 548 1827 0.052034 0.028480296 548 10229 0.27778 0.027156223
549 948 0.029577 0.031199051 549 1818 0.053204 0.029264961 549 10873 0.29007 0.02667755
550 934 0.029169 0.031229764 550 1920 0.051605 0.026877552 550 10367 0.27918 0.026929488
551 1019 0.030874 0.030298724 551 1782 0.057211 0.032105051 551 10092 0.27475 0.027224237
552 1017 0.030589 0.030077483 552 1733 0.053027 0.030598211 552 11332 0.27335 0.024121603
553 945 0.029146 0.030842328 553 1616 0.052473 0.032470792 553 10376 0.2796 0.026946415
554 908 0.02908 0.032026542 554 1568 0.049176 0.03136199 554 10275 0.26596 0.025884574
555 909 0.027458 0.030207151 555 1540 0.04905 0.031850649 555 10705 0.26836 0.02506894
556 943 0.029711 0.031507317 556 1502 0.049655 0.033058921 556 8364 0.21919 0.026206002
557 941 0.028152 0.029917216 557 1473 0.046467 0.031545621 557 6888 0.2165 0.031430749
558 953 0.029417 0.030868206 558 1475 0.048083 0.032598847 558 7487 0.21338 0.028499933
559 876 0.028945 0.033042237 559 1464 0.047463 0.03242015 559 7089 0.21544 0.030391169
560 877 0.029089 0.033168529 560 1469 0.048666 0.033128931 560 6750 0.21125 0.031296
561 903 0.029005 0.032120709 561 1489 0.046096 0.030957757 561 7959 0.217 0.027265234
562 902 0.030135 0.033408537 562 1463 0.046757 0.031959467 562 7818 0.23166 0.029631875
563 905 0.027757 0.03067116 563 1462 0.047001 0.032148564 563 8016 0.22506 0.028076347
564 930 0.029236 0.031436667 564 1495 0.049314 0.032985619 564 8525 0.21921 0.025713314
565 913 0.029276 0.032065717 565 1615 0.048525 0.03004644 565 7949 0.23123 0.029088816
566 914 0.027477 0.030062691 566 1564 0.047283 0.030232033 566 8306 0.22958 0.027640501
567 908 0.028518 0.031406938 567 1563 0.049223 0.03149245 567 8632 0.22543 0.026115964
568 923 0.030296 0.032823077 568 1537 0.047755 0.031070007 568 8049 0.2335 0.029009566
569 947 0.028119 0.029693031 569 1534 0.04871 0.031753259 569 8140 0.25158 0.030907125
570 964 0.029077 0.030162344 570 1574 0.048831 0.03102338 570 8532 0.22603 0.026491678
571 977 0.029303 0.029993142 571 1566 0.049149 0.03138493 571 7988 0.21279 0.026639084
572 952 0.030223 0.031746429 572 1720 0.051354 0.029856977 572 8028 0.22448 0.027961634
573 931 0.029277 0.031447046 573 1701 0.049393 0.029037801 573 7978 0.21684 0.027179118
574 925 0.027418 0.029640649 574 1748 0.051329 0.029364474 574 7306 0.21463 0.029377224
575 930 0.029617 0.031846237 575 1636 0.050294 0.03074187 575 7070 0.21414 0.030288967



0.029803515 0.00606977

Frame No Num Obj Time in S Time per obj (ms) Frame No Num Obj Time in S Time per obj (ms) Frame No Num Obj Time in S Time per obj (ms)
Helicopter Video (640 x 360) Dashboard Video (848 x 480) Drone Video (1920 x 1080)

Avg time per obj over all frames: Standard Deviation:

576 927 0.028302 0.030530529 576 1819 0.054638 0.030037493 576 7556 0.30601 0.040498412
577 908 0.029651 0.032655617 577 1766 0.052271 0.029598301 577 6904 0.20606 0.029846031
578 896 0.029288 0.032687388 578 1654 0.05095 0.030803809 578 7237 0.21415 0.029590991
579 902 0.027439 0.030420177 579 1638 0.050811 0.031020269 579 7407 0.21185 0.028601188
580 985 0.030322 0.030783452 580 1707 0.050564 0.0296215 580 6839 0.22179 0.032430619
581 932 0.030792 0.033038948 581 1574 0.049005 0.031133799 581 6956 0.24769 0.035608683
582 935 0.028237 0.030200428 582 1579 0.048925 0.030984927 582 7293 0.24689 0.033853558
583 971 0.029883 0.030775283 583 1442 0.051753 0.035890014 583 6700 1.2467 0.186074627
584 975 0.029802 0.030565949 584 1571 0.051646 0.032874602 584 6940 0.2512 0.036195533
585 885 0.030141 0.034057401 585 1475 0.048528 0.032900407 585 7206 0.25211 0.034986261
586 870 0.029602 0.034025632 586 1380 0.047836 0.034663768 586 6750 0.24517 0.036320889
587 928 0.031217 0.033639009 587 1479 0.048808 0.033000541 587 7211 0.25661 0.035586465
588 864 0.028999 0.033563773 588 1514 0.052409 0.03461638 588 7757 0.25902 0.033391388
589 919 0.029675 0.032290533 589 1612 0.047334 0.029363462 589 6733 0.24593 0.036526066
590 919 0.02774 0.030184548 590 1437 0.046687 0.032489353 590 6565 0.24251 0.036939832
591 882 0.030093 0.034118594 591 1436 0.047534 0.033101532 591 7568 0.25122 0.0331949
592 835 0.028407 0.03401976 592 1450 0.046584 0.032127172 592 6574 0.25545 0.038857925
593 831 0.027608 0.033222262 593 1366 0.046234 0.033846559 593 6828 0.25548 0.037416374
594 880 0.029131 0.033102955 594 1436 0.046787 0.032581546 594 6898 0.25593 0.037101769
595 879 0.027305 0.031064164 595 1449 0.047144 0.03253568 595 6439 0.26319 0.040874049
596 818 0.029227 0.035730318 596 1465 0.047412 0.032363208 596 6507 0.24465 0.037597664
597 732 0.027853 0.03805 597 1465 0.046527 0.031758908 597 6807 0.24593 0.036128838
598 732 0.025028 0.034191667 598 1501 0.046486 0.03096982 598 6359 0.24323 0.038249253
599 742 0.02701 0.036400943 599 1414 0.046386 0.032804597 599 6419 0.25523 0.039761957
600 827 0.028862 0.034900121 600 1500 0.048957 0.032637867 600 7052 0.26701 0.037863585
601 826 0.027461 0.0332454 601 1579 0.046692 0.029570804 601 6222 0.2485 0.039939569
602 846 0.031037 0.036686998 602 1651 0.047725 0.028906723 602 6637 0.25877 0.038989152
603 855 0.029171 0.034117544 603 1648 0.050232 0.030480583 603 6763 0.31632 0.046771403
604 851 0.029051 0.03413772 604 1605 0.049186 0.03064567 604 6098 0.24019 0.039388816
605 748 0.027817 0.037188102 605 1476 0.046953 0.031810976 605 6110 0.2469 0.040408347
606 781 0.02827 0.036196927 606 1428 0.046528 0.032582283 606 6327 0.23793 0.037605658
607 785 0.028258 0.035997834 607 1463 0.047122 0.032208954 607 5966 0.23058 0.038649011
608 786 0.028939 0.036817557 608 1442 0.046803 0.032456657 608 5933 0.2278 0.038395247
609 779 0.027681 0.035534275 609 1467 0.047009 0.032044104 609 6198 0.22633 0.036516457
610 799 0.030359 0.03799612 610 1531 0.047014 0.030707969 610 5622 0.22588 0.040178051
611 799 0.027082 0.033895119 611 1467 0.049634 0.033833606 611 6409 0.22745 0.035488376
612 798 0.028444 0.035643609 612 1707 0.051096 0.02993345 612 6066 0.22311 0.036780415
613 938 0.02927 0.031204797 613 1689 0.048983 0.029001362 613 5784 0.22695 0.039237206
614 939 0.028518 0.030370075 614 1688 0.049477 0.029311078 614 6042 0.22571 0.037357001
615 964 0.029714 0.030823755 615 1634 0.051469 0.031498776 615 5478 0.21736 0.039678897
616 1016 0.031054 0.030564764 616 1653 0.050321 0.030442166 616 5510 0.21907 0.039758439
617 1015 0.02821 0.027792808 617 1681 0.049453 0.02941856 617 5809 0.22216 0.038244448
618 886 0.029659 0.033475395 618 1712 0.050581 0.029544918 618 5807 0.22187 0.038207164
619 880 0.029038 0.032997955 619 1469 0.046984 0.031983526 619 5316 0.21808 0.041022573
620 882 0.027438 0.031108617 620 1572 0.050677 0.032237468 620 5665 0.22129 0.039062489
621 1111 0.032257 0.029034293 621 1556 0.048711 0.031305527 621 5891 0.22393 0.038012052
622 1131 0.031213 0.027597701 622 1558 0.047198 0.03029371 622 5666 0.21874 0.038606248
623 1137 0.031057 0.027314512 623 1561 0.049132 0.031474824 623 5805 0.22119 0.038103704
624 1082 0.030868 0.028528373 624 1688 0.049697 0.029441173 624 5655 0.22271 0.039382317
625 1083 0.029944 0.027648846 625 1523 0.047669 0.031299606 625 5193 0.21515 0.04143058
626 1075 0.032302 0.030048558 626 1689 0.04872 0.028845293 626 5188 0.22239 0.042865459
627 945 0.030027 0.031775026 627 1869 0.053778 0.028773515 627 5474 0.21788 0.039803252
628 985 0.028086 0.028513807 628 1905 0.055415 0.029089344 628 5182 0.21554 0.041594558
629 984 0.030694 0.031192988 629 1763 0.051242 0.029065343 629 5351 0.21968 0.041054195
630 980 0.028949 0.029540102 630 1683 0.052039 0.03092038 630 5465 0.21804 0.039897164
631 1010 0.029728 0.029433267 631 1685 0.055369 0.032860178 631 5416 0.22266 0.041111152
632 1045 0.03111 0.029770239 632 1658 0.052444 0.031630639 632 5298 0.22578 0.042616082
633 1045 0.029143 0.027888325 633 1719 0.053867 0.031336475 633 5526 0.21627 0.039136446
634 889 0.030659 0.034487177 634 1697 0.051693 0.030461167 634 5128 0.21362 0.041657371
635 934 0.030301 0.03244197 635 1772 0.054179 0.030574887 635 5102 0.21962 0.043045276
636 934 0.028308 0.03030803 636 1805 0.057489 0.031849806 636 5479 0.29692 0.054192918
637 923 0.029665 0.032139545 637 1830 0.055831 0.030508634 637 5188 0.26381 0.050850039
638 890 0.03033 0.034079101 638 1829 0.056586 0.030938327 638 5749 0.21708 0.037758741
639 1046 0.03085 0.02949283 639 1772 0.057559 0.032482619 639 5704 0.21586 0.037844144
640 861 0.029117 0.033817422 640 1550 0.055543 0.035833871 640 5286 0.21352 0.040393681
641 947 0.031011 0.032746674 641 1589 0.054588 0.034353682 641 5215 0.21443 0.041118313
642 957 0.028666 0.029954023 642 1828 0.05693 0.03114349 642 5543 0.22495 0.040582717
643 916 0.029626 0.032342358 643 1602 0.054817 0.034217665 643 5335 0.21495 0.040289597
644 916 0.028119 0.030697489 644 1720 0.057024 0.033153198 644 5627 0.22132 0.03933126
645 923 0.029785 0.032269231 645 1798 0.055209 0.030705784 645 5839 0.22228 0.038067477
646 896 0.028884 0.032236719 646 1691 0.062987 0.037248374 646 5296 0.21471 0.040542107
647 911 0.028129 0.030876839 647 1513 0.052911 0.034970654 647 5349 0.2171 0.040587026
648 986 0.032243 0.032700304 648 1740 0.057655 0.033134943 648 5726 0.21355 0.037294446
649 992 0.028885 0.02911744 649 1715 0.055967 0.032633644 649 5225 0.21701 0.041532823
650 990 0.029863 0.030164343 650 1694 0.055162 0.0325634 650 5260 0.21514 0.040901901
651 1022 0.031387 0.030711546 651 1615 0.057295 0.035476718 651 6266 0.22559 0.036001915
652 1021 0.029365 0.028761312 652 1628 0.055158 0.033880651 652 5201 0.21981 0.042263603
653 1046 0.031066 0.029699809 653 1792 0.055778 0.03112606 653 5451 0.21819 0.040027151
654 1126 0.031905 0.028334902 654 1670 0.055899 0.033472335 654 5719 0.21295 0.037235181
655 1126 0.029017 0.02577016 655 1665 0.055211 0.03315976 655 5273 0.21617 0.040995828
656 1090 0.032052 0.029405229 656 1721 0.056242 0.032679895 656 5364 0.21387 0.039871365
657 1119 0.033594 0.030021805 657 1742 0.058098 0.033351378 657 5628 0.22539 0.040047264
658 1109 0.031578 0.028474301 658 1702 0.055104 0.032375969 658 5445 0.21442 0.039379247
659 1121 0.03321 0.029625335 659 1750 0.053163 0.030379086 659 5601 0.22893 0.040873058
660 1201 0.033439 0.027842465 660 1680 0.056741 0.033774464 660 5704 0.21999 0.038567146
661 1169 0.032602 0.027889136 661 1789 0.063624 0.035564114 661 5480 0.21866 0.039900547
662 1083 0.032704 0.030197969 662 1549 0.050402 0.032538347 662 5510 0.21877 0.039703811
663 1081 0.029445 0.02723839 663 1624 0.052894 0.032569951 663 5758 0.21775 0.037816777
664 1105 0.032422 0.029341448 664 1564 0.051067 0.032651407 664 5422 0.21344 0.039366101
665 1104 0.029807 0.026998732 665 1442 0.050697 0.035157143 665 5581 0.21886 0.039215732
666 1229 0.033792 0.027495525 666 1456 0.048643 0.033408723 666 6231 0.232 0.037232868
667 1142 0.031866 0.027903327 667 1462 0.048627 0.03326026 667 5625 0.2154 0.038293333
668 1139 0.029744 0.02611396 668 1461 0.049591 0.033942847 668 5589 0.22586 0.04041188
669 1150 0.031905 0.027743565 669 1651 0.050642 0.030673349 669 5961 0.26195 0.043944305
670 1131 0.033075 0.02924359 670 1548 0.050132 0.032385078 670 5620 0.21853 0.038885053
671 1137 0.030268 0.02662058 671 1545 0.049472 0.032020388 671 5704 0.22119 0.038778226
672 1122 0.032913 0.029333868 672 1604 0.054001 0.033666147 672 6255 0.23636 0.03778705
673 1155 0.033241 0.028779913 673 1702 0.056256 0.033053055 673 5749 0.21622 0.037609149
674 1189 0.030303 0.025485955 674 1734 0.055726 0.03213737 674 5847 0.21691 0.037096973
675 1154 0.033427 0.028966118 675 1677 0.054225 0.032334466 675 6088 0.21394 0.035141919
676 1159 0.031116 0.02684711 676 1624 0.051556 0.03174649 676 5738 0.20257 0.035303939
677 1148 0.033406 0.029098955 677 1707 0.052527 0.030771705 677 5740 0.20739 0.036130139
678 1207 0.03302 0.027357084 678 1654 0.050951 0.030804958 678 6080 0.20959 0.034471875
679 1200 0.031742 0.026452 679 1811 0.054993 0.030366041 679 5816 0.20958 0.036034388
680 1204 0.031701 0.026329983 680 1667 0.051413 0.030841572 680 5705 0.20542 0.036006135
681 1175 0.032451 0.027617957 681 1797 0.051738 0.028791096 681 6004 0.21404 0.035650067
682 1216 0.033589 0.027622451 682 1518 0.048977 0.032264361 682 5676 0.20253 0.035682523
683 1236 0.032203 0.026054531 683 1683 0.051727 0.030735175 683 5623 0.19662 0.034967633
684 1240 0.031099 0.025079677 684 1757 0.054573 0.03106033 684 5967 0.20538 0.034418468
685 1228 0.033442 0.027233143 685 1762 0.052295 0.029679569 685 5693 0.20043 0.035206218
686 1223 0.029678 0.024266394 686 1743 0.054204 0.031098107 686 5572 0.19944 0.035793252
687 1248 0.033566 0.026895833 687 1713 0.050669 0.029578867 687 6059 0.20118 0.033204159
688 1221 0.032766 0.026835053 688 1728 0.050117 0.02900272 688 5671 0.2002 0.035302592
689 1167 0.030933 0.026506341 689 1704 0.05068 0.029742019 689 5715 0.20395 0.035686439
690 1212 0.032489 0.026806436 690 1699 0.050074 0.029472866 690 6099 0.20295 0.033275947
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Avg time per obj over all frames: Standard Deviation:

691 1178 0.033411 0.028362224 691 1711 0.050586 0.0295654 691 5800 0.20074 0.034611034
692 1177 0.028783 0.024454206 692 1846 0.0511 0.027681257 692 5996 0.19893 0.033176451
693 1270 0.030816 0.024264567 693 1737 0.057229 0.032946805 693 6226 0.20464 0.032868615
694 1272 0.033418 0.02627217 694 1762 0.052071 0.029552043 694 5770 0.19591 0.033953206
695 1258 0.031374 0.024939428 695 1888 0.052452 0.027781727 695 5914 0.24692 0.041751945
696 1187 0.033033 0.027828981 696 1827 0.053211 0.029124685 696 6356 0.20622 0.032444934
697 1247 0.033024 0.026482438 697 1634 0.05009 0.030654712 697 5879 0.2056 0.034972614
698 1239 0.033154 0.026758918 698 1787 0.053009 0.029663402 698 6093 0.21217 0.034821763
699 1224 0.034402 0.028105801 699 1652 0.049937 0.030228148 699 6393 0.20869 0.032643047
700 1260 0.031405 0.024924286 700 1887 0.051125 0.027093005 700 6131 0.21058 0.034346436
701 1213 0.033342 0.027487552 701 1584 0.049323 0.031138258 701 6096 0.2095 0.034366306
702 1272 0.031714 0.024931997 702 1609 0.05055 0.031417091 702 6423 0.21098 0.03284789
703 1264 0.032656 0.025835601 703 1696 0.051541 0.030389446 703 6077 0.21544 0.035451703
704 1201 0.034196 0.028472689 704 1838 0.050832 0.027656202 704 6056 0.23804 0.039307133
705 1203 0.03208 0.0266665 705 1670 0.050229 0.030076946 705 6419 0.22901 0.035677053
706 1209 0.033295 0.02753962 706 1810 0.05161 0.028513812 706 6103 0.2037 0.033376372
707 1240 0.033867 0.027312419 707 1731 0.050176 0.028986655 707 6173 0.20866 0.033802527
708 1239 0.030906 0.024944633 708 2024 0.062915 0.031084338 708 6816 0.21715 0.031858421
709 1215 0.032781 0.026979918 709 1744 0.051655 0.029618693 709 6311 0.20641 0.032705593
710 1230 0.03342 0.027170894 710 1650 0.051589 0.031266121 710 6418 0.20575 0.032057806
711 1230 0.030087 0.024461057 711 1715 0.049894 0.029092653 711 6731 0.20735 0.030804932
712 1213 0.03352 0.0276338 712 1652 0.050489 0.030562228 712 6491 0.20842 0.032108766
713 1257 0.033039 0.026284328 713 1628 0.050475 0.031004054 713 6443 0.21187 0.03288375
714 1251 0.030605 0.024464428 714 1709 0.052865 0.030933353 714 6918 0.20645 0.029842874
715 1279 0.03417 0.026716185 715 1642 0.051137 0.031143179 715 6623 0.20641 0.03116488
716 1209 0.033771 0.027933002 716 1610 0.051429 0.031943292 716 6400 0.21262 0.033221406
717 1221 0.03334 0.027305815 717 1745 0.051814 0.029693009 717 7102 0.2465 0.034709096
718 1202 0.033363 0.027756156 718 1638 0.051315 0.031327778 718 6568 0.20986 0.03195204
719 1205 0.031357 0.026022241 719 1636 0.050882 0.03110165 719 6750 0.21 0.031111556
720 1200 0.032925 0.027437333 720 1785 0.054386 0.030468179 720 6940 0.21426 0.030872478
721 1244 0.033898 0.027249035 721 1766 0.054227 0.030706059 721 6744 0.20339 0.030159104
722 1237 0.031929 0.025811803 722 1758 0.053105 0.030207565 722 6644 0.20023 0.030136213
723 1238 0.033453 0.027021809 723 1845 0.052181 0.028282547 723 6857 0.2072 0.030216713
724 1240 0.030919 0.024934758 724 1855 0.060112 0.032405445 724 6587 0.20833 0.031627144
725 1126 0.031544 0.028013943 725 1660 0.051118 0.030793855 725 6862 0.20889 0.030441416
726 1223 0.034128 0.027904988 726 1782 0.051804 0.029070483 726 6976 0.20992 0.0300916
727 1223 0.030933 0.025292968 727 1818 0.050206 0.027615842 727 6745 0.2114 0.031341142
728 1219 0.033593 0.027557998 728 1811 0.052124 0.028781888 728 6650 0.21539 0.032389323
729 1089 0.031924 0.02931506 729 1757 0.051414 0.029262208 729 6934 0.21144 0.030493222
730 1089 0.029865 0.027424334 730 1791 0.051869 0.028961027 730 6535 0.20673 0.031633818
731 1107 0.032725 0.029561789 731 1659 0.050665 0.030539482 731 6606 0.20413 0.030900999
732 1133 0.03305 0.029170344 732 1854 0.053545 0.028880798 732 6770 0.20733 0.030625406
733 1108 0.032333 0.029181047 733 1874 0.052451 0.027988634 733 6571 0.20159 0.030679196
734 1103 0.031201 0.028287217 734 1930 0.052852 0.027384508 734 6548 0.21036 0.032125687
735 1094 0.031535 0.028825046 735 1834 0.052058 0.028385169 735 6833 0.20404 0.029860822
736 1161 0.03296 0.02838932 736 1897 0.052211 0.027522667 736 6521 0.20095 0.030816132
737 1160 0.033318 0.028722328 737 1895 0.052815 0.027870501 737 6485 0.21796 0.033609869
738 1161 0.030001 0.02584031 738 1731 0.051226 0.02959353 738 6870 0.20935 0.030473071
739 1183 0.034973 0.029563145 739 1729 0.04921 0.028461307 739 6611 0.21341 0.03228029
740 1184 0.030799 0.026012669 740 1827 0.051854 0.028381938 740 6616 0.20949 0.031663845
741 1096 0.031087 0.028363686 741 1950 0.050994 0.026150615 741 7191 0.21493 0.029889306
742 1163 0.033148 0.028502494 742 1860 0.05211 0.028016237 742 6749 0.228 0.033782042
743 1159 0.028863 0.024903192 743 1788 0.050411 0.028194295 743 6751 0.21063 0.03119923
744 1285 0.032462 0.025262412 744 2003 0.055135 0.027526261 744 6948 0.21132 0.030414076
745 1265 0.035373 0.027962846 745 1880 0.052386 0.027865053 745 6507 0.20586 0.031636392
746 1265 0.030288 0.023942925 746 2041 0.051543 0.025253552 746 7194 0.20904 0.029057826
747 1196 0.032376 0.027070318 747 1984 0.051738 0.026077419 747 6626 0.21309 0.032159523
748 1103 0.03213 0.029129193 748 1918 0.050955 0.026566528 748 6930 0.21234 0.030640548
749 1103 0.029541 0.02678214 749 1894 0.052229 0.027575871 749 7155 0.21575 0.030153739
750 1211 0.032399 0.026754253 750 1871 0.050996 0.027255852 750 6804 0.20828 0.030610964
751 1279 0.034189 0.02673104 751 1649 0.049818 0.030211037 751 6925 0.21068 0.030422527
752 1256 0.033141 0.026386385 752 1706 0.050848 0.029805334 752 7094 0.21303 0.030029743
753 1219 0.033819 0.027743068 753 1756 0.051246 0.029183257 753 6632 0.20578 0.031028649
754 1198 0.032951 0.027504591 754 1731 0.053136 0.030696765 754 6629 0.21222 0.032013124
755 1261 0.031903 0.025299921 755 1719 0.050202 0.029204421 755 7013 0.21175 0.030193783
756 1195 0.031791 0.026603013 756 1991 0.05975 0.030009995 756 7153 0.20936 0.029268559
757 1193 0.030283 0.025384241 757 1982 0.053935 0.027212563 757 7120 0.21544 0.030258006
758 1117 0.033736 0.030202596 758 1916 0.052852 0.027584603 758 6972 0.21003 0.030124355
759 1117 0.028872 0.025847359 759 1886 0.053766 0.028508112 759 7329 0.21508 0.02934575
760 1156 0.03113 0.02692872 760 1749 0.052061 0.029766038 760 6970 0.22388 0.032119943
761 962 0.031172 0.032403222 761 1796 0.053698 0.029898608 761 7194 0.24611 0.03421087
762 958 0.029186 0.030465449 762 1821 0.052216 0.028674355 762 7574 0.22276 0.029411672
763 1104 0.031519 0.02855 763 1785 0.052972 0.029676303 763 7089 0.22031 0.031077444
764 1203 0.032433 0.026959767 764 1732 0.051375 0.029662413 764 7072 0.22217 0.031415158
765 1202 0.029859 0.024841181 765 1735 0.052866 0.030470029 765 7194 0.21332 0.029652488
766 1107 0.032849 0.029673532 766 1673 0.050963 0.030462224 766 7078 0.21049 0.029738627
767 1027 0.029905 0.029119085 767 1671 0.049867 0.029842849 767 6964 0.21242 0.030502298
768 1031 0.02868 0.027817168 768 1717 0.053432 0.031119394 768 7310 0.22479 0.030750342
769 999 0.029786 0.029816216 769 1698 0.050606 0.02980318 769 6932 0.23896 0.034471725
770 1076 0.031115 0.028916914 770 1713 0.051431 0.030024168 770 6923 0.2365 0.034161924
771 1042 0.029594 0.028401152 771 1729 0.051582 0.02983343 771 7145 0.23739 0.033225192
772 1035 0.029237 0.028248599 772 1701 0.052679 0.03096943 772 7063 0.24069 0.034077021
773 1033 0.02858 0.02766728 773 1660 0.052288 0.031498976 773 7004 0.2363 0.033737579
774 1059 0.031925 0.030145892 774 1696 0.05007 0.029522465 774 7205 0.23367 0.032431922
775 1064 0.030726 0.028878102 775 1768 0.051525 0.02914293 775 7004 0.2273 0.032452313
776 1064 0.028373 0.026665883 776 1810 0.053355 0.029477901 776 6816 0.22005 0.032283597
777 1159 0.030781 0.026558412 777 1745 0.05257 0.030125845 777 7683 0.21297 0.027719901
778 1160 0.030377 0.02618681 778 1844 0.051723 0.028049349 778 6991 0.20926 0.029932485
779 1106 0.035383 0.031991772 779 1886 0.052744 0.027966172 779 7083 0.2195 0.030989411
780 1133 0.032009 0.028251898 780 2068 0.057954 0.028023936 780 7248 0.21621 0.02983016
781 1133 0.028764 0.02538782 781 1888 0.053784 0.028487076 781 6881 0.20899 0.030372475
782 1075 0.031969 0.029738698 782 1957 0.053695 0.027437455 782 6874 0.21013 0.03056881
783 1097 0.031058 0.028311851 783 1828 0.052862 0.028917724 MIN 0.020356222
784 1097 0.029394 0.026794622 784 1982 0.054821 0.027659284 MAX 0.186074627
785 1124 0.033551 0.02985 785 1714 0.052913 0.03087077 AVG 0.027673166
786 1169 0.031656 0.027079812 786 1688 0.052235 0.030945142 STD DEV 0.008641468
787 986 0.029255 0.029670487 787 1418 0.049416 0.034849224
788 1026 0.030394 0.029624172 788 1577 0.051868 0.032890552
789 1092 0.030564 0.027988919 789 1858 0.055371 0.029801399
790 1025 0.029536 0.028816 790 1793 0.052923 0.029516341
791 1005 0.029958 0.029808856 791 1757 0.052021 0.029608025
792 1009 0.028594 0.028338652 792 1934 0.055407 0.028648862
793 991 0.030978 0.031259637 793 1996 0.054502 0.027305361
794 992 0.030175 0.030418548 794 1965 0.057094 0.02905542
795 1033 0.029551 0.02860697 795 1882 0.0549 0.029171148
796 1028 0.031348 0.030494261 796 2023 0.056097 0.027729461
797 1022 0.029493 0.028858415 797 1862 0.053813 0.028900806
798 1079 0.031692 0.029371826 798 1778 0.055063 0.030968785
799 1104 0.033237 0.03010625 799 1729 0.053403 0.030886755
800 1108 0.029821 0.026914079 800 1657 0.052896 0.031922692
801 1101 0.031314 0.028441144 801 1590 0.050656 0.031859308
802 1057 0.032357 0.030611826 802 1586 0.050651 0.031936192
803 1067 0.030409 0.028499906 803 1787 0.054776 0.030652266
804 1050 0.032714 0.031156381 804 1937 0.058248 0.030071141
805 1058 0.031071 0.029367864 805 1917 0.053647 0.027985029
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Avg time per obj over all frames: Standard Deviation:

806 1046 0.029933 0.028616635 806 1907 0.054067 0.028351809
807 1025 0.030017 0.029284683 807 2141 0.060854 0.028423027
808 1131 0.032572 0.028799293 808 1775 0.056228 0.03167769
809 1055 0.030772 0.029167867 809 1834 0.053374 0.02910229
810 1107 0.031544 0.028495122 810 1980 0.056058 0.028311919
811 1141 0.029904 0.026208414 811 1955 0.056204 0.028748747
812 1133 0.033266 0.029360724 812 2058 0.057111 0.027750826
813 1131 0.030537 0.027000088 813 2013 0.057025 0.028328217
814 1099 0.03153 0.0286899 814 2090 0.059145 0.028299234
815 1100 0.033134 0.030122 815 1918 0.055592 0.028984463
816 1101 0.03013 0.027365758 816 2006 0.057781 0.028804237
817 1103 0.032828 0.029762103 817 1868 0.054989 0.02943758
818 1081 0.033281 0.030787327 818 1874 0.054419 0.029038687
819 1074 0.029255 0.027239013 819 1974 0.056059 0.028398784
820 1051 0.031785 0.030242626 820 1876 0.055343 0.02950032
821 1059 0.033561 0.031691407 821 1735 0.053988 0.031116715
822 1052 0.029455 0.02799943 822 2032 0.058492 0.028785433
823 1096 0.032747 0.029879015 823 1828 0.05771 0.031569912
824 1027 0.031103 0.030285492 824 1754 0.05287 0.030142702
825 1022 0.03092 0.030253914 825 1798 0.052898 0.029420634
826 1022 0.031108 0.03043865 826 1596 0.050735 0.031788596
827 1022 0.031436 0.030759491 827 1561 0.051085 0.032725561
828 1030 0.031542 0.03062301 828 1694 0.053791 0.031753719
829 1051 0.031798 0.03025509 829 1600 0.05451 0.034068625
830 1051 0.030172 0.028708278 830 1758 0.054138 0.030795222
831 1014 0.032444 0.03199645 831 1779 0.053439 0.030038842
832 1014 0.030475 0.030053846 832 1813 0.055571 0.030651351
833 980 0.031001 0.031633878 833 1810 0.053945 0.029803757
834 1002 0.031348 0.03128513 834 1849 0.053448 0.028906544
835 1002 0.02948 0.029421058 835 1769 0.054195 0.030635896
836 1084 0.03132 0.028893081 836 1715 0.053473 0.031179417
837 1043 0.031006 0.029727709 837 1723 0.05043 0.029268485
838 1043 0.029179 0.027975839 838 1656 0.050019 0.030204771
839 986 0.031001 0.031441379 839 1671 0.048958 0.029298863
840 998 0.031281 0.031343287 840 1935 0.052814 0.027293953
841 990 0.031836 0.032157172 841 2159 0.057111 0.026452617
842 976 0.030496 0.031245902 842 2153 0.057559 0.026734231
843 1009 0.029762 0.029496036 843 2092 0.0559 0.02672065
844 970 0.029312 0.030218557 844 1864 0.052947 0.028405204
845 939 0.030573 0.032559531 845 2118 0.057762 0.027271719
846 935 0.029762 0.031830909 846 2286 0.058365 0.025531584
847 971 0.030383 0.031290834 847 1954 0.059749 0.03057784
848 983 0.030725 0.031256053 848 1827 0.054303 0.029722551
849 985 0.028604 0.029039188 849 1855 0.054377 0.029313962
850 946 0.032172 0.034008245 850 1921 0.052967 0.027572827
851 946 0.028557 0.030186681 851 1924 0.054038 0.028086331
852 909 0.032958 0.036256986 852 2149 0.058469 0.027207585
853 884 0.031319 0.035429072 853 2003 0.053568 0.026744034
854 883 0.027907 0.03160487 854 2049 0.05466 0.026676574
855 932 0.030488 0.032712124 855 1916 0.054289 0.028334708
856 932 0.030837 0.033086803 856 1761 0.055081 0.031278251
857 932 0.032685 0.035069313 857 1623 0.0501 0.030868823
858 917 0.031834 0.034715812 858 1651 0.049502 0.029983283
859 961 0.031235 0.032502706 859 1847 0.052712 0.028539145
860 961 0.032122 0.033425598 860 1773 0.052141 0.029408347
861 947 0.031627 0.033397466 861 1938 0.053362 0.027534623
862 952 0.033694 0.035392857 862 2032 0.058021 0.028553691
863 919 0.028873 0.031417954 863 1973 0.053739 0.027237405
864 916 0.030057 0.032813428 864 1991 0.058408 0.029335912
865 916 0.028899 0.031548799 865 2015 0.054366 0.026980645
866 1000 0.030751 0.0307508 866 2108 0.056456 0.026781879
867 995 0.02957 0.029718894 867 2133 0.056608 0.0265391
868 1061 0.031343 0.029540999 868 2155 0.055288 0.02565587
869 1026 0.030792 0.030011209 869 1918 0.053351 0.027815954
870 1021 0.029414 0.028808913 870 1782 0.054026 0.030317733
871 1065 0.031026 0.029132113 871 1729 0.050848 0.029408618
872 1058 0.03159 0.029858129 872 1630 0.049236 0.030206196
873 1058 0.030509 0.028836484 873 1951 0.052487 0.026902819
874 1009 0.030266 0.029996036 874 1771 0.051618 0.029145963
875 1024 0.030975 0.030249219 875 1842 0.05543 0.030092237
876 1024 0.029409 0.028719922 876 1652 0.051548 0.031203632
877 998 0.031303 0.031365832 877 1605 0.055286 0.034446168
878 1011 0.030225 0.029896439 878 1882 0.054423 0.028917747
879 972 0.030663 0.031545988 879 1863 0.05315 0.028529254
880 997 0.030638 0.030730391 880 1751 0.054411 0.031074243
881 1006 0.028827 0.028654871 881 1753 0.052107 0.029724701
882 979 0.031729 0.032409602 882 1953 0.058516 0.029961956
883 965 0.029066 0.03012 883 1985 0.05411 0.027259647
884 961 0.027896 0.029027784 884 1822 0.052887 0.029026619
885 926 0.029157 0.031487149 885 1690 0.053005 0.031363905
886 925 0.029199 0.031566919 886 1815 0.051285 0.028256143
887 889 0.030316 0.034101012 887 1894 0.051705 0.027299261
888 914 0.030523 0.033395186 888 2078 0.053804 0.025892108
889 913 0.026861 0.029420591 889 2006 0.053007 0.026424177
890 937 0.029777 0.031779402 890 1932 0.053107 0.027487836
891 936 0.031177 0.03330844 891 1914 0.058229 0.030422414
892 936 0.028388 0.030328526 892 1866 0.056495 0.030275938
893 920 0.031383 0.034112283 893 2019 0.059902 0.029669143
894 1026 0.029364 0.028619981 894 1939 0.05601 0.028885921
895 911 0.029724 0.032627442 895 1961 0.056601 0.028863233
896 1030 0.030372 0.029486893 896 1833 0.054747 0.02986754
897 1027 0.030979 0.030164265 897 1813 0.054791 0.030221401
898 1019 0.029812 0.029256232 898 1784 0.056211 0.031508128
899 976 0.029813 0.030545594 899 1861 0.056873 0.030560451
900 975 0.028508 0.029238974 900 2152 0.059352 0.027579926
901 993 0.030412 0.030626183 901 2196 0.05734 0.026110929
902 966 0.029511 0.030549379 902 2267 0.055908 0.024661623
903 964 0.028584 0.029651349 903 2312 0.056958 0.024635813
904 954 0.031119 0.032619078 904 2196 0.056574 0.025762113
905 954 0.029764 0.031198637 905 2197 0.058447 0.02660305
906 865 0.028476 0.032920694 906 2199 0.05806 0.026402819
907 917 0.029309 0.031961614 907 2190 0.064951 0.0296579
908 917 0.028153 0.030700654 908 2104 0.057722 0.027434221
909 909 0.030107 0.033120792 909 2347 0.061254 0.026098935
910 867 0.031127 0.035901384 910 2182 0.057304 0.026262145
911 873 0.027311 0.031284536 911 2161 0.057604 0.026655946
912 999 0.031228 0.031258859 912 2168 0.059948 0.027651199
913 918 0.030993 0.033761438 913 2154 0.057742 0.026806778
914 920 0.030033 0.032644565 914 1973 0.05648 0.028626609
915 880 0.030048 0.034145455 915 2068 0.059183 0.02861823
916 872 0.030408 0.034871904 916 1996 0.056884 0.028499048
917 847 0.028448 0.033587249 917 2010 0.059365 0.029534876
918 924 0.030506 0.033014935 918 2150 0.059913 0.027866512
919 924 0.02919 0.031591234 919 2159 0.058357 0.027029782
920 901 0.032869 0.036480688 920 2085 0.055356 0.026549832



0.029803515 0.00606977

Frame No Num Obj Time in S Time per obj (ms) Frame No Num Obj Time in S Time per obj (ms) Frame No Num Obj Time in S Time per obj (ms)
Helicopter Video (640 x 360) Dashboard Video (848 x 480) Drone Video (1920 x 1080)

Avg time per obj over all frames: Standard Deviation:

921 899 0.028554 0.03176218 921 1962 0.061413 0.031301274
922 927 0.029738 0.032079612 922 1930 0.053936 0.027946166
923 900 0.030349 0.033721556 923 1964 0.056404 0.028718992
924 915 0.029272 0.031990929 924 2120 0.057841 0.027283255
925 935 0.029522 0.031574011 925 2308 0.057126 0.024751256
926 908 0.031261 0.034428194 926 2215 0.05642 0.025471919
927 903 0.027732 0.030711074 927 2101 0.060855 0.028964683
928 897 0.030545 0.034052397 928 2211 0.058715 0.026555767
929 891 0.031326 0.035158249 929 2053 0.057906 0.028205407
930 891 0.02905 0.032603816 930 2058 0.059763 0.029039116
931 1095 0.033027 0.03016137 931 1995 0.055671 0.027905363
932 965 0.031262 0.032396269 932 2136 0.057813 0.027066152
933 939 0.030981 0.032993291 933 2039 0.058419 0.02865076
934 954 0.030868 0.032356499 934 2065 0.055448 0.026851138
935 970 0.029644 0.030561031 935 2051 0.057439 0.028005412
936 1051 0.031773 0.030231018 936 2027 0.059699 0.02945185
937 936 0.030837 0.032945406 937 2036 0.056717 0.027857269
938 935 0.029491 0.031540642 MIN 0.024304688
939 1095 0.032278 0.029477352 MAX 0.042673413
940 1105 0.030102 0.027241719 AVG 0.02987229
941 917 0.030165 0.032895202 STD DEV 0.002423722
942 925 0.031681 0.034249514
943 925 0.028548 0.030863027
944 935 0.030219 0.032319786
945 996 0.031794 0.031921787
946 990 0.029528 0.02982596
947 957 0.033049 0.034533438
948 919 0.030634 0.033334276
949 959 0.030716 0.032029197
950 893 0.030122 0.033731467
951 953 0.031059 0.032590661
952 942 0.030011 0.031859023
953 968 0.032319 0.033387603
954 964 0.029993 0.031113174
955 943 0.033227 0.035235419
956 1102 0.033499 0.030398185
957 1094 0.029819 0.027256673
958 1069 0.031684 0.029638821
959 1069 0.030147 0.028201216
960 1124 0.032379 0.028806762
961 1116 0.03398 0.03044767
962 1116 0.029708 0.026620251
963 1106 0.031891 0.02883481
964 1128 0.032884 0.029152216
965 1128 0.031127 0.027595124
966 1106 0.032808 0.029663562
967 1104 0.031598 0.028621196
968 1081 0.031443 0.029087234
969 1065 0.031278 0.029368826
970 1072 0.034093 0.031803545
971 1101 0.032721 0.029719619
972 1071 0.030977 0.028923249
973 1071 0.02801 0.026153315
974 1106 0.033048 0.029880741
975 1106 0.029961 0.027089873
976 1067 0.031469 0.029492596
977 1093 0.031241 0.028582525
978 1095 0.029615 0.027046027
979 1035 0.032162 0.031073913
980 980 0.031072 0.031705714
981 981 0.028237 0.028783894
982 984 0.031187 0.031693598
983 1041 0.033005 0.031705091
984 1057 0.028146 0.026627909
985 1013 0.030509 0.030117868
986 1027 0.031372 0.03054742
987 992 0.0307 0.030947379
988 999 0.030773 0.030803303
989 999 0.030183 0.030213313
990 905 0.0301 0.033259337
991 998 0.030871 0.030932766
992 1000 0.029651 0.0296513
993 986 0.030586 0.03102069
994 986 0.029503 0.029921704
995 956 0.031262 0.032701255
996 1090 0.033109 0.030374771
997 1091 0.030464 0.027923373
998 1167 0.031334 0.026849614
999 1087 0.029455 0.027097516

1000 1089 0.029945 0.027497245
MIN 0.020739069
MAX 0.049430935
AVG 0.031405005
STD DEV 0.005491394



Appendix C

WISE C++ Code

This section contains a summary of the C++ code used to implement WISE. The base classes
for the algorithms are included, intermediary and utility code is not included (the length of
code would be to great to print)
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/*******************************************************************************************

 This file has been produced at the Intelligent Systems Research Laboratory at 
 InfoLab21, Lancaster University under the supervision of Professor Plamen Angelov.
 Reproduction of the code is permitted for academic and research purposes only without
 the express permission of the author. Use for any  other purpose is not permitted without
 prior authorisation or permission. All code taken from this document must have this 
 header at the top of the new source file. 

 Filename:  EdgeFlow.cpp
 Author:   Gruffydd Morris
 Date Created: 13/07/2014
 Description: This file contains code implementation relating to the new edge flow
     technique. This 
 ___________
 Amendments
 *****************************************************************************
 * Date | Description of change      | Initials *
 *   |            |    *
 *****************************************************************************

*******************************************************************************************/

#include <math.h>
#include <EdgeFlow.h>
#include <EdgeFlow_GUI.h>
#include <Utils.h>
//#include <CEDAS.h>
#include <opencv2\opencv.hpp>

// Function to calulate a colour matrix value for a given input.
// This is used in gradient definition of an image (and possibly in
// other cases)

void MouseCallBack(int event, int x, int y, int flags, void* userdata)
{
    if (event == cv::EVENT_LBUTTONDOWN)
    {
        static_cast<EdgeSobel*>(userdata)->xyFinder(x, y); 
    }
}

bool uniqueClusters(cv::Point2f first, cv::Point2f second)
{
    return (first.x == second.x && first.y == second.y);
}

ColourBGR& colourMap(double max, double min, double input)
{
 static ColourMap cM;
 
 double stepNum = ((input - min) / (std::ceil(max - min))) * NUM_COLOUR_STEPS;
 unsigned int index = static_cast<unsigned int>(std::floor(stepNum));

 //if (input > -0.05 && input < 0.05)
 //{
  //return ColourBGR(0, 0, 0);
 //}
 //else
 {
  return cM.getColour(index);
 }

}

EdgeSobel::EdgeSobel(cv::Mat& frame, EdgeFlow& eG)
{
 showObj = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC3);     // Coloured matrix for 
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outputting object detection rectangles
    showObjX = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC3);     // Coloured matrix for 

outputting object detection rectangles
    showObjY = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC3);     // Coloured matrix for 

outputting object detection rectangles
    showObjClust = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC3);     // Coloured matrix for 

outputting object detection rectangles

    gray = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC1);     // Coloured matrix for outputting 
object detection rectangles

    prevGray = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC1);     // Coloured matrix for 
outputting object detection rectangles

    data = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);     // Coloured matrix for 
outputting object detection rectangles

 data2 = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);     // Coloured matrix for 
outputting object detection rectangles

    dNormX = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);     // Coloured matrix for 
outputting object detection rectangles

 dNormY = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);     // Coloured matrix for 
outputting object detection rectangles

    dNormC = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);     // Coloured matrix for 
outputting object detection rectangles

    clusterFlag[0] = cv::Mat::zeros(frame.rows, frame.cols, CV_16UC1);               // Cluster membership 
tracking flag for first sobel image

    clusterFlag[1] = cv::Mat::zeros(frame.rows, frame.cols, CV_16UC1);               // Cluster membership 
tracking flag for second sobel image

    roiClick = cv::Mat::zeros(frame.rows, frame.cols, CV_16UC1);                    // Frame storing the region 
value

    vidOutput = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC1);                    // Video output matrix used 
when the output is normally greyscale or floating point

    blobs = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC3);
    theClusters = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);
    theClustersOut = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC3);

    ofWork = CreateEvent(NULL, true, false, NULL);
    

    numPoints = 0;
    maxNumClust = 0;
    totalClusters = 0;

    // Initialise the max / min gradient variables used to assign the correct range to colour assignment
    locX = 0;
    locY = 0;

    clickPoint.dir = -1;
    clickPoint.mag = 0;
    clickPoint.region = 0;

    

 addRemovePt = false;
    segmentOn = false;
    clickedFlag = false;
    ofFlag = false;

    eGUI = &eG;

    // ***************************** CEDAS INIT ***************************************//
    this->fnCEDAS = 0;
    initRad = 0.03;
    minClustSize = 2;
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    decay = 10;

#ifdef CEDASCLUSTER
    cedas = new CEDAS(0.03, 2, 10);
#endif

   cv::Size S = cv::Size((int) X_RES, (int) Y_RES);
   demoOut.open(cv::String("D:\\SampleVideos\\Out\\DemoOut.wmv"), CV_FOURCC('W','M','V','1'), /*cap.get

(CV_CAP_PROP_FPS)*/25, S, true);

#ifdef DATASET_OUTPUT    
    char filename[30];
    
    sprintf_s(filename, 30, "D:\\VideoDataset\\FramesDataset");
    dataset.open(filename, std::ios::trunc);
#endif
}

EdgeSobel::~EdgeSobel()
{
#ifdef DATASET_OUTPUT
     dataset.close();
#endif

    this->vecOut.close();
    demoOut.release();
}

cv::Mat& EdgeSobel::sobelRun(cv::Mat& rde, cv::Mat& rdeY, cv::Mat& frame, cv::Mat& oldFrame, cv::VideoWriter& 
vw)

{
    fnCEDAS++;
    static OFCluster ocl(this, ofWork);
    static int frameNumber = 0;
    double min;
    double max;
    double min2;
    double max2;

    frameNumber++;
    
    if (frameNumber == 1)
        pVW = &vw;

 cv::Sobel(rde, data, CV_64F, 1, 0, 7, 1.0, 0.0, cv::BORDER_REPLICATE);
 cv::Sobel(rdeY, data2, CV_64F, 0, 1, 7, 1.0, 0.0, cv::BORDER_REPLICATE);

    cv::minMaxLoc(data, &min, &max);
    cv::minMaxLoc(data2, &min2, &max2);

    min = min < min2 ? min : min2;
    max = max > max2 ? max : max2;

    cv::normalize(data, dNormX, min, max, cv::NORM_L2);   
    cv::normalize(data2, dNormY, min, max, cv::NORM_L2);

    dNormC = dNormX + dNormY;

    this->colourGradients(dNormC, showObj);
    this->colourGradients(dNormX, showObjX);
    this->colourGradients(dNormY, showObjY);

    //vw << showObj;

#ifdef VISUALS
    cv::imshow("CombinedColour", showObj);
#endif
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#ifdef FULLVISUALS
    cv::imshow("Combined", dNormC);
    
    cv::imshow("CombinedColourX", showObjX);
    cv::imshow("CombinedColourY", showObjY);
#endif

#ifdef CEDASCLUSTER
    if (frameNumber % 5 == 0)
    {
        oldFrame.copyTo(next);
        for (unsigned int y = 0; y < dNormC.rows; y++)
        {
            for (unsigned int x = 0; x < dNormC.cols; x++)
            {
                if (dNormC.at<double>(y, x) >= eGUI->getCValue() || dNormC.at<double>(y, x) <= 0 - eGUI->

getCValue()) 
                    ofPoints.push_back(cv::Point2f(x, y));
            }
        }

        std::cout << "Optical flow points " << ofPoints.size() << std::endl;
        if (ofPoints.size() > 0)
            this->edgeOpticalFlow(frame, next, ofPoints);

#ifdef FULLVISUALS        
        cv::imshow("Optical flow", next);
#endif

#ifdef OFCLUSTERVISUALS
        cv::imshow("Optical flow", next);
#endif
    }
#endif CEDASCLUSTER

#ifdef FULLVISUALS
    drawImages(SOBEL);
#endif

#ifdef EDGECLUSTER
    this->edgeCluster(frame, oldFrame, vw, rde, rdeY);
#endif

    ofPoints.clear();
    return cv::Mat();

}

void EdgeSobel::edgeCluster(cv::Mat& frame, cv::Mat& oldFrame, cv::VideoWriter& vw, cv::Mat& rde, cv::Mat& rdeY)
{
    static int fNum = 0;
    fNum++;

    cNumber = 0;
    clusterN = 0;

    oldFrame.copyTo(next);

    clusterFlag[0] = cv::Mat::zeros(data.rows, data.cols, CV_16UC1);               // Cluster membership 
tracking flag for first sobel image

    clusterFlag[1] = cv::Mat::zeros(data.rows, data.cols, CV_16UC1);               // Cluster membership 
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tracking flag for second sobel image

    for (int y = 0; y < data.rows; y++)
    {
        for (int x = 0; x < data.cols; x++)
        {
           
#ifdef TWOCLUSTERIMAGES
            density = data.ptr<double>(y)[x];
            density2 = data2.ptr<double>(y)[x];
#else
            density = dNormC.ptr<double>(y)[x];
#endif

            if (density <= this->eGUI->getCValue()/*MAX_CLUSTERS*/ && density >= (0 - this->eGUI->getCValue())/*
MIN_CLUSTERS*/)       // Old density filter

   {
    // do nothing
   }
   else
   {
                clusterN = clusterFlag[0].ptr<unsigned short>(y)[x];
                // Check if the cluster flag is set, if so - just add to existing cluster and check local region
                if (clusterN != 0)
                {
                    // If within proximity of existing points, add the point to the regions list, and update
     // the regions extremities. Extremities only used to find cluster centre.
                    c[clusterN - 1].addPoint(cv::Point2i(x, y));

                    c[clusterN - 1].expandSize(x, y, data);

     // Update the mean density of the region
                    c[clusterN - 1].setMeanDensity(((c[clusterN - 1].getPoints().size() - 1) / (c[clusterN - 1].

getPoints().size() * c[clusterN - 1].getMeanDensity())) 
                                                        + ((1 / c[clusterN - 1].getPoints().size()) * density));

                    if (y < (data.rows - 1) && x < (data.cols - 1))
                    {
                        checkProximityGradients(x, y);
                    }
                }                 
                else
                {
                    newCluster = new FeatureExtraction(cv::Point2i(x, y));
                    newCluster->setSize(x, y);
                    
                    meanD = density;
                    newCluster->setMeanDensity(meanD);

                    c.push_back(*newCluster);           

                    cNumber++;
                    clusterFlag[0].ptr<unsigned short>(y)[x] = clusterN = cNumber;
                    
                    if (y < (data.rows - 1) && x < (data.cols - 1))
                    {
                       checkProximityGradients(x, y);
                    }

                }      // else flag check
            }           // If do nothing

#ifdef TWOCLUSTERIMAGES
            if (density2 <= this->eGUI->getCValue()/*MAX_CLUSTERS*/ && density2 >= (0 - this->eGUI->getCValue())

/*MIN_CLUSTERS*/)
                //if (density2 >= this->eGUI->getCValue()/*MAX_CLUSTERS*/ || density2 <= (0 - this->eGUI->

getCValue())/*MIN_CLUSTERS*/)
   {
    // do nothing
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   }
   else
   {
                clusterN = clusterFlag[1].ptr<unsigned short>(y)[x];
                // Check if the cluster flag is set, if so - just add to existing cluster and check local region
                if (clusterN != 0)
                {
                     c[clusterN - 1].addPoint(cv::Point2i(x, y));

                    c[clusterN - 1].expandSize(x, y, data2);

     // Update the mean density of the region
                    c[clusterN - 1].setMeanDensity(((c[clusterN - 1].getPoints().size() - 1) / (c[clusterN - 1].

getPoints().size() * c[clusterN - 1].getMeanDensity())) 
                                                        + ((1 / c[clusterN - 1].getPoints().size()) * density2))

;

                    if (y < (data.rows - 1) && x < (data.cols - 1))
                    {
                        checkProximityGradients(x,y);
                    }
                }                 
                else
                {
                    // Add the x y coords to the points list

                    newCluster = new FeatureExtraction(cv::Point2i(x, y));
                    newCluster->setSize(x, y);
                    
                    meanD = density2;
                    newCluster->setMeanDensity(meanD);

                    c.push_back(*newCluster);

                    cNumber++;
                    clusterFlag[1].ptr<unsigned short>(y)[x] = clusterN = cNumber;
                    
                    // Check in the other sobel framee as well
                    if (y < (data.rows - 1) && x < (data.cols - 1))
                    {
                       checkProximityGradients(x, y);
                    }
                }      // else flag check
            }           // If do nothing
#endif
        }               // For x
    }                   // For y

    frame.copyTo(showObjClust);

#ifndef DRAWBLOBS
    frame.copyTo(blobs);
    theClusters = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);
    theClustersOut = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC3);
#endif
    
    cv::Point2f centrePoint;
   
    segmentOn = false;

    if (this->eGUI->drawsegmentation())
    {
        segmentOn = true;
        mask = cv::Mat::zeros(frame.size(), CV_8UC1);
        frameROI = cv::Mat::zeros(frame.size(), CV_8UC3);
    }
 
    //for (unsigned int reg = 0; reg < regions.size(); reg++)
    for (unsigned int reg = 0; reg < c.size(); reg++)
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 {
        //if (regions[reg][0].x != 9999)
        if (c[reg].getPoints()[0].x != 9999)
        {
                

            //cv::Rect roi = cv::boundingRect(regions[reg]);
            cv::Rect roi = cv::boundingRect(c[reg].getPoints());

#ifndef DRAWBLOBS
            for (int i = 0; i < c[reg].getPoints().size(); i++)
            {
                theClusters.at<double>(c[reg].getPoints()[i].y, c[reg].getPoints()[i].x) = (double)(reg + 1);
                theClustersOut.at<uchar>(c[reg].getPoints()[i].y, c[reg].getPoints()[i].x) = (reg + 1);
            }          
#endif
            if((roi.size().height > this->eGUI->getObjSize() && roi.size().width > this->eGUI->getObjSize()))
            {
                //centrePoint.x = static_cast<float>(cLimits[reg].minX + ((cLimits[reg].maxX - cLimits[reg].

minX) / 2));
                //centrePoint.y = static_cast<float>(cLimits[reg].minY + ((cLimits[reg].maxY - cLimits[reg].

minY) / 2));

                centrePoint.x = c[reg].getPoints()[static_cast<int>(c[reg].getPoints().size() / 2)].x; //
static_cast<float>(c[reg].getSize().minX + ((c[reg].getSize().maxX - c[reg].getSize().minX) / 2));

                centrePoint.y = c[reg].getPoints()[static_cast<int>(c[reg].getPoints().size() / 2)].y;//
static_cast<float>(c[reg].getSize().minY + ((c[reg].getSize().maxY - c[reg].getSize().minY) / 2));

                ofPoints.push_back(centrePoint);

                c[reg].run(frame, dNormC, cv::Mat());

                cv::rectangle(showObjClust, roi, cv::Scalar(0,0,255), 2, 8, 0);

                cv::Mat roiTemp(this->roiClick, roi);
                roiTemp = cv::Scalar(reg + 1);      // Reg + 1 because the roiClick matrix is initialised to 

zero. As regions is a
                                                    // zero based array, clicking the first region would yield 

the entire image therefore
                                                    // an offset of 1 is required. 
                //if (this->eGUI->drawsegmentation() && segmentOn == true)
                    //cv::drawContours(mask, regions, reg, cv::Scalar(255), CV_FILLED);         
            }
        }
 }

#ifndef DRAWBLOBS
    this->colourGradients(theClusters, theClustersOut);
    theClustersOut.copyTo(blobs, theClustersOut);
    cv::imshow("Blobs", blobs);
     //vw << blobs;
    cv::imshow("TheClusters", theClustersOut);
#endif

    this->edgeOpticalFlow(next, frame, ofPoints);  

#ifdef DATASET_OUTPUT
     /*for (int i = 0; i < c.size(); i++)
     {
         c[i].writeFrameDataset(fNum, dataset);
     }*/
 dataset << fNum << "," << c.size() << std::endl;

#endif

    if (this->eGUI->drawsegmentation() && segmentOn == true)
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        oldFrame.copyTo(frameROI, mask);      

    if (this->eGUI->drawsegmentation() && segmentOn == true)
        cv::imshow("Contoured", frameROI);

#ifdef OFCLUSTERVISUALS
    //vw << showObjClust;
 cv::imshow("Clusters", showObjClust);
    //vw << showObjClust;
#else
    cv::imshow("Clusters", showObjClust);
#endif

    delete newCluster;
    theClusters.release();
    theClustersOut.release();
    c.clear();
    vOF.clear();
    ofPoints.clear();
}                       // Function end

void EdgeSobel::edgeOpticalFlow(cv::Mat& prev, cv::Mat& next, std::vector<cv::Point2f>& points)
{
    std::vector<cv::Point2f> outPoints;
    cv::Mat image;

    double mag = 0, dir = 0, xdist = 0, ydist = 0;

    cvtColor(next, gray, cv::COLOR_BGR2GRAY);
    cvtColor(prev, prevGray, cv::COLOR_BGR2GRAY);

    addRemovePt = false;

    if( !points.empty() )
    {
        std::vector<uchar> status;
        std::vector<float> err;
        if(prevGray.empty())
            gray.copyTo(prevGray);
        calcOpticalFlowPyrLK(prevGray, gray, points, outPoints, status, err);

        if (points.size() != outPoints.size())
            std::cout << "Points : " << points.size() << " outPoints : " << outPoints.size() << std::endl;

        size_t i, k;
        for( i = k = 0; i < outPoints.size(); i++ )
        {
            
            if( addRemovePt )
            {
                if( cv::norm(point - outPoints[i]) <= 5 )
                {
                    addRemovePt = false;
                    continue;
                }
            }

            if( !status[i] )
                continue;

            outPoints[k++] = outPoints[i];
            

            // Optical flow vector caluclation //

            mag = cv::sqrt(cv::pow(points[i].x - outPoints[i].x, 2) + cv::pow(points[i].y - outPoints[i].y, 2));
      // Calculate the magnitude of the optical flow

            xdist = outPoints[i].x - points[i].x;
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            ydist = outPoints[i].y - points[i].y;  

            dir = std::atan2(ydist, xdist);
            dir += 1.7;
            if (dir > PI)
                dir -= 2 * PI;

            this->c[i].twoframeOF(mag, dir, (unsigned int)outPoints[i].x, (unsigned int)outPoints[i].y);

           // Draw all optical flow regions
#ifndef CEDASCLUSTER
            line(showObjClust, points[i], outPoints[i], cv::Scalar(0,255,0), 1, 8); 
#else
            line(next, points[i], outPoints[i], cv::Scalar(0,255,0), 1, 8); 
#endif

#ifdef CEDASCLUSTER
          /*  if (mag > 20.0)
            {
            }
            else if (mag > 1)*/
            {
                dir = (dir - (-PI)) / (PI - (-PI));
                mag = (mag / 20.0);

                vOF.push_back(cv::Point2f((float)dir, (float)mag));
                
            }
           /* else
            {

            }*/
#endif

        }
        outPoints.resize(k);
    }

#ifdef CEDASCLUSTER
    cedas->newSamples(vOF, fnCEDAS);

    cv::Mat clusters = cv::Mat::zeros(640, 640, CV_8UC3);

    double numClusters = cedas->getClusters().size();//outArray.Get("Centre", 1, 1).GetDimensions()(1,1);
    double xLoc;
    double yLoc;
    double radius;
    
    for (unsigned int i = 0; i < static_cast<unsigned int>(numClusters); i++)
    {
        xLoc =  cedas->getClusters()[i].centre.x;//outArray.Get("Centre", 1, 1)(i, 1);
        xLoc *= 640;
        yLoc = cedas->getClusters()[i].centre.y;//outArray.Get("Centre", 1,1)(i, 2);
        yLoc *= 640;

        xLoc = std::floor(xLoc);
        yLoc = std::floor(yLoc);
        radius = cedas->getClusters()[i].radius;//outArray.Get("Radius", 1, 1)(i, 1);
        radius *= 100;

        cv::circle(clusters, cv::Point(xLoc, yLoc), radius, cv::Scalar(0,255,0));
    }

    imshow("Cluster_CEDAS", clusters);
//#ifdef VIDEO_OUTPUT
//    *pVW << next;
//#endif
    cv::waitKey(1);
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#endif

    vOF.clear();
    magV.clear();
    dirV.clear();
    outPoints.clear();

#ifdef CEDASCLUSTER
    cedas->cleanUp();
#endif
}

void EdgeSobel::emptyFrames()
{

}

// This function encapsulates the drawing of images for the 
// edge flow technique. It simplifies the process of turning on or off
// the images to show.
void EdgeSobel::drawImages(unsigned int imgs)
{
 switch (imgs)
 {
 
  case ALL:
   cv::imshow("Obj X Sobel", data);
   cv::imshow("Obj Y Sobel", data2);
   break;

  case SOBEL:
   cv::imshow("Obj X Sobel", data);
   cv::imshow("Obj Y Sobel", data2);
#ifdef COMBINED_SOBEL // Only run command if we've combined the two Sobel images
            cv::imshow("Obj Grad Sobel", grad);
#endif
   break;

  case COLOURS:
   
   break;

  case COMBINED:
   
   break;

  case NO_OUTPUTS:
   break;

  default:
   cv::imshow("Obj X Sobel", data);
   cv::imshow("Obj Y Sobel", data2);
   
   break;
 }
 
 // Mandatory wait to enable drawing to the screen
 cv::waitKey(1);
}

void EdgeSobel::colourGradients(cv::Mat& inData, cv::Mat& outData)
{
    // Find the max and min values from the input matrix
    cv::minMaxLoc(inData, &minG, &maxG);
    //// Loop through the x and y of each sobel output to assign colour gradient
 for (int y = 0; y < inData.rows; y++)
 {
  for (int x = 0; x < inData.cols; x++)
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  { 
   // Assign colours to gradients from the Sobel X filter based on it's range of values. This also 

generates a unique colour map.
            /*if (inData.at<double>(y, x) == 0.0)
            {
                outData.data[(y * inData.cols * 3) + x * 3] = 0;
       outData.data[(y * inData.cols * 3) + (x * 3) + 1] = 0;
       outData.data[(y * inData.cols * 3) + (x * 3) + 2]= 0; 
            }*/
            //else
            {
       myColours = colourMap(maxG, minG, inData.at<double>(y, x));

   outData.data[(y * inData.cols * 3) + x * 3] = static_cast<uchar>(myColours.b);
   outData.data[(y * inData.cols * 3) + (x * 3) + 1] = static_cast<uchar>(myColours.g);
   outData.data[(y * inData.cols * 3) + (x * 3) + 2]= static_cast<uchar>(myColours.r);  
            }
  }
 }
}

void EdgeSobel::checkProximityGradients(unsigned int x, unsigned int y)
{
     // Check proximity of other points, set a flag if within range
    if (data.ptr<double>(y)[x + 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data.ptr

<double>(y)[x + 1]  > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
    {
        if (clusterFlag[0].ptr<unsigned short>(y)[x + 1] == 0)
        {
            clusterFlag[0].ptr<unsigned short>(y)[x + 1] = clusterN;
        }
        else if (clusterFlag[0].ptr<unsigned short>(y)[x + 1] > clusterN)
        {
            clustMerge.x = clusterN;
            clustMerge.y = clusterFlag[0].ptr<unsigned short>(y)[x + 1];
            clusterFlag[0].ptr<unsigned short>(y)[x + 1] = clusterN;
        }
        else if (clusterFlag[0].ptr<unsigned short>(y)[x + 1] < clusterN)
        {
            clustMerge.x = clusterFlag[0].ptr<unsigned short>(y)[x + 1];
            clustMerge.y = clusterN;
        }
        else
        {
            // Do nothing - already assigned to this cluster
        }
    }

    if (data.ptr<double>(y + 1)[x + 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data.ptr
<double>(y + 1)[x + 1]  > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))

    {
        if (clusterFlag[0].ptr<unsigned short>(y + 1)[x + 1] == 0)
        {
            clusterFlag[0].ptr<unsigned short>(y + 1)[x + 1] = clusterN;
        }
        else if (clusterFlag[0].ptr<unsigned short>(y + 1)[x + 1] > clusterN)
        {
            clustMerge.x = clusterN;
            clustMerge.y = clusterFlag[0].ptr<unsigned short>(y + 1)[x + 1];
            clusterFlag[0].ptr<unsigned short>(y + 1)[x + 1] = clusterN;
        }
        else if (clusterFlag[0].ptr<unsigned short>(y + 1)[x + 1] < clusterN)
        {
            clustMerge.x = clusterFlag[0].ptr<unsigned short>(y + 1)[x + 1];
            clustMerge.y = clusterN;
        }
        else
        {
            // Do nothing - already assigned to this cluster
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        }
    }

    if (data.ptr<double>(y + 1)[x] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data.ptr
<double>(y + 1)[x]  > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))

    {
        if (clusterFlag[0].ptr<unsigned short>(y + 1)[x] == 0)
        {
            clusterFlag[0].ptr<unsigned short>(y + 1)[x] = clusterN;
        }
        else if (clusterFlag[0].ptr<unsigned short>(y + 1)[x] > clusterN)
        {
            clustMerge.x = clusterN;
            clustMerge.y = clusterFlag[0].ptr<unsigned short>(y + 1)[x];
            clusterFlag[0].ptr<unsigned short>(y + 1)[x] = clusterN;
        }
        else if (clusterFlag[0].ptr<unsigned short>(y + 1)[x] < clusterN)
        {
            clustMerge.x = clusterFlag[0].ptr<unsigned short>(y + 1)[x];
            clustMerge.y = clusterN;
        }
        else
        {
            // Do nothing - already assigned to this cluster
        }
    }

    if (x > 0)
    {
        if (data.ptr<double>(y + 1)[x - 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data.

ptr<double>(y + 1)[x - 1]  > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
        {
            if (clusterFlag[0].ptr<unsigned short>(y + 1)[x - 1] == 0)
            {
                clusterFlag[0].ptr<unsigned short>(y + 1)[x - 1] = clusterN;
            }
            else if (clusterFlag[0].ptr<unsigned short>(y + 1)[x - 1] > clusterN)
            {
                clustMerge.x = clusterN;
                clustMerge.y = clusterFlag[0].ptr<unsigned short>(y + 1)[x - 1];
                clusterFlag[0].ptr<unsigned short>(y + 1)[x - 1] = clusterN;
            }
            else if (clusterFlag[0].ptr<unsigned short>(y + 1)[x - 1] < clusterN)
            {
                clustMerge.x = clusterFlag[0].ptr<unsigned short>(y + 1)[x - 1];
                clustMerge.y = clusterN;
            }
            else
            {
                // Do nothing - already assigned to this cluster
            }
        }

        if (data.ptr<double>(y)[x - 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data.ptr
<double>(y)[x - 1]  > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))

        {
            if (clusterFlag[0].ptr<unsigned short>(y)[x - 1] == 0)
            {
                clusterFlag[0].ptr<unsigned short>(y)[x - 1] = clusterN;
            }
            else if (clusterFlag[0].ptr<unsigned short>(y)[x - 1] > clusterN)
            {
                clustMerge.x = clusterN;
                clustMerge.y = clusterFlag[0].ptr<unsigned short>(y)[x - 1];
                clusterFlag[0].ptr<unsigned short>(y)[x - 1] = clusterN;
            }
            else if (clusterFlag[0].ptr<unsigned short>(y)[x - 1] < clusterN)
            {
                clustMerge.x = clusterFlag[0].ptr<unsigned short>(y)[x - 1];
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                clustMerge.y = clusterN;
            }
            else
            {
                // Do nothing - already assigned to this cluster
            }
        }
    }

    if (y > 0)
    {
        if (data.ptr<double>(y - 1)[x + 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data.

ptr<double>(y - 1)[x + 1]  > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
        {
            if (clusterFlag[0].ptr<unsigned short>(y - 1)[x + 1] == 0)
            {
                clusterFlag[0].ptr<unsigned short>(y - 1)[x + 1] = clusterN;
            }
            else if (clusterFlag[0].ptr<unsigned short>(y - 1)[x + 1] > clusterN)
            {
                clustMerge.x = clusterN;
                clustMerge.y = clusterFlag[0].ptr<unsigned short>(y - 1)[x + 1];
                clusterFlag[0].ptr<unsigned short>(y - 1)[x + 1] = clusterN;
            }
            else if (clusterFlag[0].ptr<unsigned short>(y - 1)[x + 1] < clusterN)
            {
                clustMerge.x = clusterFlag[0].ptr<unsigned short>(y - 1)[x + 1];
                clustMerge.y = clusterN;
            }
            else
            {
                // Do nothing - already assigned to this cluster
            }
        }

        if (data.ptr<double>(y - 1)[x] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data.ptr
<double>(y - 1)[x]  > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))

        {
            if (clusterFlag[0].ptr<unsigned short>(y - 1)[x] == 0)
            {
                clusterFlag[0].ptr<unsigned short>(y - 1)[x] = clusterN;
            }
            else if (clusterFlag[0].ptr<unsigned short>(y - 1)[x] > clusterN)
            {
                clustMerge.x = clusterN;
                clustMerge.y = clusterFlag[0].ptr<unsigned short>(y - 1)[x];
                clusterFlag[0].ptr<unsigned short>(y - 1)[x] = clusterN;
            }
            else if (clusterFlag[0].ptr<unsigned short>(y - 1)[x] < clusterN)
            {
                clustMerge.x = clusterFlag[0].ptr<unsigned short>(y - 1)[x];
                clustMerge.y = clusterN;
            }
            else
            {
                // Do nothing - already assigned to this cluster
            }
        }
    }

#ifdef TWOCLUSTERIMAGES
    if (data2.ptr<double>(y)[x + 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data2.ptr

<double>(y)[x + 1]  > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
    {
        if (clusterFlag[1].ptr<unsigned short>(y)[x + 1] == 0)
        {
            clusterFlag[1].ptr<unsigned short>(y)[x + 1] = clusterN;
        }
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        else if (clusterFlag[1].ptr<unsigned short>(y)[x + 1] > clusterN)
        {
            clustMerge.x = clusterN;
            clustMerge.y = clusterFlag[1].ptr<unsigned short>(y)[x + 1];
            clusterFlag[1].ptr<unsigned short>(y)[x + 1] = clusterN;
        }
        else if (clusterFlag[1].ptr<unsigned short>(y)[x + 1] < clusterN)
        {
            clustMerge.x = clusterFlag[1].ptr<unsigned short>(y)[x + 1];
            clustMerge.y = clusterN;
        }
        else
        {
            // Do nothing - already assigned to this cluster
        }
    }

    if (data2.ptr<double>(y + 1)[x + 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data2.
ptr<double>(y + 1)[x + 1]  > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))

    {
        if (clusterFlag[1].ptr<unsigned short>(y + 1)[x + 1] == 0)
        {
            clusterFlag[1].ptr<unsigned short>(y + 1)[x + 1] = clusterN;
        }
        else if (clusterFlag[1].ptr<unsigned short>(y + 1)[x + 1] > clusterN)
        {
            clustMerge.x = clusterN;
            clustMerge.y = clusterFlag[1].ptr<unsigned short>(y + 1)[x + 1];
            clusterFlag[1].ptr<unsigned short>(y + 1)[x + 1] = clusterN;
        }
        else if (clusterFlag[1].ptr<unsigned short>(y + 1)[x + 1] < clusterN)
        {
            clustMerge.x = clusterFlag[1].ptr<unsigned short>(y + 1)[x + 1];
            clustMerge.y = clusterN;
        }
        else
        {
            // Do nothing - already assigned to this cluster
        }
    }

    if (data2.ptr<double>(y + 1)[x] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data2.ptr
<double>(y + 1)[x]  > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))

    {
        if (clusterFlag[1].ptr<unsigned short>(y + 1)[x] == 0)
        {
            clusterFlag[1].ptr<unsigned short>(y + 1)[x] = clusterN;
        }
        else if (clusterFlag[1].ptr<unsigned short>(y + 1)[x] > clusterN)
        {
            clustMerge.x = clusterN;
            clustMerge.y = clusterFlag[1].ptr<unsigned short>(y + 1)[x];
            clusterFlag[1].ptr<unsigned short>(y + 1)[x] = clusterN;
        }
        else if (clusterFlag[1].ptr<unsigned short>(y + 1)[x] < clusterN)
        {
            clustMerge.x = clusterFlag[1].ptr<unsigned short>(y + 1)[x];
            clustMerge.y = clusterN;
        }
        else
        {
            // Do nothing - already assigned to this cluster
        }
    }

    if (x > 0)
    {
        if (data2.ptr<double>(y + 1)[x - 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && 

data2.ptr<double>(y + 1)[x - 1]  > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
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        {
            if (clusterFlag[1].ptr<unsigned short>(y + 1)[x - 1] == 0)
            {
                clusterFlag[1].ptr<unsigned short>(y + 1)[x - 1] = clusterN;
            }
            else if (clusterFlag[1].ptr<unsigned short>(y + 1)[x - 1] > clusterN)
            {
                clustMerge.x = clusterN;
                clustMerge.y = clusterFlag[1].ptr<unsigned short>(y + 1)[x - 1];
                clusterFlag[1].ptr<unsigned short>(y + 1)[x - 1] = clusterN;
            }
            else if (clusterFlag[1].ptr<unsigned short>(y + 1)[x - 1] < clusterN)
            {
                clustMerge.x = clusterFlag[1].ptr<unsigned short>(y + 1)[x - 1];
                clustMerge.y = clusterN;
            }
            else
            {
                // Do nothing - already assigned to this cluster
            }
        }
    }
#endif
}

OFCluster::OFCluster(EdgeSobel* eS, HANDLE sObj) : eSob(eS), Threaded(sObj)
{

}

void OFCluster::setup(cv::Mat& oF, cv::Mat& n, cv::Mat& f, cv::Mat& d, std::vector<cv::Point2f>& o)
{
    oldFrame = oF;
    next = n;
    frame = f;
    dNormC = d;
    ofPoints = o;
}
void OFCluster::work()
{
    oldFrame.copyTo(next);
    for (unsigned int y = 0; y < dNormC.rows; y++)
    {
        for (unsigned int x = 0; x < dNormC.cols; x++)
        {
            if (dNormC.at<double>(y, x) >= eSob->eGUI->getCValue() || dNormC.at<double>(y, x) <= 0 - eSob->eGUI

->getCValue()) 
                ofPoints.push_back(cv::Point2f(x, y));
        }
    }

    std::cout << "Optical flow points " << ofPoints.size() << std::endl;
    if (ofPoints.size() > 0)
        eSob->edgeOpticalFlow(frame, next, ofPoints);
}
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/*******************************************************************************************

 This file has been produced at the Intelligent Systems Research Laboratory at 
 InfoLab21, Lancaster University under the supervision of Professor Plamen Angelov.
 Reproduction of the code is permitted for academic and research purposes only without
 the express permission of the author. All code taken from this document must have this 
 header at the top of the new source file. 

 Filename:  RDE_class.cpp
 Author:   Gruffydd Morris
 Date Created: 27/01/2014
 Description: This file contains the implementation of the WIDE class functions. The
     algorithm calculations occur in this file. This class does not have 
     thresholding incorporated. The output is a density gradient in grayscale.
 ___________
 Amendments
 *****************************************************************************
 * Date | Description of change      | Initials *
 *   |            |    *
 * 12-02-14 | Addition of WIDE implementation that  |  GM  *
 *   | can be called from the thread class   |    *
 *   | Addition of overloaded init_RDE function |    *
 * 14-02-14 | Updated result to the MAT_SIZE type and  |  GM  *
 *   | the floating point declarations to   |    *
 *   | RDE_PRECISION defined in DataSizes.h. This  |    *
 *   | allows for easy changing of the data types |    *
 *   | stored in the Mat array, and precision of |    *
 *   | the RDE output without having to   |    *
 *   | change the entire program     |    *
 *****************************************************************************

*******************************************************************************************/

#include <stdio.h>
#include <iostream>
#include <math.h>
#include <process.h>

#include "RDE_class.h"
#include <Utils.h>

RDE::RDE()
{
 this->currPtr = 1;
}

RDE::RDE(cv::Mat& frameIn, cv::Mat& oFrame, unsigned int dim, unsigned int rowS, unsigned int reset, HANDLE 
sObj) : Threaded(sObj) 

{
    this->currPtr = 1;
 this->initFlag = false;
    this->rst = reset;
    this->rowSz = rowS;
    this->frameNumber = 1;
    

    if (dim == HORZ)
    {
        this->in = frameIn;
        this->out = oFrame;
        this->dimension = dim;
        this->set_trails_output(oFrame.col(0).data);
        this->init_RDE_reset(frameIn.rows, frameIn.channels(), frameIn.col(0).data, in.cols);      
    }
    else if (dim == VERT)
    {
        this->in = frameIn;
        this->out = oFrame;
        this->dimension = dim;
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        this->set_trails_output(oFrame.row(0).data);
        this->init_RDE_reset(frameIn.cols, frameIn.channels(), frameIn.row(0).data);
    }
    else
    {
        this->in = frameIn;
        this->out = oFrame;
        this->dimension = dim;
        this->set_trails_output(oFrame.data);
        this->init_RDE_reset(frameIn.rows * frameIn.cols, frameIn.channels(), frameIn.data);
    }
}

void RDE::work()
{
    if (dimension != TIME_DOMAIN)
    {
        if (dimension == HORZ)
        {
            for (unsigned int x = 1; x < this->in.cols; x++) 
            {
                this->set_trails_output(this->out.col(x).data);
                this->update_RDE_reset(this->in.col(x).data, x, in.cols);
            }
        }
        else
        {
            for (unsigned int y = 1; y < this->in.rows; y++) 
            {
                this->set_trails_output(this->out.row(y).data);
                this->update_RDE_reset(this->in.row(y).data, y);
            }
        }
    }
    else
    {
        if (frameNumber == 1)
            this->frameNumber++;
        else
        {
            this->update_RDE_reset(this->in.data, this->frameNumber);
            frameNumber++;
        }
    }
}
/* This is run at the start to create a new RDE frame, or when a new "window" begins */
int RDE::init_RDE(int num_data_points, int num_features, unsigned char* data)
{ 
 data_points = num_data_points;
 features = num_features;

 if (initFlag == false)
 {
  RDE_storage = (RDE_PRECISION*)calloc(data_points * (features + 1), sizeof(RDE_PRECISION));
  initFlag = true;
 }
 else
 {
  memset(RDE_storage, 0, sizeof(RDE_PRECISION) * data_points * (features + 1));
 }

 /* Creates int variables for loops and offsets */
 int i, j, originalOffset, rdeOffset;
 
 /* Creates double variables to store intermediate data */
 RDE_PRECISION x_eucl_norm = 0, xMu_eucl_dist = 0, mu_eucl_norm = 0, data_value = 0, result = 0;

    /* Loops through each row of pixels in the video stream */
 for(i = 0; i < data_points; i++)
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    {
  /* Creates offsets due to different number of channels */
  originalOffset = i * features;
  rdeOffset = i * (features + 1);

  /* Resets intermediate values for each pixel */
  x_eucl_norm = 0; 
  xMu_eucl_dist = 0;
  mu_eucl_norm = 0;
   
  /* For each channel per pixel column */
  for (j = 0; j < features; j++)
  {
   /* Normalizes the pixel value */
   data_value = (static_cast<RDE_PRECISION>(data[originalOffset + j])-MIN_DATA_VALUE) / (MAX_DATA_VALUE

-MIN_DATA_VALUE);

   /* Set the mean to equal the current value of the pixel */
   RDE_storage[rdeOffset + j] = data_value;

   /* Update the scalar product which is the Standard Euclidean Norm of the original pixel values */
   RDE_storage[rdeOffset + features] += (data_value * data_value);
    
   /* Calculates standard Euclidean distance between x and Mu for density (should be zero) */
   xMu_eucl_dist += (data_value - RDE_storage[rdeOffset + j]) * (data_value - RDE_storage[rdeOffset + 

j]);
    
   /* Need to calculate standard euclidea norm of mu for density */
   mu_eucl_norm += (RDE_storage[rdeOffset + j] * RDE_storage[rdeOffset + j]);
  }
  
  /* Calculates density, should all equal 1 on the first run through */
  result = (1 / (1 + xMu_eucl_dist + RDE_storage[rdeOffset + features] - mu_eucl_norm));
  result *= 255;

  RDE_result[i] = static_cast<MAT_SIZE>(result);
    }
 return 0;
}

int RDE::init_RDE_reset(int num_data_points, int num_features, unsigned char* data)
{
 data_points = num_data_points;
 features = num_features;

 if (initFlag == false)
 {
  RDE_storage = (RDE_PRECISION*)calloc(data_points * (features + 1), sizeof(RDE_PRECISION));
  initFlag = true;
 }
 else
 {
  memset(RDE_storage, 0, sizeof(RDE_PRECISION) * data_points * (features + 1));
 }

 /* Allocate sufficient memory to the history - to store all pixel values up to the frame number we want 
(rst) */

 histMem = (RDE_PRECISION*)calloc(data_points * features * rst, sizeof(RDE_PRECISION));

 /* Creates int variables for loops and offsets */
 int i, j, originalOffset, rdeOffset;
 
 /* Creates double variables to store intermediate data */
 RDE_PRECISION x_eucl_norm = 0, xMu_eucl_dist = 0, mu_eucl_norm = 0, data_value = 0, result = 0;

    /* Loops through each row of pixels in the video stream */
 for(i = 0; i < data_points; i++)
    {
  /* Creates offsets due to different number of channels */
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  originalOffset = i * features;
  rdeOffset = i * (features + 1);

  /* Resets intermediate values for each pixel */
  x_eucl_norm = 0; 
  xMu_eucl_dist = 0;
  mu_eucl_norm = 0;
   
  /* For each channel per pixel column */
  for (j = 0; j < features; j++)
  {
   /* Normalizes the pixel value */
   data_value = (static_cast<RDE_PRECISION>(data[originalOffset + j])-MIN_DATA_VALUE) / (MAX_DATA_VALUE

-MIN_DATA_VALUE);

   /* Assign the initial value to the first history block of the pixel history memory */
   histMem[originalOffset + j] = data_value;

   /* Set the mean to equal the current value of the pixel */
   RDE_storage[rdeOffset + j] = data_value;

   /* Update the scalar product which is the Standard Euclidean Norm of the original pixel values */
   RDE_storage[rdeOffset + features] += (data_value * data_value);
    
   /* Calculates standard Euclidean distance between x and Mu for density (should be zero) */
   xMu_eucl_dist += (data_value - RDE_storage[rdeOffset + j]) * (data_value - RDE_storage[rdeOffset + 

j]);
    
   /* Need to calculate standard euclidea norm of mu for density */
   mu_eucl_norm += (RDE_storage[rdeOffset + j] * RDE_storage[rdeOffset + j]);
  }
  
  /* Calculates density, should all equal 1 on the first run through */
  result = (1 / (1 + xMu_eucl_dist + RDE_storage[rdeOffset + features] - mu_eucl_norm));
        
  RDE_result[i] = static_cast<MAT_SIZE>(result);
    }
 return 0;
}

int RDE::init_RDE_reset(int num_data_points, int num_features, unsigned char* data, unsigned int orientation)
{
 data_points = num_data_points;
 features = num_features;

 if (initFlag == false)
 {
  RDE_storage = (RDE_PRECISION*)calloc(data_points * (features + 1), sizeof(RDE_PRECISION));
  initFlag = true;
 }
 else
 {
  memset(RDE_storage, 0, sizeof(RDE_PRECISION) * data_points * (features + 1));
 }

 /* Allocate sufficient memory to the history - to store all pixel values up to the frame number we want 
(rst) */

 histMem = (RDE_PRECISION*)calloc(data_points * features * rst, sizeof(RDE_PRECISION));

 /* Creates int variables for loops and offsets */
 int i, j, originalOffset, rdeOffset, memOffset;
 
 /* Creates double variables to store intermediate data */
 RDE_PRECISION x_eucl_norm = 0, xMu_eucl_dist = 0, mu_eucl_norm = 0, data_value = 0, result = 0;

    /* Loops through each row of pixels in the video stream */
 for(i = 0; i < data_points; i++)
    {
  /* Creates offsets due to different number of channels */
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  originalOffset = (orientation * i * features);
        memOffset = i * features;
  rdeOffset = i * (features + 1);

  /* Resets intermediate values for each pixel */
  x_eucl_norm = 0; 
  xMu_eucl_dist = 0;
  mu_eucl_norm = 0;
   
  /* For each channel per pixel column */
  for (j = 0; j < features; j++)
  {
   /* Normalizes the pixel value */
   data_value = (static_cast<RDE_PRECISION>(data[originalOffset + j])-MIN_DATA_VALUE) / (MAX_DATA_VALUE

-MIN_DATA_VALUE);

   /* Assign the initial value to the first history block of the pixel history memory */
   histMem[memOffset + j] = data_value;

   /* Set the mean to equal the current value of the pixel */
   RDE_storage[rdeOffset + j] = data_value;

   /* Update the scalar product which is the Standard Euclidean Norm of the original pixel values */
   RDE_storage[rdeOffset + features] += (data_value * data_value);
    
   /* Calculates standard Euclidean distance between x and Mu for density (should be zero) */
   xMu_eucl_dist += (data_value - RDE_storage[rdeOffset + j]) * (data_value - RDE_storage[rdeOffset + 

j]);
    
   /* Need to calculate standard euclidea norm of mu for density */
   mu_eucl_norm += (RDE_storage[rdeOffset + j] * RDE_storage[rdeOffset + j]);
  }
  
  /* Calculates density, should all equal 1 on the first run through */
  result = (1 / (1 + xMu_eucl_dist + RDE_storage[rdeOffset + features] - mu_eucl_norm));

  RDE_result[i] = static_cast<MAT_SIZE>(result);
    }
 return 0;
}

/* Frees the calloc'ed memory */
int RDE::close_RDE()
{
 free(RDE_storage);

 return 0;
}

int RDE::update_RDE(unsigned char* data, int iteration)
{
 /* Creates loop counters and variables for offsets */
 int i, j, originalOffset, rdeOffset;

 /* Creates variables for storing intermediate results */
 RDE_PRECISION x_eucl_norm = 0, xMu_eucl_dist = 0, mu_eucl_norm = 0, data_value = 0, result = 0;

 /* For each row of pixels */
 for(i = 0; i < data_points; i++)
    {
  /* Creates offsets due to different number of channels */
  originalOffset = i * features;
  rdeOffset = i * (features + 1);

  /* Resets intermediate values for each pixel */
  x_eucl_norm = 0;
  xMu_eucl_dist = 0;
  mu_eucl_norm = 0;
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  /* Loops through each channel */
  for (j = 0; j < features; j++)
  {
   /* Normalizes the pixel value */
   data_value = (static_cast<RDE_PRECISION>(data[originalOffset + j])-MIN_DATA_VALUE) / (MAX_DATA_VALUE

-MIN_DATA_VALUE);

   /* Update the mean for each colour channel */
   RDE_storage[rdeOffset + j] = update_mean(data_value, RDE_storage[rdeOffset + j], iteration);

   /* Calculate the Standard Euclidean Norm for each pixel value for calculation of Scalar Product */
   x_eucl_norm += (data_value * data_value);

   /* Calculates Standard Euclidean Distance between x and Mu for Density */
   xMu_eucl_dist += (data_value - RDE_storage[rdeOffset + j]) * (data_value - RDE_storage[rdeOffset + 

j]);
    
   /* Need to calculate Standard Euclidean Norm of the means for Density */
   mu_eucl_norm += (RDE_storage[rdeOffset + j] * RDE_storage[rdeOffset + j]);
  }
  /* Updates the scalar product */
  RDE_storage[rdeOffset + features] = update_scalar_product(x_eucl_norm, RDE_storage[rdeOffset + features]

,iteration);
  
  /* Calculates the new RDE */
  result = (1 / (1 + xMu_eucl_dist + RDE_storage[rdeOffset + features] - mu_eucl_norm));

#ifdef MAT_NOFP
  result *= 255;
#endif

  if (result > 170)
   result = 255;
  else
   result = 0;

  RDE_result[i] = static_cast<MAT_SIZE>(result);
    }

 return 0;
}

int RDE::update_RDE_reset(unsigned char* data, int iteration)
{
 /* Creates loop counters and variables for offsets */
 int i, j, originalOffset, rdeOffset;

 /* Creates variables for storing intermediate results */
 RDE_PRECISION x_eucl_norm = 0, xMu_eucl_dist = 0, mu_eucl_norm = 0, data_value = 0, result = 0, 

old_eucl_norm = 0;

 /* For each row of pixels */
 for(i = 0; i < data_points; i++)
    {
  /* Creates offsets due to different number of channels */
  originalOffset = i * features;
  rdeOffset = i * (features + 1);

  /* Resets intermediate values for each pixel */
  x_eucl_norm = 0;
  xMu_eucl_dist = 0;
  mu_eucl_norm = 0;
        old_eucl_norm = 0;
   
  /* Loops through each channel */
  for (j = 0; j < features; j++)
  {
   /* Normalizes the pixel value */
   data_value = (static_cast<RDE_PRECISION>(data[originalOffset + j])-MIN_DATA_VALUE) / (MAX_DATA_VALUE
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-MIN_DATA_VALUE);

            if (iteration > rst)
            {
       /* Update the mean for each colour channel */
       RDE_storage[rdeOffset + j] = update_mean_reset(data_value, RDE_storage[rdeOffset + j], histMem

[originalOffset + (currPtr * data_points * features) + j]);

                /* Calculate the old euclidean norm that we want to remove during reset, must do it here because
 we're going to overwrite

                   the old data feature with the new one in the next line */
                old_eucl_norm += histMem[originalOffset + (currPtr * data_points * features) + j] * histMem

[originalOffset + (currPtr * data_points * features) + j];
            }
            else
            {
                /* Update the mean for each colour channel */
       RDE_storage[rdeOffset + j] = update_mean(data_value, RDE_storage[rdeOffset + j], iteration);
            }

            /* Assign the current value to the history block in accordance to where the pointer is for the 
history block*/

   histMem[originalOffset + (currPtr * data_points * features) + j] = data_value;

   /* Calculate the Standard Euclidean Norm for each pixel value for calculation of Scalar Product */
   x_eucl_norm += (data_value * data_value);

   /* Calculates Standard Euclidean Distance between x and Mu for Density */
   xMu_eucl_dist += (data_value - RDE_storage[rdeOffset + j]) * (data_value - RDE_storage[rdeOffset + 

j]);
    
   /* Need to calculate Standard Euclidean Norm of the means for Density */
   mu_eucl_norm += (RDE_storage[rdeOffset + j] * RDE_storage[rdeOffset + j]);
  }
  /* Updates the scalar product */
        if (iteration > rst)
      RDE_storage[rdeOffset + features] = update_scalar_product_reset(x_eucl_norm, RDE_storage[rdeOffset +

 features], old_eucl_norm);
        else
            RDE_storage[rdeOffset + features] = update_scalar_product(x_eucl_norm, RDE_storage[rdeOffset + 

features], iteration);
  
  /* Calculates the new RDE */
  result = (1 / (1 + xMu_eucl_dist + RDE_storage[rdeOffset + features] - mu_eucl_norm));
        
#ifdef MAT_NOFP
  result *= 255;
#endif
  
  //if (result < 200)
   RDE_result[i] = static_cast<MAT_SIZE>(result);
  //else
   //RDE_result[i] = 0;
    }

 // Add one to the history block pointer to point to the next block to store the next frame pixel values
 currPtr++;

 // If the history block pointer is the same size as the history, reset it to the start of the array
 if (currPtr == static_cast<unsigned>(rst))
  currPtr = 0;

 return 0;
}

int RDE::update_RDE_reset(unsigned char* data, int iteration, unsigned int orientation)
{
 /* Creates loop counters and variables for offsets */
 int i, j, originalOffset, rdeOffset, memOffset;
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 /* Creates variables for storing intermediate results */
 RDE_PRECISION x_eucl_norm = 0, xMu_eucl_dist = 0, mu_eucl_norm = 0, data_value = 0, result = 0, 

old_eucl_norm = 0;

 /* For each row of pixels */
 for(i = 0; i < data_points; i++)
    {
  /* Creates offsets due to different number of channels */
  originalOffset = (orientation * i * features);
        memOffset = i * features;
  rdeOffset = i * (features + 1);

  /* Resets intermediate values for each pixel */
  x_eucl_norm = 0;
  xMu_eucl_dist = 0;
  mu_eucl_norm = 0;
        old_eucl_norm = 0;
   
  /* Loops through each channel */
  for (j = 0; j < features; j++)
  {
   /* Normalizes the pixel value */
   data_value = (static_cast<RDE_PRECISION>(data[originalOffset + j])-MIN_DATA_VALUE) / (MAX_DATA_VALUE

-MIN_DATA_VALUE);

            if (iteration > rst)
            {
       /* Update the mean for each colour channel */
       RDE_storage[rdeOffset + j] = update_mean_reset(data_value, RDE_storage[rdeOffset + j], histMem

[memOffset + (currPtr * data_points * features) + j]);

                /* Calculate the old euclidean norm that we want to remove during reset, must do it here because
 we're going to overwrite

                   the old data feature with the new one in the next line */
                old_eucl_norm += histMem[memOffset + (currPtr * data_points * features) + j] * histMem[memOffset

 + (currPtr * data_points * features) + j];
            }
            else
            {
                /* Update the mean for each colour channel */
       RDE_storage[rdeOffset + j] = update_mean(data_value, RDE_storage[rdeOffset + j], iteration);
            }

            /* Assign the current value to the history block in accordance to where the pointer is for the 
history block*/

   histMem[memOffset + (currPtr * data_points * features) + j] = data_value;

   /* Calculate the Standard Euclidean Norm for each pixel value for calculation of Scalar Product */
   x_eucl_norm += (data_value * data_value);

   /* Calculates Standard Euclidean Distance between x and Mu for Density */
   xMu_eucl_dist += (data_value - RDE_storage[rdeOffset + j]) * (data_value - RDE_storage[rdeOffset + 

j]);
    
   /* Need to calculate Standard Euclidean Norm of the means for Density */
   mu_eucl_norm += (RDE_storage[rdeOffset + j] * RDE_storage[rdeOffset + j]);
  }
  /* Updates the scalar product */
        if (iteration > rst)
      RDE_storage[rdeOffset + features] = update_scalar_product_reset(x_eucl_norm, RDE_storage[rdeOffset +

 features], old_eucl_norm);
        else
            RDE_storage[rdeOffset + features] = update_scalar_product(x_eucl_norm, RDE_storage[rdeOffset + 

features], iteration);
  
  ///* Calculates the new RDE */
  result = (1 / (1 + xMu_eucl_dist + RDE_storage[rdeOffset + features] - mu_eucl_norm));
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#ifdef MAT_NOFP
  result *= 255;
#endif
  

  //if (result < 200)
   RDE_result[(i * orientation)] = static_cast<MAT_SIZE>(result);
  //else
   //RDE_result[i] = 0;
    }

 // Add one to the history block pointer to point to the next block to store the next frame pixel values
 currPtr++;

 // If the history block pointer is the same size as the history, reset it to the start of the array
 if (currPtr == static_cast<unsigned>(rst))
  currPtr = 0;

 return 0;
}

int RDE::set_trails_output(unsigned char* output)
{
 RDE_result = (MAT_SIZE*)output;
 return 0;
}

RDE_PRECISION RDE::update_mean(RDE_PRECISION data_value, RDE_PRECISION old_mean, int iteration)
{
 RDE_PRECISION result = 0;
 result = ((static_cast<RDE_PRECISION>(iteration) - 1)/static_cast<RDE_PRECISION>(iteration))*old_mean;
 result += (1/static_cast<RDE_PRECISION>(iteration))*data_value;
 return result;
}

RDE_PRECISION RDE::update_scalar_product(RDE_PRECISION euclidean_norm, RDE_PRECISION old_scalar, int iteration)
{
 RDE_PRECISION result = 0;
 result = ((static_cast<RDE_PRECISION>(iteration) - 1)/static_cast<RDE_PRECISION>(iteration)) * old_scalar;
 result += (1/(static_cast<RDE_PRECISION>(iteration))) * euclidean_norm;
 return result;
}

RDE_PRECISION RDE::update_mean_reset(RDE_PRECISION data_value, RDE_PRECISION old_mean, RDE_PRECISION 
oldest_value)

{
 RDE_PRECISION result = 0;
 result = (static_cast<RDE_PRECISION>(rst * old_mean) - oldest_value + data_value) / static_cast

<RDE_PRECISION>(rst);
 return result;
}

RDE_PRECISION RDE::update_scalar_product_reset(RDE_PRECISION euclidean_norm, RDE_PRECISION old_scalar, 
RDE_PRECISION oldest_value)

{
 RDE_PRECISION result = 0;
 result = (static_cast<RDE_PRECISION>(rst * old_scalar) - oldest_value + euclidean_norm) / static_cast

<RDE_PRECISION>(rst);
 return result;
}

RDEInstance::RDEInstance(cv::Mat& frame, unsigned int numThreads, unsigned int type, unsigned int reset, HANDLE 
sObj) : numT(numThreads), rdeType(type), resetValue(reset), Threaded(sObj)

{

#ifndef MAT_NOFP
    showRDE = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);
#else
    showRDE = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC1);
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#endif

    blockDivider(frame, blocks, numT, rdeType);             // Divide the input frame into blocks
    blockDivider(showRDE, resultBlocks, numT, rdeType);     // Divide the result frame into blocks

    myRDE = (RDE**)std::calloc(blocks.size(), sizeof(RDE*));    // Initialise the RDE array pointer
    pThreadIDs = (HANDLE*)std::calloc(blocks.size(), sizeof(HANDLE));

    for (unsigned int i = 0; i < blocks.size(); i++)
    {
        pThreadIDs[i] = CreateEvent(NULL, true, false, NULL);
        myRDE[i] = new RDE(blocks[i], resultBlocks[i], rdeType, frame.rows, resetValue, pThreadIDs[i]);
    }
}

RDEInstance::~RDEInstance()
{
    showRDE.release();
    blocks.clear();
    resultBlocks.clear();
}

void RDEInstance::work()
{
    for (unsigned int i = 0; i < blocks.size(); i++)
    {
        myRDE[i]->run();
    }

    DWORD dwMulti = WaitForMultipleObjects((DWORD)blocks.size(), pThreadIDs, true, INFINITE);
    
    switch (dwMulti)
 {
  case WAIT_OBJECT_0:
  {
   for (unsigned int i = 0; i < blocks.size(); i++)   // Loop through each mutex, releasing 

each one ready for the next frame loop
   {
    ResetEvent(pThreadIDs[i]);
                //std::cout << "Event reset " << i << std::endl;
   }
   break;
  }

  default:
   std::cout << "Error waiting for event " << std::endl;
 }
}

cv::Mat& RDEInstance::getResult()
{
    return this->showRDE;
}


	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Scope
	1.2 Motivation
	1.3 Computer Vision Goals and Human Replication
	1.4 Real-time algorithms
	1.5 Autonomy or Intelligence

	2 Computer Vision and Existing Research
	2.1 The Field of Computer Vision
	2.1.1 Novelty Detection
	2.1.2 Object Identification
	2.1.3 Behaviour Analysis
	2.1.4 Tracking
	2.1.5 Collaboration and Parallelisation

	2.2 Relevant Research
	2.2.1 Novelty Detection
	2.2.2 Edge Detection
	2.2.3 Corner Detection
	2.2.4 Key point detection
	2.2.5 Image Segmentation
	2.2.6 Background Subtraction
	2.2.7 Moving camera domain
	2.2.8 Optical flow
	2.2.9 Motion Estimation - egomotion

	2.3 Research Questions
	2.4 Hypotheses
	2.5 Research Objectives
	2.5.1 Novelty detection in moving camera environments
	2.5.2 Object analysis and advanced tracking


	3 Methodology and Initial Approach
	3.1 Methodology
	3.2 Experiments with Recursive Density Estimation
	3.3 RDE Greyscale
	3.3.1 Results of Experiments with RDE and Greyscale
	3.3.2 Exploring the Results of RDE and Greyscale
	3.3.3 Discussion of the RDE and Greyscale methods

	3.4 Windowed Density Estimation
	3.4.1 Results of Experiments with WIDE
	3.4.2 Analysing the WIDE Experiments
	3.4.3 Appraising the WIDE Method

	3.5 Motion Estimation Accuracy
	3.6 Results of Motion Estimation Experiments
	3.6.1 Keypoint detection
	3.6.2 Key point matching
	3.6.3 Key point filtering
	3.6.4 Homography Interpolation

	3.7 Analysing Motion Estimation Experiments
	3.7.1 Keypoint detection
	3.7.2 Key point matching
	3.7.3 Key point filtering
	3.7.4 Homography Interpolation
	3.7.5 Conclusions on the Motion Estimation Approach

	3.8 Hierarchical Framework
	3.8.1 What are the limitations?
	3.8.2 Developing the framework

	3.9 Understanding the Limitations
	3.10 Next Steps

	4 A New Way of Thinking - Edge Flow and WISE
	4.1 Human Vision - Models of Biederman and Wertheim
	4.2 Edge Flow - A new concept in novelty detection
	4.3 Experimental Results for Edge Flow
	4.3.1 Video 1 - Helicopter chase with car and motorbike
	4.3.2 Video 2 – Dashboard mounted
	4.3.3 Video 3 – Drone launch, multiple motion vectors

	4.4 Discussion of the Edge Flow Algorithm
	4.5 Within Image Spatial Edge Flow (WISE)
	4.5.1 Traditional object detection and image segmentation
	4.5.2 Edge Detectors

	4.6 Methodology
	4.6.1 Windowed Density Estimation applied in the spatial domain
	4.6.2 Gradient Estimator
	4.6.3 Contiguous Edge Linking

	4.7 Results of Experiments with WISE
	4.7.1 Edge Detection Results
	4.7.2 Edge Linking Results
	4.7.3 Edge Detection Comparison
	4.7.4 Edge Linking (Texture Patches) Comparison
	4.7.5 Overall performance results
	4.7.6 Analysis of the WISE Method

	4.8 Discussing the WISE algorithm
	4.9 Motion Perception with WISE
	4.9.1 Performing Experiments with the Motion Perception Restoration
	4.9.2 Analysis of the Motion Perception Component
	4.9.3 Conclusions on Motion Perception


	5 Comparative Results
	5.1 Edge Detection
	5.1.1 Experiments With Different Edge Detection Methods
	5.1.2 Performance Analysis of Edge Detection Results

	5.2 Image Segmentation
	5.2.1 Experiments With Image Segmentation Methods
	5.2.2 Analysis of the Image Segmentation Methods

	5.3 Detection by Classifier
	5.3.1 Results of Image Segmentation by Classifier
	5.3.2 Analysis of Detection By Classifier Methods

	5.4 Conclusions on the Comparisons With WISE

	6 Working with WISE features
	6.1 Online clustering providing temporal linkage
	6.1.1 Experimenting With CEDAS Clustering
	6.1.2 Analysis of the CEDAS Results
	6.1.3 Discussing the CEDAS Method

	6.2 Characterisation of objects
	6.2.1 Available Features for Object Characterisation
	6.2.2 Clustering of features
	6.2.3 Test videos

	6.3 Results of Object Characterisation
	6.3.1 Clustering on Helicopter video
	6.3.2 Clustering on UAV video

	6.4 Analysis of Object Characterisation Results
	6.5 Discussing Object Characterisation

	7 Conclusions and Future Work
	7.1 Summary of the research
	7.2 Addressing the Research Questions
	7.2.1 Experimenting with existing work
	7.2.2 Framework review
	7.2.3 Edge Flow and WISE

	7.3 Performance Achievements
	7.3.1 Detection of stationary objects
	7.3.2 Novelty detection without image stitching
	7.3.3 Rich feature extraction
	7.3.4 Object detection accounting for occlusion
	7.3.5 Characterisation of objects
	7.3.6 Classification
	7.3.7 Computational performance

	7.4 The research applied in the UAV context
	7.5 With reference to the Hypotheses
	7.6 Further work

	References
	Appendix A Motion Estimation Experiments
	Appendix B WISE Performance Analysis
	Appendix C WISE C++ Code

