# Autonomous Real-time Object Detection and Identification



## **Gruffydd Morris**

Supervisors: Professor Plamen Angelov Dr Graham Lovegrove Dr Graeme Knight

> School of Computing and Communications Lancaster University

> > Thesis for the degree of Doctor of Philosophy

The County College

October 2017

I would like to dedicate this thesis to my loving parents, and my forever friend in heaven, Jason Morgan.

## Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this thesis are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This thesis is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements.

Gruffydd Morris October 2017 Live as if your were to die tomorrow. Learn as if you were to live forever.

Mahatma Ghandi

I believe that failure comes from giving up. If you never choose to fail, if you never choose to give up, then you're just in the process of making it happen.

Jeb Corliss

## Acknowledgements

The author would like to acknowledge Professor Plamen Angelov for his dedication and guidance throughout this and previous works. In a similar breath, in is incumbent on me to recognise the strength and guidance of my parents Mrs Vivienne Morris and Dr Stephen Morris. Furthermore, the production of this work would not have been possible without the funding and support from EPSRC, Thales (UK) Ltd, and the Smith Institute, specifically Dr Graham Lovegrove, Dr Graham Knight and Dr Tim Boxer.

### Abstract

Sensor devices are regularly used on unmanned aerial vehicles (UAVs) as reconnaissance and intelligence gathering systems and as support for front line troops on operations. This platform provides a wealth of sensor data and has limited computational power available for processing. The objective of this work is to detect and identify objects in real-time, with a low power footprint so that it can operate on a UAV. An appraisal of current computer vision methods is presented, with reference to their performance and applicability to the objectives. Experimentation with real-time methods of background subtraction and motion estimation was carried out and limitations of each method described. A new, assumption free, data driven method for object detection and identification was developed. The core ideas of the development were based on models that propose that the human vision system analyses edges of objects to detect and separate them and perceives motion separately, a function which has been modelled here by optical flow. The initial development in the temporal domain combined object and motion detection in the analysis process. This approach was found to have limitations. The second iteration used a detection component in the spatial domain that extracts texture patches based on edge contours, their profile, and internal texture structure. Motion perception was performed separately on the texture patches using optical flow. The motion and spatial location of texture patches was used to define physical objects. A clustering method is used on the rich feature set extracted by the detection method to characterise the objects. The results show that the method carries out detection and identification of both moving and static objects, in real-time, irrespective of camera motion.

# **Table of contents**

| List of figures |                   |          |                                         |     |  |  |
|-----------------|-------------------|----------|-----------------------------------------|-----|--|--|
| Li              | List of tables is |          |                                         |     |  |  |
| 1               | Intr              | oductio  | 'n                                      | 2   |  |  |
|                 | 1.1               | Scope    |                                         | . 2 |  |  |
|                 | 1.2               | Motiva   | ation                                   | . 4 |  |  |
|                 | 1.3               | Comp     | uter Vision Goals and Human Replication | . 5 |  |  |
|                 | 1.4               | Real-t   | ime algorithms                          | . 7 |  |  |
|                 | 1.5               | Auton    | omy or Intelligence                     | 10  |  |  |
| 2               | Con               | nputer ` | Vision and Existing Research            | 11  |  |  |
|                 | 2.1               | The Fi   | ield of Computer Vision                 | 11  |  |  |
|                 |                   | 2.1.1    | Novelty Detection                       | 13  |  |  |
|                 |                   | 2.1.2    | Object Identification                   | 14  |  |  |
|                 |                   | 2.1.3    | Behaviour Analysis                      | 15  |  |  |
|                 |                   | 2.1.4    | Tracking                                | 15  |  |  |
|                 |                   | 2.1.5    | Collaboration and Parallelisation       | 16  |  |  |
|                 | 2.2               | Releva   | ant Research                            | 16  |  |  |
|                 |                   | 2.2.1    | Novelty Detection                       | 17  |  |  |
|                 |                   | 2.2.2    | Edge Detection                          | 18  |  |  |
|                 |                   | 2.2.3    | Corner Detection                        | 23  |  |  |
|                 |                   | 2.2.4    | Key point detection                     | 24  |  |  |
|                 |                   | 2.2.5    | Image Segmentation                      | 25  |  |  |
|                 |                   | 2.2.6    | Background Subtraction                  | 27  |  |  |
|                 |                   | 2.2.7    | Moving camera domain                    | 31  |  |  |
|                 |                   | 2.2.8    | Optical flow                            | 32  |  |  |
|                 |                   | 2.2.9    | Motion Estimation - egomotion           | 33  |  |  |

|   | 2.3  | Research Questions |                                                 | 34 |
|---|------|--------------------|-------------------------------------------------|----|
|   | 2.4  | Hypot              | heses                                           | 35 |
|   | 2.5  | Resear             | rch Objectives                                  | 35 |
|   |      | 2.5.1              | Novelty detection in moving camera environments | 37 |
|   |      | 2.5.2              | Object analysis and advanced tracking           | 39 |
| 3 | Metł | nodolog            | gy and Initial Approach                         | 42 |
|   | 3.1  | Metho              | dology                                          | 42 |
|   | 3.2  | Experi             | ments with Recursive Density Estimation         | 43 |
|   | 3.3  | RDE C              | Greyscale                                       | 43 |
|   |      | 3.3.1              | Results of Experiments with RDE and Greyscale   | 46 |
|   |      | 3.3.2              | Exploring the Results of RDE and Greyscale      | 48 |
|   |      | 3.3.3              | Discussion of the RDE and Greyscale methods     | 50 |
|   | 3.4  | Windo              | wed Density Estimation                          | 50 |
|   |      | 3.4.1              | Results of Experiments with WIDE                | 51 |
|   |      | 3.4.2              | Analysing the WIDE Experiments                  | 54 |
|   |      | 3.4.3              | Appraising the WIDE Method                      | 55 |
|   | 3.5  | Motion             | n Estimation Accuracy                           | 56 |
|   | 3.6  | Result             | s of Motion Estimation Experiments              | 60 |
|   |      | 3.6.1              | Keypoint detection                              | 61 |
|   |      | 3.6.2              | Key point matching                              | 63 |
|   |      | 3.6.3              | Key point filtering                             | 64 |
|   |      | 3.6.4              | Homography Interpolation                        | 65 |
|   | 3.7  | Analys             | sing Motion Estimation Experiments              | 66 |
|   |      | 3.7.1              | Keypoint detection                              | 66 |
|   |      | 3.7.2              | Key point matching                              | 66 |
|   |      | 3.7.3              | Key point filtering                             | 67 |
|   |      | 3.7.4              | Homography Interpolation                        | 67 |
|   |      | 3.7.5              | Conclusions on the Motion Estimation Approach   | 68 |
|   | 3.8  | Hierar             | chical Framework                                | 68 |
|   |      | 3.8.1              | What are the limitations?                       | 70 |
|   |      | 3.8.2              | Developing the framework                        | 70 |
|   | 3.9  | Under              | standing the Limitations                        | 72 |
|   | 3.10 | Next S             | Steps                                           | 73 |

| 4 | A N  | ew Way  | y of Thinking - Edge Flow and WISE                            | 75  |
|---|------|---------|---------------------------------------------------------------|-----|
|   | 4.1  | Huma    | n Vision - Models of Biederman and Wertheim                   | 75  |
|   | 4.2  | Edge I  | Flow - A new concept in novelty detection                     | 76  |
|   | 4.3  | Experi  | imental Results for Edge Flow                                 | 83  |
|   |      | 4.3.1   | Video 1 - Helicopter chase with car and motorbike             | 85  |
|   |      | 4.3.2   | Video 2 – Dashboard mounted                                   | 86  |
|   |      | 4.3.3   | Video 3 – Drone launch, multiple motion vectors               | 87  |
|   | 4.4  | Discus  | ssion of the Edge Flow Algorithm                              | 91  |
|   | 4.5  | Withir  | n Image Spatial Edge Flow (WISE)                              | 91  |
|   |      | 4.5.1   | Traditional object detection and image segmentation           | 92  |
|   |      | 4.5.2   | Edge Detectors                                                | 93  |
|   | 4.6  | Metho   | odology                                                       | 94  |
|   |      | 4.6.1   | Windowed Density Estimation applied in the spatial domain     | 95  |
|   |      | 4.6.2   | Gradient Estimator                                            | 95  |
|   |      | 4.6.3   | Contiguous Edge Linking                                       | 96  |
|   | 4.7  | Result  | s of Experiments with WISE                                    | 97  |
|   |      | 4.7.1   | Edge Detection Results                                        | 98  |
|   |      | 4.7.2   | Edge Linking Results                                          | 100 |
|   |      | 4.7.3   | Edge Detection Comparison                                     | 101 |
|   |      | 4.7.4   | Edge Linking (Texture Patches) Comparison                     | 102 |
|   |      | 4.7.5   | Overall performance results                                   | 104 |
|   |      | 4.7.6   | Analysis of the WISE Method                                   | 105 |
|   | 4.8  | Discus  | ssing the WISE algorithm                                      | 106 |
|   | 4.9  | Motio   | n Perception with WISE                                        | 107 |
|   |      | 4.9.1   | Performing Experiments with the Motion Perception Restoration | 108 |
|   |      | 4.9.2   | Analysis of the Motion Perception Component                   | 110 |
|   |      | 4.9.3   | Conclusions on Motion Perception                              | 111 |
| 5 | Con  | marativ | ve Results                                                    | 112 |
| • | 5.1  | Edge I  | Detection                                                     | 113 |
|   | 0.11 | 5.1.1   | Experiments With Different Edge Detection Methods             | 113 |
|   |      | 512     | Performance Analysis of Edge Detection Results                | 115 |
|   | 52   | Image   | Segmentation                                                  | 119 |
|   | 5.2  | 5 2 1   | Experiments With Image Segmentation Methods                   | 119 |
|   |      | 522     | Analysis of the Image Segmentation Methods                    | 122 |
|   | 53   | Detect  | tion by Classifier                                            | 124 |
|   | 5.5  | 531     | Results of Image Segmentation by Classifier                   | 124 |
|   |      | 5.5.1   |                                                               | 144 |

|   |                                        | 5.3.2                                                                                                                                                  | Analysis of Detection By Classifier Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                       |
|---|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|   | 5.4                                    | Conclu                                                                                                                                                 | sions on the Comparisons With WISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                       |
| 6 | Wor                                    | kina wi                                                                                                                                                | th WISE footures 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                       |
| U | <b>6</b> 1                             | Online                                                                                                                                                 | clustering providing temporal linkage 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                                       |
|   | 0.1                                    | 611                                                                                                                                                    | Experimenting With CEDAS Clustering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                       |
|   |                                        | 612                                                                                                                                                    | Analysis of the CEDAS Results 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                       |
|   |                                        | 613                                                                                                                                                    | Discussing the CEDAS Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                       |
|   | 62                                     | Charac                                                                                                                                                 | terisation of objects 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                       |
|   | 0.2                                    | 621                                                                                                                                                    | Available Features for Object Characterisation 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>4                                                                  |
|   |                                        | 6.2.2                                                                                                                                                  | Clustering of features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                       |
|   |                                        | 623                                                                                                                                                    | Test videos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                       |
|   | 6.3                                    | Result                                                                                                                                                 | s of Object Characterisation 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                       |
|   | 0.0                                    | 6.3.1                                                                                                                                                  | Clustering on Helicopter video                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                       |
|   |                                        | 6.3.2                                                                                                                                                  | Clustering on UAV video                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                       |
|   | 6.4                                    | Analys                                                                                                                                                 | is of Object Characterisation Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                       |
|   | 6.5                                    | Discus                                                                                                                                                 | sing Object Characterisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                       |
|   |                                        |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |
| _ | 0                                      |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ^                                                                       |
| 7 | Con                                    | clusions                                                                                                                                               | and Future Work 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                       |
| 7 | <b>Con</b><br>7.1                      | clusions<br>Summ                                                                                                                                       | and Future Work 14<br>ary of the research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>0</b><br>0                                                           |
| 7 | <b>Con</b><br>7.1<br>7.2               | clusions<br>Summ<br>Addres                                                                                                                             | and Future Work     140       ary of the research     140       using the Research Questions     140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0                                                             |
| 7 | <b>Con</b><br>7.1<br>7.2               | clusions<br>Summ<br>Addres<br>7.2.1                                                                                                                    | and Future Work       140         ary of the research       140         ssing the Research Questions       140         Experimenting with existing work       140         Experimenting with existing work       140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0                                                        |
| 7 | <b>Con</b><br>7.1<br>7.2               | clusions<br>Summ<br>Addres<br>7.2.1<br>7.2.2                                                                                                           | and Future Work140ary of the research140ssing the Research Questions140Experimenting with existing work140Framework review140Image: State | 0<br>0<br>0<br>1                                                        |
| 7 | Con<br>7.1<br>7.2                      | clusions<br>Summ<br>Addres<br>7.2.1<br>7.2.2<br>7.2.3                                                                                                  | and Future Work140ary of the research140ssing the Research Questions140Experimenting with existing work140Framework review140Edge Flow and WISE140A line140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>0<br>1<br>1                                                   |
| 7 | Con<br>7.1<br>7.2<br>7.3               | clusions<br>Summ<br>Addres<br>7.2.1<br>7.2.2<br>7.2.3<br>Perform                                                                                       | and Future Work140ary of the research140asing the Research Questions140Experimenting with existing work140Framework review140Framework review141Edge Flow and WISE141mance Achievements141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>1<br>1<br>2                                              |
| 7 | Con<br>7.1<br>7.2<br>7.3               | clusions<br>Summ<br>Addres<br>7.2.1<br>7.2.2<br>7.2.3<br>Perform<br>7.3.1                                                                              | and Future Work140ary of the research140ssing the Research Questions140Experimenting with existing work140Framework review140Framework review140Edge Flow and WISE140Detection of stationary objects140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>1<br>1<br>2<br>2                                         |
| 7 | Con<br>7.1<br>7.2<br>7.3               | clusions<br>Summ<br>Addres<br>7.2.1<br>7.2.2<br>7.2.3<br>Perform<br>7.3.1<br>7.3.2                                                                     | and Future Work140ary of the research140asing the Research Questions140Experimenting with existing work140Framework review140Framework review141Edge Flow and WISE142Detection of stationary objects142Novelty detection without image stitching142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>1<br>2<br>2<br>2                                         |
| 7 | Con<br>7.1<br>7.2<br>7.3               | clusions<br>Summ<br>Addres<br>7.2.1<br>7.2.2<br>7.2.3<br>Perform<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.3                                                   | and Future Work140ary of the research140ssing the Research Questions140Experimenting with existing work140Framework review144Edge Flow and WISE144nance Achievements144Detection of stationary objects144Novelty detection without image stitching144Aich feature extraction144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>0<br>1<br>1<br>2<br>2<br>3                                    |
| 7 | Con<br>7.1<br>7.2<br>7.3               | clusions<br>Summ<br>Addres<br>7.2.1<br>7.2.2<br>7.2.3<br>Perform<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4                                                   | and Future Work140ary of the research140ssing the Research Questions140Experimenting with existing work140Framework review140Framework review141Edge Flow and WISE142Detection of stationary objects142Novelty detection without image stitching142Rich feature extraction143Object detection accounting for occlusion143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0<br>1<br>1<br>2<br>2<br>3<br>3                               |
| 7 | Con<br>7.1<br>7.2<br>7.3               | clusions<br>Summ<br>Addres<br>7.2.1<br>7.2.2<br>7.2.3<br>Perform<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5                                          | and Future Work140ary of the research Questions140ssing the Research Questions140Experimenting with existing work140Framework review144Edge Flow and WISE144nance Achievements144Detection of stationary objects144Novelty detection without image stitching144Rich feature extraction144Object detection accounting for occlusion144Characterisation of objects144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>1<br>1<br>2<br>2<br>3<br>3<br>4                          |
| 7 | Con<br>7.1<br>7.2<br>7.3               | clusions<br>Summ<br>Addres<br>7.2.1<br>7.2.2<br>7.2.3<br>Perform<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>7.3.6                                 | and Future Work140ary of the research140assing the Research Questions140Experimenting with existing work140Framework review140Framework review141Edge Flow and WISE142Detection of stationary objects142Novelty detection without image stitching142Rich feature extraction142Characterisation of objects144Classification144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4                     |
| 7 | Con<br>7.1<br>7.2<br>7.3               | clusions<br>Summ<br>Addres<br>7.2.1<br>7.2.2<br>7.2.3<br>Perform<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>7.3.6<br>7.3.7                        | and Future Work140ary of the research Questions140ssing the Research Questions140Experimenting with existing work140Framework review141Edge Flow and WISE142Detection of stationary objects142Novelty detection without image stitching142Rich feature extraction142Object detection accounting for occlusion144Classification144Computational performance144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>7           |
| 7 | Con<br>7.1<br>7.2<br>7.3               | clusions<br>Summ<br>Addres<br>7.2.1<br>7.2.2<br>7.2.3<br>Perform<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>7.3.6<br>7.3.7<br>The res             | and Future Work144ary of the research140ssing the Research Questions140Experimenting with existing work140Framework review144Framework review144Edge Flow and WISE144mance Achievements144Detection of stationary objects144Novelty detection without image stitching144Characterisation of objects144Characterisation of objects144Classification144Computational performance144Search applied in the UAV context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144Context144 <td< td=""><td>0<br/>0<br/>0<br/>1<br/>1<br/>2<br/>2<br/>3<br/>3<br/>4<br/>4<br/>4<br/>5<br/>5</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>5<br>5      |
| 7 | Con<br>7.1<br>7.2<br>7.3<br>7.4<br>7.5 | clusions<br>Summ<br>Addres<br>7.2.1<br>7.2.2<br>7.2.3<br>Perform<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>7.3.6<br>7.3.7<br>The ref<br>With ref | and Future Work144ary of the research140ssing the Research Questions140Experimenting with existing work140Framework review144Edge Flow and WISE144nance Achievements144Detection of stationary objects144Novelty detection without image stitching144Characterisation of objects144Classification144Computational performance144Search applied in the UAV context144Search applied in the UAV context144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0<br>0<br>1<br>1<br>2<br>2<br>3<br>3<br>4<br>4<br>4<br>5<br>5<br>5 |

#### References

| Appendix A | Motion Estimation Experiments | 162 |
|------------|-------------------------------|-----|
| Appendix B | WISE Performance Analysis     | 163 |
| Appendix C | WISE C++ Code                 | 173 |

# List of figures

| The process of data analysis                                                    | 3                            |
|---------------------------------------------------------------------------------|------------------------------|
| An example frame from which operators need to detect this small target          |                              |
| The progress of computing measured in cost per million standardized opera-      |                              |
| tions per second (MSOPS) deflated by the consumer price index [104]             | 8                            |
| One-dimensional edge profiles. [58]                                             | 18                           |
| Roberts Operator. [58]                                                          | 19                           |
| Sobel Operator. [58]                                                            | 20                           |
| A comparison of Edge Detectors. a) Original image b) Filtered image, c)         |                              |
| Simple gradient using 1 x x2 and 2 x 1 masks, d) Gradient using 2 x 2 masks,    |                              |
| e) Robert cross operator, f) Sobel operator, g) Prewitt operator [58]           | 21                           |
| Laplacian Operator, derived as the second order differential [58]               | 22                           |
| Simple rotating rectangles                                                      | 44                           |
| Vehicle accident scene                                                          | 45                           |
| Busy people scene                                                               | 45                           |
| Z-axis perspective occlusion                                                    | 46                           |
| A comparison of RDE and Greyscale applied to rotating rectangles                | 46                           |
| A comparison of RDE and Greyscale applied to a traffic accident                 | 47                           |
| A comparison of RDE and Greyscale applied to a busy walkway                     | 47                           |
| A comparison of RDE and Greyscale results before and after an occlusion         |                              |
| event. The red circle indicates the detection of the person with a white jersey |                              |
| walking down the path, see figure 3.4                                           | 48                           |
| Windowed density estimation applied to the two counter-rotating rectangles      | 52                           |
| Windowed density estimation applied to the busy walkway                         | 52                           |
| Windowed density estimation applied to the road traffic accident scene          | 52                           |
| Windowed density estimation applied to the occlusion scenario. The images       |                              |
| show before and after the occlusion                                             | 53                           |
|                                                                                 | The process of data analysis |

| 3.13 | Helicopter chase scene with a motorbike and car                                 | 59 |
|------|---------------------------------------------------------------------------------|----|
| 3.14 | Panning motion of a street scene                                                | 60 |
| 3.15 | Different key point detection algorithms used for motion estimation on the      |    |
|      | Helicopter and Panning videos                                                   | 61 |
| 3.16 | Different key point detection algorithms used for motion estimation on the      |    |
|      | Z-axis video                                                                    | 62 |
| 3.17 | Key point matching algorithms used for motion estimation on the Helicopter      |    |
|      | and Panning videos                                                              | 63 |
| 3.18 | Filtering algorithms used for motion estimation on the Helicopter and Pan-      |    |
|      | ning videos                                                                     | 64 |
| 3.19 | Interpolation algorithms used for motion estimation on the Helicopter and       |    |
|      | Panning videos                                                                  | 65 |
| 3.20 | Computer Vision hierarchical model                                              | 69 |
| 3.21 | OSI network model                                                               | 69 |
| 3.22 | Typical operating system kernel hierarchy                                       | 69 |
| 3.23 | Example hierarchy for game design                                               | 70 |
| 3.24 | V-Model for software development                                                | 71 |
| 3.25 | AGILE model for software development                                            | 71 |
| 3.26 | A cyclic framework proposed for computer vision                                 | 72 |
| 4.1  | Edge flow components, and in green, the output at each component stage          | 76 |
| 4.2  | Greyscale RDE applied to moving camera to define object texture edges           | 77 |
| 4.3  | WIDE applied to moving camera to define object texture edges                    | 77 |
| 4.4  | X and Y Sobel filters                                                           | 78 |
| 4.5  | Left, gradient values assigned for an x-plane Sobel filter. Right, gradient     |    |
|      | values assigned based on a y-plane Sobel filter                                 | 78 |
| 4.6  | Result of a Sobel filter in the y-plane applied to RDE image. The gradient      |    |
|      | values have been coloured for a better visual effect – blue indicates large     |    |
|      | gradient changes, whilst green is a smaller gradient value. Yellow indicates    |    |
|      | areas of no edge gradients (and therefore no edges – the texture of an object). | 79 |
| 4.7  | Pixels linked in an edge, and the area of influence of the edge                 | 81 |
| 4.8  | (a) Contiguous clustering of gradients from Sobel stage (b) Result of optical   |    |
|      | flow applied to clusters                                                        | 82 |
| 4.9  | Two separate scenarios for texture patches with optical flow calculated for     |    |
|      | each of the 5 pixels within them.                                               | 82 |

| 4.10 | Motion estimation result from scene (left) Edge flow result from scene (right).    |     |
|------|------------------------------------------------------------------------------------|-----|
|      | Red boxes are included on edge flow to highlight detections more clearly.          |     |
|      | 640 x 360 pixels                                                                   | 85  |
| 4.11 | A comparison of Edge Flow with Motion Estimation and Optical Flow on               |     |
|      | the Helicopter video                                                               | 85  |
| 4.12 | Second test video, dashboard mounted camera                                        | 86  |
| 4.13 | A comparison of Edge Flow with Motion Estimation and Optical Flow on               |     |
|      | the dashboard video                                                                | 86  |
| 4.14 | Video 3 scene - drone flying with multiple axis of motion                          | 88  |
| 4.15 | A comparison of Edge Flow with Motion Estimation and Optical Flow on               |     |
|      | the UAV video                                                                      | 88  |
| 4.16 | Conceptual framework for human object detection, [18]                              | 92  |
| 4.17 | WISE components, and in green, the output at each component stage                  | 95  |
| 4.18 | An illustration on how the edge influence (and thus membership) propagates         |     |
|      | across the image                                                                   | 96  |
| 4.19 | This set of images shows the results of the WISE technique when applied            |     |
|      | with different window sizes. (a) is with window size 2, (b) is a window size       |     |
|      | of 3, and (c) is a window size of 4. The Sobel filter has a consistent size of     |     |
|      | 7x7 for each image                                                                 | 98  |
| 4.20 | This set of images shows the results from changing the size of Sobel filter        |     |
|      | from $3x3$ (a), $5x5$ (b) and $7x7$ (c) with the WiDE window size set to 3         | 98  |
| 4.21 | Here is a range of visualisations for the clustering results of WISE. The          |     |
|      | first (a) is a view of the clustering, using a bounding rectangle to include       |     |
|      | the pixels that represent and individual texture. The bounding box image is        |     |
|      | included to highlight the extent of each cluster and reinforce that the clusters   |     |
|      | are separate distinguishable textures. Both the (b), and (c) images show the       |     |
|      | actual pixels of a cluster represented with a colour overlay                       | 100 |
| 4.22 | Clustering results for WISE applied to the busy road intersection scene,           |     |
|      | introducing a greater 3D differential for the algorithm to handle. Figure (a)      |     |
|      | shows the rectangular cluster representation. Figures (b) and (c) show the         |     |
|      | clusters pixel-wise using a colour overlay. One is just the cluster pixels (b),    |     |
|      | and the other is the cluster pixels overlayed onto the original image (c) $\ldots$ | 100 |
| 4.23 | Edge detection results for WISE (a), Edge Flow (b) and Canny Edge Detector         |     |
|      | (c) applied to the helicopter scene                                                | 101 |

| 4.24 | Edge detection results for WISE (a), Edge Flow (b) and Canny Edge Detector        |     |
|------|-----------------------------------------------------------------------------------|-----|
|      | (c) applied to the busy road intersection scene, introducing a greater 3D         |     |
|      | differential for the algorithms to handle                                         | 101 |
| 4.25 | These images show the comparison of Grab Cut (a), Mean Shift (b), and             |     |
|      | WISE (c) on the helicopter scene                                                  | 102 |
| 4.26 | These images show the comparison of Grab Cut (a), Mean Shift (b), and             |     |
|      | WISE (c) on the helicopter scene                                                  | 102 |
| 4.27 | WISE applied to the helicopter scene.                                             | 104 |
| 4.28 | WISE applied to the dashboard scene                                               | 104 |
| 4.29 | WISE applied to the UAV scene                                                     | 104 |
| 4.30 | WISE components with optical flow addition                                        | 108 |
| 4.31 | WISE and Optical Flow applied to the helicopter video                             | 108 |
| 4.32 | WISE and Optical Flow applied to the dashboard video                              | 109 |
| 4.33 | WISE and Optical Flow applied to the UAV video                                    | 109 |
| 4.34 | Additional frame with greater UAV motion                                          | 110 |
| 5.1  | (a) Original Image (b) Fuzzy Edge Detector [65] (c) ACO edge detector [79]        |     |
|      | (d) Neural Network edge detector [13] (e) Genetic Algorithm edge detector         |     |
|      | [17] (f) Universal Gravity edge detector [139]. Images obtained from [1].         | 113 |
| 5.2  | (a) WIDE with window 2, (b) WIDE with window 3, (c) WIDE with window              |     |
|      | 4, (d) WIDE with window 5                                                         | 114 |
| 5.3  | Edge detection results from [33] for fast edge detection using structured forests | 115 |
| 5.4  | (a) WIDE on people with window of 4, (b) WIDE on barn picture with                |     |
|      | window of 4, (c) WIDE with window of 6 on coyote picture                          | 115 |
| 5.5  | A selection of varying Image Segmentation techniques applied to the BSD           |     |
|      | database. (a) Ultrametric Contour Map [10], (b) Edison and IHS Image              |     |
|      | Segmentation methods [158], (c) Bottom Up Aggregation [3], SWA V1 [46],           |     |
|      | Normalised cuts [84], Mean-shift [27]                                             | 119 |
| 5.6  | WISE applied to the images used by other techniques. The leftmost image           |     |
|      | is the actual pixels of the detected texture patches overlaid on the original     |     |
|      | image. The rightmost image is the individual texture patch boundaries. (a)        |     |
|      | and (b) Giraffe, (c) and (d) Woman with a baby, (e) and (f) Surfer                | 120 |
| 5.7  | WISE applied to the images used by other techniques. The leftmost image           |     |
|      | is the actual pixels of the detected texture patches overlaid on the original     |     |
|      | image. The rightmost image is the individual texture patch boundaries. (a)        |     |
|      | and (b) Eagle, (c) and (d) Bear, (e) and (f) Ostrich                              | 121 |
|      |                                                                                   |     |

| 5.8 | Results from different object detection by classifiers methods, applied to the        |     |
|-----|---------------------------------------------------------------------------------------|-----|
|     | YouTub-Objects database [113]. (a) Hough Forest Object Detection [45], (b)            |     |
|     | Fast object segmentation [109]                                                        | 124 |
| 5.9 | WISE applied to the datasets used by the methods presented above. The                 |     |
|     | leftmost image is the actual pixels of the detected texture patches overlaid          |     |
|     | on the original image. The rightmost image is the individual texture patch            |     |
|     | boundaries.                                                                           | 125 |
| 6.1 | WISE objects detected, with optical flow and object boundaries                        | 130 |
| 6.2 | Clustering of the optical flow results using CEDAS. The x-axis shows angle            |     |
|     | of motion $(-\pi \text{ to } \pi)$ , and y-axis shows magnitude of motion, normalised |     |
|     | between 0 and 1                                                                       | 131 |
| 6.3 | A series of consecutive frame analysis results from CEDAS, applied to the             |     |
|     | scene with the person running in circles                                              | 132 |
| 6.4 | Helicopter police chase video                                                         | 136 |
| 6.5 | UAV flight video                                                                      | 136 |
| 6.6 | Clustering of objects in the helicopter video, resulting in the characterisation      |     |
|     | of different object types                                                             | 137 |
| 6.7 | Clustering of objects in the UAV video based on motion features                       | 137 |
| A.1 | Summary results of the experiments conducted with Motion Estimation                   | 162 |

# List of tables

| 4.1 | Characteristics of some sample novelty detection algorithms               | 83  |
|-----|---------------------------------------------------------------------------|-----|
| 4.2 | Detection performance for video 1                                         | 85  |
| 4.3 | Detection performance for video 2                                         | 87  |
| 4.4 | Detection performance for video 3                                         | 88  |
| 4.5 | Performance analysis of each algorithm across each test video stream      | 89  |
| 5.1 | The performance of different edge detection techniques on the BSD500 [10] |     |
|     | data set obtained from [33] and compared with the WIDE technique over 3   |     |
|     | different window sizes                                                    | 116 |
| 5.2 | The performance of different image segmentation techniques on the BSD500  |     |
|     | [10] data set obtained from [10] and compared with the WISE technique     |     |
|     | over 3 different window sizes                                             | 122 |
| 5.3 | Comparison of the results presented by [45] with WISE over 3 different    |     |
|     | window sizes                                                              | 126 |
| 5.4 | Comparison of the results presented by [109] with WISE over 3 different   |     |
|     | window sizes                                                              | 126 |

# Glossary

| Term                          | Description                                                  |
|-------------------------------|--------------------------------------------------------------|
| Candidate objects             | Candidate objects are texture patches that represent         |
|                               | objects of interest.                                         |
| CEDAS                         | Online clustering process defined in [57]                    |
| Computer Vision               | The field is interdisciplinary that deals with how           |
|                               | computers or artificial devices can gain a high level        |
|                               | of understanding from images or video streams                |
| Edge clustering               | The same process as edge linking, the terms may be used      |
|                               | interchangeably.                                             |
| Edge linking                  | The process of joining contiguous edge pixels together to    |
|                               | form texture patches                                         |
| F-measure                     | Measures the average squared colour error of the segments,   |
|                               | penalizing over-segmentation by weighting proportional to    |
|                               | the square root of the number of segments. It requires no    |
|                               | user-defined parameters and is independent of the contents   |
|                               | and type of image.                                           |
| Texture patch                 | Used to describe the area of textured pixels linked together |
|                               | by the edge linking of WISE. They form candidate objects     |
| Unmanned Aerial Vehicle (UAV) | An unmanned aircraft that is typically used by the military  |
|                               | and border protection services to gain advanced              |
|                               | reconnaissance. They usually have on-board cameras, and      |
|                               | limited computational processing power.                      |
| WISE                          | Within-Image Spatial Edge Flow algorithm                     |

# Chapter 1

# Introduction

This chapter introduces the scope of the research undertaken in this thesis. Firstly it considers the wider field of data analysis and data gathering through the use of optical devices, and then considers application specific problems. How computer vision as a whole is employed in a variety of ways to tackle these problems is introduced followed by scoping the particular problem area of this research and the questions associated with it. The scope of the work is condensed into the specific research conducted throughout the remainder of the thesis. Chapter 2 specifically deals with the research papers relevant to the field of research, and how existing research can contribute to resolving the questions proposed here.

## 1.1 Scope

Data analysis is a wide ranging field that can be applied to any number of data gathering and output problems. It can be summarised as a series of data inputs, data recording, data processing and some kind of information output, figure 1.1. The sub domains of data analysis are dependent on the type of data input, the type of processing to be performed and the expected information output. The research conducted in this thesis is centred around analysing video data obtained from a scene, determining the objects and their type that are present in the scene.



Fig. 1.1 The process of data analysis

The general emphasis of the investigation task is to be initially as broad as possible, incorporating as many computer vision concepts and their application potential to the problem. Many of the topics are overlapped with each other (e.g. classification and behavioural analysis) and using multiple concepts can reinforce the end objective. Many of the complex computer vision systems draw from all criterion, and many of the categories to form coherent objective solutions. Examples such are facial recognition [127] and motion estimation [145]. There are also system level applications using computer vision algorithms to support a wider system, for example the work by Luo et al [82] is a prosthetic eye system that uses elements of the computer vision field for its operation. It is important to consider each system level algorithm for its constituent components because the systems can compensate for any individual algorithm short coming. For example with the case of using background subtraction as part of the motion estimation; whilst the individual algorithms perform the designed job well when combined into a system of components the design performance hinders overall performance. Possible reasons for this scenario are that the algorithms are being used outside their designed operation or the algorithms are not ideal, but are being used as a "best-fit" solution when the ideal solution is not available. In either case, there is an argument for redesign of either the algorithm, or the system in which it is trying to be used. Consequently, it is important for us to understand the goals that drive the algorithms. There are many goals in computer vision, primarily motivated by whatever system it is being integrated with. However one overarching goal of the field as research is the ability for computers to perceive their environment as good as, if not better than, human vision. The next section considers the motivation for the research proposed in this thesis.

#### **1.2** Motivation

In a world where sensors for data acquisition are used on an ever expanding scale, there is a requirement to efficiently process and interpret the data into meaningful information. There are millions of cameras; in the UK alone there are an estimated 5.9 million surveillance cameras in operation [142]. A much greater number of optical cameras are included on mobile phones, and are now estimated to outnumber the human population on the earth [20]. Additionally, cameras are gathering data from vehicles (such as aircraft, border patrol teams, satellites, unmanned aerial and ground vehicles, and amateur video recordings). The total volume of data gathered by these devices is astronomical, and far outweighs the time available to humans to review all of the gathered data. This all contributes to the mass volumes of video data being recorded and stored, some with useful information or important observations that, at present, require human observers to extract them. Considering just the CCTV context of the UK, over 141 million hours of video is recorded every day. That means everyone in the population would have to watch 2.2 hours of surveillance video each day to get through the entire recorded data. The number of hours each person would have to watch to cover all the gathered CCTV data is large and impractical. There are, in reality, many less operators to view all this information and many will need to review several cameras at once to try to identify problems, issues and incidents [63]. This is without taking into account the human factors such as attention span and sleep requirements of an operator [133]. The automation of surveillance camera systems would go a long way to ensuring that security requirements are met, such that useful information or important observations are not missed; as well as to reduce the load and pressure on operators. To this end, there is the goal of enabling computers to interpret visual data from these optical devices and process the data in a meaningful way to produce useful information as its outputs. The field of research into this technology is collectively known as computer vision.

Cameras are regularly used as sensors on unmanned aerial vehicles (UAVs) as reconnaissance and intelligence gathering systems [49] [103] and used for support of front line troops on operations [31]. The cameras on these vehicles can be of the order of 1 - 2gigapixels with frame rates of the order of 25 -100 frames per second, meaning the data is gathered at terapixels per second, that is 3 -5 terabytes of information per second [9]. As this reconnaissance data is gathered, operators on the ground have to sift through each frame looking for important objects or points of interest to support the operations [31]. Figure 1.2 shows an example of a frame from a UAV, and the small object of interest that each operator is expected to see.

The proposed application area of the research is on Unmanned Aerial Vehicles (UAVs). This platform provides a wealth of sensor information and has limited computational power



Fig. 1.2 An example frame from which operators need to detect this small target

that promotes algorithm efficiency. The potential application is however not limited to the UAV environment, and would be suitable to any sensor application that would require detection and tracking of features of interest. The outline of the research is to:

Returning to the UAV application, using the cameras on board the UAV, :

- Develop systems to automatically detect and track dynamic objects or features of interest in a real time live video stream environment. The development would be highly computationally and memory efficient, lending itself to being used on platforms with limited computing power such as UAVs.
- Combine these highly computational efficient online, real-time information extraction algorithms with capable self-learning algorithms that can detect and track objects in a live sensor environment with dynamically changing scenery.

## **1.3** Computer Vision Goals and Human Replication

The aim of the decision making component of computer vision analysis is to achieve similar, if not better recognition of objects autonomously by computers than by humans. The major obstacle to this goal is that computers are "dumb" terminals. A stream of bits looks exactly the same to the computer as another stream of bits; if a computer is just given a stream of RGB pixels, the output on the screen will simply be a visual display of the scene the sensor is pointed at, plus some error component. Errors are introduced by flaws in the camera detection

and signal transfer to the output display. Software in the modern era is sufficiently advanced to enable computers to take a set of inputs, process them and provide a set of intelligent results that gives the impression of autonomous behaviour. Research into computer vision has allowed computers to take or receive a visual input as stimuli (data), conduct some processing (compute) and provide intelligent results on its output (information). The visual stimuli for the purposes of this work are data from colour cameras; and is referred to as simply a camera from herein. The generated image from this camera is made up of red, green and blue picture elements (RGB pixels).

In humans, vision is the main sensory input used to assess an environment. The other senses are used to enhance the detail of the environment, but vision is a supremely efficient method of assessing one's surroundings. There are many articles of research into how the human vision system may work, with several differing opinions. Given the efficiency of human vision systems, and being the central component to assessing surroundings it is widely accepted that an efficient computer based vision system will go a long way to achieving autonomous environment understanding by the wider artificial intelligence field. One of the most important parts of human vision, and thus computer vision, is object separation and discrimination. The process of computer vision may include augmenting the existing video data such that humans can interpret the data faster [112]. For example, colour profile analysis augments the information available within the image to show the distribution and variance of colour in an image. There are also techniques that manipulate the colour palette of the image; this type of technique can suppress colours of a certain type and augment others based on specific highlighting goals. For the most part, these algorithms are used to augment images such that humans can interpret them quicker, and can identify target objects quicker. Computer vision can also be built into a wider autonomous system where the computer makes decisions based on the processed video stream. The difference with current computer vision algorithms, compared to humans, for autonomous detection and identification is that the algorithms do not inherently detect and identify everything in a scene. Each algorithm has specific objectives in terms of what it needs to detect and identify. For example, in the case of Edge Detection, the objective is to detect contrast contours in the frame. The algorithms do not do anything with textures or object formation, they focus on detecting the contours and later algorithms are used for identifying objects and textures. Alternatively, image segmentation algorithms are focussed on detecting objects and textures. The ultimate goal is to achieve all types of detection and identification in one system, which would bring the computer vision implementation closer to that of humans. The next chapter presents some of the existing vision systems that are components that make up small parts

of a vision system, and other techniques bring together many components to achieve an all round detection and identification system.

### **1.4 Real-time algorithms**

In this research there is a consistent reference to real-time processing or real-time analysis. Real-time systems provide a constraint on the computer system in which the data must be analysed and the results outputted. This is also known as computational deadlines [108]. Being correct and real-time does not mean just outputting a correct calculation, it is also dependent on being within the time constraint [130]. The time constraint can be hard (safety critical systems for example), whereby missing any time deadlines constitutes a system failure, firm (network packets for example) where by missing some time deadlines are tolerable but the service or operational speed of the system may be degraded. The work packet is useless if the time deadline is missed (e.g. retransmission of network packet if arrival deadline is missed). Finally there are soft real-time systems, whereby the performance is degraded if the time deadline is missed, and the usefulness of the work packet is degraded if the time deadline is missed - e.g. system fault and condition data. It is important to identify that brute force processing does not necessarily yield a real-time system [136]. A computer may have high data and processing throughput (such as a Cray supercomputer [123]), however the results may still not be provided for several minutes (complex protein folding for example [147]). Conversely a low power system, with limited processing capacity may be considered as real-time, despite its limited capacity, if the result of the system is returned in sufficient time to immediately affect its environment e.g. temperature regulation of a green house the windows and heaters are controlled in real-time to regulate the internal temperature of the green house. Referring back to the brute force type processing, the computing power industry is consistently following Moore's Law, and in some cases exceeding it [93]. In the graphic shown in figure 1.3, the cost per GFLOP [104] is decreasing at rapid rate, and is expected to continue in the immediate future. There is therefore scope for using parallelism on existing computer vision algorithms (such as optical flow, or image segmentation) using the brute force of this computational power to make them operate in real-time, [110]. There are some drawbacks to this approach.

• There is only so far the processing power can be optimised, and eventually the advancement of processing capability will slow (earliest estimates are 2020 or 2022 [83] [66] [132].



Fig. 1.3 The progress of computing measured in cost per million standardized operations per second (MSOPS) deflated by the consumer price index [104]

- If the image resolution is sufficiently large, even with the huge processing capabilities, real-time capability will eventually be reduced or unattainable.
- Not all application areas will be able to utilise the high powered processing due to other system or environmental constraints (e.g. the power capacity of a UAV is limited, thus the processing power available will also be limited).
- Despite the cost per GFLOP reducing, using a brute force approach does not address the requirement of cost outlay for high powered computing systems that would be required to make some algorithms real-time capable
- The complexity of some algorithms are such that not all aspects are necessarily suitable for parallelism. Thus the gains are not necessarily directly proportional to the increase in processing power.

It is important to note that real-time is often confused with an on-line system, or at least the terminology is used independently. Whilst they are similar, and both relate to the time of the processing, they are also distinctly different. Online or offline processing refers to when the system begins processing the data. An online system is continuously processing data as it arrives into the system, and does not wait for a collection or data set to be gathered before processing the available data. Conversely an offline system waits for the entire dataset to be gathered, and then subsequently processes the data. An offline system can be real-time, provided that it yields the results of the processing in a timely manner after the data has begun being processed / analysed. Equally an on-line system does not have to be real-time, whilst the data processing is continuous and begins as soon as a data sample is received, the result may not have to be returned with some time constraint. An example of a system that is on-line yet not real time is the SETI program, whereby the data samples are processed as they are received from the Archiebo telescope, yet the results of the analysis of the particular data set are not outputted for several hours [99].

Given the analysis of brute force approaches, over the coming chapters, the research focusses on the development of true real-time computer vision algorithms that are capable of running on low power computing processors, yet can be scaled on high power computing devices should there be a requirement to do so. For the requirements established earlier in the chapter, the system developed must both be real-time and online.

### **1.5** Autonomy or Intelligence

Humans could be considered either a very lazy species, or one that likes to optimise tasks such that other tasks can be accomplished simultaneously. There are clear examples of both in the technological world that we live in [44]. To that end, many of the electronic systems that we see in daily life can be considered, to a degree, autonomous. That is, the machines are given a task to do, and they will conduct the processing required until the task is complete and provide and output, without any intermediate intervention. If you consider the use of a washing machine, the user puts in clothes and the washing powder, selects a cycle, and presses go. This could be considered an initialisation of the autonomous system. During the wash cycle, provided no error occurs, the machine will autonomously (i.e by itself) wash the clothes and discard the dirty water. However, the automation is limited such that it cannot compensate for unknown or unforeseen scenarios [138] [11]. To address these scenarios, input from the user is required. Intelligent systems address this by having a flexible interpretation of the input and have ability to handle unexpected or unknown scenarios, autonomously without necessarily having human intervention [42]. Some of these can be supervised systems, such that there is an intelligent agent yet operators feed in additional information or parameters to support the decision making process [124]. Other, fully unsupervised techniques, do not require the input of parameters or intervention by users to learn about new and unknown scenarios [115]. The intelligence is often referred to as machine learning, whereby the system is interpreting its environment and creating new rules or constraints for autonomous operation based on different and changing inputs.

Referring back to computer vision and the work presented in this book, autonomy is needed to satisfy the UAV conditions and constraints. A level of intelligence is also required such that interpretation of new or unknown images is possible by the system. Given the diversity of the world environment, the expected level of intelligence is a semi-supervised approach similar to that of Zhu [159] such that object separation is conducted yet classification of the objects is conducted with the assistance of operator input.

# Chapter 2

# **Computer Vision and Existing Research**

Computer Vision has grown exponentially over the last 30 years such that it is a large research field, with many approaches that are derived to solve a wide range of vision problems. Latterly, the human objective to employ autonomous agents such as driver-less cars and unmanned surveillance vehicles has fuelled more research and funding into the field of computer vision. This chapter looks through the wealth of computer vision techniques available and what benefits and drawbacks some of the techniques have.

## 2.1 The Field of Computer Vision

The field itself can broadly be broken down into a number of sub categories, each of which have their own objectives in terms of data analysis and output. That is:

- Image Enhancement image denoising, brighness and Gamma corrections, histogram analysis
- Transformations Homography, Affine transforms, Warping, Data space manipulation
- Filtering, Fourier transforms and Image Compression Image analysis, optimisation and size reduction (compression)
- Colour Vision Colour mapping, colour management, colour profile analysis
- Feature extraction Edge Detection, Corner Detection, Key-point Detection
- Pose Estimation visual geometry, orientation and angle estimation, projections and modelling
- Registration cross correlation, image segmentation, optical flow, particle filters

• Visual Recognition - feature transforms (SURF, SIFT), object recognition, posture and gesture recognition, facial and finger print recognition

The sub-categories fit three main criteria of image and video processing:

- Image manipulation. In this criteria, the processing is focussed on filtering, denoising and optimising the image itself without any notion of "what" is in the image. The processing may augment or highlight certain objects, and de-emphasis others, but this is mainly a process where the augmentation and de-emphasis are tuned based on the objects the user wants to see more or less of. The categories that fit into this criteria are Image Enhancement, Filtering, and Colour Vision although there may be some crossover from Registration and Transformations
- Detection. This criteria primarily focussed on detecting features, key-points and candidate objects in the image. The detection phase is an essential part of image understanding such that computer systems can understand and interpret a scene. In some cases detection can be pixel feature extraction [50] [75] and detection of contours and edges [33] [23]. It can also be in the form of detecting important points in the image such as keypoint detection [78] [14] [2] and optical flow detection [81] [55] [157] [149] or detecting the pixels potential associated together (candidate objects) such as background subtraction [137] [37] [4]. The categories that fit this criteria are Feature Extraction, Registration, and Visual Recognition
- Image Understanding. Technically, this criterion could not exist without the existence of one or both of the previous criteria. It is to do with interpreting and analysing the image such that situational and environmental understanding of the scene or image can be achieved. The understanding can be achieved following some image manipulation; for example if the result of the manipulation yields two distinct image colours, a level of understanding (provided appropriate rules are present) of the image can be achieved. Similarly if there are a series of candidate objects present from the detection phase, an understanding of these objects can be achieved through further processing. Categories in this criteria are pose recognition, visual recognition and transformations. Whilst the latter two are also applicable to the previous criterion, aspects of them are directly applicable here (such as facial recognition; the keypoint detection extracts the appropriate detections, and then this phase applies the matching analysis to a database or reference image)

The scope of the project as defined in the brief is such that a number of solutions, with components in computer vision, could be assessed. These are:

- 1. Novelty detection in a moving image plane
- 2. Object identification
- 3. Behaviour analysis anomaly detection, trajectory analysis
- 4. Tracking of one or more detected objects in the image frame
- 5. Collaborative (swarm) of UAVs working together to achieve a common goal
- 6. Exploration of parallelisation in software agents

Each aspect contains different types of research, and over the next paragraphs the details of each area are explored.

#### 2.1.1 Novelty Detection

Novelty detection is the first phase of computer vision image processing. The principle is to detect a foreground novelty from the clutter of the background. One of the most commonly used methods is background subtraction using KDE (Kernel Density Estimation). This relies on generating a statistical model of the background of an image that is representative and discriminates from new foreground novelties in the image [37]. The complexity required increases markedly when the background itself is not constant (as it would be with a moving camera). Here, two distinct problems exist and define the direction of the research:

1) The offline computational requirement of KDE is not suitable for UAV applications; the requirement is to have an online, real-time processing of the image data.

2) With the background no longer a constant, subtraction of the background using the traditional KDE will result in high noise, potentially leading to false detections.

The computational requirement can be reduced through using recursive algorithms to estimate the density of a pixel based on the similarity to the pixels at the same position in previous image frames. A recursive algorithm can discard the frame once it has been processed, and the density information for each pixel can be accumulated over time. The memory requirements are, therefore, much smaller, and consequently the volume of data to process is significantly reduced. Research into the background modelling of a moving image may take some input from algorithms such as SIFT [78] and SURF [14] and likewise (BRISK [74] and FREAK [2] also have some interesting aspects, and are more accessible from an IPR point of view). These algorithms are able to discriminate between background and an initialised object to enable the tracking of the object through a moving image frame.

These approaches, however, assume the objects are to be initialised manually. Research into merging or combining both recursive background subtraction and SIFT / SURF approaches is a possible progression which could yield a highly discriminatory novelty detection capability in a dynamic video stream which is both robust and computationally efficient [78] [14]. One particular development area of interest is to detect novelties in terms of a new patch / object even if it is not moving. For example, comparing with a previous days images and identifying that this new patch / object was not there previously (examples of such could be mobile SAM sites, military camp, hostages etc.).

#### 2.1.2 Object Identification

Whilst detection of novelties in an image frame is an important first stage in image analysis, there is nothing at this stage to identify whether this is an object of interest or not - one could say that the information itself has not yet been extracted, just "potential" information areas. To identify foreground objects, some sort of clustering and/or classifier or labeller is needed to clearly distinguish objects. A common approach to identifying key areas is image segmentation using clustering and/or classification of the feature space. Image segmentation is a method to partition the feature space by labelling pixels that share similar visual features or properties, and connecting the pixels with the same labels in some meaningful way [102]. There are approaches such as region growing, watershed, clustering and fuzzy set techniques, which are either for a specific domain or image field, and require significant offline processing to work. In the work of Othman et al [107] it is proposed that an Evolving Fuzzy Inference System is used to classify objects within a static MRI. This approach is based on the eClass semi-supervised classifier [4]. An alternative is to consider supervised learning, with an expert user inputting feedback to indicate "correct" results during the training phase [40]. The classifier can evolve to incorporate the fed-back information, which in turn improves the classifier performance. Work has also been done using evolving clustering and classification to remove the supervised element of the object identification, and also to be "online" analysis in real time [4] but this was not applied to video analytics. The difficulty with these approaches are that:

1) They consider ideal, static camera environments with little or no noise. One of the investigative areas will be to look at techniques that are robust at identifying and discriminating individual objects when the background and platform is dynamic (the motion causes increased noise, novelty occlusion, interference from the proximity of other potential novelty detections, false detections).

2) The majority of solutions either require supervision or are offline learning classifiers.

3) In the case of the evolving clustering / classification, whilst objects are identified, because of the online nature there is no determination as to what importance the identified objects have. There is also no indication of whether the behaviour of the identified object is "correct" (see behaviour analysis later). Whilst the evolving, unsupervised model is desirable in an unknown environment from the point of view of identifying previously unseen objects, an element of domain "correctness" is required for the UAV application. As a result, we plan to investigate a semi-supervised / unsupervised model which would suit the application area better. This means that identification of the objects in the video stream is proposed to be conducted in an unsupervised manner, but with the proviso that the operator / analyst can review the identified objects and update the classifier with "correctness" measures in an ad hoc manner (i.e. not required to update the model for every data sample, but review it when it is convenient, reducing the demand on the operator compared with a fully supervised classifier, whilst increasing domain "correctness" of the model).

#### 2.1.3 Behaviour Analysis

It follows that (as alluded to earlier) analysis and classification of the behaviour of novelties or identified objects in the video stream is also desirable (behaviours can be, but are not limited to, kinematic – motion in the video stream, or perhaps visual – dynamic brightness / hue / saturation / illumination changes). This is beneficial so that when two objects of very similar initial visual properties appear in the video stream, they can be classified separately according to their behaviour. Classifying the objects according to appearance in a video stream is the first part; classifying similar objects by discriminating behaviour over a series of images is an extension of this. The plan is to extend the detection and identification techniques developed early on to explore the potential of identifying and classifying of behaviours. By studying behaviours it will be possible to identify normal and abnormal behaviours of an object in a video stream (behaviour "correctness"). Equally, it is desirable to identify objects with certain behavioural patterns so that future predictions on the objects trajectory or visual variance can be inferred – further aiding the capability to detect, identify and discriminate specific objects in the video frame.

#### 2.1.4 Tracking

The investigations into the discussed areas leads the work into another area of interest and has already been considered for stationary cameras [6] – tracking. Currently, the solutions that exist do not efficiently track more than one object in a moving image, or only track more than one object in a video stream that is stationary. Many of the current approaches

that are used are cumbersome or processor intensive tasks that are not well suited to the UAV application which is in a dynamically changing environment and is computationally limited. There is scope to advance and develop this area of research, working with methods such as SIFT (Scale invariant feature transform) [78] and SURF (Speeded up robust features) [14] which currently require manual initialisation of the objects of interest (BRISK [74] and FREAK [2] are also applicable). It holds that if the object can be autonomously identified through successive image frames, and the feature morphing or change of the object detected over these images, logically it will be possible to accurately track this object across the video stream.

#### 2.1.5 Collaboration and Parallelisation

Further work is proposed in the area of both collaborative (swarm) operation of UAVs working together to achieve a common goal; augmentation of individual capabilities through information sharing, and the exploration of parallelisation in software agents; not just for the UAV application. Collaboration is a capability that has been attempted before using mobile robots for localization [43] (2006 patent). Sharing information and experience between UAV or sensor platforms could lead to augmented detection, identification and tracking capabilities beyond what is possible with a single sensor platform. In addition, specific to the UAV application, it could, potentially, allow the operator to be able to direct and control more than one UAV at the same time; each having a task within a global goal / objective. An extension of this would be to automatically identify tasks by the UAVs for a particular goal or objective with no operator input. In addition, approaches that utilise the concepts of image stitching [87] [72] could be developed to work across the collaborative platform suggested here. In the field of camera surveillance, such as road traffic cameras or CCTV monitoring cameras, the collaborative nature could lead to cross-camera coordination to track a vehicle or subject of interest across multiple cameras without the need for the operator to intervene. This would be an invaluable capability, considering that currently when a subject of interest moves out of the field of view the operator must manually identify which direction the subject of interest is moving in order to continue surveillance.

### 2.2 Relevant Research

Computer vision is a wide-ranging field covering a multitude of image analysis scenarios. It is necessary to explore the different research already in existence that can contribute to the goals set out in this project. The initial scoping suggested exploring areas such as tracking

and parallelisation, along with behaviour analysis. Some of this has been explored in terms of current research, however given the scope of the project the main focus of the research is into detection and identification of objects. In some cases, there are several components that make up the solution (e.g. Motion Estimation), and the relevant research covered here looks at both the solution level and the individual algorithms. The material also considers the importance and relevance of real-time and autonomous algorithms.

#### 2.2.1 Novelty Detection

In order to achieve a goal in computer vision and analysis, one must understand what is being analysed and why. If you take a moment to look around the room, your eye, brain, and associated neural connections quickly identify various objects around the room within a fraction of a second. The identification process uses multiple features, understanding object behaviour, and trajectory; and at a higher level, its threat level. Humans then interpret the output image on the display and identify objects in the field of view of the camera by linking appropriate pixels that form objects. A computer is somewhat different; there is no immediately apparent link between each RGB pixel on the screen and thus recognition of the objects in the field of view is not possible. Novelty detection is a method of low level detection such that a link between pixels can be detected autonomously by a computer. The process of linking pixels also allows for higher level analysis by non-computer vision algorithms. Novelty detection can broadly be divided into two domains, static images or moving images. In the static images, the analysis is conducted across the image space and spatial domain. The location of pixels are fixed and reference points in the scene remain constant. In moving images the analysis is conducted over spatial, temporal or both domains. The main activity is to identify differences between two images temporally separate. A further complication can arise in this scenario of the camera also being in motion. This provides additional challenges due to there being no fixed spatial reference points. The following are leading techniques in static image analysis:

- Edge Detection
- Corner Detection
- Keypoint Detection
- Image Segmentation

The leading techniques in moving image analysis:

• Background Subtraction

• Optical Flow

When the camera is also moving, the following are leading techniques:

- Dense Scene Optical Flow
- Image Stitching
- Motion Estimation

#### 2.2.2 Edge Detection

Edges form one of the several features that compose an image, and the edge detection methodology focuses on analysing a scene or frame estimating the edges of objects. Edges, in terms of a visual scene, are significant contrast changes in one direction or another, and can typically form the boundary between objects. Interestingly, edge detection also appears in signal processing (usually 1-D edge detection), and so much of the maths used to derive edges in signals can be transferred in some capacity to the 2-D image space (such as Gaussian convolution, Laplacian transforms and Gabor filters). In general, edges can be classified as two different types, ramp or roof type edges (see figure 2.1).



Fig. 2.1 One-dimensional edge profiles. [58]

It is unlikely, or certainly rare in real world signals, to get a crisp step or line edge due to contrast boundaries not being as sharp as these. This is mostly down to the capture technology which interpolates and adds low frequency components to the boundaries yielding the ramp or roof style edge. Both step and line type edges can be generated in artificial test images. Measuring of correctly detected edges can be subjective if just a visual reference of the image is taken. A better more quantifiable method is edge counting. This is where each edge in a

scene is counted, and the resultant output of the edge detector is counted. These can yield true positives (actual edges in the scene that were detected), false positives (detected edges that do not appear in the scene) and false negatives (edges that are in the scene but were not detected). In a real world scenario, it is difficult to describe a true edge vs a false edge due to the complexity of textures and image angles, and therefore it is common practice to describe the performance of an edge detector against a known artificial image. The gradient magnitude of an edge in its simplest form is the differential of the intensity against a particular axis, so in the x-axis this would be the formula:

$$G(f(x)) = \frac{(dI)}{dx}$$
(2.1)

For continuous, non-digital images it is usual to define the x and y directions in terms of maximum gradient (thus the x-axis is the angle along the maximum gradient). The interest for this project is in digital imagery however, and thus the x and y axis remain as the digital axis depicted by pixels. One of the earliest examples of utilising gradients to detect edges in an image is the Roberts Cross operator, which uses the above principle in 2-Dimensional space to extract gradients [121]. Roberts proposed the equation:

$$G(f(i,j)) = |f(i,j) - f(i+1,j+1)| + |f(i+1,j) - f(i,j+1)|$$
(2.2)

which results in intensity changes in a diagonal direction. The equation can be shown as two kernels [58] figure 2.2



Fig. 2.2 Roberts Operator. [58]

The computed gradients are provided at the interpolated point  $[i + \frac{1}{2}, j + \frac{1}{2}]$  The Roberts operator is simple and efficient but lacks noise tolerance, and its simplicity with respect to modern day computers does not offset its lack of noise tolerance. A method by Erwin Sobel, [135] was introduced which avoids the necessity for an interpolation point by using a 3x3 operator. The Sobel operator is computed with partial derivatives:

$$s_x = (a_2 + ca_3 + a_4) - (a_0 + ca_7 + a_6)s_y = (a_0 + ca_1 + a_2) - (a_6 + ca_5 + a_4)$$
(2.3)
and the gradient magnitude calculated by:

$$G = \sqrt{s_x^2 + s_y^2} \tag{2.4}$$

Similar to the Roberts operator the Sobel operator is used as a convolution mask with images:

$$S_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} S_{y} = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Fig. 2.3 Sobel Operator. [58]

This operator uses a constant with the partial derivatives such that the pixels directly adjacent to the center mask pixel have more of an emphasis.

In contrast to the Sobel operator, Prewitt [114] developed an operator that also uses a 3x3 kernel, but does not place any emphasis on neighbouring pixels. An excerpt from [58] shows the comparison of edge gradient extraction over the operators discussed which can be seen in figure 2.4



Fig. 2.4 A comparison of Edge Detectors. a) Original image b) Filtered image, c) Simple gradient using 1 x x2 and 2 x 1 masks, d) Gradient using 2 x 2 masks, e) Robert cross operator, f) Sobel operator, g) Prewitt operator [58]

Further work in Edge Detection has been done by using the second derivative of the gradient. The advantage of using the second derivatives is that at the zero crossing point, this indicates a local maxima in the gradients. The Laplacian is used in the two-dimensional version to obtain the second derivative of the gradients. The Laplacian of f(x,y) is

$$\nabla^2 f = \frac{d^2 f}{dx^2} + \frac{d^2 f}{dy^2}$$
(2.5)

The following partial differential equations can be approximated:

$$\frac{d^2f}{dx^2} = f[i, j+1] - 2f[i, j] + f[i, j-1]$$
(2.6)

$$\frac{d^2f}{dy^2} = f[i+1,j] - 2f[i,j] + f[i-1,j]$$
(2.7)

This yields a mask that can be used to approximate the Laplacian, or second order derivative of the gradient 2.5.

| 2   | 0 | 1  | 0 |
|-----|---|----|---|
| √′≈ | 1 | -4 | 1 |
|     | 0 | 1  | 0 |

Fig. 2.5 Laplacian Operator, derived as the second order differential [58]

One of the limitations in using the Laplacian second order differential is that it is highly sensitive to noise, and any noise artifacts apparent in the first order derivatives are going to provide a zero crossing detection in the second derivative. In the paper by [86], they propose a solution to the noise problem of zero-crossing second derivatives by adding a Gaussian filtering stage and smoothing, and following this with a Laplacian to obtain the zero-crossing points. The filtering removes the noise, but also widens potential edges and as such the zero-crossing local maximas are important to extract. The zero-crossing Laplacian output is then convolved with the image to yield the edges, which should be relatively noise free. The Gaussian filter and subsequent Laplacian zero-crossing is shown here:

$$LoG(x,y) = -\frac{1}{\pi\sigma^4} \left[ 1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$
(2.8)

The limitation of using the Gaussian filter is primarily down to the smoothing constant which is applied to  $\sigma$ . Widening the filter reduces the noise further but also smooths the edge gradients which can lose resolution.

In the work by Canny [23], the problem of error smoothing and edge definition loss is addressed through the use of non-maxima suppression. The image is convolved with a Gaussian, as with Marr and Hildreth [86], and results in a smoothed image. The gradient of the smoothed image is then approximated using first difference approximations, usually using the Sobel or Prewitt operator.

One of the limitations of using these kinds of edge detectors is that little is suggested about the internal structure of any objects. The early methods such as Roberts operator [121] analysed edges but were susceptible to noise. The later edge detectors are less susceptible to noise, and define clear edges. All the methods throughout the convolution are either losing information (the sharp edges lose the gradient information) or are susceptible to noise. As mentioned earlier, the Edge Detection methodology can be likened to signal processing. Gabor filters used in conjunction with images, proposed by Mehrotra et al [88] provide an optimal balance between frequency resolution and time / spatial resolution. By convolving the filters with an image, at multiple angles across the image it extracts feature descriptors of edges in each direction. The Gabor filter is a linear filter, and the frequency and orientation representations successfully model the visual cortex of mammalian brains (thus linked to the thought of similarities in human perception) [85] [30].

#### 2.2.3 Corner Detection

Edge detection can be used as a component of corner detection. A corner is thus defined where two edges intersect, or a point where there are two or more different edge directions in a local region. Corner detection has also been called detection of interest points, however this can lead to confusing terminology. Corner detection, along with key point detection is often used in conjunction with image understanding activities such as motion detection, video tracking, image segmentation and object recognition. An early example of corner detection are Moravec corners [94]. In this work, Moravec describes the existence of corners as neighbouring overlapping regions with low similarity. The similarity is calculated through the sum of square distances measure. The logic of this derivation is that pixels with overlapping regions of similar intensity will most probably be part of texture or some uniform area, pixels with overlapping regions that are different, but with parallel regions being similar are likely to indicate the pixel is on an edge, where as where overlapping regions intensities are most different indicate the presence of one or more edges, suggesting a corner in the local region. The issue, identified by Moravec in the work, is that it is not isotropic; an edge is must be present in the direction of the neighbours (horizontal, vertical, or diagonal), otherwise incorrect interest points will be selected [95]. Harris and Stephens [51] improve on the Moravec corner detection, by removing the dependence on isotropic patches. Instead, they propose taking the differential of the corner score with respect to the direction of the intensity gradient. The Harris operator or matrix used to calculate the corner gradient similarity is formed from a weighted sum distances equation:

$$G(x,y) = \sigma_u \sigma_v w(u,v) (I(u+x,v+y) - I(u,v))^2$$
(2.9)

where I is the two-dimensional image, (u,v) is an image patch area, and (x,y) is the patch shifting distance. The equation, through using the Taylor expansion method can be approximated to:

$$G(x,y) \approx \sum_{u} \sum_{v} w(u,v) (I_x(u,v)x + I_y(u,v)y)^2$$
(2.10)

$$G(x,y) \approx (xy)M\begin{pmatrix}x\\y\end{pmatrix}$$
 (2.11)

Where M is the structure tensor [19] where the angle brackets denot averaging over (u, v):

$$M = \sum_{u} \sum_{v} w(u, v) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \langle I_x^2 \rangle & \langle I_x I_y \rangle \\ \langle I_x I_y \rangle & \langle I_y^2 \rangle \end{bmatrix}$$
(2.12)

As with the Moravec corners, a large variation in all directions (x,y) characterises a corner. Given that M is the structure tensor [67], the eigenvalues of the matrix M can represent interest points based on their value. If  $\lambda_1 \approx 0$  and  $\lambda_2 \approx 0$  there is no point of interest at the location; if  $\lambda_1 \approx 0$  and  $\lambda_2$  is large this generally indicates the presence of an edge (gradient in the perpendicular direction, small or no gradient in parallel direction); and if  $\lambda_1$  and  $\lambda_2$ are large this indicates the presence of a corner (as with Moravec, large differences in each direction). Calculating the Eigenvalues can be computationally expensive (as identified by [51]). To improve on computational efficiency they propose calculating the determinant and trace of M, with an empirically derived tuning parameter (*n*) applied to the trace:

$$M_c = \lambda_1 \lambda_2 - n(\lambda_1 + \lambda_2)^2 \tag{2.13}$$

Jianbo and Tomasi [60] observe intensity variations are bounded by the maximum allowable pixel value in the window such that  $\lambda$  cannot be arbitrarily large, thus they propose only accepting corner indications where the condition  $min(\lambda_1, \lambda_2) > \rho$  holds, where  $\rho$  is a predetermined constant.

#### 2.2.4 Key point detection

The concept of key point detection is widely used in computer vision for a variety of applications, and is a mathematical extension of the concept of edge detection and corner detection; unique feature points in an image space. A common use of keypoint detection is fingerprint recognition [90] [131], although some early methods use Harris [51] corners or Smith's method [134]. As with corner detection, the objective is to identify points in the image that are robust and consistent descriptors of invariant points in an image. Scale Invariant Feature Transform (SIFT) [78] is a scale and rotation invariant key point detector. The method is applied over several stages, the first of which is the detection of scale-space extrema through the use of a difference of Gaussian function. The objective here is to identify the areas of an image that are invariant to scale, that can be repeatably assigned from different views of the same object. The continuous scale space function was introduced by Witkin [155]. The scale space of an image is found by the convolution of a variable scale Gaussian function with an input image. To detect stable key point locations, a difference of Gaussian function is computed between two nearby scales separated by a constant. Several octaves of

this scale space are used, and between scale octaves, the Gaussian image is down sampled by two and the DoG process is repeated. Sampling in the spatial and scale space domain are applied after local extrema detection in order to identify the most robust scale space key points. The accuracy of SIFT is improved by increasing the number of scale samples the key points are detected over, at the sacrifice of processing efficiency. The work conducted in [74] is an advancement on the existing SIFT methodology described above. The objective is still the same, to detect key points and assign descriptors (features) that are invariant of scale or rotation. The authors identify that one of the limitations with the SIFT approach is the extensive dimensional vectors produced for interest points. The processing of high dimensionality is proposed as the weakness. Other methods as [62] apply PCA to the high dimensionality that yield faster computations, although they suffer from being less distinctive features than the original SIFT approach. The detector in SURF uses a Hessian matrix, and the determinant of the Hessian to derive location and scale for the detector. This optimises the computational complexity and thus the processing speed. For efficiency, the Gaussian filters are approximated as this has been found not to degrade performance; they are approximated with box filters. Similarly with the descriptors, the complexity is reduced significantly/ The Haar wavelet responses are reduced to the vertical and horizontal sample points. The responses are weighted with a Gaussian centred at the interest point to increase robustness to geometric deformity. It was shown in Bay et al [14] that the so called fast Hessian detectors reduced processing compared to Difference of Gaussian by a factor of 4, and a factor of 6 for Hessian-Laplace detectors. The Hessian threshold can be adapted to increase robustness, at the cost of computational performance.

#### 2.2.5 Image Segmentation

Image segmentation [143] is used to divide and classify detections within the visual scenes without applying the assumption of motion; in fact, there is no motion preservation in image segmentation techniques. Image segmentation is applied to a single image and can be achieved sequentially over a sequence of frames to achieve detection in a video stream. There are a number of different methods employed to achieve image segmentation, each to achieve a particular goal. One of the simplest versions of image segmentation is thresholding. This effectively turns the image into a binary image based on some feature clip level (colour, brightness, hue for example). Extended methods of this thresholding appear in Otsu's method and some simple clustering techniques (k-means for example). Otsu's method relies on establishing the intra-variance of each class, and selecting a threshold such that this is minimised. The method requires a search of the entire image space for the threshold that minimises this variance. The algorithm can be computed effectively by using a recursive

update of the probabilities and means, however the search of the algorithm still provides a cumbersome method that yields only a binary separation. Similarly, clustering can be used to segment an image based on the image features such as colour, intensity, pixel location and any derived features such as density or saturation. With the k-means algorithm a preconception of how many clusters into which to divide the image is required, as this is the starting parameter. Other, more complex techniques, do not require initialisation to define the clusters and can autonomously divide the data space into any number of clusters. An important drawback of clustering an image space directly is that short of simple or artificial imagery, the clustering is not guaranteed to yield complete objects given luminance and positional variances (such as an inclined light shining onto one corner). Other image segmentation methods use classification to derive detections. The classifiers are trained on a variety of versions of the objects, and then tested on previously unseen footage. This methodology is offline processing however it has been found to be an effective way to detect specific objects [109] [33]. Adaptive Texture and Boundary Encoding, [117], models a region boundary using a Gaussian distribution which is encoded by an adaptive chain code. The limitation is the assumption of a normally distributed boundary for a texture, and whilst the method works well in simple imagery, a complex image with several varying textures can lead to missed texture boundaries and over fitting. Malik et al divides the image [84] into regions of brightness and textures. This is achieved by using the brightness and texture cues as a measure of similarity for neighbouring pixels which are subsequently linked if they show similarity. To describe textures they use a component coined "textons" which is a measure of the texture property through observing filter responses. The technique can produce good segmentation of greyscale images which is one of the limitations. Also by relying on filter responses for the definition of a texture, in cases where the texture is similar to a neighbouring object (but is a different object), the method can miss these and group them together as a single texture. Efficient Graph-Based Image Segmentation is a method introduced in the work of Felzenwalb and Huttenlocher [39], they measure the evidence for a boundary between two regions using graph-based representations of the image. The result is a method that can discriminate its textures dependent on the variability of said textures. Contour Detection and Hierarchical Image Segmentation, [10], is a commonly seen image segmentation approach which uses a contour detector that combines multiple local cues into a globalization framework using spectral clustering. The segmentation algorithm consists of generic machinery for transforming the output of any contour detector into a hierarchical region tree. This leads to the reduction in the problem of image segmentation to that of contour detection. A number of research papers look into improving each of these methods, by the accuracy of the detections or decreasing computational load to achieve the same results on hardware with a lower computational capability [68], [24], [71], [26], [150].

## 2.2.6 Background Subtraction

The techniques discussed in this section are all mono-modal (pixel-wise) background subtraction techniques [37] [127] [125] [156]. Pixel-wise techniques treat each pixel independently from all the others. This maybe a rash assumption (because there may be underlying pixel interdependency that pixel-wise techniques will not detect) but it does lend itself to some very fast techniques that can be optimized using multithreaded processing. All the approaches considered here perform well (produce tangible results) in static observation environments only. Dynamic observations are much more complex; background subtraction techniques do not fare well and tend to produce false detections. Extra techniques are used to compensate for dynamic observation platforms which are commonly grouped as motion estimation techniques. Other non-pixel-wise techniques can use texture / edge based detections which exploit local spatial information for extracting the structural information. Noriega, [105], divides the scene into overlapping square patches for detections (the overlapping is a non-mono-modal approach) whereas Heikkila, [52], describes a model of local texture characteristics and uses fixed circular regions of pixels for comparison. Another style of approach is sampling based which evaluates a wide local area around the pixels to perform complex analysis. A spatial sampling mechanism is employed by Cristiani, [29], using pixel-region mixing. Barnich, [12], uses spatial neighbourhood sampling to refine per-pixel estimates and is loosely based on a Parzen windows process. These approaches tend to be processor intensive and do not lend themselves to efficient multithreaded implementations due to the need to compare pixels across the frame. A popular pixelwise technique (Kernel Density Estimation), which is not a real time technique, is introduced for comparison purposes with the approaches discussed.

#### **Kernel Density Estimation (KDE)**

More recently, a probability density estimation technique has been proposed in Kernel Density Estimation (KDE) [37]. This technique is not real-time however it is an important consideration as it is a common offline method for background subtraction. It is also non-parametric once it has been initialized, which is especially important for autonomous algorithms; this technique does require external input from a user or device at initialization, limiting the initial autonomous capability and opening the model to subjectivity. The KDE technique estimates the probability density function of each pixel based on a number of consecutive frames (the number of frames, or 'window', is fixed throughout the operation of the algorithm). The probability density function (PDF) of each pixel is calculated for the defined window of frames using a Gaussian kernel, shown in eq (2.14).

$$P(x_t) = \frac{1}{N} \sum_{i=1}^{N} \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{1}{2} \frac{(x_{t,j} - x_{i,j})^2}{\sigma_j^2}}$$
(2.14)

Where  $x_t$  is a d-dimensional colour feature,  $x_i$  is the mean of this colour feature over N frames and  $\sigma$  is the bandwidth or standard deviation in the jth dimension. Each pixel in the current frame is compared with the PDF; if the pixel is sufficiently different from the mean of the probability density function, it is considered to be foreground; otherwise the pixel is considered to be background. The threshold (sigma multiple) used to determine if a pixel is sufficiently different and therefore foreground is required to be pre-selected as part of the initialization. An important consideration for KDE is the selection of the kernel bandwidth (scale). If the bandwidth is too narrow false foreground detections become a problem because of the ragged density estimate for the pixel, too wide and the density estimate will be overly smooth leading to missed detections. In Elgammal et al [37] the bandwidth is autonomously defined for each pixel, and is adaptive throughout the operation. By measuring the deviations between two consecutive intensity values, in most cases, it can be assumed that the two pixels come from the same local-in-time distribution (as only very few pixel intensity pairs are expected to come from different distributions). If the local-in-time distribution is assumed to be Gaussian, the deviation distribution  $(x \neg x_{n+1})$  is also Gaussian N. For a symmetric distribution the median of the absolute deviations is defined as eq (2.15).

$$Pr(N(\mu, \sigma^2) > m) = 0.25$$
 (2.15)

Thus the bandwidth of the distribution can be estimated in eq (2.16).

$$\sigma = \frac{m}{0.68\sqrt{2}} \tag{2.16}$$

Where *m* is the median over the frames in the colour space, and  $\sigma$  is the bandwidth or standard deviation. The approach can be extended to include "Probabilistic suppression of False Detections" [37] which considers pixels that are neighbouring the pixel currently being analysed. This increases the robustness to noise (e.g. leaf fluttering), but also increases the processing time required for each pixel. As this process requires analysing neighbouring pixels it limits the effectiveness of multi-threaded implementations. This review is specifically focusing on pixel-wise approaches and consideration of neighbouring pixels or local region approaches is beyond the scope of the investigation. The approach makes some assumptions about the real world. The distribution of colour (or other feature) for each pixel is modelled with a Gaussian and this assumption increases the susceptibility of the model to false detections and noise, because real world features are not necessarily distributed as

a Gaussian distribution. Another assumption made by this method is that the background is sufficiently static to avoid being considered as foreground, however, rapid illumination changes or leaves blowing in the breeze can introduce noise or false detections. When considering real-time applications there are drawbacks to this technique. Most importantly, the model will not run in real-time because of the window of frames that is required to be read in order to generate the probability density for each pixel. If the window is moved in an overlapping manner on the receipt of new frames the approach can get closer to true real time simulation. The approach also has a high memory cost (because of the number of frames required to be remembered).

#### **Gaussian Mixture Models (GMM)**

Despite being proposed chronologically before KDE, adaptive background mixture models allow real time analysis of a video stream by using multiple Gaussian kernels [137] to represent the colour distribution of each pixel. Each pixel is assigned to one of the Gaussian probability density functions (the number of PDFs is defined at initialization) depending on how closely the pixel properties match the PDF. The number of functions used to describe a pixel determines how robust the technique is with busy or multi-modal scenes. Typically 3 to 5 Gaussian functions are used describe background and foreground pixels but generally this is problem specific (more would be defined for a motorway than a green field for example). As the number of functions used to represent each pixel is increased, the required processing also increases which can affect the real-time capability of the approach. This technique is useful when there is a multimodal background, with the multiple Gaussians able to represent several different modes of pixels. In a very busy scene the detection performance of the approach decreases due to the number of Gaussians used being insufficient to represent each mode of the pixels. This can be improved by increasing the number of Gaussian representations at the expense of processing and memory requirements. Using a recursive method, the Gaussian functions are updated in real-time removing the need to remember every point of the history and a window of frames; the Gaussian function that the pixel matches closest is updated with the current pixel value, and once updated, the pixel value is discarded eq (2.17)

$$P(X_t) = \sum_{i=1}^{K} \omega_{i,t} * \eta(x_t, u_{i,t}, \Sigma_{i,t})$$
(2.17)

Where  $x_t$  is the current data sample, K is the number of distributions,  $\omega_t$  is an estimate of the weight (what portion of the data is accounted for by this Gaussian) of the  $i^t h$  Gaussian at time t,  $\mu_{i,t}$  is the mean value of the  $i_t h$  Gaussian in the mixture at time t,  $\Sigma_{i,t}$  is the co-variance

matrix of the  $i^{t}h$  Gaussian at time t, and  $\eta$  is the probability density function defined in eq (2.18).

$$\eta(X_t, \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x_t - \mu_t)^T \Sigma^{-1}(x_t - \mu_t)}$$
(2.18)

With the aim of saving computational memory and speed the covariance matrix is assumed to be of the form eq (2.19)

$$\Sigma_{i,t} = \sigma_k^2 I \tag{2.19}$$

Which assumes independence between the feature variables and that they have the same variances. These assumptions are not necessarily valid in the real world, but the approach avoids processing intensive matrix inversions at the expense of accuracy eq (2.20).

$$\boldsymbol{\omega}_{i,t} = (1 - \alpha)\boldsymbol{\omega}_{i,t-1} + \alpha(\boldsymbol{M}_{i,t}) \tag{2.20}$$

Where  $\alpha$  is the learning constant and *M* is defined as 1 for the Gaussian that was matched and 0 for the remaining functions. The Gaussian Mixture Model (GMM) [137] is a parametric technique requiring both the learning constant and sigma threshold to be pre-defined at initialization. The sigma threshold for assigning a match to a Gaussian distribution is (according to [137]) normally set to 2.5. Parameters for unmatched distributions are not changed. The matching distribution is updated with the new observations in eq (2.18). When a match is not found for any of the distributions, the least likely distribution is discarded and a new distribution is introduced with the current pixel value as its mean. The technique was improved by [61] to enable shadow detection and the approach later optimized by [160] to increase robustness.

#### **Recursive Density Estimation (RDE)**

As a departure from the probabilistic methods, RDE introduces a new approach to background subtraction [125] [7] [5] [116]. There is no prior assumption about the underlying distribution of a pixel's feature value. The approach calculates how near (dense) a pixel value is to all the previous pixels that have been before it. The pixel history is stored as the mean and standard deviation of the pixels from all previous frames. The mean and standard deviation are updated recursively using the formula in eq (2.21). A Cauchy type kernel is used to calculate the density of the current pixel compared with the history [5]:

$$D = \frac{1}{1 + ||x_t - \mu_t||^2 + X_t - ||\mu_t||^2}$$
(2.21)

Where  $x_t$  is the current data sample,  $\mu_t$  is the mean of all previous data samples;  $X_t$  is the scalar product of the previous data samples. Both, the mean and the scalar product can be updated recursively as shown in eq (2.22) and (2.23) [5].

$$\mu_t = \frac{t-1}{t}\mu_{t-1} + \frac{1}{t}x_t; \mu_1 = x_1$$
(2.22)

$$X_t = \frac{t-1}{t} X_{t-1} + \frac{1}{t} ||x_t||^2; X_1 = ||x_1||^2$$
(2.23)

Where *t* is the number of frames read, including the current frame. If there is no change in the scene, the pixel density does not change, and therefore the pixel is considered as a background. When there is a change in the scene, the proximity of the value of the pixel in the current frame compared to all previous frames (mean and standard deviation) changes. If this change is significant enough (large enough difference in value) the pixel is considered as a foreground. The threshold for the difference is defined using the standard deviation (sigma) of all previous frames. Usually a threshold of 2 or 3 sigma is used; by increasing the sigma there is a reduction to the sensitivity to change in the scene thus reducing the number of false detections. Too high a sigma value and the system will start to miss detections. It is a realtime, recursive technique which is highly computationally efficient. As an aside observation, the accuracy of RDE (given the variable nature of real world environments) could be improved through using a semi-supervised approach where the sigma value is updated on an ad hoc basis.

#### 2.2.7 Moving camera domain

The moving camera domain is a more recent area of research. The principle is to achieve the same detection capability at a similar level of robustness and performance when the camera is moving, to the static camera equivalent. This is harder to achieve because there are no static reference points in the sequence of frames to conduct background subtraction. Two of the fields for analysing moving camera scenarios are Optical Flow and Ego Motion. Optical flow analyses the flow of pixels through the scene; that is it models the brightness pattern changes between frames. Ego-motion on the other hand simplifies the scene over several frames by overlapping the similar areas between frames. This overlap creates an effective static frame to conduct novelty detection as if the domain was static.

#### 2.2.8 Optical flow

Optical flow in a video stream is a particular type of analysis that assigns a vector of motion to a local region in the video stream [56] [81]. Optical flow works by tracing pixel illumination changes through a scene, and assigning a vector to the apparent motion between the points that are tracked over time. The ordered sequence of frames enables the calculation of image velocities, or object displacement over the sequence of frames. The basis of the works assume that the brightness of a point in the frame is constant:

$$\frac{dE}{dt} = 0 \tag{2.24}$$

With the chain rule for differentiation [55]:

$$\frac{\delta E}{\delta x}\frac{dx}{dt} + \frac{\delta E}{\delta y}\frac{dy}{dt} + \frac{\delta E}{\delta t} = 0$$
(2.25)

By letting the differential of x and y with respect to t equal u and v respectively a linear equation is obtained:

$$E_x u + E_y v + E_t = 0 (2.26)$$

This forms the basis of optical flow with the magnitude of the movement in the direction of brightness change is:

$$M = -\frac{E_t}{\sqrt{E_x^2 + E_y^2}} \tag{2.27}$$

Horn, [55], continues to explain additional measures such as smoothness by minimising the square of the magnitude of the gradient of the optical flow. Horn also explains a second smoothness measure can be obtained through the sum of the squares of the Laplacians in each of the x and y components. This technique is useful because it does not categorise pixels in the image as foreground or background, it assigns a vector of motion to it, therefore making no assumptions about which pixels are background or foreground. Thus, objects that may be of interest but are static within the video stream are not considered uninteresting, just that they have a different vector of motion to other objects. The vector of motion is applied to all pixels in the video stream, and in the general case, contiguous pixels with the same or similar vector of motion, that are in spatial proximity (high density), can be considered the same object. An extension of this technique uses stereoscopic video streams to provide 3D disparity of pixels, enabling the separation of occluded objects [149]. The primary disadvantage of this technique is that it can take 3 to 4 seconds to process a video frame.

Also, it requires a window of several frames to conduct the analysis to provide a coherent output, utilising more system resources and extending processing time. An advantage to this technique is that it does not stitch frames together so the noise and false detections created by the ego-motion approach (described below) are not present in optical flow techniques. Additionally, in Bigun and Granlund [19], there is a suggestion that the human visual system may use techniques similar to optical flow to assign motion patterns to objects. Optical flow is the detection and tracking of brightness pattern changes in the scene. Originally developed by [55] and [81] it has proven to be a powerful method of understanding object movements in a scene. One of the drawbacks of optical flow is the high processing demand, and thus lack of real-time analysis across an entire scene. An improvement to optical flow using a derivative called "TV-L1 dense optical flow" [157] significantly improves the parallelisation capability of optical flow and thus where brute force processing power is available, provides a very good and reliable solution to moving object detection and tracking. In some cases optical flow has been used in conjunction with stereoscopic cameras, and utilising the 3D disparity between camera viewpoints increases the accuracy of detections [149].

#### 2.2.9 Motion Estimation - egomotion

Motion estimation does not suffer from the same limitations as optical flow. The motion estimation concept works by warping the current frame into the perspective of the previous frame and stitching the frames together; the overlapping areas of both images provide a static viewpoint. The initial phase is to detect key points in consecutive frames using an algorithm such as SURF, SIFT, or BRISK. The matching phase comes next, where each key point is matched in the sequence of frames. These matched key points are used to generate a homography matrix which is applied to the current frame, transforming the pixel locations into the coordinate system of the previous frame. This overlapped area can be analysed in a similar manner to the static frame with the objective of simplifying the problem into the original static camera domain. Conducting background subtraction on a series of frames without this correction leads to several novelty detections being part of the background due to the edges of the background objects "appearing" to move relative to the sensor platform (figure 1). The main aspects of this technique can be found in the work of Fischler and Bolles [41]. This technique has some advantages; primarily, that it is faster compared to other techniques; it is real-time in some test scenarios. It also allows background subtraction methods to be used to provide comparable results with that of static video streams. At the current level of maturity there are several fundamental flaws that interfere with the performance, robustness and reliability of this approach. There is a margin of error when warping one frame into the perspective of another. If the homography matrix

is not exact, there will be a variation in the pixel geometry values when it is applied to a frame. This variation will cause pixels in both frames not to line up precisely. This can lead to completely artificial novelty detections being introduced at the boundary of the misaligned pixels. Further, the approach relies on the detection of key points and matching of these key points between two neighbouring frames. Should the key point matches drop below four (minimum required to calculate homography) the system will not be able to warp the two frames and, thus, a frame will have to be discarded. Thirdly, key point detection is carried out over the entire image; should there be key points matched on a moving object within the two frames the image will be warped not just on the background changes but also on the motion of the moving object; adding to the homography distortion and thus the pixel alignment variance of what the true perspective warp should be. Whilst the approach can be run in real-time in certain scenarios, the lengthy processing chain of this approach (feature extraction, key point matching, homography, image warping / stitching and background subtraction) does not lend itself to scaling very well. The key point detection and matching take most of the processing time. A significant increase in image size or density of key points leads to a dramatic reduction in processing speed. This can be a significant disadvantage when trying to conduct additional real-time behavioural analysis on detected objects because the majority of the processing resource is taken up creating the static scene to enable novelty detection.

# 2.3 Research Questions

The background research into computer vision exposes several gaps in the capability of existing algorithms. These gaps can be highlighted through the postulation of research questions:

- The processing time for detecting novelties and objects increases markedly as the resolution of an image increases. How can the detection of objects remain real-time as the resolution of the images increases without the use of brute force computing?
- Can the accuracy of novelty detection be improved without an increase in processing time?
- Each existing technique makes assumptions about what is a detected object and what is considered noise (usually due to detection errors). Can an algorithm be developed such that the assumptions on detection vs noise are removed until a higher level semantic reasoning stage?

• Image segmentation techniques divide a static frame into objects with no appreciation of motion. Background subtraction extract moving objects from a sequence of frames. How can the detection capabilities of image segmentation be combined with the speed and motion retention of background subtraction techniques to achieve a real-time static and moving object detection algorithm?

# 2.4 Hypotheses

Based on the research questions and the background research it is possible to formulate hypotheses on the outcomes.

- 1. By combining the benefits of image segmentation with background subtraction, a solution that is capable of detecting static and moving objects in real-time should be possible.
- 2. Removing assumptions on detections will mean that the algorithms will detect all object transitions in an image. It is therefore reasonable to predict that the algorithm will be able to operate irrespective of the camera motion.
- 3. Once the objects are detected in an image, with the number of features available, it should be possible to type each object based on their features (cluster each object). The type association may not correlate with human differentiation of objects due to the underlying features that are being clustered.
- 4. The algorithms should allow for a feedback mechanism such that a higher semantic reasoning section can adapt or tune a previous layer based on detection and identification objectives.

# 2.5 Research Objectives

This section describes the research life-cycle. There are two main research ethoses that can be considered going forward:

- 1. A wide ranging project that includes many features and core functionalities not developed to full maturity, exhibiting some areas for improvement.
- 2. A mature project with the elements that are included in the project developed thoroughly providing a robust system that works in many scenarios, but not exploiting many techniques.

A wide ranging solution is an attractive prospect given the broad range of methods the approach could yield, however developing several arms to the work concurrently could lead to poor results and lack of robustness in the final product. Developing features progressively to a mature state has the advantage of being more robust when a new functionality is added (should give more reliable results). The mature approach means there will be less features and functionality in the final solution at the conclusion of the research. A major factor in this choice is the potential for realising poor results by opting for the "wide ranging" approach due to the immaturity of each solution. Based on this, the research will follow the mature solution ethos and will add new functionality as each reaches a performance level that is sufficient. As sufficient maturity is reached each new functionality is added to an already solid, working foundation leading to a greater likelihood of good, reliable results in the final solution.

The objectives of the research are informed by a set of constraints from the context of Unmanned Aerial Vehicles (UAVs). Currently the gathered data is sent back to the Ground Station (GS) for analysis, in order to extract important information from the image data [28]. Data traffic of this magnitude is not only costly in terms of bandwidth, it is power intensive and, thus, range limiting for the UAV [128] [38]. From the returned data, some of the analysis is conducted by off-line computation, and some by operators and analysts in real-time. To aid operators, systems such as ARGUS [72] are used to bring many images together into a single large viewpoint image to help identify targets and objects of interest in real-time. As seen in figure 1.2, a large image provides a wide viewpoint of the scene, but it is extremely difficult to spot the small object of interest; the concentration and observation skill demands on the operator are significant. The way the UAV GS works currently, even with a multiple frame analysis technique, there is a large volume of wasted data; only a small percentage of the data returned by the UAV actually contains useful information or important observations.

The UAV constraints require the focus to be on efficient operation, and the environment analysis to be assumption free; the UAV will be operating in unknown environments and assumptions made about the scenario may lead to missed information. The scope of the work will progressively explore novelty detection, object identification, behaviour analysis and tracking, with a focus on the efficiency and assumption free methodology. The objectives, prerequisite requirements and key performance indicators provide dependencies and performance targets that indicate a sufficient level of maturity for a given function, listed in the following subsections.

# 2.5.1 Novelty detection in moving camera environments

#### Detection of stationary (background) objects

In many of the approaches currently used for novelty detection in both static and dynamic sensor platforms, any stationary object that does not dynamically move within the image frame is classed as background by the algorithm. This can lead to missed points of interest, and highlights a key flaw in the background subtraction techniques. This effect is amplified in dynamic sensor platforms when an object is moving precisely at the same velocity as the sensor platform; the object appears to the algorithm as background and is not detected as foreground. Further, in a scenario such as a police chase from the perspective of an on-board car sensor, all the cars at the same relative speed will not be in dynamic movement (or at least very little) relative to the sensor platform; the objects (cars) of interest will often be missed by current approaches.

#### Objective

Reliably detect relatively stationary objects of interest whilst maintaining background discrimination

#### Pre-requisite Requirements (PrR)

Ability to distinguish between a background object and background scenery

#### Key Performance Indicators (KPI)

- 1. Discriminate a stationary object from the background scenery in a simple (plain) environment
- 2. Detect several stationary objects in a simple environment
- 3. Detect a stationary object in a scene with a complex background
- 4. Detect a camouflaged stationary object
- 5. Perform analysis within a 10ms window per 2 MP frame

#### Novelty detection in the video stream without image matching or stitching

An approach to detect novelties on a dynamic sensor platform is motion estimation or ego-motion of the scene and is described in section 2.2.7. Despite the motion estimation technique being one of the fastest currently available, the analysis is marginally real-time for images >1 mega pixel, and video frames larger than this are not real-time (2 mega pixel takes approximately 500ms per frame). This time is mostly taken up by detecting and matching key points between images to enable the warping and stitching of two consecutive frames.

## Objective

Develop a novelty detection approach that avoids warping and stitching images together with an aim to increase robustness and speed of the approaches.

# PrR

Association of consecutive frames without the need to co-locate pixels from both frames

## KPI

- 1. Autonomously detect a single novelty in a simple dynamic scene without stitching images
- 2. Autonomously detect multiple novelties in a simple dynamic scene without stitching images
- 3. Apply a detection method to a more complex scene
- 4. Operate within the performance window of <100ms for a 2 MP frame

# Specific region analysis

The aim of this is to conduct local analysis on a specific region within a frame. The purpose is to reduce the overall processing required when conducting video analysis; if an area of interest is already known, then conducting analysis solely on this region can reduce the total pixels required to process. This approach should also reduce unwanted noise in the analysis that is likely to be introduced when whole frame processing is conducted e.g. leaves rustling in a separate area of the frame. Each segment can be analysed separately for novelties, points of interest, or specific features.

# Objective

Autonomous analysis of local regions of interest within a frame

# PrR

Frame divided into regions of interest (segmentation)

- 1. In a frame with a single object of interest divided into local regions of interest; successfully detect the object of interest
- 2. In a frame with a multiple objects of interest divided into local regions of interest; successfully detect the objects of interest
- 3. Apply to a complex environment scene
- 4. Operate within the performance window of <10ms for a 2 MP frame

# 2.5.2 Object analysis and advanced tracking

When novelty detection is complete clustering techniques can be used to identify the individual objects in the screen. Each object will have certain characteristics or behaviour that can help contribute to the classification of the object.

## Object identification accounting for occlusion

A significant difficulty in object identification is when two objects move behind each other and become occluded.

## Objective

Distinguish objects in an occluded environment **PrR** Mature novelty detection algorithm as defined in section 2.5.1 **KPI** 

- 1. Separate two objects that are occluded in a simple, sparse scene.
- 2. Apply to multiple objects in a simple, sparse scene.
- 3. Distinguish multiple occluded objects in a complex, busy scene
- 4. Maintain analysis performance of <100ms for a 2 MP frame.

#### Analysis of object velocity

One of the objectives of detecting objects and novelties in a scene is to derive their behaviour. Analysis of the velocity of the objects is an important feature to be able to determine behaviour.

#### Objective

Successfully identify the velocity of objects traversing the scene.

#### PrR

Mature novelty detection algorithm as defined in section 2.5.1

- 1. Determine the image / pixel velocity of an object.
- 2. Determine the relative velocities of two or more objects.

- 3. Determine the absolute real world velocity of an object.
- 4. Achieve analysis performance of <10ms for a 2 MP frame.

#### Assessment of object behaviour

The analysis of the behaviour is a variable concept as objects can have eccentric movements within a scene. The purpose of this is to extract features to enable the classification of objects based on their behaviour.

#### Objective

Extract features that define the behaviour of an object within a scene.

#### PrR

Mature velocity model defined in section 2.5.2

Robust classification method available

#### KPI

- 1. Analysis of the behaviour of a single object in a simple scene.
- 2. Analysis of the behaviour of multiple objects in a simple scene.
- 3. Classify the objects based on extracted behavioural features with a minimum of 80% classification accuracy. This value arrived at from what can be expected from the ground truth of human observation (see table 5.1)
- 4. Analysis and classification of object behaviour to be within the performance envelope of <20ms per 2 MP frame.

#### Auto object classification utilising rich feature set

The previous objectives extract rich features from detected novelties and objects. This feature set can to enable improved autonomous classification of objects that are visually similar, but have distinctly different behavioural patterns.

#### Objective

Autonomously classify objects within a scene in real time utilising the advanced feature sets **PrR** 

# Dich foot

Rich feature sets available in a mature state

- 1. Separate classification of two similar objects that have different behaviours.
- 2. Classification of multiple objects within a scene based on behaviour with a minimum of 80% classification accuracy.
- 3. Achieve classification online, within a performance envelope of <10ms for a 2 MP frame.

#### Classification of objects based on dynamic change in shape or size

Some objects exhibit dynamic changes in size or shape (despite being the same object), either due to activity or change in camera perspective. Detecting this change proves to be challenging, even for the human visual system [120], the difficulty is recognising the object as being the same as a previously seen object despite some dimensional change. There is scope to investigate using the dimensional variance as a separate feature set for behaviour, and classify based on object shape / size variance.

#### Objective

Autonomously classify objects within a scene based on features derived from object change.

#### PrR

Mature novelty detection technique as defined in section 2.5.1

- 1. Re-classify a single object in a simple scene as the same object after changing its physical dimensions.
- 2. Re-classification of the object in a complex scene
- 3. Conduct the analysis <10ms for a 2 MP frame.

# Chapter 3

# **Methodology and Initial Approach**

# 3.1 Methodology

In order to address the research questions and hypotheses proposed in 2, the approach will initially explore existing research and the limitations on the capability. Because the work is focussed on video streams, the research that focuses on analysing video streams will be used. Despite reviewing the work in 2, this exploration will underpin why the limitations of these techniques exist; operation in moving camera scenarios or why only moving objects are detected. Each technique will be applied to a series of videos, and the results of the detections analysed. The analysis is both objective and subjective - the objective results are the number of objects detected. Subjectivity comes in when determining what a detection is; does it represent an object or is it a representation of noise. Measures of accuracy against processing speed will be made such that an appreciation of an algorithms real-time capability can be made. The plan of the research, once this assessment is made, is to draw parallels with the way human eyes work. This is because human eyes work in real-time and are excellent at detecting and discriminating between static and moving objects. By drawing parallels, the adaptation or development of a new novel approach to object detection should be possible. The new approach that is developed will be compared and contrasted with a wide ranging set of existing methods which operate in single frame analysis or video stream analysis. The reason for comparing the both single frame analysis and video stream analysis methods is the detection capability is generally better in a single image detection method where as the video stream analysis maintains a temporal (and therefore) motion component. The research aim, as stated in the hypotheses, is to achieve similar or better performance in terms of single frame detection whilst maintaining the characteristics of a temporal video stream in order to establish object motion. The results will be analysed against a somewhat subjective outcome. Each test image or video sequence will have a ground truth established

by a human (how many objects can the human detect). The number of detected objects by the algorithm compared to the ground truth will provide a measure of the performance of the algorithm in terms of detection. In addition to this, the real-time performance of the algorithms will be measured by calculating frame rate. For a single image this is the time taken to process a single frame. The results from this testing will be collated together to provide an overall assessment of how well the developed approaches work compared with the existing approaches.

Given the constraints and objectives described in chapter 1, the simplest place to start working with a method is background subtraction because of its well established methodology of detecting object pixels in a static camera scenario. In chapter 2, KDE, GMM and RDE were introduced. The calculation of exponential functions is computationally expensive, more powerful machines are able to mask this expense, but in low power boards it can be a problem. Recursive Density Estimation does not use a Gaussian kernel, or any exponential in its calculations which therefore gives it a computational advantage and may help with meeting our computational efficiency constraints.

# **3.2** Experiments with Recursive Density Estimation

The concept, originally introduced by Angelov [5], is a data driven approach based on a Cauchy kernel to find the relative density of data points within some data space, in a recursive, and on-line manner. The output of the technique is the density of the current sample relative to all the samples that have come before. It uses a statistically not empirically derived threshold which is designed to exclude noise. The result outputs are the most eccentric pixels in the video stream. The threshold is an assumption that some of the pixel density data is noisy or invalid - typically anything outside 3-sigma [116]. One of the cornerstones of this research is to reduce the assumptions made by novelty detection algorithms so that decisions on discarding information can be made by the semantic reasoning component. The first experiment explores removing the threshold, with the purpose being to address the assumptions made by this algorithm.

# **3.3 RDE Greyscale**

Removing the threshold reveals pixels that have a density (detected) but are artificially hidden when the density threshold is in place. A side effect of this is that any pixels of no interest or noisy, which have some movement within the scene, will also become visible as detections. The results of the greyscale output is compared with a number of scenes. The

use of multiple scenes enables the comparison between the thresholded and non-thresholded RDE in environments of varying complexity.

#### **The Video Sequences**

#### Simple rotating rectangles

This video sequence is a simple, artificial sequence of two counter rotating rectangles inside each other. It has been selected because it is a simple sequence of multiple moving objects moving differently to one another, and the objects only move in one plane of motion (in this case rotational). The sequence is named "TwoRectangle.avi" on the accompanying data device.



Fig. 3.1 Simple rotating rectangles

#### Vehicle accident scene

This video sequence is a real world scene of a car accident. It has been selected because there are a limited number of moving items in the scene, such that the complexity is maintained at a low level. Also, the aftermath of the impacts yield minor moving bits that may be considered as noise with the thresholded method. The sequence is named "TrafficCam.wmv" on the accompanying data device.



Fig. 3.2 Vehicle accident scene

#### **Busy Walkway**

This video sequence is a busy scene of people moving in multiple directions on a walkway. It has been selected as it increases the complexity of motion in the scene. There are also some smaller movements in the scene such as a person opening a car boot and cordon tape blowing in the wind. The smaller movements may be considered as noise with the thresholded method, and the complexity of the scene may effect the non-thresholded method. The sequence is named "768x520.avi" on the accompanying data device.



Fig. 3.3 Busy people scene

#### **Z-axis Perspective Occlusion**

This video sequence is a scene of a path in the background with people on it, and a car on a road passing in front of the path. It has been selected to test both methods in z-axis occlusion scenarios (objects passing in front of each other). Occlusion scenario testing is important because it is desirable to maintain novelty detections of objects after the occluding object has passed. The sequence is named "SOvid.mp4" on the accompanying data device.



Fig. 3.4 Z-axis perspective occlusion

# **3.3.1** Results of Experiments with RDE and Greyscale

The results shown here are from applying RDE, and the non-thresholded RDE greyscale to each of the video sequences from above.



Fig. 3.5 A comparison of RDE and Greyscale applied to rotating rectangles









(b) Greyscale





Fig. 3.7 A comparison of RDE and Greyscale applied to a busy walkway

path, see figure 3.4



Fig. 3.8 A comparison of RDE and Greyscale results before and after an occlusion event. The red circle indicates the detection of the person with a white jersey walking down the

# **3.3.2** Exploring the Results of RDE and Greyscale

In figure 3.5, the RDE detection of the two rotating rectangles misses some of the edges, where as the greyscale method defines all of the rectangle edges. The missed edges in the RDE experiment is because the visible detections are showing the density change (change in colour) of only that which is above the 3-sigma threshold. Any smaller density changes that occur will be below 3-sigma, and thus not shown as a detection. As an object of different colour to a pixel passes through the pixel location, the density of colour of the pixel changes. After the object has passed, the colour of the pixel returns to its original background colour. The colour density thus gradually returns to near its original value (the colour change from the passing object has less and less effect as more samples of the background arrive). If another object of differing colour passes the pixel, this will cause another colour density change will be less immediate and may not change sufficiently to break the 3-sigma threshold again because the density is already different to when it

started. Despite another object passing the pixel, the detection has been lost in the averaging effect of the recursive algorithm. This effect is visible on the rectangles of figure 3.5. The edge parts that are missing, are pixels that are being passed by other pixels of the black rectangle (or white in the case of the centre one) as it rotates. The density does not change sufficiently to break the 3-sigma threshold and show as a detection. The contrails surrounding the greyscale experiment show the effect of the lingering density averages as pixels create an initial detection and then gradually average back to their original value. The dark to light grey pattern shows this; the darkest part is the leading edge of the rotational movement (the black edges of the rectangle are moving into white space), and the light grey indicates where the rectangle was when it first started moving.

The historical trails are clearer in the next set of images. In figure 3.6. The greyscale shows the historical path of the lorry that is hitting the car. The RDE image only shows the pixels of objects that are moving at that moment. The other pixels, are averaging back to their original density values, and are not breaking the 3-sigma threshold of density change. By removing the threshold, the decay of densities is visible (figure 3.6b). As a result, the lorry and car vehicles are clearer for longer and the passing car in the bottom left can be seen more clearly.

In the busy people scenario 3.7 the RDE result shows all or part of the moving people and the car boot opening in the top right. The moving people suffer from the same problem of density decay and thus are not clearly defined in some cases (their whole bodies do not break the 3-sigma threshold). There are pixels that are also considered noise in the RDE result. By removing the threshold, the noise turns out to be a part of a moving cordon tape in the background of the scene. The greyscale in a busy people scene, figure 3.7, can cause undesirable effects as well. The people are defined clearly, but the trails leave grey patches around the image, with no obvious pattern or trail to a particular object or person. This is because many of the trails from the people moving in the scene overlap where more than one person has crossed a point. Whilst the trails are useful in less congested scenarios (such as figure 3.6), in this scenario the trails introduce a significant amount of noise.

This noise is also apparent in the occlusion scenario, figure 3.8. Because the camera that took this video sequence was not perfectly still, the slight vibrations show detections of static objects such as the window frames because of the relative movement between frames. In the RDE result, the majority of these extra detections are removed by the the 3-sigma threshold. The greyscale also has a negative effect on the occlusion scenario (before and after images

shown). In the RDE case the detection of the person walking down the path, whilst small, remains consistent before and after the car goes passed. In the greyscale case, the detection of the person before the occlusion event is slightly stronger than with RDE. However, after the vehicle goes passed, the greyscale trail left by the vehicle overlaps with the detection of the person, thus diminishing the definition of the person detection after the occlusion event.

#### **3.3.3** Discussion of the RDE and Greyscale methods

In some cases the application of a threshold has assisted with removal of genuine noise, and has cleared up some detections; figures 3.8, 3.7. In contrast, there are places where the threshold does not detect enough of a moving object, or assumes noise where there is an object moving; figures 3.5, 3.2. In these scenarios greyscale was useful to define better detections and illustrate the historical path of object motion. The conclusion is that the removal of the threshold helps with the base detection of objects in a scene by not assuming that detections are noise, however the trails of historical motion interfere too much in busy or occlusion scenes. The trails interfere because it is a historical representation of all the density samples of a pixel since the algorithm started to run. In another background subtraction technique, KDE (see chapter 2), a window of samples is used and this is adapted based on the speed of the motion in the scene - too large a window in a fast moving scene can lead to detection overlaps. As the problem with greyscale is that the trails overlap in busy or occluded scenarios, a windowed approach to this will give the good effects of greyscale without the problem of overlapping object trails.

# **3.4 Windowed Density Estimation**

The historical density is caused by the continuous recursive nature of the RDE algorithm, it retains an ever diminishing weight of previous samples. In some scenarios, the additional information of the history has been demonstrated to be of some use, and as such the aim is not to get rid of them completely. This windowed estimation approach applies an modification to the recursive update of the mean and scalar product equations. For reference, the recursive update equations from Chapter 2 have been repeated in (3.1) and (3.2) [5].

$$\mu_t = \frac{t-1}{t}\mu_{t-1} + \frac{1}{t}x_t \quad \mu_1 = x_1 \tag{3.1}$$

$$\Sigma_t = \frac{t-1}{t} \Sigma_{t-1} + \frac{1}{t} ||x_t||^2 \quad \Sigma_1 = ||x_1||^2 \quad (3.2)$$

where t is the number of samples,  $\mu$  is a vector mean, x is a pixel vector and  $\Sigma$  is the scalar-product.

To update the mean on a sliding window basis, the mean must be taken for the last *n* samples, where *n* is the window size. The historical mean is represented by  $\mu_{t-1}$ , the sample from *n* frames prior is  $x_{t-n}$  and the current sample is  $x_t$  such that:

$$\mu_t = \mu_{t-1} + x_t - x_{t-n} \ \mu_1 = x_1 \tag{3.3}$$

 $\mu_{t-1}$  represents the mean of *n* prior samples, therefore scaling is required such that the new sample does not weight the mean towards the new sample:

$$\mu_t = \mu_{t-1} + \frac{x_t - x_{t-n}}{n} \quad \mu_1 = x_1 \tag{3.4}$$

Similarly applied to the scalar product recursive update equation:

$$X_t = X_{t-1} + ||x_t||^2 - ||x_{t-n}||^2$$
(3.5)

and scaling with respect to *n*:

$$X_t = X_{t-1} + \frac{||x_t||^2 - ||x_{t-n}||^2}{n}$$
(3.6)

The experiments conducted with the sliding Windowed Density Estimation (WiDE) use a window size of two and a window size of five. The minimum selection possible is two, because there must be at least two frames to obtain a comparison. The detections from a two frame comparison is expected to yield the leading edge of the detections only with the trail indicating the position of the moving object in the previous frame. A window size of three or four is not expected to show enough detail of the trail to be compared with a window size of two. A larger window size than five is expected to be closer to the original greyscale representation, causing some trail overlap in the more complex scenes. Thus a window size of five is selected for the second experiment.

#### **3.4.1** Results of Experiments with WIDE

The results shown here are from applying WiDE to each of the video sequences from above, with a window size of 2.



Fig. 3.10 Windowed density estimation applied to the busy walkway.



(a) Window Size 2

(b) Window Size 5

Fig. 3.11 Windowed density estimation applied to the road traffic accident scene.



Fig. 3.12 Windowed density estimation applied to the occlusion scenario. The images show before and after the occlusion

#### **3.4.2** Analysing the WIDE Experiments

The application of the WiDE technique to the rotating rectangle sequence, figure 3.9 shows that a window size of two suffers from the same missing edges. The central rotating rectangle is barely visible. With the window size set at five, the outline of the outer rectangle is complete, and has some historical trails. The internal rectangle still has gaps in the perimeter. At the fulcrum of the rotation, the pixels of the rectangle do not move, or move very slightly sometimes not a whole pixel every frame. With a two frame analysis window, there is no motion detected near to the fulcrums because of this lack of motion over two frames and therefore a density change at these points is not detected. With a window size of five, there is sufficient motion over the five frames such that the pixels forming the outer rectangle move sufficiently to have a density change. The central rectangle gaps means there is not sufficient motion of this rectangle over a five frame window to show density changes near the fulcrums of rotation. The results from the window size of two are similar to the result of thresholded RDE for the outer rectangle. The thresholded method detected more of the central rectangle perimeter. The window size of five wide has improved detections from both the thresholded and window size of two, completing the external boundary of the rectangle with some history and mostly detecting the internal rectangle. The greyscale method performs better by completing the perimeter of both rectangles. The greyscale method has an additional trail apparent around the perimeter which does not impart any additional information because of the trail overlap (it is noise).

WIDE with a window size of two has a similar result to the RDE experiment in the accident scenario, figure 3.11. The immediate motion of the vehicles is detected, but any parts of the vehicles that have stopped moving are no longer detected. If there is no motion of a pixel within two frames the density of the pixel will remain at zero (unchanged) over two frames. At the window size of five, the outline of the vehicles becomes clearer and some motion history of the lorry and the car in the bottom left is shown with the trails. The greyscale method has a longer history of motion, and the definition of each vehicle is clearer without windowing the density output. Because this scenario is a quiet scene with not much overlap in motion, there is no issue with greyscale historical trails overlapping.

In the walkway scene with busy people, figure 3.10, the window size of two completely removes the greyscale trails seen in figure 3.7. The outline of each moving person is detected and the car boot opening in the top right is partially detected. The partial detection is because not all parts are moving over a two frame period. The cordon tape moving in the wind is not detected at all. There is a missed detection, but it is not a partial detection which appears as

noise as with the thresholded RDE approach. The window size of five successfully detects the cordon movement without it appearing as noise, along with the people and car boot movements being detected. The additional information of motion history is detected as trails behind the people moving. The window size of five means the trails are short enough so they do not overlap with other people as with the greyscale method, figure 3.7b.

The windowed approach does not detect small moving objects as successfully in the occlusion scenario, figure 3.12. With a window size of two, the car is detected but the person walking down the path does not have sufficient movement between pixels to be detected over two frames. The window size of two does however attenuate the noise of the background caused by the camera shake. The window size of five frames also does not detect the motion of the person before the occlusion event of the car as there is insufficient motion over five frames for the detection (a combination of the object being small, and lack of motion over five frames). After the car has gone through, the persons movement is sufficient such that a faint detection is achieved. In this set of experiments the window size was increased again so that a detection can be made with the windowed approach before the arrival of the car. Through empirical experimentation, a window size of ten was found to be the minimum required to detect the person before the car arrives. With this size of window, after the car occlusion, the person detection is mixed in with the trails associated with the car movement. Thresholded RDE and greyscale both achieve better detection resolution of the person and car than any of the windowed methods.

#### **3.4.3** Appraising the WIDE Method

The results from the WIDE experimentation are mixed. In the busy scenario of moving people, the detection performance of the greyscale method was achieved at a window size of 5, without the noise created from the continuous historical trails creating noise when they overlapped; historical movement can be extracted from the shorter trails. The poor performance of WIDE with the occlusion scenario can be explained with the geometry of the movements in the scene. The person is coming towards the camera at a slow rate, with little lateral movement. From the perspective of the camera, the only motion detected will be when the person moves closer to the camera in the z-axis. The motion detected is the person getting larger with respect to the camera perspective. Over a small window size such as two or five, the enlargement through perspective is not sufficient to appear as motion on pixels (the enlargement may be in subpixel scale), and therefore density detections are not made. The threshold and greyscale methods work because the pixel density is taken over a large number of frames, and the enlargement motion over a number of frames is sufficient to
show a density change over the pixels. The geometry problem in the z-axis is a well known problem that occurs in computer vision [122]. WIDE discriminates noise, but at the cost of missing other desirable detections. Each of the four techniques that have been analysed over the last two sections have positives in some scenarios and drawbacks in others. The most consistent is the greyscale technique, but it introduced noise into the walkway scenario, as well as interfering with the person in the occlusion scenario. For a static camera environment, the use of each technique is scenario specific.

The experiments in sections 3.3 and 3.4 are applicable to the static camera environment, and there are many varying background subtraction techniques available for this application some of which are discussed in chapter 2. The occlusion scenario, figures 3.4, 3.8, 3.12, had noise introduced by the camera shake (the platform was moving, such that the background appears as a detection with the background subtraction techniques). The objective to use detection algorithms on UAV will also encounter the movement problem, as the aircraft is not still and will be traversing across terrain. This leads to a more complex scenario to consider; detecting objects in a moving camera. Background subtraction will detect the background as moving well as objects in the foreground. The next set of experiments explores the technique of motion estimation, which is a technique of warping consecutive frames into the same perspective and stitching them together so that background subtraction can be performed on the static overlapping areas of the frames.

## **3.5** Motion Estimation Accuracy

As described in Chapter 2 motion estimation warps two or more consecutive frames into the same perspective, and stitches them together to create a static overlapping region. Autonomous Real-Time Object Detection (ARTOD) is a method that extends the motion estimation to include background subtraction [126], applied to the static region. This approach uses the Recursive Density Estimation (RDE) background subtraction method [5]. Motion estimation introduces artificial noise at the stitching boundary; at the 3-sigma threshold, RDE excludes most of the artificial noise from its detections. The drawback of having a threshold (as seen in 3.3) is that pixels that make up an object of interest can be suppressed, reducing the clarity of the object detections. RDE increases the overall frame processing time by a margin of between 20 - 50 ms per frame, depending on the processing cores and image dimensions used. The motion estimation components use the majority of the processing time, typically each component takes betweeen 50 - 100ms per frame. The objective of the experiments in this section is to explore the accuracy and computational performance of each component, and to identify any trade-offs. The artificial noise introduced by motion estimation is due to the discrete nature of pixels and the double-precision result usually associated with geometric calculations [1]. The sub-pixel localisation of warping of the frames causes mismatches in alignment, introducing the noise. Further artificial errors are introduced by the alignment function not being precise enough - even without the sub-pixel problem, pixel localisation can be inaccurate. This noise can be minimised by optimising the alignment function, which is done by optimising key point localisation and matching. Adding in extra optimisation methods increases the processing resource requirements; increasing processing time. The processing speed can be optimised by minimising the complexity or the number of key point localisation and matching processes. To explore the optimisation characteristics of motion estimation, experimentation was conducted on the following components of motion estimation:

- Key point Detection
- Key point Matching
- Key point Filtering
- Homography (affine transform)

Both the RANSAC method for selecting keypoints for the homography matrix, and the homography generation are based on sound mathematical principles [36] [41]. The components also contribute the least in terms of processing time consumed. At this point, it was decided not to experiment with modifying these components, as the above list of components have a greater impact on both processing time and matrix accuracy.

#### **Key Point Detection**

The accuracy of the homography matrix (the matrix used to warp a frame into the perspective of a reference frame), is determined by the accuracy and validity of the key points that are detected and the matching algorithm used to associate key points between two frames. In the work by Sadeghi-Tehran and Angelov [126], the SIFT algorithm from [78] is used as the keypoint detector. This experimentation will explore the use of different octave values with SIFT ([126] does not specify the octaves used for the experimentation). Additionally, different keypoint recognition algorithms will be explored. The four keypoint methods experimented with here are SIFT [78], SURF [14], BRISK [74], and ORB [2]. These key point methods are used because the development is chronologically progressive, and the code to run these algorithms is readily available in OpenCV (the Application Platform Interface

(API) that is used by this project). The OpenCV implementation of each should provide a consistent code base so the code implementation doesn't artificially affect the running time.

#### **Key Point Matching**

The speed of the matching process is slower if the video stream represent an environment that produces a large number of key points. Utilising a brute force matching approach leads to a fast matching result but may require greater filtering post-matching. The brute force matcher takes a sample from the first frame and it is matched with all other samples in second set using some distance calculation (typically Euclidean), the closest match (shortest distance measure) is returned. A number of different feature comparators could be used to conduct keypoint matching [73, 77, 89, 2], however the Functional Link Artificial Neural Network (FLANN) is readily available in the software API being used and will form a consistent code set to the experiment. The objective here is to experiment with the effect of matching algorithms on speed and accuracy of the final stitching process, not appraise the matching algorithms themselves. The FLANN based method [91], uses a feature classifier to match the keypoints and is a single layer feed forward neural network.

#### **Key Point Filtering**

The output from the matching process can produce tens or hundreds of matches, some of which are outlier matches; they are not close in distance, but are matched because they are the closest match from the available keypoints. This experiment looks at the effect of keypoint match filtering, using two different types of match filter and how they effect the end result accuracy. The filtering process removes matches that are outliers based on some distance measure. One filter is a simple match filter that uses a distance threshold such that the distance measure of a match must be below this threshold. Anything outside the threshold is rejected and the match is discarded. This can be useful in scenarios where the motion of the scene between frames is known or is constrained such that a threshold does not exclude valid matches. A second filter, when the motion is unknown, calculates cross matches of keypoints. The matches from frame 1 to 2 are calculated, and then the matches from frame 2 to 1 are calculated. Only the keypoint matches that agree in both cases are retained as keypoints, with the remainder discarded. If there are only a few keypoint detections in a scene, this method can lead to over-filtering such that there are not enough keypoints remaining to construct the homography matrix.

#### Homography

The sub-pixel alignment problem introduces artificial noise. This experiment considers interpolation as a method to optimise the alignment to minimise the artificial noise created by the stitching process. Simple nearest value interpolation is used in the ARTOD proposal, which is insufficient to avoid misalignments of pixels which result in false detections around the edges of objects in video sequences moving in more than one plane. Utilising bi-cubic interpolation [64] (because the warped frame does not align to discrete pixel values) during the stitching of frames could improve the alignment in sequences with more than one plane of motion. This method has been selected because it is efficient on modern hardware that could improve accuracy whilst being unlikely to introduce a large performance penalty.

#### **The Video Sequences**

#### Helicopter chase

This is a video sequence where the camera is moving in one plane of motion, translational, following a motorbike and a car. This sequence has been selected because translational motion is less prone to noise on stitching and there is a limited complexity to the moving objects (two objects, in mostly a straight line).



Fig. 3.13 Helicopter chase scene with a motorbike and car

#### **Street panning**

This is a video sequence of a fixed camera moving in a rotational axis about the y-axis. This sequence has been selected because stitching of rotational motion is more prone to artificial errors than translational movement (because a 3-D component must be taken into account). The beginning of the sequence has no moving objects, so misalignments and noise can be seen clearer. Later in the sequence there are three moving cars which tests the noise performance when motion is introduced.



Fig. 3.14 Panning motion of a street scene

## **3.6 Results of Motion Estimation Experiments**

In this section single frames of the video sequences are shown with the various stages of motion estimation applied. Each stage has different methods applied and the results displayed illustrate the differential between each method.

## 3.6.1 Keypoint detection



Fig. 3.15 Different key point detection algorithms used for motion estimation on the Helicopter and Panning videos



(c) BRISK, Z-axis

(d) ORB, Z-axis

Fig. 3.16 Different key point detection algorithms used for motion estimation on the Z-axis video

## 3.6.2 Key point matching



Fig. 3.17 Key point matching algorithms used for motion estimation on the Helicopter and Panning videos

## 3.6.3 Key point filtering



Fig. 3.18 Filtering algorithms used for motion estimation on the Helicopter and Panning videos

## 3.6.4 Homography Interpolation



(a) Linear Interpolation, BF, No filter, SURF, He- (b) Cubic Interpolation, BF, No filter, SURF, Helilicopter





(c) Linear Interpolation, BF, No filter, SURF, Pan- (d) Cubic Interpolation, BF, No filter, SURF, Panning ning



(e) Linear Interpolation, BF, No filter, SURF, Ex- (f) Cubic Interpolation, BF, No filter, SURF, Extended panning tended panning

Fig. 3.19 Interpolation algorithms used for motion estimation on the Helicopter and Panning videos

## **3.7** Analysing Motion Estimation Experiments

#### 3.7.1 Keypoint detection

The results shown in figures 3.15 and 3.16 are of different key point detection algorithms applied across three separate scenes. The objective of this experimentation was to explore the effectiveness of motion estimation, and the variation of results from the algorithms. Each frame was selected based on the difficulties motion estimation had at eliminating noise. In each video sequence there are several frames where the image stitching is good enough so that no extraneous noise is found. However, in a comparison scenario, it was desirable to have frames where all permutations of the algorithm exhibit noise to an extent. The helicopter frame provides for some disparity between the methods. Both SIFT and BRISK exhibit the noise of the road markings on the right clearer than SURF and ORB. BRISK eliminates the road markings to the left completely, as does ORB. Whilst the SURF algorithm detects both verge lines, it has a fainter detection than all others for this line (a fainter detection means a smaller shift in alignment). ORB is the most noise free in this scenario. The panning scenario, which should not have any detections (no moving objects) is fairly consistent across all four techniques, each exhibiting small detections of background. SIFT and BRISK both detect some line noise in the bottom right of this frame. ORB has small detections in this region, and the SURF algorithm is the least noisy as there is no noise detected in the bottom right. The z-axis motion is the most noisy result, with each algorithm producing many detections. This is highlighting a weakness in the motion estimation approach; it is susceptible to noise and cannot detect moving objects when the camera motion is in scale space. Notice how the cars in the Z-axis frame do not register as even noise. In this scenario, both SURF and ORB are slightly better at discriminating background noise. In terms of performance, both BRISK and ORB perform the keypoint detection faster than SIFT or SURF, with SIFT being the slowest and ORB being the quickest. Despite SIFT being the slowest, SURF detects the most keypoints, followed by BRISK and then ORB. In terms of image size scaling, despite being the second fastest, BRISK scales the worst with the times increasing by order of magnitudes between video sequences. ORB maintains a log-linear scalability with image size.

#### 3.7.2 Key point matching

Figure 3.17 shows the comparison of matching algorithms used in this experiment. For consistency, the SURF algorithm is used as a baseline key point detector. The algorithm is used because the output provides a large number of keypoints that lends itself to filtering the matches in the next process. If there are too few matches, a homography matrix cannot be

generated. In pure matching, the FLANN algorithm provides the same number of matches as the brute force algorithm. It is consistent that with the same matches, the resultant output videos are the same. The computational performance of the brute force method is faster in both scenarios than FLANN, and scales better - only increasing by 11ms for a more complex frame compared to 17ms increase by FLANN.

#### 3.7.3 Key point filtering

Figure 3.18 shows a comparison of filtering algorithms applied to the keypoint matches. The objective is to remove keypoint matches that are inaccurate matches and will skew the homography generation. SURF and the brute force matcher are used in these examples. The KNN and radius filters are both cross check filters, and the outlier filter is a simple distance measure filter. In the Helicopter video the radius filter has slightly better noise reduction than the KNN filter. The verge line on the right is less pronounced in KNN filtering compared with the radius filtering. In the panning scenario, there is little difference between both cross check filters. The outlier filter removes noise even further on the Helicopter video, with much reduced noise on the left compared with KNN or radius cross check filtering. The result suggests that the frames were warped together slightly differently because the verge line on the right is more pronounced towards the bottom of the frame compared with a higher up detection of the verge. The panning sequence is barely affected by the filtering. The computational performance of both cross check filters is comparable with each other with the radius filter being 4ms slower than KNN in the helicopter video. The filters are almost identical in terms of performance in the panning sequence. The outlier filter adds very little performance overhead to the matching process, and removes similar numbers of matches compared with KNN and radius matching.

#### **3.7.4** Homography Interpolation

The interpolation results are shown in figure 3.19. In the simple translational movement of the helicopter video, the centroid interpolation errors are difficult to spot because of the single direction of scene movement, the cubic performance is fractionally better than the linear interpolation. In the video scene with the camera panning from a fixed spot, two tests were conducted. One with no moving objects and the second with an extreme panning motion. The linear interpolation appears to perform fractionally better in the helicopter scene than the cubic interpolation with less distortions, but in the panning scene the cubic interpolation performs the best. It is difficult to draw conclusions directly from these results and they do

not show whether the interpolation method makes a significant impact or not. A possible reason for this is the homography matrix generated is not perfectly accurate in the first place.

#### **3.7.5** Conclusions on the Motion Estimation Approach

With all the accuracy improvements in-place, the processing time of the approach increases by approximately 250ms for each frame. Over the experiments shown here, and others with different combinations of components, it is apparent that the motion estimation approach is reaching the limit of manipulation with the trade-off being between alignment accuracy and speed. A full table of the results for motion estimation experiments can be seen in Appendix A. The optimal solution is heavily dependent on the application of the technique. In simple scenarios, where there is only transitional movement, the filters and interpolation used to improve robustness not necessarily due to the limited affine transform required. In very stable scenarios the key point detection method changed to the faster but less accurate BRISK algorithm with little or no effect on the result accuracy providing a computational speed benefit. However, scenarios where there is significant movement beyond transitional (such as camera jitter, rotation, and panning), a reduced filtering set and faster but less accurate key point detection can lead to noisy results. In this case the improved accuracy methods should be used, at the cost of processing speed. However, the accuracy improvements seen over the experiments is quite small, despite a large offset in computational performance. In these experiments, the keypoint detection algorithm has been shown to be the largest factor in accuracy or speed, with the filtering, matching and interpolation contributing minor improvements.

## 3.8 Hierarchical Framework

The methods looked at so far use a hierarchical framework model such as motion estimation [126]. In computer vision, a traditional analysis approach is to use the hierarchical model; there is the initial detection of pixels of interest at the low-level, extending up to the high level semantic reasoning for behavioural or tracking analysis (which uses features derived from lower levels). Figure 3.20 shows an example hierarchical model that can be typically seen in computer vision systems [15] [47] [129] [59].



Fig. 3.20 Computer Vision hierarchical model

The hierarchical model is also common amongst other computer science applications. Examples of uses in computer science; the networking OSI model 3.21, operating system kernels 3.22, and computer game design 3.23.



Fig. 3.21 OSI network model



Fig. 3.22 Typical operating system kernel hierarchy



Fig. 3.23 Example hierarchy for game design

#### **3.8.1** What are the limitations?

Despite being a successful model in these applications, the hierarchical model has limitations. Each component interacts with the components directly above or below them, they have no connection to any other components. The lack of interaction between other components means that components at different levels of the hierarchy have no influence over the data input into other components. If there is a noise component in the low-level detection phase, either the noise will be present in the input data to the next component, or there will have been a noise filtering process. The next component may also introduce noise of its own, and possibly accentuate existing noise in the data passed to it. At the top level of semantic reasoning components may have incorrect information based on the accumulation of errors and noise. A problem with using a hierarchical analysis models is that the scope gets smaller and is more constraining. Higher level analysis can only use the data provided by the previous levels, with no influence on the data that is gathered at levels below. If a component discovers information that may be useful to the components below, there is no method to pass this information to these components. The outcome of this is that the number of objects, behaviours or tracks can only be equal, or less than the number of data samples detected at the lowest level.

#### **3.8.2** Developing the framework

The computer vision framework is as important as the algorithms used within it. It is the framework that decides what organises the types of operations, and how each operation or task might interact at each stage. A framework that is not susceptible to the limitations and problems of hierarchical models could lead to better overall performance of computer vision

systems. Software development is a good example of a field in computer science that uses other types of frameworks; the V model where the top components of each side of the model have an interaction as well as with the layers below them [92], seen in figure 3.24; "Agile Development" [32] which is a cyclic approach to the problem as seen in figure 3.25.



Fig. 3.24 V-Model for software development



Fig. 3.25 AGILE model for software development

Using these models to influence the development of a new framework has led to the development of the cyclic framework for computer vision 3.26



Fig. 3.26 A cyclic framework proposed for computer vision

This model allows "higher level" analysis to feedback information to "lower level" components to help optimise the information gathering. This could be providing localisation information on objects of interest meaning the detection phase focuses on only a particular region of the image. This has the potential to lead to improved performance, and lends itself to self-learning techniques and evolving analysis (such as autonomous parameter selection).

## **3.9 Understanding the Limitations**

Before a method can be used to solve the problems set out in this project there is a requirement to understand the limitations of the current approaches. This section summarises limitations of the techniques that have been looked at (both in review and experimentally). Each of the techniques analyse each pixel several times to obtain an assessment of its novelty. The novelty is assigned based on pixels that change significantly in the scene (usually moving objects) in some feature space (e.g. gradient, colour, brightness). Having to analyse a pixel several times to obtain a measure of its novelty repeatedly uses processing resources, slowing the efficiency of the method. The performance of the algorithms is also proportional to the frame size as a result. In the case of optical flow, the gradient analysis must process each pixel's value a minimum of 8 times for a 3x3 analysis grid (usually it is larger) and therefore only achieves frame rates of around 2 or 3 seconds per frame. Motion estimation must analyse the scene for key points, filter the key points and match them between frames. The homography matrix is then applied to every pixel in the scene, and in the case of ARTOD [126] further analysis is conducted on each pixel to determine its novelty using RDE. This is analysing the frame a minimum of 5 times (depending on how many key points were found and in the case of SURF, the hessian value used). A recent improvement [8] uses optical flow on the key points to determine their importance and has reduced the number of times the frame needs to be analysed to determine novelty pixels. However, given the optical flow processing time (despite being on a reduced number of points), the frame rates for

processing are still only around 3 frames per second. Both motion estimation and optical flow techniques make the assumption of a novelty being a moving or dynamically changing object. Important objects within a scene may well be stationary for an extended period of time or the object of interest may be a static object. To enable a system to operate fully in an unknown environment (such as that a UAV operates in), there needs to be very little assumption about the environment being analysed. The assumption that an object must be dynamic to be a novelty can open the system up to exploitation, and can leave out important detections. This effect also manifests in moving camera environments when an object is moving precisely at the same velocity as the camera; the object appears to the algorithm as background and is not detected as foreground. The methods that are capable of detecting static objects are the edge detection and image segmentation methods. These have the limitation of only being spatial analysis, and do not calculate any motion perception. Coupled with the limitations highlighted with the hierarchical framework, there is scope to develop a technique that encapsulates the limitations described here.

## 3.10 Next Steps

A new idea based on the pixel vectors in optical flow is to initially use greyscale RDE on a dynamic video stream, which will produce edge detections on all objects within the frame. As explained in section 3.3 the greyscale RDE leaves a trail behind based on the previous detections. If the gradient (optical flow) from light to dark of the trails is obtained it is possible to assign a vector of motion to the pixels, where the darkest line of pixels is the leading edge of the object in the frame. By assigning a vector of motion to each pixel in the frame it will be possible to determine the typical vector of motion seen in the video stream. All pixels conforming to this typical vector can either be removed (so only dynamic objects are seen) or allocated a particular shade or property to isolate these pixels. Any pixels that are eccentric to the typical vector can be considered part of a foreground or dynamic object and each variation of motion vectors can be assigned a separate colour or property to differentiate them. The next chapter explores the concept further.

At this stage a precis of the objectives of the work can be made:

- Develop a novelty detection approach that avoids warping and stitching images together with an aim to increase robustness and speed of the approaches.
- Association of consecutive frames without the need to co-locate pixels from both frames

- Reliably detect relatively stationary objects of interest whilst maintaining background discrimination
- Ability to distinguish between a background object and background scenery

There is scope to explore a new concept to achieve the objectives set out above. There are some already existing approaches that contribute to the development of a new computer vision algorithm.

# Chapter 4

# A New Way of Thinking - Edge Flow and WISE

## 4.1 Human Vision - Models of Biederman and Wertheim

Humans can easily identify objects e.g. simply looking out of the window, or glancing around the office there are several objects; some inert, some in motion, and others partially occluded or unclear. The focus of this project is not how the biological system achieves the interpretations, rather what are the factors that allow visual differentiation of objects. What features define the coats on a peg are not part of the peg? Biederman [18] posed a similar problem and proposed a framework to describe the object detection process. In this framework the first suggested activity is edge extraction by reaction to colour and luminance changes in surfaces and textures; defining the boundaries of the textures. Biederman goes on to describe further analysis of the detection based on the properties of the edges. The framework diagram for this analysis is shown in figure 4.16. This is a simplified model and Wertheim [153] with commentary from Büttner and Straube [22] goes further and proposes a model that describes how we deal with motion perception in conjunction with object detection, and subsequently knowledge of object motion relative to us. Wertheim proposes that the processes of motion detection and object detection are separate parallel processes. In the work, the action of motion detection and perception appears to be reference surface based and independent of what the object is detected to be. Specifically with motion perception [80] postulate models that describe the way in which the motion extraction occurs. The ideas of Lu and Sperling [80] are not too dissimilar to the concepts of optical flow (first order brightness differentiation). This understanding of human vision has been used to inform the construction of a new approach which uses the edge contrasts within the optical field

of a camera to define particular texture patches. Optical flow has been applied in a parallel paradigm to provide motion perception and understanding.

## 4.2 Edge Flow - A new concept in novelty detection

Looking out of a window people can see a myriad of various objects in the scene ranging from trees, to fields, to buildings and cars. An analyst looking at a video stream with a mix of moving and static objects would find it difficult to focus solely on an important object, static or otherwise. The method described here is a new data driven method to novelty detection and object definition in dynamic video streams that detects boundaries of **all** object textures, static or moving, and extracts detail about the internal structure of each texture patch. The thinking behind the proposed approach is not to make assumptions about the content of the video stream, and to model the human vision system proposed by Biederman [18] in an effort to emulate the model in computer vision. The approach also maintains the philosophy of model separation proposed by Wertheim [153] by conducting the detection and motion perception separately. The method described here, dubbed Edge Flow, detects texture patches in a scene and then uses optical flow to give motion perception to each texture patch. The WIDE method is used to detect texture patch edges, Sobel filtering is used to extract gradient of the edges, contiguous edge linking is used to define objects and optical flow is used to define the motion of the texture patches.

Figure 4.1 illustrates the components of the proposed method:



Fig. 4.1 Edge flow components, and in green, the output at each component stage



Fig. 4.2 Greyscale RDE applied to moving camera to define object texture edges



Fig. 4.3 WIDE applied to moving camera to define object texture edges

#### Windowed Density Estimation

The component utilises WIDE, described in chapter 3 however it is not used for the purposes of background subtraction. In WIDE, as with greyscale, density detections are seen across the entire scene, not just when the density reaches a threshold. The density of a pixel changes over time depending on the movement of colour textures over it. Each texture in the scene is referred to as a texture patch. The leading edge of the texture patches that are moving will yield a sharp density change, as with foreground moving objects in background subtraction. Similarly, the historical trails are seen in 3.4 are also present with reducing density change the more historical the texture patch movement is. The greyscale method, section 3.3, showed densities allowed to build up over an infinite number of frames. When the camera is moving as well as objects in the scene, this leads to the entire scene averaging out to a small range of densities that represent the colour patterns of the image (effectively making the output frames greyscale replicas of the input frames, figure 4.2). Using WIDE in this scenario is useful because historical contribution to the density is only over *n* frames (where *n* is the window size of WIDE). The effect of using WIDE with moving cameras is that each edge that is moving relative to the camera platform will be detected (static or otherwise) with a leading edge and a short historical trail. All the edges in the scene will be detected; the exception is texture patches that are in synchronous movement with the camera, there is no pixel density change relative to the camera.

Figure 4.3 shows the effect of applying WIDE to a moving camera scenario.



Fig. 4.4 X and Y Sobel filters



Fig. 4.5 Left, gradient values assigned for an x-plane Sobel filter. Right, gradient values assigned based on a y-plane Sobel filter

#### **Gradient Estimator**

A method to isolate the magnitudes of the gradients of each edge detected is required to characterise the edge profiles in order to provide internal texture information. To establish the gradients of each edge, a Sobel operator [135] is applied to the resultant edges in both the x and y planes. There are a number of mathematical operators and solutions available to calculate the gradient of the edges, including modern variants [141]. The Sobel operator has been selected because of its low computational complexity, and because it does not make assumptions or distribution predictions about the gradient profile. Figure 4.4 shows the Sobel operator used. The size of the Sobel operator (illustrated is 3x3) determines the local area over which the gradient is calculated. A small Sobel operator is more sensitive to large local changes in pixel value. A large Sobel operator (say, 7x7), on the other hand, smooths the gradient profile of large local changes. The size of operator is a parameter that allows the method to be tuned to application specific scenarios.

The Sobel filters are applied in both the x and y axis. If there is a positive gradient, this indicates a gradient going from low to high, and similarly a negative value indicates a gradient going from high to low. In the case of this application, because non-edges of object textures (background) are defined as white and edges of object detections are a grey value between the white and the black, positive gradients indicate transition from a leading edge of an object texture and negative gradient values indicate transition to a leading edge of an object texture.



Fig. 4.6 Result of a Sobel filter in the y-plane applied to RDE image. The gradient values have been coloured for a better visual effect – blue indicates large gradient changes, whilst green is a smaller gradient value. Yellow indicates areas of no edge gradients (and therefore no edges – the texture of an object).

The Sobel filters, in both cases, are applied from top-left to bottom right. Thus the first encountered edge of a texture patch will always be negative, and the final edge of the texture patch will be positive. The absolute value of the Sobel filter output indicates the magnitude of the gradient at the pixel. A large value (positive or negative) indicates a large gradient. The approach is novel through combining the first two components, and the processing speed surpasses any available algorithm for novelty detection in a moving camera scene. The processing of a 640x480 video frame is done at a real-time speed of 40 frames per second (25ms per frame) on an Intel i7 2.6 Ghz processor.

#### **Contiguous Edge Linking**

At this stage there are two outputs from the initial frame input – the x-plane and y-plane Sobel filter gradients for each of the edges in the scene. To extract the texture patches from the information derived, a linking method, dubbed Contiguous Edge Linking is used. Each contiguous pixel on an edge defined by a gradient is tested for neighbouring similarity. If a neighbouring edge pixel is within a specified tolerance, it is linked to the current pixel. The approach is made faster by avoiding processing every pixel within the frame; only the pixels that have a gradient assigned to them are considered (the body of a texture patch will not have a gradient – it is not an edge). The procedure for this edge linking method is as follows:

- 1. Working from the top left of each image (x-plane and y-plane Sobel images) find the first pixel with a non-zero gradient value.
- 2. Create a region of influence of 1 pixel either side of the candidate pixel. The region is the area the edge linking considers contiguous for new candidate pixels. The Sobel images are stacked so the area of influence also applies to the other Sobel image in a 3-D plane. This results in the combination of both images into one set of linked edges on the original frame.

- 3. Assess the surrounding pixels within the area of influence of the pixel (except for image edges) for pixels (or linked edges where this pixel overlaps an existing pixel area of influence) within the same gradient range. The gradient range is a pre-defined parameter on initialization (currently not autonomously defined).
  - (a) If this pixel is within the gradient range of an edge pixel, and it is within its area of influence, add to the edge.
  - (b) Otherwise, if not the first pixel being assessed, create a new edge, and if a neighbouring pixel is within the gradient range, and is contiguous (within the area of influence), add to the newly created edge.
  - (c) If there are no neighbouring pixels within its gradient range, do not remove the edge, and leave as a singleton. It is either a very small texture patch (a mole hill in a field for example), or it will be absorbed by another edge as its area of influence expands.
- 4. Adjust the area of influence of the edges that were affected by 3. See Figure 6 for an illustration.
  - (a) The minimum x and y influence are the lowest pixel coordinates that is a member of the edge, minus one in both directions.
  - (b) The maximum x and y influence are the highest pixel coordinates that is a member of the edge, plus one in both directions.
  - (c) Update the mean gradient value of the edge this will be used for assessing the proximity of new pixels to the gradient value of each edge.
- 5. Flag any pixels that were assigned to a edge to avoid re-linking these pixels.
- 6. Find next pixel with a non-zero gradient and repeat steps 3 to 5 until all non-zero gradient pixels have been assigned from both images. It is not important which Sobel image is processed first (as there will be crossovers from the images anyway).



Fig. 4.7 Pixels linked in an edge, and the area of influence of the edge.

#### **Optical Flow**

Optical flow applies motion perception to the texture patches detected in the scene. Optical flow is chosen because the similarities of the method to the human motion perception model proposed by Lu and Sperling [80]. The output of optical flow will indicate the magnitude and direction of motion of texture patches in the scene. The optical flow algorithm is not applied to the entire image because this is computationally resource heavy and defeats the purpose of the Edge Flow approach. Five pixels are selected within each cluster, one from the centre and four from the extremities of the edges that make up the texture patch. The five points are chosen because this is the minimum required to represent the 8 degrees of freedom of movement in a three dimensional plane. Optical flow [81] is applied to these individual points which yields a flow vector for each of the individual points within a texture patch. By calculating the movement vector of each texture patch, we can determine the similarity of movement between texture patches. If the motion vectors are similar, and the texture patches overlap in x-y proximity in both frames (two frames required for optical flow), the texture patches could be considered to belong to the same physical object. The optical flow output also allows separation of texture patches that are in spatial proximity, if they have different vectors of motion. A car moving along the road and a crack in the road is a nice example; the car texture patch will have a different motion vector to the crack in the road despite being in spatial proximity when the car goes over the crack, so despite visually occluding the crack, they can be considered as separate objects and will not merge as the same object (unless the crack is completely occluded).



Fig. 4.8 (a) Contiguous clustering of gradients from Sobel stage (b) Result of optical flow applied to clusters



Fig. 4.9 Two separate scenarios for texture patches with optical flow calculated for each of the 5 pixels within them.

The optical flow method is used both for motion information on texture patches, and to define which contiguous texture patches form candidate physical objects. Optical flow, as mentioned in chapter 2, can be used independently to detect and identify objects and their movement. However without large computational resources, it does not operate in real time. This usage of optical flow is made tractable compared to the sole use of it in video processing by limiting the number of pixels used in the optical flow calculation (five pixels of a texture patch), usually resulting in one or two thousand points in total. This is a significant reduction to the number of pixels in an entire image. A 640x480 image contains over 300,000 pixels, and optical flow would be applied to all of these pixels when directly to the source image.

| Algorithm:             | KDE  | RDE   | Dual TVL1 OF | ME (ARTOD) | Edge Flow | WISE  |
|------------------------|------|-------|--------------|------------|-----------|-------|
| Static Object          | N    | N     | N            | N          | Ν         | Y     |
| Static Viewpoint       |      |       |              |            |           |       |
| Static Object          | N    | N     | N            | Ν          | Y         | Y     |
| Dynamic Viewpoint      |      |       |              |            |           |       |
| Dynamic Object         | Y    | Y     | Y            | Y          | Y         | Y     |
| Static Viewpoint       |      |       |              |            |           |       |
| Dynamic Object         | N    | N     | Y            | Y          | Y         | Y     |
| Dynamic Viewpoint      |      |       |              |            |           |       |
| FPS 640 x 360          | 3.00 | 98.20 | 0.17         | 4.60       | 58.00     | 32.90 |
| Multi Object Detection | Y    | Y     | Y            | Y          | Y         | Y     |
| Static / Dynamic       | N    | N     | N            | N          | Y         | Y     |
| object discrimination  |      |       |              |            |           |       |

Table 4.1 Characteristics of some sample novelty detection algorithms

## 4.3 Experimental Results for Edge Flow

Table 4.1 shows the characteristics of a selection of algorithms used in novelty detection in video streams. Both KDE [37] and RDE [5] are only suitable for static camera scenarios; these are included to show the capability differences between applications designed for static and dynamic camera scenarios. Optical flow [55][81] and Motion Estimation [145] are well known examples of algorithms that detect moving objects in a dynamic camera environment. One of the latest Optical Flow algorithms is the Duality Based Optical Flow TVL1 algorithm proposed in Zach et al [157] and will be used as a comparison with the proposed approach for Optical Flow. Motion estimation was proposed in [151] and has been improved on several occasions to enable reliable novelty detection [151][8][126]. The motion estimation comparison uses the ARTOD version [126]. KDE and RDE are not compared in the video sequences, because they are unsuitable for dynamic camera scenarios. A selection of videos were used to demonstrate performance across different scenario types and resolutions. The practical implementation of Edge Flow has parameters that can be changed to yield the best results for a particular scenario i.e. its sensitivity to minor objects can be adjusted. The parameters that can be adjusted are:

• A threshold range for a gradient to be considered an edge; a minor gradient change can be a texture oscillation and not a true edge. This parameter adjusts the sensitivity of object detection based on gradient magnitude.

- A threshold range defining the gradient differential an adjacent pixel needs before being considered a separate object. This parameter adjusts the sensitivity of the algorithm to occluded objects.
- A window size for the windowed background subtraction section (RDE)

Each parameter was pre-selected for consistency with the other algorithms. The parameters were selected based on optimum performance for the videos used [148, 96, 118].

- Threshold range for object detection sensitivity: +/- 20.
- Threshold range for occlusion sensitivity: +/- 20.
- WiDE frame window size: 3.

The testing of detections in video streams can be subjective; what constitutes an object in a video stream? The subjectivity is exacerbated with the proposed approach because it is designed to detect static objects as well as moving objects. With algorithms that detect moving objects false positives are detections that do not correspond to a moving object, and false negatives are missed detections of moving objects. In order to minimise the subjectivity and obtain repeatable, quantifiable results, constraints on what constitutes a detection are applied to the experiments.

- True positive novelty detections, which are larger than 10 pixels width and 10 pixels in height. These values are chosen because a size smaller than this with either motion estimation or optical flow appears as noise, not a clear object. A filter is applied to Edge Flow to show objects greater than this size. Edge flow has the capability to show more than this (minor objects such as disturbed earth from planted IEDs for example)
- False positives are defined as detections that do not represent an object; detections on areas with no distinct contrast with the background. Edge flow has the capability to handle occluded objects, and as a result shows detections within detections. These are not considered as false positives unless it is clear the nested detection does not represent an object or an internal structure of the object
- False negative detections are defined by objects that have not been detected that meet the criteria of a true positive detections (including static objects).

The full videos used in this work can be observed on You-tube [148, 96, 118].

## 4.3.1 Video 1 - Helicopter chase with car and motorbike

The first test video is the helicopter and motorbike video which has been used consistently throughout experiments in this work. It provides for a reliable motion pattern with known objects present.



Fig. 4.10 Motion estimation result from scene (left) Edge flow result from scene (right). Red boxes are included on edge flow to highlight detections more clearly. 640 x 360 pixels



Fig. 4.11 A comparison of Edge Flow with Motion Estimation and Optical Flow on the Helicopter video

The scene used in this experiment is shown in figure 4.10.

| Algorithm         | Total Detections | TP   | FP | FN |
|-------------------|------------------|------|----|----|
| Motion Estimation | 2                | 2    | 0  | 13 |
| DF TVL1 OF        | 3                | 2    | 1  | 13 |
| Edge Flow         | 11               | 9    | 2  | 6  |
| WISE              | 1069             | 1069 | 0  | 3  |

Table 4.2 Detection performance for video 1

Figure 4.10 shows the motion estimation result which identifies two objects, the motorbike and car. Edge flow detects other objects as well; the static white objects on the right of the road, the road defects, road markings and the road verge. Table 4.2 shows the empirical results from each algorithm. The detection with Edge Flow are limited because of the filtering condition applied to the detections, below 10 pixels width or 10 pixels in height, and with the filtering removed it detects a much wider range of objects although the number of false positives increase. One of the limitations of the technique is the requirement to specify the parameters to achieve the desired level of detection detail.

#### 4.3.2 Video 2 – Dashboard mounted

The frame from this video sequence is shown in figure 4.12.



Fig. 4.12 Second test video, dashboard mounted camera



(a) Edge Flow



(b) Motion Estimation



(c) Optical Flow

Fig. 4.13 A comparison of Edge Flow with Motion Estimation and Optical Flow on the dashboard video

| Algorithm         | Total Detections | TP   | FP | FN |
|-------------------|------------------|------|----|----|
| Motion Estimation | 29               | 3    | 26 | 37 |
| DF TVL1 OF        | 11               | 6    | 5  | 34 |
| Edge Flow         | 52               | 37   | 15 | 3  |
| WISE              | 1932             | 1932 | 0  | 40 |

Table 4.3 Detection performance for video 2

The significantly more complicated scene yields a higher detection rate for all algorithms. Table 4.3 shows the detection outcomes of each algorithm. One of the limitations of the clustering component is that it can include multiple objects in the same cluster, as in this case with the white van and the white road markings. Otherwise several static and moving objects have been distinguished separately.

### 4.3.3 Video 3 – Drone launch, multiple motion vectors

The video is a high density complex scene of static objects with the occasional small moving object (cars / vans), shown in Figure 4.14. The results of the detections are shown in Table 4.4. The algorithm is capable of discriminating between groups of houses, other landmarks and excluding the general background (the forest in this case). The poor performance by both the optical flow and motion estimation techniques is due to the image warping or the brightness pattern tracking not being able to keep up with the rate of change of the camera perspective, another important limitation of existing methods.



Fig. 4.14 Video 3 scene - drone flying with multiple axis of motion



(a) Edge Flow





(c) Optical Flow

Fig. 4.15 A comparison of Edge Flow with Motion Estimation and Optical Flow on the UAV video  $% \mathcal{A} = \mathcal{A} + \mathcal{A}$ 

| Algorithm         | Total Detections | TP   | FP | FN  |
|-------------------|------------------|------|----|-----|
| Motion Estimation | 15               | 2    | 13 | 125 |
| DF TVL1 OF        | 5                | 4    | 1  | 123 |
| Edge Flow         | 141              | 119  | 22 | 8   |
| WISE              | 6932             | 6932 | 0  | 71  |

| Table 4.4 Detection | nerformance | for | video | 3 |
|---------------------|-------------|-----|-------|---|
| Table 4.4 Delection | periormance | 101 | viueo | 3 |

Table 4.5 illustrates the processing performance comparisons between each algorithm. The results were obtained by processing each video sequence for 500 frames and recording the minimum, maximum and average frame rate.

| Algorithm   | FPS | Dual Flow TVL1 OF | ME (ARTOD) | Edge Flow | WISE  |
|-------------|-----|-------------------|------------|-----------|-------|
| 640 x 360   | Min | 0.16              | 2.84       | 19.59     | 24.97 |
|             | Max | 0.17              | 8.48       | 82.77     | 43.85 |
|             | Avg | 0.17              | 4.58       | 58.01     | 32.99 |
| 848 x 480   | Min | 0.14              | 1.00       | 7.31      | 11.03 |
|             | Max | 0.16              | 5.38       | 39.44     | 21.69 |
|             | Avg | 0.15              | 2.60       | 24.35     | 18.69 |
| 1920 x 1080 | Min | 0.04              | 0.22       | 0.66      | 0.80  |
|             | Max | 0.04              | 1.09       | 6.25      | 5.10  |
|             | Avg | 0.04              | 0.35       | 1.85      | 3.81  |

Table 4.5 Performance analysis of each algorithm across each test video stream

Using this new approach, the detection of texture patches can be carried out accurately and in real-time. In this work we demonstrate the capabilities of the algorithm on video scenarios, and show that object textures in the scene are reliably detected. We are able to show clearly the capability of the algorithm to be robust in occlusion scenarios; working in real-time, and defining clear objects where other techniques attribute such small detections to noise. The method set out in this work is novel in its approach to addressing / approaching the moving camera problem in detecting all objects in a scene. All existing techniques assume that foreground objects of interest must be moving or changing in some way and can only detect such objects. This method enables both moving and static (unchanging) objects to be detected. This is a significant step forward, paving the way for detections of small minor objects as well as the large moving parts of a scene. Also, the method does not make any prior assumptions about the scene, and is wholly data driven. The latter statement is critical; what other techniques dismiss as noise or unimportant, this technique extracts and highlights it as an object texture. This enables retention of information which would otherwise be lost at the detection stage, which can be filtered and analysed as required. Key objects or people can easily disappear into the background if the detection algorithm dismisses small or "noise-like" novelties early on. This can later be filtered out based on the object parameters the analyst is looking for (type, size, motion, texture etc. of the detected object).

The direction and relative speed can be associated with the edge gradients – a sharper gradient indicates a higher relative speed, with the sharper gradient being the leading edge of the object texture. This form of clustering is robust and combined with the first two components is resistant to occlusion. Should an texture patch be occluded partially by another texture patch, they will remain separate clusters unless the object is completely occluded. Further, once the occluding object has moved on, the cluster will return to being a separate texture patch.

Currently, the approach is parametric, requiring a magnitude range to be defined. This magnitude defines the similarity of candidate pixel gradients required to be linked together as an edge. In principle it is possible to autonomously define a gradient magnitude range but this will be left for the future. Through this method each similar and proximate edge are clustered together, resulting in a contiguous object being defined for each different texture (object with edges); an object is defined as an area of similar texture, not as an isolated object per se. For example, a car may be defined as 3 separate texture patches in edge flow – the bonnet which is of a particular texture, the roof which is a different texture, and the boot which is the same texture as the bonnet but separated by the roof. The main innovations of this approach are; A motion vector can be extracted from each texture patch within a scene in real-time. Objects which are moving in different directions but are spatially proximal can be clearly separated despite any occlusion in the scene. The motion vector is a representation of the relative velocity of an object compared to the camera platform; later, given the platform velocity, this can be used to determine the absolute velocity of all the objects within a scene. With the inclusion of optical flow in the method, the average processing time remains around 20 frames per second (50ms per frame) for a 640x480 video stream. As with the clustering technique the processing time changes slightly dependent on how many objects are detected. The following advantages are introduced by Edge Flow:

- 1. It works well with partially occluded texture patches and keeps them separate until completely occluded,
- 2. It rediscovers the texture patches post-occlusion,
- 3. Static and moving texture patches are clearly separable, and
- 4. The processing speed combined with the first two components of Edge Flow remains real time (between 25 40 fps depending on the number of texture patches discovered in a scene).

This is significantly faster than other methods, and still permits some head room for additional processing. An example of the occlusion discrimination capabilities can be seen in figure

4.11; if a car drives over a crack in the road (both of which have been clustered and identified) the clusters will remain entirely separate unless the car completely occludes the road crack. Once the crack appears the other side of the car it is immediately re-discovered and clustered as a separate object texture.

## 4.4 Discussion of the Edge Flow Algorithm

A new approach to video analysis has been demonstrated in this chapter. It has the following main components:

- 1. WiDE
- 2. Gradient Estimator using Sobel Filters
- 3. Contiguous Clustering

The computational performance of the proposed Edge Flow has been demonstrated to be in an order of magnitude faster than motion estimation and optical flow. The capability of the algorithm to detect static objects as well as those that are moving are also demonstrated here. A limitation of the approach is the parameters applied to Edge flow, without correct selection, in complex scenarios, is that it can yield a cluttered environment; unlike optical flow and motion estimation which are excellent at isolating the moving objects in a scene. Edge flow can detect both static and moving objects and discriminate between occluded objects. One limitation suffered by all algorithms is that objects which have motion in synchronisation with the camera platform make detections somewhat more difficult - there is no change between frames to allow detection. The limitations of scene clutter (caused by "over-detection" of objects) can be overcome through parameter selection according to the type of object to be detected. Further work will focus on optimising this method for specific applications, and introducing an improved contiguous clustering method.

## 4.5 Within Image Spatial Edge Flow (WISE)

Humans can easily identify objects for example simply looking out the window, or glancing around the office there are several objects; some inert, some in motion, and others partially occluded or unclear. As explained in section 4.1 Biederman [18] posed a similar problem and proposed a framework to describe the object detection process. In this framework the first suggested activity is edge extraction by reaction to changes in colour and textures; defining the boundaries of the textures. Biederman then goes on to describe further analysis of the
detection based on the properties of the edges. The framework diagram for this analysis is shown in figure 4.16. Edge Flow applied this but used a temporal component for motion which aligns with the Biederman model but not that of Wertheim (because in his model, he proposed separating temporal and spatial information, applying them in separate processes). This new method explores the application of Edge Flow concepts in the spatial domain, and restoring temporal information (to allow for motion perception), after texture patches have been detected.



Fig. 4.16 Conceptual framework for human object detection, [18]

Working with this information, we can construct an artificial equivalent that focuses on extracting the edge contrasts within the optical field of a camera and determines particular textures. Separately we can apply motion perception and understanding in an independent parallel paradigm to the object detection and identification. Some methodologies take a different approach and consider detection as a computational modelling perspective.

#### **4.5.1** Traditional object detection and image segmentation

There are many widely used approaches for object detection in camera produced images, with broad contextual differences. Background subtraction, [111], works where the camera

is stationary and the aim is to detect the moving objects in the scene. The aim in motion estimation [145] and optical flow [55] is similar to the background subtraction but compensating for any camera motion [126]. In each of the detection schemes, assumptions are made about the content of a scene [48] or apply contextual restrictions on the scene based on holistic viewpoints [54] or probabilistic modelling [144]. Each technique targets the detection of moving objects. The constraints applied when making assumptions about a scene enables a measure of success for many of these techniques. However, in a busy surveillance scene the number and different types of objects can be broad and unpredictable. This can result in false detections and misrepresentations of objects using these approaches. Image segmentation [143] is used to divide and classify detections within the visual scenes without applying the assumption of motion; in fact, there is no motion preservation in image segmentation techniques. Image segmentation is applied to a single image and can be carried out sequentially over a sequence of frames to achieve detection in a video stream. A number of research papers look into improving each of these methods, by the accuracy of the detections or decreasing computational load to achieve the same results on hardware with a lower computational capability [68], [24], [71], [26], [150].

#### 4.5.2 Edge Detectors

Edge detection [23] is used as an object boundary detector and can be used in isolation in both static and moving environments or to reinforce segmentation [140, 101]. The edge detector described by Canny [23] uses a Gaussian kernel convolved with an input signal to determine the location of an edge. In the case of a one-dimensional signal it finds the peaks, troughs and changes in the signal. There are many different types of edges, and the method can distinguish between "square" edges, "roof" edges and other profiles. In the two dimensional plane, i.e. an image, the kernel also has to be convolved in two dimensions. The resultant values are then assessed by using a Sobel operator to fully understand the gradient directions and magnitudes of the convolution. The complexity of the calculation is in the kernel convolution, with the Sobel operator being a relatively low cost action. One of the limitations of using these kinds of edge detectors is that little is suggested about the internal structure of any objects. The detector does not impart which edge is part of which object or whether it is part of any object at all. Therefore, to consider finding objects or texture patches in a scene, some additional edge or object boundary information is important.

The proposed new approach does not make assumptions about the video stream, and concentrates on emulating what the human vision system does to separate objects whilst maintaining the separation described by Wertheim [153]. The primary function of the method described here, which we have dubbed Edge Flow, is edge or boundary detection between

textures, and imparting greater detail about the internal structure of each texture. Whilst the Canny solution detects edges, it does not extract further gradient information, merely whether it is an edge or not, and of what type (ramp, roof etc.). Edge Flow extracts the magnitude of the change in contrast and the rate of change (gradient) of this magnitude which provides a much more detailed information set about the texture patch. The ultimate goal of the Edge Flow method is to replicate the framework set out by Biederman [18] in an artificial environment.

# 4.6 Methodology

To solve the identified limitations of Edge Flow and to follow the Wertheim visual perception model, the framework is modified by changing from the time domain to the spatial domain. This method, which has been dubbed Within-Image Spatial Edge Flow (WISE), is more capable than the Edge Flow technique [98] because of the ability to detect static objects when the camera platform is also static. Throughout the work presented, there have been many references to existing techniques that assume foreground objects of interest must be moving or changing in some way and can only detect such objects. The improvements of the Edge Flow method do the opposite; at the detection phase all object edges are important until a semantic process deems otherwise. The analysis differs in that it uses a single frame as opposed to a sequence of frames as with the time domain analysis. That effectively means that every object in the scene is stationary. The motion of objects is restored at a later stage by applying optical flow; referring back to the logical steps of human vision, where the detection of objects and relative motion are thought to be treated separately [152]. As with the Edge Flow method, density estimation [7] is used in this method. The modification is a change to how the density estimation is applied to the image. The changes are outlined in the updated flow chart for WISE, see figure 4.17.



Fig. 4.17 WISE components, and in green, the output at each component stage

### 4.6.1 Windowed Density Estimation applied in the spatial domain

The application of the WiDE technique in the XY plane is detecting changes in pixel colour density in the X and Y spatial directions yielding two density estimation images. The WiDE equations remain the same as in the Edge Flow method (section 4.2, [98]). However, the window no longer represents how many frames the density is observed over, it is how many pixels the density is observed over.

### 4.6.2 Gradient Estimator

The gradient estimator is applied to the XY plane images in a similar manner to the Edge Flow method. The X plane density estimation is applied with the Y Sobel operator, and similarly the Y plane density estimation is applied with the X Sobel operator. This is because the X plane density estimation will only detect significant lateral changes from objects orientated between vertical and 45 degrees from vertical. As observed from the previous gradient estimation, it is the Y filter that best represents these transitions. The same principle applies with the Y plane, X Sobel operator application.

#### 4.6.3 Contiguous Edge Linking

WISE uses an updated edge linking method which groups adjacent pixels that are within a set gradient range as before, however, this method does not make the assumption that each texture patch is rectangular. It maintains an irregular area of influence around the contiguous pixels to enable the merging of adjacent edges with the same parameters. The update to the method ensures that edges not part of a texture patch cannot be inadvertently added to an edge due to its rectangular nature; a problem that is present when using the Edge Flow edge linking. Each pixel now has its own single pixel area of influence which is not adjusted in all dimensions each time a new pixel is linked with an edge; the edge shape changes to incorporate the new pixel, without over-extending the area of influence of the existing pixels. Figure 4.18 illustrates how the edge area of influence updates. The edge linking method still has the two parameters associated with it and they operate in exactly the same manner as the Edge Flow contiguous edge linking.



Fig. 4.18 An illustration on how the edge influence (and thus membership) propagates across the image

Computationally, to enable the irregular edge shape, a modification to the linking procedure is also required. The pixels adjacent to the current pixel are not immediately added to the edge; a flag is set instead indicated to which edge this pixel should be added. The pixel is only added to the edge when it is the current pixel being analysed - consequently its area of influence is also then assessed. The proposed methodology can be summarized in the following steps:

- 1. Working from the top left of each image (x-plane and y-plane Sobel images) find the first pixel with a gradient value outside the acceptable gradient exclusion range.
- 2. If the pixel does not have an edge flag set, create a new edge starting at this pixel; otherwise link the pixel to the edge indicated by the flag. In this case, update the edge mean gradient.
- 3. Assess the area of influence; 1 pixel either side of the pixel. Important: The area of influence extends into both Sobel images this enables the merging of objects from the x and y shifted images into a single frame. If a neighbouring pixel is within the density adjacency range of the edge and has no flag set; set the flag of the pixel to be a member of this edge. If a flag is already set, add the edge number of the current pixel and the edge number of the neighbouring pixel to the merge list. Later, this list is used to establish which edges overlap each other for the merger purposes.
- 4. Repeat steps 2 to 4 until all pixels in both images have been linked.
- 5. Filter the edge merge list to only include single instances of a pairing.
- 6. Merge overlapping edges into a single edge by adding pixels from one edge into the other.
- 7. Calculate the centre point of each edge boundary, this is done by assuming a rectangular formation to simplify the calculation for each texture patch.

At present, the WISE edge linking method lacks full autonomy due to the requirement of setting a gradient similarity parameter to inform the linking process. However, with the deployment of the system in scenarios with different detection objectives it may be preferable to provide the analyst or operator with a manual ability to adjust the gradient parameters on system initialisation. The parameters are not fixed for the life of the system, and can be changed on-line should the objectives of a scenario change.

# 4.7 **Results of Experiments with WISE**

The WISE method was tested against the same experimental scenarios as Edge Flow. The experiments are presented in two sections. Section one tests the core components of the algorithm (edge detection and edge linking) with existing methods (edge detection and image segmentation), and section two focuses on the overall performance compared to the results seen with Edge Flow, Motion Estimation and Optical Flow.

#### 4.7.1 Edge Detection Results



Fig. 4.19 This set of images shows the results of the WISE technique when applied with different window sizes. (a) is with window size 2, (b) is a window size of 3, and (c) is a window size of 4. The Sobel filter has a consistent size of 7x7 for each image



Fig. 4.20 This set of images shows the results from changing the size of Sobel filter from 3x3 (a), 5x5 (b) and 7x7 (c) with the WiDE window size set to 3.

For the edge detection results, a false colour overlay has been used to illustrate the varying gradient magnitudes and directions of the density from the Sobel filter application. In each case, the actual false colour value varies due to the colouring algorithm selecting the distribution of colour based on the maximum and minimum gradient values across the input frame. Where there is little variance the colour scheme appears similar. The purpose of this is to highlight the importance of gradient variance and uniqueness to produce an interpretable dataset. The first set of results is WISE tested on the helicopter video scene. In each of these figures a 7x7 Sobel filter is used, and different levels of windowing across pixels to show the variance of quality as the window size changes. The combined image is created using additive distancing with the X and Y Sobel images such that the negative gradient information is not lost. When a window of 2 pixels is used, the image is poorly defined and some edge components are missed, figure 4.19(a). In figures 4.19(b) and 4.19(c) the window size of WiDE is extended to 3 and 4 respectively. We can see that as the window size is increased each of the detected edges are more defined and pronounced than that of figure 4.19(a). The window size of 4 is such that some of the edges are defined thicker than the edge boundary in the frame however the definition of the fainter lines such as the yellow road

markings are more pronounced with a larger window size. The results suggest that in a scene where the requirement is to detect faint texture patches in a scene, a larger WiDE window size should be used. Conversely, in a scene with small, narrow texture patches, a smaller WiDE window size should be used to avoid the overly large line thickness interfering with the output definition. Adjusting the size of the Sobel filter has a different effect to the change in density estimation window size. The Sobel filter influences the local area of a pixel and its density disparity across the frame. With a larger Sobel filter, there will be a smaller distribution, of higher variance of pixel gradients in the frame, and with a smaller filter there will be a larger distribution of smaller local variance of gradient values. The effect of modifying the Sobel filter size is shown in figures 4.20(a), 4.20(b) and 4.20(c). A consistent window size of 3 pixels is used in each case and the filter sizes are 3x3, 5x5 and 7x7 respectively. The colour scheme, as before, represents the distribution of density values across the input frame. In figure 4.20(a), the gradient values have a sufficiently small distribution so that the colour variance across the scene is similar and does not yield clear differentiation of the output gradients. As the filter size is increased to 5x5, figure 4.20(b), the distribution of gradients and thus separation of the gradient edges is greater and clearer. Extending to 7x7 yields a sharp, crisp display of varying gradients in different areas across the scene, figure 4.20(c). If this is the trend, the question is why not use an infinitely sized Sobel filter to achieve the greatest gradient separation? The drawback with larger and larger Sobel filters is that there would be no consistent edges from which to cluster given the increased global variance that a larger Sobel filter yields. A frame sized Sobel filter, for example, would not only increase the processing requirements, but the locality of the change would also be lost; no longer would a pixel's gradient be a locally based variance. It is therefore important to achieve a balance between the locality of gradients and the distribution of gradients across the scene. In all cases of the spatial domain analysis, the ghosting problem in Edge Flow has been resolved. In these examples we can also see the groundwork of how the approach is able to be robust in occlusion scenarios. In the analysis of the road cracks imagery, note that the gradients or colour change accelerations between the motorbike, car and the road cracks are significantly different, figure 4.20(c). This factor provides an excellent feature differentiation when it comes to clustering, allowing both objects to be distinguished separately.

### 4.7.2 Edge Linking Results



Fig. 4.21 Here is a range of visualisations for the clustering results of WISE. The first (a) is a view of the clustering, using a bounding rectangle to include the pixels that represent and individual texture. The bounding box image is included to highlight the extent of each cluster and reinforce that the clusters are separate distinguishable textures. Both the (b), and (c) images show the actual pixels of a cluster represented with a colour overlay.



Fig. 4.22 Clustering results for WISE applied to the busy road intersection scene, introducing a greater 3D differential for the algorithm to handle. Figure (a) shows the rectangular cluster representation. Figures (b) and (c) show the clusters pixel-wise using a colour overlay. One is just the cluster pixels (b), and the other is the cluster pixels overlayed onto the original image (c)

The clustering results are displayed in two different styles to aid with visualisation. The red rectangular clustering shows the extreme boundaries of each dimension (x and y), and the colour overlay visualisation shows the actual boundaries of the clusters as they are arbitrary shapes. For the colour overlay, false colours are used. Due to the number of clusters formed, the colour values can be similar enough to look as if they are part of the same cluster. The two representations are necessary to illustrate the cluster separation (figures 4.21(a) and 4.22(a) and to show that the actual cluster dimensions are irregular not rectangular (figures 4.21(b), 4.21(c), 4.22(b), and 4.22(c). When clusters are narrow, 2 pixels or less wide, the bounding box method cannot draw the bounding box however the clusters are shown in the overlay images. This is particularly observable with the yellow road markers in figure 4.21. In figure 4.21(a) there is an example of the occlusion separation capability of the algorithm. The road crack is shown to be moving underneath the car, however there are two clusters

formed despite this occlusion; the car cluster and the bounding box representing the road defect cluster.

To produce these results, the full WISE algorithm was operating at 60ms per frame on an Intel Sandy Bridge 2700k processor, using four cores for the density estimation component and a single core for the remainder of the components.

The WISE algorithm is compared with the Canny edge detector, Edge Flow, and two image segmentation techniques, Mean shift and Grab Cut, to explore the difference in performance and fidelity of the work. The reason for the selection of these techniques for comparison is that they do not make any assumptions about the scene, nor do they have any semantic derivation component.

#### 4.7.3 Edge Detection Comparison



Fig. 4.23 Edge detection results for WISE (a), Edge Flow (b) and Canny Edge Detector (c) applied to the helicopter scene



Fig. 4.24 Edge detection results for WISE (a), Edge Flow (b) and Canny Edge Detector (c) applied to the busy road intersection scene, introducing a greater 3D differential for the algorithms to handle

The Canny edge detector, figure 4.23(c), successfully detects the main edges in the helicopter scene and joins up the boundary of the textures. The car and motorbike are distinguishable along with the white side object and the road markings. A drawback however is that all other minor colour variances are detected as edges including differences in grass texture. This yields a cluttered set of detections and masks clear definition of road defects and earth

disturbances on the verge. In contrast, both the WISE and Edge Flow technique create a clearer separation of the textures of the scene. Edge Flow introduces some ghosting of edges, and some edges are wider than the definitions in WISE. The Canny Edge Detector has already made the connection of boundary edges such as the car, motorbike and object on the side of the road whereas WISE and Edge Flow have not made that determination at the edge detection stage. In the more complex scene 4.24(c), the edges of the houses, the lamp post and foreground car are well defined and clearly separable. The difficulty with the Canny edges as well as some of the other objects combining together to form an unclear picture. The performance of WISE in the simple picture is much clearer and more interpretable than the Canny approach and separates static, moving and occluded edges The ghosting effect with Edge Flow is much more apparent in this scene leading to multiple lamp posts being visible in the results. Some of the detections from WISE appear as partial edges at this stage.

#### 4.7.4 Edge Linking (Texture Patches) Comparison



Fig. 4.25 These images show the comparison of Grab Cut (a), Mean Shift (b), and WISE (c) on the helicopter scene



Fig. 4.26 These images show the comparison of Grab Cut (a), Mean Shift (b), and WISE (c) on the helicopter scene

When considering the image segmentation approaches, the grab cut algorithm does not perform well with an entire scene. Both 4.25(a) and 4.26(a) are whole scene selections

103

with grab cut. In the case of the first frame, the road is identified as a separate segment and so is the white object on the side of the road. There is however no clear separation of the car and motorbike from the road. Object separation was only achievable when grab cut is applied to a selected small area of the scene. Similarly, in the second image very few objects are segmented by the algorithm. Only when the selection area is reduced does the grab cut algorithm extract the house and car as separate objects. The processing time of the Grab Cut technique was 2 seconds per whole frame, and reduced to 500ms when smaller areas of the frames were selected. Mean-shift has more success with both of the images 4.25(b) and 4.26(b). The simpler scene is well segmented with the verge, car, bike and white object all separated. The road markings and defects are also segmented well. The image is somewhat over-segmented, detectable by the many internal false colours to each texture patch, suggesting that the mean-shift algorithm is detecting the minor variances in surface texture or luminance and creating smaller internal segments. The more complex scene is segmented well with the houses, car and lamp post easily distinguishable. The light blue area represents an area where the dark side of the house and the hedge row have not been separable and are thus represented by one large segment. Despite excellent segmentation performance, the processing time is an order of magnitude slower than any of the other techniques (>5 seconds using an Intel Sandy Bridge i7 2700k processor). The texture patch segmentation of WISE in the first frame performed better than Grab Cut, and was similar in performance to Mean Shift segmentation. There was less over-segmenting of objects, which makes the scene appear less cluttered. Over segmentation can be avoided by WISE by adjusting the clustering parameters. The complex scene is different with foreground objects segmenting well into textures. The glass part of the car, bodywork, and wheels are segmented into different areas, along with road markings and the house being clearly separate texture patches. Further into the 3-dimensional depth of the scene the texture patches are less clear, however parked cars and buildings are consistently separable. The processing performance of the WISE algorithm was 80ms per frame using an Intel Sandy Bridge i7 2700k processor.

# 4.7.5 Overall performance results





(a) WISE showing texture patch extremes

(b) WISE showing the pixels that make up the texture patch

Fig. 4.27 WISE applied to the helicopter scene.



(a) WISE showing texture patch extremes



(b) WISE showing the pixels that make up the texture patch

Fig. 4.28 WISE applied to the dashboard scene.



(a) WISE showing texture patch extremes



(b) WISE showing the pixels that make up the texture patch

Fig. 4.29 WISE applied to the UAV scene.

#### 4.7.6 Analysis of the WISE Method

The WISE algorithm divides a scene into many more texture patches than the original Edge Flow approach. The results are appended to the Edge Flow tables 4.2, 4.3 and 4.4. WISE operates at a slower frame rate compared to Edge Flow (see table 4.5) and this can be attributed to the number of texture patches WISE is detecting. The computational performance of the method is proportional to the number of texture patches that are detected and defined (edge linked) in the frame, not the resolution of the frame as with many of the other pixel based approaches (e.g. [97], [126], [150]). Typically in a higher resolution image, there will be more texture patches to detect but this is not always the case. This performance correlation means careful management of the number of texture patches detected is required by adjusting the edge linking parameters - making the approach less assumptionfree than desired. As a result the parameters used in WISE can have a large effect on the performance of the algorithm. If the candidate edge gradient parameter is too small, the technique detects every minor texture change in the scene, and each shows as a separate texture patch. The WiDE component of WISE increases linearly with the increase in the number of pixels processed. Empirically (over thousands of frames, with three different resolutions) processing time was found to increase by 79% for every 100% increase in pixels. However WiDE only makes up a small proportion of the processing time required (circa 20%). Experiments with processing time relative to the number of objects in a frame show that on average the algorithm takes 29.8  $\mu$ s per object with a standard deviation of 6  $\mu$ s. The object processing time calculation was conducted over a several hundred frames with three video sequences (the videos used for comparison here). The table for the WISE time performance for each frame in this testing can be found in Appendix B. In the results, the first two frames and the last frame are not counted. This is because on initialisation the processing time for the first two frames is longer, and on completion the final frame also takes a longer processing time. Including these frames in the object processing time comparison would incorrectly bias the results. In the experiments, the candidate edge gradient parameter was set at 5.0. That is gradients have to be within +/-5.0 of the pixel being processed to be linked into an edge. The selection of this parameter was empirically derived through observations in several video sequences. A higher value begins to link clearly separate objects, and a lower value divides the scene into too many small individual textures that do not form large objects, and a large overhead in terms of processing. The Helicopter video, figure 4.27 shows several more smaller detections, and individual objects (such as car or motorbike) are divided into smaller text patches. Two display methods are used for this set of results, the first which is the same as Edge Flow, is done to enable direct comparison with the Edge Flow results. The rectangles do not represent the actual edge boundary, just the min / max of x and y

of each texture patch. The second display shows the actual extent of each texture patch, which is an irregular convex hull of the pixels in the texture patch. The colour scheme is a simple RGB rainbow that cycles through each texture patch that has formed (hence some clusters appearing as the same colour). The results throughout produce tighter results around textures that are different in the scene, and the texture patch linking over occluding objects that happened in Edge Flow does not happen. For example, in figure 4.27(a) the road crack under the motorbike is clustered separately to the motorbike, even though for a period of time the motorbike occludes the crack. In figure 4.28 the white van is no longer clustered with part of the white line as with Edge Flow, it is a separate texture patch. It is in fact several separate texture patches, making up the perimeter of the van and a separate texture patch for the van writing, the van latch handle and the light clusters. In the UAV scene, figure 4.29 the algorithm detects the main scene texture patches such as the paths, the lake, the buildings and town and cars on the road. Where there is a common texture, such as the forest, only major darkness changes are detected as texture patches, due to the parameter selection made for the experiment (insufficient density gradient to form an edge). There is one lake on the edge of the forest that is not detected. Compared with Edge Flow there is a greater number of detections, and more of them are true positives. However, because of the parameter selection, there are also a large number of false positives where a texture patch has a partial edge detected but the entire edge is suppressed by the parameter exclusion.

# 4.8 Discussing the WISE algorithm

The development of the WISE algorithm set out to address issues and drawbacks with current available detection algorithms whilst maintaining a real-time performance capability. In the case of object detection, many of the current approaches detect only moving objects in a video stream whether the camera is moving or not (section 2.2.6) and are not robust in occlusion scenarios, section 3.3. WISE has demonstrated the capability to detect both static and moving objects independent of relative motion and that it is robust in object occlusion scenarios. When compared with edge detection or image segmentation techniques the algorithm's visual fidelity is at least as good as existing techniques. The additional benefit of WISE is that it extracts information about the context of each texture or segmented object by describing the colour boundary properties of each edge. This information could later be used in conjunction with semantic reasoning modules to identify the objects in a scene. The WISE algorithm proposed here has advantages over the algorithms to which it has been compared because the algorithm:

• Detects both static and moving texture patches independent of the motion of the camera

- · Is robust to occlusion
- Reduces in edge clutter in complex scenes
- Produces feature-rich edges that improves texture patch differentiation appropriately for later stage semantic derivation
- Is real-time

The limitation of WISE is in the parameter selection required for texture patch detection and definition. A different parameter selection value produces different results. This parameter selection at the moment is application specific and is an assumption made by this method. Chapter 1 discusses the feedback methodology proposed with the cyclic framework, and the intention is, in future work, to develop this such that the parameters of WISE are automatically selected based on the detection constraints or requirements of semantic reasoning components. At this stage, part of the model proposed by Wertheim [153] has been emulated with WISE but no motion perception has been done. In order to complete the model in [153] motion perception is required.

# **4.9** Motion Perception with WISE

For the most part, optical flow is an intractable real-time component for object detection due to the number of pixels required to analyse. This problem can be reduced if optical flow is only applied to a subset of pixels of an image. In order to get motion perception, the proposal is to use four extreme points and the centre point of each texture patch as pixels for optical flow. The reduction in calculation points allows modern optical flow to be applied in real-time with little overhead to the processing chain. Optical flow was initially proposed by Horn and Schunck [55] and Lucas and Kanade [81]. There are many variants of optical flow, many of which are used on stereo cameras [149] [146]. For this task, an efficient monocular optical flow method is required. [157] is an up to date real time optical flow method called TV-L1 optical flow which represents an improvement in accuracy and processing speed and is later improved by Wedel [150] which optimises the algorithm further and this is the optical flow used for this experiment. The component model of WISE is also updated to reflect the motion perception component, figure 4.30



Fig. 4.30 WISE components with optical flow addition

To maintain consistency, the video sequences used in the WISE experimentation are also used to show the results of optical flow added to the WISE components.

# 4.9.1 Performing Experiments with the Motion Perception Restoration



Fig. 4.31 WISE and Optical Flow applied to the helicopter video



Fig. 4.32 WISE and Optical Flow applied to the dashboard video



Fig. 4.33 WISE and Optical Flow applied to the UAV video



Fig. 4.34 Additional frame with greater UAV motion

#### 4.9.2 Analysis of the Motion Perception Component

To remove some clutter, only the centre point optical flow is shown in the images (the optical flow was applied to 5 points of each object, extreme corners and the centre point). The results show point wise optical flow applied to each of the candidate objects. In figure 4.31 the motion of the camera gives stationary objects such as disturbed earth and the white object on the side of the road a flow in the opposite direction to the camera movement. Meanwhile the motion of the car and bike are different due to their motion relative to the camera. The motion perception will allow the separation of the car and bike objects from occluded scene objects around them (such as the crack in the road). The second test video, figure 4.32 contains more motion variables as the dashboard is completely stationary relative to the camera, the road furniture is moving in a z-axis direction toward the camera and the cars are moving at a similar speed to the dashboard camera, with some lateral motion as well. There are also six erroneous points that are not representative of objects motion (identified by the large optical flow vectors on the left of the image), and can be considered as noise. Because the car is travelling around a bend in the road, the motion vectors of the road furniture on the left are of greater magnitude than that on the right of the frame. The UAV video, figure 4.33, has multiple axis of motion, however in this particular frame it happens that the UAV motion is minimal (hence barely visible motion vectors on the stationary objects). The moving objects to the bottom left have a magnitude that is different because these objects are moving along the road, and thus relatively different to the UAV motion. The full videos with the optical flow of other frames which show the motion of the UAV is available from Morris [96]. An additional frame has been included in these results to show the usual motion vectors seen by the UAV. In figure 4.34, the UAV is moving in a rotational pattern. Thus the motion vectors

of stationary objects in each quadrant of the image are different. Objects that are moving do not have the rotational motion vectors, and could be separated out from the other objects. The application of optical flow is not image size dependent, it is number of objects dependent. Thus in a high resolution frame of only a few objects, the performance penalty is the same as a low resolution frame with the same number of objects. In these experiments, it happens that the UAV scene, which is 1920x1080p resolution also has the highest number of objects in it. An estimate for the optical flow penalty per object is 3 ms per object. This is based on a calculation of the time increase of processing a frame with optical flow divided by the number of objects in the scene, and averaged over each result.

#### **4.9.3** Conclusions on Motion Perception

The addition of optical flow to the processing shows motion perception of each object, which will be useful when characterising objects later on. Isolation of static objects and other moving objects can become difficult in rotational scenarios where static objects in different quadrants of the image exhibit different motion directions, figure 4.34. The usage of optical flow for motion perception is suboptimal with the quadrant issues and further work to improve the motion perception could be carried out to solve this problem. One possible area for exploration is the unification the Edge Flow (time domain) and WISE (spatial domain) methods so that the optical flow calculation for motion perception is not necessary or required. This would remove the estimation error factor of optical flow and reduce the processing resources needed. This proposition could aid in solving the motion disparity issue of 2-dimensional cameras. The motion perception as it is, can be used as features for building semantic reasoning models that can characterise and distinguish between the texture patches across the scene however care will need to be taken in complex motion scenarios on the interpretation of motion.

# Chapter 5

# **Comparative Results**

The previous chapter analysed the functional performance of Edge Flow and WISE in isolation, with some references to existing techniques for illustration. This chapter provides a comprehensive set of comparisons with existing techniques and the analysis of performance of WISE in the context of what each algorithm sets out to achieve. In some of the comparisons there is a strict detection requirement (object segmentation methods), that have been predefined by the authors of the work. They predominately use some form of training to achieve the object selection. In each case, the data set used in the corresponding work is applied to WISE, such that a representative comparison can be provided with the work presented in their respective papers.

# 5.1 Edge Detection

# 5.1.1 Experiments With Different Edge Detection Methods



Fig. 5.1 (a) Original Image (b) Fuzzy Edge Detector [65] (c) ACO edge detector [79] (d) Neural Network edge detector [13] (e) Genetic Algorithm edge detector [17] (f) Universal Gravity edge detector [139]. Images obtained from [1]



Fig. 5.2 (a) WIDE with window 2, (b) WIDE with window 3, (c) WIDE with window 4, (d) WIDE with window 5



Fig. 5.3 Edge detection results from [33] for fast edge detection using structured forests



Fig. 5.4 (a) WIDE on people with window of 4, (b) WIDE on barn picture with window of 4, (c) WIDE with window of 6 on coyote picture

### 5.1.2 Performance Analysis of Edge Detection Results

The overall technique of WISE is designed for object detection. WIDE, a component of WISE, is an edge detection method and forms the basis of object detection (much like the edge

| Table 5.1 The performance of different edge detection techniques on the BSD500 [10] data  | l |
|-------------------------------------------------------------------------------------------|---|
| set obtained from [33] and compared with the WIDE technique over 3 different window sizes | • |

| Algorithm          | ODS | OIS | AP  | FPS   |
|--------------------|-----|-----|-----|-------|
| Human              | .80 | .80 | -   | -     |
| Canny              | .60 | .64 | .56 | 15    |
| Felz-Hutt [39]     | .61 | .64 | .56 | 10    |
| Hidayat-Green [53] | .62 | -   | -   | 20    |
| BEL [34]           | .66 | -   | -   | 1/10  |
| gPb + GPU [25]     | .70 | -   | -   | 1/2   |
| gPb [10]           | .71 | .74 | .65 | 1/240 |
| gPb-owt-ucm [10]   | .73 | .76 | .73 | 1/240 |
| Sketch tokens [76] | .73 | .75 | .78 | 1     |
| SCG [119]          | .74 | .76 | .77 | 1/280 |
| SE-SS, T=1 [33]    | .72 | .74 | .77 | 60    |
| SE-SS, T=4 [33]    | .73 | .75 | .77 | 30    |
| SE-MS, T=4 [33]    | .74 | .76 | .78 | 6     |
| WIDE, (a)          | .76 | -   | -   | 250   |
| WIDE, (b)          | .78 | -   | -   | 250   |
| WIDE, (c)          | .69 | -   | -   | 250   |
|                    |     |     |     |       |

detection in some image segmentation methods [10]). Because of this, a comparison with existing edge detection methods was made. The comparison is over a range of different edge detection methods, from early methods such as shown by Canny [23] to the latest hierarchical learning methods [10]. Figure 5.1 shows the methods when applied to a stationary image obtained from the OpenCV database. The methods presented here apply their edge detection to greyscale images and as such the source image must be converted into greyscale, the other detection methods presented work with contrast and brightness boundaries. In each of these samples, clarity of the object boundaries in the image is lost with the universal gravity detector performing the best in terms of clarity. Figure 5.2 shows the WIDE technique applied to the same image over 2, 3, 4 and 5 window sizes. These sizes were selected to show the progression of edge clarity over several window sizes. The window size of two provides very faint edges which highlight texture edges more than the outline object boundaries (for example the hair is more pronounced than the figure outline). Window sizes of 3 and 4 provide a clearer output of edges with the window 4 giving slightly better defined edges around the hat rim and background textures. A window size of 5 provides the clearest outline of the edges, but the problem of overly thick edges begins to creep in and distorts the clarity of the hair texture due to this over thickness, much like that seen in figure 5.1 where the thickness of edge boundaries interfere with object textures. The edge detection methods shown in figure 5.1 outperform the WIDE method in terms of definition of each edge that is detected. This is because the edge is defined as binary - present or not, where as the WIDE method provides a measure of significance to each edge shown by the varying greyscale output.

A newer edge detection technique, using Hough Forests [33], is shown in figure 5.3. In this figure, obtained from [33], there are three source images, three ground-truth images obtained by manual input by humans, a Sparse Code Gradients (SCG) method developed in [119] and the results for the Hough Forests method. Figure 5.4 shows the results for WIDE applied to the source images. Table 5.1 shows the comparison results of these methods, and a selection of other edge detection methods. The table lists two F-measures (defined in nomenclature) of the results and the average performance (AP). The first F-measure is the optimal dataset scale (ODS) and the second f-measure is the optimum image scale (OIS). A number of the techniques use image scales to aid with edge and boundary definition, similar to the keypoint detection techniques of SIFT [78] or SURF [14] reviewed in chapter 2. WIDE does not use scale space measurements, and thus the result compared to the ground truth is listed in the ODS column only, a separate result for each image; the table results obtained from Dollár and Zitnik [33] show the optimum results from the three images, and the average amalgamates

the results from each source. Because there is no scaling in WIDE, it was decided to list each image result separately, given the varying difference between the results for WIDE. In the first two images (left to right) the WIDE technique performs better than the SCG method, and is comparable to the Hough Forests (SE) method at both single scale and multi-scale. The SE method has better definition of the primary edges much like the ground truth image whilst WIDE provides greater detail on the internal textures of the boundaries, at the same time maintaining good discrimination of key edges. The ground-truth images do not take texture edges into consideration and thus the comparison is limited to the primary edges in this case. In the third image, the WIDE technique needed to have an extended window size to produce any meaningful results, and the window size of 6 was arrived at through experimentation (4 did not produce significant boundary edges). Compared to the ground truth and the SCG method, WIDE produces a similar level of result with some extra texture boundary information. SE performs better in this case, with well defined edges around the animals. One possibility of the poorer performance of WIDE in this image is the texture similarity. Given that the method is designed to extract texture differentials, the gradients of the changes across the image will be smaller. Thus the greyscale produces much fainter lines, that whilst not white, are close enough to look like missed edges.

The final column in the table shows the processing time of each method. This is where the WIDE method shows the designed performance characteristics by being significantly faster (more than 30 fps) than any other method tested here. The hardware used for the performance comparison was a 2.6 Ghz Intel i7 using a single processing core. The headroom afforded by the efficient processing allows additional components to be introduced into the processing to extract objects from the scene, as described in chapter 4.

# 5.2 Image Segmentation

# 5.2.1 Experiments With Image Segmentation Methods



Fig. 5.5 A selection of varying Image Segmentation techniques applied to the BSD database.(a) Ultrametric Contour Map [10], (b) Edison and IHS Image Segmentation methods [158],(c) Bottom Up Aggregation [3], SWA V1 [46], Normalised cuts [84], Mean-shift [27]



Fig. 5.6 WISE applied to the images used by other techniques. The leftmost image is the actual pixels of the detected texture patches overlaid on the original image. The rightmost image is the individual texture patch boundaries. (a) and (b) Giraffe, (c) and (d) Woman with a baby, (e) and (f) Surfer



Fig. 5.7 WISE applied to the images used by other techniques. The leftmost image is the actual pixels of the detected texture patches overlaid on the original image. The rightmost image is the individual texture patch boundaries. (a) and (b) Eagle, (c) and (d) Bear, (e) and (f) Ostrich

Table 5.2 The performance of different image segmentation techniques on the BSD500 [10] data set obtained from [10] and compared with the WISE technique over 3 different window sizes

| Algorithm        | ODS | OIS | Best |
|------------------|-----|-----|------|
| Human            | .73 | .73 | -    |
| gPb-owt-ucm [10] | .59 | .65 | .75  |
| Mean Shift [27]  | .54 | .58 | .66  |
| Felz-Hutt [39]   | .51 | .58 | .68  |
| NCuts [84]       | .44 | .53 | .66  |
| SWA [3]          | .47 | .55 | .66  |
| Total Var [35]   | .57 | -   | -    |
| T+B Encode [117] | .54 | -   | -    |
| Av. Diss [16]    | .47 | -   | -    |
| ChanVese [16]    | .49 | -   | -    |
| WISE, W=3        | .73 | -   | -    |
| WISE, W=4        | .79 | -   | -    |
| WISE, W=5        | .78 | -   | -    |

#### 5.2.2 Analysis of the Image Segmentation Methods

Figure 5.5 shows a image results of a range of image segmentation techniques applied to the BSD 500 dataset. Figures 5.6 and 5.7 show the results of WISE applied to the images of the dataset. Each of the image segmentation techniques manages to separate the main textures of each object in the scene, however details on the textures of the objects is lost. In the case of figure 5.5 (a) the woman, baby and giraffe are well segmented as well as some of the objects in the background. However any facial details and background texture details are lost such that earth disturbances are not detected (dark earth to the bottom left of the image of the woman). The Edison method in figure 5.5 (b) does well at segmenting the eagle and the sky with better cloud resolution compared with the IHS technique. The result is different in the surfer picture, with no surfer detection with the Edison method, but a good surfer detection with IHS. This suggests that the Edison method is better at segmenting when the textures of the objects in the image are similar. The bottom-up aggregation method in figure 5.5 (c) performs better than the other comparative image segmentation techniques, with the animals being clearly separated from the background.

When compared with WISE, there are clear differences in what is detected. Similar to the edge detection, the methods of image segmentation provide outlines of the major features but the detail of each object is lost. WISE detects major objects but also separates the major objects into smaller texture patches, such as eyes, hair and other object textures. Furthermore, the technique of WISE does not need a greyscale input image as is the case with some of the techniques presented here (Bottom Up Aggregation, SWA, Normalised Cuts, Mean shift). The table 5.2 shows the empirical comparison of WISE with the methods presented in the images as well as some other older techniques. The results in the table were obtained from Arbeláez et al [10]. Compared to the ground truth, obtained from a human, the techniques do not perform as well apart from UCM in its best possible outcome. WISE on the other hand performs better than both the human and the other image segmentation techniques in all image types. In terms of performance speed, WISE performs at 10 frames per second on a single core of an Intel i7 2.6 Ghz processor. In the literature for the image segmentation techniques presented here, there was no indication of the computational speed, however it is possible to derive that the UCM method (the best of the rest in terms of accuracy) does not perform at this frame rate (the Edge Detection component runs at 0.5 fps - see table 5.1).

# 5.3 Detection by Classifier

# 5.3.1 Results of Image Segmentation by Classifier



(a)



(b)

Fig. 5.8 Results from different object detection by classifiers methods, applied to the YouTub-Objects database [113]. (a) Hough Forest Object Detection [45], (b) Fast object segmentation [109]



Fig. 5.9 WISE applied to the datasets used by the methods presented above. The leftmost image is the actual pixels of the detected texture patches overlaid on the original image. The rightmost image is the individual texture patch boundaries.

# 5.3.2 Analysis of Detection By Classifier Methods

The detection by classifier methods are inherently offline methods - training data is required before successful object classification can be made. Therefore the focus of this comparison is more on the accuracy of the detections than speed of processing. The methods shown in figure 5.8 show results where specific objects have been required to be detected. The Hough Forest object detection shows that the classifier can detect specific objects such as people, cars and horses with a low error rate. Three of the frames here show erroneous detections. The fast object segmentation frames also show the capability of separating specific objects from the scene. The accuracy of the methods are compared in table 5.3 and 5.4, with the

Table 5.3 Comparison of the results presented by [45] with WISE over 3 different window sizes

| Algorithm                    | UIUC-Single | UIUC-Multi |
|------------------------------|-------------|------------|
| Implicit Shape Model [70]    | .91         | -          |
| ISM+verification [70]        | .975        | .95        |
| Boundary Shape Model [106]   | .85         | -          |
| LayoutCRF [154]              | .93         | -          |
| Mutch and Lowe [100]         | .999        | .906       |
| Lampert et al. [69]          | .985        | .986       |
| Hough Forest [45]            | .985        | .986       |
| HF - Weaker supervision [45] | .944        | -          |
| WISE, W=3                    | .95         | -          |
| WISE, W=4                    | .98         | -          |
| WISE, W=5                    | .98         | -          |

Table 5.4 Comparison of the results presented by [109] with WISE over 3 different window sizes

| Algorithm                        | Average F-measure |
|----------------------------------|-------------------|
| Clustering Tracks [109] .347     |                   |
| Automatic Segment Selection [21] | .267              |
| Fast [113]                       | .653              |
| WISE, W=3                        | .73               |
| WISE, W=4                        | .79               |
| WISE, W=5                        | .78               |

former showing the classifier accuracy applied across a series of frames, and the latter the f-measure for the fast object segmentation method - the measures are presented based on the information available in the papers of each method. To compare with classifier accuracy, the WISE method accuracy is determined on whether the object was detected or not - despite other objects being detected by WISE. The results show that WISE consistently detects the desired object at the same or better accuracy rating than Hough Forests, with the added advantage that many other objects are separated and detected in each scene. The accuracy with a smaller window size of 3 drops off, which is likely due to less well defined edge boundaries before the edge linking process (see examples of smaller window size in section 5.1.1. The less than perfect accuracy can be attributed to the over-detection in some frames by the WISE algorithm. For example in the cat video, the example shown shows several texture detections on the cat, but no overall detection of the cat as a whole object. This can be because the smaller detections do not have contiguity of an edge when the edge linking process was carried out, thus forming several smaller texture patches of the main object. The binary classification measure (detected or not) is insufficient to include the detections out with the main object in the image, thus the F-measure is used (as seen in the other comparisons) and this was also used in the fast object segmentation paper [109]. The measure for the fast segmentation method is solely for the moving objects, static objects are not included in the measure. For the WISE results, the measure was extended to all scene objects. When compared with the Fast object detection method, WISE consistently outperforms the method in all video sequences by detecting the moving objects as well as objects in the background. In some frames the green box in the bird scene is a missed detection, which is because there are several surrounding texture patches for the carpet detections. When there are as many detections as there are for the carpet, the edge linking process can link to the incorrect edges isolating some objects from registering as texture patches.

# **5.4** Conclusions on the Comparisons With WISE

The comparisons shown here demonstrate that WISE is an efficient new technique for object detection, that operates in real-time whilst maintaining accuracy levels comparable to competing techniques. The existing approaches shown here have specific, constrained, detection criteria that limits the flexibility of these techniques in unknown environments. The image segmentation and classifier techniques both need to be trained to detect or segment an image according to predefined criteria. In contrast, WISE does not need training and enables the detection of multiple object types in all scenarios regardless of camera or object motion. Detections by classifier also make the assumption that the objects of interest are moving
and do not perform well on objects that are static. Both the Edge Detection and Image Segmentation methods here are applied to single image frames, and motion information on the objects is not retained - this needs to be calculated separately. WISE on the other hand maintains motion information through the usage of optical flow. The edge detection performance of structured forests [33] out performs the WIDE technique in terms of accuracy, however WiDE operates significantly faster in terms of frame rate. In applications where computational speed is not a limiting factor it could be beneficial to explore the usage of structured forests in the edge detection component of WISE. Some limitations of WISE were exposed in the edge linking process where some texture patches were missed, and in some cases the object is divided into several smaller texture patches but not a complete object. The complete object formation from texture patches can be improved through using feature analysis to link the similar and overlapping texture patches together.

## **Chapter 6**

## Working with WISE features

A UAV mounted video source conventionally sends the image to a ground based operator who will identify objects of interest and make appropriate decisions. The more information available on each object, the better the decision the operator can make, reducing operator load and increasing system performance. This chapter describes the application of some experimental concepts to the texture patches defined by WISE to better define objects in the scene, and also to impart more information to each object. The methods described here are not fully tested, however some example testing is presented to provide a demonstration of concept. In each case, the focus is on real-time performance and an assumption free methodology.

### 6.1 Online clustering providing temporal linkage

For any given video sequence, WISE detects objects and the instantaneous velocity of the objects through optical flow (Chapter 4). The limitation is that the link between objects detected in frame m and objects detected in frame n, is the calculated optical flow on the pixels. This means a link between consecutive frames exists but not over a series of frames. If the object between frames was to change size or move in an unexpected way such that optical flow on some points produces errors, the link between objects, and thus contiguity of recognised objects over a series of frames would fail. Linking the motion values over a series of frames will also maintain the contiguity of texture patches forming the objects (see chapter 3), instead of new texture patches having to be linked at each optical flow iteration. The methodology proposed here offers a solution to this problem, by using a clustering technique that evolves as new samples arrive. That is, should the direction and magnitude of the motion from optical flow change, the cluster that currently represents that object will also change to reflect the new spatial and temporal information for the object, yet maintaining

the same object (cluster) identification. The limitations of the clustering techniques that operate in an on-line, sequential operation are that they can be order dependant, do not run in real-time, and cannot form clusters of arbitrary shapes (they are always a regular polygon shape). A recently developed method by Hyde and Angelov [57] for clustering, named CEDAS, operates differently and forms arbitrary shaped clusters that update in real-time. The clustering of this method is also not order dependant. Applied to the candidate objects outputted by the WISE method, the on-line clustering technique takes the spatial location and motion magnitude and direction as input features. As the candidate objects move in the scenario, the cluster centres are updated in an on-line manner with the new location and optical flow information. By applying clustering in this context, it will allow tracking of objects through a scene maintaining a cohesive object link between frames.

The concept was tested on a UAV video that produces a lot of WISE objects due to mottled grass surface, and a person running in eccentric patterns. The mottled grass texture also produces some optical flow values due to the vibration and slight motion of the camera on board a test UAV. The video sequence was used because it is a simple scene with one object of interest. The person runs in different motion patterns, in order to show that the clustering of motion and location evolve along with the motion of the person. The results are shown in figures 6.1 and 6.2.

#### 6.1.1 Experimenting With CEDAS Clustering



Fig. 6.1 WISE objects detected, with optical flow and object boundaries



Fig. 6.2 Clustering of the optical flow results using CEDAS. The x-axis shows angle of motion  $(-\pi \text{ to } \pi)$ , and y-axis shows magnitude of motion, normalised between 0 and 1.



Fig. 6.3 A series of consecutive frame analysis results from CEDAS, applied to the scene with the person running in circles

### 6.1.2 Analysis of the CEDAS Results

Figure 6.1 shows the objects detected in the video sequence along with the optical flow applied to each object. There are several detections because the grass has large tufts that are different in texture to the regular grass patches. The person is running in a circle, and generates different motion perception to the stationary objects such as the grass. The

clustering method separates the large motion differences from the stationary objects, and creates separate clusters to illustrate this, figure 6.2. This graph shows all the samples over all the frames (dark blue points), green points represent the active samples for the frame, and the coloured circles represent the micro-clusters that make up a cluster (clusters of the same colour are the same cluster). The samples over the entire sequence are shown such that over each of the frames here it can be seen where the samples are overall, and the evolution of clusters as active samples influence the clustering. There are two outlier micro clusters with the moving person, and the stationary grass creates separate clusters along the x-axis. Clusters close to the x-axis are likely to be due to camera shake because the magnitude of motion due to shake is small, but the angle of motion will be in different directions; if it is rotational shake top left objects will appear to move in a different direction to bottom right pixels. There are a number of active samples that are not clustered (green). They are not clustered because the density is insufficient to create a new micro-cluster. A possible explanation is that whilst the person was running quickly (high value on y-axis) the micro clusters were formed, but as the person is slowing down (lower values on the y-axis) new samples are yet to be incorporated until the person remains for a few frames at this slower speed.

#### 6.1.3 Discussing the CEDAS Method

The test results from using CEDAS shows that an adaptive separation of object movement is possible. As the person moves around the scene the clusters update and mostly stay as a cohesive cluster - but updating as the motion of the person changes. This has the benefit of being able to maintain objects as being the same object over a series of frames as opposed to just between two consecutive frames. In this particular test, motion magnitude (y-axis) and motion direction (x-axis) were the features used. If there were two objects moving with the same motion pattern but in different spatial locations, this method would have clustered them together, which is undesirable unless we just want to characterise motion and not separate the objects. By adding spatial location information to the feature set of the clustering it should be possible to separate out the two objects.

## 6.2 Characterisation of objects

The aim of object characterisation is to apply a type to each object detected, based on its feature set. This is achieved through the use of clustering. The objects that are detected by WISE have a rich feature set that could be used to discriminate and assign a type to each of

the objects. A large feature set implies that there can be greater division (number of clusters) between objects, due to the increase in variance higher dimensions bring.

### 6.2.1 Available Features for Object Characterisation

The output from the WISE algorithm has several different features which provide a detailed description of candidate objects, the internal texture and the perceived motion. There are also features that can be mathematically derived to provide more dimensions to improve object type separation (where needed). The following features have been extracted from the detected objects:

- Length A pixel-wise measure of the objects length. This is in the 2-dimensional perspective of the camera
- Width A pixel-wise measure of the objects width. This is in the 2-dimensional perspective of the camera
- Area A pixel-wise measure of the objects area. This is in the 2-dimensional perspective of the camera
- Number of pixels The number of pixels that constitute the object.
- Size ratio The height width ratio of the object, in the 2 dimensional perspective of the camera. Used in conjunction with motion, this could be used to derive 3-dimensional size.
- Motion magnitude (pixels) A measure of the optical flow magnitude for the object.
- Motion direction A 2-dimensional orientation for the optical flow of an object. A 3-dimensional orientation could be achieved through the use of homography, similar to that in 3
- Mean edge gradient the mean gradient value constituting the perimeter of the object
- Standard deviation of edge gradient the standard deviation of the perimeter gradient of the object
- Mean colour (RGB) the mean colour of the pixels constituting the object
- Standard deviation colour (RGB) the standard deviation of the pixels constituting the object

• Spatial location (x, y) - the location of the object in the frame. This location is the centre of the object, defined by the intersection of diagonal lines from the maximum and minimum x,y coordinates of the object.

#### 6.2.2 Clustering of features

In order to establish separation between object types, some method of clustering the object features is required. If all the features are clustered it is likely that every object that has been detected will be determined as a different type (similar objects will likely have a different background). This means the features being clustered need to be pre-selected based on some characterisation requirement based on operator or user interest. For example, a user may be looking for small regular sized objects and thus the clustering could be performed on the length, width, area and size ratio features. The clustering method used needs to be real-time, and parameter free such that the selection of cluster parameters does not influence the characterisation. An example of undesirable parameter selection could be cluster radius or number of expected clusters because the spread of the data or the number of object types in a scene is unknown. This removes some clustering techniques from consideration such as k-means and fuzzy c-means which both use parameter selection to define the number of clusters expected. Subtractive clustering and similar derivatives are not real-time and also use a cluster radius parameter. Evolving c-means clustering is data order dependant which is undesirable in an unknown environment, and mean-shift clustering is also dependant on known data. The data is clustered on a frame by frame basis, so the technique used does not have to be adaptive or on-line; all the data samples that need clustering will be available at the time of clustering. On-line clustering methods typically require samples to arrive sequentially, and with several objects and pixels to analyse, this can slow the processing down. Therefore a clustering method that processes the entire frame of samples as a batch is required. A new density based clustering technique named DDC is capable of clustering in real-time and does so in a batch manner. It requires an initial parameter of cluster radius but the radius adapts based on the data distribution, and therefore this initial parameter is not as limiting as previously suggested.

#### 6.2.3 Test videos

The results here are testing the capability of DDC applied to some of the features of objects extracted by WISE.

#### **Helicopter Video**

The helicopter police chase video was used as it is a fairly simple scenario with little object

interference or complexity. It also has a large variation of sizes in objects in order to test the characterisation using size based features. Additionally this video sequence has been used in previous tests and will provide some level of comparison with previous steps in the chain.



Fig. 6.4 Helicopter police chase video

**UAV Video** This video is a UAV video with multiple axis of motion. This video has an extremely small moving aircraft, along with other some moving objects originating from the ground such as smoke and cars. This video was used to test the discrimination in a complex moving environment, with objects of interest that are extremely difficult detect. The original image is in greyscale, and this will also test the performance of the WISE and characterisation algorithms on non-RGB frames.



Fig. 6.5 UAV flight video

#### 6.3 **Results of Object Characterisation**

#### **Clustering on Helicopter video** 6.3.1



(a) Clustering of objects based (b) Clustering of objects based (c) Overlay of clustering when on motion on dimensions and size

both motion and dimension features are used

Fig. 6.6 Clustering of objects in the helicopter video, resulting in the characterisation of different object types.

#### **Clustering on UAV video** 6.3.2



(a) Clustering of the UAV video (b) Clustering of motion features based on motion features overlayed on the orignal image

Fig. 6.7 Clustering of objects in the UAV video based on motion features

#### **Analysis of Object Characterisation Results 6.4**

In figure 6.6 there are three separate outputs showing the clustering results in two different feature sets. The first two images are both cluster plots obtained from Matlab, whilst the third is an overlay image of cluster results from the second feature set. Figure 6.6(a), shows the clustering on perceived motion magnitude and direction of the objects. In this result, the car and bike are characterised as the same type, as they are the moving objects, and the majority of the other objects detected are clustered separately. There are also some outliers shown, indicating some kind of motion separation. Figure 6.6(b) shows the clustering results

using motion features and the length, width and size ratio of the objects. The results show that some increased object separation is achieved, with the white object on the side of the road characterised differently than when just motion features are applied. Some of the road cracks are also defined separately and more clearly. The samples on the Matlab figures are individual objects, such that the size of each object and their bounds is not clear. As seen in the WISE edge linking phase, the car and bike consist of several separate objects that are defined by the textures of each surface (the car has a white roof and dark bonnet) Figure 6.6(c) shows the result of this clustering clearer with the colour overlay on the original image, so that the extent of the characterisation can be seen overlayed onto visual objects. In this image, the long lines that are the road verge, the markings and long road cracks are characterised as the same type of object. The white object and disturbed earth are typed differently and the smaller cracks on the road are also separate from the larger, longer cracks. Both the car and the motorbike are typed the same, different to the rest of the surroundings. The second video sequence is limited in the number of permitted frames, figure 6.7. The clustering is applied to motion features only because in this scenario, there is one small moving object of interest with the remainder being object detections of scene objects inherent to the WISE technique. The Matlab plot, figure 6.7(a) shows several different motion types. The motion type of the object of interest has been circled (orange cluster). Because the motion of the UAV (and hence the camera), is in all 8 degrees of freedom for three-dimensional movement, when the camera rotates or pans with lateral motion, many of the objects in the scenario are moving in the same real direction but in a different relative direction. A filter is applied to compensate for this differential in relative motion, and the results of the remaining motion are shown in figure 6.7(b), where the results have been overlayed onto the original frame, with the objects separated by motion highlighted. The result in this case, shows that there are a couple of moving road objects, the moving object of interest, and detects the motion of the smoke emanating from the chimneys.

## 6.5 Discussing Object Characterisation

The additional clusters seen in figure 6.6 that do not represent moving objects yet are clustered as moving separately to the other stationary objects can be explained by three dimensional camera movement. For the most part, the camera motion appears to be translational, but there are some small deviations in the rotational and z-axis planes. With objects being in different locations, the direction and magnitude of the motion of each object will vary when the camera movement is outside translational movement. Some objects will appear to move differently to the other stationary background, but the motion is the relative differential

perceived by the camera when moving in a three dimensional plane. Some of this incorrect motion perception is carried over to the second feature set that also uses object size features. The only difference between the two cluster groups is the white object on the side of the road, meaning the disturbed earth and the smaller cracks in the road appear as separate object characterisations because of the camera motion differential, not as a result of sufficient size deviation. The filter to counteract the motion differential in the UAV scenario helps to remove this misconception of motion due to camera movement, and can be explained using an example. In a simple rotational motion the objects in the top left have similar magnitude but different relative rotation (in a 360 degree sense) to objects in the other corners. The filter used reduces the direction range to a single quartile (90 degrees). This is achieved by inverting directions in the opposite quartile (flipping), and offsetting the directions in the adjacent quartiles by either adding or subtracting 90 degrees depending on the quartile. This does not compensate for all variations in three dimensional movements, but it does allow the filtering of rotational variances based on location from the frame centre. Figure 6.7(b) shows an overlay of the UAV frame, with the direction filtering applied to the clusters. The frame only shows objects identified to have different-to-stationary motions, and is not showing clustering differences between these other types. That is because when clustering is applied after the direction filtering, even a slight deviation of an object from another object can cause a separate cluster. This may be useful in some scenarios but it was considered to confuse the point the frame overlay is making.

## Chapter 7

## **Conclusions and Future Work**

### 7.1 Summary of the research

The research developed a real-time detection algorithm in a moving camera environment capable of feature rich object analysis and identification. The direction of the research ended up focussing on the development of the novelty detection algorithms Edge flow and WISE. The result of the research is real-time novelty detection algorithms that detect both static and moving objects in moving or static camera scenarios. As demonstrated in chapter 5, WISE is capable of real-time performance operating in the region of ten frames per second, without the need for a GPU or brute force processing. Due to the lengthy investigation work into the novelty detection aspect, limited progress was made in object identification and analysis. Built into the WISE method is the output of rich features that describe the characteristics of the objects, such as texture gradient, object composition, size and ratio, along with 2D image based velocity components.

## 7.2 Addressing the Research Questions

The research initially explored existing techniques to understand if extending the algorithms can help in answering the research questions.

### 7.2.1 Experimenting with existing work

Experimentation with existing work showed that there was a trade-off with speed and accuracy. It also laid the foundation work to adapt the techniques such that assumptions about detections were not made (RDE greyscale and WIDE). It was found that each method individually had limitations, and could not definitively answer any of the research questions. The outcomes

of the existing methods, and experimentation with them, showed that extending them or adjusting the processing methods had limited effect on improving accuracy or processing time. The existing research could not be speeded up sufficiently to not need brute force processing at higher resolutions, nor could it detect static or moving objects.

#### 7.2.2 Framework review

The review and experimentation with some of the existing methods highlighted a that the computer vision framework was linear, and prone to errors by passing noise to the next level of processing (detection to identification for example). The identification of multiple components led to an analysis of the computer vision framework with the aim of better inter-component data passing such that any assumptions made at a detection phase are not carried through permanently to the semantic reasoning components. A cyclic framework was proposed such that feedback from higher level semantic reasoning components can automate parameter value selection to optimise application specific performance.

#### 7.2.3 Edge Flow and WISE

For temporal based methods, the limitations were that they required too much computational power (optical flow for example) or they could only detect objects that were moving. The system would fail as soon as the objects were motionless. For image segmentation based methods they were able to derive objects from static frames, without motion information. In all cases assumptions were being made about the scenarios before any detections were made. In an unknown scenario, this can lead to the removal of information that would otherwise have been useful (the example of the cordon tape blowing in the wind in chapter 3). The algorithms developed in this research was addressed the research questions by not making assumptions on the scene detection, providing real-time performance that scales well with resolution changes, able to detect both static and moving objects in any sequence of frames regardless of the camera motion and combined the best features of the existing background subtraction and image segmentation techniques (contour detection, pixel-wise density estimation, and efficient use of optical flow). These enhancements to computer vision allow the algorithms to run on low power systems and also the minimises of assumptions made at the detection phase. The concepts of Edge Flow and WISE are a new way of addressing computer vision detection problems. One of the most important steps with the Edge Flow and WISE is that they do not discriminate between detections. The decision tree of "interesting" objects or detections has been removed somewhat from the lower level detection phase and enables higher level semantic reasoning sections to decide if a detection

is interesting or uninteresting. The other advantage of the new methodology is that it lends itself to adoption of the feedback mechanism proposed in chapter 3. Each component can be fed input from a higher level to adjust the detection parameters. For example the window size of WiDE can be changed if the feature extraction layer requires more granular detail of the texture changes, or the cluster membership values changed to isolate a subset of objects based on their features. One of the limitations with the research is the visualisation of the detections. It is difficult to show the edge linked boundaries and the arbitrary shapes of the candidate objects in one cohesive image which is why there are different representations presented through this work.

### 7.3 Performance Achievements

Chapter 1 and 2 illustrated the various angles the research could focus on. Each objective that was detailed also had a performance indicator associated with it. This section assesses the performance of the research compared with the objectives highlighted in chapter 2.

#### 7.3.1 Detection of stationary objects

The first objective set out for the work was to develop a reliable novelty detector that detects both static and dynamic objects within a scene. In addition there was a requirement to perform the analysis in real-time within an envelope of 10ms per frame on a 2 megapixel image. This is so that object detection algorithms built on the novelty detection have sufficient available processing time such that the overall result remains real-time. By developing the WIDE approach in chapter 3, the novelty (object boundary) detection capability was able to meet each of the criteria. The hardest part was to detect camouflaged object boundaries. In the comparison chapter 5, the scene with the two coyotes demonstrated that by adjusting the parameters of WIDE, camouflaged object boundaries can be detected by this method. During the comparison phase, it was found that there are some better object boundary detectors, such as the Hough Forests, in terms of overall accuracy and detail. However, to attain this level of detail significant processing time had to be sacrificed. The level of accuracy achieved by WIDE is only slightly less than that of the Hough Forests whilst maintaining the faster-than 10 ms processing time per frame.

#### 7.3.2 Novelty detection without image stitching

The second objective was to extend the concept of detection of stationary objects to the moving camera domain. When image stitching is used to create an overlapped region errors

are introduced. The aim was to continuously analyse the frames of a scene, maintaining relative motion information, without stitching or manipulating the scene such that unwanted noise was introduced. The complete WISE algorithm successfully avoids image manipulation whilst detecting both static and moving objects irrespective of camera motion. The WISE algorithm also operates in real-time, capable of processing frames faster than 100ms for a 2 mega-pixel frame. One current difficulty with the WISE method is that it is parametrized, so to detect specific novelties for an application the parameters need to be adjusted. The parameter design is for future development of feedback from semantic reasoning components such that the detection regime is adaptable to unknown environments.

#### 7.3.3 Rich feature extraction

The specific region analysis goal was replaced with the extraction of a rich-feature set. The specific region analysis would have focused on analysing small regions of the image that contained an object of interest. This was more applicable to methods that are high in processor usage such that reducing the processing area improves their speed. Edge Flow and WISE do not need this reduction in processing area to maintain real-time processing, so the focus switched to obtaining a rich feature set on the global scene (not narrowing focus, which would potentially remove points of interest unintentionally) The new objective was designed to promote the development of an algorithm that extracts a wealth of features such that object analysis and semantic reasoning can be performed at a later stage. Direct features such as size and movement of objects was extracted as well as derived features such as edge gradient profile and mean and variance of the boundary density change. As the object characterisation phase showed, these features can be used to characterise and separate out the objects detected by the WISE algorithm. There is no additional processing required for the direct features, and minimal processing for the derived features meaning that the rich feature set has been extracted within the processing envelope of WISE. Chapter 5 showed the detection improvement of WISE over other techniques. The rich feature set provides another advantage that WISE has over competing techniques as the extraction of this feature set is part of the algorithm.

#### 7.3.4 Object detection accounting for occlusion

By utilising WISE which includes frame analysis and optical flow to give object motion perception, separation of objects that are moving in different directions has been possible. Occlusion occurs when two or more objects cross paths because they are on a different trajectory to others. Examples in chapter 4 and 5 show the separation of objects despite

crossing one another. In the motorbike and car video, the cracks on the road are maintained as separate objects despite the car and bike passing over them frequently. This is in contrast to existing techniques which group occluded objects together.

### 7.3.5 Characterisation of objects

The characterisation of objects is a way of separating each object detected by WISE by their features. Chapter 6 describes the utilisation of clustering which groups features together into different object types. The utilisation of CEDAS clustering allowed the separation of a person moving from the minor movements of grass blades due to camera shake. The clustering process also separated out arms of the person moving if they were moving differently to the person's body. The prototyping done in this area showed the capability of the output of the WISE algorithm to detect and separate objects by type. Further work and experimentation is needed to find out the limitations of the object characterisation, and the robustness in a wide range of scenarios.

#### 7.3.6 Classification

This is an element that will form part of the future development of the project. At present, a selection of behavioural assessments are made with the rich feature set (chapter 6) through separating object types. However there is no determination on *what* the objects are. The rich feature set retained in the output from WISE should be sufficient to enable a start on developing an object classification capability.

#### 7.3.7 Computational performance

The theme throughout the work has focussed on the constraints provided by the UAV application area. These were assumption free, detection of objects in unknown environments without assuming specific movement patterns or texture make up of the objects of interest. The performance envelope of the work is real-time - processing the same or faster of the rate at which frames are received; without the need for a GPU brute-force approach. The work also has aspects of autonomy maintained, with the only input needed being initial parameters to specify the edge linking tolerance. This is usually application specific and does not need constant adaptation.

## 7.4 The research applied in the UAV context

The established path of the research was informed by a set of constraints from the context of Unmanned Aerial Vehicles (UAVs) such as low power and a moving camera. In chapter 1 the intended objectives and workload were outlined. The algorithms that this work has yielded paves the way for the development of application specific improvements to the following areas of UAV operation:

• Reduction of bandwidth

Less volume of video data returned by the UAV to the ground station

Lower data size of the images returned in the data stream.

Send information, not data, back to the ground station.

• Increased image analysis performance and capability

Analysis of high resolution imagery

Fast accurate detection of novelties

Tracking of objects across imagery

Real-time online analysis of the video data (links in with reducing data volume).

• Reduced Operator Load

The imagery sent back to the operator needs to be pre-processed and have novelties or objects identified to limit analysis required by operator.

Autonomous online identification and classification of interesting objects / novelties so that constant supervised input by operators is not necessary is a key requirement.

## 7.5 With reference to the Hypotheses

The original hypotheses stated:

- 1. By combining the benefits of image segmentation with background subtraction, a solution that is capable of detecting static and moving objects in real-time should be possible.
- 2. Removing assumptions on detections will mean that the algorithms will detect all object transitions in an image. It is therefore reasonable to predict that the algorithm will be able to operate irrespective of the camera motion.

- 3. Once the objects are detected in an image, with the number of features available, it should be possible to type each object based on their features (cluster each object). The type association may not correlate with human differentiation of objects due to the underlying features that are being clustered.
- 4. The algorithms should allow for a feedback mechanism such that a higher semantic reasoning section can adapt or tune a previous layer based on detection and identification objectives.

The hypotheses were based on knowledge of the field, life experience and with the knowledge that nature has had a robust vision system for animals in place for Aeons. Some of the hypotheses were able to be answered completely by the research whilst some were only partially shown. The algorithm separately detects objects, and then restores motion to each object to provide temporal information and achieves this in a real-time manner. The realisation of a visual feedback method was not able to be shown, however a framework has been laid out for future work to explore the possibility. The ability to clearly distinguish between types of objects that have been detected was partially realised through the research shown in 6, where the clustering of object features separates the object types. Additionally the CEDAS algorithm is able to track the changes of the object features whilst maintaining an appreciation of the object is still identified as the same object as previous merely with a different feature set.

### 7.6 Further work

The exploration of a model of the human vision system has led to a new technique that operates in real-time and detects objects in a video sequence without the assumption of any object features. There are many desirable extensions to the work that were out with the time scale of the project. A real-world velocity calculation capability was discussed using the 3D affine transform of optical flow, and also scope for relative trajectories - even with a 2D frame (having the degrees of freedom for each object could allow 3D inference of the environment). There is also further validation work to be done with the object characterisation and behaviour analysis. The usage of online clustering for the behaviour analysis also lends itself to tracking objects through a scene. Given the feature set and the characterisation, the online clustering method could be used to track not just objects, but also the evolution of objects as their characteristics change in the environment - for example texture changes based on changes in illumination, or changes in object dimensions like the unfurling of a missile platform. The

research was able to establish a framework for the future development of a feedback system which would remove the need for manual setting of the WISE parameters. The idea is that the parameters can be autonomously tuned based on the criteria or requirements of another module - feature extraction for example. The input criteria might be, for example, to refine the detections to a person with a red jacket. The system could have an autonomous component that took this feedback information and adapted the parameters of the algorithms in an autonomous fashion. There is also scope for further research into the human eye replication concept. The methodology followed in this thesis was based on work that theorises about how the eye system works. The theories have allowed for a level of replication in the computer vision world, however there may be more definitive ways to demonstrate that the separation of object detection and motion is the correct theory to apply for human replication. In association with this, one area the research did not explore was the effect of shadows in a scene. The human vision system is able to detect objects, and motion, and also separate out shadows from actual objects. This provides for challenging future questions on how to handle shadows, and how the human system manages to cope with them. Is it a simple case of learned experience such that the system ignores shadows when one is perceived? Or is there a component within the vision system that specifically handles shadows?

## References

- [1] Amir Abarghouei, Afshin Ghanizadeh, and Siti Mariyam Shamsuddin. Advances of Soft Computing Methods in Edge Detection. *International Journal of Advances in Soft Computing and its Applications*, 1(2):162–203, 2009.
- [2] A Alahi, R Ortiz, and P Vandergheynst. FREAK: Fast Retina Keypoint. In *Computer Vision and Pattern Recognition (CVPR)*, 2012 IEEE Conference on, pages 510–517, 2012. ISBN 1063-6919. doi: 10.1109/CVPR.2012.6247715.
- [3] Sharon Alpert, Meirav Galun, Achi Brandt, and Ronen Basri. Image segmentation by probabilistic bottom-up aggregation and cue integration. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 34(2):315–327, 2012. ISSN 01628828. doi: 10.1109/TPAMI.2011.130.
- [4] P Angelov and X Zhou. Evolving Fuzzy-Rule Based Classifiers From Data Streams. *IEEE Transactions on Fuzzy Systems*, 16(6):1462–1474, 2008. ISSN 1063-6706. doi: 10.1109/TFUZZ.2008.925904.
- [5] Plamen Angelov. Autonomous learning systems: from data streams to knowledge in real-time / Plamen Angelov. John Wiley & Sons Ltd., 2012.
- [6] Plamen Angelov, Ramin Ramezani, and Xiaowei Zhou. Autonomous novelty detection and object tracking in video streams using evolving clustering and Takagi-Sugeno type neuro-fuzzy system. In *Proceedings of the International Joint Conference on Neural Networks*, pages 1456–1463, 2008. ISBN 9781424418213. doi: 10.1109/ IJCNN.2008.4633989.
- [7] Plamen Angelov, Pouria Sadeghi-Tehran, and Ramin Ramezani. An approach to automatic real-time novelty detection, object identification, and tracking in video streams based on recursive density estimation and evolving Takagi-Sugeno fuzzy systems. *International Journal of Intelligent Systems*, 26(3):189–205, 2011. doi: 10.1002/int.20462.
- [8] Plamen Angelov, Pouria Sadeghi-Tehran, and Christopher Clarke. AURORA: autonomous real-time on-board video analytics, 2016. ISSN 09410643.
- [9] Sebastian Anthony. DARPA shows off 1.8-gigapixel surveillance drone, can spot а terrorist from 20,000 feet. Extreme 2013. https://www.extremetech.com/extreme/ Tech. page 1, URL 146909-darpa-shows-off-1-8-gigapixel-surveillance-drone-can-spot-a-terrorist-from-20000-feet.

- [10] Pablo Arbeláez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and hierarchical image segmentation. *IEEE Transactions on Pattern Analysis* and Machine Intelligence, 33(5):898–916, 2011. ISSN 01628828. doi: 10.1109/ TPAMI.2010.161.
- [11] Christian Balkenius. Natural Intelligence For Autonomous Agents. *Halmstad University*, pages 181–196, 1994.
- [12] O Barnich and M Van Droogenbroeck. ViBE: A powerful random technique to estimate the background in video sequences. In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, pages 945–948, 2009. ISBN 1520-6149. doi: 10.1109/ICASSP.2009.4959741.
- [13] Alper Baştürk and Enis Günay. Efficient edge detection in digital images using a cellular neural network optimized by differential evolution algorithm. *Expert Systems with Applications*, 36(2 PART 2):2645–2650, 2009. ISSN 09574174. doi: 10.1016/j. eswa.2008.01.082.
- [14] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-Up Robust Features (SURF). *Computer Vision and Image Understanding*, 110(3):346–359, 2008. doi: http://dx.doi.org/10.1016/j.cviu.2007.09.014. URL http://www.sciencedirect. com/science/article/pii/S1077314207001555.
- [15] Jr Bergen, P Anandan, K Hanna, and R Hingorani. Hierarchical modelbased motion estimation. *Computer Vision ECCV 1992*, 588:237–252, 1992. doi: 10.1007/3-540-55426-2\_27. URL http://www.springerlink.com/index/ FM3672W48668LT05.pdf\$\delimiter"026E30F\$nhttp://link.springer.com/chapter/ 10.1007/3-540-55426-2{\_}27.
- [16] Luca Bertelli, Baris Sumengen, B. S. Manjunath, and Frédéric Gibou. A variational framework for multiregion pairwise-similarity-based image segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(8):1400–1414, 2008. ISSN 01628828. doi: 10.1109/TPAMI.2007.70785.
- [17] Suchendra M. Bhandarkar, Yiqing Zhang, and Walter D. Potter. An edge detection technique using genetic algorithm-based optimization. *Pattern Recognition*, 27(9): 1159–1180, 1994. ISSN 00313203. doi: 10.1016/0031-3203(94)90003-5.
- [18] Irving Biederman. Recognition by components: A theory of human image understanding. *Psychological Review*, 94(2):115–117, 1987. ISSN 0033-295X. doi: 10.1037/0033-295X.94.2.115.
- [19] J Bigun and G H Granlund. Optimal Orientation Detection of Linear Symmetry. *Proceedings of the IEEE First International Conference on Computer Vision*, 54: 433–438, 1987.
- [20] Zachary Davies Boren. There are officially more mobile devices than people in the world. *The Independent*, page 1, 2014. URL http://www.independent.co.uk/life-style/gadgets-and-tech/news/ there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html.

- [21] Thomas Brox and Jitendra Malik. Object Segmentation by Long Term Analysis of Pont Trajectories. *Eccv 2010*, pages 282–295, 2010. ISSN 03029743. doi: 10.1007/978-3-642-15555-0\_21.
- [22] U Büttner and A Straube. Ego- and object-motion perception: Where does it take place? *Behavioral and Brain Sciences*, 17(02):316–317, 1994.
- [23] J Canny. A computational approach to edge detection. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 8(6):679–698, 1986. ISSN 0162-8828. doi: 10.1109/TPAMI.1986.4767851.
- [24] V Caselles, L Garrido, and L Igual. A Contrast Invariant Approach to Motion Estimation. Scale Space and PDE Methods in Computer Vision SE - 21, 3459:242– 253, 2005. doi: 10.1007/11408031\_21.
- [25] B Catanzaro, B Y Su, N Sundaram, Y Lee, M Murphy, and K Keutzer. Efficient, high-quality image contour detection. 2009 IEEE 12th International Conference on Computer Vision, pages 2381–2388, 2009. ISSN 1550-5499. doi: 10.1109/ICCV. 2009.5459410.
- [26] Q. Chen, L. Zhao, J. Lu, G. Kuang, N. Wang, and Y. Jiang. Modified two-dimensional Otsu image segmentation algorithm and fast realisation. *IET Image Processing*, 6(4): 426, 2012. ISSN 17519659. doi: 10.1049/iet-ipr.2010.0078.
- [27] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space analysis. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(5): 603–619, 2002. ISSN 01628828. doi: 10.1109/34.1000236.
- [28] Nancy J. Cooke, Jamie Christopher Gorman, Jasmine L. Duran, and Amanda R. Taylor. Team cognition in experienced command-and-control teams. *Journal of Experimental Psychology: Applied*, 13(3):146–57, 2007. ISSN 1076-898X. doi: 10.1037/1076-898X.13.3.146. URL http://www.ncbi.nlm.nih.gov/pubmed/17924800.
- [29] Marco Cristani and Vittorio Murino. A spatial sampling mechanism for effective background subtraction. In Alpesh Ranchordas, Helder Araújo, and Jordi Vitrià, editors, VISAPP (2), pages 403–412. INSTICC - Institute for Systems and Technologies of Information, Control and Communication, 2007. ISBN 978-972-8865-74-0. URL http://dblp.uni-trier.de/db/conf/visapp/visapp2007-2.html{#}CristaniM07.
- [30] John G Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. *Journal of the Optical Society of America. A, Optics and image science*, 2(7):1160–1169, 1985. ISSN 1084-7529. doi: 10.1364/JOSAA.2.001160.
- [31] Glade David. Unmanned Aerial Vehicles: Implications for Military Operations. Occasional Paper, Center for Strategy and Technology, 1(16):1–27, 2000.
- [32] Torgeir Dingsoyr, Sridhar Nerur, Venugopal Balijepally, and Nils Brede Moe. A decade of agile methodologies: Towards explaining agile software development. *Journal of Systems and Software*, 85(6):1213–1221, 2012. ISSN 01641212. doi: 10.1016/j.jss.2012.02.033.

- [33] Piotr Dollár and C. Lawrence Zitnick. Fast Edge Detection Using Structured Forests. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 37 (8):1558–1570, 2014. ISSN 0162-8828. doi: 10.1109/TPAMI.2014.2377715. URL http://arxiv.org/abs/1406.5549\$\delimiter"026E30F\$nhttp://ieeexplore.ieee.org/ lpdocs/epic03/wrapper.htm?arnumber=6975234.
- [34] Piotr Dollár, Zhuowen Tu, and Serge Belongie. Supervised learning of edges and object boundaries. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, volume 2, pages 1964–1971, 2006. ISBN 0769525970. doi: 10.1109/CVPR.2006.298.
- [35] Michael Donoser, Martin Urschler, Martin Hirzer, and Horst Bischof. Saliency driven total variation segmentation. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 817–824, 2009. ISBN 9781424444205. doi: 10.1109/ICCV. 2009.5459296.
- [36] Elan Dubrofsky. Homography Estimation. Optical Engineering, 15:977, 2009. ISSN 0091-3286. doi: 10.1117/1.3364071. URL http://link.aip.org/link/OPEGAR/v49/i3/p037202/s1{&}Agg=doi.
- [37] A Elgammal, R Duraiswami, D Harwood, and L S Davis. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. *Proceedings of the IEEE*, 90(7):1151–1163, 2002. doi: 10.1109/JPROC.2002.801448.
- [38] J. Elston, E. Frew, and B. Argrow. Networked UAV command, control and communication. In *Collection of Technical Papers - AIAA Guidance, Navigation, and Control Conference 2006*, volume 5, pages 3357–3365, 2006. ISBN 1563478196 | 9781563478192.
- [39] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image segmentation. *International Journal of Computer Vision*, 59(2):167–181, 2004. ISSN 09205691. doi: 10.1023/B:VISI.0000022288.19776.77.
- [40] Rob Fergus, Yair Weiss, and Antonio Torralba. Semi-Supervised Learning in Gigantic Image Collections. *Nips*, pages 522–530, 2009. URL http://cs.nyu.edu/{~}fergus/ pmwiki/pmwiki.php?n=PmWiki.Publications???
- [41] Martin A. Fischler and Robert C. Bolles. Random sample consensus. *Communications of the ACM*, 24(6):381–395, 1981. ISSN 00010782. doi: 10.1145/358669.358692.
  URL http://dl.acm.org/citation.cfm?id=358669.358692.
- [42] D. V. Forrest. Understanding Intelligence. American Journal of Psychiatry, 157(12): 2074–2075, 2000. ISSN 0002953X. doi: 10.1176/appi.ajp.157.12.2074.
- [43] Dieter Fox, Wolfram Burgard, Hannes Kruppa, and Sebastian Thrun. Probabilistic approach to collaborative multi-robot localization. *Autonomous Robots*, 8(3):325–344, 2000. ISSN 09295593. doi: 10.1023/A:1008937911390.
- [44] William T. Freeman and Craig D. Weissman. Television Control by Hand Gestures. Proceedings of the International Workshop on Automatic Face and Gesture Recognition, pages 179–183, 1995. doi: 10.1.1.152.8786. URL http://citeseerx.ist.psu.edu/ viewdoc/download?doi=10.1.1.152.8786{&}rep=rep1{&}type=pdf.

- [45] Juergen Gall and Victor Lempitsky. Class-specific hough forests for object detection. In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009, pages 1022–1029, 2009. ISBN 9781424439935. doi: 10.1109/CVPRW.2009.5206740.
- [46] Meirav Galun and Eitan Sharon. Texture segmentation by multiscale aggregation of filter responses and shape elements. *Proceedings Ninth IEEE International Conference* on Computer Vision, M(Iccv):716–723 vol.1, 2003. doi: 10.1109/ICCV.2003.1238418. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1238418.
- [47] D M Gavrila. Pedestrian Detection from a Moving Vehicle. ECCV European Conference on Computer Vision, 2:37–49, 2000. ISSN 16113349. doi: 10.1007/ 3-540-45053-X-3. URL http://www.springerlink.com/index/TCLR58FUL1FUP0LL. pdf.
- [48] Stephen Gould, Tianshi Gao, and Daphne Koller. Region-based segmentation and object detection. Advances in Neural Information Processing Systems (NIPS), 22:1–9, 2009. ISSN <null>.
- [49] Shweta Gupte, Paul Infant Teenu Mohandas, and James M. Conrad. A survey of quadrotor unmanned aerial vehicles. In *Conference Proceedings - IEEE SOUTHEAST-CON*, 2012. ISBN 9781467313742. doi: 10.1109/SECon.2012.6196930.
- [50] Isabelle Guyon and André Elisseeff. An Introduction to Feature Extraction, volume 207. 2006. ISBN 978-3-540-35487-1. doi: 10.1007/ 978-3-540-35488-8. URL http://www.springerlink.com/content/j847w74269401u31/ \$\delimiter"026E30F\$nhttp://link.springer.com/10.1007/978-3-540-35488-8.
- [51] Chris Harris and Mike Stephens. A Combined Corner and Edge Detector. *Proceedings of the Alvey Vision Conference 1988*, pages 147–151, 1988. ISSN 09639292. doi: 10.5244/C.2.23. URL http://www.bmva.org/bmvc/1988/avc-88-023.html.
- [52] M Heikkila and M Pietikainen. A texture-based method for modeling the background and detecting moving objects. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 28(4):657–662, 2006. doi: 10.1109/TPAMI.2006.68.
- [53] Ray Hidayat and Richard Green. Real-time texture boundary detection from ridges in the standard deviation space. *Proceedings of the British Machine Vision Conference* 2009, pages 5.1–5.10, 2009. doi: 10.5244/C.23.5. URL http://www.bmva.org/bmvc/ 2009/Papers/Paper182/Paper182.html.
- [54] Derek Hoiem, Alexei a. Efros, and Martial Hebert. Putting objects in perspective. *International Journal of Computer Vision*, 80(1):3–15, 2008. ISSN 09205691. doi: 10.1007/s11263-008-0137-5.
- [55] Berthold K Horn and Brian G Schunck. Determining Optical Flow. Artificial Intelligence, 17:185–203, 1981.
- [56] Berthold K P Horn. Robot Vision. *Robot Vision*, 4931:509, 1986. doi: 10.1007/ 978-3-540-78157-8. URL http://www.amazon.com/dp/0262081598.

- [57] Richard Hyde and Plamen Angelov. A fully autonomous Data Density based Clustering technique. In IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - EALS 2014: 2014 IEEE Symposium on Evolving and Autonomous Learning Systems, Proceedings, pages 116–123, 2014. ISBN 9781479944958. doi: 10.1109/EALS.2014.7009512.
- [58] Ramesh Jain, Rangachar Kasturi, and Brian G. Schunck. Machine Vision. In *Image Processing*, pages 2,12–16, 1995. ISBN 978-0070320185. URL http://www.cse.usf.edu/{~}r1k/MachineVisionBook/MachineVision.pdf.
- [59] O. Javed, K. Shafique, and M. Shah. A hierarchical approach to robust background subtraction using color and gradient information. In *Proceedings - Workshop on Motion and Video Computing, MOTION 2002*, pages 22–27, 2002. ISBN 0769518605. doi: 10.1109/MOTION.2002.1182209.
- [60] Jianbo Shi and C. Tomasi. Good features to track. In *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition CVPR-94*, pages 593–600, 1994. ISBN 0-8186-5825-8. doi: 10.1109/CVPR.1994.323794. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=323794.
- [61] P; Bowden KaewTraKulPong R. An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection. In *2nd European Workshop on Advanced Video Based Surveillance Systems*, volume 1, 2001.
- [62] Yan Ke Yan Ke and R. Sukthankar. PCA-SIFT: a more distinctive representation for local image descriptors. *Proceedings of the 2004 IEEE Computer Society Conference* on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 2:2–9, 2004. ISSN 1063-6919. doi: 10.1109/CVPR.2004.1315206.
- [63] Hina Keval and Martina Angela Sasse. "Not the Usual Suspects": A study of factors reducing the effectiveness of CCTV. *Security Journal*, 23(2):134–154, 2010. ISSN 0955-1662. doi: 10.1057/palgrave.sj.8350092. URL http://link.springer.com/10.1057/ palgrave.sj.8350092.
- [64] R. Keys. Cubic convolution interpolation for digital image processing. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 29(6):1153–1160, 1981. ISSN 0096-3518. doi: 10.1109/TASSP.1981.1163711.
- [65] Dong Su Kim, Wang Heon Lee, and In So Kweon. Automatic edge detection using 3 ??
  3 ideal binary pixel patterns and fuzzy-based edge thresholding. *Pattern Recognition Letters*, 25(1):101–106, 2004. ISSN 01678655. doi: 10.1016/j.patrec.2003.09.010.
- [66] Laszlo B. Kish. End of Moore's law: Thermal (noise) death of integration in micro and nano electronics. *Physics Letters, Section A: General, Atomic and Solid State Physics*, 305(3-4):144–149, 2002. ISSN 03759601. doi: 10.1016/S0375-9601(02)01365-8.
- [67] Hans Knutsson. Representing local structure using tensors. Proceedings of 6th Scandinavian Conference on Image Analysis, pages 244–251, 1989. doi: 10.1007/ 978-3-642-21227-7\_51.

- [68] WengKin Lai and ImranM. Khan. An Improved Particle Swarm Optimisation for Image Segmentation of Homogeneous Images. *PRICAI 2012: Trends in Artificial Intelligence SE - 21*, 7458:218–228, 2012. doi: 10.1007/978-3-642-32695-0\_21.
- [69] Christoph H. Lampert, Matthew B. Blaschko, and Thomas Hofmann. Beyond sliding windows: Object localization by efficient subwindow search. In 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2008. ISBN 9781424422432. doi: 10.1109/CVPR.2008.4587586.
- [70] Bastian Leibe, Aleš Leonardis, and Bernt Schiele. Robust object detection with interleaved categorization and segmentation. *International Journal of Computer Vision*, 77(1-3):259–289, 2008. ISSN 09205691. doi: 10.1007/s11263-007-0095-3.
- [71] Victor Lempitsky, Andrew Blake, and Carsten Rother. Image Segmentation by Branchand-Mincut. *Computer Vision – ECCV 2008*, 5305:15–29, 2008. ISSN 03029743. doi: 10.1007/978-3-540-88693-8\_2.
- [72] Brian Leninger, Jonathan Edwards, John ANTONIADES, David Chester, Dan Haas, Eric LIU, Mark STEVENS, Charlie Gershfield, Mike BRAUN, James D. TARGOVE, Steve Wein, Paul BREWER, Donald G. MADDEN, Khurram Hassan Shafique, and Brian LEININGER. Autonomous Real-time Ground Ubiquitous Surveillance : Imaging System (ARGUS-IS). In *Proceedings of SPIE, the International Society for Optical Engineering*, pages 69810H.1–69810H.11, 2008. ISBN 978-0-8194-7172-7. doi: 10.1117/12.784724. URL http://cat.inist.fr/?aModele=afficheN{&}cpsidt= 20931895\$\delimiter"026E30F\$nhttp://www.darpa.mil/uploadedImages/Content/ Our{\_}Work/I2O/Programs/Autonomous{\_}Real-time{\_}Ground/Images/full/ ARGUS{\_}Mission14{\_}Poster{\_}12-06-0920(rev1)[1].JPG.
- [73] Vincent Lepetit and Pascal Fua. Keypoint recognition using randomized trees. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(9):1465–1479, 2006.
  ISSN 01628828. doi: 10.1109/TPAMI.2006.188.
- [74] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. BRISK: Binary Robust invariant scalable keypoints. In *Proceedings of the IEEE International Conference* on Computer Vision, pages 2548–2555, 2011. ISBN 9781457711015. doi: 10.1109/ ICCV.2011.6126542.
- [75] Yonghong Li and Curt H. Davis. Pixel-based invariant feature extraction and its application to radiometric co-registration for multi-temporal high-resolution satellite imagery. In *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, volume 4, pages 348–360, 2011. ISBN 1939-1404. doi: 10.1109/ JSTARS.2010.2062490.
- [76] Joseph J. Lim, C. Lawrence Zitnick, and Piotr Dollar. Sketch tokens: A learned mid-level representation for contour and object detection. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, pages 3158–3165, 2013. ISBN 978-0-7695-4989-7. doi: 10.1109/CVPR.2013.406.
- [77] Yang Liu, Rong Feng, and Hong Zhang. Keypoint matching by outlier pruning with consensus constraint. In *Proceedings IEEE International Conference on Robotics*

*and Automation*, volume 2015-June, pages 5481–5486, 2015. ISBN 9781479969227. doi: 10.1109/ICRA.2015.7139965.

- [78] David G. Lowe. Distinctive image features from scale-invariant keypoints. *Inter-national Journal of Computer Vision*, 60(2):91–110, 2004. ISSN 09205691. doi: 10.1023/B:VISI.0000029664.99615.94.
- [79] De-Sian Lu and Chien-Chang Chen. Edge detection improvement by ant colony optimization. *Pattern Recognition Letters*, 29(4):416–425, 2008. ISSN 01678655. doi: 10.1016/j.patrec.2007.10.021.
- [80] Zhong-Lin Lu and George Sperling. The functional architecture of human visual motion perception. *Vision Research*, 35(19):2697–2722, 1995. doi: http://dx.doi.org/ 10.1016/0042-6989(95)00025-U. URL http://www.sciencedirect.com/science/article/ pii/004269899500025U.
- [81] Bruce D Lucas and Takeo Kanade. An iterative image registration technique with an application to stereo vision. *IJCAI*, 81:674–679, 1981.
- [82] Yvonne Hsu Lin Luo and Lyndon da Cruz. The Argus® II Retinal Prosthesis System, 2016. ISSN 18731635.
- [83] C.A. Mack. Fifty Years of Moore's Law. IEEE Transactions on Semiconductor Manufacturing, 24(2):202 – 207, 2011. ISSN 0894-6507. doi: 10.1109/TSM.2010. 2096437. URL http://ieeexplore.ieee.org/xpls/abs{\_}all.jsp?arnumber=5696765.
- [84] Jitendra Malik, Serge Belongie, Thomas K. Leung, and Jianbo Shi. Contour and Texture Analysis for Image Segmentation. *International Journal of Computer Vision*, 43(1):7–27, 2001. ISSN 0920-5691. doi: 10.1023/A:1011174803800. URL http: //citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.1476.
- [85] S. Marčelja. Mathematical description of the responses of simple cortical cells\*. Journal of the Optical Society of America, 70(11):1297, 1980. ISSN 0030-3941. doi: 10.1364/JOSA.70.001297. URL http://www. osapublishing.org/abstract.cfm?uri=josa-70-11-1297\$\delimiter"026E30F\$nhttps: //www.osapublishing.org/josa/abstract.cfm?uri=josa-70-11-1297.
- [86] D Marr and E Hildreth. Theory of Edge Detection. *Proceedings of the Royal Society of London B: Biological Sciences*, 207(1167):187–217, 1980. ISSN 0080-4649. doi: 10.1098/rspb.1980.0020. URL http://rspb.royalsocietypublishing.org/content/207/1167/187.
- [87] Matthew I. McCartney, Saleh Zein Sabato, and Mohan Malkani. Image registration for sequence of visual images captured by UAV. In 2009 IEEE Symposium Computational Intelligence for Multimedia Signal and Vision Processing, CIMSVP 2009 - Proceedings, pages 91–97, 2009. ISBN 9781424427710. doi: 10.1109/CIMSVP.2009.4925653.
- [88] R. Mehrotra, K. R. Namuduri, and N. Ranganathan. Gabor filter-based edge detection. *Pattern Recognition*, 25(12):1479–1494, 1992. ISSN 00313203. doi: 10.1016/ 0031-3203(92)90121-X.

- [89] Ajmal S Mian, Mohammed Bennamoun, Robyn Owens, A S Mian, M Bennamoun, · R Owens, and R Owens. Keypoint Detection and Local Feature Matching for Textured 3D Face Recognition. *Int J Comput Vis*, 79:1–12, 2008. ISSN 0920-5691. doi: 10.1007/s11263-007-0085-5.
- [90] Richa Mishra. Fingerprint Recognition using Robust Local Features. *International Journal of Advanced Research in Computer Science and Software Engineering*, 2(6): 2277–128, 2012.
- [91] B B Misra and S Dehuri. Functional link artificial neural network for classification task in data mining. *Journal of Computer Science*, 3(12):948, 2007.
- [92] Nabil Mohammed, Ali Munassar, and A Govardhan. A Comparison Between Five Models Of Software Engineering. *International Journal of Computer Science*, 7(5): 94–101, 2010. ISSN 09736107. doi: 10.1.1.403.3201.
- [93] Gordon E. Moore. Cramming more components onto integrated circuits. *Proceedings* of the IEEE, 86(1):82–85, 1998. ISSN 00189219. doi: 10.1109/JPROC.1998.658762.
- [94] Hans Moravec. Towards automatic visual obstacle avoidance. In Proceedings of the 5th International Joint Conference on Artificial Intelligence, volume 2, pages 584–584, 1977. doi: 10.1007/SpringerReference\_40189. URL http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle: TOWARDS+AUTOMATIC+VISUAL+OBSTACLE+AVOIDANCE{#}0.
- [95] Hans Peter Moravec. Obstacle avoidance and navigation in the real world by a seeing robot rover. *tech. report CMU-RI-TR-80-03*, page 175, 1980. doi: ADA092604. URL https://www.ri.cmu.edu/publication{\_}view.html?pub{\_}id=22.
- [96] Gruffydd Morris. Dashboard video sequence, 2014. URL https://www.youtube.com/ watch?v=e0U95V3ydmM.
- [97] Gruffydd Morris and Plamen Angelov. Real-time novelty detection in video using background subtraction techniques: State of the art a practical review. 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2014-Janua(January): 537–543, 2014. ISSN 1062922X. doi: 10.1109/SMC.2014.6973963. URL http://www. scopus.com/inward/record.url?eid=2-s2.0-84938058193{&}partnerID=tZOtx3y1.
- [98] Gruffydd Morris and Plamen Angelov. Edge Flow. Systems, Man and Cybernetics (SMC), 2015 IEEE International Conference on, 1(1):200–208, 2015.
- [99] Philip Morrison, John Billingham, and John Wolfe. The search for extraterrestrial intelligence-SETI, 1979. ISSN 00945765.
- [100] Jim Mutch and David G. Lowe. Multiclass object recognition with sparse, localized features. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, volume 1, pages 11–18, 2006. ISBN 0769525970. doi: 10.1109/CVPR.2006.200.
- [101] R Muthukrishnan and M Radha. Edge Detection Techniques for Image Segmentation. International Journal of Computer Science & Information Technology, 3(6):259–267, 2011. doi: 10.5121/ijcsit.2011.3620.

- [102] H. P. Narkhede. Review of Image Segmentation Techniques. *International Journal of Science and Modern Engineering*, pages 2319–6386, 2013.
- [103] Kenzo Nonami, Farid Kendoul, Satoshi Suzuki, Wei Wang, and Daisuke Nakazawa. Autonomous flying robots: Unmanned aerial vehicles and micro aerial vehicles. 2010. ISBN 9784431538554. doi: 10.1007/978-4-431-53856-1.
- [104] W.D. Nordhaus. The progress of computing. *papers.ssrn.com*, pages 1–45, 2001. URL http://papers.ssrn.com/sol3/papers.cfm?abstract{\_}id=285168.
- [105] P Noriega and O Bernier. Real Time Illumination Invariant Background Subtraction using Local Kernel Histograms. In M; Fisher Chantler B; Trucco, M;, editor, *British Machine Conference*, pages 100.1–100.10, 2006.
- [106] Andreas Opelt, Axel Pinz, and Andrew Zisserman. Learning an alphabet of shape and appearance for multi-class object detection. *International Journal of Computer Vision*, 80(1):16–44, 2008. ISSN 09205691. doi: 10.1007/s11263-008-0139-3.
- [107] Ahmed A. Othman, Hamid R. Tizhoosh, and Farzad Khalvati. EFIS-evolving fuzzy image segmentation. *IEEE Transactions on Fuzzy Systems*, 22(1):72–82, 2014. ISSN 10636706. doi: 10.1109/TFUZZ.2013.2246761.
- [108] Paritosh Pandya. Principles of concurrent and distributed programming, 1991. ISSN 01676423.
- [109] Anestis Papazoglou and Vittorio Ferrari. Fast object segmentation in unconstrained video. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 1777–1784, 2013. ISBN 9781479928392. doi: 10.1109/ICCV.2013.223.
- [110] Karl Pauwels, Matteo Tomasi, Javier Díaz Alonso, Eduardo Ros, and Marc M. Van Hulle. A Comparison of FPGA and GPU for real-time phase-based optical flow, stereo, and local image features. *IEEE Transactions on Computers*, 61(7):999–1012, 2012. ISSN 00189340. doi: 10.1109/TC.2011.120.
- [111] M Piccardi. Background subtraction techniques: a review. Systems, Man and Cybernetics, 2004 IEEE International Conference on, 4:3099–3104, 2004. doi: 10.1109/ICSMC.2004.1400815.
- [112] J Ponce and D Forsyth. Computer vision: a modern approach. 2012. ISBN 9780136085928. doi: 10.1016/j.cbi.2010.05.017. URL http://www.inria.fr/centre/paris-rocquencourt/actualites/computer-vision-a-modern-approach.
- [113] Alessandro Prest, Christian Leistner, Javier Civera, Cordelia Schmid, and Vittorio Ferrari. Learning object class detectors from weakly annotated video. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, pages 3282–3289, 2012. ISBN 9781467312264. doi: 10.1109/CVPR.2012.6248065.
- [114] Jms Prewitt. Object enhancement and extraction. *Picture processing and Psychopictorics*, 10(1):15–19, 1970.

- [115] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv, pages 1–15, 2015. ISSN 0004-6361. doi: 10.1051/0004-6361/201527329. URL http: //arxiv.org/abs/1511.06434.
- [116] R Ramezani, P Angelov, and Z Xiaowei. A fast approach to novelty detection in video streams using recursive density estimation. In *Intelligent Systems, 2008. IS '08. 4th International IEEE Conference*, volume 2, pages 14–17, 2008. doi: 10.1109/IS.2008.4670523.
- [117] Shankar R. Rao, Hossein Mobahi, Allen Y. Yang, S. Shankar Sastry, and Yi Ma. Natural image segmentation with adaptive texture and boundary encoding. In *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, volume 5994 LNCS, pages 135–146, 2010. ISBN 3642123066. doi: 10.1007/978-3-642-12307-8\_13.
- [118] Pudsey Rc. AEE SD23 Magicam FPV Cam on Skywalker FPV, 2013. URL https: //www.youtube.com/watch?v=GV6FPU0U400.
- [119] Xiaofeng Ren and Deva Ramanan. Histograms of sparse codes for object detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 3246–3253, 2013. ISBN 9781424442966. doi: 10.1109/ CVPR.2013.417.
- [120] Ronald A Rensink. CHANGE DETECTION. Annual Review of Psychology, 53(1): 245–277, 2002. doi: 10.1146/annurev.psych.53.100901.135125. URL http://dx.doi. org/10.1146/annurev.psych.53.100901.135125.
- [121] Lawrence GIlman Roberts. Machine perception of three-dimensional solids. In *PhD Thesis*, pages 159–197. 1965. ISBN 0-8240-4427-4. URL http://oai.dtic.mil/oai/oai?verb=getRecord{&}metadataPrefix=html{&}identifier=AD0413529.
- [122] AZRIEL ROSENFELD. Readings in Computer Vision. 1987. ISBN 9780080515816. doi: 10.1016/B978-0-08-051581-6.50006-4. URL http://www.sciencedirect.com/ science/article/pii/B9780080515816500064.
- [123] Richard M Russell. The CRAY-1 Computer System. Proc. Comm. ACM Computer Proc. WJCC Comm. ACM McCarthy, J. Time Sharing Computer Systems Pt. I, AFIPS Press N.J. N.J. N.J, 36(12):657–675, 1971. ISSN 00010782. doi: 10.1145/359327. 359336.
- [124] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 2010. ISBN 0137903952. doi: 10.1017/S0269888900007724. URL http://amazon.de/o/ ASIN/0130803022/.
- [125] P Sadeghi-Tehran and P Angelov. A real-time approach for novelty detection and trajectories analysis for anomaly recognition in video surveillance systems. In *Evolving* and Adaptive Intelligent Systems (EAIS), 2012 IEEE Conference on, pages 108–113, 2012. doi: 10.1109/EAIS.2012.6232814.

- [126] P Sadeghi-Tehran and P Angelov. ARTOD: Autonomous Real Time Objects Detection by a Moving Camera using Recursive Density Estimation. *Novel Applications of Intelligent Systems*, 586(1), 2014.
- [127] Georgia Sandbach, Stefanos Zafeiriou, Maja Pantic, and Lijun Yin. Static and dynamic 3D facial expression recognition: A comprehensive survey. *Image and Vision Computing*, 30(10):683–697, 2012. ISSN 02628856. doi: 10.1016/j.imavis.2012.06.005.
- [128] Rob Schneiderman. Unmanned drones are flying high in the military/aerospace sector [Special Report]. *IEEE Signal Processing Magazine*, 29(1):8–11, 2012. ISSN 10535888. doi: 10.1109/MSP.2011.943127.
- [129] M J Schoelles and W D Gray. Argus: a suite of tools for research in complex cognition. Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc, 33(2):130–40, 2001. ISSN 0743-3808. doi: 10.3758/BF03195358. URL http://www.ncbi.nlm.nih.gov/pubmed/11447665.
- [130] Kang G. Shin and Parameswaran Ramanathan. Real-Time Computing: A New Discipline of Computer Science and Engineering. *Proceedings of the IEEE*, 82(1): 6–24, 1994. ISSN 15582256. doi: 10.1109/5.259423.
- [131] Xin Shuai Xin Shuai, Chao Zhang Chao Zhang, and Pengwei Hao Pengwei Hao. Fingerprint indexing based on composite set of reduced SIFT features. 2008 19th International Conference on Pattern Recognition, pages 1–4, 2008. ISSN 1051-4651. doi: 10.1109/ICPR.2008.4761873.
- [132] Tom Simonite. Moore's Law Is Dead. Now What? *MIT Tecnology Review*, 2016. URL https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/.
- [133] Gavin J D Smith. Behind the Screens : Examining Constructions of Deviance and Informal Practices among CCTV Control Room Operators in the UK. Surveillance & Society, 2(2/3):376–395, 2004. ISSN 14777487.
- [134] Sm Smith and Jm Brady. SUSAN—a new approach to low level image processing. *International journal of computer vision*, 23(1):45–78, 1997. ISSN 1573-1405. doi: 10.1023/A:1007963824710. URL http://link.springer.com/article/10.1023/A: 1007963824710.
- [135] I Sobel and G Feldman. A 3x3 isotropic gradient operator for image processing. *Pattern Classification and Scene Analysis*, 1(1):271–272, 1973.
- [136] John A. Stankovic. A Serious Problem for Next-Generation Systems. *Computer*, 21 (10):10–19, 1988. ISSN 00189162. doi: 10.1109/2.7053.
- [137] Chris Stauffer and W E L Grimson. Adaptive background mixture models for real-time tracking. *Computer Vision and Pattern Recognition*, 1999. IEEE Computer Society Conference on., 2:246–252, 1999. doi: 10.1109/CVPR.1999.784637.
- [138] Luc Steels. When are robots intelligent autonomous agents? *Robotics and Autonomous Systems*, 15(1-2):3–9, 1995. ISSN 09218890. doi: 10.1016/0921-8890(95)00011-4.

- [139] Genyun Sun, Qinhuo Liu, Qiang Liu, Changyuan Ji, and Xiaowen Li. A novel approach for edge detection based on the theory of universal gravity. *Pattern Recognition*, 40(10):2766–2775, 2007. ISSN 00313203. doi: 10.1016/j.patcog.2007.01.006.
- [140] M Tabb and N Ahuja. Multiscale image segmentation by integrated edge and region detection. *IEEE transactions on image processing : a publication of the IEEE Signal Processing Society*, 6(1):642–55, 1997. ISSN 1057-7149. doi: 10.1109/83.568922.
- [141] Shen-Chuan Tai and Shih-Ming Yang. A fast method for image noise estimation using Laplacian operator and adaptive edge detection. 2008 3rd International Symposium on Communications, Control and Signal Processing, (March):1077–1081, 2008. doi: 10. 1109/ISCCSP.2008.4537384. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp= {&}arnumber=4537384{&}contentType=Conference+Publications{&}searchField= Search{\_}All{&}queryText=noise+estimation+gradient+image.
- [142] James Temperton. One Nation Under CCTV, 2015. URL http://www.wired.co.uk/ article/one-nation-under-cctv.
- [143] Punam Thakare. A Study of Image Segmentation and Edge Detection Techniques. International Journal on Computer Science and Engineering (IJCSE), 3(2):899–904, 2011.
- [144] Antonio Torralba, Kevin P. Murphy, and William T. Freeman. Contextual models for object detection using boosted random fields. *Advances in Neural Information Processing Systems (NIPS)*, 17:1401–1408, 2005. doi: doi=10.1.1.167.1284.
- [145] Egor Tsinko. *Background Subtraction with a Pan/Tilt Camera*. PhD thesis, British Columbia, IEEE, 2006.
- [146] T Vaudrey, A Wedel, C Rabe, J Klappstein, and R Klette. Evaluation of moving object segmentation comparing 6D-vision and monocular motion constraints. In *Image and Vision Computing New Zealand, 2008. IVCNZ 2008. 23rd International Conference*, pages 1–6, 2008. doi: 10.1109/IVCNZ.2008.4762126.
- [147] Louise A. Wallace and C. Robert Matthews. Sequential vs. parallel protein-folding mechanisms: Experimental tests for complex folding reactions. *Biophysical Chemistry*, 101-102:113–131, 2002. ISSN 03014622. doi: 10.1016/S0301-4622(02)00155-2.
- [148] Mike Warner. Police Chase Harley, 2011. URL https://www.youtube.com/watch?v= W8e-JjJXTU8.
- [149] Andreas Wedel, Clemens Rabe, Tobi Vaudrey, Thomas Brox, Uwe Franke, and Daniel Cremers. *Efficient dense scene flow from sparse or dense stereo data*. Springer, 2008. ISBN 3540886818.
- [150] Andreas Wedel, Thomas Pock, Christopher Zach, Horst Bischof, and Daniel Cremers. An Improved Algorithm for TV-L1 Optical Flow. *Statistical and Geometrical Approaches to Visual Motion Analysis*, 5604(1):23–45, 2009. doi: 10.1007/ 978-3-642-03061-1\_2.

- [151] Juyang Weng, Thomas S Huang, and N Ahuja. 3-D Motion Estimation, Understanding, and Prediction from Noisy Image Sequences. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, PAMI-9(3):370–389, 1987. doi: 10.1109/TPAMI.1987.4767920.
- [152] Alexander H Wertheim. Motion perception: Rights, wrongs and further speculations. *Behavioral and Brain Sciences*, 17(02):340–355, 1994.
- [153] Alexander H. Wertheim. Motion perception during selfmotion: The direct versus inferential controversy revisited. *Behavioral and Brain Sciences*, 17(02):293, 1994. ISSN 0140-525X. doi: 10.1017/S0140525X00034646.
- [154] John Winn and Jamie Shotton. The layout consistent random field for recognizing and segmenting partially occluded objects. In *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, volume 1, pages 37–44, 2006. ISBN 0769525970. doi: 10.1109/CVPR.2006.305.
- [155] Andrew P Witkin. Scale-space filtering. International Joint Conference on Artificial Intelligence, 2:1019–1022, 1983. doi: 10.1109/ICASSP.1984.1172729. URL http: //portal.acm.org/citation.cfm?id=1623607.
- [156] C R Wren, A Azarbayejani, T Darrell, and A P Pentland. Pfinder: real-time tracking of the human body. *Pattern Analysis and Machine Intelligence, IEEE Transactions* on, 19(7):780–785, 1997. doi: 10.1109/34.598236.
- [157] C Zach, T Pock, and H Bischof. A Duality Based Approach for Realtime TV-L 1 Optical Flow. *Pattern Recognition*, 4713:214–223, 2007. doi: 10.1007/ 978-3-540-74936-3\_22.
- [158] Hui Zhang, Jason E. Fritts, and Sally A. Goldman. Image segmentation evaluation: A survey of unsupervised methods. *Computer Vision and Image Understanding*, 110:260–280, 2008. ISSN 1077-3142. doi: 10.1016/j.cviu.2007.08.003. URL http://www.sciencedirect.com/science/article/pii/S1077314207001294\$\ delimiter"026E30F\$nhttp://www.sciencedirect.com/science/article/pii/ S1077314207001294/pdfft?md5=f0d8b20c4a7c9def389b3d0188d348dd{&}pid= 1-s2.0-S1077314207001294-main.pdf.
- [159] Xiaojin Zhu. Semi-Supervised Learning Literature Survey. Sciences-New York, pages 1–59, 2007. ISSN 1520-5126. doi: 10.1.1.146.2352. URL http://citeseerx.ist.psu.edu/ viewdoc/download?doi=10.1.1.146.2352{&}rep=rep1{&}type=pdf.
- [160] Z Zivkovic. Improved adaptive Gaussian mixture model for background subtraction. In *Pattern Recognition*, 2004. ICPR 2004. Proceedings of the 17th International Conference on, volume 2, pages 28–31 Vol.2, 2004. ISBN 1051-4651. doi: 10.1109/ ICPR.2004.1333992.

# **Appendix A**

# **Motion Estimation Experiments**

|            |            |       |              |            |             | Processing Speed (ms) |         |         |                    |
|------------|------------|-------|--------------|------------|-------------|-----------------------|---------|---------|--------------------|
| Experiment | Video      | Frame | NumKeyPoints | NumMatches | Postoutlier | Feature Extraction    | Overall | Match   | Notes              |
| SIFT (4)   | StillBase  | 45    | 1010         | 1010       |             | 171.559               | 278.051 |         |                    |
| SURF (4)   | StillBase  | 45    | 1216         | 1216       |             | 68.226                | 183.793 |         |                    |
| BRISK (4)  | StillBase  | 45    | 816          | 816        |             | 21.0074               | 107.629 |         |                    |
| ORB (4)    | StillBase  | 45    | 500          | 500        |             | 8.31369               | 92.0585 |         |                    |
|            |            |       |              |            |             |                       |         |         |                    |
| SIFT (4)   | Helicopter | 124   | 206          | 206        |             | 120.705               | 200.217 |         |                    |
| SIFT (4)   | Z-axis     | 104   | 1118         | 1118       |             | 255.366               | 402.975 |         |                    |
| SURF (4)   | Helicopter | 124   | 552          | 552        |             | 43.7393               | 125.551 |         |                    |
| SURF (4)   | Z-axis     | 104   | 1551         | 1551       |             | 98.3831               | 261.273 |         |                    |
| BRISK (4)  | Helicopter | 124   | 101          | 101        |             | 6.36801               | 74.9733 |         |                    |
| BRISK (4)  | Z-axis     | 104   | 1269         | 1269       |             | 33.5285               | 170.101 |         |                    |
| ORB (4)    | Helicopter | 124   | 304          | 304        |             | 5.26065               | 78.6608 |         |                    |
| ORB (4)    | Z-axis     | 104   | 500          | 500        |             | 8.31132               | 105.431 |         |                    |
| FLANN      | StillBase  | 45    | 1216         | 1216       |             | 71.8985               | 200.402 | 26.9211 |                    |
| FLANN      | Helicopter | 124   | 552          | 552        |             | 40.4291               | 123.297 | 9.99923 |                    |
| BruteForce | StillBase  | 45    | 1216         | 1216       |             | 64.0866               | 185.151 | 16.0036 |                    |
| BruteForce | Helicopter | 124   | 552          | 552        |             | 45.506                | 123.274 | 5.12633 |                    |
| BruteForce | StillBase  | 45    | 1216         | 890        |             | 71.8152               | 200.873 | 31.7875 | KNN Cross Match    |
| BruteForce | Helicopter | 124   | 552          | 533        |             | 46.56                 | 123.062 | 7.51843 | KNN Cross Match    |
| BruteForce | StillBase  | 45    | 1216         | 979        |             | 64.0486               | 185.619 | 31.8562 | Radius Cross Match |
| BruteForce | Helicopter | 124   | 552          | 544        |             | 45.4203               | 140.106 | 11.5915 | Radius Cross Match |
| Outlier    | StillBase  | 45    | 1216         | 1216       | 974         | 68.008                | 185.218 | 15.9459 |                    |
| Outlier    | Helicopter | 124   | 552          | 552        | 538         | 47.7551               | 123.226 | 5.40879 |                    |
| Homo_Lin   | StillBase  | 45    | 1216         | 1216       |             | 64.1182               | 169.437 | 14.7003 |                    |
| Homo_Lin   | Helicopter | 124   | 552          | 552        |             | 46.7315               | 123.542 | 15.2664 |                    |
| Homo_Cubic | StillBase  | 45    | 1216         | 1216       | 974         | 70.5743               | 186.471 | 16.1015 |                    |
| Homo_Cubio | Helicopter | 124   | 552          | 552        |             | 44.3963               | 123.871 | 16.0411 |                    |
|            |            |       |              |            |             |                       |         |         |                    |
| Homo_Cubio | StillBase  | 200   | 1216         | 1216       | 974         | 70.5743               | 186.471 | 16.1015 |                    |
| Homo_Lin   | StillBase  | 200   | 1216         | 1216       |             | 64.1182               | 169.437 | 14.7003 |                    |

Fig. A.1 Summary results of the experiments conducted with Motion Estimation

# **Appendix B**

# **WISE Performance Analysis**

This section contains a table of results showing the WISE performance over several hundred frames, and the processing time per object
| Parte         No.         No.<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | Helicont | or Video (64 | 0 × 360)          | Avg t | ime per ob | j over all fi | rames:    | 0.029803515       | Standard | Deviation: | 0.00606977 | 0 (1920 × 1 | 1080)             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------------|-------------------|-------|------------|---------------|-----------|-------------------|----------|------------|------------|-------------|-------------------|
| I         No         Description         Sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Frame No | Num Obj  | Time in S    | Time per obj (ms) |       | Frame No   | Num Obj       | Time in S | Time per obj (ms) |          | Frame No   | Num Obj    | Time in S   | Time per obj (ms) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        | 542      | 0.024711     | 0.045592435       |       | 1          | 2272          | 0.090669  | 0.039907262       |          | 1          | 4601       | 0.21079     | 0.045813519       |
| I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2        | 533      | 0.025619     | 0.048065478       |       | 2          | 2051          | 0.065034  | 0.031708532       |          | 2          | 4021       | 0.20715     | 0.05151803        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3        | 533      | 0.022805     | 0.042785178       |       | 3          | 2104          | 0.060556  | 0.028781274       |          | 3          | 4330       | 0.20092     | 0.046401155       |
| Image: Description of the second se | 4        | 541      | 0.024581     | 0.045435675       |       | 4          | 2087          | 0.061/08  | 0.029567897       |          | 4          | 41//       | 0.20645     | 0.049424707       |
| I         MD         Deckle         Deckle <thdeckle< th="">         Deckle         <thdeckle< th=""></thdeckle<></thdeckle<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6        | 537      | 0.023251     | 0.0446            | 1     | 6          | 1972          | 0.055523  | 0.028155527       |          | 6          | 4355       | 0.20847     | 0.043688917       |
| B         SS         Double Model         B         D         SS         Double Model         SS         Double Model         SS         Double Model         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <thd< th="">         D         <thd< th="">         D</thd<></thd<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7        | 567      | 0.024551     | 0.0433            | 1     | 7          | 2022          | 0.054243  | 0.026826261       |          | 7          | 4737       | 0.20437     | 0.043142284       |
| B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8        | 555      | 0.024131     | 0.043479459       |       | 8          | 1880          | 0.053547  | 0.028482447       |          | 8          | 4874       | 0.20883     | 0.042845917       |
| 11         10         000         0.000000         11         10         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9        | 556      | 0.023366     | 0.042025          |       | 9          | 1848          | 0.053251  | 0.02881553        |          | 9          | 5117       | 0.21175     | 0.041381278       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10       | 554      | 0.025325     | 0.045712996       | -     | 10         | 1750          | 0.051142  | 0.029223/14       |          | 10         | 5061       | 0.20744     | 0.040988342       |
| 11         195         0.0776         0.087970         11         197         0.0776         0.087970         11         197         0.0776         0.087970         11         0.977         0.087970         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11       | 580      | 0.025199     | 0.043447241       |       | 11         | 1732          | 0.051468  | 0.02971582        |          | 11         | 5620       | 0.20866     | 0.037128648       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13       | 595      | 0.027789     | 0.046703529       | 1     | 13         | 1640          | 0.050975  | 0.031082378       | l l      | 13         | 5472       | 0.20938     | 0.038264254       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14       | 557      | 0.025463     | 0.045713645       | 1     | 14         | 1714          | 0.050514  | 0.029471237       |          | 14         | 5796       | 0.21242     | 0.036648551       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15       | 557      | 0.025751     | 0.046231418       |       | 15         | 1540          | 0.054805  | 0.035587338       |          | 15         | 6481       | 0.22411     | 0.034579849       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16       | 545      | 0.024838     | 0.045574128       | -     | 16         | 1633          | 0.050226  | 0.030/56/05       | -        | 15         | 6744       | 0.21422     | 0.033212713       |
| 18         40         0.0388         0.040720         31         101         0.0070         0.001711           21         0.012         0.0127         0.01270         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.01271         0.0127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18       | 540      | 0.025946     | 0.048047407       |       | 18         | 1486          | 0.050421  | 0.03393035        |          | 17         | 7250       | 0.23785     | 0.03280731        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19       | 540      | 0.023803     | 0.044079259       | 1     | 19         | 1439          | 0.049196  | 0.034187491       |          | 19         | 7356       | 0.24802     | 0.03371683        |
| 121         127         0.5555         0.6441/070         21         141         0.2172         0.2184         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141         0.2172         141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20       | 541      | 0.026465     | 0.048919039       |       | 20         | 1439          | 0.047099  | 0.032730229       |          | 20         | 7603       | 0.25372     | 0.033371169       |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21       | 527      | 0.025516     | 0.048417078       |       | 21         | 1621          | 0.048846  | 0.030133128       |          | 21         | 8411       | 0.28171     | 0.033493164       |
| is         is<         i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22       | 527      | 0.024293     | 0.046096964       |       | 22         | 1421          | 0.047619  | 0.033510978       |          | 22         | 8487       | 0.25766     | 0.030359844       |
| 15         15         0.0348.6         20.148.1         0.0348.6         15         0.0348.0         15         0.0348.0         15         0.0348.0         15         0.0348.0         15         0.0348.0         15         0.0348.0         15         0.0348.0         15         0.0348.0         15         0.0348.0         0.0348.0         15         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0         0.0348.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24       | 564      | 0.02499      | 0.04430922        | 1     | 24         | 1585          | 0.053214  | 0.033573754       |          | 24         | 9550       | 0.25632     | 0.026839791       |
| 3         5         6         0.2493         20         300         0.098400         20         100         20         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25       | 563      | 0.023614     | 0.041942451       | 1     | 25         | 1613          | 0.057564  | 0.035687291       | 1        | 25         | 9498       | 0.27685     | 0.029148136       |
| -2         154         0.02028         0.02784         0.0471244         0.049124           20         155         0.02144         0.049274         0.049274         0.049274           20         155         0.0214         0.049274         0.049274         0.049274           21         0.021         0.0491244         0.049274         0.02277         0.0202         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.02020         0.020200         0.02020         0.02020         0.020200         0.02020         0.020200         0.02020         0.020200         0.020200         0.020200         0.020200         0.020200         0.020200         0.0202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26       | 566      | 0.024932     | 0.04405           |       | 26         | 1533          | 0.054891  | 0.035806001       |          | 26         | 9817       | 0.27018     | 0.027521239       |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27       | 548      | 0.026204     | 0.047818248       |       | 27         | 1551          | 0.054154  | 0.034915667       |          | 27         | 10626      | 0.27541     | 0.025918408       |
| Bit         Bit <td>28</td> <td>548</td> <td>0.024126</td> <td>0.044024818</td> <td></td> <td>28</td> <td>1358</td> <td>0.051616</td> <td>0.038009057</td> <td></td> <td>28</td> <td>10405</td> <td>0.25686</td> <td>0.02468592</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28       | 548      | 0.024126     | 0.044024818       |       | 28         | 1358          | 0.051616  | 0.038009057       |          | 28         | 10405      | 0.25686     | 0.02468592        |
| 15         197         0.02811         0.03823438         131         132         0.068298         0.0388888           12         0.064         0.03824541         131         0.0580         0.0388988         1101         0.03899         1101         0.03899         0.0388988         1101         0.0389         0.0388988         1101         0.0389         1101         0.0389         0.0389898         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         0.0389898         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389         1101         0.0389 <t< td=""><td>30</td><td>538</td><td>0.0259</td><td>0.048140892</td><td>1</td><td>30</td><td>1339</td><td>0.05714</td><td>0.042673413</td><td></td><td>30</td><td>10331</td><td>0.27099</td><td>0.024802581</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30       | 538      | 0.0259       | 0.048140892       | 1     | 30         | 1339          | 0.05714   | 0.042673413       |          | 30         | 10331      | 0.27099     | 0.024802581       |
| 12         12         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13 <th13< th="">         13         13         13<!--</td--><td>31</td><td>597</td><td>0.025811</td><td>0.043234338</td><td></td><td>31</td><td>1332</td><td>0.050239</td><td>0.037717117</td><td></td><td>31</td><td>10683</td><td>0.26564</td><td>0.024865862</td></th13<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31       | 597      | 0.025811     | 0.043234338       |       | 31         | 1332          | 0.050239  | 0.037717117       |          | 31         | 10683      | 0.26564     | 0.024865862       |
| 3         3         13         10         0.0140         0.027202         3         1100         0.0210255           35         740         0.02310         0.04488051         35         140         0.03710         0.0378055           15         740         0.02327021         0.01480         0.0778057         36         1107         0.03710         0.037810           10         740         0.02327021         35         140         0.0778077         37         0.025810         37         1107         0.025810         37         1102         0.027810         37         1107         0.027810         37         1102         0.027810         37         1102         0.027810         0.027810         37         1102         0.027810         0.027810         0.027810         0.027810         0.027810         0.027810         0.027810         0.027810         0.027810         0.027810         0.027810         0.027810         0.027810         0.027810         0.027810         0.027810         0.027810         0.027810         0.027810         0.0278100         0.0278100         0.0278100         0.0278100         0.0278100         0.0278100         0.0278100         0.0278100         0.0278100         0.0278100         0.0278100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32       | 608      | 0.026547     | 0.043662664       |       | 32         | 1352          | 0.050537  | 0.037379142       |          | 32         | 10880      | 0.27926     | 0.025667371       |
| 1         1         10         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33       | 569      | 0.025114     | 0.026065574       |       | 33         | 1381          | 0.052462  | 0.037277625       |          | 33         | 11699      | 0.28206     | 0.024109582       |
| 18         140         0.00888         0.00888         0.008886         0.008886         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.008866         0.0088666         0.0088666         0.0088666         0.0088666         0.00886678         0.00886678         0.00886678         0.00886678         0.00886678         0.001886678         0.001886678         0.001886678         0.001886678         0.001886678         0.001886678         0.001886678         0.001886678         0.001886678         0.001886678         0.001886678         0.001886678         0.001886678         0.001886678         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34       | 742      | 0.0264       | 0.036065574       | 1     | 34         | 1452          | 0.052462  | 0.03809862        |          | 34         | 11335      | 0.2902      | 0.025158474       |
| Type         Description         Description         Description           18         Tel Corpet         Description         Description         Description         Description           20         Description         Description         Description         Description         Description           21         Description         Description         Description         Description         Description         Description           21         Description         Description <t< td=""><td>36</td><td>742</td><td>0.024061</td><td>0.032427493</td><td>1</td><td>36</td><td>1493</td><td>0.055881</td><td>0.037428667</td><td>1</td><td>36</td><td>11925</td><td>0.30741</td><td>0.025623989</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36       | 742      | 0.024061     | 0.032427493       | 1     | 36         | 1493          | 0.055881  | 0.037428667       | 1        | 36         | 11925      | 0.30741     | 0.025623989       |
| B         P06         0.02766         0.0211402         B         1350         0.02984         0.0211402         B         1350         0.021140         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <td>37</td> <td>708</td> <td>0.026523</td> <td>0.037462147</td> <td></td> <td>37</td> <td>1498</td> <td>0.054778</td> <td>0.036567156</td> <td></td> <td>37</td> <td>11922</td> <td>0.2999</td> <td>0.025155511</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37       | 708      | 0.026523     | 0.037462147       |       | 37         | 1498          | 0.054778  | 0.036567156       |          | 37         | 11922      | 0.2999      | 0.025155511       |
| mp         mp<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38       | 708      | 0.027696     | 0.039118927       |       | 38         | 1576          | 0.059982  | 0.038059518       |          | 38         | 12086      | 0.28963     | 0.023964008       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39       | 550      | 0.026481     | 0.048147273       |       | 39         | 1538          | 0.049336  | 0.032078023       |          | 39         | 12581      | 0.29974     | 0.023824815       |
| -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40<br>41 | 552      | 0.0260/2     | 0.047231341       |       | 40<br>41   | 1587          | 0.050698  | 0.031026805       |          | 40<br>41   | 12301      | 0.28844     | 0.023448094       |
| B         0.03/16         0.03/06         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03/07         0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42       | 532      | 0.024638     | 0.04631203        | 1     | 42         | 1589          | 0.051421  | 0.03236073        | 1        | 41         | 12872      | 0.30944     | 0.024040009       |
| 44         972         0.022932         46         1715         0.022932         47         1819         0.0228622           47         581         0.023818         0.0288432         46         1715         0.022934         0.02285422           47         581         0.0248431         0.0248432         47         1891         0.029941         0.0248333         47         1891         0.029941         0.0243333         47         1891         0.029941         0.0243333         47         1891         0.029941         0.024333         47         1891         0.024333         48         1895         0.024333         48         1895         0.024333         49         1892         0.024333         49         1892         0.024333         1374         0.021335         0.021335         1374         0.027335         1374         0.027335         1374         0.027336         1374         0.027336         1374         0.027336         1374         0.027336         1374         0.027336         1374         0.027336         1374         0.027336         1374         0.027336         1374         0.027336         1374         0.027336         1374         0.027336         1374         0.027336         0.027336         0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43       | 693      | 0.026783     | 0.038647619       | 1     | 43         | 1741          | 0.053758  | 0.030877657       |          | 43         | 12890      | 0.29377     | 0.022790225       |
| 6         68         0.01581         0.015812         61118         0.015182         64         1398         0.02184           64         551         0.02784         0.0288032         47         150         0.01182           64         551         0.02724         0.013803         0.0128043         0.0128043           64         551         0.02724         0.013803         60         0.0128043         60         0.0128043           64         1895         0.01380         0.0128043         60         0.0128043         60         0.0128043           65         0.02303         0.04914103         10         10         10         10         10         10         10         10         10         0.0138043           51         0.015140         0.019970         0.11110         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44       | 693      | 0.025941     | 0.037433333       |       | 44         | 1715          | 0.056256  | 0.032802274       |          | 44         | 12860      | 0.29315     | 0.022795179       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45       | 698      | 0.025818     | 0.036987966       |       | 45         | 1935          | 0.061139  | 0.031596124       |          | 45         | 13494      | 0.3084      | 0.022854528       |
| 44         511         0.02724         0.0488538         46         1972         0.023805436         46         1072         0.023805436         46         1072         0.023805436         40         1388         0.02231466         0.02231466         0.02231466         0.02231466         0.02231466         0.02231466         0.022385724         50         1372         0.0238674         50         1378         0.022355724         50         1378         0.022355724         50         1378         0.023255724         51         51         51         0.0203755         13842         0.025575         13842         0.025575         13842         0.025575         13842         0.025575         13842         0.025575         13842         0.025575         13847         0.025575         0.025775         0.025775         0.025775         0.025775         0.025775         0.025775         0.025777         0.025772         0.025777         0.025777         0.025777         0.025777         0.025777         0.025777         0.025777         0.025777         0.025777         0.025777         0.025777         0.025777         0.025777         0.025777         0.025777         0.025777         0.025777         0.0257777         0.0257777         0.0257777         0.0257777         0.025777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46       | 561      | 0.027383     | 0.04855195        |       | 46         | 1828          | 0.055399  | 0.030306018       |          | 46         | 13550      | 0.31906     | 0.02354679        |
| eff         eff<         eff< <td>48</td> <td>581</td> <td>0.02724</td> <td>0.046885198</td> <td>1</td> <td>48</td> <td>1895</td> <td>0.061901</td> <td>0.032665435</td> <td></td> <td>48</td> <td>13776</td> <td>0.31837</td> <td>0.023110119</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48       | 581      | 0.02724      | 0.046885198       | 1     | 48         | 1895          | 0.061901  | 0.032665435       |          | 48         | 13776      | 0.31837     | 0.023110119       |
| 50         712         0.202540         0.001927195         50         1322         0.005661         0.00190715         51         1431         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180         0.02180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49       | 690      | 0.028023     | 0.040613478       | 1     | 49         | 1842          | 0.057272  | 0.031092074       | 1        | 49         | 13882      | 0.30723     | 0.022131609       |
| 51         273         0.02252         0.04031269         51         14329         0.22731         0.02256274           53         0.55         0.00266         0.002566         0.002566         0.002256274         0.002260275         31         1455         0.0111         0.002256274           55         669         0.02256         0.002366         0.002378         0.002386         0.0023785         0.51         0.02266         0.002464         0.002366         0.002386         0.002377265         55         59         1.97         0.00266         0.0086448         0.003770         0.00272024         58         1.98         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.002111166         0.00211166         0.00211166         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50       | 712      | 0.026543     | 0.037279494       |       | 50         | 1824          | 0.056461  | 0.030954715       |          | 50         | 13784      | 0.30198     | 0.021907719       |
| 25         205         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786         0.00786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51       | 573      | 0.02523      | 0.044031763       |       | 51         | 1963          | 0.057653  | 0.029369995       |          | 51         | 14329      | 0.32751     | 0.022856724       |
| Set         OB         OD2279         OD42315         OD4235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52       | 5/3      | 0.026238     | 0.045789878       |       | 52         | 2002          | 0.054473  | 0.027209291       |          | 52         | 14473      | 0.32641     | 0.022552961       |
| 55         6.99         0.02333         0.021236         0.03380         0.03272.65         55         1.31         0.021284           57         707         0.02058         0.03388         0.03380         0.027084         56         1.31         0.0221732           57         707         0.02050         0.0385445         57         1.3158         0.32380         0.02217322           58         716         0.02736         0.038744         0.02716         0.02224247           50         0.02744         0.024455         0.027371         0.027944         0.02724027           64         0.02744         0.044456         0.0456606         0.007371         0.027944         0.021242447           64         0.020744         0.0456606         0.007371         0.027944         0.021242447           64         0.020741         0.045524756         64         0.020737         0.047333         0.0255413           66         0.020750         0.0477352         66         1.0027641         0.02424047           71         0.02476         0.03738         0.02779240         1.101249         0.02244647           71         0.024764         0.042420433         0.0257840         0.04242333 <td>54</td> <td>638</td> <td>0.026739</td> <td>0.041911129</td> <td>1</td> <td>54</td> <td>1757</td> <td>0.0597081</td> <td>0.033982698</td> <td></td> <td>54</td> <td>13625</td> <td>0.32751</td> <td>0.024037651</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54       | 638      | 0.026739     | 0.041911129       | 1     | 54         | 1757          | 0.0597081 | 0.033982698       |          | 54         | 13625      | 0.32751     | 0.024037651       |
| 96         76         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55       | 639      | 0.026335     | 0.04121252        | İ     | 55         | 1573          | 0.052336  | 0.033271265       | i i      | 55         | 13947      | 0.30854     | 0.02212232        |
| 57         707         0.02836         0.038656486         57         1953         0.03803         0.03860766         0.022123284         57         1388         0.03867         0.03867034         592         0.0211105         592         0.02111105         592         0.02111105         592         0.02111105         592         0.02111105         592         0.02111105         592         0.02111105         592         0.02111105         592         0.0211105         592         0.0211105         592         0.0211105         592         0.0211105         592         0.0211105         592         0.0211105         592         0.0211105         592         0.0211105         592         0.0211105         592         0.0211105         592         0.0211105         592         0.0211105         592         0.02121105         592         0.02121105         592         0.021211155         592         0.02233         0.022305         592         0.02233         0.02231452         0.02231452         0.02231452         0.02231452         0.02231452         0.02231452         0.02231452         0.02231452         0.02231452         0.02231452         0.02231452         0.02231452         0.02231452         0.02231452         0.02231452         0.02231452         0.02231452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56       | 708      | 0.02738      | 0.038672458       |       | 56         | 2134          | 0.063398  | 0.029708294       |          | 56         | 13547      | 0.30631     | 0.022611132       |
| 35         2/16         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57       | 707      | 0.026058     | 0.036856436       |       | 57         | 1953          | 0.057077  | 0.029225243       |          | 57         | 13358      | 0.30346     | 0.022717323       |
| 60         718         0.2056         0.02799501         60         0.2050         0.02299505           61         611         0.026640         0.034802005         61         0.20512         0.02279505         61         0.2050         0.0228516         0.0228516         0.0228516         0.0228516         0.0228516         0.0228516         0.0228516         0.0228516         0.0228516         0.0228516         0.0228516         0.0228516         0.0228516         0.0228516         0.022861         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109         0.02286109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58       | 726      | 0.02803      | 0.038609366       | -     | 58         | 2104          | 0.059121  | 0.028099477       | -        | 58         | 13809      | 0.29982     | 0.021/11565       |
| 61         61         0.02484         0.04475001         61         2011         0.025914         0.027855489         62         11         12855         0.13625         0.02804475           63         610         0.02884         0.044781148         63         2062         0.027837         0.027805489         63         11832         0.022333         0.02557420         64         11231         0.022333         64         12313         0.022334247         66         11235         0.13123         0.02238557         66         11237         0.02578230         64         12314         0.0278933         66         11237         0.02482333         66         11217         0.02482333         66         11217         0.02482333         66         11217         0.0248233         66         11217         0.0248233         66         11216         0.02483         66         11217         0.0248233         0.02482333         0.02482333         66         11217         0.02482333         0.02482333         0.024482333         66         11217         0.0248333         0.02483343         0.02714545         0.02714543         0.02714543         0.02714543         0.02714543         0.02714543         0.02714543         0.02714543         0.02714543         0.0271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60       | 718      | 0.027783     | 0.037066992       |       | 60         | 2151          | 0.057626  | 0.026790516       |          | 60         | 12610      | 0.30589     | 0.024258049       |
| 62         61         0.02864         0.0486056         62         2004         0.055421         0.02780440         63         11283         0.02285146           64         613         0.02897         0.04552796         64         2113         0.0525316         0.022870203         64         12431         0.27972         0.02286120           66         633         0.028076         0.044773552         66         2140         0.027834247         66         1248         0.022874522         0.022748234           66         633         0.028076         0.04487576         68         2127         0.0277684         0.022748534         67         12146         0.0323852         0.022716737         69         1119         0.27983         0.0224568         0.022714737         69         1119         0.27983         0.0224568         0.0227141         111646         0.22499         0.024424641         70         1987         0.02784713         72         1119         0.2283         0.02141737         72         11196         0.023749218         0.021417419         72         11196         0.02141741         74         1464         0.0248444         0.0214419         76         1116         0.22879         0.02141741         74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61       | 618      | 0.027486     | 0.044475081       | 1     | 61         | 2051          | 0.055212  | 0.026919649       | 1        | 61         | 12855      | 0.31625     | 0.024601089       |
| 68         610         0.02894         0.047481148         62         2062         0.027327         0.027870         0.027877         0.027877         0.027877         0.027875         0.02657203         64         12131         0.32233         0.0229855           66         627         0.038075         0.04477352         66         2110         0.057826         0.02733424         72         12746         0.32286         0.0224851           66         623         0.02762         0.0279342         0.02733424         72         12746         0.02481930           66         621         0.02764         0.02713453         68         11681         0.23293         0.02243461           70         0.0274         0.04476776         60         0.02714554         71         1366         0.02714556         72         1007782         0.02714576         71         11466         0.22924         0.02243461         71         1214         0.02745470         0.2224361         72         10276         0.02243461         71         11486         0.22824         0.02243461         71         1141         0.02423461         0.02243461         71         1141         0.02423451         0.02243461         71         1141         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62       | 611      | 0.026643     | 0.043606056       | 1     | 62         | 2004          | 0.055422  | 0.027655489       |          | 62         | 12639      | 0.29859     | 0.023624575       |
| 64         613         0.027907         0.045524796         64         2115         0.056713         0.02675         0.028057         0.028057         0.028057         0.028057         0.028057         0.028057         0.028052         65         12121         0.03030         0.024042233           66         633         0.028057         0.028302041         0.07765         0.02778384         66         12186         0.0232452         0.027334247         66         12186         0.0224545         0.0227675         68         2127         0.05766         0.02174525         68         1192         0.29345         0.0244549         0.0244578         0.0244578         0.0244578         0.0244578         0.0244578         0.02445741         11156         0.0244574         11159         0.22239         0.0254949         0.02454574         11156         0.0245479         0.0245479         0.0245479         0.0245479         0.0245479         0.0245479         0.02454741         11156         0.22779         0.02438410           71         64         0.026479         0.027647419         75         11188         0.22779         0.02438410         77         11158         0.22779         0.02438410         77         11188         0.22778         0.0244570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63       | 610      | 0.028964     | 0.047481148       |       | 63         | 2062          | 0.057327  | 0.027801406       |          | 63         | 11832      | 0.30233     | 0.02555164        |
| bs         6.2.0         0.0.447/1532         65         2.440         0.0.733         0.0.7342         65         1.116         0.3.026         0.0.4433355         66         1.116         0.3.026         0.0.4433355         66         1.116         0.3.026         0.0.4433355         66         1.116         0.3.026         0.0.273452         66         1.116         0.3.026         0.0.273452         66         1.116         0.3.026         0.0.273452         66         1.116         0.3.026         0.0.273452         66         1.116         0.3.026         0.0.273452         66         1.116         0.3.026         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.273452         0.0.27345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64       | 613      | 0.027907     | 0.045524796       |       | 64         | 2115          | 0.056213  | 0.026578203       |          | 64         | 12431      | 0.29792     | 0.02396557        |
| b)         67         1242         0.02793         0.027939         0.027949.20           66         577         0.02045         0.0289700         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.027195         0.0271195         0.027195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65       | 627      | 0.028075     | 0.044777352       |       | 65         | 2140          | 0.057335  | 0.026/91822       |          | 65         | 1221/      | 0.30301     | 0.024801997       |
| 68         577         0.027048         0.04467776         68         2127         0.0271588         68         11697         0.29493         0.02245708           70         627         0.027141         0.04107297         1978         0.02710377         1970         0.02487688           71         628         0.024310         0.0386956         71         1972         0.0544870         0.0271449         0.024243641           72         665         0.025715         0.0449625451         73         2099         0.05797         0.02454571         72         11250         0.22839         0.0254997           74         609         0.0254549         0.044381643         75         2017         0.057663         77         11180         0.22793         0.02449544           76         611         0.024674         0.02393         0.02485444         77         1141         0.5774613         0.027365397         75         11186         0.2279         0.0244844           76         611         0.024674         0.02393         0.0248444         0.02797663         77         11763         0.0236637         77         11783         0.0236653         77         102746         0.0272780         0.024481444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67       | 637      | 0.024526     | 0.038502041       | 1     | 67         | 2124          | 0.057503  | 0.027072834       |          | 67         | 12745      | 0.30268     | 0.023748529       |
| 66         6.22         0.0225647         0.043287241         70         6.27         0.027101737         6.9         111191         0.27503         0.024286744           71         6.28         0.024287024         70         0.027814696         71         11466         0.27245         0.02248546           72         6.56         0.025473         0.040786555         72         2039         0.6100         0.02545771         72         11406         0.27243         0.022563         0.025537         0.027634         0.022563         0.025537         0.027634         0.025563         0.025537         0.027538         11580         0.27293         0.025583         0.025563         0.025583         0.027578817         71         7178         0.27761         0.025639         75         11184         0.27756         0.0275858         73         0.027644         0.0255839         75         11184         0.02755         0.027555         0.027555         0.027555         0.027555         0.02756         0.027555         0.027555         0.027555         0.027555         0.027555         0.027555         0.027555         0.027555         0.027555         0.027555         0.027555         0.027555         0.027555         0.027716         0.0255557         0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68       | 577      | 0.027048     | 0.046876776       | 1     | 68         | 2127          | 0.057766  | 0.02715858        | 1        | 68         | 11697      | 0.29493     | 0.025213901       |
| 70         627         0.027141         0.043287241         70         1973         0.0587052         0.028737614         70         114661         0.28299         0.024236413           72         655         0.025475         0.044965545         72         2309         0.0578495         0.727449         0.227449         0.227449         0.227449         0.227449         0.227449         0.027424         0.027424         0.027497         11466         0.28793         0.0274595         72         1299         0.0578495         0.727457         0.02745951         77         14185         0.28695         77         111486         0.28796         0.02744591         76         11146         0.28776         0.0274850         77         11148         0.28776         0.0274850         77         11148         0.28766         77         11736         0.0254350         77         11148         0.2876         0.0275451         0.0254353         0.04005140         77         1747         0.057440         0.02574020         79         10350         0.27656         0.027645         0.0274850         0.0276453         0.0274850         0.0276453         0.0274850         0.0276453         0.0274850         0.0276453         0.0276453         0.0277550         0.0350657 <td>69</td> <td>622</td> <td>0.025547</td> <td>0.04107299</td> <td></td> <td>69</td> <td>2073</td> <td>0.057426</td> <td>0.027701737</td> <td></td> <td>69</td> <td>11191</td> <td>0.27503</td> <td>0.024576088</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69       | 622      | 0.025547     | 0.04107299        |       | 69         | 2073          | 0.057426  | 0.027701737       |          | 69         | 11191      | 0.27503     | 0.024576088       |
| 1         1         1         1         1         1         1         1         1         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70       | 627      | 0.027141     | 0.043287241       |       | 70         | 1987          | 0.057062  | 0.028717614       |          | 70         | 11661      | 0.28299     | 0.024268416       |
| 73         Code         D05429         D0.015421         D0.015451         D0.27437588         73         11506         D.025549         D0.02519           74         Code         D0.025491         D0.025661         D0.0151241         B1.0056         D.0251600         D0.025661         D0.0151241         B1.0056         D.02516007         B1.11256         D.0224491         D0.02566157         B1.11256         D.02166027         B1.11710         D0.025291         B1.0056         D.02566157         D0.011510         D.01151241         B1.00560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72       | 655      | 0.024301     | 0.03869586        |       | 72         | 2309          | 0.054878  | 0.027814496       |          | 72         | 11406      | 0.27642     | 0.024234613       |
| 74         609         0.025449         0.0423116585         74         2230         0.058945         0.027102         0.02431513           75         621         0.024674         0.0327378         0.042315451         75         1118         0.23775         0.022478419           76         621         0.024674         0.03573172         76         2150         0.03597         0.027474419         76         11156         0.23776         0.02247843         0.0022788817           78         573         0.023408         0.048191274         78         1846         0.04743         0.0398307         78         1036         0.27458         0.0257883           81         505         0.05534         0.04533324         80         1771         0.05173         0.03987157         81         1070         0.05173         81         10750         0.025468         0.025218         0.026067833           83         633         0.027378         0.044313977         82         10400         0.027656783         81         10250         0.0247155         82         10402         0.27161         0.026667833           84         644         0.027378         0.04337372         0.043302778         80         0.021715 <td>73</td> <td>606</td> <td>0.025429</td> <td>0.041962541</td> <td>1</td> <td>73</td> <td>2099</td> <td>0.057587</td> <td>0.027435588</td> <td>1</td> <td>72</td> <td>11239</td> <td>0.29293</td> <td>0.025459152</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73       | 606      | 0.025429     | 0.041962541       | 1     | 73         | 2099          | 0.057587  | 0.027435588       | 1        | 72         | 11239      | 0.29293     | 0.025459152       |
| 75         621         0.02819         0.043281643         75         2017         0.057613         0.028653907         75         11188         0.27278         0.02482106           76         621         0.026674         0.03973127         76         1150         0.0257681         77         1741         0.057412         0.02278613         77         1741         0.02376154         77         1741         0.02376154         77         1741         0.02376154         77         1741         0.0237615         77         1743         0.022405         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.02762264         0.0276726767         0.027661266757<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 74       | 609      | 0.025649     | 0.042116585       |       | 74         | 2290          | 0.058945  | 0.025740218       |          | 74         | 11845      | 0.28568     | 0.02411794        |
| b         b         b         cl         0.024674         0.03773172         76         0.1250         0.057412         0.03277613         77         11154         0.02376811           77         642         0.025683         0.04005514         77         1174         0.057412         0.032976163         77         11753         0.027436         0.025653         0.025653         0.025653         0.025653         0.027616         0.025653         0.027565         0.027616         0.026676855         0.027616         0.026667585         0.027578         0.023778         0.023405         0.027616         0.026667585         0.027512         0.02563         0.04113597         82         1464         0.05527         0.03036625         81         10395         0.27616         0.026667585           83         633         0.027584         0.043730527         84         1624         0.024517         0.03036625         84         11254         0.2817         0.03036625         84         11254         0.2817         0.03036625         84         11254         0.2817         0.026663         0.025563         0.025636         0.025636         0.025563         0.025636         0.025563         0.026636         0.025567         0.02666676855         0.026636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75       | 621      | 0.026319     | 0.042381643       |       | 75         | 2017          | 0.057613  | 0.028563907       |          | 75         | 11188      | 0.27279     | 0.024382106       |
| i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76       | 621      | 0.024674     | 0.039733172       |       | 76         | 2150          | 0.05907   | 0.027474419       |          | 76         | 11154      | 0.28776     | 0.025798817       |
| 79         573         0.023400         0.040852007         79         1755         0.053435         0.030481197           80         561         0.025435         0.045338324         80         1771         0.052435         0.030481197           81         555         0.02553         0.04646727         81         1770         0.05173         0.029922045         81         10055         0.7612         0.026067383           83         633         0.047313         83         1658         0.05151         0.031152413         83         1020607278         10.026067383           84         624         0.027328         0.0437319294         84         1824         0.05151         0.031152413         83         1022060725         84         11254         0.22845         0.0250533           85         641         0.02797         0.44009976         88         1437         0.04806         0.03155011         85         11354         0.22845         0.02471353         0.0248453         0.02449494           91         544         0.02797         0.44009768         0.03552105         89         11854         0.228456         0.024894983           91         544         0.0249715         0.04497422 <td>78</td> <td>572</td> <td>0.023083</td> <td>0.048191274</td> <td></td> <td>78</td> <td>1846</td> <td>0.054703</td> <td>0.022976163</td> <td>1</td> <td>78</td> <td>10367</td> <td>0.29743</td> <td>0.023285386</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78       | 572      | 0.023083     | 0.048191274       |       | 78         | 1846          | 0.054703  | 0.022976163       | 1        | 78         | 10367      | 0.29743     | 0.023285386       |
| 80         651         0.023435         0.04338324         80         1771         0.0529505         80         10819         0.27565         0.02547851           81         550         0.05254         0.04410727         81         1770         0.05173         0.029520455         81         10959         0.27512         0.02566754         0.02666758         82         10402         0.27216         0.02666758         83         0.02770         0.04329029         84         1824         0.055279         0.03030625         84         1124         0.2817         0.03030625         84         11242         0.2817         0.03030625         84         1124         0.2817         0.03030625         84         1124         0.2817         0.03030625         84         1124         0.2817         0.02603         0.02603         0.02603         0.02603         0.02603         0.02603         0.02603         0.02603         0.02603         0.02603         0.02603         0.02603         0.02603         0.02603         0.02603         0.02603         0.026045         0.026045         0.026045         0.026045         0.026045         0.026045         0.026045         0.026045         0.026045         0.026045         0.0264649         0.0260464         0.026046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79       | 573      | 0.023408     | 0.040852007       | 1     | 79         | 1755          | 0.053495  | 0.030481197       | 1        | 79         | 10160      | 0.27485     | 0.027052264       |
| 81         550         0.025524         0.046406727         81         1770         0.05723         0.029226045         81         10595         0.27632         0.026006075           82         581         0.0253         0.04413977         82         1464         0.05922         0.041731537         82         10026         0.27781         0.026566754           84         624         0.027288         0.043730929         84         1824         0.055279         0.03030625         84         1125         0.28137         0.02566374           85         641         0.025633         0.043712441         86         1443         0.04625027         7         11964         0.28463         0.0254056138           87         657         0.026005         88         1425         0.047235         0.04453027         7         11964         0.28245         0.02445133           89         584         0.025685         0.03996034         92         1370         0.049708         0.035128858         91         12144         0.27997         0.025625         0.025637         0.02449429         0.024494392         0.024494392         0.024494392         0.0244944         0.0279179762         0.024464         0.03587461         91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80       | 561      | 0.025435     | 0.045338324       |       | 80         | 1771          | 0.052408  | 0.029592095       |          | 80         | 10819      | 0.27565     | 0.02547851        |
| ec.         jss.         u.uc.bss         u.uc.bss <thu.uc.bss< th=""> <thu.uc.bss< th=""> <thu.uc.bs< td=""><td>81</td><td>550</td><td>0.025524</td><td>0.046406727</td><td></td><td>81</td><td>1770</td><td>0.05173</td><td>0.029226045</td><td></td><td>81</td><td>10595</td><td>0.27612</td><td>0.026060878</td></thu.uc.bs<></thu.uc.bss<></thu.uc.bss<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81       | 550      | 0.025524     | 0.046406727       |       | 81         | 1770          | 0.05173   | 0.029226045       |          | 81         | 10595      | 0.27612     | 0.026060878       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82       | 581      | 0.02563      | 0.044113597       |       | 82         | 1464          | 0.051651  | 0.034781557       | 1        | 82         | 10402      | 0.27116     | 0.026067583       |
| 85         641         0.025584         0.039912949         85         1431         0.048006         0.022133717           86         663         0.026033         0.043172471         85         1132         0.28663         0.025160376           87         657         0.025605         0.04079543         87         1371         0.048252         0.03350501         66         11454         0.28465         0.02416327           88         637         0.027397         0.04009576         88         1425         0.047235         0.03465327         87         11946         0.28245         0.02416345           90         583         0.026285         0.0460974122         89         1337         0.0469708         0.035582105         89         11858         0.29278         0.02401402           91         646         0.025564         0.03984603         92         1370         0.05089         0.031228588         91         11219         0.26263         0.02569971           93         6670         0.026222         0.03987661         94         1450         0.04652         0.034672477           95         6480         0.034872433         98         1349         0.04652         0.034572477 </td <td>84</td> <td>624</td> <td>0.027378</td> <td>0.043730929</td> <td>1</td> <td>84</td> <td>1824</td> <td>0.051051</td> <td>0.03030625</td> <td>1</td> <td>84</td> <td>10269</td> <td>0.28137</td> <td>0.025002133</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 84       | 624      | 0.027378     | 0.043730929       | 1     | 84         | 1824          | 0.051051  | 0.03030625        | 1        | 84         | 10269      | 0.28137     | 0.025002133       |
| 86         601         0.026033         0.04112471         86         1457         0.048352         0.033510501           87         657         0.02603         0.0407935         0.047235         0.03453027           88         637         0.027357         0.04309976         88         1415         0.047235         0.03455021           89         544         0.027155         0.044094742         89         1397         0.049786         0.032552105         88         11992         0.22425         0.024849983           90         584         0.025574         0.039587461         91         1994         0.050395         0.031922858         91         10441         0.27729         0.02655770           91         664         0.0355776119         94         1405         0.050395         0.0316729197         92         586         0.026222         0.0396097         93         1457         0.05039         0.045724047         94         10219         0.2623         0.02494532           94         677         0.0242424         0.0381333         95         1449         0.04852         0.03457047         95         1000         0.622         0.027977562         0.0279777562         0.02724         0.02779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85       | 641      | 0.025584     | 0.039912949       |       | 85         | 1493          | 0.048006  | 0.032153717       |          | 85         | 11392      | 0.28663     | 0.025160376       |
| 87         657         0.028005         0.049099543         87         1371         0.047253         0.044453027         87         11946         0.28888         0.024140543           88         632         0.027305         0.04300576         88         1425         0.047952         0.033550316         88         11090         0.22828         0.0245135         0.0440544         90         1470         0.04908         0.033552105         88         11090         0.22464         0.024614334         91         1534         0.05095         0.03122838         91         10441         0.27729         0.0255770           93         662         0.02464         0.03691604         92         1370         0.05019         0.036772197         92         9896         0.26719         0.02559707           94         670         0.02464         0.036715133         94         1450         0.04652         0.034639417         94         10219         0.26263         0.02569971           95         0.024714         0.03661323         95         1446         0.046530         0.033966612         0.02749754         0.0274974         0.026264         0.0274974         0.026214         0.02442282         0.02446531         0.03462644 <td< td=""><td>86</td><td>603</td><td>0.026033</td><td>0.043172471</td><td></td><td>86</td><td>1457</td><td>0.048825</td><td>0.033510501</td><td></td><td>86</td><td>11454</td><td>0.29845</td><td>0.026056138</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 86       | 603      | 0.026033     | 0.043172471       |       | 86         | 1457          | 0.048825  | 0.033510501       |          | 86         | 11454      | 0.29845     | 0.026056138       |
| abs         cs/         cur2-str          str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87       | 657      | 0.026805     | 0.040799543       |       | 87         | 1371          | 0.047235  | 0.034453027       |          | 87         | 11946      | 0.28838     | 0.024140549       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88       | 637      | 0.02/397     | 0.043009576       |       | 88         | 1425          | 0.04/952  | 0.033650316       |          | 88         | 11902      | 0.29245     | 0.024571333       |
| 91         646         0.03587461         91         1584         0.050895         0.031928856           92         643         0.035685         0.039846034         92         1370         0.050395         0.031928856         92         936         66.2         0.026527         0.0266577         92         9866         0.26719         92         0.026657         0.0266979         93         1457         0.05933         0.04051931         93         1667         0.6262         0.024645         0.0266377         93         1447         0.04839         0.03395652         95         10008         0.7272         0.02773750         0.02773750         0.02627         0.02773750         0.02773750         0.02773750         0.02773750         0.02773750         0.02774         0.0266270         0.02774         0.0266270         0.02774         0.0266270         0.02774         0.0266270         0.02749         0.02749         0.02774         0.0266270         0.02749         0.02749         0.02749         0.02749         0.0266270         0.02749         0.0266270         0.02749         0.0266270         0.02748378         0.02749         0.0266270         0.02748378         0.02749         0.0266270         0.02748378         0.027410         0.026663293         0.00 <td>90</td> <td>583</td> <td>0.027135</td> <td>0.045086449</td> <td>1</td> <td>90</td> <td>1470</td> <td>0.048098</td> <td>0.032719388</td> <td></td> <td>90</td> <td>12193</td> <td>0.29326</td> <td>0.024035583</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90       | 583      | 0.027135     | 0.045086449       | 1     | 90         | 1470          | 0.048098  | 0.032719388       |          | 90         | 12193      | 0.29326     | 0.024035583       |
| 92         643         0.025685         0.03946034         92         1370         0.05037         0.04051901         92         986         0.26719         0.02679967           93         6670         0.022622         0.03960907         93         1457         0.05933         0.004051901         93         1057         0.26719         0.02464         0.036776119         94         1405         0.046862         0.034634947         94         10219         0.26263         0.02782         0.02782         0.02782         0.02782         0.02779756           96         671         0.042482         0.036464051         96         1415         0.046827         0.0344570247         96         10780         0.6222         0.027826         0.02779756           98         738         0.026223         0.03464353         98         1349         0.046223         0.03424664         88         10440         0.2774         0.027824         0.0268528           100         744         0.02906         0.03190600110         0.119         0.03127758         100         1001         3617         0.02731         0.02066329           101         744         0.02280863         103         1641         0.052379         0.0318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91       | 646      | 0.025574     | 0.039587461       |       | 91         | 1594          | 0.050895  | 0.031928858       |          | 91         | 10441      | 0.27729     | 0.026557705       |
| 93         662         0.026222         0.03980997         93         1457         0.0593         0.04051531         93         10676         0.26632         0.02484532           94         670         0.0244         0.036776119         94         405         0.048624         0.034863497         94         1012         0.26233         0.027977562         0.027977562         0.027977562         0.027977562         0.027977562         0.027977562         0.02792         0.026232         0.027824         0.0267247         0.027170         0.0271416521         0.027245         0.027245         0.027245         0.027262         0.0226232         0.0248627         0.034645753         98         1349         0.046523         0.03426644         99         10379         0.27282         0.02528528           100         744         0.029088         0.03665672         100         1586         0.051109         0.0322146086         100         10213         0.26177         0.02563105           101         744         0.028978         101         1591         0.05073         0.00389708         101         981         0.026449         0.032597772         0.0268136         0.027272         0.026977743           102         840         0.025449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92       | 643      | 0.025685     | 0.039946034       |       | 92         | 1370          | 0.050319  | 0.036729197       |          | 92         | 9896       | 0.26719     | 0.026999697       |
| xm         cr/c         0.024498         0.0324761         94         1.405         0.048024         0.0440.2447         94         1.0219         0.26263         0.02563997           95         6680         0.03481333         95         1.449         0.04839         0.033395652         95         100080         0.7272         0.02622         0.024724         0.03641333         95         1.449         0.04839         0.03345627         95         100080         0.7272         0.02622         0.0242328           98         738         0.026475         0.033434533         98         1349         0.046559         0.0342644         99         10027782         0.027282         0.026282         0.02342644         99         10041         0.02784         0.02666301           100         744         0.026671         0.0334664537         100         1500         0.051109         0.032144088         100         10213         0.02177         0.02568135           101         744         0.02677         0.03598078         101         1637         0.05033         0.03180719         103         564         0.026837         0.026837         0.026837         0.02677         0.0258366         0.026733         0.0268373         0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93       | 662      | 0.026222     | 0.03960997        |       | 93         | 1457          | 0.05903   | 0.040515031       |          | 93         | 10676      | 0.26632     | 0.024945392       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94       | 670      | 0.02464      | 0.036776119       |       | 94         | 1405          | 0.048662  | 0.033395652       |          | 94         | 10219      | 0.26263     | 0.025699971       |
| 97         736         0.024223         0.034843897         97         1321         0.046855         0.03362727         9745         0.02712         0.02741652           98         738         0.024675         0.03464524         98         1346         0.046223         0.0342464         88         10404         0.2774         0.027416523           199         745         0.027428         0.034645242         99         1491         0.046603         0.03259772         99         10379         0.27248         0.0263105           100         744         0.029088         0.036645242         99         1491         0.05673         0.0039708         101         1381         0.66630         0.0232146088         100         1520         0.05673         0.0089708         101         981         0.26370         0.023180219         103         9644         0.26277         0.02697774         0.027315823           103         857         0.03287975         104         1617         0.05239         0.031000121         105         1052         0.26277         0.027315823           106         894         0.0273157         0.033100121         105         1052         0.027315823         0.027315823         0.027315823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96       | 671      | 0.024082     | 0.036846051       | 1     | 96         | 1445          | 0.048917  | 0.034570247       | 1        | 96         | 10780      | 0.2627      | 0.02432287        |
| 98         738         0.024675         0.033444533         98         1349         0.046223         0.03426464         98         10404         0.2774         0.0266304           99         744         0.036663242         99         1491         0.04603         0.03259772         99         1979         0.7226         0.0663203           100         744         0.02677         0.03598078         100         1637         0.05013         0.031177548         100         100         0.0213         0.26477         0.025631058           101         744         0.02677         0.03398078         101         1637         0.05013         0.031177548         102         100         0.2727         0.02677         0.02677         0.02677         0.02677         0.02677         0.02677         0.02763354           104         90         0.028179         0.031880219         103         1664         0.052977         0.03180219         103         1664         0.0278137         0.02781353           105         583         0.028165         0.031880219         105         1658         0.05216         0.03160121         105         10522         0.26179         0.028476         0.0275164         0.0275162         106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 97       | 739      | 0.026223     | 0.035483897       | 1     | 97         | 1392          | 0.046859  | 0.033662787       |          | 97         | 9745       | 0.26717     | 0.027416521       |
| yy         r/s         0.027274         0.03686242         yy         1491         0.048633         0.03259772         yy         10379         0.27282         0.02285288           100         744         0.02967         0.03998073         1000         0500         0051190         0.032144088         100         1012         0.22170         0.02664393           101         744         0.02677         0.03598078         101         1637         0.050139         0.03127768         101         9881         0.26346         0.02664393           103         857         0.02873         0.0328975         103         1641         0.052379         0.031800121         105         9984         0.229927         0.026898         0.02731582           104         966         0.02873         0.03296455         106         1658         0.052392         0.031600121         105         1052         0.261994         0.024979571           106         894         0.029365         0.0335481         106         1724         0.052494         0.031645576         107         10218         0.2677         0.0258149         0.0275102           107         968         0.0233431         109         1744         0.052440 <td>98</td> <td>738</td> <td>0.024675</td> <td>0.033434553</td> <td></td> <td>98</td> <td>1349</td> <td>0.046223</td> <td>0.03426464</td> <td></td> <td>98</td> <td>10404</td> <td>0.2774</td> <td>0.026663014</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98       | 738      | 0.024675     | 0.033434553       |       | 98         | 1349          | 0.046223  | 0.03426464        |          | 98         | 10404      | 0.2774      | 0.026663014       |
| LUD         r/4         LUZ2M88         0.0.3999bc./r         100         1.590         0.0.5119         0.0.32244688         100         10213         0.2.6177         0.0.25531055           101         7.44         0.02577         0.035908778         101         1637         0.05573         0.031890748         101         9881         0.263.64         0.02663297           102         840         0.025449         0.033880063         102         1599         0.050237         0.031880219         103         9864         0.25977         0.0268737         0.0289778         104         1617         0.052379         0.031880219         103         9864         0.25977         0.027315832           106         990         0.02857         0.033296063         103         1643         0.052394         0.031600121         105         1052         0.26177         0.026480         0.027315832           106         990         0.028150         0.0293150         0.028140576         107         1051         0.2772107         0.029365         0.02731503           107         961         0.0281350         0.0321469576         107         10151         0.27961         0.02752102           108         980         0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99       | 745      | 0.027294     | 0.036636242       | -     | 99         | 1491          | 0.048603  | 0.03259772        |          | 99         | 10379      | 0.27282     | 0.026285288       |
| 100         100         1007         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100      | 744      | 0.029088     | 0.039096237       |       | 100        | 1590          | 0.050572  | 0.032144088       |          | 100        | 10213      | 0.26244     | 0.025631058       |
| 103         857         0.028179         0.022880863         103         1644         0.052379         0.031880219         103         3664         0.25937         0.02673334           104         966         0.02873         0.0317857         104         1617         0.052399         0.031800219         103         3664         0.25937         0.02673334           105         893         0.028673         0.0327557         106         1617         0.052393         0.031600121         105         1052         0.6379         0.024879571           106         894         0.027317         0.0305481         106         1724         0.05249         0.031465756         107         1028         0.028772         0.0258140         0.027521012           107         965         0.03233424         109         1744         0.052494         0.03750279         109         9947         0.25114725           109         902         0.028393         0.0338421         100         1755         0.053624         0.03750279         109         9947         0.25174         0.025562425           110         944         0.027667         0.0228438         111         1083         0.026651         0.037562455         110<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101      | 840      | 0.026449     | 0.031486905       | 1     | 101        | 1599          | 0.050013  | 0.031277548       |          | 101        | 10109      | 0.20346     | 0.026977743       |
| 104         906         0.023973         0.03378587         104         1617         0.05020         0.03110778           105         893         0.032306495         105         1658         0.052393         0.03100711         105         10522         0.26179         0.024879871           106         894         0.027317         0.032306495         105         1658         0.052393         0.031600121         105         10522         0.26179         0.024879871           106         894         0.027317         0.03035481         106         1724         0.05216         0.03055162         106         10161         0.27964         0.027511         1068         1065         0.05216         0.030685037         108         10564         0.25317         0.02581464           108         907         0.028465         0.03338241         109         1744         0.053628         0.030750229         109         9947         0.25417         0.02565242           110         944         0.028393         0.03054947         110         175         0.03246895         110         10374         0.26622         0.025662425           111         1943         0.0276775         0.028619588         112         19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103      | 857      | 0.028179     | 0.032880863       | 1     | 103        | 1643          | 0.052379  | 0.031880219       |          | 103        | 9684       | 0.25937     | 0.026783354       |
| 105         893         0.02885         0.03286495         105         1658         0.052393         0.031600121         10522         0.26179         0.024879871           106         394         0.027137         0.03035481         106         1764         0.05216         0.03055162         106         10512         0.26179         0.024879871           107         963         0.023165         0.02316096         107         1673         0.052649         0.031469576         107         10218         0.26377         0.02581464           108         906         0.03383241         109         1744         0.053248         0.03056037         108         105540         0.26524         0.02514672           110         944         0.023839         0.03054947         110         1755         0.053248         0.03056895         110         10374         0.26622         0.025662425           111         943         0.027667         0.02839812         111         1880         0.054931         0.030569931         111         1021         0.25642         0.02564245           1112         960         0.027475         0.026519688         112         1903         0.056681         0.027969321         1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 104      | 906      | 0.028973     | 0.031978587       |       | 104        | 1617          | 0.050302  | 0.031107978       |          | 104        | 9847       | 0.26898     | 0.027315832       |
| Low         6.2%         UU2/157         UU3033481         106         1/.44         UU3/151         0.393546         0.07752101           107         965         0.0281150         0.029165         0.029165         0.071673         0.052449         0.031469576         107         10218         0.62377         0.0281636         0.0281150         0.0281150         0.0281150         0.0281150         0.0281450         0.0281450         0.0281450         0.0281450         0.0281450         0.0281450         0.0281450         0.0281450         0.0281450         0.0281450         0.0281450         0.0281451         0.0281450         0.0281471         0.0256240         0.03156240         0.03156240         0.03156240         0.03156240         0.03156240         0.03156240         0.03156240         0.03156240         0.03156240         0.03156240         0.03156240         0.03156240         0.03156240         0.031564204         10.031564         0.031564204         10.031564         0.031564204         10.031640555         110         10347         0.26612         0.0256562425         10151         0.0276674         0.02861988         111         1963         0.05969911         1111         10317         0.26245         0.025964088         1112         1003         0.028401         0.02757473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 105      | 893      | 0.02885      | 0.032306495       | -     | 105        | 1658          | 0.052393  | 0.031600121       | -        | 105        | 10522      | 0.26179     | 0.024879871       |
| 108         100         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107         107 <td>106</td> <td>894</td> <td>0.027137</td> <td>0.03035481</td> <td>1</td> <td>106</td> <td>1724</td> <td>0.052640</td> <td>0.030255162</td> <td></td> <td>106</td> <td>10161</td> <td>0.27964</td> <td>0.027521012</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 106      | 894      | 0.027137     | 0.03035481        | 1     | 106        | 1724          | 0.052640  | 0.030255162       |          | 106        | 10161      | 0.27964     | 0.027521012       |
| 109         907         0.028465         0.031383241         109         1744         0.053628         0.030750229         109         9947         0.25412         0.025552428           110         944         0.028839         0.03054947         110         1755         0.05361         0.03056895         110         10374         0.26622         0.025552428           111         943         0.027667         0.02938312         111         1880         0.054913         0.029069931         111         10.0221         0.2596408           111         945         0.022647733         1113         1876         0.053847         0.022705931         113         10056         0.257964088           113         1031         0.02764733         113         1876         0.053847         0.022870198         113         10056         0.25826         0.02594028           114         1031         0.02764755         0.026629292         114         1923         0.056689         0.029479199         114         10586         0.25826         0.024965727           115         1034         0.02841         0.027689236         115         1941         0.055923         0.0288118         115         10551         0.62632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 107      | 908      | 0.029365     | 0.032340198       |       | 107        | 1854          | 0.057211  | 0.030858037       | 1        | 107        | 10218      | 0.26531     | 0.025114041       |
| 110         944         0.028839         0.03054947         110         1755         0.03561         0.030546935         110         1074         0.26622         0.02562425           111         943         0.02767         0.029381821         1111         1880         0.054913         0.029069931         111         1021         0.256242         0.025662425           112         960         0.027475         0.028619688         112         1903         0.056651         0.029769522         112         10108         0.26245         0.02594038           113         1031         0.028401         0.027547333         113         1876         0.056687         0.027679198         113         10567         0.27578         0.0260922           114         1031         0.028401         0.02789292         114         1923         0.056688         0.027879199         114         10586         0.5286         0.02396027           115         1034         0.028841         0.02789236         115         1941         0.055923         0.02881118         115         10551         0.62632         0.024861719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109      | 907      | 0.028465     | 0.031383241       | 1     | 109        | 1744          | 0.053628  | 0.030750229       |          | 109        | 9947       | 0.25417     | 0.025552428       |
| 111         943         0.027667         0.029338812         111         11889         0.054913         0.02060991         111         10521         0.25881         0.02694423           112         960         0.027475         0.028619688         112         1903         0.056651         0.029769522         112         10108         0.62645         0.025946088           113         1031         0.027475         0.026619688         113         11567         0.27578         0.026940423           114         1031         0.027455         0.02652922         114         1923         0.05689         0.02979199         114         10586         0.25826         0.02496577           115         1034         0.02841         0.02789236         115         1941         0.055923         0.0281118         115         10551         0.26232         0.024861719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110      | 944      | 0.028839     | 0.03054947        |       | 110        | 1755          | 0.05361   | 0.030546895       |          | 110        | 10374      | 0.26622     | 0.025662425       |
| 112         500         0.02747/5         0.026819888         112         1903         0.056651         0.0279769522         112         10108         0.62545         0.025964088           113         1031         0.028047333         113         1876         0.0538047         0.028703198         113         1036         0.62564         0.025964088           114         1031         0.027455         0.02264292         114         1923         0.056689         0.029479199         114         10586         0.25826         0.02496278           115         1034         0.028441         0.02789236         115         1941         0.055923         0.0281118         115         10551         0.626322         0.024841715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 111      | 943      | 0.027667     | 0.029338812       |       | 111        | 1889          | 0.054913  | 0.029069931       |          | 111        | 10521      | 0.25981     | 0.024694421       |
| 112         125         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         127         126         0.0238572         0.026821         0.02387199         114         10556         0.25232         0.024861719         115         10551         0.26232         0.024861719           115         1034         0.0278841         0.02789236         115         1941         0.055923         0.02881118         115         10551         0.26232         0.024861719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112      | 960      | 0.027475     | 0.027547222       |       | 112        | 1903          | 0.052047  | 0.029769522       |          | 112        | 10108      | 0.26245     | 0.025964088       |
| 115         1034         0.02789236         115         1941         0.055923         0.0288118         115         10551         0.2632         0.024861719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 113      | 1031     | 0.028401     | 0.02/34/333       | 1     | 113        | 1973          | 0.0556689 | 0.029479199       | 1        | 113        | 10586      | 0.25826     | 0.02009823        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 114      | 1034     | 0.028841     | 0.02789236        | 1     | 115        | 1941          | 0.055923  | 0.02881118        | 1        | 115        | 10551      | 0.26232     | 0.024861719       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |              |                   |       |            |               |           |                   |          |            |            |             |                   |

| NormNormNormNormNormNormNormNorm10100100010001000100010001000100010001010001000100010001000100010001000100010001010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000100010001000 <th></th> <th></th> <th></th> <th></th> <th>Avg 1</th> <th>ime per ob</th> <th>j over all f</th> <th>rames:</th> <th>0.029803515</th> <th>Standard</th> <th>Deviation:</th> <th>0.00606977</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |          |              |                               | Avg 1 | ime per ob | j over all f | rames:       | 0.029803515 | Standard | Deviation: | 0.00606977 |              |                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------------|-------------------------------|-------|------------|--------------|--------------|-------------|----------|------------|------------|--------------|---------------------------|
| NUM         NUM <th>Fromo No</th> <th>Helicopt</th> <th>er Video (64</th> <th>0 x 360)<br/>Time net ehi (mc)</th> <th></th> <th>Frame No.</th> <th>Dashboa</th> <th>rd Video (84</th> <th>8 x 480)</th> <th></th> <th>Frame No.</th> <th>Drone Vide</th> <th>to (1920 x 1</th> <th>080)<br/>Time net ehi (me)</th>                                                                                      | Fromo No | Helicopt | er Video (64 | 0 x 360)<br>Time net ehi (mc) |       | Frame No.  | Dashboa      | rd Video (84 | 8 x 480)    |          | Frame No.  | Drone Vide | to (1920 x 1 | 080)<br>Time net ehi (me) |
| 110         120         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201         201 <th>Frame No</th> <th>1026</th> <th>0.027052</th> <th>0.026991274</th> <th></th> <th>Frame No</th> <th>1020</th> <th>0.055546</th> <th>0.028780104</th> <th></th> <th>Frame No</th> <th>10464</th> <th>0.26255</th> <th>0.025000020</th>                                                                                                                                                | Frame No | 1026     | 0.027052     | 0.026991274                   |       | Frame No   | 1020         | 0.055546     | 0.028780104 |          | Frame No   | 10464      | 0.26255      | 0.025000020               |
| 11111311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110      | 1030     | 0.027533     | 0.020581274                   |       | 117        | 2058         | 0.055340     | 0.028730104 |          | 110        | 10923      | 0.26202      | 0.023030373               |
| 1101001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118      | 1033     | 0.031152     | 0.030600982                   |       | 118        | 1783         | 0.059775     | 0.033525014 |          | 117        | 10258      | 0.25392      | 0.024753071               |
| DB         DB         DD         DD <thdd< th="">         DD         DD         DD<!--</td--><td>119</td><td>969</td><td>0.030736</td><td>0.031719092</td><td></td><td>119</td><td>1737</td><td>0.054141</td><td>0.031169142</td><td>1</td><td>119</td><td>10130</td><td>0.25778</td><td>0.025447581</td></thdd<>                                                                                                                                                                                                 | 119      | 969      | 0.030736     | 0.031719092                   |       | 119        | 1737         | 0.054141     | 0.031169142 | 1        | 119        | 10130      | 0.25778      | 0.025447581               |
| 11         101         102         102         102         100         102         100         102         100         102         100         102         100         102         100         102         100         102         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                          | 120      | 969      | 0.029214     | 0.030148194                   |       | 120        | 1938         | 0.057819     | 0.029834469 |          | 120        | 10954      | 0.2681       | 0.024474895               |
| 11         101         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102                                                                                                                                                                                                                                                                                                                                                                                          | 121      | 963      | 0.027724     | 0.028789408                   |       | 121        | 1828         | 0.0545       | 0.029814168 |          | 121        | 10943      | 0.26694      | 0.024393402               |
| Dia         Dia <thdia< th=""> <thdia< th=""> <thdia< th=""></thdia<></thdia<></thdia<>                                                                                                                                                                                                                                                                                                                                                     | 122      | 1014     | 0.030952     | 0.030524556                   |       | 122        | 1961         | 0.058096     | 0.029625548 |          | 122        | 10443      | 0.25591      | 0.024505602               |
| DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD <th< td=""><td>125</td><td>1048</td><td>0.029085</td><td>0.028522998</td><td></td><td>123</td><td>1889</td><td>0.057758</td><td>0.031302412</td><td></td><td>125</td><td>10556</td><td>0.26525</td><td>0.023330232</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 125      | 1048     | 0.029085     | 0.028522998                   |       | 123        | 1889         | 0.057758     | 0.031302412 |          | 125        | 10556      | 0.26525      | 0.023330232               |
| 1001011011011011011001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125      | 1002     | 0.027907     | 0.027768259                   |       | 125        | 1997         | 0.056022     | 0.028052929 |          | 125        | 10350      | 0.25929      | 0.024101785               |
| DD         DD <thdd< th="">         DD         DD         DD&lt;</thdd<>                                                                                                                                                                                                                                                                                                                                                                                                                    | 126      | 1085     | 0.031352     | 0.028895945                   |       | 126        | 2014         | 0.056254     | 0.027931281 | İ        | 126        | 11681      | 0.2688       | 0.023011386               |
| ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID         ID                                                                                                                                                                                                                                                                                                                                                                                                                                   | 127      | 1161     | 0.029716     | 0.025595263                   |       | 127        | 2080         | 0.054999     | 0.026441731 |          | 127        | 11402      | 0.26491      | 0.02323338                |
| 10         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                          | 128      | 1162     | 0.030899     | 0.026590792                   |       | 128        | 2045         | 0.056737     | 0.027744108 |          | 128        | 11283      | 0.26046      | 0.023084197               |
| 100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td>129</td> <td>1138</td> <td>0.032353</td> <td>0.028429525</td> <td></td> <td>129</td> <td>2030</td> <td>0.055927</td> <td>0.027550345</td> <td></td> <td>129</td> <td>12077</td> <td>0.26457</td> <td>0.021906517</td>                                                                                                                                                               | 129      | 1138     | 0.032353     | 0.028429525                   |       | 129        | 2030         | 0.055927     | 0.027550345 |          | 129        | 12077      | 0.26457      | 0.021906517               |
| 10.         10.00         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.000         10.0000         10.000         10.000 <td>130</td> <td>1141</td> <td>0.02904</td> <td>0.025451183</td> <td></td> <td>130</td> <td>2228</td> <td>0.0566</td> <td>0.02540377</td> <td></td> <td>130</td> <td>1130/</td> <td>0.26135</td> <td>0.023114354</td>                                                       | 130      | 1141     | 0.02904      | 0.025451183                   |       | 130        | 2228         | 0.0566       | 0.02540377  |          | 130        | 1130/      | 0.26135      | 0.023114354               |
| 1101101101001000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 131      | 1205     | 0.032019     | 0.026572033                   |       | 131        | 1961         | 0.059631     | 0.03040821  |          | 131        | 12473      | 0.27573      | 0.02210647                |
| 13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133      | 1214     | 0.029901     | 0.024630478                   |       | 133        | 1879         | 0.054354     | 0.028926929 |          | 133        | 11420      | 0.26548      | 0.023246848               |
| 13.         13.0         13.1         13.1         13.0         13.1         13.0         13.1         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0         13.0                                                                                                                                                                                                                                                                                                                                                          | 134      | 1270     | 0.032367     | 0.025485827                   |       | 134        | 2038         | 0.056262     | 0.027606428 |          | 134        | 11567      | 0.26988      | 0.023332065               |
| 33         332         6.02123         158         156         0.021235         158         156         0.021235           33         101         0.02120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120         0.032120                                                                                                                                                                                                                                                | 135      | 1307     | 0.031785     | 0.024319051                   |       | 135        | 1874         | 0.055775     | 0.029762593 |          | 135        | 12122      | 0.26571      | 0.021919898               |
| 10         10         10         10         10         10         10         10         10         10         10         10         10         10         100         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000 </td <td>136</td> <td>1307</td> <td>0.029189</td> <td>0.0223329</td> <td></td> <td>136</td> <td>1862</td> <td>0.056145</td> <td>0.030153008</td> <td></td> <td>136</td> <td>11679</td> <td>0.26522</td> <td>0.022708794</td>                                                                                                                               | 136      | 1307     | 0.029189     | 0.0223329                     |       | 136        | 1862         | 0.056145     | 0.030153008 |          | 136        | 11679      | 0.26522      | 0.022708794               |
| 100         0.014         0.0000000         100         0.0000000         100         0.00000000         0.00000000         100         0.00000000         0.00000000         0.00000000         0.00000000000         0.0000000000000         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 137      | 1157     | 0.031553     | 0.02/2/1219                   |       | 13/        | 1946         | 0.057444     | 0.029518756 |          | 13/        | 11956      | 0.2722       | 0.022/664//               |
| ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist         ist <td>130</td> <td>1325</td> <td>0.033442</td> <td>0.024284777</td> <td></td> <td>130</td> <td>1860</td> <td>0.055667</td> <td>0.029928226</td> <td></td> <td>130</td> <td>11918</td> <td>0.26005</td> <td>0.021911982</td>                                                                                                                                                               | 130      | 1325     | 0.033442     | 0.024284777                   |       | 130        | 1860         | 0.055667     | 0.029928226 |          | 130        | 11918      | 0.26005      | 0.021911982               |
| 14.         14.         200         0.00000         0.000000         14.         1300         0.000000         0.000000           14.         1000         0.00000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.0000000         0.0000000         0.0000000         0.0000000         0.0000000         0.0000000         0.0000000         0.0000000         0.0000000         0.0000000         0.0000000         0.00000000         0.0000000         0.0000000         0.0000000         0.00000000000         0.0000000000000         0.00000000000000000000000         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140      | 1355     | 0.033724     | 0.024888561                   |       | 140        | 1797         | 0.056964     | 0.031699444 | 1        | 140        | 12282      | 0.28109      | 0.022886338               |
| 100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td>141</td> <td>1364</td> <td>0.033328</td> <td>0.024433871</td> <td></td> <td>141</td> <td>2003</td> <td>0.056796</td> <td>0.028355267</td> <td></td> <td>141</td> <td>13302</td> <td>0.27286</td> <td>0.02051263</td>                                                                                                                                                                | 141      | 1364     | 0.033328     | 0.024433871                   |       | 141        | 2003         | 0.056796     | 0.028355267 |          | 141        | 13302      | 0.27286      | 0.02051263                |
| 140         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150 <td>142</td> <td>1473</td> <td>0.033677</td> <td>0.022863136</td> <td></td> <td>142</td> <td>2074</td> <td>0.057429</td> <td>0.027690116</td> <td></td> <td>142</td> <td>12548</td> <td>0.2704</td> <td>0.021549012</td>                                                                                                                                                                | 142      | 1473     | 0.033677     | 0.022863136                   |       | 142        | 2074         | 0.057429     | 0.027690116 |          | 142        | 12548      | 0.2704       | 0.021549012               |
| 116         1200         1200         121         111         1200         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         1210         12100         1210         1210         1                                                                                                                                                                                                                                                                                                                                                 | 143      | 1506     | 0.034272     | 0.022/56/0/                   |       | 143        | 2087         | 0.059742     | 0.028625922 |          | 143        | 12/93      | 0.2/4/8      | 0.0214/8699               |
| Hate         Hate         Description         Hate         Description           144         100         D02154         0.02139100         0.02139100           101         D02156         0.02239100         0.02139100         0.02139100           101         D0150         0.02139100         0.02139100         0.02139100           101         D0150         0.02591010         1.01         0.05921         0.02139100           101         D0150         0.02591010         1.01         0.05921         0.02139100           101         D0150         0.0229110         1.01         0.029100         0.02139100           101         D0150         0.0229110         1.01         0.029100         0.02139100           101         D0150         0.0229110         1.01         0.029100         0.02139100           101         D0150                                                                                                                                                                                                                                                                                                                                                                                 | 144      | 1408     | 0.032371     | 0.02326179                    |       | 144        | 2073         | 0.058656     | 0.027707085 |          | 144        | 12712      | 0.28938      | 0.021183184               |
| 147         148         0.02.297.40         147         120         0.02.092.40         146         0.02.092.40           148         0.05         0.02.092.40         0.00.092.20         0.00.092.20         150         0.00.092.20           150         0.05.00         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.092.20         0.00.00.00.092.20         0.00.092.20                                                                                                                                                                                          | 146      | 1410     | 0.031172     | 0.02210773                    |       | 146        | 2063         | 0.058527     | 0.028369898 | 1        | 146        | 13021      | 0.27855      | 0.021392597               |
| 14         1570         0.04465         0.02137982         148         0.0370         0.02802287         150         150         0.01120082         0.01120082           13         150         0.0540         0.0233798         151         128         0.0581779         151         128         0.0581779         151         128         0.0581779         151         128         0.058177         151         128         0.058177         151         128         0.058177         151         128         0.058177         151         128         0.058177         151         128         0.058177         151         128         0.058177         151         129         0.058177         151         129         0.058177         151         129         0.058177         151         129         0.058177         151         129         0.058177         151         129         0.058177         151         129         0.058177         151         129         0.058177         151         129         0.058177         151         129         0.058177         151         129         0.058177         151         120         0.059786         151         151         129         0.058177         151         151         0.05976                                                                                                                                                                                                                                                                                                                              | 147      | 1433     | 0.032296     | 0.022537544                   |       | 147        | 2150         | 0.061543     | 0.028624465 |          | 147        | 13627      | 0.29558      | 0.021690688               |
| 1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001         1001 <th< td=""><td>148</td><td>1570</td><td>0.034505</td><td>0.021977962</td><td></td><td>148</td><td>2033</td><td>0.05703</td><td>0.028052287</td><td></td><td>148</td><td>12915</td><td>0.27777</td><td>0.021507859</td></th<>                                                                                                                            | 148      | 1570     | 0.034505     | 0.021977962                   |       | 148        | 2033         | 0.05703      | 0.028052287 |          | 148        | 12915      | 0.27777      | 0.021507859               |
| 15.1         15.2         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1         12.1 <th12.1< th="">         12.1         12.1         <th1< td=""><td>149</td><td>1569</td><td>0.03254</td><td>0.020739069</td><td></td><td>149</td><td>2097</td><td>0.061187</td><td>0.029974154</td><td></td><td>149</td><td>12967</td><td>0.27779</td><td>0.021418215</td></th1<></th12.1<>                                                                                                     | 149      | 1569     | 0.03254      | 0.020739069                   |       | 149        | 2097         | 0.061187     | 0.029974154 |          | 149        | 12967      | 0.27779      | 0.021418215               |
| 150       150       0.01660       0.012561297         151       152       0.01660       0.012561297         152       152       0.01266       0.01256217         151       152       0.01256       0.01256217         151       152       0.01256       0.01256217         151       152       0.01256       0.01256217         151       152       0.01256       0.01256217         152       0.01566       0.01255181       151       0.01266217         151       0.01566       0.01255181       151       0.0126518       0.01256217         151       0.01566       0.01255181       152       0.0126518       0.0126518         151       0.01566       0.01255181       152       0.0126518       0.0126518         151       0.01566       0.01255181       152       0.0126518       153       0.0116502         151       0.0126621       0.01265181       152       0.0126518       153       0.0126518         151       0.0126621       0.0126771       154       0.012672       153       151       151       152       0.012672         161       0.012677       0.012677       152       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 151      | 1360     | 0.034812     | 0.025597059                   |       | 150        | 2188         | 0.059887     | 0.027370795 | 1        | 151        | 12966      | 0.27925      | 0.021537406               |
| 131         132         132         132         132         132         133         1378         133         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         1378         138         138         1378         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138         138 <td>152</td> <td>1362</td> <td>0.031682</td> <td>0.023261307</td> <td></td> <td>152</td> <td>2354</td> <td>0.063232</td> <td>0.02686147</td> <td></td> <td>152</td> <td>12952</td> <td>0.28483</td> <td>0.02199143</td>                                                                                                                                              | 152      | 1362     | 0.031682     | 0.023261307                   |       | 152        | 2354         | 0.063232     | 0.02686147  |          | 152        | 12952      | 0.28483      | 0.02199143                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 153      | 1342     | 0.034022     | 0.025351639                   |       | 153        | 2368         | 0.061482     | 0.025963598 |          | 153        | 13784      | 0.29311      | 0.021264292               |
| 1586         200557         100         100         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         100         2005200         200                                                                                                                                                                                                                                                                                                             | 154      | 1290     | 0.033035     | 0.025608217                   |       | 154        | 2226         | 0.050075     | 0.028582839 |          | 154        | 12749      | 0.27621      | 0.021664993               |
| 197         128         0.00156         0.00227051         117         1292         0.00156         0.00227051           158         120         0.00156         0.02228051         130         0.00227051         130         0.00156         0.02228051         130         0.00227051         130         130         0.00157         0.02156045         130         130         0.00157         0.02156045         130         130         0.00177         0.02156045         130         130         0.00177         0.02156045         140         0.00177         0.02156045         140         0.02157         0.02127051         140         0.00177         0.02156047         0.02127051         140         0.02157         0.02127051         140         0.0215604         0.02127051         140         0.0215604         0.02127051         140         0.0216604         0.02121052         140         0.001477         0.02126047         0.02121052         140         0.001477         0.02126047         140         0.02121052         140         0.001477         0.02126047         140         0.02121052         140         0.02121052         140         0.02121052         140         0.02121052         140         0.02121052         140         0.02121052         140         <                                                                                                                                                                                                                                                                    | 155      | 1209     | 0.031399     | 0.025551914                   |       | 155        | 2119         | 0.060367     | 0.028193274 | 1        | 155        | 12/01      | 0.29207      | 0.021308383               |
| 158         139         0.03554         0.0225334           158         131         0.0236057         100         0.0236057           160         133         0.01477         0.0236057         100         0.027267           160         140         0.0236057         100         0.027267         100         0.027267           160         1437         0.0246057         100         0.027267         100         0.027267           160         1430         0.02477         0.0236057         100         0.027267         100         0.027267           160         1407         0.02460         0.0272757         160         120         0.0246037         100         100         0.027267         100         0.022607         0.0246037         100         100         0.027267         100         0.0246037         100         0.0246037         100         0.0246037         100         0.027267         110         100         0.0246037         100         0.0246037         110         100         0.0246037         110         100         0.0246037         110         100         0.0246037         110         100         0.0246037         110         100         0.024607         0.024607                                                                                                                                                                                                                                                                                                                                                           | 157      | 1282     | 0.033636     | 0.026237051                   |       | 157        | 2026         | 0.058185     | 0.028719348 | 1        | 157        | 13006      | 0.28644      | 0.022023528               |
| 139         130         0.03147         0.034893         198         2020         0.054892         0.0218403         199         1200         0.0228403           160         144         0.039478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478         0.031478                                                                                                                                                                                                                                         | 158      | 1329     | 0.033564     | 0.02525538                    |       | 158        | 2113         | 0.056297     | 0.026642972 |          | 158        | 12904      | 0.27796      | 0.021540453               |
| 100         1130         0.0.014/0         0.0.03460         0.0.023460         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         1100         11000         11000         11000         11000         11000         11000 <th1< td=""><td>159</td><td>1333</td><td>0.033311</td><td>0.024989347</td><td></td><td>159</td><td>2020</td><td>0.056892</td><td>0.028164356</td><td></td><td>159</td><td>13617</td><td>0.28407</td><td>0.02086157</td></th1<>                                                                                                                  | 159      | 1333     | 0.033311     | 0.024989347                   |       | 159        | 2020         | 0.056892     | 0.028164356 |          | 159        | 13617      | 0.28407      | 0.02086157                |
| 161         177         0.03346         0.022960         0.02396         0.022964         0.022964         0.022964         0.022964         0.022964         0.022964         0.022964         0.022964         0.022964         0.022964         0.022964         0.022964         0.022964         0.022964         0.022964         0.022964         0.022964         0.022964         0.022964         0.022921         0.022964         0.022921         0.022964         0.022921         0.022921         0.022921         0.022921         0.022921         0.022921         0.022921         0.022921         0.022921         0.022921         0.022921         0.022921         0.022921         0.022921         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.02291         0.0211         0.0211         0.0211         0.0211         0.0211         0.0211         0.0211         0.0211         0.0211         0.0211         0.0211         0.0211         0.0211         0.0211         0.0211         0.0211 </td <td>160</td> <td>1333</td> <td>0.031473</td> <td>0.023610653</td> <td></td> <td>160</td> <td>1970</td> <td>0.055906</td> <td>0.028378426</td> <td></td> <td>160</td> <td>13081</td> <td>0.28743</td> <td>0.021973091</td>        | 160      | 1333     | 0.031473     | 0.023610653                   |       | 160        | 1970         | 0.055906     | 0.028378426 |          | 160        | 13081      | 0.28743      | 0.021973091               |
| 161     1441     0.0224567     160     2024     0.054492     0.0222457     160     2124     0.05756     0.0228457     165     1416     0.0229878     160     13156     0.0229878     160     13156     0.0229878     160     13156     0.0229878     160     13156     0.0229878     160     13156     0.0229878     160     13156     0.0229878     160     13156     0.0229878     160     0.0229878     160     0.0229878     160     0.0229878     160     0.0229878     160     0.0229878     160     0.02380     0.0229878     160     0.02380     160     0.02380     160     0.02380     170     1346     0.02381     0.0029818     171     1346     0.023816     0.02208077     172     170     170     171     171     0.0346     0.023816     0.0214818     171     1348     0.0214881     0.0214881     0.0214881     171     1348     0.0214887     172     1348     0.0214881     171     1348     0.0214881     171     1348     0.0214881     171     1348     0.0214881     171     1348     0.0214881     171     1348     0.0214881     171     1348     0.0214881     171     1348     0.0214881     171     0.0214881 <td>161</td> <td>1444</td> <td>0.033456</td> <td>0.022651185</td> <td></td> <td>161</td> <td>2030</td> <td>0.055272</td> <td>0.029073329</td> <td></td> <td>161</td> <td>14097</td> <td>0.29399</td> <td>0.020854721</td>                                                                                                                                                                                                                        | 161      | 1444     | 0.033456     | 0.022651185                   |       | 161        | 2030         | 0.055272     | 0.029073329 |          | 161        | 14097      | 0.29399      | 0.020854721               |
| ise         dec         0.03977         0.02382007         106         20.75         0.07386080         106         0.2398         0.0239315           ise         140         0.03507         0.0223927         106         212         0.07756         0.02598331         106         0.239         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239315         0.0239316         0.0239316         0.0239316                                                                                                                                                                                                                             | 163      | 1481     | 0.032946     | 0.022245847                   |       | 163        | 1924         | 0.054443     | 0.02829657  | 1        | 163        | 13190      | 0.27784      | 0.021064519               |
| 165         1467         0.02227297         166         2421         0.05756         0.07669133         165         14126         0.2286         0.0213055           164         1407         0.03468         0.02271807         100         0.0323077         100         101         0.0323077         101         0.0323077         101         0.0323077         101         0.0323077         101         0.0323077         101         0.0323077         101         0.03240         0.02021282         100         0.03260         0.02021282         101         0.03260         0.02021282         102         0.03064         0.02021282         102         0.03064         0.02021282         102         0.03664         0.0217180         107         1342         0.2397         0.02021282           171         1442         0.03464         0.0217180         107         0.03664         0.0217180         107         1348         0.2397         0.02021282         102         114         0.0328         0.02021282         117         14413         0.2397         0.02021282           171         1348         0.02277130         177         2238         0.025712         0.021282         117         14313         0.02397         0.0202178 <t< td=""><td>164</td><td>1468</td><td>0.034977</td><td>0.02382609</td><td></td><td>164</td><td>2066</td><td>0.057511</td><td>0.027836689</td><td></td><td>164</td><td>13558</td><td>0.28389</td><td>0.020938708</td></t<>                                                                                      | 164      | 1468     | 0.034977     | 0.02382609                    |       | 164        | 2066         | 0.057511     | 0.027836689 |          | 164        | 13558      | 0.28389      | 0.020938708               |
| 166         1487         0.02497108         166         221         0.07978         0.0290087           166         1487         0.02381         0.027108         100         131         0.02381         0.02381         0.02391         0.02381         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.02391         0.0                                                                                                                                                                                                                                                               | 165      | 1467     | 0.032674     | 0.022272597                   |       | 165        | 2141         | 0.057056     | 0.026649183 |          | 165        | 14106      | 0.29666      | 0.021031051               |
| 1427         0.032485         0.02271803         152         0.032485         0.0246450         0.0326420           170         1442         0.033485         0.0244850         0.02485700         170         1342         0.2397         0.02201282           171         1443         0.031466         0.02358700         170         1342         0.2397         0.02201282           171         1443         0.031466         0.023130577         172         270         0.0251502         171         1443         0.2387         0.02306072         172         1343         0.2380         0.023007         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308         0.02308 <t< td=""><td>166</td><td>1487</td><td>0.034048</td><td>0.022897108</td><td></td><td>166</td><td>2223</td><td>0.057754</td><td>0.025980387</td><td></td><td>166</td><td>13296</td><td>0.28232</td><td>0.021233228</td></t<>                                                                   | 166      | 1487     | 0.034048     | 0.022897108                   |       | 166        | 2223         | 0.057754     | 0.025980387 |          | 166        | 13296      | 0.28232      | 0.021233228               |
| 146         0.03486         0.024141661         150         2280         0.080486         0.02529205           171         1442         0.03596         0.0242970         0.0210000         0.02110         0.03417         0.024017         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0240170         0.0211100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.011100000         0.01110000000         0.01110000000         0                                                                                                                                                                                       | 167      | 1437     | 0.034269     | 0.02384746                    |       | 167        | 2263         | 0.061218     | 0.027051834 |          | 167        | 14336      | 0.29607      | 0.021637726               |
| 170     1442     0.03548     0.03486     0.03548     0.0371     0.0271280       171     1491     0.031846     0.02310577     172     2080     0.05680     0.02673384       171     1412     0.0414     0.02240587     172     2080     0.05660     0.0273384       174     1316     0.0344     0.02240587     172     1326     0.0236       174     1316     0.0344     0.02240587     172     1326     0.0236       175     1326     0.0345     0.0236587     172     1326     0.0237       175     1328     0.0237     0.05753     0.02568264     174     1336     0.0238       180     1358     0.0328     0.02771306     172     2136     0.056562     177     1336     0.0238       181     1344     0.03216     0.02774466     172     2136     0.056562     178     1399     0.2791     0.022012852       181     1344     0.03249     0.02248701     188     207     0.0565626     181     1391     0.2792     0.022148571       181     1344     0.03246     0.05646     0.056560     181     1391     0.2792     0.02248571       1816     0.03246     0.0224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 169      | 1445     | 0.034885     | 0.024141661                   |       | 169        | 2280         | 0.060486     | 0.026529035 |          | 169        | 13541      | 0.28086      | 0.020741526               |
| 117     1439     0.03147     0.03240     0.0210577       127     1412     0.03473     0.03240     0.0210577       138     0.03449     0.02528153     172     2080     0.055697     0.0256971       147     1316     0.03497     0.02528157     172     2180     0.055697     0.02556924       177     1328     0.0324     0.02519317     172     2180     0.02718559       177     1328     0.03287     0.02519314     172     2180     0.02718559       178     1328     0.03289     0.026746454     172     2080     0.055191     0.0258558       181     1346     0.02128     0.02284702     120     0.05518     0.0565644       179     1328     0.03289     0.02284702     120     0.05512     0.02714502       181     1346     0.02128     0.02284702     120     0.055844     178     1390     0.2727     0.02065558       181     1346     0.02141070     181     1297     0.0238442     0.02284421     0.023842     0.0228421       128     1419     0.02140571     120     0.05584     0.05584     0.02141261     128     1391     0.0226644       138     1391     0.0214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 170      | 1462     | 0.035946     | 0.024587004                   |       | 170        | 1984         | 0.059151     | 0.029814163 |          | 170        | 13342      | 0.2937       | 0.022012892               |
| 112     1412     0.044001983     127     208     0.05464     0.0273394     127     1346     0.22961       113     10.044001983     0.0296051     117     1156     0.0246019     127     1346     0.23961       117     1156     0.02490194     0.0298051     117     1256     0.05561     0.0256924       117     1258     0.0322     0.02573304     177     2033     0.030644     0.02185234       117     1258     0.03224     0.02573304     177     2033     0.03074456       118     1346     0.03226     0.02574304     177     2036     0.05516     0.02568544       118     1346     0.03226     0.02374626     180     1300     0.02374566       118     1346     0.03267     0.05516     0.05516     0.02568544       118     1346     0.03274     0.02568564     178     1300     0.02374572       118     1346     0.03274     0.05514     0.05514     0.0256454       118     1346     0.03274     0.02745724     183     1379     0.2725       118     103176     0.02746724     183     1379     0.2726     0.02117402       118     0.03274     0.0259745 <t< td=""><td>171</td><td>1439</td><td>0.031846</td><td>0.022130577</td><td></td><td>171</td><td>2079</td><td>0.058362</td><td>0.02807215</td><td></td><td>171</td><td>14125</td><td>0.28759</td><td>0.020360071</td></t<>                                                                                                                                                                                                                                                                                        | 171      | 1439     | 0.031846     | 0.022130577                   |       | 171        | 2079         | 0.058362     | 0.02807215  |          | 171        | 14125      | 0.28759      | 0.020360071               |
| 111         115         0.02198579         0.02298579           175         1276         0.03246         0.02298579           176         1280         0.03246         0.02298579           177         1286         0.03246         0.02298507           177         1286         0.02298         0.02513374         177         2038         0.02513374           177         1288         0.03246         0.02513374         177         2038         0.05807         0.0270855238           179         1282         0.03283         0.026746445         178         2088         0.05612         0.02686474           181         1446         0.03218         0.02284702         180         0.05812         0.027645645           181         1346         0.03218         0.02284702         180         2071         0.02083579           181         1349         0.02218702         180         2072         0.058161         0.02889567           181         1349         0.02218702         180         1399         0.2795         0.02098738           182         1349         0.02218702         180         1390         0.2795         0.02218027           181                                                                                                                                                                                                                                                                                                                                                                                                         | 172      | 1412     | 0.034173     | 0.024201983                   |       | 172        | 2080         | 0.055607     | 0.026733894 |          | 172        | 13346      | 0.28943      | 0.021686348               |
| 17         127         0.0253/041         0.0255/042         0.02799426         176         1339         0.2389         0.02185         0.0278520         176         1339         0.2389         0.201243571           178         128         0.03580         0.025745645         178         0.2028527         176         1339         0.223956         0.02029356           179         1328         0.03524         0.025745645         178         0.23656         0.02029356         0.02029356           180         158         0.03264         0.02586327         138         0.03266         0.02185640         0.0279573         181         2226         0.055812         0.022683572         180         0.3010         0.02716564         188         1319         0.2727         0.0030540         181         1319         0.2727         0.0030540         181         1319         0.2727         0.0030540         0.021136641         181         1319         0.2727         0.0030540         0.021136541         181         1319         0.2727         0.0030540         0.021136541         181         181         181         1319         0.2727         0.00207545         188         183         0.03144         0.00304666         181         181                                                                                                                                                                                                                                                                                                       | 173      | 1305     | 0.034197     | 0.025258151                   |       | 173        | 2167         | 0.057576     | 0.02513424  |          | 173        | 14059      | 0.30059      | 0.021380895               |
| 170         1284         0.02315337         177         1236         0.027533         0.02785225           177         1252         0.03539         0.02674645         178         0.02085223           178         1282         0.03539         0.026746565         178         1335         0.02793573           180         1358         0.03242         0.02645572         180         0.027645587         180         1359         0.2279         0.02765566           181         1344         0.03247         0.02455272         182         216         0.05646         0.027645666         180         1359         0.2279         0.0276556           181         1347         0.03146         0.027847874         183         1355         0.027845704         183         1355         0.027845704         183         1355         0.027845704         183         1355         0.027845704         184         1350         0.027845704         184         1355         0.027845704         184         1355         0.027845704         184         1355         0.027845704         184         1355         0.027845704         184         1355         0.027845704         184         1355         0.027846         0.027845704         184 </td <td>175</td> <td>1378</td> <td>0.035241</td> <td>0.025574311</td> <td></td> <td>175</td> <td>2146</td> <td>0.058782</td> <td>0.027391426</td> <td></td> <td>175</td> <td>13471</td> <td>0.2792</td> <td>0.020726004</td>                                                                                              | 175      | 1378     | 0.035241     | 0.025574311                   |       | 175        | 2146         | 0.058782     | 0.027391426 |          | 175        | 13471      | 0.2792       | 0.020726004               |
| 117     1258     0.0257130     17     203     0.05807     0.0285528     178     1020     0.025955     0.02009936       179     1322     0.03536     0.02484207     179     2166     0.05674     0.02868524     178     1380     1359     0.27846     0.0299356       181     1344     0.03215     0.02455377     181     2226     0.05518     0.02616001     182     1309     0.2757     0.0031554       181     1344     0.032147     0.02744503     182     2166     0.05646     0.02299516     182     1305     0.0276     0.021260022       184     1427     0.02744753     188     2070     0.05718     0.02299514     186     1216     0.20210022       185     1429     0.02294625     185     100     0.05714     0.02299514     186     13116     0.202140212       186     1429     0.02393     0.02714765     188     1951     0.0229951     185     13116     0.2024     0.02124021       191     1345     0.03444     0.02391176     188     1951     0.03244     0.023914     0.02714761     189     1311     0.20240       191     1343     0.03344     0.024407451     191     1313 </td <td>176</td> <td>1304</td> <td>0.0328</td> <td>0.025153374</td> <td></td> <td>176</td> <td>2125</td> <td>0.057553</td> <td>0.027083529</td> <td></td> <td>176</td> <td>13339</td> <td>0.28337</td> <td>0.021243571</td>                                                                                                                                                                                                                                                            | 176      | 1304     | 0.0328       | 0.025153374                   |       | 176        | 2125         | 0.057553     | 0.027083529 |          | 176        | 13339      | 0.28337      | 0.021243571               |
| 119         122         0.05359         0.02244645         178         208         0.05812         0.027646664         179         1318         0.02994         0.002464566           110         1356         0.02244         0.024453         100         107         0.0564166         118         11394         0.024453         0.02136542         100         118         11394         0.024453         0.02136542         118         118         1197         1128         0.02136542         118         1197         0.02654354         118         1197         0.02165424         118         1197         0.021654354           118         1197         0.02304255         118         100         0.023642793         118         1197         0.020022         118         1118         1117         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         1118         11118         1118         1118 <td>177</td> <td>1258</td> <td>0.03242</td> <td>0.025771304</td> <td></td> <td>177</td> <td>2033</td> <td>0.058047</td> <td>0.028552238</td> <td></td> <td>177</td> <td>14071</td> <td>0.29559</td> <td>0.021006965</td>                                                                                                        | 177      | 1258     | 0.03242      | 0.025771304                   |       | 177        | 2033         | 0.058047     | 0.028552238 |          | 177        | 14071      | 0.29559      | 0.021006965               |
| 113       124       0.02482       0.0248220       0.0248220       100       0.0516       0.027637       0.027637         186       1354       0.03266       0.03265       0.03265       0.027637       100       0.027637       0.027637       100       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.027637       0.0276376       186       101       0.2727       0.02702764       188       1320       0.027247       0.02240825       186       1301       0.02717       0.02704764       188       1321       0.027247       0.02244026       189       1331       0.027247       0.02244266       189       1331       0.027247       0.02244266       189       1331       0.027247       0.022442662       1391       1314       0.02717       0.02744002214426       1391       13                                                                                                                                                                                                                                                                                                                             | 178      | 1322     | 0.035359     | 0.026746445                   |       | 178        | 2098         | 0.058212     | 0.027746568 |          | 178        | 13305      | 0.27931      | 0.02099316                |
| 181         134         0.0254937         181         2226         0.09136         0.0295932         182         1330         0.0275732         0.02055325           182         1348         0.03487         0.0238742         183         1371         0.3006         0.0259524           183         1418         0.03487         0.0238742         183         1371         0.3006         0.0229057           184         1210         0.037347         0.02394525         185         0.0210057         184         12326         0.023045           185         1374         0.032464756         185         100504         0.022393561         185         100504         0.02209756           188         1394         0.032777         0.022239567         130         1351         0.03304         0.02209756           190         136         0.03346         0.03249005         131345         0.2344         0.02209756           191         136         0.03346         0.0324000         0.0221755         130         0.0235066         131345         0.2346         0.020507902           191         136         0.03342         0.0246030         13137         0.72721         0.0220077         0.027500505                                                                                                                                                                                                                                                                                                                                                        | 1/9      | 1328     | 0.032982     | 0.024835617                   |       | 1/9        | 2136         | 0.058161     | 0.026563624 |          | 1/9        | 13199      | 0.27634      | 0.020936738               |
| 182         134         0.023332         0.0238722         122         1256         0.056046         0.023992260         183         1300         0.27722         0.021327452           183         1447         0.031767         0.02246520         185         1200         0.07734         0.0226662419         184         1276         0.022140202         0.021340251           186         1487         0.03264         0.022413266         185         2000         0.05704         0.02837951         186         1401         0.28771         0.020040373           187         1470         0.031474         0.031474         188         1370         0.032406266         188         1381         0.033474         0.02209564         189         186         0.00217426         188         1321         0.032474         0.02214426           199         1346         0.03347         0.02560856         191         176         0.033474         0.02560856         191         1317         0.7571         0.02646278         193         1337         0.7571         0.02646278         193         1337         0.7571         0.02646278         193         1346         0.27276         0.02786756         193         1346         0.27276 <td< td=""><td>181</td><td>1344</td><td>0.034217</td><td>0.025459375</td><td></td><td>181</td><td>2226</td><td>0.058136</td><td>0.026116801</td><td></td><td>181</td><td>13197</td><td>0.27257</td><td>0.020653558</td></td<>                                                                                            | 181      | 1344     | 0.034217     | 0.025459375                   |       | 181        | 2226         | 0.058136     | 0.026116801 |          | 181        | 13197      | 0.27257      | 0.020653558               |
| 188         1418         0.0248977         0.022418701         183         2077         0.027457824         183         1275         0.30022         0.022418701           185         1429         0.022418701         186         0.057042         0.028371354         126         0.427055         0.021240022           185         1427         0.023713765         0.021240221         185         1276         0.02102371           187         1478         0.035492         0.024645763         188         1393         0.032471         0.022461763         188         1394         0.05514         0.022930554         187         13046         0.22802         186         1321         0.22707244         0.022134281           199         1394         0.03577         190         1394         0.05576         0.03224966         191         1313         0.27517         0.02141715           191         1367         0.035149         0.02512621         192         1384         0.036246696         192         1376         0.02524281         193         1364         0.236049           192         1335         0.03546738         193         10354         0.02512621         192         1635         0.03781         0.0                                                                                                                                                                                                                                                                                                                                  | 182      | 1346     | 0.032135     | 0.02387422                    |       | 182        | 2156         | 0.056046     | 0.025995269 | 1        | 182        | 13092      | 0.27922      | 0.021327452               |
| 184         147         0.031767         0.02246256         185         1280         0.02366256         185         1281         1281         0.02266219         184         1297         0.77555         0.021260221           186         1487         0.035282         0.0231425         186         0.02829995         186         13216         0.20240525         186         0.022143221         187         1478         0.03547         0.02426688         188         1891         0.055648         0.02829995         186         13310         0.0234027         0.022143221         188         188         1981         0.03547         0.02426688         189         186         0.05560         0.0301174         1833         1.03556         0.0231142         100         0.02466878         193         1.03556         0.0300566         191         1.3131         0.7757         0.020569055           193         1335         0.035424         0.022466287         193         1.3551         0.023578         0.0212690251         195         1.333         0.03145         0.02529055         193         1.2454         0.3043         0.022509231           194         1340         0.03247         0.02466878         1931         1.05560         0.03308                                                                                                                                                                                                                                                                                                 | 183      | 1418     | 0.034587     | 0.024391537                   |       | 183        | 2077         | 0.05703      | 0.027457824 |          | 183        | 13751      | 0.30062      | 0.021861319               |
| 185         142         0.02393         0.0231236         185         2010         0.05742         0.022839154         185         14210         0.28025           187         1478         0.035426         0.024641763         187         1941         0.05542         0.022930554         187         1340         0.02207324         0.02207324         0.02207324         0.02207324         0.02207324         0.022073254         188         1353         0.0337367         0.0224641763         188         1891         0.05568         0.028930554         189         1355         0.02707244         0.022134282         190         1344         0.02373677         190         0.9367         0.025129821         192         1335         0.03246         0.022134282         193         1355         0.03846         0.038246         0.025129821         192         1345         0.025129821         192         1345         0.025129821         193         193         1355         0.02446         0.03146738         193         1294         0.340738         0.025129821         193         193         10246         0.02279724         0.02131366         194         10349         0.0257266         0.02084553         196         13416         0.02484553         196         103                                                                                                                                                                                                                                                                        | 184      | 1417     | 0.031767     | 0.022418701                   |       | 184        | 2150         | 0.057324     | 0.026662419 |          | 184        | 12978      | 0.27565      | 0.021240022               |
| isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp         isp<         isp< <thisp<< th=""> <thisp<< th=""> <thisp<< th=""></thisp<<></thisp<<></thisp<<>                                                                                                                                                                                                                                                                                                                                            | 185      | 1429     | 0.032933     | 0.023046256                   |       | 185        | 2010         | 0.057042     | 0.028379154 |          | 185        | 14101      | 0.28025      | 0.021205281               |
| 188         133         0.05492         0.024068         188         19211         0.022058052           190         1344         0.03309         0.0223967         190         194         0.05708         0.0231342         10.02058055           191         1337         0.035093         0.0223967         190         1934         0.02509565         191         1337         0.2201422         0.02058055           192         1338         0.033624         0.0250957         192         1384         0.036247         0.0250175         194         195         10.05256         0.0308566         192         13674         0.20405775         194         1750         0.02545761         193         1262         0.02113622         0.02113626           196         1331         0.032566         0.024430644         195         180         0.05382         0.02349251         194         1281         0.2276         0.02113626           197         1339         0.03342         0.02449674         196         1621         0.054841         0.03145733         197         1281         0.2276         0.02136362           199         1275         0.03817         0.03105588         0.0214461033144553         199         12                                                                                                                                                                                                                                                                                                                                  | 187      | 1478     | 0.031649     | 0.021413261                   |       | 187        | 1941         | 0.056154     | 0.028930654 |          | 187        | 13045      | 0.28802      | 0.022079264               |
| 189         134         0.033747         0.0220968         188         1865         0.055768         0.02371265         190         1345         0.22907         0.022594052           191         1367         0.035119         0.0255197         192         1338         0.035240         0.02213951         192         13345         0.2243797         0.02094003           192         1335         0.03314         0.024432008         193         1357         0.03248         0.02025700           195         1333         0.022559         0.024433008         195         1810         0.05265         0.02046738         194         11341         0.2776         0.021161606           196         1321         0.024433008         195         1810         0.05265         0.02046738         196         1258         0.02215786         0.022158646           197         1338         0.031513         0.0249971         171645         0.051746         0.03146733         198         13176         0.7242         0.022158646           198         1238         0.01513         0.022897031         100514         0.027870241         0.02645388         199         13240         0.22246         0.02140023374         0.021401606 <t< td=""><td>188</td><td>1339</td><td>0.035432</td><td>0.026461763</td><td></td><td>188</td><td>1951</td><td>0.055864</td><td>0.028633316</td><td></td><td>188</td><td>13211</td><td>0.29242</td><td>0.022134282</td></t<>                                                                                                    | 188      | 1339     | 0.035432     | 0.026461763                   |       | 188        | 1951         | 0.055864     | 0.028633316 |          | 188        | 13211      | 0.29242      | 0.022134282               |
| 190       1394       0.038093       0.02379867         191       1367       0.0356108       0.02560856         192       138       0.035624       0.02560856         193       1355       0.033642       0.02560856         193       1355       0.033642       0.024663278         193       1355       0.033642       0.02463208         194       1349       0.033742       0.02463308         195       1333       0.023502211       195       1340       0.02257989         196       1321       0.023757       0.024976745       195       1340       0.02257898         196       1321       0.023211       0.02463088       195       1331       0.0235521         199       1275       0.033015       0.02467988       199       1376       0.021879788         199       1275       0.03311       0.02257886       190       134175       0.7742       0.02081327         200       1426       0.021787492       200       1476       0.0318162       204       1378       0.02180572         201       1425       0.0318162       204       1630       0.05304       0.021870241       206       12141<                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 189      | 1394     | 0.033747     | 0.02420868                    |       | 189        | 1865         | 0.056169     | 0.030117426 |          | 189        | 13551      | 0.27907      | 0.020594052               |
| 2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2.         2.2. <th2.2.< th="">         2.2.         2.2.         <th2< td=""><td>190</td><td>1394</td><td>0.033093</td><td>0.02373967</td><td></td><td>190</td><td>1934</td><td>0.056708</td><td>0.029321355</td><td></td><td>190</td><td>13145</td><td>0.2946</td><td>0.022411715</td></th2<></th2.2.<>                                                                                                      | 190      | 1394     | 0.033093     | 0.02373967                    |       | 190        | 1934         | 0.056708     | 0.029321355 |          | 190        | 13145      | 0.2946       | 0.022411715               |
| 135         0.03418         0.02462878         131         133         1035         0.02387861         133         1234         0.02380231           194         134         0.03742         0.02261275         134         1750         0.05382         0.030865         134         1284         0.04330         0.02350221           195         133         0.03250         0.02443006         195         136         0.030862123         196         1294         0.02105047           196         1321         0.022757         0.024796745         196         1788         0.05146         0.03085133         197         12581         0.2288         0.02255794           198         1338         0.031513         0.0255208         199         1673         0.05197         0.031467538         199         12470         0.027564         0.02199386           200         1280         0.02379133         201         1781         0.05194         0.023870241         201         12467         0.027464         0.02199386           200         1280         0.0237973         0.02217873         202         1247         0.022137671           201         1242         0.0329411         0.023665001         0.02894477                                                                                                                                                                                                                                                                                                                                               | 191      | 1338     | 0.033674     | 0.025090856                   |       | 191        | 1788         | 0.055314     | 0.030240669 | 1        | 191        | 1313/      | 0.27517      | 0.020597059               |
| 194         1349         0.03372         0.022501275         194         1750         0.023265         0.0303802         195         181         0.023265         0.02043056         195         191         0.033302         0.024796745         196         1788         0.053822         0.020995511         196         1281         0.023342         0.021058047           198         1331         0.033342         0.024796745         196         1788         0.055401         0.030985123         197         1288         0.0231546         0.020135382         197         1288         0.0225398         199         127         0.0238377         0.02143205         199         127         0.03165588         199         1247         0.02081307           200         1242         0.032575         0.021479385         200         1740         0.02376911         201         1388         0.272         0.02218572           201         1424         0.03374         0.024759831         201         1781         0.051948         0.03276911         201         1388         0.272         0.0222288.29           203         1421         0.033814         0.02165133         0.03296441         205         1264         0.766         0.022185612                                                                                                                                                                                                                                                                                                                | 193      | 1355     | 0.033418     | 0.024662878                   |       | 193        | 1837         | 0.052516     | 0.028587861 | 1        | 193        | 12945      | 0.30433      | 0.023509231               |
| 195         133         0.022569         0.02443008         195         1810         0.023821         0.02965241         195         1300         0.225768         0.021058047           196         1321         0.02375745         196         178         0.030985123         195         1298         0.2257586         0.02105348           199         1275         0.033817         0.02562285         199         1673         0.051948         0.021053047         0.021053047         0.021053047         0.021053047         0.02105308         199         1276         0.02361306         0.021053047         0.021053047         0.021053047         0.021053047         0.021053047         0.021053047         0.021053047         0.021053047         0.021053047         0.021053047         0.021053047         0.021053047         0.021053047         0.021305317         0.021053047         0.021305317         0.021305317         0.021310517         0.01053044         0.025794393         0.021213671         0.021244         0.02557         0.021365317         0.02131052         0.021310517         0.021310517         0.021310517         0.031447         0.02144         0.02556         0.021365317         0.02144         0.02564213         0.021244         0.02556         0.021316316         0.02299621         0.02                                                                                                                                                                                                                          | 194      | 1349     | 0.033742     | 0.02501275                    |       | 194        | 1750         | 0.05265      | 0.0300856   |          | 194        | 12811      | 0.27072      | 0.021131606               |
| isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp:         isp: <th< td=""><td>195</td><td>1333</td><td>0.032569</td><td>0.024433008</td><td></td><td>195</td><td>1810</td><td>0.053382</td><td>0.029492541</td><td></td><td>195</td><td>13403</td><td>0.28224</td><td>0.021058047</td></th<>                                                                                                                           | 195      | 1333     | 0.032569     | 0.024433008                   |       | 195        | 1810         | 0.053382     | 0.029492541 |          | 195        | 13403      | 0.28224      | 0.021058047               |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 196      | 1321     | 0.032757     | 0.024/96/45                   |       | 196        | 1/88         | 0.051764     | 0.031467529 |          | 196        | 12593      | 0.2/268      | 0.021653458               |
| 199         1275         0.033817         0.0256228         199         1673         0.03105828         0.021693888           200         1280         0.022613806         200         1740         0.051948         0.021693528           201         1424         0.03253         0.02475861         201         1781         0.051248         0.0276393528           202         1424         0.031047         0.021787439         202         1551         0.049149         0.02772491         202         12246         0.022137671           203         1421         0.032941         0.022137612         204         1886         0.053967         0.028034477           205         1466         0.033174         0.02466434         206         1661         0.04968         0.02997011         206         1388         0.28550         0.021869956           206         1346         0.033174         0.02646613         206         1558         0.0319812         207         1246         0.2329418         207         1247         0.022136385           208         1228         0.046613         0.0299821         206         1388         0.021036341         207         1246         0.2556         0.02186956      <                                                                                                                                                                                                                                                                                                                                               | 198      | 1339     | 0.031513     | 0.023552466                   |       | 197        | 1621         | 0.050484     | 0.031143553 |          | 198        | 13175      | 0.27421      | 0.020813207               |
| 200         1280         0.023811         0.02563306         200         1740         0.0298527         200         1242         0.02180562           201         1421         0.032941         0.02178743         202         1651         0.028770241         202         1226         0.02778931         201         1781         0.028770241         202         1226         0.02738931         201         1781         0.028770241         202         1226         0.02278823         201         1781         0.028770241         202         1226         0.022180527         203         1421         0.03979         0.022180527         203         1630         0.02805447         205         1224         0.02765         0.02175751         203         1231         0.027662         0.02185567         204         1284         0.027662         0.02185567         206         1318         0.02180567         206         1318         0.02180567         206         1318         0.02180567         206         1318         0.02180567         206         1318         0.022600685         206         1318         0.022600685         206         1324         0.022600685         210         1256         0.02189705         211         1416         0.0237764         <                                                                                                                                                                                                                                                                                      | 199      | 1275     | 0.033817     | 0.02652298                    |       | 199        | 1673         | 0.051957     | 0.031055888 |          | 199        | 12467      | 0.27364      | 0.021949386               |
| 201         1424         0.095-X58         0.024759831         201         1781         0.028776241         201         13088         0.2225         0.002026532           202         1421         0.034979         0.02216511         202         1521         0.063064         0.00276911         202         12264         0.2727         0.022238829           203         1421         0.034979         0.02461534         203         1236         0.032185022         204         1826         0.05307         0.028153022         204         1234         0.27266         0.0213651           205         1466         0.033174         0.02466434         206         1661         0.049615         0.03064213         207         1236         0.72766         0.02213651           206         1328         0.024673         0.02510886         208         1558         0.051163         0.02392021         206         1256         0.02216634           206         0.03413         0.02584028         210         1552         0.048717         0.03194574         210         1234         0.3124         0.3124         0.3124         0.3124         0.3124         0.3124         0.3124         0.3124         0.3124         0.3124 <td< td=""><td>200</td><td>1280</td><td>0.032811</td><td>0.025633906</td><td></td><td>200</td><td>1740</td><td>0.051948</td><td>0.029855287</td><td></td><td>200</td><td>12412</td><td>0.27065</td><td>0.021805672</td></td<>                                                                                                    | 200      | 1280     | 0.032811     | 0.025633906                   |       | 200        | 1740         | 0.051948     | 0.029855287 |          | 200        | 12412      | 0.27065      | 0.021805672               |
| 202         202         103         103         0.024198         0.0221382         203         163         0.02978493         203         224         1224         0.2223         0.02137611         204         1244         0.222         0.02137611         204         1244         0.0224584         203         1234         0.2223         0.02137611         204         1284         0.272         0.02137611         205         1246         0.023941         0.0216582         205         1265         0.026         0.0213651         205         1266         0.03728493         205         1266         0.0279595         0.0213651         205         1266         0.0275960         0.022043935           206         1346         0.033174         0.02646613         206         1661         0.04968         0.0299201         206         1388         0.022043935           209         1266         0.03413         0.0254028         209         1574         0.049615         0.03094143         200         12246         0.27565         0.021296394           210         1286         0.032310         0.0254028         210         1555         0.03094143         211         11665         0.048761         0.03994143         211                                                                                                                                                                                                                                                                                                                      | 201      | 1424     | 0.035258     | 0.024759831                   |       | 201        | 1781         | 0.05124      | 0.028770241 |          | 201        | 13088      | 0.2725       | 0.020820523               |
| 204         1421         0.0231941         0.023181562         205         1202         12024         12024         0.02415/02           205         1466         0.033728         0.023006821         205         1226         0.023153022         205         1224         0.27826         0.02115751           206         1446         0.033728         0.023006821         205         1226         0.02492071         205         1214         0.7266         0.02116316           207         1417         0.033639         0.023799661         207         1619         0.046968         0.0302492021         206         1234         0.7266         0.022143935           208         1252         0.0341310         0.026945577         209         1574         0.048717         0.031945574         210         1234         0.7266         0.021299705           211         1402         0.03235092         211         1605         0.048773         0.031945574         210         1234         0.7266         0.02129390           214         1348         0.0324042         0.048773         0.031945574         210         12394         0.72766         0.02129390           214         1412         0.032418         0.0                                                                                                                                                                                                                                                                                                                                          | 202      | 1425     | 0.031047     | 0.021/8/439                   |       | 202        | 1639         | 0.049149     | 0.02970911  | 1        | 202        | 12264      | 0.27274      | 0.022238829               |
| 205         1466         0.033728         0.023006821         205         1326         0.02803447         205         1242         0.02803447           206         1346         0.033728         0.023739661         207         1619         0.049615         0.0299071           208         1328         0.024673         0.02510886         208         1558         0.031645213         207         1256         0.227696         0.022043935           209         1326         0.034673         0.02584022         210         1525         0.04876         0.030394143         211         11067         0.02479         2121         208         1324         0.021286394           210         1325         0.04877         0.031045571         200         0.030394143         211         1216         0.022043935           211         1412         0.032377         0.022825072         213         1680         0.048737         0.030394143         211         1216         0.0257765         213         1889         0.02562         0.022323651           214         1355         0.033145         0.02572861         216         1094         0.02589742         213         1389         0.030061         0.02777664 <t< td=""><td>204</td><td>1421</td><td>0.032941</td><td>0.023181562</td><td></td><td>204</td><td>1886</td><td>0.053097</td><td>0.028153022</td><td>1</td><td>204</td><td>12914</td><td>0.27862</td><td>0.02157519</td></t<>                                                                                                                   | 204      | 1421     | 0.032941     | 0.023181562                   |       | 204        | 1886         | 0.053097     | 0.028153022 | 1        | 204        | 12914      | 0.27862      | 0.02157519                |
| 206         1346         0.033174         0.023464643         206         1661         0.049963         0.0239721         206         1338         0.28101         0.02313631           207         1412         0.033673         0.02510886         208         1558         0.030645213         207         1518         0.03279861         207         1518         0.032084521         208         1226         0.27696         0.022043935           208         1226         0.03321         0.05284027         201         1555         0.043717         0.03198421         208         1226         0.27266         0.02210765           211         1412         0.03283         0.02250092         211         1065         0.048763         0.03094413         211         11967         0.26275         0.0211704167           214         1356         0.034952         0.0247564         214         1666         0.038859853         213         11809         0.636239         0.222727664         0.022170467           215         1260         0.032418         0.02477353         215         1752         0.055494         0.26859         0.2317346         0.0221727664           214         1766         0.032418         0.02407377                                                                                                                                                                                                                                                                                                                               | 205      | 1466     | 0.033728     | 0.023006821                   |       | 205        | 1826         | 0.051191     | 0.028034447 |          | 205        | 12142      | 0.26555      | 0.021869956               |
| avy         rat/         curvestage                                                                                                                                                                       | 206      | 1346     | 0.033174     | 0.024646434                   |       | 206        | 1661         | 0.049698     | 0.02992071  |          | 206        | 13183      | 0.28101      | 0.021316316               |
| 200         1200         0.02100         0.022000000         1200         0.022000000           200         1200         0.0240157         200         1200         0.0240157         200         1220         0.02172000           210         1286         0.032331         0.02584022         210         1325         0.04876         0.03104574         210         1234         0.21226         304           211         1412         0.022337         0.022832511         212         121         1001         0.0264057         200         1374         0.21226         0.021206834           212         1418         0.023377         0.022832511         212         1216         0.03014577         0.021212088           213         1347         0.03145         0.02560972         213         1889         0.00394143         211         11080         0.02632           214         1356         0.033145         0.02560772         213         1889         0.028906587         213         11880         0.02632         214         11380         0.02632         0.02777664           216         1366         0.033518         0.02537768         217         1780         0.051949         0.03283444                                                                                                                                                                                                                                                                                                                                                            | 207      | 1417     | 0.033639     | 0.023739661                   |       | 207        | 1619         | 0.051162     | 0.030645213 |          | 207        | 12564      | 0.27696      | 0.022043935               |
| 210         128         0.03231         0.02584025         210         122         0.048717         0.031945574           211         1412         0.03283         0.02283002         211         1665         0.048717         0.031945574         210         1123         0.04717         0.031945574         211         1166         0.048718         0.030941413         211         1166         0.048718         0.03094143         211         1166         0.048718         0.03094143         211         1166         0.048718         0.03094143         211         1166         0.048718         0.03094143         211         1166         0.048718         0.03094143         211         1166         0.048718         0.030964255         213         1180         0.02212088         212         11222         0.07129456         0.02212088         212         11185         0.0569         0.02237255         214         1185         0.05399         0.0222727664           215         125         0.05040754         0.055404         0.055404         0.055404         216         0.05389         215         11231         0.055540         0.02140377           216         1306         0.025397465         218         1799         0.0554049         0.0                                                                                                                                                                                                                                                                                                 | 208      | 1328     | 0.034073     | 0.026945577                   |       | 208        | 1574         | 0.031103     | 0.030798221 | 1        | 208        | 13244      | 0.28197      | 0.021286394               |
| 211         1412         0.023283         0.023280992         211         1605         0.043783         0.03094143         211         11967         0.0242308           212         1418         0.03276         0.02387443         0.03094143         212         1216         0.051571         0.030960059         212         12620         0.77395         0.02123086           214         1354         0.035452         0.025680772         213         1689         0.049611         0.023972765         213         11809         0.25622         0.02227365           214         1358         0.033145         0.042772841         215         1752         0.054295         0.030986587         215         1251         0.722         0.0207977           216         1394         0.034109         0.025397465         218         1199         0.034044         216         1251         0.26359         0.021240302           218         1344         0.034109         0.025397465         218         1199         0.051646         0.028514625         219         12521         0.027240         0.022079377           217         1364         0.034109         0.025397465         218         1281         0.0314151         0.27466                                                                                                                                                                                                                                                                                                                                 | 210      | 1286     | 0.033231     | 0.02584028                    |       | 210        | 1525         | 0.048717     | 0.031945574 |          | 210        | 12394      | 0.27263      | 0.021997095               |
| 121         1418         0.032377         0.022832511         212         1671         0.030862059         212         1222         0.27958         0.021704167           123         1347         0.034952059         213         11809         0.5650         0.02273675           124         1358         0.033145         0.02560772         213         1689         0.0023972765         214         11380         0.6366         0.02273764           215         1306         0.033528         0.025672388         215         1752         0.054289         0.030966587           218         1345         0.030764         0.02353772         217         1780         0.053664         0.02859589         216         11281         0.03106         0.022307766           218         1343         0.034623         0.025397465         219         1132         0.05196         0.028459589         218         11931         0.6230         0.02199254           219         1334         0.034623         0.025397465         221         1182         0.053468         0.03041528         220         1158         0.7496         0.022387026           221         1462         0.034415         0.023539672         221                                                                                                                                                                                                                                                                                                                                                   | 211      | 1412     | 0.03283      | 0.023250992                   |       | 211        | 1605         | 0.048783     | 0.030394143 |          | 211        | 11967      | 0.26475      | 0.022123088               |
| Lass         Lass         Loss         Loss <thloss< th="">         Loss         Loss         <thl< td=""><td>212</td><td>1418</td><td>0.032377</td><td>0.022832511</td><td></td><td>212</td><td>1671</td><td>0.051571</td><td>0.030862059</td><td></td><td>212</td><td>12622</td><td>0.27395</td><td>0.021704167</td></thl<></thloss<>                                                                                                    | 212      | 1418     | 0.032377     | 0.022832511                   |       | 212        | 1671         | 0.051571     | 0.030862059 |          | 212        | 12622      | 0.27395      | 0.021704167               |
| 1.1         1.2         1.00         0.0063998         0.00257288         2.14         1.1633         0.0227268           215         1156         0.032481         0.055298         0.055428         0.036986587         215         1215         1215         0.02277840         0.022079377           216         1306         0.033528         0.025572358         216         1894         0.053409         0.030005112         215         1215         0.22079377           217         1300         0.033528         0.025572358         216         1894         0.03606589         218         1231         0.27204         0.022079377           217         1300         0.037594         0.025994423         219         1812         0.0365499         0.028514625         219         1281         0.034615         0.023872056           211         1462         0.034415         0.023599672         221         1826         0.053149         0.028514625         220         11516         0.02748640         0.022748206           212         1462         0.034415         0.023599672         221         1826         0.053144         0.02959358         222         11516         0.02748264         0.022748264         0.022748264                                                                                                                                                                                                                                                                                                                             | 213      | 1347     | 0.034592     | 0.025680772                   |       | 213        | 1689         | 0.050084     | 0.029372765 |          | 213        | 11809      | 0.26362      | 0.022323651               |
| 216         1306         0.033528         0.025672358         216         1894         0.053664         0.02833844           217         1307         0.030764         0.02353772         217         1780         0.053664         0.02845589         217         126         0.26572358         0.021340377           218         1343         0.030764         0.02353772         217         1780         0.051199         0.030065112         217         1266         0.66831         0.02224302         219         1334         0.034623         0.0215954423         219         1312         0.053646         0.02845589         218         129         0.03412528         220         1764         0.025457         219         1228         0.03441528         220         1764         0.02783726         221         1826         0.03414528         220         11518         0.27496         0.022872026           221         1462         0.034415         0.023539672         221         1826         0.055498         0.0238125         221         1158         0.27496         0.022872026           222         1491         0.032440906         223         1782         0.055498         0.02814120         0.029549188         222         11518                                                                                                                                                                                                                                                                                                                | 214      | 1260     | 0.032418     | 0.02572881                    |       | 214        | 1752         | 0.054289     | 0.030986587 | 1        | 214        | 12321      | 0.27204      | 0.022079377               |
| 217         1307         0.030764         0.0233772         217         1780         0.0300764         0.0233772         217         1780         0.030005112         217         1206         0.02240302           218         1343         0.034073         0.02539764         218         1794         0.03840589         218         11931         0.62309         0.021499254           219         1334         0.034623         0.02539462         219         11812         0.053648         0.03841525         219         1225         0.023879265         219         1226         0.05484         0.03841525         220         1154         0.7669         0.022877026           221         1462         0.03411         0.023879245         221         1226         0.05149         0.032841525         221         1156         0.7669         0.022877026           223         1445         0.03244956         221         1227         0.065114         0.029249158         222         1227         0.66211         0.02169777           224         1330         0.03381         0.023594962         223         1872         0.055412         0.039249158         223         1156         0.52069         0.02255358         224                                                                                                                                                                                                                                                                                                                                   | 216      | 1306     | 0.033528     | 0.025672358                   |       | 216        | 1894         | 0.053664     | 0.028333844 |          | 216        | 12351      | 0.26358      | 0.021340377               |
| 1/18         1/44         0.034109         0.02397468         218         1799         0.023897469         218         11931         0.0239239           219         1313         0.034010         0.02239242         219         1121         0.05669         0.02816425         219         1220         0.023897462         219         1212         0.02816425         219         1220         0.023897462         219         1122         0.023814625         210         11318         0.02765240         0.023816425         220         11318         0.023823667         221         1162         0.051459         0.028148125         220         11518         0.02789240         0.02218224         120         0.02381625         221         11518         0.02789240         0.022181525         221         11518         0.02789240         0.022181421         0.02581421         0.025814515         222         1271         0.05639         0.028514525         221         11518         0.02718204         0.022718254           224         1330         0.033444         0.022449596         223         1782         0.055149         0.0290456513         224         1231         0.02255358         224         1231         0.02055427         0.0255142         0.02711516                                                                                                                                                                                                                                                                                 | 217      | 1307     | 0.030764     | 0.02353772                    |       | 217        | 1780         | 0.053409     | 0.030005112 |          | 217        | 12064      | 0.26831      | 0.022240302               |
| Lat.3         Loss         U.US9962.3         U.US9962.5         Lit.2         U.US9162.5         Lit.2 <thu.us916.5< th="">         Lit.2         U.US9162.5<td>218</td><td>1343</td><td>0.034109</td><td>0.025397468</td><td></td><td>218</td><td>1799</td><td>0.051199</td><td>0.028459589</td><td>-</td><td>218</td><td>11931</td><td>0.26239</td><td>0.02199254</td></thu.us916.5<> | 218      | 1343     | 0.034109     | 0.025397468                   |       | 218        | 1799         | 0.051199     | 0.028459589 | -        | 218        | 11931      | 0.26239      | 0.02199254                |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 219      | 1334     | 0.034623     | 0.025954423                   |       | 219        | 1812         | 0.0536/9     | 0.030412529 |          | 219        | 12295      | 0.25392      | 0.02146588                |
| 222         1431         0.038171         0.023879245         222         1799         0.053114         0.029523958         222         12272         0.26621         0.021692797           223         1445         0.03244         0.022449896         223         1782         0.0513112         0.0329469158         223         11366         0.25609         0.022353358           224         1330         0.033364         0.02384962         224         1827         0.056399         0.030869513         224         11541         0.072715         0.022381232           225         1343         0.034665         0.025491616         225         1801         0.0526478         0.029149542         225         1217         0.022847233           226         1365         0.03418         0.02504181         226         1856         0.02149242         225         1217         0.022847233           226         1365         0.034017         0.024090151         226         1856         0.0254742         227         1170         0.26458         0.022847233           229         1328         0.036017         0.024090279         228         1307         0.05458         0.029149642         227         11790         0.26458                                                                                                                                                                                                                                                                                                                                | 220      | 1462     | 0.034415     | 0.023539677                   |       | 220        | 1826         | 0.051459     | 0.028181325 | 1        | 220        | 11518      | 0.26299      | 0.022718296               |
| 1445         0.032444         0.022449896         223         1782         0.052212         0.022945188         223         11366         0.02355382           224         1330         0.03133465         0.023256382         224         1827         0.055391         0.030466513         224         1270         0.02355182         225         11361         0.0217518         225         1213         0.02355182         225         1213         0.03148         0.25040513         225         1210         0.052412         0.029101832         225         1213         0.02355182         225         1213         0.02367424         225         1210         0.027647328         225         1213         0.027647328         225         1213         0.0236747422         225         1213         0.023674742         225         1213         0.02764738         0.02847723         0.02265748         0.02847765         226         1147         0.27645         0.022441221           220         10304         0.0250151         227         1315         0.02765738         0.029149642         227         111790         0.66545         0.022441221           228         1326         0.025153864         229         1228         0.029169744         228                                                                                                                                                                                                                                                                                                      | 222      | 1431     | 0.034171     | 0.023879245                   |       | 222        | 1799         | 0.053114     | 0.029523958 |          | 222        | 12272      | 0.26621      | 0.021692797               |
| 224         1330         0.03381         0.023594962         224         1827         0.053699         0.030869513         224         11541         0.07258123           225         1343         0.03416         0.02581161         225         100         10052412         0.029101832         225         12159         0.07258123         0.022667422           226         1345         0.03418         0.025040513         226         1856         0.0528123         0.02812705         226         1147         0.07404         0.02387123           227         1302         0.034017         0.024902705         226         1007         0.0729104542         227         11790         0.05456         0.02241221           228         1366         0.0240127         0.025439         0.0291059442         228         1260         0.025412           229         1326         0.025114         0.052105         0.028         0.021965964         0.021965964           229         1328         0.03511         0.023908422         0.035205         0.029105744         229         1149         0.2296         0.02276634           230         1318         0.031511         0.023908422         230         10.030541932         230                                                                                                                                                                                                                                                                                                                                 | 223      | 1445     | 0.03244      | 0.022449896                   |       | 223        | 1782         | 0.052122     | 0.029249158 |          | 223        | 11366      | 0.25409      | 0.022355358               |
| L2:5         L3:5         U0294052         U025311010         L2:5         L3:0         U0254742         U0291052         L2:5         L1:19         U./5/37         D0022647425           226         1365         0.03418         0.025004013         226         1365         0.032882705         226         1147         0.27404         0.023877233           227         1302         0.033876         0.02601851         227         1815         0.052907         0.023832705         227         1179         0.26458         0.022441221           228         1366         0.034017         0.0224002709         228         100         0.055429         0.029105744         228         12129         0.2665         0.0021968073           229         1284         0.03254436         229         1288         0.052105744         228         12149         0.26567         0.023296144           230         1318         0.031511         0.023908422         230         1729         0.052807         0.030541932         230         11409         0.25966         0.022767433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 224      | 1330     | 0.031381     | 0.023594962                   |       | 224        | 1827         | 0.056399     | 0.030869513 |          | 224        | 11541      | 0.27215      | 0.023581232               |
| 227         1302         0.033876         0.02601851         227         1315         0.052907         0.029149642         227         131790         0.26458         0.002401231           228         1366         0.034017         0.024902709         228         1300         0.0529107         228         121790         0.26458         0.002441221           229         1294         0.0325         0.029105744         228         12174         0.26670         0.02366144           230         1318         0.031511         0.023908422         230         1729         0.032607132         230         11409         0.25986         0.022767693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 225      | 1343     | 0.034665     | 0.025811616                   |       | 225        | 1801         | 0.052412     | 0.029101832 |          | 225        | 12159      | 0.27537      | 0.02264/422               |
| 228         1366         0.034017         0.024902709         228         1907         0.055429         0.02905915         228         1212         0.26645         0.02168093           229         1294         0.032549         0.025153864         229         1828         0.053205         0.029105744         229         11744         0.26267         0.022366144           230         1318         0.031511         0.02308422         230         1729         0.052807         0.030541932         230         11409         0.25968         0.0227693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 227      | 1303     | 0.033876     | 0.02601851                    |       | 227        | 1815         | 0.052907     | 0.029149642 | 1        | 227        | 11790      | 0.26458      | 0.022441221               |
| 229         1294         0.032549         0.025153864         229         1828         0.053205         0.029105744         229         11744         0.26267         0.022366144           230         1318         0.031511         0.023908422         230         1729         0.030541932         230         11409         0.25986         0.0227693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 228      | 1366     | 0.034017     | 0.024902709                   |       | 228        | 1907         | 0.055429     | 0.029065915 |          | 228        | 12129      | 0.26645      | 0.021968093               |
| 230 1318 0.031511 0.023908422 230 1729 0.052807 0.030541932 230 11409 0.25986 0.02277693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 229      | 1294     | 0.032549     | 0.025153864                   |       | 229        | 1828         | 0.053205     | 0.029105744 |          | 229        | 11744      | 0.26267      | 0.022366144               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 230      | 1318     | 0.031511     | 0.023908422                   | I     | 230        | 1729         | 0.052807     | 0.030541932 | I        | 230        | 11409      | 0.25986      | 0.02277693                |

|            | Helicopt     | er Video (64 | 0 x 360)                   | Avg 1 | ime per ob | j over all f<br>Dashboa | rames:<br>rd Video (84 | 0.029803515<br>8 x 480) | Standard | Deviation: | 0.00606977<br>Drone Vide | o (1920 x 1 | 080)                       |
|------------|--------------|--------------|----------------------------|-------|------------|-------------------------|------------------------|-------------------------|----------|------------|--------------------------|-------------|----------------------------|
| Frame No   | Num Obj      | Time in S    | Time per obj (ms)          |       | Frame No   | Num Obj                 | Time in S              | Time per obj (ms)       |          | Frame No   | Num Obj                  | Time in S   | Time per obj (ms)          |
| 231        | 1312         | 0.029522     | 0.022501601                |       | 231        | 1839                    | 0.054492               | 0.029631321             |          | 231        | 12208                    | 0.27535     | 0.022554472                |
| 232        | 1265         | 0.030871     | 0.024284244                |       | 232        | 1768                    | 0.053029               | 0.028510054             |          | 232        | 11587                    | 0.27298     | 0.023337433                |
| 234        | 1193         | 0.032223     | 0.027009891                |       | 234        | 1872                    | 0.053794               | 0.028735844             |          | 234        | 12333                    | 0.29164     | 0.023646801                |
| 235        | 1209         | 0.032453     | 0.025384635                |       | 235        | 1/41                    | 0.05241                | 0.030103619             |          | 235        | 11825                    | 0.25975     | 0.021966258                |
| 237        | 1222         | 0.032486     | 0.026583879                |       | 237        | 1863                    | 0.052535               | 0.028199087             |          | 237        | 12473                    | 0.26874     | 0.021545659                |
| 238        | 1196         | 0.03312      | 0.027692642                |       | 238        | 1/86                    | 0.054063               | 0.030270381             |          | 238        | 11596                    | 0.26685     | 0.022980683                |
| 240        | 1173         | 0.032254     | 0.027496675                |       | 240        | 1985                    | 0.058718               | 0.029581058             |          | 240        | 12385                    | 0.27066     | 0.021854098                |
| 241        | 1226         | 0.033615     | 0.027418108                |       | 241        | 1873                    | 0.054274               | 0.028976775             |          | 241        | 11726                    | 0.28277     | 0.024114702                |
| 242        | 1313         | 0.030342     | 0.024676161                |       | 242        | 2069                    | 0.05779                | 0.027931174             |          | 242        | 12307                    | 0.26826     | 0.021797676                |
| 244        | 1267         | 0.034462     | 0.027199684                |       | 244        | 1957                    | 0.057041               | 0.029147113             |          | 244        | 11574                    | 0.28396     | 0.024533869                |
| 245        | 1284         | 0.032638     | 0.025418692                |       | 245        | 2026                    | 0.055955               | 0.027618608             |          | 245        | 11856                    | 0.25749     | 0.021/1//8                 |
| 247        | 1241         | 0.030989     | 0.024971313                |       | 247        | 1893                    | 0.056952               | 0.03008579              |          | 247        | 11936                    | 0.26241     | 0.02198492                 |
| 248        | 1229         | 0.030783     | 0.02504703                 |       | 248        | 1863                    | 0.055126               | 0.029589748             |          | 248        | 12195                    | 0.27679     | 0.022697335                |
| 250        | 1228         | 0.031296     | 0.025485016                |       | 250        | 1832                    | 0.055991               | 0.030562664             |          | 250        | 11906                    | 0.26452     | 0.022217201                |
| 251        | 1254         | 0.032833     | 0.026182456                |       | 251        | 1792                    | 0.054581               | 0.030458092             |          | 251        | 12458                    | 0.27419     | 0.022009392                |
| 252        | 1247         | 0.031723     | 0.024648485                |       | 252        | 1904                    | 0.053742               | 0.028225945             |          | 252        | 12002                    | 0.25846     | 0.02125151                 |
| 254        | 1333         | 0.032956     | 0.024723481                |       | 254        | 1939                    | 0.05644                | 0.029107994             |          | 254        | 11959                    | 0.26533     | 0.022186303                |
| 255        | 1363         | 0.030734     | 0.025231181                |       | 255        | 1959                    | 0.054561               | 0.027851506             |          | 255        | 12885                    | 0.25974     | 0.021098209                |
| 257        | 1404         | 0.035044     | 0.024959758                |       | 257        | 2018                    | 0.056559               | 0.028027403             |          | 257        | 12216                    | 0.27067     | 0.022156843                |
| 258        | 1426         | 0.032831     | 0.023023001                |       | 258        | 2005                    | 0.054672               | 0.027267681             |          | 258        | 12959                    | 0.28926     | 0.022321398                |
| 260        | 1445         | 0.03756      | 0.025993149                |       | 260        | 1887                    | 0.05376                | 0.028489613             |          | 260        | 11869                    | 0.27033     | 0.022775887                |
| 261        | 1566<br>1504 | 0.037499     | 0.023945849<br>0.024847872 |       | 261        | 1820                    | 0.053582               | 0.029440549             |          | 261        | 13030                    | 0.28162     | 0.021613047                |
| 263        | 1530         | 0.036541     | 0.023883137                |       | 263        | 1898                    | 0.054455               | 0.028690832             |          | 263        | 11528                    | 0.26444     | 0.022938931                |
| 264        | 1492         | 0.036149     | 0.024228753                |       | 264        | 1872                    | 0.056825               | 0.030355128             |          | 264        | 12023                    | 0.26506     | 0.022045912                |
| 266        | 1553         | 0.033529     | 0.021589955                |       | 266        | 1939                    | 0.05825                | 0.030041362             |          | 266        | 10909                    | 0.26321     | 0.024127601                |
| 267        | 1569         | 0.036789     | 0.023447355                |       | 267        | 1994                    | 0.056324               | 0.028246891             |          | 267        | 11533                    | 0.26263     | 0.022772219                |
| 268        | 1570         | 0.036771     | 0.023420828                |       | 269        | 1928                    | 0.057186               | 0.029117057             |          | 268        | 11258                    | 0.25747     | 0.022869693                |
| 270        | 1528         | 0.037648     | 0.024638874                |       | 270        | 2053                    | 0.056019               | 0.027286556             |          | 270        | 12223                    | 0.26343     | 0.021551747                |
| 2/1 272    | 1526         | 0.032859     | 0.021532634                |       | 2/1 272    | 1919                    | 0.054516               | 0.02840839              |          | 2/1 272    | 11136                    | 0.26102     | 0.023439655                |
| 273        | 1366         | 0.036049     | 0.02639041                 |       | 273        | 1900                    | 0.054174               | 0.028512632             |          | 273        | 12554                    | 0.27164     | 0.021637645                |
| 274        | 1368         | 0.034384     | 0.025134357                |       | 274        | 1876                    | 0.052659               | 0.028069989             |          | 274        | 12086                    | 0.28296     | 0.023412212                |
| 276        | 1321         | 0.034397     | 0.026038759                |       | 276        | 1985                    | 0.056794               | 0.028611385             |          | 276        | 13368                    | 0.28078     | 0.02100389                 |
| 277        | 1325         | 0.032772     | 0.024733509                |       | 277        | 1877                    | 0.054854               | 0.029224241             |          | 277        | 12743                    | 0.2691      | 0.021117084                |
| 279        | 1405         | 0.036507     | 0.028169136                |       | 278        | 1907                    | 0.053276               | 0.027937074             |          | 279        | 13645                    | 0.27776     | 0.020356394                |
| 280        | 1366         | 0.035001     | 0.025623133                |       | 280        | 1924                    | 0.054612               | 0.028384459             |          | 280        | 12896                    | 0.27503     | 0.021326458                |
| 281        | 1343         | 0.035191     | 0.026203202                |       | 281        | 1934                    | 0.055381               | 0.029959307             |          | 281        | 12862                    | 0.30514     | 0.021216918                |
| 283        | 1320         | 0.033905     | 0.02568553                 |       | 283        | 1977                    | 0.055002               | 0.027821143             |          | 283        | 12876                    | 0.27678     | 0.021495961                |
| 284        | 1252         | 0.033719     | 0.026931709                |       | 284        | 2056                    | 0.054857               | 0.028103176             |          | 284        | 12834                    | 0.2/46/     | 0.021401667                |
| 286        | 1227         | 0.03421      | 0.027880929                |       | 286        | 1970                    | 0.053218               | 0.027014162             |          | 286        | 12567                    | 0.27125     | 0.021584547                |
| 287        | 1231         | 0.032201     | 0.026158408                |       | 287        | 2174                    | 0.053024               | 0.02/4/3/31             |          | 287        | 12851<br>13652           | 0.26778     | 0.020837289                |
| 289        | 1289         | 0.034408     | 0.026693173                |       | 289        | 2100                    | 0.056502               | 0.026905762             |          | 289        | 12676                    | 0.28823     | 0.022738088                |
| 290        | 1286         | 0.032296     | 0.025113453                |       | 290        | 2040                    | 0.055191               | 0.027054167             |          | 290        | 12694                    | 0.26725     | 0.021053017                |
| 292        | 1159         | 0.033054     | 0.028519068                |       | 292        | 1903                    | 0.053927               | 0.028338098             |          | 292        | 12874                    | 0.27142     | 0.021082492                |
| 293        | 1158         | 0.033462     | 0.028896114                |       | 293        | 1825                    | 0.05222                | 0.028613918             |          | 293        | 12900                    | 0.26756     | 0.02074093                 |
| 295        | 1176         | 0.034503     | 0.029339371                |       | 295        | 1835                    | 0.054779               | 0.029852207             |          | 295        | 12660                    | 0.47307     | 0.037367141                |
| 296        | 1185         | 0.031965     | 0.026974515                |       | 296        | 1678                    | 0.052948               | 0.031554052             |          | 296        | 12544                    | 0.28557     | 0.022765784                |
| 297        | 1114         | 0.032288     | 0.028687119                |       | 297        | 1619                    | 0.050613               | 0.031261581             |          | 297        | 12294                    | 0.27479     | 0.034131121                |
| 299        | 1121         | 0.033897     | 0.03023818                 |       | 299        | 1648                    | 0.053873               | 0.032689867             |          | 299        | 12380                    | 0.26566     | 0.021459128                |
| 300        | 1137         | 0.033072     | 0.029087247                |       | 300        | 1/93                    | 0.055839               | 0.03114261              |          | 300        | 13211                    | 0.28148     | 0.021306336                |
| 302        | 1182         | 0.033827     | 0.02861819                 |       | 302        | 1558                    | 0.049089               | 0.031507766             |          | 302        | 12484                    | 0.28387     | 0.022738946                |
| 303        | 1182         | 0.032543     | 0.027532318                |       | 303        | 1626                    | 0.050716               | 0.029395241             |          | 303        | 12774                    | 0.3628      | 0.020618913                |
| 305        | 1063         | 0.032999     | 0.031042992                |       | 305        | 1745                    | 0.050295               | 0.028822464             |          | 305        | 11947                    | 0.27049     | 0.022640747                |
| 306<br>307 | 1063<br>1038 | 0.032227     | 0.030317121                |       | 306        | 1829                    | 0.052348               | 0.029543483             |          | 306<br>307 | 12896                    | 0.38555     | 0.020440059                |
| 308        | 1115         | 0.032453     | 0.029105919                |       | 308        | 1623                    | 0.050696               | 0.031236106             |          | 308        | 12133                    | 0.27274     | 0.022479519                |
| 309        | 1116         | 0.029255     | 0.026214247<br>0.029378058 |       | 309        | 1771                    | 0.052181               | 0.029464088             |          | 309        | 12833                    | 0.2682      | 0.020898855<br>0.032128896 |
| 311        | 1011         | 0.032307     | 0.031955391                |       | 311        | 1950                    | 0.054467               | 0.027931846             |          | 311        | 11799                    | 0.25395     | 0.021523265                |
| 312        | 1012         | 0.029141     | 0.028795751                |       | 312        | 1904                    | 0.053505               | 0.028101208             |          | 312        | 12399                    | 0.26192     | 0.021124204                |
| 314        | 1033         | 0.031988     | 0.030966215                |       | 314        | 1728                    | 0.052657               | 0.030472743             |          | 314        | 11083                    | 0.27101     | 0.024452585                |
| 315        | 958          | 0.032049     | 0.033453653                |       | 315        | 1706                    | 0.055482               | 0.032521454             |          | 315        | 12080                    | 0.27307     | 0.02260505                 |
| 317        | 940          | 0.030213     | 0.03214117                 |       | 310        | 1709                    | 0.050913               | 0.029931041             |          | 310        | 11692                    | 0.26251     | 0.022452446                |
| 318        | 940          | 0.032256     | 0.034314468                |       | 318        | 1675                    | 0.050151               | 0.029941134             |          | 318        | 11951                    | 0.25979     | 0.021738181                |
| 319        | 928          | 0.030137     | 0.0324/5431                |       | 319        | 16/7                    | 0.050427               | 0.030069887             |          | 319        | 11188                    | 0.38291     | 0.034225063                |
| 321        | 949          | 0.029666     | 0.03126059                 |       | 321        | 1741                    | 0.050262               | 0.028869673             |          | 321        | 11550                    | 0.25691     | 0.022243203                |
| 322        | 949          | 0.02/926     | 0.02942687                 |       | 322        | 1/82                    | 0.050845               | 0.028532435             |          | 322        | 10594                    | 0.26484     | 0.024998962                |
| 324        | 861          | 0.029536     | 0.034304297                |       | 324        | 2117                    | 0.056937               | 0.026895324             |          | 324        | 11329                    | 0.26943     | 0.023782417                |
| 325<br>326 | 862<br>956   | 0.028217     | 0.032734687                |       | 325        | 2103<br>2145            | 0.056319               | 0.026109368             |          | 325<br>326 | 10393                    | 0.4861      | 0.024033485                |
| 327        | 860          | 0.02986      | 0.034720814                |       | 327        | 1997                    | 0.055321               | 0.027701953             |          | 327        | 11319                    | 0.26354     | 0.023282622                |
| 328        | 861          | 0.028491     | 0.033091057                |       | 328        | 2074                    | 0.054501               | 0.026278255             |          | 328        | 10375                    | 0.26897     | 0.02592453                 |
| 330        | 821          | 0.029385     | 0.035791352                |       | 330        | 2239                    | 0.054507               | 0.02434435              |          | 330        | 11070                    | 0.28606     | 0.025841012                |
| 331        | 827          | 0.028004     | 0.033861548                |       | 331        | 2164                    | 0.055793               | 0.025782116             |          | 331        | 10338                    | 0.42219     | 0.04083904                 |
| 333        | 907          | 0.030138     | 0.033746196                |       | 333        | 2150                    | 0.057503               | 0.025198379             |          | 333        | 104/9                    | 0.27412     | 0.02490397                 |
| 334        | 976          | 0.031014     | 0.031776127                |       | 334        | 2189                    | 0.058121               | 0.026551211             |          | 334        | 10511                    | 0.36715     | 0.034929788                |
| 335        | 974          | 0.0306/2     | 0.031490965                |       | 335        | 2192                    | 0.05911                | 0.025559489             |          | 335        | 10887                    | 0.2/812     | 0.02554588                 |
| 337        | 879          | 0.029333     | 0.033370762                |       | 337        | 2219                    | 0.054287               | 0.024464443             |          | 337        | 11048                    | 0.28123     | 0.025455014                |
| 338        | 894          | 0.030378     | 0.033979642                |       | 338        | 2187 2139               | 0.05/573               | 0.026324966             |          | 338        | 11319<br>11439           | 0.2565      | 0.022660747                |
| 340        | 905          | 0.030637     | 0.033852597                |       | 340        | 2153                    | 0.055047               | 0.02556758              |          | 340        | 11211                    | 0.24886     | 0.022198198                |
| 341        | 905          | 0.028965     | 0.032005193                |       | 341        | 2304                    | 0.055998               | 0.024304688             |          | 341        | 12175                    | 0.28013     | 0.023008789                |
| 343        | 871          | 0.030459     | 0.03496992                 |       | 343        | 2079                    | 0.056402               | 0.027129437             |          | 343        | 11343                    | 0.27045     | 0.023842987                |
| 344        | 872          | 0.028715     | 0.032930046                |       | 344        | 2092                    | 0.055734               | 0.026641539             |          | 344        | 12260                    | 0.40982     | 0.033427162                |
| 345        | 303          | 0.03062      | 0.055885389                |       |            | 2139                    | 0.03/286               | 0.020/8162/             | 1        | 545        | 11410                    | 0.2/594     | 0.024183011                |

|          | Heliconte  | vr Video (64 | 0 × 260)          | Avg | ime per ob | j over all f | rames:<br>rd Video (84 | 0.029803515       | Standard | Deviation: | 0.00606977 | 0 (1920 × 1 | 1080)             |
|----------|------------|--------------|-------------------|-----|------------|--------------|------------------------|-------------------|----------|------------|------------|-------------|-------------------|
| Frame No | Num Obj    | Time in S    | Time per obj (ms) |     | Frame No   | Num Obj      | Time in S              | Time per obj (ms) |          | Frame No   | Num Obj    | Time in S   | Time per obj (ms) |
| 346      | 843        | 0.030097     | 0.035702254       | 1   | 346        | 2051         | 0.059917               | 0.029213749       |          | 346        | 11602      | 0.25264     | 0.021775556       |
| 347      | 844        | 0.028752     | 0.034066114       |     | 347        | 2236         | 0.058695               | 0.02625           |          | 347        | 12357      | 0.40141     | 0.032484098       |
| 348      | 7/5        | 0.029889     | 0.038566194       |     | 348        | 2166         | 0.058304               | 0.02691759        |          | 348        | 10930      | 0.25116     | 0.022979323       |
| 350      | 764        | 0.027221     | 0.03562945        |     | 350        | 1992         | 0.056891               | 0.028559639       |          | 350        | 11867      | 0.29277     | 0.024671273       |
| 351      | 742        | 0.029165     | 0.039306469       |     | 351        | 1929         | 0.054765               | 0.02839015        |          | 351        | 11336      | 0.27658     | 0.02439873        |
| 352      | 741        | 0.029281     | 0.03951525        |     | 352        | 1859         | 0.056518               | 0.030402313       |          | 352        | 11404      | 0.27422     | 0.02404551        |
| 355      | 752        | 0.028997     | 0.038559973       |     | 353        | 1724         | 0.054706               | 0.031731845       |          | 354        | 11360      | 0.24775     | 0.024256866       |
| 355      | 751        | 0.027202     | 0.036220373       |     | 355        | 1936         | 0.054078               | 0.027932851       |          | 355        | 10726      | 0.24302     | 0.022657375       |
| 356      | 717        | 0.028505     | 0.03975523        |     | 356        | 1857         | 0.054618               | 0.02941217        |          | 356        | 11141      | 0.36611     | 0.032861682       |
| 357      | 729        | 0.028948     | 0.039709328       |     | 357        | 1918         | 0.05703                | 0.029734046       |          | 357        | 11681      | 0.28365     | 0.024283109       |
| 359      | 766        | 0.027482     | 0.036615927       |     | 359        | 1933         | 0.054943               | 0.028571555       |          | 359        | 10055      | 0.28555     | 0.026851          |
| 360      | 766        | 0.027248     | 0.03557154        |     | 360        | 1903         | 0.056604               | 0.029744824       |          | 360        | 11708      | 0.4064      | 0.034711565       |
| 361      | 731        | 0.027557     | 0.037697811       |     | 361        | 2020         | 0.059764               | 0.02958599        |          | 361        | 11094      | 0.27712     | 0.024979178       |
| 362      | 766        | 0.028667     | 0.037424543       |     | 362        | 1873         | 0.054835               | 0.029276508       |          | 362        | 11361      | 0.27804     | 0.02382042        |
| 364      | 740        | 0.02735      | 0.036959054       | 1   | 364        | 1727         | 0.052803               | 0.030575043       |          | 364        | 10950      | 0.26923     | 0.02458758        |
| 365      | 748        | 0.027359     | 0.036575936       |     | 365        | 1732         | 0.051419               | 0.02968776        |          | 365        | 11129      | 0.25347     | 0.022775541       |
| 366      | 747        | 0.027887     | 0.037331995       |     | 366        | 1915         | 0.053741               | 0.028062977       |          | 366        | 11971      | 0.26656     | 0.02226748        |
| 368      | 797        | 0.0238886    | 0.036243538       |     | 368        | 1874         | 0.053729               | 0.028670598       |          | 368        | 111230     | 0.25301     | 0.02273661        |
| 369      | 783        | 0.028918     | 0.036932439       |     | 369        | 1830         | 0.054086               | 0.029554918       |          | 369        | 11672      | 0.25464     | 0.021816655       |
| 370      | 749        | 0.028326     | 0.037818825       |     | 370        | 1946         | 0.057676               | 0.029638335       |          | 370        | 10958      | 0.3952      | 0.036064519       |
| 371      | 740        | 0.029505     | 0.039624263       |     | 371        | 1/8/         | 0.053734               | 0.029602285       |          | 372        | 11075      | 0.26268     | 0.024223323       |
| 373      | 794        | 0.028213     | 0.03553262        |     | 373        | 1836         | 0.053801               | 0.029303595       |          | 373        | 10851      | 0.27818     | 0.025635886       |
| 374      | 792        | 0.027217     | 0.034364394       |     | 374        | 1827         | 0.054761               | 0.02997318        |          | 374        | 11008      | 0.26733     | 0.024285065       |
| 375      | 809        | 0.029938     | 0.037006304       |     | 3/5        | 1644         | 0.051961               | 0.031606569       |          | 3/5        | 11570      | 0.25808     | 0.022306137       |
| 377      | 800        | 0.029317     | 0.036646375       | 1   | 377        | 1634         | 0.053889               | 0.032979621       | 1        | 377        | 10465      | 0.27716     | 0.02648409        |
| 378      | 816        | 0.029559     | 0.036223652       |     | 378        | 1676         | 0.051364               | 0.030646957       |          | 378        | 11212      | 0.25253     | 0.022523279       |
| 379      | 816        | 0.028109     | 0.034446814       |     | 379        | 1654         | 0.050827               | 0.030729504       | -        | 379        | 10506      | 0.25042     | 0.023835998       |
| 381      | 819        | 0.030992     | 0.037841514       |     | 381        | 1518         | 0.050405               | 0.031581892       |          | 381        | 11653      | 0.27907     | 0.023948511       |
| 382      | 819        | 0.028112     | 0.034324542       |     | 382        | 1569         | 0.048845               | 0.031131549       |          | 382        | 10939      | 0.24343     | 0.022253405       |
| 383      | 801        | 0.027612     | 0.034471411       |     | 383        | 1665         | 0.050116               | 0.03009988        |          | 383        | 11323      | 0.36749     | 0.032454915       |
| 384      | 697        | 0.028825     | 0.041355667       |     | 384        | 1/10         | 0.052219               | 0.03053/31        |          | 384        | 11918      | 0.29515     | 0.024/65397       |
| 386      | 799        | 0.029003     | 0.036299124       | 1   | 386        | 1613         | 0.049835               | 0.030896094       | 1        | 386        | 11266      | 0.29314     | 0.026019528       |
| 387      | 753        | 0.029983     | 0.039817795       |     | 387        | 1639         | 0.05113                | 0.031196095       |          | 387        | 12054      | 0.30224     | 0.025073668       |
| 388      | 788        | 0.027699     | 0.035150888       |     | 388        | 1599         | 0.050547               | 0.03161182        |          | 388        | 11293      | 0.2/548     | 0.024394227       |
| 390      | 797        | 0.029675     | 0.037232873       |     | 390        | 1715         | 0.051002               | 0.029739009       |          | 390        | 12127      | 0.26558     | 0.021900223       |
| 391      | 832        | 0.030373     | 0.036505649       |     | 391        | 1662         | 0.0486                 | 0.029242118       |          | 391        | 11338      | 0.265       | 0.023373082       |
| 392      | 885        | 0.030972     | 0.03499661        |     | 392        | 1594         | 0.050777               | 0.031855207       |          | 392        | 11522      | 0.25331     | 0.021984985       |
| 394      | 880        | 0.030532     | 0.034695341       |     | 394        | 1704         | 0.052817               | 0.030995599       |          | 394        | 11151      | 0.25291     | 0.022680746       |
| 395      | 880        | 0.028002     | 0.031820341       |     | 395        | 1647         | 0.051576               | 0.031314876       |          | 395        | 11189      | 0.26129     | 0.0233524         |
| 396      | 891        | 0.031031     | 0.034826599       |     | 396        | 1752         | 0.05354                | 0.030559532       |          | 396        | 12003      | 0.26485     | 0.022065484       |
| 398      | 890        | 0.028705     | 0.032253034       |     | 398        | 1837         | 0.053402               | 0.029070005       |          | 398        | 11255      | 0.2631      | 0.023376544       |
| 399      | 862        | 0.029039     | 0.033688399       |     | 399        | 1701         | 0.051096               | 0.030038801       |          | 399        | 12134      | 0.36848     | 0.03036715        |
| 400      | 860        | 0.030801     | 0.035815465       |     | 400        | 1699         | 0.050409               | 0.029669806       |          | 400        | 11218      | 0.30871     | 0.027519522       |
| 402      | 859        | 0.02908      | 0.033853434       |     | 402        | 1666         | 0.050282               | 0.030181152       |          | 402        | 12031      | 0.29895     | 0.024848142       |
| 403      | 859        | 0.029997     | 0.034920838       |     | 403        | 1617         | 0.048311               | 0.029876871       |          | 403        | 11491      | 0.26294     | 0.022882604       |
| 404      | 855        | 0.028847     | 0.033739649       |     | 404        | 1622         | 0.049534               | 0.030539088       | -        | 404        | 11424      | 0.25648     | 0.022451331       |
| 405      | 803        | 0.029308     | 0.03649863        |     | 406        | 1556         | 0.049856               | 0.03204081        |          | 406        | 11324      | 0.25963     | 0.022927499       |
| 407      | 817        | 0.028818     | 0.035273072       |     | 407        | 1506         | 0.047237               | 0.031365936       |          | 407        | 11538      | 0.26543     | 0.0230052         |
| 408      | 799        | 0.028812     | 0.036060325       |     | 408        | 1581         | 0.050769               | 0.032111891       |          | 408        | 12195      | 0.25895     | 0.021234194       |
| 403      | 719        | 0.02876      | 0.040000139       |     | 403        | 1548         | 0.047893               | 0.030938307       |          | 403        | 11423      | 0.24997     | 0.024102123       |
| 411      | 758        | 0.028578     | 0.037701715       |     | 411        | 1562         | 0.049187               | 0.031489565       |          | 411        | 12063      | 0.40306     | 0.033412833       |
| 412      | 762        | 0.026735     | 0.035085827       |     | 412        | 1572         | 0.049113               | 0.031242494       |          | 412        | 11196      | 0.25988     | 0.023211861       |
| 415      | 849        | 0.027253     | 0.032100471       |     | 415        | 1359         | 0.049623               | 0.032657497       |          | 415        | 12193      | 0.29936     | 0.023927181       |
| 415      | 853        | 0.027788     | 0.032577022       | 1   | 415        | 1583         | 0.049058               | 0.030990208       |          | 415        | 11926      | 0.29008     | 0.024323159       |
| 416      | 799        | 0.028776     | 0.036014894       |     | 416        | 1528         | 0.048475               | 0.031724607       |          | 416        | 11855      | 0.28721     | 0.024227246       |
| 417      | 799        | 0.027586     | 0.034525031       |     | 417        | 1540         | 0.048306               | 0.031367338       |          | 417        | 12451      | 0.28741     | 0.023083046       |
| 419      | 804        | 0.030699     | 0.038182338       |     | 419        | 1546         | 0.047294               | 0.030590944       |          | 419        | 11681      | 0.28097     | 0.02405342        |
| 420      | 805        | 0.026086     | 0.032405342       |     | 420        | 1626         | 0.051697               | 0.031793665       |          | 420        | 12190      | 0.28119     | 0.023067104       |
| 421      | 802        | 0.028248     | 0.03522207        | -   | 421        | 1637         | 0.049244               | 0.030082101       |          | 421        | 11329      | 0.27702     | 0.024452202       |
| 422      | 733        | 0.029365     | 0.038284876       |     | 422        | 1605         | 0.030367               | 0.029514953       |          | 422        | 11418      | 0.27031     | 0.024199772       |
| 424      | 738        | 0.028303     | 0.038350407       | 1   | 424        | 1642         | 0.049245               | 0.029990987       |          | 424        | 11471      | 0.2518      | 0.02195092        |
| 425      | 767        | 0.028394     | 0.037019296       |     | 425        | 1592         | 0.050235               | 0.031554523       |          | 425        | 11613      | 0.25422     | 0.021890984       |
| 426      | 808        | 0.027595     | 0.035211262       |     | 426        | 1920         | 0.052376               | 0.020976886       | 1        | 426        | 12390      | 0.25/18     | 0.020757224       |
| 428      | 805        | 0.027547     | 0.034220124       | 1   | 428        | 1974         | 0.052147               | 0.026416667       |          | 428        | 11650      | 0.24985     | 0.021446009       |
| 429      | 807        | 0.02836      | 0.035142379       |     | 429        | 1985         | 0.052449               | 0.02642272        |          | 429        | 12287      | 0.25418     | 0.020687068       |
| 430      | /98<br>811 | 0.02/716     | 0.036549100       |     | 430        | 1793         | 0.051693               | 0.028830229       |          | 430        | 11894      | 0.25826     | 0.021/13301       |
| 432      | 821        | 0.029572     | 0.036019367       |     | 432        | 1649         | 0.051491               | 0.031225652       | 1        | 432        | 13051      | 0.26668     | 0.020433913       |
| 433      | 821        | 0.028023     | 0.03413313        |     | 433        | 1696         | 0.050289               | 0.029651238       |          | 433        | 11992      | 0.29225     | 0.024370664       |
| 434      | 830        | 0.02995      | 0.036084819       |     | 434        | 1746         | 0.051662               | 0.029588889       |          | 434        | 11916      | 0.28768     | 0.024142665       |
| 435      | 905        | 0.026799     | 0.029612597       | 1   | 435        | 1633         | 0.050878               | 0.031156154       | 1        | 435        | 11775      | 0.25514     | 0.02166828        |
| 437      | 874        | 0.029505     | 0.03375881        |     | 437        | 1765         | 0.052487               | 0.029737507       |          | 437        | 11545      | 0.31859     | 0.027595409       |
| 438      | 878        | 0.031078     | 0.035396697       |     | 438        | 1686         | 0.05079                | 0.030124733       |          | 438        | 12383      | 0.3859      | 0.031163369       |
| 439      | 965        | 0.02/2/2     | 0.031025597       |     | 439        | 1/36         | 0.052074               | 0.029996659       |          | 439        | 11344      | 0.28886     | 0.023332951       |
| 441      | 937        | 0.031098     | 0.033188474       |     | 441        | 1764         | 0.056092               | 0.031798413       |          | 441        | 12612      | 0.29674     | 0.023528624       |
| 442      | 930        | 0.032222     | 0.034647312       |     | 442        | 1680         | 0.051401               | 0.030595833       | -        | 442        | 11544      | 0.2934      | 0.025415367       |
| 443      | 861        | 0.030447     | 0.035362834       |     | 443        | 1724         | 0.053554               | 0.029985274       |          | 444        | 12427      | 0.28873     | 0.023234248       |
| 445      | 888        | 0.029276     | 0.032968919       |     | 445        | 1932         | 0.053242               | 0.027557971       |          | 445        | 11684      | 0.28138     | 0.024082677       |
| 446      | 939        | 0.031105     | 0.033125453       |     | 446        | 1817         | 0.051217               | 0.028187397       |          | 446        | 12161      | 0.27946     | 0.022980018       |
| 447      | 890        | 0.028015     | 0.035148876       |     | 447        | 1782         | 0.051772               | 0.029071156       |          | 447        | 11880      | 0.28034     | 0.023207828       |
| 449      | 849        | 0.028685     | 0.033787279       |     | 449        | 1755         | 0.050989               | 0.029053561       |          | 449        | 11791      | 0.28671     | 0.024315664       |
| 450      | 718        | 0.02826      | 0.039359749       |     | 450        | 1784         | 0.053154               | 0.029794787       |          | 450        | 12301      | 0.27332     | 0.022219088       |
| 451 452  | 743        | 0.028992     | 0.039020727       |     | 451        | 1848         | 0.052805               | 0.028080559       | 1        | 451 452    | 11586      | 0.25886     | 0.022342482       |
| 453      | 737        | 0.028576     | 0.038772863       |     | 453        | 1795         | 0.05316                | 0.02961571        |          | 453        | 12244      | 0.25085     | 0.020487177       |
| 454      | 798        | 0.029003     | 0.036345113       |     | 454        | 1860         | 0.053233               | 0.028619839       |          | 454        | 11084      | 0.24782     | 0.022358625       |
| 455      | 759        | 0.028156     | 0.035086185       |     | 455        | 2037         | 0.054281               | 0.028227249       |          | 455        | 121036     | 0.245/8     | 0.02227075        |
| 457      | 769        | 0.029062     | 0.037792328       |     | 457        | 2081         | 0.059574               | 0.028627439       |          | 457        | 11338      | 0.27547     | 0.024295996       |
| 458      | 770        | 0.027417     | 0.035605844       |     | 458        | 2066         | 0.053661               | 0.025973282       |          | 458        | 10880      | 0.24359     | 0.022388327       |
| 459      | 859        | 0.028497     | 0.0331/4156       |     | 459        | 2063         | 0.05354                | 0.025952254       |          | 459        | 11651      | 0.25767     | 0.022756759       |
|          |            |              |                   |     |            |              |                        |                   |          |            |            |             |                   |

| Tarba WorkTarba WorkTarba WorkTarba WorkTarba WorkTarba Work6000000000000000000000000000000000000006000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | Helicopt   | ar Video (64 | 0 × 260)          | Avg 1 | ime per ob | j over all f | rames:<br>rd Video (84 | 0.029803515       | Standard | Deviation: | 0.00606977 | 0 (1920 × 1 | 080)              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------|-------------------|-------|------------|--------------|------------------------|-------------------|----------|------------|------------|-------------|-------------------|
| Heat     Box     Jox     Jox<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Frame No   | Num Obj    | Time in S    | Time per obj (ms) |       | Frame No   | Num Obj      | Time in S              | Time per obj (ms) |          | Frame No   | Num Obj    | Time in S   | Time per obj (ms) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 461        | 852        | 0.033904     | 0.039793662       |       | 461        | 2033         | 0.054575               | 0.026844368       |          | 461        | 10812      | 0.26965     | 0.024939419       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 462        | 789        | 0.029273     | 0.037101267       |       | 462        | 1990         | 0.053762               | 0.027015829       |          | 462        | 11591      | 0.26658     | 0.022999224       |
| 66         67         67         68         100         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000 <td>463</td> <td>789</td> <td>0.027673</td> <td>0.035568766</td> <td></td> <td>463</td> <td>1947</td> <td>0.054807</td> <td>0.028149563</td> <td></td> <td>463</td> <td>10310</td> <td>0.24802</td> <td>0.026116028</td>                                                                                                                                                 | 463        | 789        | 0.027673     | 0.035568766       |       | 463        | 1947         | 0.054807               | 0.028149563       |          | 463        | 10310      | 0.24802     | 0.026116028       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 465        | 820        | 0.029067     | 0.035448049       |       | 465        | 1864         | 0.054744               | 0.029369313       |          | 465        | 11701      | 0.26715     | 0.02283104        |
| B         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <thd< th="">         D         D         D</thd<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 466        | 820        | 0.02817      | 0.034353415       |       | 466        | 1955         | 0.053854               | 0.027546803       |          | 466        | 10871      | 0.24382     | 0.022428479       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 468        | 720        | 0.027104     | 0.037644444       |       | 468        | 2018         | 0.056984               | 0.027824219       |          | 468        | 11806      | 0.26809     | 0.022707776       |
| 00         100         100         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000         000                                                                                                                                                                                                                                                                                                                                                                                                               | 469        | 783        | 0.028096     | 0.035882503       |       | 469        | 1961         | 0.054829               | 0.02795951        |          | 469        | 10880      | 0.24807     | 0.022800368       |
| Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di         Di <thdi< th="">         Di         Di         Di<!--</td--><td>470</td><td>743</td><td>0.028386</td><td>0.038204441</td><td></td><td>470</td><td>2038</td><td>0.055556</td><td>0.027259814</td><td></td><td>470</td><td>10588</td><td>0.28015</td><td>0.026458916</td></thdi<>                                                                                                                                                                                                                       | 470        | 743        | 0.028386     | 0.038204441       |       | 470        | 2038         | 0.055556               | 0.027259814       |          | 470        | 10588      | 0.28015     | 0.026458916       |
| ch         sb         absch         sb         absch         absch         absch         absch         absch         absch           ch         sb         absch         absch         absch         absch         absch         absch           ch         sb         absch                                                                                                                                                                                                                                                                                                                                                           | 471        | 893        | 0.027801     | 0.034741097       |       | 471        | 1951         | 0.05571                | 0.028554587       |          | 471        | 11828      | 0.2826      | 0.025576704       |
| 0.1         0.1         0.1         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <td>473</td> <td>958</td> <td>0.030143</td> <td>0.031464718</td> <td></td> <td>473</td> <td>1981</td> <td>0.055546</td> <td>0.028039576</td> <td></td> <td>473</td> <td>11427</td> <td>0.29011</td> <td>0.025388291</td>                                                                                                                                                                                     | 473        | 958        | 0.030143     | 0.031464718       |       | 473        | 1981         | 0.055546               | 0.028039576       |          | 473        | 11427      | 0.29011     | 0.025388291       |
| m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 474        | 960        | 0.028052     | 0.029220521       |       | 474        | 1892         | 0.05413                | 0.028609778       |          | 474        | 12022      | 0.34259     | 0.028496922       |
| cf         st         colse         colse <thcolse< th=""> <thc></thc></thcolse<>                                                                                                                                                                                                                                                                                                                                    | 473        | 965        | 0.030943     | 0.031039204       |       | 473        | 1822         | 0.052566               | 0.029695953       |          | 475        | 11021      | 0.28392     | 0.025026541       |
| -0.         -0.         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.00         -0.                                                                                                                                                                                                                                                                                                                                  | 477        | 948        | 0.029282     | 0.030887658       |       | 477        | 1931         | 0.053571               | 0.027742465       |          | 477        | 11178      | 0.27357     | 0.024474146       |
| me         is         2009         1000         1000         000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 478        | 968        | 0.029574     | 0.03055155        |       | 478        | 2039         | 0.056397               | 0.027659343       |          | 478        | 11054      | 0.28826     | 0.026077076       |
| 44.         84.         85.         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710         0.000710 </td <td>475</td> <td>988</td> <td>0.0304</td> <td>0.030769231</td> <td></td> <td>475</td> <td>1907</td> <td>0.055906</td> <td>0.029315941</td> <td></td> <td>475</td> <td>10872</td> <td>0.26395</td> <td>0.02427787</td>               | 475        | 988        | 0.0304       | 0.030769231       |       | 475        | 1907         | 0.055906               | 0.029315941       |          | 475        | 10872      | 0.26395     | 0.02427787        |
| 44.         45.         0.02553         0.02523         0.02149952         45.         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.0214953         0.02149         0.02145         0.02149         0.02145         0.02149         0.02145         0.02149         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.01141         0.011411         0.01141                                                                                                                                                                                                                                                      | 481        | 984        | 0.030437     | 0.030931606       |       | 481        | 1939         | 0.055073               | 0.02840263        |          | 481        | 11255      | 0.26704     | 0.0237259         |
| Bit         Control         Control <thcontrol< th=""> <thcontrol< th=""> <thcontr< td=""><td>482</td><td>981</td><td>0.028555</td><td>0.029108053</td><td></td><td>482</td><td>1928</td><td>0.053327</td><td>0.027659025</td><td></td><td>482</td><td>12175</td><td>0.30127</td><td>0.024745216</td></thcontr<></thcontrol<></thcontrol<>       | 482        | 981        | 0.028555     | 0.029108053       |       | 482        | 1928         | 0.053327               | 0.027659025       |          | 482        | 12175      | 0.30127     | 0.024745216       |
| ets         bit         bit<         bit         b                                                                                                                                                                                                                                                                                                                                                                                                               | 484        | 938        | 0.028623     | 0.030514499       |       | 483        | 1946         | 0.053142               | 0.027891418       |          | 483        | 10944      | 0.25563     | 0.023358279       |
| 446         101         0.01136         0.013361         446         0.017158         0.0271355           446         101         0.013361         0.013361         0.013365         0.013365           447         0.01346         0.013361         0.013365         0.013365         0.013365           448         0.01348         0.01371155         0.013246         0.01336         0.013365         0.01336         0.013365           449         0.0301         0.0123461         0.01336         0.0123461         0.01336         0.0123461         0.01336         0.013365         0.013365         0.013365         0.013365         0.01336         0.02336         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366         0.013366                                                                                                                                                                                                                                                                                                   | 485        | 967        | 0.030035     | 0.03106029        |       | 485        | 1935         | 0.054625               | 0.028229819       |          | 485        | 11550      | 0.2671      | 0.023125368       |
| Head         Constraint         Constraint         Head         State         Constraint           Head         Constraint         Constraint         Constraint         Constraint         Constraint         Constraint           Head         Constraint         Constraint <t< td=""><td>486</td><td>1021</td><td>0.03181</td><td>0.031155632</td><td></td><td>486</td><td>1937</td><td>0.053399</td><td>0.02756763</td><td></td><td>486</td><td>12154</td><td>0.25708</td><td>0.021151966</td></t<> | 486        | 1021       | 0.03181      | 0.031155632       |       | 486        | 1937         | 0.053399               | 0.02756763        |          | 486        | 12154      | 0.25708     | 0.021151966       |
| etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc         etc          etc<         etc<                                                                                                                                                                                                                                                                                                                                                                                                                       | 487        | 990        | 0.020301     | 0.032273333       |       | 487        | 1927         | 0.054249               | 0.02815205        |          | 487        | 11253      | 0.25374     | 0.022548831       |
| etc         cols of sign ()         cols of sign ()         cols of sign ()         cols of sign ()           etc         cols of sign ()         cols of sign ()         cols of sign ()         cols of sign ()           etc         cols of sign ()         cols of sign ()         cols of sign ()         cols of sign ()           etc         cols of sign ()         cols of sign ()         cols of sign ()         cols of sign ()           etc         cols of sign ()         cols of sign ()         cols of sign ()         cols of sign ()           etc         cols of sign ()         cols of sign ()         cols of sign ()         cols of sign ()           etc         cols of sign ()         cols of sign ()         cols of sign ()         cols of sign ()           etc         cols of sign ()         cols of sign ()         cols of sign ()         cols of sign ()           etc         cols of sign ()         cols of sign ()         cols of sign ()         cols of sign ()           etc         cols of sign ()         cols of sign ()         cols of sign ()         cols of sign ()           etc         cols of sign ()         cols of sign ()         cols of sign ()         cols of sign ()           etc         cols of sign ()         cols of sign ()         cols of sign ()         cols of sig                                                                                                                                                                                                                                                        | 489        | 961        | 0.031493     | 0.032771176       |       | 489        | 1956         | 0.053274               | 0.027235992       |          | 489        | 11789      | 0.26431     | 0.022420053       |
| 462         469         608         60223442         462         1916         603559         60287838           461         970         603194         60203442         603199         603299         603199         603299         603199         603299         603199         603299         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         603199         60                                                                                                                                                                                                                                                                                                               | 490        | 959        | 0.029231     | 0.030481126       |       | 490        | 1903         | 0.054037               | 0.028395849       |          | 490        | 11028      | 0.32727     | 0.029676369       |
| 468         599         0.028194         0.003294         0.023294         0.023294         0.023294           468         710         0.032294         0.032491         464         471         0.032095           470         107         0.03217         0.03211         0.03211         0.03211         471         0.03210         0.034111           470         107         0.03211         0.03211         0.03211         0.03211         471         0.03211         471         0.03211         471         0.03211         471         0.03211         471         471         0.03211         471         0.03211         0.03211         471         471         0.03211         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471         471 </td <td>492</td> <td>940</td> <td>0.0303</td> <td>0.032234468</td> <td></td> <td>492</td> <td>1918</td> <td>0.055569</td> <td>0.028972106</td> <td></td> <td>492</td> <td>11461</td> <td>0.2603</td> <td>0.022711456</td>                                                                                                                                                            | 492        | 940        | 0.0303       | 0.032234468       |       | 492        | 1918         | 0.055569               | 0.028972106       |          | 492        | 11461      | 0.2603      | 0.022711456       |
| str.         col.         col. <th< td=""><td>493</td><td>939</td><td>0.028194</td><td>0.030025453</td><td></td><td>493</td><td>1850</td><td>0.053249</td><td>0.028783081</td><td></td><td>493</td><td>10485</td><td>0.24751</td><td>0.023605627</td></th<>                                                                                                                                                 | 493        | 939        | 0.028194     | 0.030025453       |       | 493        | 1850         | 0.053249               | 0.028783081       |          | 493        | 10485      | 0.24751     | 0.023605627       |
| #86         927         0.023979         0.023217164         997         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.023217         0.02321                                                                                                                                                                                                                                        | 494        | 971        | 0.031742     | 0.032690422       |       | 494        | 1795         | 0.055421               | 0.031524915       |          | 494        | 10943      | 0.24663     | 0.022537969       |
| 407         0.00007         0.00000000         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 496        | 927        | 0.029792     | 0.032137648       |       | 496        | 1757         | 0.05218                | 0.029698179       |          | 496        | 10988      | 0.26669     | 0.024270841       |
| mate         constant          constant         constant <td>497</td> <td>877</td> <td>0.030579</td> <td>0.034867161</td> <td></td> <td>497</td> <td>1709</td> <td>0.052005</td> <td>0.030430135</td> <td></td> <td>497</td> <td>11512</td> <td>0.25737</td> <td>0.022356411</td>                      | 497        | 877        | 0.030579     | 0.034867161       |       | 497        | 1709         | 0.052005               | 0.030430135       |          | 497        | 11512      | 0.25737     | 0.022356411       |
| 500         942         0.00995         0.01744715         500         1950         0.0012         0.020989         0.019441         500         11300         2.4858         0.0203848           501         971         0.02989         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441         0.019441                                                                                                                                                                                                                                                                 | 498        | 1010       | 0.030817     | 0.03051198        | 1     | 498        | 2011 2025    | 0.054455               | 0.02/0/8667       |          | 498        | 11966      | 0.25391     | 0.021818653       |
| Shi         PP         0.02896         0.01984         90.         0.0198         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189         0.01189                                                                                                                                                                                                                                                                        | 500        | 934        | 0.029653     | 0.031748715       | 1     | 500        | 1963         | 0.052019               | 0.026499694       |          | 500        | 11300      | 0.24568     | 0.021741947       |
| 201         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010         2010                                                                                                                                                                                                                                                                                                                                                                               | 501        | 937        | 0.028995     | 0.03094461        |       | 501        | 1965         | 0.051294               | 0.026103613       |          | 501        | 12093      | 0.24835     | 0.020536426       |
| 500         900         0.00006         0.000090         0.000090         0.000090         0.000090         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.0000900         0.00009000         0.00009000         0.000090000000         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 502        | 933        | 0.028399     | 0.030698399       | 1     | 502        | 1899         | 0.050424               | 0.026552/12       |          | 502        | 11174      | 0.24546     | 0.02196/335       |
| 956         971         0.02914         0.029141         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.02914         0.029                                                                                                                                                                                                                                                                   | 504        | 900        | 0.030506     | 0.033895333       |       | 504        | 1677         | 0.052717               | 0.031435063       |          | 504        | 12177      | 0.26881     | 0.022074813       |
| action         action         action         action         action           action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action         action                                                                                                                                                                                                                                                                                                            | 505        | 971        | 0.029106     | 0.029974974       |       | 505        | 1607         | 0.049251               | 0.030647604       |          | 505        | 11160      | 0.26955     | 0.024153047       |
| 98         87         0.0003         0.03493352         568         133         0.04577         0.033071         598         0.03797         0.03308212           510         984         0.039216         0.03300107         550         137         0.04723         0.034426466         510         11067         0.2278897           511         984         0.03221         0.02218122         511         146         0.04881         0.03141113         111096         0.22716         0.0227897           511         984         0.03981         0.03343021         513         1464         0.04881         0.03560671         513         111994         0.02748174           514         884         0.0358075         0.0339951         514         1464         0.05696         0.0127170         511         1164         0.02381         0.02374677         0.0339971         0.03274677         0.03297467         0.03297467         0.032986         0.02411169         0.02748174         0.040977977         511         10151         0.020284677         0.03114651         0.027110         0.0114677         0.021314671         521         1464         0.040779777         511         0.02148167         0.02148167         0.02148167         0.02148167 <t< td=""><td>506</td><td>962</td><td>0.02811</td><td>0.029220166</td><td></td><td>506</td><td>1545</td><td>0.049295</td><td>0.030391245</td><td></td><td>506</td><td>11210</td><td>0.25087</td><td>0.022378858</td></t<>                                                                                                  | 506        | 962        | 0.02811      | 0.029220166       |       | 506        | 1545         | 0.049295               | 0.030391245       |          | 506        | 11210      | 0.25087     | 0.022378858       |
| Sep         PR         0.02786         0.03188122         Sep         1148         0.048466         0.02444698         Sp1         1040         0.202248574           0.11         20         0.05956         0.0310007         0.01121         0.044518         0.02248574           0.11         20         0.05881         0.02343526         0.023425787         0.02445787           0.11         20         0.05881         0.02343672         0.02345787         0.031007         0.0245787           0.11         20         0.03881         0.02346902         0.03105795         0.0310797         0.0310797         0.0310797           0.11         20         0.0389170         0.03189702         0.01121709         0.031077717         0.0216907         0.02129178           0.11         88         0.029840         0.03189702         0.01121709         0.0121707         0.0124107         0.02144010         0.02144010         0.02144010           0.11         88         0.029840         0.0318977         0.01121708         0.01121708         0.01121708         0.01121708         0.01121708         0.01121708         0.01121708         0.01121708         0.01121708         0.01121708         0.01121708         0.01121708         0.01121707                                                                                                                                                                                                                                                                                                                            | 508        | 877        | 0.03033      | 0.034583352       |       | 508        | 1513         | 0.048527               | 0.0320731         |          | 508        | 10785      | 0.35292     | 0.032723227       |
| 111         120         0.00822         0.0185133           121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121 <th< td=""><td>509</td><td>878</td><td>0.027976</td><td>0.031863212</td><td></td><td>509</td><td>1418</td><td>0.048846</td><td>0.034446968</td><td></td><td>509</td><td>10948</td><td>0.2471</td><td>0.022569876</td></th<>                                                                                                                                                                                              | 509        | 878        | 0.027976     | 0.031863212       |       | 509        | 1418         | 0.048846               | 0.034446968       |          | 509        | 10948      | 0.2471      | 0.022569876       |
| 512         922         0.02881         0.02912336         512         1510         0.04857         0.02382002           513         951         0.02881         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381         0.02381                                                                                                                                                                                                                                                                                         | 510        | 934        | 0.030916     | 0.033100107       |       | 510        | 1372         | 0.047233               | 0.033331331       |          | 510        | 10876      | 0.30218     | 0.022648574       |
| 513     811     0.02888     0.02948     0.03964     0.03978     0.03978     0.03978       514     983     0.03964     0.03964     0.03989     0.03978     0.03978       515     886     0.03964     0.03989     0.03978     0.03978     0.03978       517     866     0.03959     0.0397857     0.039778     0.039772178     0.039772178     0.039772178     0.039772178     0.039772178     0.039772178     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978     0.03978                                                                                                                                                                                                                                                                                                                                                                                                                                 | 512        | 922        | 0.026852     | 0.029123536       |       | 512        | 1501         | 0.048576               | 0.032362092       |          | 512        | 10929      | 0.28041     | 0.025657425       |
| 151         154         0.03558021         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151                                                                                                                                                                                                                                                                                                                                                                                                                   | 513        | 891        | 0.028881     | 0.032413692       |       | 513        | 1466         | 0.048035               | 0.032765825       |          | 513        | 11930      | 0.29178     | 0.024457837       |
| 15.6         855         0.032775         0.03399357           15.8         0.02562         0.02369172           15.8         0.0276492         0.0337012           15.8         0.027690         0.0337012           15.9         0.027690         0.0337012           15.0         0.027690         0.0337012           15.0         0.027690         0.0337012           15.0         0.027690         0.0337012           15.0         0.02760         0.0337012           15.0         0.02760         0.0337012           15.2         0.0114077         0.0314076           15.2         0.0114077         0.0314076           15.2         0.0114077         0.0314076           15.2         0.0114077         0.0314071           15.2         0.022802         0.03140078           15.2         0.0114077         0.03140078           15.2         0.0114077         0.03140071           15.2         0.0228020         0.03110071           15.2         0.02280200         0.03110071         0.0227130           15.2         0.02280700         0.02280200         0.03110071           15.2         1431         0.0468                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 515        | 854        | 0.02868      | 0.033583021       |       | 515        | 1381         | 0.049109               | 0.035560681       |          | 515        | 10656      | 0.27042     | 0.025376877       |
| 517     866     0.02560     0.024811     0.03144564     0.046977     0.03772778     131     10718     0.2658     0.02511144       518     862     0.0238070     0.0317052     131     1018     0.058077827     131     1086     0.024810     0.0238070       521     6400     0.023977     0.02380778     131     1086     0.02380778     131     0.0286078       522     920     0.023806     0.02131283     222     1481     0.04978     0.03312463     232     1096     0.0238077       522     920     0.023600     0.02310078     222     1484     0.04928     0.02329027     232     1096     0.24692     0.0223927       523     920     0.02360014     522     1484     0.04928     0.02340278     523     1018     0.048264       526     920     0.0236014     524     1481     0.048270     522     1114     0.02314219       526     0.02380127     0.03360114     526     10487     0.03148277     527     1115     0.2482     0.02116419       527     0.02381281     524     1047     0.03148277     527     1118     0.4482     0.0211419       528     0.02380128     0.031128106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 516        | 855        | 0.030775     | 0.035993567       |       | 516        | 1616         | 0.050567               | 0.031291708       |          | 516        | 11654      | 0.27696     | 0.023764973       |
| 151         122         0.2380         0.03379702         131         1412         0.05107         153         0.24301         0.24301         1538         0.024301         0.024301         1538         0.024301         1538         0.024301         1538         0.024301         1538         0.024301         1538         0.02461178         1538         0.02461178         1538         0.02461178         1538         0.02461178         1538         0.02461178         1538         0.02461178         1538         0.02461178         1538         0.02461178         1538         0.02461178         1538         0.02461178         1538         1638         0.02461178         1538         1638         0.044618         0.032204728         102212838         1023111844         1023118461         102477         0.022121838         10218         10218         0.024411         10218         10218         0.044818         0.023445991         10218         10218         0.023445991         10218         10218         0.023445991         10218         10218         0.023445991         10218         10218         10218         10218         10218         10218         10218         10218         10218         10218         10218         10218         10218         10218         <                                                                                                                                                                                                                                                                                 | 517        | 866        | 0.028562     | 0.032981178       |       | 517        | 1531         | 0.047074               | 0.030747159       | -        | 517        | 10718      | 0.26598     | 0.024816104       |
| 520         886         0.07388         0.031193792         520         1417         0.046952         0.03320475           521         902         0.023907         0.0239078         521         1424         0.043320475           522         902         0.0246607         521         1424         0.04312166         522         1116         0.02371312           521         0.02400         0.03140078         523         1344         0.044488         0.02371312         532         1118         0.042812           521         0.03140078         523         1434         0.044488         0.03271312         533         1118         0.04481         0.0217413           521         0.03140078         523         1434         0.044488         0.0328071         533         1118         0.04481         0.02174599           520         840         0.03372615         531         1426         0.045761         0.031280701         533         1318         0.044495         0.02284299           530         440         0.0346089         523         1546         0.04496         0.02384554         533         1011         0.2028153           533         847         0.033274613         531 <td>519</td> <td>882</td> <td>0.029809</td> <td>0.033797052</td> <td></td> <td>519</td> <td>1418</td> <td>0.051159</td> <td>0.036077927</td> <td></td> <td>519</td> <td>11536</td> <td>0.26995</td> <td>0.023400745</td>                                                                                                                                                           | 519        | 882        | 0.029809     | 0.033797052       |       | 519        | 1418         | 0.051159               | 0.036077927       |          | 519        | 11536      | 0.26995     | 0.023400745       |
| 521       902       0.023997       0.023997       0.023998       521       1424       0.04703       0.03311462       521       1068       0.227213         522       868       0.03923       0.0442310       532       1164       0.043234       0.03111462       532       1164       0.0272513         524       603       0.039316       0.03092409       531       1016       0.0227213       533       1016       0.0227213         526       607       0.0339249       0.031414       526       1455       0.046694       0.031429731       531       101740       0.24844       0.021139430         527       0.0237230       0.03271203       0.03217065       531       1021       0.033426924       528       1149       0.4798       0.02278230         520       810       0.035127065       531       1030       0.003134       0.03948564       539       103144       0.2398       533       11410       0.24026       0.02287593         533       846       0.037464041       534       1464       0.047462       0.03346504       533       11410       0.02365504       533       11410       0.02365504       533       11414       0.032460204       12237533<                                                                                                                                                                                                                                                                                                                                                                                                                              | 520        | 886        | 0.027638     | 0.031193792       |       | 520        | 1417         | 0.046952               | 0.033134651       |          | 520        | 10862      | 0.26353     | 0.024261278       |
| 323         886         0.032311         0.03421106         321         1344         0.034202023         521         10986         0.232107         0.02212838           526         675         0.0356010         1.03560114         0.02340107         524         1.007         0.0427         0.02311291           526         675         0.03560114         0.03560114         526         1.058         0.04682         0.0211291           527         874         0.031144         0.03560018         527         1.058         0.032462997         528         1.1168         0.24682         0.021157669           520         0.031155         0.032781300         522         1.061         0.032462997         528         1.1168         0.24682         0.021157669           531         426         0.04837         0.032465494         530         1.04646889         0.023281245         530         1.016         0.022812495         531         1.016         0.24682         0.021157039           531         320         0.04646889         0.032781620         0.03148501         0.022816262         531         1.0114         0.020821656         0.032781620         531         1.014         0.02081636         0.0327816262         531 <td>521</td> <td>902</td> <td>0.029397</td> <td>0.032590798</td> <td></td> <td>521</td> <td>1424</td> <td>0.04703</td> <td>0.033026475</td> <td>-</td> <td>521</td> <td>10887</td> <td>0.27072</td> <td>0.024866079</td>                                                                                                               | 521        | 902        | 0.029397     | 0.032590798       |       | 521        | 1424         | 0.04703                | 0.033026475       | -        | 521        | 10887      | 0.27072     | 0.024866079       |
| 524         903         0.02252         926         926         928         0.021838         0.0218398         0.02218328           525         928         0.0314007         525         1419         0.04808         0.021241527         525         1168         0.24644         0.02121321           526         875         0.03140070         526         1445         0.044639         0.031449773         527         11148         0.2422         0.0214440         0.0213157           528         881         0.0228440         0.0312788309         528         1620         0.030445664         528         11438         0.24276         0.02284205           531         420         0.031277665         531         1446         0.04727         0.032456041         531         1138         0.4427         0.02169171           531         536         0.03246041         531         1546         0.04726         0.033645614         531         1138         0.4427         0.02159179           535         586         0.03377         0.03246041         531         1048         0.04725         0.031481         0.03146513         1313         1.04247         0.02149172           536         60010001149199                                                                                                                                                                                                                                                                                                                                                                      | 523        | 868        | 0.029713     | 0.034231106       |       | 523        | 1394         | 0.049378               | 0.035422023       |          | 523        | 10896      | 0.25107     | 0.023042768       |
| 325       989       0.01400/6       525       1491       0.048826       0.03144373       526       11016       0.24824       0.01144373         526       677       0.081394       0.033600114       526       1015       0.221       1116       0.2422       0.03140271       522       1118       0.2472       0.021104304         526       818       0.02827       0.03212433       538       1002       0.03445564       521       10418       0.24725       0.03146399       522       1118       0.24785       0.02176509       533       10451       0.24625       0.02176509       533       10451       0.24625       0.02294551       533       10451       0.24695       0.02395393       533       10451       0.24695       0.02395393       533       10461       0.2039       0.02395393       534       10464       0.02395593       533       10471       0.24159787       535       104970       0.221159787       536       10471       0.24259783       536       10295569       0.02395593       10331       0.021469787       538       1114       0.2465       0.021459787       536       10318       0.2406       0.023951393       536       0.0321469937       536       0.0321469377       1110                                                                                                                                                                                                                                                                                                                                                                                     | 524        | 903        | 0.032562     | 0.036059468       |       | 524        | 1434         | 0.046448               | 0.032390307       |          | 524        | 10971      | 0.24277     | 0.022128338       |
| 527         874         0.03199         0.03560918         527         1545         0.04916         0.03120741         227         11146         0.2422         0.01210342           528         875         0.02321243         528         1572         0.05317         0.03342599         528         0.0126899         0.0215699         528         0.0146         0.020640         0.0228420         0.0228420         0.02284204         0.02284204         0.02284204         0.02284204         0.02284204         0.02284204         0.02284504         533         1346         0.04460         0.02284004         533         1346         0.04460         0.023405604         533         10446         0.022845041         533         10446         0.022845041         534         1046         0.0246247         0.021459721         536         10141         0.02297593         536         10141         0.02297593         536         10141         0.02297593         536         100352         0.027141         0.021459721         538         10141         0.0246647         0.023645614         537         11151         0.023646044         0.023745131         536         100527         0.023744833         539         100527         0.023744833         539         100527         0.0237                                                                                                                                                                                                                                                                                    | 525        | 898        | 0.028198     | 0.03140078        |       | 525        | 1491         | 0.048803               | 0.032731522       |          | 525        | 11618      | 0.24682     | 0.02124419        |
| 528         875         0.022873         0.03278309         529         520         520         520         520         520         520         520         520         520         530         1042         0.02785309         520         10410         0.5275         0.022476354           531         520         0.030615         0.0326755         531         11300         0.2427659         531         11300         0.24276         0.5215699           533         940         0.032615         0.03465037         533         11446         0.0446693         533         10440         0.23911         0.02297533           534         868         0.035539145         535         10547         0.03368529         537         1048         0.02397563         535         10810         0.0246597           535         866         0.03539145         535         105470         0.03286521         535         10141         0.2416752         102371762         0.022991533         536         10350         0.7511         0.02439372         536         10350         0.7511         0.024657         0.023774535         10141         0.4112         0.026457         0.02345529         0.0237744333         539         1020 <td< td=""><td>527</td><td>874</td><td>0.031194</td><td>0.035690618</td><td></td><td>527</td><td>1545</td><td>0.049163</td><td>0.031820971</td><td></td><td>527</td><td>11154</td><td>0.2432</td><td>0.021803748</td></td<>                                                                                                                            | 527        | 874        | 0.031194     | 0.035690618       |       | 527        | 1545         | 0.049163               | 0.031820971       |          | 527        | 11154      | 0.2432      | 0.021803748       |
| 2.59         881         0.028887         0.032748309         5.29         10041         0.5755         0.0247629           330         846         0.028648         0.0231128109         530         10646         0.022182405           331         920         0.030615         0.0331270065         531         1466         0.0463127         0.032480084         532         10141         0.27955304         532         10441         0.022480249         533         10440         0.02446513         538         10440         0.022480249         533         10441         0.02446513         538         10440         0.022480249         533         10441         0.02446513         538         10400         0.33111         0.022480249         533         10400         0.0224813         536         10310         0.022480249         533         11210         0.02486247         538         10310         0.022480249         533         11210         0.02486247         538         10310         0.022480249         533         11210         0.02486247         538         10310         0.022486247         533         10406         0.022149729         538         10301         0.02248133         538         10301         0.02248133         539         1                                                                                                                                                                                                                                                                                                              | 528        | 875        | 0.028273     | 0.032312343       |       | 528        | 1627         | 0.052817               | 0.032462999       |          | 528        | 11493      | 0.24798     | 0.021576699       |
| 531         920         0.038415         0.038405         531         1426         0.042405         0.0214165         0.0214155         0.0214155         0.0214155         0.0214155         0.0214155         0.0214155         0.0214155         0.0214155         0.0214155         0.0214155         0.022340539         533         1.0407         0.23911         0.02246051         533         1.0407         0.23911         0.0224655         0.02348061         535         1.1464         0.047462         0.03128211         534         1.0407         0.02348011         534         1.04465         0.021455743         536         1.0121         0.02465         0.021455743         536         1.0312         0.02657543         536         1.0312         0.02657543         536         1.0312         0.0257543         536         1.0312         0.0276713         0.02457543         536         1.0312         0.0276713         538         1.0314         0.031483939         539         1.0314         0.031483939         539         1.0314         0.031483939         539         1.0314         0.0246750         0.022474433           540         0.02173         0.031483936         541         1.0471         0.047550         0.0244657         0.023566114         0.0246755         0.02                                                                                                                                                                                                                                                                           | 529        | 881        | 0.028887     | 0.032788309       |       | 529        | 1602         | 0.050133               | 0.030448564       |          | 529        | 1041/      | 0.25795     | 0.024762504       |
| 532         900         0.03460307         533         847         0.03905304         532         10414         0.2399         0.02303539           533         847         0.0355394         535         11214         0.240650         2321         10414         0.2399         0.02304593           534         866         0.03553944         535         1534         0.047462         0.031982412         534         11214         0.240650         0.222454974           535         866         0.033458229         537         1514         0.049736         0.029239133         536         10352         0.22546974           538         869         0.033458229         537         1544         0.049646         0.02927031         538         10352         0.22744383           540         915         0.010149505         539         1728         0.03066495         540         11255         0.220770         0.02246676           541         915         0.011048513         542         1774         0.05052         0.02775554         540         11255         0.2207731         0.022465076           543         956         0.027203         0.029449377         542         1047         0.02927755                                                                                                                                                                                                                                                                                                                                                                            | 531        | 920        | 0.030615     | 0.033277065       |       | 531        | 1426         | 0.046317               | 0.032480084       |          | 531        | 11303      | 0.24427     | 0.021611431       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 532        | 900        | 0.031195     | 0.034660889       |       | 532        | 1546         | 0.047857               | 0.030955304       |          | 532        | 10414      | 0.2399      | 0.023036393       |
| 535         966         0.03077         0.03539145         536         1354         0.04736         0.02562125         536         10325           536         867         0.026555         0.030682374         536         10314         0.025155638           537         938         0.031448529         537         1141         0.049865         0.02261715         536         10352         0.2251115         0.025575638           539         869         0.031373         0.031043959         533         1714         0.04986         0.022774554         539         10131         0.0225714554           540         915         0.031014         0.033898536         540         1689         0.05233         0.030964937         543         1115         0.02297705           543         954         0.02703         0.0388376         541         1125         0.02445000         0.022973751           544         954         0.02210         0.03281478         541         100479         0.02290700         543         100560         0.02445000         0.022973751         546         1161         0.02485002         547         10110         0.02845663         0.021110         0.0244002016         541         10022102511                                                                                                                                                                                                                                                                                                                                                      | 533        | 868        | 0.029309     | 0.03460307        | 1     | 533        | 1581         | 0.04649                | 0.031982412       |          | 533        | 10407      | 0.23911     | 0.022975593       |
| 358         867         0.028555         0.030458579         537         938         0.03348         0.03348579         537         1514         0.049385         0.02218626         537         11515         0.284877         0.0314395         0.0217120         0.02280173         0.0314395         0.0314395         0.0314395         0.0314395         0.0314395         0.0314395         0.0217120         0.02280173         0.0217120         0.02280173         0.0217120         0.02280173         0.0217120         0.02280173         0.0217120         0.02280173         0.0228175         0.02181513         0.0217120         0.0228175         0.0228175         0.0218178         0.02181216         0.021714554         541         10131         0.421710         0.02280171         542         10161         0.0218116         0.022445027         543         1116         0.224419         0.022485126           544         954         0.0228612         0.03081278         544         1770         0.025284         0.0208017142         544         10251         0.22444         0.022434537           546         941         0.0238178         544         1770         0.05228         0.0208017162         546         1116         0.3661         0.032443637           546                                                                                                                                                                                                                                                                                              | 535        | 866        | 0.030777     | 0.035539145       |       | 535        | 1534         | 0.054706               | 0.035662125       |          | 535        | 10181      | 0.2501      | 0.024564974       |
| 1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1.         1.1. <th1.1.< th="">         1.1.         1.1.         <th1< td=""><td>536</td><td>867</td><td>0.026555</td><td>0.030628374</td><td>1</td><td>536</td><td>1701</td><td>0.049736</td><td>0.029239153</td><td></td><td>536</td><td>10352</td><td>0.27511</td><td>0.026575638</td></th1<></th1.1.<>                                                                                                                         | 536        | 867        | 0.026555     | 0.030628374       | 1     | 536        | 1701         | 0.049736               | 0.029239153       |          | 536        | 10352      | 0.27511     | 0.026575638       |
| 539         660         0.022977         0.031043959         539         1728         0.02799         0.023994035           540         915         0.03104         0.03396405         540         1689         0.03396405         540         1125         0.27087         0.0220406726           541         915         0.02114511         542         1774         0.046070         0.02745514         541         1042         0.02293731         542         1125         0.0224675         0.02246505           544         954         0.027203         0.02851478         544         1736         0.0296107         543         1116         0.27145554           545         952         0.028773         546         1663         0.029081042         544         10201         0.024840         0.023743537           546         941         0.02812         0.030618278         546         1168         0.3661         0.032734537           547         941         0.029170         0.03106118         0.030691432         547         1041         0.0227740         0.027516897           548         975         0.0316         0.030167168         548         10220         0.07778         0.022764661                                                                                                                                                                                                                                                                                                                                                                                   | 538        | 869        | 0.031373     | 0.036102877       | 1     | 538        | 1714         | 0.049646               | 0.028965111       | 1        | 538        | 10714      | 0.24172     | 0.022561135       |
| sev         sta         0.031014         0.032087         540         1689         0.03278554         540         11255         0.0240675         541         1022         0.027785554           541         912         0.028175         0.03188936         542         1774         0.029683737         543         1047         0.246570         0.02235068           544         954         0.02203         0.022851478         544         1776         0.022903191         542         10020         0.2445500         0.2445500           544         954         0.0228112         0.030961757         545         1770         0.022903104         546         10121         0.22484         0.023733531           546         941         0.0288112         0.030952922         547         1704         0.052298         0.0300691432         547         10120         0.271627         0.027716523           548         975         0.0316         0.031199051         549         1818         0.05204         0.022647552         550         1020         0.27776         0.027716523           554         1934         0.032107748         551         1733         0.05204         0.022647552         550         10367         0.72                                                                                                                                                                                                                                                                                                                                                       | 539        | 869        | 0.026977     | 0.031043959       |       | 539        | 1728         | 0.05079                | 0.029392303       |          | 539        | 10637      | 0.25257     | 0.023744383       |
| 542         896         0.028175         0.031445313         512         1.332         0.046607         0.027963191         542         1.012         0.022963191           543         954         0.0228478         0.031445313         954         1.012         0.022937371         543         1.01622         0.0248100         0.0228572         544         1.0028072         544         1.0160         0.02485463           544         954         0.022672         0.030996757         545         1.00         0.0248102         545         1.00280         0.2445000         544         1.0060         0.021140         0.02485463           547         1.0029127         0.030952922         547         1.704         0.05228         0.03084022         547         1.00210         0.7847         0.027516827           548         1.027         0.0314062         548         1.022         0.02778         0.02715622         548         1.022         0.02777         0.02715622           548         1.021         0.03244060         0.03244005         0.03240055         1.037         0.02667755         550         1.037         0.02667755         550         1.037         0.02629488         551         1.038         0.0229464                                                                                                                                                                                                                                                                                                                                           | 540<br>541 | 915<br>915 | 0.029179     | 0.0318894536      |       | 540        | 1689         | 0.050557               | 0.03096495        |          | 540<br>541 | 11255      | 0.27087     | 0.02356068        |
| 543         954         0.029843         0.021281866         543         1777         0.0228372         543         1116         0.02485663           544         954         0.022672         0.039996757         545         1709         0.0497         0.02907999         544         10056         0.62114         0.02485663           545         925         0.028672         0.039996757         545         1709         0.0497         0.029061402         545         10251         0.243         0.023459316           546         941         0.029169         0.0316618278         546         1663         0.03061432         547         1740         0.052288         0.029264961         548         1020         0.27247         0.02715627           548         975         0.0316         0.032400005         558         1020         0.02716272         550         10367         0.29007         0.02667755           550         934         0.029169         0.031229764         550         1920         0.057211         0.032105051         551         1782         0.022425002         553         1036         0.22996         0.02246451         555         10360         0.023247072         553         10376         0.2296                                                                                                                                                                                                                                                                                                                                               | 542        | 896        | 0.028175     | 0.031445313       | 1     | 542        | 1774         | 0.049607               | 0.027963191       |          | 542        | 10629      | 0.24419     | 0.022973751       |
| 344         1350         0.0029061042         344         10000         0.0248343         0.0229061042           545         925         0.028612         0.039061757         545         1709         0.0497         0.029061042         545         1010         0.023743537           546         941         0.022812         0.030618278         546         1663         0.052168         0.030691432         547         10210         0.27784         0.027156877           548         975         0.0316         0.032109051         548         1023         0.023206         548         1020         0.07784         0.027156237           550         934         0.023129764         550         1920         0.05605         0.02310551         550         10367         0.20207         0.02667755           550         134         0.032146         0.032007483         552         1733         0.053027         0.03210551         10367         0.202724237           551         1017         0.030589         0.030077483         552         1733         0.032470792         553         10376         0.27284         0.027216223           554         908         0.022446         0.030064224         554         1                                                                                                                                                                                                                                                                                                                                                               | 543        | 954        | 0.029843     | 0.031281866       |       | 543        | 1777         | 0.052393               | 0.029483737       |          | 543        | 11116      | 0.27195     | 0.024465005       |
| 546         941         0.028812         0.0306918275         546         1663         0.03168         0.030691432           547         941         0.028127         0.030952922         547         1704         0.052298         0.030691432           548         975         0.0316         0.0341190051         548         127         0.027776         0.02715623           549         948         0.022577         0.031199051         549         1818         0.052084         0.022840296         544         1022         0.27776         0.027776         0.027715623           555         554         549         0.031229764         550         120         0.052094         0.0310598211         551         10097         0.0272475         0.027242375         0.0221450           554         550         0.030077483         552         1733         0.053027         0.0331699         553         10076         0.72786         0.02294481           554         568         0.029146         0.039027137         555         1540         0.04905         0.031369291         553         10760         0.27848         0.02724237         0.027488         0.02790451         557         557         10100         0.0280451                                                                                                                                                                                                                                                                                                                                                       | 545        | 954        | 0.027203     | 0.02851478        |       | 544        | 1736         | 0.030481               | 0.02907909        |          | 544        | 10506      | 0.20114     | 0.024850463       |
| 547         941         0.029127         0.030952922         547         1704         0.032840226         547         10120         0.027516827           548         975         0.0316         0.032410662         548         1020         0.02840226         548         1020         0.027716         0.02715627           549         948         0.029169         0.031199051         549         1818         0.05204         0.0226697552         550         10367         0.27318         0.022692488           551         1019         0.030589         0.030077483         552         11730         0.052473         0.052473         0.031240792         553         10367         0.27358         0.0227458         0.0221469           553         948         0.02908         0.032026542         554         1058         0.031240792         553         10376         0.2796         0.022646415           554         908         0.02908         0.032026542         554         1050         0.049055         0.031805649         555         10707         0.265696         0.03346717         556         8364         0.21919         0.0226646415           555         908         0.0320011         0.0320025711         555                                                                                                                                                                                                                                                                                                                                                      | 546        | 941        | 0.028812     | 0.030618278       |       | 546        | 1663         | 0.050168               | 0.030167168       |          | 546        | 11161      | 0.3861      | 0.034593316       |
| 1.10         0.0000         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 547        | 941<br>07F | 0.029127     | 0.030952922       |       | 547        | 1704         | 0.052298               | 0.030691432       |          | 547        | 10120      | 0.27847     | 0.027516897       |
| S50         934         0.023169         0.031229764         S50         1920         0.05665         0.026877522         S50         1067         0.02687745           S51         1101         0.030589         0.030077483         S52         1733         0.053027         0.032105051         S52         1132         0.0227447         0.022724237           S52         1017         0.030589         0.030077483         S52         1733         0.053027         0.032105051         S52         11332         0.0224345         0.02421603           S54         906         0.029064224         S54         1068         0.03206591         S55         1076         0.2684574           S55         909         0.022148         0.032007151         S55         1540         0.049655         0.033058921         S55         1076         0.2684654           S56         909         0.022142         0.029171         S55         1550         0.033058921         S55         1076         0.26846         0.025068494           S58         0.02211         0.0215207317         S556         1076         0.03145674         S57         F481         0.033140314         0.03249811         S57         F688         0.21546 <t< td=""><td>549</td><td>948</td><td>0.029577</td><td>0.031199051</td><td></td><td>549</td><td>1818</td><td>0.0532034</td><td>0.029264961</td><td></td><td>549</td><td>10229</td><td>0.29007</td><td>0.02667755</td></t<>                                                                                                                                   | 549        | 948        | 0.029577     | 0.031199051       |       | 549        | 1818         | 0.0532034              | 0.029264961       |          | 549        | 10229      | 0.29007     | 0.02667755        |
| b)         1019         0.090874         0.032298724         551         1782         0.03210551         551         10092         0.272475         0.02224237           552         1017         0.030589         0.030077483         552         1733         0.0310792         553         10376         0.2796         0.02694611           554         908         0.029046         0.03084228         554         1566         0.03136199         553         10076         0.2796         0.02694615           555         909         0.0221458         0.032007151         555         1540         0.04905         0.0330589211         555         10706         0.25684         0.0250624           556         9475         0.049655         0.0330589211         555         10706         0.25684         0.0250620           557         941         0.021522         0.029917216         557         1473         0.044667         0.031456741         557         688         0.02156         0.033406931           559         876         0.02204237         559         1464         0.04766         0.033259847         556         7475         0.03145074         559         7089         0.21544         0.03039116         556<                                                                                                                                                                                                                                                                                                                                                       | 550        | 934        | 0.029169     | 0.031229764       |       | 550        | 1920         | 0.051605               | 0.026877552       |          | 550        | 10367      | 0.27918     | 0.026929488       |
| bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit <td>551</td> <td>1019</td> <td>0.030874</td> <td>0.030298724</td> <td></td> <td>551</td> <td>1782</td> <td>0.057211</td> <td>0.032105051</td> <td></td> <td>551</td> <td>10092</td> <td>0.27475</td> <td>0.027224237</td>                                                                                                                                                                                    | 551        | 1019       | 0.030874     | 0.030298724       |       | 551        | 1782         | 0.057211               | 0.032105051       |          | 551        | 10092      | 0.27475     | 0.027224237       |
| 554         008         0.02908         0.02206542         554         1568         0.04916         0.03181094         554         10075         0.028845           555         990         0.024845         0.04905         0.04905         0.03180649         555         10705         0.26386         0.02506894           556         943         0.0215711         0.556         1502         0.049655         0.031805649         555         1502         0.049655         0.031480744           558         953         0.022417         0.03086206         558         1473         0.044607         0.031450241         557         688         0.2165         0.03430749           550         877         0.028945         0.033042237         559         1464         0.03245847         558         758         0.03400749           561         903         0.029005         0.032120709         561         1489         0.04666         0.030259467         561         750         0.217         0.03067116         563         1462         0.04707         0.03145564         563         8016         0.022065         0.022765234         0.063148574         561         303         0.022765234         0.027757         561         795                                                                                                                                                                                                                                                                                                                                               | 553        | 945        | 0.029146     | 0.030842328       | 1     | 553        | 1616         | 0.052473               | 0.032470792       | 1        | 553        | 10376      | 0.2796      | 0.026946415       |
| 3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>2         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3         3>3 <td>554</td> <td>908</td> <td>0.02908</td> <td>0.032026542</td> <td></td> <td>554</td> <td>1568</td> <td>0.049176</td> <td>0.03136199</td> <td></td> <td>554</td> <td>10275</td> <td>0.26596</td> <td>0.025884574</td>                                                                                                                                                                                       | 554        | 908        | 0.02908      | 0.032026542       |       | 554        | 1568         | 0.049176               | 0.03136199        |          | 554        | 10275      | 0.26596     | 0.025884574       |
| 557         941         0.029152         0.02917216         557         1473         0.044665         0.031545621         557         0.02165         0.032407           558         953         0.029417         0.030686206         558         1475         0.044665         0.031454521         555         6688         0.2165         0.03430749           559         876         0.029089         0.03108527         556         1475         0.044664         0.03342015         559         7487         0.1338         0.0224993           560         877         0.029089         0.03108527         560         1469         0.046066         0.033242015         559         7561         7590         0.1125         0.03226524           561         902         0.030135         0.03240070         561         469         0.046066         0.033248574         562         7818         0.3166         0.0276524           563         902         0.030135         0.032406517         561         1469         0.046096         0.032148564         563         8016         0.22506         0.02807347           564         930         0.029236         0.03143667         562         7481         0.03107004         566                                                                                                                                                                                                                                                                                                                                                              | 555        | 909        | 0.027458     | 0.030207151       |       | 555        | 1540         | 0.04905                | 0.031850649       |          | 555        | 10705      | 0.26836     | 0.02506894        |
| 558         953         0.029417         0.03068206         558         1475         0.0420983         0.02296987         558         7487         0.2138         0.02249931           559         556         607         0.023905         0.03340215         559         7686         0.0324015         559         7689         0.21540         0.03391165           560         877         0.029005         0.032120709         561         1469         0.048666         0.033129931         560         6750         0.21125         0.031296           561         903         0.029005         0.032120709         561         1489         0.046757         0.031599467         562         7631         0.01366         0.02076523           563         905         0.027757         0.03067116         563         1462         0.04701         0.03249564         563         8016         0.022065117         565         1615         0.043245         564         8024         562         7210         0.0276324           564         930         0.022266         0.022065717         565         1615         0.043225         0.03023033         566         1564         0.047283         0.031070007         568         8320                                                                                                                                                                                                                                                                                                                                                            | 550        | 941        | 0.028152     | 0.029917216       |       | 550        | 1473         | 0.046467               | 0.031545621       |          | 557        | 6888       | 0.2165      | 0.031430749       |
| 3>2         6*0         UL29*0                                                                                                                                                                                                                                                                                                     | 558        | 953        | 0.029417     | 0.030868206       |       | 558        | 1475         | 0.048083               | 0.032598847       |          | 558        | 7487       | 0.21338     | 0.028499933       |
| 561         903         0.023005         0.032120705         561         1489         0.066056         0.03035777         561         7959         0.217         0.027265234           562         902         0.030135         0.033408537         562         1463         0.0460757         0.031599457         562         7818         0.2216         0.02263185           563         905         0.027252         0.03057116         5563         1662         0.041011         0.032148564           564         930         0.022236         0.0314366677         564         1495         0.048325         0.03004644           565         914         0.027477         0.0300626917         566         1564         0.048232         0.03149245           567         906         0.022818         0.048231         0.03248564         567         8320         0.022458         0.02764521           567         908         0.022828         0.032066517         566         1564         0.048233         0.03349245         567         8320         0.022458         0.02764551           569         914         0.027477         0.030062691         566         1564         0.047235         0.03149245         567                                                                                                                                                                                                                                                                                                                                                                        | 559        | 876        | 0.028945     | 0.033042237       |       | 559        | 1464<br>1469 | 0.047463               | 0.03242015        |          | 559        | 7089       | 0.21544     | 0.030391169       |
| 562         902         0.030135         0.03408537         562         1463         0.046757         0.031959407         562         7818         0.0236187           563         905         0.027717         0.0307116         563         1462         0.04701         0.0312348564         563         8016         0.02206         0.022076347           564         930         0.029236         0.031436667         564         1495         0.049314         0.0323485619         564         8016         0.02206         0.022076347           565         913         0.029276         0.03205517         565         1515         0.048235         0.0300323333         566         8306         0.022850         0.027640501           567         908         0.028518         0.01406938         567         1563         0.04223         0.030232333         566         8830         0.022850         0.027640501           568         947         0.028118         0.024932077         568         1534         0.04871         0.03170007         568         8849         0.233         0.029009566           571         974         0.029077         0.03162344         570         1574         0.04881         0.03138493 <t< td=""><td>561</td><td>903</td><td>0.029005</td><td>0.032120709</td><td></td><td>561</td><td>1489</td><td>0.046096</td><td>0.030957757</td><td></td><td>561</td><td>7959</td><td>0.217</td><td>0.027265234</td></t<>                                                                                                                                      | 561        | 903        | 0.029005     | 0.032120709       |       | 561        | 1489         | 0.046096               | 0.030957757       |          | 561        | 7959       | 0.217       | 0.027265234       |
| 395         500         00.27737         00.3007/169         395         1402         0.042/1039641         3951         8010         0.0228768           564         930         0.022366         0.031346667         564         1495         0.043214         564         8525         0.123121         0.0227531314           565         913         0.029276         0.032065717         565         1615         0.049324         0.0303240334         566         7949         0.23122         0.02290861           567         908         0.028518         0.03146638         567         1563         0.049223         0.03149245         567         8632         0.22543         0.0261956           568         922         0.032626         0.0282307         568         1337         0.047755         0.031070007         568         8049         0.233         0.02909361         569         1544         0.04871         0.031753259         569         8644         0.2332         0.02690376         570         560         9440         0.031753259         568         8140         0.2515         0.039097125         551         0.039097125         551         0.039097125         570         1560         0.03999142         571                                                                                                                                                                                                                                                                                                                                                | 562        | 902        | 0.030135     | 0.033408537       |       | 562        | 1463         | 0.046757               | 0.031959467       |          | 562        | 7818       | 0.23166     | 0.029631875       |
| 565         913         0.029276         0.032065717         565         1615         0.048235         0.03004644         565         7949         0.23133         0.0298886           566         914         0.027477         0.030062691         566         1564         0.048235         0.03002333         566         8306         0.22938         0.022488         567         1563         0.048235         567         1563         0.03149245         567         1563         0.03149245         567         1563         0.03149245         567         1563         0.02477         0.0206119964         0.02764300         567         1563         0.04775         0.031070007         568         8049         0.2333         0.029007125         569         1541         0.048715         0.031070007         568         8049         0.2333         0.029097125         570         9569         8140         0.25158         0.030907125         570         9569         8140         0.025158         0.030907125         570         1574         0.048715         0.031349438         570         7838         0.22603         0.026491678           571         977         0.023023         0.021746429         572         1727         0.026639084         571                                                                                                                                                                                                                                                                                                                     | 563        | 905        | 0.027757     | 0.031436667       |       | 563        | 1462         | 0.047001               | 0.032148564       |          | 564        | 8016       | 0.22506     | 0.028076347       |
| 566         914         0.027477         0.030602691         566         1564         0.047283         0.030232033         566         83.06         0.22958         0.027640501           567         968         0.033406935         557         1563         0.04723         0.03140245         567         5632         0.22518         0.027640501           569         947         0.0330056         0.03340245         567         5632         0.22538         0.02009566           569         947         0.028107         0.03909123         569         1534         0.04871         0.0311753279         569         84.0         0.2315         0.039097125           570         964         0.029077         0.03162344         570         1574         0.04871         0.0311753279         569         84.0         0.2315         0.039097125           571         977         0.029303         0.02993142         571         1576         0.048140         0.0318493         571         798         0.22179         0.022630904           572         952         0.0314746429         572         1720         0.051324         0.029566977         572         8028         0.221448         0.02719134           574 </td <td>565</td> <td>913</td> <td>0.029276</td> <td>0.032065717</td> <td>1</td> <td>565</td> <td>1615</td> <td>0.048525</td> <td>0.03004644</td> <td> </td> <td>565</td> <td>7949</td> <td>0.23123</td> <td>0.029088816</td>                                                                                                                                   | 565        | 913        | 0.029276     | 0.032065717       | 1     | 565        | 1615         | 0.048525               | 0.03004644        |          | 565        | 7949       | 0.23123     | 0.029088816       |
| 300         300         1303         0.047253         0.031492473         306         8032         0.02243         0.01113964           568         9.93         0.032823077         568         1537         0.047755         0.031070007         568         8032         0.022936         0.020909505           570         964         0.023810         0.032823077         569         1537         0.047755         0.031070007         568         8049         0.2335         0.029099616         0.029097125         0.020097525         569         81.40         0.25158         0.0308297125         0.026097125         0.0226033         0.0226916163         570         8532         0.22603         0.02269164         570         1574         0.048831         0.03138493         571         7988         0.21279         0.02669164           571         977         0.0230320         0.031746429         572         1720         0.051354         0.023903701         573         7978         0.22448         0.027961634           574         925         0.022917         0.03146429         574         1748         0.051329         0.02937801         573         7978         0.21463         0.027979118           574         925         <                                                                                                                                                                                                                                                                                                                                  | 566        | 914        | 0.027477     | 0.030062691       |       | 566        | 1564         | 0.047283               | 0.030232033       |          | 566        | 8306       | 0.22958     | 0.027640501       |
| 569         947         0.028119         0.029693031         569         1534         0.04871         0.031753259         569         8140         0.25158         0.030907125           570         964         0.029077         0.030162344         570         1574         0.04881         0.0313389         570         8532         0.22663         0.026491678           571         977         0.02330         0.029939342         571         1566         0.049149         0.03138493         571         7788         0.1279         0.02663004           572         952         0.030223         0.031746429         572         1720         0.051354         0.029937907         572         8028         0.22445         0.027961534           574         931         0.02977104         573         1701         0.043933         0.02907707         572         8028         0.22445         0.027961543           574         925         0.027418         0.029640649         574         1748         0.051329         0.029364474         574         7366         0.021717118           575         930         0.029617         0.031846237         575         1636         0.050244         0.03074187         575         707                                                                                                                                                                                                                                                                                                                                                       | 568        | 908        | 0.028518     | 0.032823077       |       | 568        | 1537         | 0.049223               | 0.031070007       |          | 568        | 8049       | 0.22543     | 0.020115964       |
| 570         964         0.029077         0.030162344         570         1574         0.03102384         570         8532         0.22603         0.026491578           571         977         0.0233         0.02993124         571         1566         0.049149         0.03138493         571         7988         0.21279         0.026630984           572         952         0.030233         0.031746429         572         1700         0.02384977         572         8028         0.22445         0.027961543           573         931         0.029277         0.031447046         573         1701         0.049333         0.029037801         573         7978         0.21464         0.027197118           574         925         0.0294170         0.0314447046         574         1748         0.051329         0.029364744         574         7306         0.21463         0.027197118           575         930         0.029617         0.031846237         575         1636         0.050294         0.03074187         575         7070         0.21414         0.030288667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 569        | 947        | 0.028119     | 0.029693031       |       | 569        | 1534         | 0.04871                | 0.031753259       |          | 569        | 8140       | 0.25158     | 0.030907125       |
| 372         373         373         0.0283098         371         7886         0.021293           572         575         0.032277         0.031447046         572         1720         0.028369977         572         8028         0.22448         0.027951634           574         3931         0.029277         0.031447046         573         1701         0.049364971         573         7378         0.21644         0.0271951163           574         3923         0.02936470         573         7378         0.1644         0.027197118           575         930         0.029617         0.031846237         575         1636         0.05294         0.03936474         575         7070         0.21414         0.0302889677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 570        | 964        | 0.029077     | 0.030162344       |       | 570        | 1574         | 0.048831               | 0.03102338        |          | 570        | 8532       | 0.22603     | 0.026491678       |
| 573         931         0.029277         0.031447046         573         1701         0.049393         0.029037801         573         7978         0.21684         0.027179118           574         925         0.027418         0.029640649         574         1748         0.051329         0.029364474         574         7306         0.21463         0.029377224           575         930         0.029617         0.031846237         575         1636         0.050294         0.03074187         575         7070         0.2140         0.03028867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 572        | 952        | 0.029303     | 0.029393142       |       | 571        | 1720         | 0.051354               | 0.05138493        |          | 571        | 8028       | 0.212/9     | 0.020039084       |
| 574         925         0.027418         0.029640649         574         1748         0.051329         0.029364474         574         7306         0.21463         0.029377224           575         930         0.029617         0.031846237         575         1636         0.050294         0.03074187         575         7070         0.21414         0.030288967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 573        | 931        | 0.029277     | 0.031447046       |       | 573        | 1701         | 0.049393               | 0.029037801       |          | 573        | 7978       | 0.21684     | 0.027179118       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 574        | 925        | 0.027418     | 0.029640649       |       | 574        | 1748         | 0.051329               | 0.029364474       |          | 574        | 7306       | 0.21463     | 0.029377224       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/5        | 350        | 0.02301/     | 1 0.001040237     | 1     |            | 1000         | 0.000294               | 0.05074187        |          |            | 7070       | 0.21414     | 0.03020030/       |

|          |          |              |                   | Avg 1 | ime per ob | oj over all f | rames:       | 0.029803515       | Standard | Deviation: | 0.00606977 |           |                   |
|----------|----------|--------------|-------------------|-------|------------|---------------|--------------|-------------------|----------|------------|------------|-----------|-------------------|
|          | Helicopt | er Video (64 | 0 x 360)          |       |            | Dashboa       | rd Video (84 | 8 x 480)          |          |            | Drone Vide | o (1920 x | 1080)             |
| Frame No | Num Obj  | Time in S    | Time per obj (ms) |       | Frame No   | Num Obj       | Time in S    | Time per obj (ms) |          | Frame No   | Num Obj    | Time in S | Time per obj (ms) |
| 576      | 927      | 0.028302     | 0.030530529       |       | 576        | 1819          | 0.054638     | 0.030037493       |          | 576        | 7556       | 0.30601   | 0.040498412       |
| 577      | 908      | 0.029651     | 0.032655617       |       | 577        | 1766          | 0.052271     | 0.029598301       |          | 577        | 6904       | 0.20606   | 0.029846031       |
| 578      | 896      | 0.029288     | 0.032687388       |       | 578        | 1654          | 0.05095      | 0.030803809       |          | 578        | 7237       | 0.21415   | 0.029590991       |
| 579      | 902      | 0.027439     | 0.030420177       | 1     | 579        | 1638          | 0.050811     | 0.031020269       |          | 579        | 7407       | 0.21185   | 0.028601188       |
| 580      | 985      | 0.030322     | 0.030783452       |       | 580        | 1707          | 0.050564     | 0.0296215         |          | 580        | 6839       | 0.22179   | 0.032430619       |
| 581      | 932      | 0.030792     | 0.033038948       |       | 581        | 1574          | 0.049005     | 0.031133799       |          | 581        | 6956       | 0.24769   | 0.035608683       |
| 582      | 935      | 0.028237     | 0.030200428       |       | 582        | 1579          | 0.048925     | 0.030984927       |          | 582        | 7293       | 0.24689   | 0.033853558       |
| 583      | 971      | 0.029883     | 0.030775283       |       | 583        | 1442          | 0.051753     | 0.035890014       |          | 583        | 6700       | 1.2467    | 0.186074627       |
| 584      | 975      | 0.029802     | 0.030565949       | 1     | 584        | 1571          | 0.051646     | 0.032874602       |          | 584        | 6940       | 0.2512    | 0.036195533       |
| 585      | 885      | 0.030141     | 0.034057401       | 1     | 585        | 1475          | 0.048528     | 0.032900407       |          | 585        | 7206       | 0.25211   | 0.034986261       |
| 586      | 870      | 0.029602     | 0.034025632       | 1     | 586        | 1380          | 0.047836     | 0.034663768       |          | 586        | 6750       | 0.24517   | 0.036320889       |
| 587      | 928      | 0.031217     | 0.033639009       | 1     | 587        | 1479          | 0.048808     | 0.033000541       |          | 587        | 7211       | 0.25661   | 0.035586465       |
| 588      | 864      | 0.028999     | 0.033563773       | 1     | 588        | 1514          | 0.052409     | 0.03461638        |          | 588        | 7757       | 0.25902   | 0.033391388       |
| 589      | 919      | 0.029675     | 0.032290533       |       | 589        | 1612          | 0.047334     | 0.029363462       |          | 589        | 6733       | 0 24593   | 0.036526066       |
| 590      | 919      | 0.02774      | 0.030184548       |       | 590        | 1437          | 0.046687     | 0.032489353       |          | 590        | 6565       | 0.24355   | 0.036939832       |
| 591      | 882      | 0.030093     | 0.034118594       |       | 591        | 1436          | 0.047534     | 0.033101532       |          | 591        | 7568       | 0.25122   | 0.0331949         |
| 502      | 925      | 0.030055     | 0.02401976        |       | 502        | 1450          | 0.046584     | 0.022127172       |          | 502        | 6574       | 0.25545   | 0.039957035       |
| 593      | 831      | 0.027608     | 0.033222262       |       | 592        | 1366          | 0.046234     | 0.033846559       |          | 593        | 6828       | 0.25548   | 0.037416374       |
| 504      | 990      | 0.027000     | 0.022102055       | 1     | 50/        | 1/26          | 0.046797     | 0.022591546       |          | 50/        | 6909       | 0.25502   | 0.027101769       |
| 505      | 870      | 0.023131     | 0.033102355       |       | 505        | 1430          | 0.040787     | 0.032361540       |          | 505        | 6420       | 0.25555   | 0.040974049       |
| 596      | 075      | 0.027303     | 0.025720218       |       | 506        | 1445          | 0.047412     | 0.032555508       |          | 506        | 6507       | 0.20313   | 0.027507664       |
| 590      | 722      | 0.029227     | 0.055750518       |       | 590        | 1403          | 0.04/412     | 0.032303208       |          | 590        | 6907       | 0.24403   | 0.03/39/004       |
| 597      | 732      | 0.027635     | 0.03603           |       | 597        | 1403          | 0.046327     | 0.031/36908       |          | 597        | 6350       | 0.24395   | 0.030120050       |
| 530      | 752      | 0.023028     | 0.034191007       |       | 590        | 1414          | 0.046386     | 0.03090962        |          | 500        | 6410       | 0.24525   | 0.030249233       |
| 599      | 017      | 0.02701      | 0.036400943       |       | 600        | 1414          | 0.049057     | 0.032604397       |          | 600        | 7053       | 0.25525   | 0.033761937       |
| 600      | 027      | 0.020002     | 0.034900121       |       | 601        | 1500          | 0.0465037    | 0.032037807       |          | 601        | 6332       | 0.20701   | 0.037803383       |
| 601      | 020      | 0.027401     | 0.0552454         |       | 601        | 15/9          | 0.040092     | 0.029370804       |          | 601        | 6222       | 0.2465    | 0.039939309       |
| 602      | 846      | 0.031037     | 0.036686998       |       | 602        | 1651          | 0.047725     | 0.028906723       |          | 602        | 6637       | 0.258//   | 0.038989152       |
| 605      | 054      | 0.029171     | 0.034117344       |       | 605        | 1040          | 0.030232     | 0.030480383       |          | 005        | 6703       | 0.31032   | 0.040771405       |
| 605      | 749      | 0.029051     | 0.03413772        |       | 604        | 1605          | 0.049186     | 0.03064567        |          | 604        | 6098       | 0.24019   | 0.039388816       |
| 605      | 740      | 0.02/01/     | 0.03/100102       |       | 605        | 1470          | 0.040935     | 0.031610970       |          | 605        | 6227       | 0.2409    | 0.040408547       |
| 600      | 781      | 0.02827      | 0.025007634       | 1     | 600        | 1428          | 0.040528     | 0.032382283       |          | 600        | 5000       | 0.23/93   | 0.03/005058       |
| 607      | 785      | 0.028258     | 0.025997834       | ł     | 600        | 1403          | 0.04/122     | 0.032208954       |          | 602        | 2300       | 0.23058   | 0.038049011       |
| 608      | /86      | 0.028939     | 0.03081/557       | ł     | 608        | 1442          | 0.040803     | 0.032456657       |          | 608        | 5933       | 0.2278    | 0.038395247       |
| 609      | //9      | 0.02/681     | 0.035534275       | ł     | 609        | 1467          | 0.047009     | 0.032044104       |          | 609        | 6198       | 0.22633   | 0.036516457       |
| 610      | /99      | 0.030359     | 0.03/99612        | ł     | 610        | 1531          | 0.04/014     | 0.030/0/969       |          | 610        | 5622       | 0.22588   | 0.0401/8051       |
| 611      | /99      | 0.02/082     | 0.033895119       | ł     | 611        | 1467          | 0.049634     | 0.033833606       |          | 611        | 6409       | 0.22/45   | 0.035488376       |
| 612      | 798      | 0.028444     | 0.035643609       | 1     | 612        | 1707          | 0.051096     | 0.02993345        |          | 612        | 6066       | 0.22311   | 0.036780415       |
| 613      | 938      | 0.02927      | 0.031204/97       | ł     | 613        | 1689          | 0.048983     | 0.029001362       |          | 613        | 5/84       | 0.22695   | 0.039237206       |
| 614      | 939      | 0.028518     | 0.030370075       | ł     | 614        | 1688          | 0.049477     | 0.029311078       |          | 614        | 6042       | 0.225/1   | 0.03/35/001       |
| 615      | 964      | 0.029714     | 0.030823755       | 1     | 615        | 1634          | 0.051469     | 0.031498776       |          | 615        | 5478       | 0.21736   | 0.039678897       |
| 616      | 1016     | 0.031054     | 0.030564764       | 1     | 616        | 1653          | 0.050321     | U.030442166       |          | 616        | 5510       | 0.21907   | U.039758439       |
| 617      | 1015     | 0.02821      | 0.027792808       | 1     | 617        | 1681          | 0.049453     | 0.02941856        |          | 617        | 5809       | 0.22216   | U.038244448       |
| 618      | 886      | 0.029659     | 0.033475395       |       | 618        | 1712          | 0.050581     | 0.029544918       |          | 618        | 5807       | 0.22187   | 0.038207164       |
| 619      | 880      | 0.029038     | 0.032997955       |       | 619        | 1469          | 0.046984     | 0.031983526       |          | 619        | 5316       | 0.21808   | 0.041022573       |
| 620      | 882      | 0.027438     | 0.031108617       |       | 620        | 1572          | 0.050677     | 0.032237468       |          | 620        | 5665       | 0.22129   | 0.039062489       |
| 621      | 1111     | 0.032257     | 0.029034293       |       | 621        | 1556          | 0.048711     | 0.031305527       |          | 621        | 5891       | 0.22393   | 0.038012052       |
| 622      | 1131     | 0.031213     | 0.027597701       |       | 622        | 1558          | 0.047198     | 0.03029371        |          | 622        | 5666       | 0.21874   | 0.038606248       |
| 623      | 1137     | 0.031057     | 0.027314512       |       | 623        | 1561          | 0.049132     | 0.031474824       |          | 623        | 5805       | 0.22119   | 0.038103704       |
| 624      | 1082     | 0.030868     | 0.028528373       |       | 624        | 1688          | 0.049697     | 0.029441173       |          | 624        | 5655       | 0.22271   | 0.039382317       |
| 625      | 1083     | 0.029944     | 0.027648846       |       | 625        | 1523          | 0.047669     | 0.031299606       |          | 625        | 5193       | 0.21515   | 0.04143058        |
| 626      | 1075     | 0.032302     | 0.030048558       |       | 626        | 1689          | 0.04872      | 0.028845293       |          | 626        | 5188       | 0.22239   | 0.042865459       |
| 627      | 945      | 0.030027     | 0.031775026       |       | 627        | 1869          | 0.053778     | 0.028773515       |          | 627        | 5474       | 0.21788   | 0.039803252       |
| 628      | 985      | 0.028086     | 0.028513807       |       | 628        | 1905          | 0.055415     | 0.029089344       |          | 628        | 5182       | 0.21554   | 0.041594558       |
| 629      | 984      | 0.030694     | 0.031192988       |       | 629        | 1763          | 0.051242     | 0.029065343       |          | 629        | 5351       | 0.21968   | 0.041054195       |
| 630      | 980      | 0.028949     | 0.029540102       |       | 630        | 1683          | 0.052039     | 0.03092038        |          | 630        | 5465       | 0.21804   | 0.039897164       |
| 631      | 1010     | 0.029728     | 0.029433267       |       | 631        | 1685          | 0.055369     | 0.032860178       |          | 631        | 5416       | 0.22266   | 0.041111152       |
| 632      | 1045     | 0.03111      | 0.029770239       |       | 632        | 1658          | 0.052444     | 0.031630639       |          | 632        | 5298       | 0.22578   | 0.042616082       |
| 633      | 1045     | 0.029143     | 0.027888325       |       | 633        | 1719          | 0.053867     | 0.031336475       |          | 633        | 5526       | 0.21627   | 0.039136446       |
| 634      | 889      | 0.030659     | 0.034487177       |       | 634        | 1697          | 0.051693     | 0.030461167       |          | 634        | 5128       | 0.21362   | 0.041657371       |
| 635      | 934      | 0.030301     | 0.03244197        |       | 635        | 1772          | 0.054179     | 0.030574887       |          | 635        | 5102       | 0.21962   | 0.043045276       |
| 636      | 934      | 0.028308     | 0.03030803        |       | 636        | 1805          | 0.057489     | 0.031849806       |          | 636        | 5479       | 0.29692   | 0.054192918       |
| 637      | 923      | 0.029665     | 0.032139545       |       | 637        | 1830          | 0.055831     | 0.030508634       |          | 637        | 5188       | 0.26381   | 0.050850039       |
| 638      | 890      | 0.03033      | 0.034079101       |       | 638        | 1829          | 0.056586     | 0.030938327       |          | 638        | 5749       | 0.21708   | 0.037758741       |
| 639      | 1046     | 0.03085      | 0.02949283        |       | 639        | 1772          | 0.057559     | 0.032482619       |          | 639        | 5704       | 0.21586   | 0.037844144       |
| 640      | 861      | 0.029117     | 0.033817422       |       | 640        | 1550          | 0.055543     | 0.035833871       |          | 640        | 5286       | 0.21352   | 0.040393681       |
| 641      | 947      | 0.031011     | 0.032746674       |       | 641        | 1589          | 0.054588     | 0.034353682       |          | 641        | 5215       | 0.21443   | 0.041118313       |
| 642      | 957      | 0.028666     | 0.029954023       |       | 642        | 1828          | 0.05693      | 0.03114349        |          | 642        | 5543       | 0.22495   | 0.040582717       |
| 643      | 916      | 0.029626     | 0.032342358       | 1     | 643        | 1602          | 0.054817     | 0.034217665       |          | 643        | 5335       | 0.21495   | 0.040289597       |
| 644      | 916      | 0.028119     | 0.030697489       | 1     | 644        | 1720          | 0.057024     | 0.033153198       |          | 644        | 5627       | 0.22132   | 0.03933126        |
| 645      | 923      | 0.029785     | 0.032269231       |       | 645        | 1798          | 0.055209     | 0.030705784       |          | 645        | 5839       | 0.22228   | 0.038067477       |
| 646      | 896      | 0.028884     | 0.032236719       |       | 646        | 1691          | 0.062987     | 0.037248374       |          | 646        | 5296       | 0.21471   | 0.040542107       |
| 647      | 911      | 0.028129     | 0.030876839       |       | 647        | 1513          | 0.052911     | 0.034970654       |          | 647        | 5349       | 0.2171    | 0.040587026       |
| 648      | 986      | 0.032243     | 0.032700304       |       | 648        | 1740          | 0.057655     | 0.033134943       |          | 648        | 5726       | 0.21355   | 0.037294446       |
| 649      | 992      | 0.028885     | 0.02911744        | ]     | 649        | 1715          | 0.055967     | 0.032633644       |          | 649        | 5225       | 0.21701   | 0.041532823       |
| 650      | 990      | 0.029863     | 0.030164343       | 1     | 650        | 1694          | 0.055162     | 0.0325634         |          | 650        | 5260       | 0.21514   | 0.040901901       |
| 651      | 1022     | 0.031387     | 0.030711546       | 1     | 651        | 1615          | 0.057295     | 0.035476718       |          | 651        | 6266       | 0.22559   | 0.036001915       |
| 652      | 1021     | 0.029365     | 0.028761312       |       | 652        | 1628          | 0.055158     | 0.033880651       |          | 652        | 5201       | 0.21981   | 0.042263603       |
| 653      | 1046     | 0.031066     | 0.029699809       |       | 653        | 1792          | 0.055778     | 0.03112606        |          | 653        | 5451       | 0.21819   | 0.040027151       |
| 654      | 1126     | 0.031905     | 0.028334902       | 1     | 654        | 1670          | 0.055899     | 0.033472335       |          | 654        | 5719       | 0.21295   | 0.037235181       |
| 655      | 1126     | 0.029017     | 0.02577016        | 1     | 655        | 1665          | 0.055211     | 0.03315976        |          | 655        | 5273       | 0.21617   | 0.040995828       |
| 656      | 1090     | 0.032052     | 0.029405229       |       | 656        | 1721          | 0.056242     | 0.032679895       |          | 656        | 5364       | 0.21387   | 0.039871365       |
| 657      | 1119     | 0.033594     | 0.030021805       |       | 657        | 1742          | 0.058098     | 0.033351378       |          | 657        | 5628       | 0.22539   | 0.040047264       |
| 658      | 1109     | 0.031578     | 0.028474301       |       | 658        | 1702          | 0.055104     | 0.032375969       |          | 658        | 5445       | 0.21442   | 0.039379247       |
| 659      | 1121     | 0.03321      | 0.029625335       | 1     | 659        | 1750          | 0.053163     | 0.030379086       |          | 659        | 5601       | 0.22893   | 0.040873058       |
| 660      | 1201     | 0.033439     | 0.027842465       | 1     | 660        | 1680          | 0.056741     | 0.033774464       |          | 660        | 5704       | 0.21999   | 0.038567146       |
| 661      | 1169     | 0.032602     | 0.027889136       | 1     | 661        | 1789          | 0.063624     | 0.035564114       |          | 661        | 5480       | 0.21866   | 0.039900547       |
| 662      | 1083     | 0.032704     | 0.030197969       | 1     | 662        | 1549          | 0.050402     | 0.032538347       |          | 662        | 5510       | 0.21877   | 0.039703811       |
| 663      | 1081     | 0.029445     | 0.02723839        |       | 663        | 1624          | 0.052894     | 0.032569951       |          | 663        | 5758       | 0.21775   | 0.037816777       |
| 664      | 1105     | 0.032422     | 0.029341448       | 1     | 664        | 1564          | 0.051067     | 0.032651407       |          | 664        | 5422       | 0.21344   | 0.039366101       |
| 665      | 1104     | 0.029807     | 0.026998732       | 1     | 665        | 1442          | 0.050697     | 0.035157143       |          | 665        | 5581       | 0.21886   | 0.039215732       |
| 666      | 1229     | 0.033792     | 0.027495525       | 1     | 666        | 1456          | 0.048643     | 0.033408723       |          | 666        | 6231       | 0.232     | 0.037232868       |
| 667      | 1142     | 0.031866     | 0.027903327       | 1     | 667        | 1462          | 0.048627     | 0.03326026        |          | 667        | 5625       | 0.2154    | 0.038293333       |
| 668      | 1139     | 0.029744     | 0.02611396        | 1     | 668        | 1461          | 0.049591     | 0.033942847       |          | 668        | 5589       | 0.22586   | 0.04041188        |
| 669      | 1150     | 0.031905     | 0.027743565       | 1     | 669        | 1651          | 0.050642     | 0.030673349       |          | 669        | 5961       | 0.26195   | 0.043944305       |
| 670      | 1131     | 0.033075     | 0.02924359        |       | 670        | 1548          | 0.050132     | 0.032385078       |          | 670        | 5620       | 0.21853   | 0.038885053       |
| 671      | 1137     | 0.030268     | 0.02662058        |       | 671        | 1545          | 0.049472     | 0.032020388       |          | 671        | 5704       | 0.22119   | 0.038778226       |
| 672      | 1122     | 0.032913     | 0.029333868       |       | 672        | 1604          | 0.054001     | 0.033666147       |          | 672        | 6255       | 0.23636   | 0.03778705        |
| 673      | 1155     | 0.033241     | 0.028779913       | 1     | 673        | 1702          | 0.056256     | 0.033053055       |          | 673        | 5749       | 0.21622   | 0.037609149       |
| 674      | 1189     | 0.030303     | 0.025485955       | 1     | 674        | 1734          | 0.055726     | 0.03213737        |          | 674        | 5847       | 0.21691   | 0.037096973       |
| 675      | 1154     | 0.033427     | 0.028966118       | 1     | 675        | 1677          | 0.054225     | 0.032334466       |          | 675        | 6088       | 0.21394   | 0.035141919       |
| 676      | 1159     | 0.031116     | 0.02684711        | 1     | 676        | 1624          | 0.051556     | 0.03174649        |          | 676        | 5738       | 0.20257   | 0.035303939       |
| 677      | 1148     | 0.033406     | 0.029098955       |       | 677        | 1707          | 0.052527     | 0.030771705       |          | 677        | 5740       | 0.20739   | 0.036130139       |
| 678      | 1207     | 0.03302      | 0.027357084       |       | 678        | 1654          | 0.050951     | 0.030804958       |          | 678        | 6080       | 0.20959   | 0.034471875       |
| 679      | 1200     | 0.031742     | 0.026452          |       | 679        | 1811          | 0.054993     | 0.030366041       |          | 679        | 5816       | 0.20958   | 0.036034388       |
| 680      | 1204     | 0.031701     | 0.026329983       |       | 680        | 1667          | 0.051413     | 0.030841572       |          | 680        | 5705       | 0.20542   | 0.036006135       |
| 681      | 1175     | 0.032451     | 0.027617957       |       | 681        | 1797          | 0.051738     | 0.028791096       |          | 681        | 6004       | 0.21404   | 0.035650067       |
| 682      | 1216     | 0.033589     | 0.027622451       | 1     | 682        | 1518          | 0.048977     | 0.032264361       |          | 682        | 5676       | 0.20253   | 0.035682523       |
| 683      | 1236     | 0.032203     | 0.026054531       | 1     | 683        | 1683          | 0.051727     | 0.030735175       |          | 683        | 5623       | 0.19662   | 0.034967633       |
| 684      | 1240     | 0.031099     | 0.025079677       | 1     | 684        | 1757          | 0.054573     | 0.03106033        |          | 684        | 5967       | 0.20538   | 0.034418468       |
| 685      | 1228     | 0.033442     | 0.027233143       | 1     | 685        | 1762          | 0.052295     | 0.029679569       |          | 685        | 5693       | 0.20043   | 0.035206218       |
| 686      | 1223     | 0.029678     | 0.024266394       |       | 686        | 1743          | 0.054204     | 0.031098107       |          | 686        | 5572       | 0.19944   | 0.035793252       |
| 687      | 1248     | 0.033566     | 0.026895833       |       | 687        | 1713          | 0.050669     | 0.029578867       |          | 687        | 6059       | 0.20118   | 0.033204159       |
| 688      | 1221     | 0.032766     | 0.026835053       | 1     | 688        | 1728          | 0.050117     | 0.02900272        |          | 688        | 5671       | 0.2007    | 0.035302592       |
| 689      | 1167     | 0.030933     | 0.026506341       | 1     | 689        | 1704          | 0.05068      | 0.029742019       |          | 689        | 5715       | 0.20395   | 0.035686439       |
| 690      | 1212     | 0.032489     | 0.026806436       |       | 690        | 1699          | 0.050074     | 0.029472866       |          | 690        | 6099       | 0.20295   | 0.033275947       |
|          |          |              |                   |       |            |               |              |                   |          |            |            |           |                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                     |                           |                               | Avg | time per ob | j over all f       | rames:                    | 0.029803515                   | Standard Deviation: | 0.00606977            |                           |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|---------------------------|-------------------------------|-----|-------------|--------------------|---------------------------|-------------------------------|---------------------|-----------------------|---------------------------|----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Frame No | Helicopt<br>Num Obj | er Video (64<br>Time in S | 0 x 360)<br>Time per obj (ms) |     | Frame No    | Dashboa<br>Num Obj | rd Video (84<br>Time in S | 8 x 480)<br>Time per obj (ms) | Frame No            | Drone Vide<br>Num Obj | eo (1920 x :<br>Time in S | 1080)<br>Time per obj (ms) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 691      | 1178                | 0.033411                  | 0.028362224                   |     | 691         | 1711               | 0.050586                  | 0.0295654                     | 691                 | 5800                  | 0.20074                   | 0.034611034                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 692      | 1177                | 0.028783                  | 0.024454206                   |     | 692         | 1846               | 0.0511                    | 0.027681257<br>0.032946805    | 692                 | 5996                  | 0.19893                   | 0.033176451                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 694      | 1272                | 0.033418                  | 0.02627217                    |     | 694         | 1762               | 0.052071                  | 0.029552043                   | 694                 | 5770                  | 0.19591                   | 0.033953206                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 695      | 1258                | 0.031374                  | 0.024939428                   |     | 695         | 1888               | 0.052452                  | 0.027781727                   | 695                 | 5914                  | 0.24692                   | 0.041751945                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 697      | 1247                | 0.033024                  | 0.026482438                   |     | 697         | 1634               | 0.05009                   | 0.030654712                   | 697                 | 5879                  | 0.2056                    | 0.034972614                |
| Bit         Disk                                                                                                                                                                                                                                                                                                                                                                   | 698      | 1239                | 0.033154                  | 0.026758918                   |     | 698         | 1/8/               | 0.053009                  | 0.029663402                   | 695                 | 6393                  | 0.21217                   | 0.034821763                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 700      | 1260                | 0.031405                  | 0.024924286                   |     | 700         | 1887               | 0.051125                  | 0.027093005                   | 700                 | 6131                  | 0.21058                   | 0.034346436                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 701      | 1213                | 0.033342                  | 0.02/48/552                   |     | 701         | 1584               | 0.049323                  | 0.031138258                   | 701                 | 6423                  | 0.2095                    | 0.034366306                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 703      | 1264                | 0.032656                  | 0.025835601                   |     | 703         | 1696               | 0.051541                  | 0.030389446                   | 703                 | 6077                  | 0.21544                   | 0.035451703                |
| main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main         main <th< td=""><td>704</td><td>1201</td><td>0.034196</td><td>0.028472689</td><td></td><td>704</td><td>1838</td><td>0.050832</td><td>0.027656202</td><td>704</td><td>6419</td><td>0.23804</td><td>0.039307133</td></th<>                                                                                                                                              | 704      | 1201                | 0.034196                  | 0.028472689                   |     | 704         | 1838               | 0.050832                  | 0.027656202                   | 704                 | 6419                  | 0.23804                   | 0.039307133                |
| No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No.         No. <td>706</td> <td>1209</td> <td>0.033295</td> <td>0.02753962</td> <td></td> <td>706</td> <td>1810</td> <td>0.05161</td> <td>0.028513812</td> <td>706</td> <td>6103</td> <td>0.2037</td> <td>0.033376372</td>                                                                                                                                                                                      | 706      | 1209                | 0.033295                  | 0.02753962                    |     | 706         | 1810               | 0.05161                   | 0.028513812                   | 706                 | 6103                  | 0.2037                    | 0.033376372                |
| m         isis         dots/isis         solution         model         solution         model                                                                                                                                                                                                                                                                                                                         | 708      | 1239                | 0.030906                  | 0.024944633                   |     | 708         | 2024               | 0.062915                  | 0.031084338                   | 708                 | 6816                  | 0.21715                   | 0.031858421                |
| 121         120         0.00007         0.00044600         121         121         121         0.210         0.0004         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440         0.000440 <t< td=""><td>709</td><td>1215</td><td>0.032781 0.03342</td><td>0.026979918<br/>0.027170894</td><td></td><td>709</td><td>1744</td><td>0.051655</td><td>0.029618693</td><td>709</td><td>6311</td><td>0.20641</td><td>0.032705593</td></t<>  | 709      | 1215                | 0.032781 0.03342          | 0.026979918<br>0.027170894    |     | 709         | 1744               | 0.051655                  | 0.029618693                   | 709                 | 6311                  | 0.20641                   | 0.032705593                |
| 111         111         0.0008         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084         0.00084                                                                                                                                                                                                                                                       | 711      | 1230                | 0.030087                  | 0.024461057                   |     | 711         | 1715               | 0.049894                  | 0.029092653                   | 711                 | 6731                  | 0.20735                   | 0.030804932                |
| 126         125         0.2000         0.00044623         124         127         0.2000         0.2003433         125         0.200         0.20034         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403         0.2004403 <td>712</td> <td>1213</td> <td>0.03352</td> <td>0.0276338</td> <td></td> <td>712</td> <td>1652</td> <td>0.050489</td> <td>0.030562228</td> <td>712</td> <td>6491</td> <td>0.20842</td> <td>0.032108766</td> | 712      | 1213                | 0.03352                   | 0.0276338                     |     | 712         | 1652               | 0.050489                  | 0.030562228                   | 712                 | 6491                  | 0.20842                   | 0.032108766                |
| 100         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.021791         0.02179         0.02179         0.02179         0.02179         0.02179         0.02179         0.02179         0.02179         0.02179         0.02179         0.02179         0.02179         0.02179         0.02179         0.02179                                                                                                                                                                                                                                   | 714      | 1251                | 0.030605                  | 0.024464428                   |     | 714         | 1709               | 0.052865                  | 0.030933353                   | 714                 | 6918                  | 0.20645                   | 0.029842874                |
| 77         121         0.0114         0.0720833         710         124         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114                                                                                                                                                                                                                                                                                             | 713      | 12/9                | 0.03417                   | 0.027933002                   |     | 715         | 1642               | 0.051137                  | 0.031143179                   | 716                 | 6400                  | 0.21262                   | 0.033221406                |
| 198         0.058         0.03140         0.0602200         198         0.060220         0.0110165           12         0.02200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200         0.022200                                                                                                                                                                                                                                                 | 717      | 1221                | 0.03334                   | 0.027305815                   |     | 717         | 1745               | 0.051814                  | 0.029693009                   | 717                 | 7102                  | 0.2465                    | 0.034709096                |
| 270         1200         6.0.00199         270         178         6.0.00480         20.001907           272         1212         6.0.0019         6.0.0019         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         20.00190         2                                                                                                                                                                                                                                             | 719      | 1205                | 0.031357                  | 0.026022241                   |     | 719         | 1636               | 0.050882                  | 0.03110165                    | 719                 | 6750                  | 0.20                      | 0.031111556                |
| 127         127         128         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 720      | 1200                | 0.032925                  | 0.027437333<br>0.027249035    |     | 720         | 1785<br>1766       | 0.054386                  | 0.030468179                   | 720                 | 6940                  | 0.21426                   | 0.030872478                |
| 1.12         1.12         0.000000         1.12         0.000000         0.000000           1.12         0.000000         0.000000         0.000000         0.000000         0.000000           1.12         0.00000         0.000000         0.000000         0.000000         0.000000           1.12         0.00000         0.000000         0.000000         0.000000         0.000000           1.12         0.00000         0.000000         0.000000         0.000000         0.000000           1.12         0.00000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.0000000         0.0000000         0.0000000         0.0000000         0.0000000         0.0000000         0.0000000         0.0000000         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 722      | 1237                | 0.031929                  | 0.025811803                   |     | 722         | 1758               | 0.053105                  | 0.030207565                   | 722                 | 6644                  | 0.20023                   | 0.030136213                |
| 725         1126         0.02184.0         0.02944.00           728         120         0.0118         0.02944.00         729         0.0118         0.02944.00           728         1210         0.0139.0         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.0294.00         0.02                                                                                                                                                                                                                                   | 723      | 1238                | 0.033453 0.030919         | 0.027021809<br>0.024934758    |     | 723         | 1845<br>1855       | 0.052181                  | 0.028282547<br>0.032405445    | 723                 | 6857                  | 0.2072                    | 0.030216713<br>0.031627144 |
| 121         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221         1221                                                                                                                                                                                                                                                                                                                                                                   | 725      | 1126                | 0.031544                  | 0.028013943                   |     | 725         | 1660               | 0.051118                  | 0.030793855                   | 725                 | 6862                  | 0.20889                   | 0.030441416                |
| 228         129         0.03126         0.02757986         272         181         0.02124         0.0278188         272         660         0.018912         0.03138         0.0213518         273         110         0.03126         0.031812         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181         0.03181                                                                                                                                                                                                                                                                     | 720      | 1223                | 0.034128                  | 0.025292968                   |     | 720         | 1782               | 0.051804                  | 0.027615842                   | 727                 | 6745                  | 0.20992                   | 0.031341142                |
| 1900         0.02786         0.027861         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190        190 <t< td=""><td>728</td><td>1219</td><td>0.033593</td><td>0.027557998</td><td></td><td>728</td><td>1811</td><td>0.052124</td><td>0.028781888</td><td>728</td><td>6650</td><td>0.21539</td><td>0.032389323</td></t<>                                                                                                                                                                                   | 728      | 1219                | 0.033593                  | 0.027557998                   |     | 728         | 1811               | 0.052124                  | 0.028781888                   | 728                 | 6650                  | 0.21539                   | 0.032389323                |
| 21       1100       0.03272       0.02561/190       211       1466       0.025842         21       1100       0.03213       0.025842       211       0.666       0.025842         21       1100       0.03213       0.025842       0.02788508       211       0.666       0.02185         21       110       0.02155       0.02842504       715       110       0.02186       0.0288504         21       110       0.02155       0.02845040       715       110       0.02186       0.0288504         21       110       0.02156       0.02885040       715       110       0.02186       0.021860       0.021860         21       110       0.02186       0.021860       710       0.0211       0.02186       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860       0.021860                                                                                                                                                                                                                                                                                                                                                                                                            | 730      | 1089                | 0.029865                  | 0.027424334                   |     | 730         | 1791               | 0.051869                  | 0.028961027                   | 730                 | 6535                  | 0.20673                   | 0.031633818                |
| 110       0.02383       0.02382007       733       131       0.02126       0.0222877       755       138       0.021266       0.021256       0.0212567         755       100       0.03126       0.0228277       755       138       0.02226       0.0212567         755       100       0.03126       0.0228277       755       138       0.02226       0.0238310         731       116       0.02260       0.0238310       728       0.021266       0.0238310         731       116       0.02260       0.0238310       728       0.021266       0.0238310         731       116       0.02970       0.0256460       726       107       0.02386100       728       666       0.0238010         741       115       0.02462       0.02380127       746       100       0.02380120       741       100       0.013801407         741       115       0.02462       0.02380127       740       100       0.02480120       741       100       0.02480120       741       100       0.01380120         741       110       0.02480120       741       100       0.01380120       741       0.02480120       741       0.02480120       741       0                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 731      | 1107                | 0.032725                  | 0.029561789                   |     | 731         | 1659<br>1854       | 0.050665                  | 0.030539482                   | 731                 | 6606                  | 0.20413                   | 0.030900999                |
| 134         106         0.0136         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386         0.02386                                                                                                                                                                                                                                                       | 733      | 1108                | 0.032333                  | 0.029181047                   |     | 733         | 1874               | 0.052451                  | 0.027988634                   | 73                  | 6571                  | 0.20159                   | 0.030679196                |
| 1161         0.02388         0.20388802         766         1897         0.02211         0.02732607         786         6210         0.02382607           213         1100         0.03338         0.022322222         78         731         0.023836         0.0229930         786         6210         0.0238066         738         6450         0.0238066         738         6450         0.0238         60038066         738         6450         0.0238         6610         0.0338066         738         6450         0.0238         6450         0.0238         6460         0.03386         0.0238         746         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740         740                                                                                                                                                                                                                                                                                                                                                               | 734      | 1103                | 0.031201<br>0.031535      | 0.028287217<br>0.028825046    |     | 734         | 1930<br>1834       | 0.052852                  | 0.027384508                   | 734                 | 6548                  | 0.21036                   | 0.032125687<br>0.029860822 |
| 1100         0.0000000         0.000000000         0.000000000         0.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 736      | 1161                | 0.03296                   | 0.02838932                    |     | 736         | 1897               | 0.052211                  | 0.027522667                   | 736                 | 6521                  | 0.20095                   | 0.030816132                |
| 178     118     0.03897     0.02931.0     729     172     0.02843.07       178     172     0.04921     0.02840.07     122     0.01106.01       178     178     0.0297     0.02281.06     141     0.023       178     178     0.02860     0.02281.06     141     0.023       178     126     0.02860     0.02382.02     141     0.023       178     126     0.02380     0.02382.02     146     100     0.0331.05       178     126     0.0337     0.02782.02     146     100     0.0331.05       178     126     0.0337     0.0278.02     146     100     0.0331.05       179     1210     0.0331     0.02399     0.0378.02     146     0.001       179     1211     0.02399     0.0278.02     146     0.011923       179     1213     0.02399     0.0278.02     176     179     0.0210.02       179     1214     0.02399     0.0279.02     179     0.0310.0279       179     0.0131.0     0.0279.02     179     0.0238     0.0300.0279       179     0.0131.0     0.0279.02     0.0279.017     170     0.0300.0279       179     0.0131.0     0.0279.00 <td>737</td> <td>1160</td> <td>0.033318</td> <td>0.028722328</td> <td></td> <td>737</td> <td>1895</td> <td>0.052815</td> <td>0.027870501</td> <td>738</td> <td>6870</td> <td>0.21/96</td> <td>0.033609869</td>                                                                                                                                                                                                                                                                                                                               | 737      | 1160                | 0.033318                  | 0.028722328                   |     | 737         | 1895               | 0.052815                  | 0.027870501                   | 738                 | 6870                  | 0.21/96                   | 0.033609869                |
| 108         00100         0.02288358         742         153         0.02288358           742         155         0.03146         0.02580244         742         155         0.03146         0.02580244         742         155         0.0346         0.0258024         742         0.03146         0.02580244         742         0.03146         0.02580244         742         0.03153         0.02758025         746         646         0.01115         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.00111         0.001111         0.001111                                                                                                                                                                                                                                                                              | 739      | 1183                | 0.034973                  | 0.029563145                   |     | 739         | 1729               | 0.04921                   | 0.028461307                   | 739                 | 6611                  | 0.21341                   | 0.03228029                 |
| 116         0.03846         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280048         0.0280                                                                                                                                                                                                 | 740      | 1184                | 0.030799                  | 0.028363686                   |     | 740         | 1950               | 0.051834                  | 0.026150615                   | 740                 | 7191                  | 0.20949                   | 0.029889306                |
| 144         1265         0.02342         744         1264         0.02312         0.023136         0.02758651           745         1265         0.03537         0.02758246         745         1360         0.03316         0.02758651           747         1365         0.032376         0.027592425         746         1360         0.023176         0.020176         0.02016         0.03316         0.020174         0.02016         0.03316         0.02017         0.02016         0.00316         0.02017         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.02016         0.00016         0.02016         0.00016         0.00016         0.02016         0.00016         0.00016         0.00016         0.00016         0.00016         0.00016         0.00016         0.00016         0.00016         0.00016         0.00016         0.00016         0.00016         0.00016         0.00016         0.00016         0.00016         0.00016         0.00016 </td <td>742</td> <td>1163</td> <td>0.033148</td> <td>0.028502494</td> <td></td> <td>742</td> <td>1860</td> <td>0.05211</td> <td>0.028016237</td> <td>742</td> <td>6749</td> <td>0.228</td> <td>0.033782042</td>                                                                 | 742      | 1163                | 0.033148                  | 0.028502494                   |     | 742         | 1860               | 0.05211                   | 0.028016237                   | 742                 | 6749                  | 0.228                     | 0.033782042                |
| 148     126     0.0328     0.02748248     148     0.0278840     148     0.0278840     148     0.03148     0.0278840     148     100     0.03145     0.027845     148     140     0.03145     0.027845     148     140     0.03145     0.027854     148     140     0.03145     0.027854     140     0.03145     0.027854     140     0.03145     0.027854     140     0.03145     0.027854     0.027854     140     0.03145     0.027854     0.027854     0.027854     0.027854     0.027854     0.027854     0.027854     0.03015295     171     0.02966     0.027285403     175     1720     0.02864     0.022980533     175     0.02966     0.027285403     175     0.02966     0.027285403     175     0.02966     0.027285403     175     0.02966     0.027284603     175     0.02864     0.020285     0.03010256     0.03084257     175     0.02566     0.03010256     0.03084257     175     0.0578     0.0308454     175     0.02966     0.027284603     175     175     0.02084     0.030256     0.020845     0.020845     0.0208455     175     0.02084     0.030256     175     0.02084     0.020285     0.027284603     176     0.02084     176     0.02084     177 <td>744</td> <td>1285</td> <td>0.032462</td> <td>0.025262412</td> <td></td> <td>744</td> <td>2003</td> <td>0.055135</td> <td>0.027526261</td> <td>744</td> <td>6948</td> <td>0.21132</td> <td>0.030414076</td>                                                                                                                                                                                                       | 744      | 1285                | 0.032462                  | 0.025262412                   |     | 744         | 2003               | 0.055135                  | 0.027526261                   | 744                 | 6948                  | 0.21132                   | 0.030414076                |
| 199         0.022700038         749         198         0.0202077039           748         100         0.02136         0.02271520         748         0.021236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02236         0.02336         0.02326         0.02336         0.02336         0.02326         0.02336         0.02336         0.02326         0.02336         0.02326         0.02336         0.02326         0.02336         0.02336         0.02326         0.02336         0.02326         0.02336         0.02326         0.02336         0.02326         0.02336         0.02326         0.02336         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.033026         0.03306         0.03306                                                                                                                                                                                                                                                                 | 745      | 1265<br>1265        | 0.035373 0.030288         | 0.027962846                   |     | 745         | 1880<br>2041       | 0.052386                  | 0.027865053 0.025253552       | 745                 | 6507                  | 0.20586                   | 0.031636392<br>0.029057826 |
| 1400         0.00524         0.005249533         100         0.0052950         0.002975635         100         0.005295         0.005951056         0.005951056         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         0.005951056         100         100         0.002291241         175         100         0.002180121         175         100         0.002180121         175         100         0.005951         0.002180121         175         100         0.01126         0.002180513         0.0221806121         176         100         0.01126         0.00596         0.0221806121         176         110         0.01126         0.001126         0.001126         0.001126         0.001126         0.00112                                                                                                                                                                                                                                                       | 747      | 1196                | 0.032376                  | 0.027070318                   |     | 747         | 1984               | 0.051738                  | 0.026077419                   | 747                 | 6626                  | 0.21309                   | 0.032159523                |
| 150         121         0.02399         0.0275423         750         1371         0.05996         0.027153532         750         6684         0.038011037           751         1250         0.03141         0.0238585         751         166         0.03981103         751         6694         0.03011037           751         1260         0.031410         0.02385855         751         756         0.03101607           751         1692         0.031410         0.02754508         751         156         0.027264041           751         1692         0.0310160         0.02725401         751         1692         0.03101607           758         110         0.031310         0.02284921         750         1692         0.02275601         751         751         0.021340         0.0301405           759         1110         0.03247         0.02284120         751         1692         0.022756012         751         751         0.022842         751         160         0.02284162         752         720         0.023843         0.0238430         0.0238430         0.0238430         0.0238430         0.0238430         0.0238430         0.0238430         0.0238430         0.0238430         0.0238430                                                                                                                                                                                                                                                                                                                                                    | 748      | 1103                | 0.03213                   | 0.029129193                   |     | 748         | 1918               | 0.050955                  | 0.026566528                   | 745                 | 7155                  | 0.21234                   | 0.030640548                |
| 121         0.031810         0.0358815         77         1032         0.003881         0.03288123           751         1210         0.031815         0.031815         0.031815         0.031825           751         1210         0.031815         0.03288125         1.027         0.03019783           755         126         0.03181         0.03288421         75         1.03         0.03039178           756         120         0.03280         0.0328421         75         1.03         0.03039178           756         120         0.0328421         75         123         0.0328421         75         713         1.0215         0.03039178           759         1110         0.03284021         75         124         0.0328010         0.02284810         75         123         0.02284810         76         717         72         2.1258         0.032848         0.03284810         76         717         72         2.1258         0.032848         0.032848         0.03284810         76         717         2.2216         0.032848         0.031744         0.0328455         76         773         72.2276         0.022845         0.0228455         762         773         72.0         2.2217                                                                                                                                                                                                                                                                                                                                                                | 750      | 1211                | 0.032399                  | 0.026754253                   |     | 750         | 1871               | 0.050996                  | 0.027255852                   | 750                 | 6804                  | 0.20828                   | 0.030610964                |
| 175         112         0.03819         0.02774088         754         1756         0.03086975           756         1196         0.03265         0.022540591         755         719         0.030869755           756         1195         0.03179         0.022540591         755         719         0.05026         0.022204021           757         1193         0.03255         0.02234421         727         126         0.03100995           758         1193         0.032256         0.02234421         727         126         0.022348421           758         1193         0.03326         0.022348421         727         126         0.02236840           758         1131         0.032255         0.02234640         0.0223484021         727         0.22381         0.0322486           756         1131         0.0324625         763         778         0.022345         0.0238460         763         778         0.2216         0.0238476031           766         1101         0.032485         0.023957         764         1722         0.03175         0.02384760         763         7786         0.2021         0.030742027           767         1102         0.034856         0.02711                                                                                                                                                                                                                                                                                                                                                                            | 752      | 1256                | 0.033141                  | 0.026386385                   |     | 752         | 1706               | 0.050848                  | 0.029805334                   | 752                 | 7094                  | 0.21303                   | 0.030029743                |
| 755         1219         0.02022         0.022924421         755         776         135         0.031931         0.0219423           756         135         0.032025         757         138         0.032025         757         713         0.03002596           759         1117         0.0228472         0.02294272         758         1377         7140         0.02294273           760         1156         0.03122         756         1179         0.0239450         759         738         0.02294573           760         1156         0.03122         766         11796         0.0236463         761         779         728         0.0216403         761         7146         0.2227           761         1031         0.0246543         762         753         128         0.022676333         761         7146         0.2227         0.023643         762         724         0.2237         0.023643         762         757         1.022         0.023743         764         10227         0.02317         0.0246413         764         722         0.023743         761         721         0.023743         764         722         0.023743         764         0.02276         0.023110         0.02                                                                                                                                                                                                                                                                                                                                                              | 753      | 1219                | 0.033819                  | 0.027743068                   |     | 753         | 1756               | 0.051246                  | 0.029183257                   | 753                 | 6632                  | 0.20578                   | 0.031028649                |
| 756     1195     0.031991     0.026840301     756     1991     0.05975     0.03000995     756     713     0.03284     0.032844     0.03284725     757     102     0.2124563     757     102     0.2124563     757     102     0.2124563     757     102     0.2124553     757     710     0.22384720     0.02384723     756     1156     0.02384723     756     1056     0.025766038     760     970     0.0224835     0.02384723     756     1056     0.0326612     759     972     0.21248     0.0324352     756     1056     0.025657633     761     774     0.22288     0.02341553     756     1037     0.02656733     761     774     0.222     0.03175     0.03266413     756     752     754     0.2221     0.031415153     0.03157     0.02666413     761     774     0.222     0.02243532     766     1073     0.02666413     776     774     0.223     0.03175     0.02666413     776     7740     0.2104     0.031510     0.02847140     103812     0.0311150     0.02718672     776     173     0.02846124     776     776     0.028     0.0317404     0.031510     0.02874742     0.031151     0.02874742     0.031151     0.02874740     0.031151<                                                                                                                                                                                                                                                                                                                                                                                                                                     | 755      | 1261                | 0.031903                  | 0.025299921                   |     | 755         | 1719               | 0.050202                  | 0.029204421                   | 755                 | 7013                  | 0.21175                   | 0.030193783                |
| 758         1117         0.032736         0.03202595         758         1916         0.027584033         758         6972         0.21093         0.00214325           760         1156         0.03113         0.026287239         760         1174         0.02376033         760         62766         0.022766033         760         779         7230         0.021495         760         1749         0.023660         762         7274         0.22276         0.023676333         763         7794         0.22276         0.023676333         763         7794         0.22276         0.023676333         764         722         0.0231403         0.03107744           764         1203         0.0248411         765         1723         0.02366233         764         722         0.22217         0.02365248           766         1070         0.023849         0.027613521         766         1673         0.059653         0.03046224         765         7788         0.1024         0.03763627           767         10270         0.022861         0.02911305         767         17132         0.05563         0.03046224         765         7781         0.1024         0.03050424         775         10.22479         0.0312437         0.03                                                                                                                                                                                                                                                                                                                           | 756      | 1195<br>1193        | 0.031791 0.030283         | 0.026603013                   |     | 756         | 1991<br>1982       | 0.05975                   | 0.030009995<br>0.027212563    | 756                 | 7153                  | 0.20936                   | 0.029268559                |
| 299       1112       0.0288/2       0.0298/25       729       1886       0.02986/25         760       1164       0.031132       0.02998/25       766       1749       0.52963       0.02986/05         762       1368       0.02916/25       776       16216       0.02916/355       776       774       0.02946/355         764       1164       0.031132       0.02946/352       776       1022       0.02946/355       776       776       0.02916/355       776       776       0.02916/355       776       776       0.02916/355       776       776       0.02916/355       776       776       0.02916/355       776       776       0.02916/355       776       1771       0.0296/355       776       1761       0.02986/249       776       776       0.021104       0.02917/362         776       1027       0.029905       0.029110905       777       1671       0.04966       0.02986/249       776       776       0.021409       0.0297362       776       1071       0.03114594       776       0.021409       0.0297362       776       108       0.0390416       770       1032.02227       0.029411622       771       1712       0.031145994       776       0.020960       0.0                                                                                                                                                                                                                                                                                                                                                                                                  | 758      | 1117                | 0.033736                  | 0.030202596                   |     | 758         | 1916               | 0.052852                  | 0.027584603                   | 758                 | 6972                  | 0.21003                   | 0.030124355                |
| 761         962         0.031172         0.03206524         761         1796         0.028886         0.023886         0.023886         0.023886         0.023886         0.023886         0.023886         0.023886         0.023886         0.023886         0.023886         0.023886         0.023875         763         7780         0.2038         0.03107744           764         1040         0.031519         0.028857         763         1785         0.0238750         0.02664335         763         7780         0.2031         0.03107744           765         1701         0.023995         0.029615321         765         1734         0.02980244         765         7794         0.2132         0.02973862           776         1071         0.023905         0.027815126         769         1999         0.0278766         0.02816514         770         1710         0.043410         0.01119949         766         783         0.023276         0.0301554           771         1042         0.02816514         770         1710         0.05182         0.02980343         771         176         0.031155         0.02914926         773         0.041732         0.72376         0.0324551         772         0.03107457         776         0.0                                                                                                                                                                                                                                                                                                                  | 759      | 1117 1156           | 0.028872                  | 0.025847359                   |     | 759         | 1886               | 0.053766                  | 0.028508112                   | 759                 | 6970                  | 0.21508                   | 0.02934575                 |
| 126         136         0.032488         0.032488         0.032488         0.032488         0.032488         0.032488         0.032488         0.032488         0.032488         0.032488         0.032488         0.032488         0.032488         0.032488         0.032488         0.032488         0.032488         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032481         0.032381         0.032481         0.032                                                                                                                                                                                                                            | 761      | 962                 | 0.031172                  | 0.032403222                   |     | 761         | 1796               | 0.053698                  | 0.029898608                   | 761                 | 7194                  | 0.24611                   | 0.03421087                 |
| 764         1202         0.023433         0.026959767         764         1732         0.051375         0.029662413           765         1202         0.023849         0.02697352         0.052866         0.030470029           767         1012         0.023849         0.02967352         766         1673         0.059863         0.03046224           766         1012         0.023868         0.02281748         766         1671         0.049867         0.023842849           766         1012         0.0238165         0.02281276         769         1693         0.059661         0.022883843           770         1076         0.031115         0.02816512         7711         1712         0.051582         0.020281343           771         1035         0.022816914         770         173         10660         0.02381759           772         1035         0.023816         0.778         1666         0.02281245         771         7164         0.2368         0.03313759           774         1035         0.0282878102         775         1666         0.0203         0.03245231         772         7063         0.2206         0.03373597           777         1130         0.022867843 <td>763</td> <td>1104</td> <td>0.029188</td> <td>0.030403449</td> <td></td> <td>763</td> <td>1785</td> <td>0.052972</td> <td>0.029676303</td> <td>763</td> <td>7089</td> <td>0.22276</td> <td>0.029411872</td>                                                                                                                                                        | 763      | 1104                | 0.029188                  | 0.030403449                   |     | 763         | 1785               | 0.052972                  | 0.029676303                   | 763                 | 7089                  | 0.22276                   | 0.029411872                |
| 766         1107         0.032849         0.02973532         766         1673         0.090852         0.03046224           767         1027         0.029056         0.029119085         767         1671         0.099867         0.02342849         767         666         0.1242         0.039075042           768         1031         0.02868         0.029786         0.029786         0.029786         0.03975042           776         1067         0.03116994         770         1071         0.054131         0.00024168           771         1042         0.029594         0.02845899         777         1771         105279         0.03069243           773         1033         0.028258         0.030766728         773         1660         0.052279         0.03015992           7774         1056         0.030726         0.03078592         774         1666         0.05227         0.0301498976           773         1033         0.02825840         0.028878102         775         1768         10.05335         0.02914293         775         7064         0.2273         0.034452324           776         1133         0.020758882         776         1806         0.05375         0.029149391                                                                                                                                                                                                                                                                                                                                                                    | 764      | 1203                | 0.032433                  | 0.026959767                   |     | 764         | 1732               | 0.051375                  | 0.029662413                   | 764                 | 7072                  | 0.22217                   | 0.031415158                |
| 767         1027         0.029905         0.0278119085         767         1671         0.049867         0.02982184         768         130         0.0286         0.02781108         768         1310         0.02811994         768         7310         0.2277         0.029786         0.02981241         7700         0.03111         0.029194         770         1713         0.029594         0.029594         0.029594         0.0295194         770         1713         1002         0.029594         0.0281599         7712         1712         1712         10052679         0.03096943         772         7736         10.240         0.03276728         0.0301585         0.03377579           774         1059         0.03125         0.028878102         777         1778         1666         0.05257         0.03125845         777         7768         1304         0.03278727           776         1064         0.03270         0.028878102         777         1778         1184         0.05125         0.02914293         775         7004         0.2273         0.032431922           777         178         1060         0.033377         0.02658810         777         1783         0.0261410         0.0292814         777         7683 <t< td=""><td>766</td><td>1107</td><td>0.032849</td><td>0.029673532</td><td></td><td>766</td><td>1673</td><td>0.050963</td><td>0.030462224</td><td>766</td><td>7078</td><td>0.21049</td><td>0.029738627</td></t<>                                                                                                        | 766      | 1107                | 0.032849                  | 0.029673532                   |     | 766         | 1673               | 0.050963                  | 0.030462224                   | 766                 | 7078                  | 0.21049                   | 0.029738627                |
| 769         999         0.029786         0.029816216         769         1688         0.050606         0.02080148         770         673         073         170         171         1771         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         1                                                                                                                                                                                                                                                                                                                                                                                     | 767      | 1027                | 0.029905                  | 0.029119085<br>0.027817168    |     | 767         | 1671               | 0.049867                  | 0.029842849<br>0.031119394    | 767                 | 6964                  | 0.21242 0.22479           | 0.030502298<br>0.030750342 |
| 771         10/16         0.023115         0.028010514         771         712         0.051582         0.02041054           771         713         10.051582         0.02843143         771         7714         0.2305         0.032257           773         1033         0.02284         0.0256728         773         1660         0.052286         0.031498976         773         704         0.2305         0.032431392           774         1059         0.031255         0.0286588102         775         176         1064         0.028373         0.026858812         777         1774         1056         0.0312545         774         1056         0.0322745           776         1064         0.028373         0.026858812         777         174         1056         0.0312545         777         1768         1062         0.03223255           778         1160         0.033377         0.02616681         778         1844         0.05274         0.020766172         778         6206         0.02973405         786         0.12075         0.03082940         0.03982941           779         1136         0.028764         0.0208366         781         1888         0.053655         0.027474555         782                                                                                                                                                                                                                                                                                                                                                     | 769      | 999                 | 0.029786                  | 0.029816216                   |     | 769         | 1698               | 0.050606                  | 0.02980318                    | 769                 | 6932                  | 0.23896                   | 0.034471725                |
| 1772         1035         0.0228237         0.0228248599         772         1701         0.052679         0.03096943         772         773         173         1033         0.02386         0.03407021           773         1050         0.031925         0.03194592         774         1066         0.05288         0.031498976         773         773         1064         0.032737         0.02865983         775         1756         1064         0.02373         0.026865983         776         1810         0.05355         0.02947931         775         768         1064         0.020571         0.02685983         776         1810         0.02847901         777         768         0.022051986         777         778         1016         0.035383         0.0319177         778         1848         0.05794         0.028049349         777         768         0.022171901           778         1106         0.035383         0.03291792         778         1888         0.05784         0.02802396         782         1078         0.202616         0.0229318           781         1133         0.022671088         783         1828         0.05365         0.02747455         781         6681         0.020959         0.02393542         781<                                                                                                                                                                                                                                                                                                                   | 771      | 1078                | 0.031113                  | 0.028910914                   |     | 771         | 1715               | 0.051431                  | 0.02983343                    | 771                 | 7145                  | 0.23739                   | 0.034181924                |
| 1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2         1-2 <th1-2< th=""> <th1-2< th=""> <th1-2< th=""></th1-2<></th1-2<></th1-2<>                                                                                                                                                                                                                                                                                                                                                              | 772      | 1035                | 0.029237                  | 0.028248599                   |     | 772         | 1701               | 0.052679                  | 0.03096943                    | 772                 | 7063                  | 0.24069                   | 0.034077021                |
| 1775     1064     0.030726     0.022878102     775     1768     0.05125     0.022442931     776     0.02442931       1776     1064     0.028373     0.0206658841     777     1745     0.053355     0.02047901     776     616.0     0.202037       1781     1106     0.0303781     0.0205658412     778     1840     0.053355     0.023049349     776     636.0     0.20203     0.02283970       7781     1106     0.033200     0.02251898     780     2068     0.05724     0.022847076     778     6031     0.20931428       781     133     0.03200     0.022338702     781     1888     0.05784     0.028647076     781     6881     0.2099     0.039248777       782     1075     0.031969     0.02933480     0.0293348     0.028734602     781     6881     0.2099     0.03076877       785     1124     0.03355     0.028815     783     1982     0.052862     0.023817724     782     681     0.6099     0.029785140       786     1169     0.03356     0.029784522     786     1582     0.052861     0.02386777     782     6874     0.025867402       786     1169     0.03356     0.029867427     788     158                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 774      | 1055                | 0.031925                  | 0.030145892                   |     | 774         | 1696               | 0.05007                   | 0.029522465                   | 774                 | 7205                  | 0.23367                   | 0.032431922                |
| 777         1159         0.030781         0.026558412         777         1745         0.05257         0.030125845         777         776         136         0.22259         0.027119901           778         1160         0.030370         0.02618661         777         178         0.05244         0.027266172         779         179         138         0.02711901           780         1101         0.032009         0.022251898         788         0.05784         0.02802396         778         168         0.029340         0.039099         0.039099         0.039099         0.0302377         781         6681         0.0299         0.0301568         0.0331460         0.02331815         788         188         0.05784         0.028817724         781         6681         0.0299         0.0303257         782         6674         0.2033764         0.03087077         782         6874         0.207594622         784         1982         0.0484114         0.0325652         0.03087077         782         6874         0.20759316         786         1148         0.0492415         0.03087077         782         1062         0.030364         0.027673165         779         781         1681         0.030978         0.02267316         786         1148                                                                                                                                                                                                                                                                                                  | 775      | 1064                | 0.030726                  | 0.028878102<br>0.026665883    |     | 775         | 1768<br>1810       | 0.051525                  | 0.02914293 0.029477901        | 775                 | 7004                  | 0.2273                    | 0.032452313<br>0.032283597 |
| Prop         1400         UJ393/7         UJ2033/7         UJ20                                                                                                                                                                                                                            | 777      | 1159                | 0.030781                  | 0.026558412                   |     | 777         | 1745               | 0.05257                   | 0.030125845                   | 777                 | 7683                  | 0.21297                   | 0.027719901                |
| 780         1133         0.032009         0.02251388         780         0.05984         0.02802395           781         1133         0.032704         0.025384         0.0053784         0.028847076           781         1031         0.023784         0.025384         0.028847076         781         6881         0.2099         0.0332757           782         1075         0.031058         0.02938698         782         1957         0.053695         0.027437455         782         6874         0.21013         0.03035522           784         1097         0.032353         0.02985         785         1714         0.052862         0.02817724           785         1124         0.033551         0.029857         785         1714         0.052235         0.030645142           786         1026         0.033054         0.029851         786         1688         0.03290552         785         1714         0.043449224         NG         0.027673166           787         1986         0.0229540         0.02998810         798         1858         0.05341         0.022800552         792         1003         0.03286652         792         1934         0.055407         0.0228014414         0.031468262                                                                                                                                                                                                                                                                                                                                                      | 778      | 1160<br>1106        | 0.030377                  | 0.02618681 0.031991772        |     | 778         | 1844               | 0.051723                  | 0.028049349                   | 778                 | 6991<br>7083          | 0.20926                   | 0.029932485                |
| 12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:         12:0:0:         12:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0                                                                                                                                                                                                                                                                                                       | 780      | 1133                | 0.032009                  | 0.028251898                   |     | 780         | 2068               | 0.057954                  | 0.028023936                   | 780                 | 7248                  | 0.21621                   | 0.02983016                 |
| 783       1097       0.031058       0.022811851       783       1828       0.022891724       MN       0.02395222         784       1097       0.031058       0.0229552       784       1920       0.054221       0.02755224         785       1124       0.033551       0.022955       785       1714       0.052335       0.030845142         786       1062       0.032555       0.02670487       787       1418       0.04346452       0.030845142         787       786       0.022955       0.022970487       787       1418       0.049161       0.03484924         788       1026       0.032954       0.022984172       788       1577       0.051868       0.032809552         789       1022       0.029536       0.028816       790       1773       0.052021       0.02960425         793       1941       0.054021       0.02305542       793       1956       0.054021       0.02305542         795       1032       0.028543       0.03125637       793       1956       0.054021       0.02305542         795       1033       0.0325637       793       1956       0.05402       0.02305542         795       1033       0.0328647                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 781      | 1075                | 0.028764                  | 0.02338782                    |     | 781         | 1957               | 0.053/84                  | 0.020487076                   | 782                 | 6874                  | 0.20899                   | 0.03056881                 |
| 785         1124         0.033551         0.022855         726         174         0.05287356         736         0.03087077           786         1165         0.032551         0.0229812         785         174         0.05287356         577         578         174         0.02387077         577         578         578         1028         0.03087077         577         578         578         578         578         578         578         578         578         578         578         578         578         578         578         578         578         578         578         578         578         578         578         578         579         578         579         578         579         578         579         578         579         579         578         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579         579                                                                                                                                                                                                                                                                                                                                                                                     | 783      | 1097                | 0.031058                  | 0.028311851                   |     | 783         | 1828               | 0.052862                  | 0.028917724                   |                     |                       | MIN                       | 0.020356222                |
| res         1129         U0.3105b         U0.27/UV9312         786         1688         0.052235         0.030945142         ISTDEV         0.008641468           787         986         0.0225         0.029670487         787         1418         0.049416         0.034494224           788         1022         0.03034         0.026624172         788         1577         0.05186         0.032890352           789         1002         0.029556         0.0288166         790         1733         0.052923         0.022961391           791         1005         0.029556         0.02880855         792         1934         0.055407         0.028648462           793         991         0.030978         0.03280652         792         1934         0.055407         0.028648452           793         991         0.030978         0.03280657         793         1996         0.05407         0.0280542           795         1033         0.029551         0.02860697         795         1882         0.05794         0.02805542           797         1022         0.02860421         796         2023         0.056097         0.02729461           796         1023         0.02860452         7979                                                                                                                                                                                                                                                                                                                                                                        | 785      | 1124                | 0.033551                  | 0.02985                       |     | 785         | 1714               | 0.052913                  | 0.03087077                    |                     |                       | AVG                       | 0.027673166                |
| 788         1026         0.03034         0.026624172         788         1577         0.05186         0.023890552           789         1002         0.03054         0.02798519         789         1858         0.05571         0.022901399           790         1025         0.029556         0.028816         790         1733         0.052923         0.02951631           791         1005         0.029556         0.02880652         792         1934         0.055407         0.026648862           793         991         0.030978         0.03229657         793         1996         0.05407         0.02864862           793         991         0.030978         0.03229657         793         1996         0.05407         0.028648462           795         1033         0.0329551         0.02860697         795         1882         0.05704         0.02305542           795         1033         0.0329511         0.79864127         796         2023         0.056097         0.02791148           796         1023         0.056097         795         1882         0.028148         799         1022         0.02894341         799         1023         0.02869755         0.0304162         796                                                                                                                                                                                                                                                                                                                                                                        | 786      | 1169<br>986         | 0.031656                  | 0.027079812<br>0.029670487    |     | 786         | 1688               | 0.052235                  | 0.030945142<br>0.034849224    |                     |                       | STD DEV                   | 0.008641468                |
| 2026         USA: 00000         USA: 000000         USA: 0000000         USA: 0000000         USA: 0000000         USA: 00000000         USA: 000000000         USA: 000000000         USA: 0000000000         USA: 00000000000         USA: 00000000000000000         USA: 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 788      | 1026                | 0.030394                  | 0.029624172                   |     | 788         | 1577               | 0.051868                  | 0.032890552                   |                     |                       |                           |                            |
| 791         1005         0.029958         0.028908856         791         1757         0.0520021         0.029608025           792         1009         0.025844         0.0231259637         793         1940         0.055407         0.028648862           793         991         0.030175         0.031259637         793         1966         0.054502         0.0228544           794         992         0.030175         0.03418548         794         1965         0.057604         0.028648862           795         1033         0.029551         0.03418548         794         1965         0.057604         0.0290542           795         1033         0.029551         0.0360697         795         1882         0.0549         0.029171148           796         1028         0.031492         0.028918415         797         1862         0.05313         0.02850806           798         1079         0.031692         0.02917142         798         10.05063         0.030686755           8001         1004         0.032237         0.030010625         799         1729         0.053403         0.030686755           8001         1004         0.0232457         0.030010625         799         1                                                                                                                                                                                                                                                                                                                                                                   | 789      | 1092                | 0.030564                  | 0.027988919                   |     | 789         | 1858               | 0.055371                  | 0.029801399<br>0.029516341    |                     |                       |                           |                            |
| 123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123 <th123< th=""> <th123< th=""> <th123< th=""></th123<></th123<></th123<>                                                                                                                                                                                                                                                                                                                                                              | 791      | 1005                | 0.029958                  | 0.029808856                   |     | 791         | 1757               | 0.052021                  | 0.029608025                   |                     |                       |                           |                            |
| 794         992         0.030175         0.030175         0.030175         0.030175         0.030175           795         1033         0.029551         0.032606097         795         1882         0.0549         0.022951148           796         1028         0.031348         0.03094261         796         1023         0.05697         0.05313         0.02295544           797         1022         0.02483         0.03094261         797         1023         0.05813         0.022890806           798         1079         0.031692         0.022818415         797         1862         0.053813         0.030868755           799         1106         0.032917         0.0201625         799         1729         0.053403         0.03088755           800         1108         0.0289141144         801         1590         0.056656         0.031859308           802         1057         0.033040         0.026814079         8003         1567         0.056566         0.031859308           802         1057         0.033040         0.026814182         803         1587         0.056566         0.031859308           804         1057         0.034049         0.03489906         803         1576                                                                                                                                                                                                                                                                                                                                                                   | 792      | 991                 | 0.030978                  | 0.031259637                   |     | 792         | 1954               | 0.054502                  | 0.027305361                   |                     |                       |                           |                            |
| 796         1028         0.03148         0.030494261         796         2023         0.027729461           797         1022         0.029493         0.028858415         797         11862         0.058607         0.027729461           798         1079         0.03169         0.0291285         797         11862         0.05863         0.02086075           799         1104         0.032327         0.03010625         799         1729         0.05363         0.030867755           800         1106         0.029821         0.026814079         800         1657         0.052896         0.031822692           801         1010         0.03314         0.02841444         801         1590         0.056656         0.031859308           802         1057         0.032357         0.036611826         802         1586         0.056656         0.031859308           803         1067         0.03240906         803         13787         0.030652266           804         1050         0.032476         0.030652266         804         1937         0.058248         0.030071141           805         1058         0.031071         0.02937664         805         1917         0.058477         0.020752                                                                                                                                                                                                                                                                                                                                                                   | 794      | 992                 | 0.030175                  | 0.030418548                   |     | 794         | 1965               | 0.057094                  | 0.02905542                    |                     |                       |                           |                            |
| 19/1         102/2         0.029493         0.029493         0.029493         0.029493         0.029493         0.029493         0.029493         0.0291120         178         0.05563         0.03066785           799         1104         0.033237         0.03010625         799         1729         0.05563         0.03066785           800         1104         0.03921         0.026914079         800         1657         0.052692         0.031859308           801         1101         0.032337         0.030611826         802         1550         0.05665         0.031859308           802         1057         0.032357         0.03611826         802         1586         0.05665         0.031356308           802         1057         0.0324970         0.030611826         802         1586         0.03652266           803         1057         0.032470906         803         107477         0.030652266           804         1050         0.032714         0.031156381         804         1937         0.058248         0.030071141           805         1058         0.031071         0.0294967864         805         1917         0.05785029                                                                                                                                                                                                                                                                                                                                                                                                                    | 796      | 1028                | 0.031348                  | 0.030494261                   |     | 796         | 2023               | 0.056097                  | 0.027729461                   |                     |                       |                           |                            |
| 799         1104         0.033237         0.03010625         799         1729         0.053403         0.030886755           800         1108         0.029821         0.02614079         800         1657         0.052896         0.031822592           801         1101         0.03134         0.02841144         801         1550         0.056656         0.031859308           802         1057         0.032357         0.03611826         802         1558         0.056656         0.031359308           803         1067         0.0324990         6033         1787         0.0364776         0.030652266           804         1050         0.032174         0.03156381         804         1937         0.057476         0.030071141           805         1058         0.031071         0.029367864         805         1917         0.0528029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 797      | 1022                | 0.029493 0.031692         | 0.028858415<br>0.029371826    |     | 797         | 1862<br>1778       | 0.053813                  | 0.028900806<br>0.030968785    |                     |                       |                           |                            |
| 000         1100         00.279621         0.029140/73         800         1105/1         0.052892         0.031192/292           801         1101         0.031344         0.02841144         8010         1550         0.056565         0.0313659308           802         1057         0.032357         0.036611826         802         1586         0.056565         0.0313659308           803         1067         0.032499         0.028499906         803         1787         0.054776         0.030652266           804         1050         0.032157388         804         1937         0.052486         0.030071141           805         1058         0.031071         0.029267864         805         1917         0.05268029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 799      | 1104                | 0.033237                  | 0.03010625                    |     | 799         | 1729               | 0.053403                  | 0.030886755                   |                     |                       |                           |                            |
| 802         1057         0.032357         0.03611826         802         1556         0.050651         0.031936192           803         1067         0.030409         0.022499906         803         1787         0.054776         0.030652266           804         1050         0.032154         0.03156381         804         1937         0.052484         0.030071141           805         1058         0.031071         0.029367864         805         1917         0.052647         0.027985029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 800      | 1108                | 0.029821                  | 0.026914079                   |     | 801         | 1657               | 0.052896                  | 0.031922692                   |                     |                       |                           |                            |
| 000         100         0.029740         0.029740         0.030052400           804         1050         0.022741         0.0315631         804         1937         0.058248         0.03071141           805         1058         0.031071         0.029367864         805         1917         0.052484         0.027985029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 802      | 1057                | 0.032357                  | 0.030611826                   |     | 802         | 1586               | 0.050651                  | 0.031936192                   |                     |                       |                           |                            |
| 805 1058 0.031071 0.029367864 805 1917 0.053647 0.027985029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 804      | 1050                | 0.032714                  | 0.031156381                   |     | 804         | 1937               | 0.058248                  | 0.030071141                   |                     |                       |                           |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 805      | 1058                | 0.031071                  | 0.029367864                   | 1   | 805         | 1917               | 0.053647                  | 0.027985029                   | 1                   |                       |                           |                            |

|            |                     |           | 0                 | Avg 1 | ime per ob | j over all fi | rames:                   | 0.029803515                   | Standard | Deviation: 0.00606977                        |
|------------|---------------------|-----------|-------------------|-------|------------|---------------|--------------------------|-------------------------------|----------|----------------------------------------------|
| Frame No.  | nencopte<br>Num Ohi | Time in S | Time per obi (me) |       | Frame No   | Num Ohi       | u viaeo (84<br>Time in S | o x 480)<br>Time per obi (me) |          | Frame No Num Obi Time in S Time per obi (me) |
| 806        | 1046                | 0.029933  | 0.028616635       |       | 806        | 1907          | 0.054067                 | 0.028351809                   |          | interno prime per obj (ms)                   |
| 807        | 1025                | 0.030017  | 0.029284683       |       | 807        | 2141          | 0.060854                 | 0.028423027                   |          |                                              |
| 808        | 1131                | 0.032572  | 0.028799293       |       | 808        | 1775          | 0.056228                 | 0.03167769                    |          |                                              |
| 809        | 1055                | 0.030772  | 0.029167867       |       | 809        | 1834          | 0.053374                 | 0.02910229                    |          |                                              |
| 810        | 1107                | 0.031544  | 0.028495122       |       | 810        | 1980          | 0.056058                 | 0.028311919                   |          |                                              |
| 811        | 1141                | 0.029904  | 0.026208414       |       | 811        | 1955          | 0.056204                 | 0.028748747                   |          |                                              |
| 812        | 1133                | 0.033266  | 0.029360724       |       | 812        | 2058          | 0.057025                 | 0.027750826                   |          |                                              |
| 814        | 1099                | 0.030357  | 0.027000088       |       | 814        | 2015          | 0.059145                 | 0.028328217                   |          |                                              |
| 815        | 1100                | 0.033134  | 0.030122          |       | 815        | 1918          | 0.055592                 | 0.028984463                   |          |                                              |
| 816        | 1101                | 0.03013   | 0.027365758       |       | 816        | 2006          | 0.057781                 | 0.028804237                   |          |                                              |
| 817        | 1103                | 0.032828  | 0.029762103       |       | 817        | 1868          | 0.054989                 | 0.02943758                    |          |                                              |
| 818        | 1081                | 0.033281  | 0.030787327       |       | 818        | 1874          | 0.054419                 | 0.029038687                   |          |                                              |
| 819        | 1074                | 0.029255  | 0.027239013       |       | 819        | 1974          | 0.056059                 | 0.028398784                   |          |                                              |
| 820        | 1051                | 0.031785  | 0.030242626       |       | 820        | 1876          | 0.055343                 | 0.02950032                    |          |                                              |
| 821        | 1059                | 0.033561  | 0.031691407       |       | 821        | 1735          | 0.053988                 | 0.031116715                   |          |                                              |
| 822        | 1052                | 0.029455  | 0.02799943        |       | 822        | 2032          | 0.058492                 | 0.028785433                   |          |                                              |
| 823        | 1096                | 0.032747  | 0.029879015       |       | 823        | 1828          | 0.05771                  | 0.031569912                   |          |                                              |
| 925        | 1027                | 0.031103  | 0.030283492       |       | 925        | 1709          | 0.05287                  | 0.030142702                   |          |                                              |
| 826        | 1022                | 0.03032   | 0.03043865        |       | 826        | 1596          | 0.052838                 | 0.023420034                   |          |                                              |
| 827        | 1022                | 0.031436  | 0.030759491       |       | 827        | 1561          | 0.051085                 | 0.032725561                   |          |                                              |
| 828        | 1030                | 0.031542  | 0.03062301        |       | 828        | 1694          | 0.053791                 | 0.031753719                   |          |                                              |
| 829        | 1051                | 0.031798  | 0.03025509        |       | 829        | 1600          | 0.05451                  | 0.034068625                   |          |                                              |
| 830        | 1051                | 0.030172  | 0.028708278       |       | 830        | 1758          | 0.054138                 | 0.030795222                   |          |                                              |
| 831        | 1014                | 0.032444  | 0.03199645        |       | 831        | 1779          | 0.053439                 | 0.030038842                   |          |                                              |
| 832        | 1014                | 0.030475  | 0.030053846       |       | 832        | 1813          | 0.055571                 | 0.030651351                   |          |                                              |
| 833        | 980                 | 0.031001  | 0.031633878       |       | 833        | 1810          | 0.053945                 | 0.029803757                   |          |                                              |
| 834        | 1002                | 0.031348  | 0.03128513        |       | 834        | 1849          | 0.053448                 | 0.028906544                   |          |                                              |
| 836        | 1002                | 0.02348   | 0.023421038       |       | 836        | 1705          | 0.053473                 | 0.030035850                   |          |                                              |
| 837        | 1043                | 0.031006  | 0.029727709       |       | 837        | 1723          | 0.05043                  | 0.029268485                   |          |                                              |
| 838        | 1043                | 0.029179  | 0.027975839       |       | 838        | 1656          | 0.050019                 | 0.030204771                   |          |                                              |
| 839        | 986                 | 0.031001  | 0.031441379       |       | 839        | 1671          | 0.048958                 | 0.029298863                   |          |                                              |
| 840        | 998                 | 0.031281  | 0.031343287       |       | 840        | 1935          | 0.052814                 | 0.027293953                   |          |                                              |
| 841        | 990                 | 0.031836  | 0.032157172       |       | 841        | 2159          | 0.057111                 | 0.026452617                   |          |                                              |
| 842        | 976                 | 0.030496  | 0.031245902       |       | 842        | 2153          | 0.057559                 | 0.026734231                   |          |                                              |
| 843        | 1009                | 0.029762  | 0.029496036       |       | 843        | 2092          | 0.0559                   | 0.02672065                    |          |                                              |
| 844        | 930                 | 0.029312  | 0.03021855/       |       | 844        | 2119          | 0.057762                 | 0.028405204                   |          |                                              |
| 846        | 935                 | 0.029762  | 0.031830909       |       | 846        | 22110         | 0.058365                 | 0.025531584                   |          |                                              |
| 847        | 971                 | 0.030383  | 0.031290834       |       | 847        | 1954          | 0.059749                 | 0.03057784                    |          |                                              |
| 848        | 983                 | 0.030725  | 0.031256053       |       | 848        | 1827          | 0.054303                 | 0.029722551                   |          |                                              |
| 849        | 985                 | 0.028604  | 0.029039188       |       | 849        | 1855          | 0.054377                 | 0.029313962                   |          |                                              |
| 850        | 946                 | 0.032172  | 0.034008245       |       | 850        | 1921          | 0.052967                 | 0.027572827                   |          |                                              |
| 851        | 946                 | 0.028557  | 0.030186681       |       | 851        | 1924          | 0.054038                 | 0.028086331                   |          |                                              |
| 852        | 909                 | 0.032958  | 0.036256986       |       | 852        | 2149          | 0.058469                 | 0.027207585                   |          |                                              |
| 853        | 884                 | 0.031319  | 0.035429072       |       | 853        | 2003          | 0.053568                 | 0.026744034                   |          |                                              |
| 854        | 883                 | 0.02/90/  | 0.03160487        |       | 854        | 2049          | 0.05466                  | 0.026676574                   |          |                                              |
| 856        | 932                 | 0.030488  | 0.032712124       |       | 856        | 1761          | 0.054289                 | 0.028334708                   |          |                                              |
| 857        | 932                 | 0.032685  | 0.035069313       |       | 857        | 1623          | 0.05001                  | 0.030868823                   |          |                                              |
| 858        | 917                 | 0.031834  | 0.034715812       |       | 858        | 1651          | 0.049502                 | 0.029983283                   |          |                                              |
| 859        | 961                 | 0.031235  | 0.032502706       |       | 859        | 1847          | 0.052712                 | 0.028539145                   |          |                                              |
| 860        | 961                 | 0.032122  | 0.033425598       |       | 860        | 1773          | 0.052141                 | 0.029408347                   |          |                                              |
| 861        | 947                 | 0.031627  | 0.033397466       |       | 861        | 1938          | 0.053362                 | 0.027534623                   |          |                                              |
| 862        | 952                 | 0.033694  | 0.035392857       |       | 862        | 2032          | 0.058021                 | 0.028553691                   |          |                                              |
| 863        | 919                 | 0.028873  | 0.031417954       |       | 863        | 1973          | 0.053739                 | 0.027237405                   |          |                                              |
| 864        | 916                 | 0.030057  | 0.032813428       |       | 864        | 1991          | 0.058408                 | 0.029335912                   |          |                                              |
| 865        | 916                 | 0.028899  | 0.031548/99       |       | 865        | 2015          | 0.054366                 | 0.026980645                   |          |                                              |
| 860        | 1000                | 0.030751  | 0.030/508         |       | 865        | 2108          | 0.056609                 | 0.026781879                   |          |                                              |
| 868        | 1061                | 0.02957   | 0.029718894       |       | 868        | 2155          | 0.055288                 | 0.0265591                     |          |                                              |
| 869        | 1026                | 0.030792  | 0.030011209       |       | 869        | 1918          | 0.053351                 | 0.027815954                   |          |                                              |
| 870        | 1021                | 0.029414  | 0.028808913       |       | 870        | 1782          | 0.054026                 | 0.030317733                   |          |                                              |
| 871        | 1065                | 0.031026  | 0.029132113       |       | 871        | 1729          | 0.050848                 | 0.029408618                   |          |                                              |
| 872        | 1058                | 0.03159   | 0.029858129       |       | 872        | 1630          | 0.049236                 | 0.030206196                   |          |                                              |
| 873        | 1058                | 0.030509  | 0.028836484       |       | 873        | 1951          | 0.052487                 | 0.026902819                   |          |                                              |
| 874        | 1009                | 0.030266  | 0.029996036       |       | 874        | 1771          | 0.051618                 | 0.029145963                   |          |                                              |
| 875        | 1024                | 0.030975  | 0.030249219       |       | 875        | 1842          | 0.05543                  | 0.030092237                   |          |                                              |
| 876        | 1024                | 0.029409  | 0.028719922       |       | 876        | 1652          | 0.051548                 | 0.031203632                   |          |                                              |
| 877        | 1011                | 0.031303  | 0.031365832       |       | 877        | 1882          | 0.055286                 | 0.034446168                   |          |                                              |
| 879        | 972                 | 0.030663  | 0.031545988       |       | 879        | 1863          | 0.05315                  | 0.028529254                   |          |                                              |
| 880        | 997                 | 0.030638  | 0.030730391       |       | 880        | 1751          | 0.054411                 | 0.031074243                   |          |                                              |
| 881        | 1006                | 0.028827  | 0.028654871       |       | 881        | 1753          | 0.052107                 | 0.029724701                   |          |                                              |
| 882        | 979                 | 0.031729  | 0.032409602       |       | 882        | 1953          | 0.058516                 | 0.029961956                   |          |                                              |
| 883        | 965                 | 0.029066  | 0.03012           |       | 883        | 1985          | 0.05411                  | 0.027259647                   |          |                                              |
| 884        | 961                 | 0.027896  | 0.029027784       |       | 884        | 1822          | 0.052887                 | 0.029026619                   |          |                                              |
| 885        | 926                 | 0.029157  | 0.031487149       |       | 885        | 1690          | 0.053005                 | 0.031363905                   |          |                                              |
| 000<br>997 | 925                 | 0.029199  | 0.034101012       |       | 887        | 189/          | 0.051285                 | 0.020200143                   |          |                                              |
| 888        | 914                 | 0.030523  | 0.033395186       |       | 888        | 2078          | 0.053804                 | 0.025892108                   |          |                                              |
| 889        | 913                 | 0.026861  | 0.029420591       |       | 889        | 2006          | 0.053007                 | 0.026424177                   |          |                                              |
| 890        | 937                 | 0.029777  | 0.031779402       |       | 890        | 1932          | 0.053107                 | 0.027487836                   |          |                                              |
| 891        | 936                 | 0.031177  | 0.03330844        |       | 891        | 1914          | 0.058229                 | 0.030422414                   |          |                                              |
| 892        | 936                 | 0.028388  | 0.030328526       |       | 892        | 1866          | 0.056495                 | 0.030275938                   |          |                                              |
| 893        | 920                 | 0.031383  | 0.034112283       |       | 893        | 2019          | 0.059902                 | 0.029669143                   |          |                                              |
| 894        | 1026                | 0.029364  | 0.022619981       |       | 894        | 1939          | 0.05601                  | 0.028885921                   |          |                                              |
| 895<br>895 | 1020                | 0.029724  | 0.032627442       |       | 895        | 1901          | 0.054747                 | 0.028803233                   |          |                                              |
| 897        | 1027                | 0.030979  | 0.030164265       |       | 897        | 1813          | 0.054791                 | 0.030221401                   |          |                                              |
| 898        | 1019                | 0.029812  | 0.029256232       |       | 898        | 1784          | 0.056211                 | 0.031508128                   |          |                                              |
| 899        | 976                 | 0.029813  | 0.030545594       |       | 899        | 1861          | 0.056873                 | 0.030560451                   |          |                                              |
| 900        | 975                 | 0.028508  | 0.029238974       |       | 900        | 2152          | 0.059352                 | 0.027579926                   |          |                                              |
| 901        | 993                 | 0.030412  | 0.030626183       |       | 901        | 2196          | 0.05734                  | 0.026110929                   |          |                                              |
| 902        | 966                 | 0.029511  | 0.030549379       |       | 902        | 2267          | 0.055908                 | 0.024661623                   |          |                                              |
| 903        | 964                 | 0.021111  | 0.029651349       |       | 903        | 2312          | 0.056958                 | 0.024635813                   |          |                                              |
| 904        | 954                 | 0.031119  | 0.032619078       |       | 904        | 2196          | 0.056574                 | 0.025/62113                   |          |                                              |
| 905        | 954                 | 0.029764  | 0.03119863/       |       | 905        | 219/          | 0.05806                  | 0.02660305                    |          |                                              |
| 907        | 917                 | 0.029309  | 0.031961614       |       | 907        | 2139          | 0.064951                 | 0.0296579                     |          |                                              |
| 908        | 917                 | 0.028153  | 0.030700654       |       | 908        | 2104          | 0.057722                 | 0.027434221                   |          |                                              |
| 909        | 909                 | 0.030107  | 0.033120792       |       | 909        | 2347          | 0.061254                 | 0.026098935                   |          |                                              |
| 910        | 867                 | 0.031127  | 0.035901384       |       | 910        | 2182          | 0.057304                 | 0.026262145                   |          |                                              |
| 911        | 873                 | 0.027311  | 0.031284536       |       | 911        | 2161          | 0.057604                 | 0.026655946                   |          |                                              |
| 912        | 999                 | 0.031228  | 0.031258859       |       | 912        | 2168          | 0.059948                 | 0.027651199                   |          |                                              |
| 913        | 918                 | 0.030993  | 0.033761438       |       | 913        | 2154          | 0.057742                 | 0.026806778                   |          |                                              |
| 914        | 920                 | 0.030033  | 0.032044565       |       | 914        | 19/3          | 0.05648                  | 0.028626609                   |          |                                              |
| 915        | 880<br>872          | 0.030048  | 0.034145455       |       | 915        | 1996          | 0.056894                 | 0.02861823                    |          |                                              |
| 917        | 847                 | 0.028448  | 0.033587249       |       | 917        | 2010          | 0.059365                 | 0.029534876                   |          |                                              |
| 918        | 924                 | 0.030506  | 0.033014935       |       | 918        | 2150          | 0.059913                 | 0.027866512                   |          |                                              |
| 919        | 924                 | 0.02919   | 0.031591234       |       | 919        | 2159          | 0.058357                 | 0.027029782                   |          |                                              |
| 920        | 901                 | 0.032869  | 0.036480688       |       | 920        | 2085          | 0.055356                 | 0.026549832                   |          |                                              |
|            |                     |           |                   |       |            |               |                          |                               |          |                                              |

| r        |          |              |                   | Avg time p | er obj o | over all fi | rames:       | 0.029803515       | Standard | Deviation:  | 0.00606977 |                            |
|----------|----------|--------------|-------------------|------------|----------|-------------|--------------|-------------------|----------|-------------|------------|----------------------------|
|          | Helicont | er Video (64 | 0 x 360)          |            | r 0.0, 0 | Dashhoa     | rd Video (84 | 8 x 480)          | Standard |             | Drone Vid  | ao (1920 x 1080)           |
| Frame No | Num Ohi  | Time in S    | Time ner ohi (ms) | Fran       | e No N   | lum Ohi     | Time in S    | Time ner ohi (ms) |          | Frame No N  | um Ohi     | Time in S Time ner obi (m  |
| 921      | 899      | 0.028554     | 0.03176218        |            | 921      | 1962        | 0.061413     | 0.031301274       |          | Traine no n |            | Time in a Time per obj (in |
| 977      | 977      | 0.020334     | 0.032079612       |            | 922      | 1930        | 0.053026     | 0.027946166       | 1        |             |            |                            |
| 022      | 900      | 0.020240     | 0.022721556       |            | 072      | 1964        | 0.056404     | 0.029719002       |          |             |            |                            |
| 924      | 015      | 0.020272     | 0.021000020       |            | 024      | 2120        | 0.057941     | 0.027292255       |          |             |            |                            |
| 025      | 025      | 0.029272     | 0.031530323       |            | 025      | 2220        | 0.057841     | 0.02/283255       |          |             |            |                            |
| 923      | 955      | 0.029322     | 0.031374011       |            | 925      | 2306        | 0.037120     | 0.024731230       |          |             |            |                            |
| 926      | 908      | 0.031261     | 0.034428194       |            | 926      | 2215        | 0.05642      | 0.025471919       |          |             |            |                            |
| 927      | 903      | 0.027732     | 0.030/110/4       |            | 927      | 2101        | 0.060855     | 0.028964683       |          |             |            |                            |
| 928      | 897      | 0.030545     | 0.034052397       |            | 928      | 2211        | 0.058/15     | 0.026555767       |          |             |            |                            |
| 929      | 891      | 0.031326     | 0.035158249       |            | 929      | 2053        | 0.057906     | 0.028205407       |          |             |            |                            |
| 930      | 891      | 0.02905      | 0.032603816       |            | 930      | 2058        | 0.059763     | 0.029039116       |          |             |            |                            |
| 931      | 1095     | 0.033027     | 0.03016137        |            | 931      | 1995        | 0.055671     | 0.027905363       |          |             |            |                            |
| 932      | 965      | 0.031262     | 0.032396269       |            | 932      | 2136        | 0.057813     | 0.027066152       |          |             |            |                            |
| 933      | 939      | 0.030981     | 0.032993291       |            | 933      | 2039        | 0.058419     | 0.02865076        |          |             |            |                            |
| 934      | 954      | 0.030868     | 0.032356499       |            | 934      | 2065        | 0.055448     | 0.026851138       |          |             |            |                            |
| 935      | 970      | 0.029644     | 0.030561031       |            | 935      | 2051        | 0.057439     | 0.028005412       |          |             |            |                            |
| 936      | 1051     | 0.031773     | 0.030231018       |            | 936      | 2027        | 0.059699     | 0.02945185        | 1        |             |            |                            |
| 937      | 936      | 0.030837     | 0.032945406       |            | 937      | 2036        | 0.056717     | 0.027857269       | 1        |             |            |                            |
| 938      | 935      | 0.029491     | 0.031540642       |            |          |             | MIN          | 0.024304688       | 1        |             |            |                            |
| 939      | 1095     | 0.032278     | 0.029477352       |            |          |             | MAX          | 0.042673413       | 1        |             |            |                            |
| 940      | 1105     | 0.030102     | 0.027241719       |            |          |             | AVG          | 0.02987229        | 1        |             |            |                            |
| 9.41     | 917      | 0.030165     | 0.032895202       |            |          |             | STD DEV      | 0.002423722       | 1        |             |            |                            |
| 941      | 91/      | 0.031691     | 0.034249514       |            |          |             |              | 0.032423722       | 1        |             |            |                            |
| 942      | 925      | 0.031061     | 0.034249514       |            |          |             |              |                   |          |             |            |                            |
| 943      | 925      | 0.028548     | 0.030863027       |            |          |             |              |                   |          |             |            |                            |
| 944      | 935      | 0.030219     | 0.032319786       |            |          |             |              |                   |          |             |            |                            |
| 945      | 996      | 0.031/94     | 0.031921787       |            |          |             |              |                   |          |             |            |                            |
| 946      | 990      | 0.029528     | 0.02982596        |            |          |             |              |                   |          |             |            |                            |
| 947      | 957      | 0.033049     | 0.034533438       |            |          |             |              |                   |          |             |            |                            |
| 948      | 919      | 0.030634     | 0.033334276       |            |          |             |              |                   |          |             |            |                            |
| 949      | 959      | 0.030716     | 0.032029197       |            |          |             |              |                   |          |             |            |                            |
| 950      | 893      | 0.030122     | 0.033731467       |            |          |             |              |                   |          |             |            |                            |
| 951      | 953      | 0.031059     | 0.032590661       |            |          |             |              |                   |          |             |            |                            |
| 952      | 942      | 0.030011     | 0.031859023       |            |          |             |              |                   |          |             |            |                            |
| 953      | 968      | 0.032319     | 0.033387603       |            |          |             |              |                   |          |             |            |                            |
| 954      | 964      | 0.029993     | 0.031113174       |            |          |             |              |                   |          |             |            |                            |
| 955      | 943      | 0.033227     | 0.035235419       |            |          |             |              |                   |          |             |            |                            |
| 956      | 1102     | 0.033499     | 0.030398185       |            |          |             |              |                   |          |             |            |                            |
| 957      | 1094     | 0.029819     | 0.027256673       |            |          |             |              |                   |          |             |            |                            |
| 958      | 1069     | 0.031684     | 0.029638821       |            |          |             |              |                   |          |             |            |                            |
| 050      | 1005     | 0.031034     | 0.029038821       |            |          |             |              |                   |          |             |            |                            |
| 060      | 1124     | 0.030147     | 0.028201210       |            |          |             |              |                   |          |             |            |                            |
| 960      | 1124     | 0.032379     | 0.020000702       |            |          |             |              |                   |          |             |            |                            |
| 961      | 1116     | 0.03398      | 0.03044767        |            |          |             |              |                   |          |             |            |                            |
| 962      | 1116     | 0.029708     | 0.026620251       |            |          |             |              |                   |          |             |            |                            |
| 963      | 1106     | 0.031891     | 0.02883481        |            |          |             |              |                   |          |             |            |                            |
| 964      | 1128     | 0.032884     | 0.029152216       |            |          |             |              |                   |          |             |            |                            |
| 965      | 1128     | 0.031127     | 0.027595124       |            |          |             |              |                   |          |             |            |                            |
| 966      | 1106     | 0.032808     | 0.029663562       |            |          |             |              |                   |          |             |            |                            |
| 967      | 1104     | 0.031598     | 0.028621196       |            |          |             |              |                   |          |             |            |                            |
| 968      | 1081     | 0.031443     | 0.029087234       |            |          |             |              |                   |          |             |            |                            |
| 969      | 1065     | 0.031278     | 0.029368826       |            |          |             |              |                   |          |             |            |                            |
| 970      | 1072     | 0.034093     | 0.031803545       |            |          |             |              |                   |          |             |            |                            |
| 971      | 1101     | 0.032721     | 0.029719619       |            |          |             |              |                   |          |             |            |                            |
| 972      | 1071     | 0.030977     | 0.028923249       |            |          |             |              |                   |          |             |            |                            |
| 973      | 1071     | 0.02801      | 0.026153315       |            |          |             |              |                   |          |             |            |                            |
| 974      | 1106     | 0.033048     | 0.029880741       |            |          |             |              |                   |          |             |            |                            |
| 975      | 1106     | 0.029961     | 0.027089873       |            |          |             |              |                   |          |             |            |                            |
| 976      | 1067     | 0.031469     | 0.029492596       |            |          |             |              |                   |          |             |            |                            |
| 970      | 1007     | 0.031241     | 0.028582525       |            |          |             |              |                   |          |             |            |                            |
| 070      | 1095     | 0.030615     | 0.027046027       |            |          |             |              |                   |          |             |            |                            |
| 3/8      | 1035     | 0.029015     | 0.021040027       |            |          |             |              |                   |          |             |            |                            |
| 9/9      | 1035     | 0.032102     | 0.0310/3913       |            |          |             |              |                   |          |             |            |                            |
| 980      | 980      | 0.031072     | 0.031/05/14       |            |          |             |              |                   |          |             |            |                            |
| 981      | 981      | 0.028237     | 0.028/83894       |            |          |             |              |                   |          |             |            |                            |
| 982      | 984      | 0.031187     | U.U31693598       |            |          |             |              |                   |          |             |            |                            |
| 983      | 1041     | 0.033005     | 0.031705091       |            |          |             |              |                   |          |             |            |                            |
| 984      | 1057     | 0.028146     | 0.026627909       |            |          |             |              |                   |          |             |            |                            |
| 985      | 1013     | 0.030509     | 0.030117868       |            |          |             |              |                   |          |             |            |                            |
| 986      | 1027     | 0.031372     | 0.03054742        |            |          |             |              |                   |          |             |            |                            |
| 987      | 992      | 0.0307       | 0.030947379       |            |          |             |              |                   |          |             |            |                            |
| 988      | 999      | 0.030773     | 0.030803303       |            |          |             |              |                   |          |             |            |                            |
| 989      | 999      | 0.030183     | 0.030213313       |            |          |             |              |                   |          |             |            |                            |
| 990      | 905      | 0.0301       | 0.033259337       |            |          |             |              |                   |          |             |            |                            |
| 991      | 998      | 0.030871     | 0.030932766       |            |          |             |              |                   |          |             |            |                            |
| 992      | 1000     | 0.029651     | 0.0296513         |            |          |             |              |                   |          |             |            |                            |
| 993      | 986      | 0.030586     | 0,03102069        |            |          |             |              |                   |          |             |            |                            |
| 904      | 380      | 0.029502     | 0.029921704       |            |          |             |              |                   |          |             |            |                            |
| 005      | 056      | 0.023303     | 0.022701255       |            |          |             |              |                   |          |             |            |                            |
| 004      | 1000     | 0.031202     | 0.032701233       |            |          |             |              |                   |          |             |            |                            |
| 996      | 1090     | 0.035109     | 0.0305/4//1       |            |          |             |              |                   |          |             |            |                            |
| 997      | 1091     | 0.030464     | 0.02/9233/3       |            |          |             |              |                   |          |             |            |                            |
| 998      | 1167     | 0.031334     | 0.026849614       |            |          |             |              |                   |          |             |            |                            |
| 999      | 1087     | 0.029455     | 0.027097516       |            |          |             |              |                   |          |             |            |                            |
| 1000     | 1089     | 0.029945     | 0.027497245       |            |          |             |              |                   |          |             |            |                            |
| 1        |          | MIN          | 0.020739069       |            |          |             |              |                   |          |             |            |                            |
| 1        |          | MAX          | 0.049430935       |            |          |             |              |                   |          |             |            |                            |
| 1        |          | AVG          | 0.031405005       |            |          |             |              |                   |          |             |            |                            |
| 1        |          | STD DEV      | 0.005491394       |            |          |             |              |                   |          |             |            |                            |

## **Appendix C**

## WISE C++ Code

This section contains a summary of the C++ code used to implement WISE. The base classes for the algorithms are included, intermediary and utility code is not included (the length of code would be to great to print)

This file has been produced at the Intelligent Systems Research Laboratory at InfoLab21, Lancaster University under the supervision of Professor Plamen Angelov. Reproduction of the code is permitted for academic and research purposes only without the express permission of the author. Use for any other purpose is not permitted without prior authorisation or permission. All code taken from this document must have this header at the top of the new source file. Filename: EdgeFlow.cpp Author: Gruffydd Morris 13/07/2014 Date Created: This file contains code implementation relating to the new edge flow Description: technique. This Amendments Initials Date Description of change #include <math.h> #include <EdgeFlow.h> #include <EdgeFlow\_GUI.h> #include <Utils.h> //#include <CEDAS.h> #include <opencv2\opencv.hpp> // Function to calulate a colour matrix value for a given input. // This is used in gradient definition of an image (and possibly in // other cases) void MouseCallBack(int event, int x, int y, int flags, void\* userdata) { if (event == cv::EVENT\_LBUTTONDOWN) { static\_cast<EdgeSobel\*>(userdata)->xyFinder(x, y); } } bool uniqueClusters(cv::Point2f first, cv::Point2f second) ł return (first.x == second.x && first.y == second.y); } ColourBGR& colourMap(double max, double min, double input) { static ColourMap cM; double stepNum = ((input - min) / (std::ceil(max - min))) \* NUM\_COLOUR\_STEPS; unsigned int index = static\_cast<unsigned int>(std::floor(stepNum)); //if (input > -0.05 && input < 0.05)</pre> //{ //return ColourBGR(0, 0, 0); //} //else { return cM.getColour(index); } } EdgeSobel::EdgeSobel(cv::Mat& frame, EdgeFlow& eG) { showObj = cv::Mat::zeros(frame.rows, frame.cols, CV\_8UC3); // Coloured matrix for

```
D:\Downloads\EdgeFlow_Static\EdgeFlow_Static\Source\EdgeFlow.cpp
                                                                                                                2
    outputting object detection rectangles
    showObjX = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC3);
                                                                                // Coloured matrix for
                                                                                                                 outputting object detection rectangles
    showObjY = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC3);
                                                                                // Coloured matrix for
                                                                                                                 outputting object detection rectangles
    showObjClust = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC3);
                                                                                    // Coloured matrix for
                                                                                                                 1
    outputting object detection rectangles
    gray = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC1);
                                                                            // Coloured matrix for outputting
                                                                                                                  V
   object detection rectangles
    prevGray = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC1);
                                                                                // Coloured matrix for
                                                                                                                 V
   outputting object detection rectangles
    data = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);
                                                                                // Coloured matrix for
   outputting object detection rectangles
    data2 = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);
                                                                                // Coloured matrix for
                                                                                                                  Ľ
   outputting object detection rectangles
    dNormX = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);
                                                                                // Coloured matrix for
    outputting object detection rectangles
    dNormY = cv::Mat::zeros(frame.rows, frame.cols, CV 64FC1);
                                                                                // Coloured matrix for
    outputting object detection rectangles
    dNormC = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);
                                                                                // Coloured matrix for
    outputting object detection rectangles
    clusterFlag[0] = cv::Mat::zeros(frame.rows, frame.cols, CV_16UC1);
                                                                                     // Cluster membership
                                                                                                                 \checkmark
    tracking flag for first sobel image
    clusterFlag[1] = cv::Mat::zeros(frame.rows, frame.cols, CV_16UC1);
                                                                                     // Cluster membership
                                                                                                                 tracking flag for second sobel image
    roiClick = cv::Mat::zeros(frame.rows, frame.cols, CV_16UC1);
                                                                                    // Frame storing the region ∠
    value
    vidOutput = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC1);
                                                                                    // Video output matrix used 🖌
   when the output is normally greyscale or floating point
    blobs = cv::Mat::zeros(frame.rows, frame.cols, CV 8UC3);
    theClusters = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);
   theClustersOut = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC3);
    ofWork = CreateEvent(NULL, true, false, NULL);
    numPoints = 0;
   maxNumClust = 0;
    totalClusters = 0;
    // Initialise the max / min gradient variables used to assign the correct range to colour assignment
    locX = 0;
    locY = 0;
    clickPoint.dir = -1;
    clickPoint.mag = 0;
    clickPoint.region = 0;
    addRemovePt = false;
    segmentOn = false;
    clickedFlag = false;
   ofFlag = false;
```

eGUI = &eG;

```
D:\Downloads\EdgeFlow_Static\EdgeFlow_Static\Source\EdgeFlow.cpp
```

```
decay = 10;
#ifdef CEDASCLUSTER
    cedas = new CEDAS(0.03, 2, 10);
#endif
   cv::Size S = cv::Size((int) X_RES, (int) Y_RES);
   demoOut.open(cv::String("D:\\SampleVideos\\Out\\DemoOut.wmv"), CV_FOURCC('W','M','V','1'), /*cap.get
    (CV_CAP_PROP_FPS)*/25, S, true);
#ifdef DATASET_OUTPUT
    char filename[30];
    sprintf_s(filename, 30, "D:\\VideoDataset\\FramesDataset");
    dataset.open(filename, std::ios::trunc);
#endif
}
EdgeSobel::~EdgeSobel()
#ifdef DATASET OUTPUT
     dataset.close();
#endif
    this->vecOut.close();
    demoOut.release();
}
cv::Mat& EdgeSobel::sobelRun(cv::Mat& rde, cv::Mat& rdeY, cv::Mat& frame, cv::Mat& oldFrame, cv::VideoWriter&
                                                                                                                        Ľ
    vw)
{
    fnCEDAS++;
    static OFCluster ocl(this, ofWork);
    static int frameNumber = 0;
    double min;
    double max;
    double min2;
    double max2;
    frameNumber++;
    if (frameNumber == 1)
        pVW = \&vw;
    cv::Sobel(rde, data, CV_64F, 1, 0, 7, 1.0, 0.0, cv::BORDER_REPLICATE);
    cv::Sobel(rdeY, data2, CV_64F, 0, 1, 7, 1.0, 0.0, cv::BORDER_REPLICATE);
    cv::minMaxLoc(data, &min, &max);
    cv::minMaxLoc(data2, &min2, &max2);
    min = min < min2 ? min : min2;</pre>
    max = max > max2 ? max : max2;
    cv::normalize(data, dNormX, min, max, cv::NORM_L2);
    cv::normalize(data2, dNormY, min, max, cv::NORM_L2);
    dNormC = dNormX + dNormY;
    this->colourGradients(dNormC, showObj);
this->colourGradients(dNormX, showObjX);
    this->colourGradients(dNormY, showObjY);
    //vw << showObj;</pre>
#ifdef VISUALS
    cv::imshow("CombinedColour", showObj);
#endif
```

```
#ifdef FULLVISUALS
    cv::imshow("Combined", dNormC);
    cv::imshow("CombinedColourX", showObjX);
cv::imshow("CombinedColourY", showObjY);
#endif
#ifdef CEDASCLUSTER
    if (frameNumber \% 5 == 0)
    {
        oldFrame.copyTo(next);
        for (unsigned int y = 0; y < dNormC.rows; y++)</pre>
        {
             for (unsigned int x = 0; x < dNormC.cols; x++)</pre>
             {
                 if (dNormC.at<double>(y, x) >= eGUI->getCValue() || dNormC.at<double>(y, x) <= 0 - eGUI->
    getCValue())
                     ofPoints.push_back(cv::Point2f(x, y));
             }
        }
        std::cout << "Optical flow points " << ofPoints.size() << std::endl;</pre>
        if (ofPoints.size() > 0)
             this->edgeOpticalFlow(frame, next, ofPoints);
#ifdef FULLVISUALS
        cv::imshow("Optical flow", next);
#endif
#ifdef OFCLUSTERVISUALS
        cv::imshow("Optical flow", next);
#endif
    }
#endif CEDASCLUSTER
#ifdef FULLVISUALS
    drawImages(SOBEL);
#endif
#ifdef EDGECLUSTER
    this->edgeCluster(frame, oldFrame, vw, rde, rdeY);
#endif
    ofPoints.clear();
    return cv::Mat();
}
void EdgeSobel::edgeCluster(cv::Mat& frame, cv::Mat& oldFrame, cv::VideoWriter& vw, cv::Mat& rde, cv::Mat& rdeY)
{
    static int fNum = 0;
    fNum++;
    cNumber = 0;
    clusterN = 0;
    oldFrame.copyTo(next);
    clusterFlag[0] = cv::Mat::zeros(data.rows, data.cols, CV_16UC1);
                                                                                        // Cluster membership
                                                                                                                        K
    tracking flag for first sobel image
    clusterFlag[1] = cv::Mat::zeros(data.rows, data.cols, CV_16UC1);
                                                                                         // Cluster membership
                                                                                                                        K
```

```
tracking flag for second sobel image
    for (int y = 0; y < data.rows; y++)</pre>
    {
        for (int x = 0; x < data.cols; x++)</pre>
        {
#ifdef TWOCLUSTERIMAGES
            density = data.ptr<double>(y)[x];
            density2 = data2.ptr<double>(y)[x];
#else
            density = dNormC.ptr<double>(y)[x];
#endif
            if (density <= this->eGUI->getCValue()/*MAX_CLUSTERS*/ && density >= (0 - this->eGUI->getCValue())/* ✔
    MIN_CLUSTERS*/)
                          // Old density filter
            {
                // do nothing
            }
            else
            {
                clusterN = clusterFlag[0].ptr<unsigned short>(y)[x];
                // Check if the cluster flag is set, if so - just add to existing cluster and check local region
                if (clusterN != 0)
                {
                    // If within proximity of existing points, add the point to the regions list, and update
                    // the regions extremities. Extremities only used to find cluster centre.
                    c[clusterN - 1].addPoint(cv::Point2i(x, y));
                    c[clusterN - 1].expandSize(x, y, data);
                    // Update the mean density of the region
                    c[clusterN - 1].setMeanDensity(((c[clusterN - 1].getPoints().size() - 1) / (c[clusterN - 1]. ✔
    getPoints().size() * c[clusterN - 1].getMeanDensity()))
                                                         + ((1 / c[clusterN - 1].getPoints().size()) * density));
                    if (y < (data.rows - 1) \& x < (data.cols - 1))
                    {
                        checkProximityGradients(x, y);
                    }
                }
                else
                {
                    newCluster = new FeatureExtraction(cv::Point2i(x, y));
                    newCluster->setSize(x, y);
                    meanD = density;
                    newCluster->setMeanDensity(meanD);
                    c.push_back(*newCluster);
                    cNumber++:
                    clusterFlag[0].ptr<unsigned short>(y)[x] = clusterN = cNumber;
                    if (y < (data.rows - 1) && x < (data.cols - 1))
                    {
                       checkProximityGradients(x, y);
                    }
                }
                       // else flag check
            }
                        // If do nothing
#ifdef TWOCLUSTERIMAGES
            if (density2 <= this->eGUI->getCValue()/*MAX_CLUSTERS*/ && density2 >= (0 - this->eGUI->getCValue()) ✔
    /*MIN CLUSTERS*/)
                //if (density2 >= this->eGUI->getCValue()/*MAX_CLUSTERS*/ || density2 <= (0 - this->eGUI->
                                                                                                                   K
    getCValue())/*MIN_CLUSTERS*/)
            {
                // do nothing
```

```
}
            else
            {
                clusterN = clusterFlag[1].ptr<unsigned short>(y)[x];
                // Check if the cluster flag is set, if so - just add to existing cluster and check local region
                if (clusterN != 0)
                {
                     c[clusterN - 1].addPoint(cv::Point2i(x, y));
                    c[clusterN - 1].expandSize(x, y, data2);
                    // Update the mean density of the region
                    c[clusterN - 1].setMeanDensity(((c[clusterN - 1].getPoints().size() - 1) / (c[clusterN - 1]. ∉
    getPoints().size() * c[clusterN - 1].getMeanDensity()))
                                                         + ((1 / c[clusterN - 1].getPoints().size()) * density2))
    ;
                    if (y < (data.rows - 1) && x < (data.cols - 1))
                    ł
                        checkProximityGradients(x,y);
                    }
                }
                else
                {
                    // Add the x y coords to the points list
                    newCluster = new FeatureExtraction(cv::Point2i(x, y));
                    newCluster->setSize(x, y);
                    meanD = density2;
                    newCluster->setMeanDensity(meanD);
                    c.push_back(*newCluster);
                    cNumber++:
                    clusterFlag[1].ptr<unsigned short>(y)[x] = clusterN = cNumber;
                    // Check in the other sobel framee as well
                    if (y < (data.rows - 1) \& x < (data.cols - 1))
                    {
                       checkProximityGradients(x, y);
                    }
                }
                       // else flag check
            }
                        // If do nothing
#endif
        }
                        // For x
    }
                        // For y
    frame.copyTo(showObjClust);
#ifndef DRAWBLOBS
    frame.copyTo(blobs);
    theClusters = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);
    theClustersOut = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC3);
#endif
    cv::Point2f centrePoint;
    segmentOn = false;
    if (this->eGUI->drawsegmentation())
    {
        segmentOn = true;
        mask = cv::Mat::zeros(frame.size(), CV_8UC1);
        frameROI = cv::Mat::zeros(frame.size(), CV_8UC3);
    }
    //for (unsigned int reg = 0; reg < regions.size(); reg++)</pre>
```

```
for (unsigned int reg = 0; reg < c.size(); reg++)</pre>
```

```
{
        //if (regions[reg][0].x != 9999)
        if (c[reg].getPoints()[0].x != 9999)
        {
            //cv::Rect roi = cv::boundingRect(regions[reg]);
            cv::Rect roi = cv::boundingRect(c[reg].getPoints());
#ifndef DRAWBLOBS
            for (int i = 0; i < c[reg].getPoints().size(); i++)</pre>
            {
                theClusters.at<double>(c[reg].getPoints()[i].y, c[reg].getPoints()[i].x) = (double)(reg + 1);
                theClustersOut.at<uchar>(c[reg].getPoints()[i].y, c[reg].getPoints()[i].x) = (reg + 1);
            }
#endif
            if((roi.size().height > this->eGUI->getObjSize() && roi.size().width > this->eGUI->getObjSize()))
            ł
                //centrePoint.x = static_cast<float>(cLimits[reg].minX + ((cLimits[reg].maxX - cLimits[reg].
                                                                                                                    \checkmark
    minX) / 2));
                //centrePoint.y = static_cast<float>(cLimits[reg].minY + ((cLimits[reg].maxY - cLimits[reg].
    minY) / 2));
                centrePoint.x = c[reg].getPoints()[static_cast<int>(c[reg].getPoints().size() / 2)].x; //
                                                                                                                    V
    static_cast<float>(c[reg].getSize().minX + ((c[reg].getSize().maxX - c[reg].getSize().minX) / 2));
                centrePoint.y = c[reg].getPoints()[static_cast<int>(c[reg].getPoints().size() / 2)].y;//
    static_cast<float>(c[reg].getSize().minY + ((c[reg].getSize().maxY - c[reg].getSize().minY) / 2));
                ofPoints.push_back(centrePoint);
                c[reg].run(frame, dNormC, cv::Mat());
                cv::rectangle(showObjClust, roi, cv::Scalar(0,0,255), 2, 8, 0);
                cv::Mat roiTemp(this->roiClick, roi);
                roiTemp = cv::Scalar(reg + 1);
                                                     // Reg + 1 because the roiClick matrix is initialised to
    zero. As regions is a
                                                     // zero based array, clicking the first region would yield
    the entire image therefore
                                                     // an offset of 1 is required.
                //if (this->eGUI->drawsegmentation() && segmentOn == true)
                    //cv::drawContours(mask, regions, reg, cv::Scalar(255), CV_FILLED);
            }
        }
    }
#ifndef DRAWBLOBS
    this->colourGradients(theClusters, theClustersOut);
    theClustersOut.copyTo(blobs, theClustersOut);
    cv::imshow("Blobs", blobs);
     //vw << blobs;</pre>
    cv::imshow("TheClusters", theClustersOut);
#endif
    this->edgeOpticalFlow(next, frame, ofPoints);
#ifdef DATASET_OUTPUT
     /*for (int i = 0; i < c.size(); i++)</pre>
     {
         c[i].writeFrameDataset(fNum, dataset);
     }*/
    dataset << fNum << "," << c.size() << std::endl;</pre>
#endif
    if (this->eGUI->drawsegmentation() && segmentOn == true)
```

```
oldFrame.copyTo(frameROI, mask);
    if (this->eGUI->drawsegmentation() && segmentOn == true)
        cv::imshow("Contoured", frameROI);
#ifdef OFCLUSTERVISUALS
    //vw << showObjClust;</pre>
    cv::imshow("Clusters", showObjClust);
    //vw << showObjClust;</pre>
#else
    cv::imshow("Clusters", showObjClust);
#endif
    delete newCluster;
    theClusters.release();
    theClustersOut.release();
    c.clear();
    vOF.clear();
    ofPoints.clear();
}
                        // Function end
void EdgeSobel::edgeOpticalFlow(cv::Mat& prev, cv::Mat& next, std::vector<cv::Point2f>& points)
{
    std::vector<cv::Point2f> outPoints;
    cv::Mat image;
    double mag = 0, dir = 0, xdist = 0, ydist = 0;
    cvtColor(next, gray, cv::COLOR_BGR2GRAY);
    cvtColor(prev, prevGray, cv::COLOR_BGR2GRAY);
    addRemovePt = false;
    if( !points.empty() )
    {
        std::vector<uchar> status;
        std::vector<float> err;
        if(prevGray.empty())
            gray.copyTo(prevGray);
        calcOpticalFlowPyrLK(prevGray, gray, points, outPoints, status, err);
        if (points.size() != outPoints.size())
            std::cout << "Points : " << points.size() << " outPoints : " << outPoints.size() << std::endl;
        size_t i, k;
        for( i = k = 0; i < outPoints.size(); i++ )</pre>
        {
            if( addRemovePt )
            {
                if( cv::norm(point - outPoints[i]) <= 5 )</pre>
                {
                     addRemovePt = false;
                     continue;
                }
            }
            if( !status[i] )
                continue;
            outPoints[k++] = outPoints[i];
            // Optical flow vector caluclation //
            mag = cv::sqrt(cv::pow(points[i].x - outPoints[i].x, 2) + cv::pow(points[i].y - outPoints[i].y, 2)); 
          // Calculate the magnitude of the optical flow
            xdist = outPoints[i].x - points[i].x;
```

```
ydist = outPoints[i].y - points[i].y;
            dir = std::atan2(ydist, xdist);
            dir += 1.7;
            if (dir > PI)
                dir -= 2 * PI;
            this->c[i].twoframeOF(mag, dir, (unsigned int)outPoints[i].x, (unsigned int)outPoints[i].y);
           // Draw all optical flow regions
#ifndef CEDASCLUSTER
            line(showObjClust, points[i], outPoints[i], cv::Scalar(0,255,0), 1, 8);
#else
            line(next, points[i], outPoints[i], cv::Scalar(0,255,0), 1, 8);
#endif
#ifdef CEDASCLUSTER
          /* if (mag > 20.0)
            }
            else if (mag > 1)*/
            {
                dir = (dir - (-PI)) / (PI - (-PI));
                mag = (mag / 20.0);
                vOF.push_back(cv::Point2f((float)dir, (float)mag));
           }
/* else
            {
            }*/
#endif
        }
        outPoints.resize(k);
    }
#ifdef CEDASCLUSTER
    cedas->newSamples(vOF, fnCEDAS);
    cv::Mat clusters = cv::Mat::zeros(640, 640, CV_8UC3);
    double numClusters = cedas->getClusters().size();//outArray.Get("Centre", 1, 1).GetDimensions()(1,1);
    double xLoc;
    double yLoc;
    double radius;
    for (unsigned int i = 0; i < static_cast<unsigned int>(numClusters); i++)
    {
        xLoc = cedas->getClusters()[i].centre.x;//outArray.Get("Centre", 1, 1)(i, 1);
        xLoc *= 640;
        yLoc = cedas->getClusters()[i].centre.y;//outArray.Get("Centre", 1,1)(i, 2);
        yLoc *= 640;
        xLoc = std::floor(xLoc);
        yLoc = std::floor(yLoc);
        radius = cedas->getClusters()[i].radius;//outArray.Get("Radius", 1, 1)(i, 1);
        radius *= 100;
        cv::circle(clusters, cv::Point(xLoc, yLoc), radius, cv::Scalar(0,255,0));
    }
    imshow("Cluster_CEDAS", clusters);
//#ifdef VIDEO OUTPUT
// *pVW << next;</pre>
//#endif
    cv::waitKey(1);
```

```
#endif
    vOF.clear();
    magV.clear();
    dirV.clear();
    outPoints.clear();
#ifdef CEDASCLUSTER
    cedas->cleanUp();
#endif
}
void EdgeSobel::emptyFrames()
{
}
// This function encapsulates the drawing of images for the
// edge flow technique. It simplifies the process of turning on or off
// the images to show.
void EdgeSobel::drawImages(unsigned int imgs)
{
    switch (imgs)
    {
        case ALL:
             cv::imshow("Obj X Sobel", data);
cv::imshow("Obj Y Sobel", data2);
             break;
        case SOBEL:
             cv::imshow("Obj X Sobel", data);
cv::imshow("Obj Y Sobel", data2);
#ifdef COMBINED_SOBEL // Only run command if we've combined the two Sobel images
             cv::imshow("Obj Grad Sobel", grad);
#endif
             break;
        case COLOURS:
             break;
        case COMBINED:
             break;
        case NO OUTPUTS:
             break;
         default:
             cv::imshow("Obj X Sobel", data);
             cv::imshow("Obj Y Sobel", data2);
             break;
    }
    // Mandatory wait to enable drawing to the screen
    cv::waitKey(1);
}
void EdgeSobel::colourGradients(cv::Mat& inData, cv::Mat& outData)
{
    // Find the max and min values from the input matrix
    cv::minMaxLoc(inData, &minG, &maxG);
    //// Loop through the x and y of each sobel output to assign colour gradient
    for (int y = 0; y < inData.rows; y++)</pre>
    {
        for (int x = 0; x < inData.cols; x++)</pre>
```

```
{
            // Assign colours to gradients from the Sobel X filter based on it's range of values. This also
                                                                                                                     generates a unique colour map.
            /*if (inData.at<double>(y, x) == 0.0)
            {
                outData.data[(y * inData.cols * 3) + x * 3] = 0;
outData.data[(y * inData.cols * 3) + (x * 3) + 1] = 0;
                outData.data[(y * inData.cols * 3) + (x * 3) + 2]= 0;
            }*/
            //else
            {
                myColours = colourMap(maxG, minG, inData.at<double>(y, x));
            outData.data[(y * inData.cols * 3) + x * 3] = static_cast<uchar>(myColours.b);
            outData.data[(y * inData.cols * 3) + (x * 3) + 1] = static_cast<uchar>(myColours.g);
            outData.data[(y * inData.cols * 3) + (x * 3) + 2]= static_cast<uchar>(myColours.r);
            }
        }
    }
}
void EdgeSobel::checkProximityGradients(unsigned int x, unsigned int y)
{
     // Check proximity of other points, set a flag if within range
    if (data.ptr<double>(y)[x + 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data.ptr
    <double>(y)[x + 1] > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
    {
        if (clusterFlag[0].ptr<unsigned short>(y)[x + 1] == 0)
        {
            clusterFlag[0].ptr<unsigned short>(y)[x + 1] = clusterN;
        }
        else if (clusterFlag[0].ptr<unsigned short>(y)[x + 1] > clusterN)
        {
            clustMerge.x = clusterN;
            clustMerge.y = clusterFlag[0].ptr<unsigned short>(y)[x + 1];
            clusterFlag[0].ptr<unsigned short>(y)[x + 1] = clusterN;
        }
        else if (clusterFlag[0].ptr<unsigned short>(y)[x + 1] < clusterN)</pre>
        {
            clustMerge.x = clusterFlag[0].ptr<unsigned short>(y)[x + 1];
            clustMerge.y = clusterN;
        }
        else
        {
            // Do nothing - already assigned to this cluster
        }
    }
    if (data.ptr<double>(y + 1)[x + 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data.ptr 🖌
    <double>(y + 1)[x + 1] > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
    {
        if (clusterFlag[0].ptr<unsigned short>(y + 1)[x + 1] == 0)
        {
            clusterFlag[0].ptr<unsigned short>(y + 1)[x + 1] = clusterN;
        }
        else if (clusterFlag[0].ptr<unsigned short>(y + 1)[x + 1] > clusterN)
        {
            clustMerge.x = clusterN;
            clustMerge.y = clusterFlag[0].ptr<unsigned short>(y + 1)[x + 1];
            clusterFlag[0].ptr<unsigned short>(y + 1)[x + 1] = clusterN;
        }
        else if (clusterFlag[0].ptr<unsigned short>(y + 1)[x + 1] < clusterN)
        ł
            clustMerge.x = clusterFlag[0].ptr<unsigned short>(y + 1)[x + 1];
            clustMerge.y = clusterN;
        }
        else
        {
            // Do nothing - already assigned to this cluster
```

```
}
}
if (data.ptr<double>(y + 1)[x] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data.ptr
<double>(y + 1)[x] > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
{
    if (clusterFlag[0].ptr<unsigned short>(y + 1)[x] == 0)
    {
        clusterFlag[0].ptr<unsigned short>(y + 1)[x] = clusterN;
    }
    else if (clusterFlag[0].ptr<unsigned short>(y + 1)[x] > clusterN)
    ł
        clustMerge.x = clusterN;
        clustMerge.y = clusterFlag[0].ptr<unsigned short>(y + 1)[x];
        clusterFlag[0].ptr<unsigned short>(y + 1)[x] = clusterN;
    }
    else if (clusterFlag[0].ptr<unsigned short>(y + 1)[x] < clusterN)</pre>
    {
        clustMerge.x = clusterFlag[0].ptr<unsigned short>(y + 1)[x];
        clustMerge.y = clusterN;
    }
    else
    {
        // Do nothing - already assigned to this cluster
}
if (x > 0)
ł
    if (data.ptr<double>(y + 1)[x - 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data. ∉
ptr<double>(y + 1)[x - 1] > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
    {
        if (clusterFlag[0].ptr<unsigned short>(y + 1)[x - 1] == 0)
        {
            clusterFlag[0].ptr<unsigned short>(y + 1)[x - 1] = clusterN;
        }
        else if (clusterFlag[0].ptr<unsigned short>(y + 1)[x - 1] > clusterN)
        {
            clustMerge.x = clusterN;
            clustMerge.y = clusterFlag[0].ptr<unsigned short>(y + 1)[x - 1];
            clusterFlag[0].ptr<unsigned short>(y + 1)[x - 1] = clusterN;
        }
        else if (clusterFlag[0].ptr<unsigned short>(y + 1)[x - 1] < clusterN)
        {
            clustMerge.x = clusterFlag[0].ptr<unsigned short>(y + 1)[x - 1];
            clustMerge.y = clusterN;
        }
        else
        {
            // Do nothing - already assigned to this cluster
        }
    }
    if (data.ptr<double>(y)[x - 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data.ptr ⊮
<double>(y)[x - 1] > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
    {
        if (clusterFlag[0].ptr<unsigned short>(y)[x - 1] == 0)
        {
            clusterFlag[0].ptr<unsigned short>(y)[x - 1] = clusterN;
        }
        else if (clusterFlag[0].ptr<unsigned short>(y)[x - 1] > clusterN)
        ł
            clustMerge.x = clusterN;
            clustMerge.y = clusterFlag[0].ptr<unsigned short>(y)[x - 1];
            clusterFlag[0].ptr<unsigned short>(y)[x - 1] = clusterN;
        }
        else if (clusterFlag[0].ptr<unsigned short>(y)[x - 1] < clusterN)</pre>
        {
            clustMerge.x = clusterFlag[0].ptr<unsigned short>(y)[x - 1];
```

```
clustMerge.y = clusterN;
            }
            else
            {
                // Do nothing - already assigned to this cluster
            }
        }
    }
    if (y > 0)
    {
        if (data.ptr<double>(y - 1)[x + 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data. ✔
    ptr<double>(y - 1)[x + 1] > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
        {
            if (clusterFlag[0].ptr<unsigned short>(y - 1)[x + 1] == 0)
            {
                clusterFlag[0].ptr<unsigned short>(y - 1)[x + 1] = clusterN;
            }
            else if (clusterFlag[0].ptr<unsigned short>(y - 1)[x + 1] > clusterN)
            {
                clustMerge.x = clusterN;
                clustMerge.y = clusterFlag[0].ptr<unsigned short>(y - 1)[x + 1];
                clusterFlag[0].ptr<unsigned short>(y - 1)[x + 1] = clusterN;
            }
            else if (clusterFlag[0].ptr<unsigned short>(y - 1)[x + 1] < clusterN)</pre>
            {
                clustMerge.x = clusterFlag[0].ptr<unsigned short>(y - 1)[x + 1];
                clustMerge.y = clusterN;
            }
            else
            {
                // Do nothing - already assigned to this cluster
            }
        }
        if (data.ptr<double>(y - 1)[x] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data.ptr 🖌
    <double>(y - 1)[x] > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
        {
            if (clusterFlag[0].ptr<unsigned short>(y - 1)[x] == 0)
            {
                clusterFlag[0].ptr<unsigned short>(y - 1)[x] = clusterN;
            }
            else if (clusterFlag[0].ptr<unsigned short>(y - 1)[x] > clusterN)
            {
                clustMerge.x = clusterN;
                clustMerge.y = clusterFlag[0].ptr<unsigned short>(y - 1)[x];
                clusterFlag[0].ptr<unsigned short>(y - 1)[x] = clusterN;
            }
            else if (clusterFlag[0].ptr<unsigned short>(y - 1)[x] < clusterN)</pre>
            {
                clustMerge.x = clusterFlag[0].ptr<unsigned short>(y - 1)[x];
                clustMerge.y = clusterN;
            }
            else
            {
                // Do nothing - already assigned to this cluster
            }
        }
    }
#ifdef TWOCLUSTERIMAGES
    if (data2.ptr<double>(y)[x + 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data2.ptr
    <double>(y)[x + 1] > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
    {
        if (clusterFlag[1].ptr<unsigned short>(y)[x + 1] == 0)
        {
            clusterFlag[1].ptr<unsigned short>(y)[x + 1] = clusterN;
        }
```

```
else if (clusterFlag[1].ptr<unsigned short>(y)[x + 1] > clusterN)
    {
        clustMerge.x = clusterN;
        clustMerge.y = clusterFlag[1].ptr<unsigned short>(y)[x + 1];
        clusterFlag[1].ptr<unsigned short>(y)[x + 1] = clusterN;
    }
    else if (clusterFlag[1].ptr<unsigned short>(y)[x + 1] < clusterN)</pre>
    {
        clustMerge.x = clusterFlag[1].ptr<unsigned short>(y)[x + 1];
        clustMerge.y = clusterN;
    }
    else
    {
        // Do nothing - already assigned to this cluster
    }
}
if (data2.ptr<double>(y + 1)[x + 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data2.
ptr<double>(y + 1)[x + 1] > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
    if (clusterFlag[1].ptr<unsigned short>(y + 1)[x + 1] == 0)
    {
        clusterFlag[1].ptr<unsigned short>(y + 1)[x + 1] = clusterN;
    }
    else if (clusterFlag[1].ptr<unsigned short>(y + 1)[x + 1] > clusterN)
    {
        clustMerge.x = clusterN;
        clustMerge.y = clusterFlag[1].ptr<unsigned short>(y + 1)[x + 1];
        clusterFlag[1].ptr<unsigned short>(y + 1)[x + 1] = clusterN;
    }
    else if (clusterFlag[1].ptr<unsigned short>(y + 1)[x + 1] < clusterN)</pre>
    {
        clustMerge.x = clusterFlag[1].ptr<unsigned short>(y + 1)[x + 1];
        clustMerge.y = clusterN;
    }
    else
    {
        // Do nothing - already assigned to this cluster
    }
}
if (data2.ptr<double>(y + 1)[x] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() && data2.ptr
<double>(y + 1)[x] > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
{
    if (clusterFlag[1].ptr<unsigned short>(y + 1)[x] == 0)
    {
        clusterFlag[1].ptr<unsigned short>(y + 1)[x] = clusterN;
    }
    else if (clusterFlag[1].ptr<unsigned short>(y + 1)[x] > clusterN)
    {
        clustMerge.x = clusterN;
        clustMerge.y = clusterFlag[1].ptr<unsigned short>(y + 1)[x];
        clusterFlag[1].ptr<unsigned short>(y + 1)[x] = clusterN;
    }
    else if (clusterFlag[1].ptr<unsigned short>(y + 1)[x] < clusterN)</pre>
    {
        clustMerge.x = clusterFlag[1].ptr<unsigned short>(y + 1)[x];
        clustMerge.y = clusterN;
    }
    else
    {
        // Do nothing - already assigned to this cluster
    }
}
if (x > 0)
ł
    if (data2.ptr<double>(y + 1)[x - 1] < c[clusterN - 1].getMeanDensity() + this->eGUI->getGValue() &&
                                                                                                               1
data2.ptr<double>(y + 1)[x - 1] > c[clusterN - 1].getMeanDensity() + (0 - this->eGUI->getGValue()))
```

```
{
            if (clusterFlag[1].ptr<unsigned short>(y + 1)[x - 1] == 0)
            {
                clusterFlag[1].ptr<unsigned short>(y + 1)[x - 1] = clusterN;
            }
            else if (clusterFlag[1].ptr<unsigned short>(y + 1)[x - 1] > clusterN)
            {
                clustMerge.x = clusterN;
                clustMerge.y = clusterFlag[1].ptr<unsigned short>(y + 1)[x - 1];
                clusterFlag[1].ptr<unsigned short>(y + 1)[x - 1] = clusterN;
            }
            else if (clusterFlag[1].ptr<unsigned short>(y + 1)[x - 1] < clusterN)
            {
                clustMerge.x = clusterFlag[1].ptr<unsigned short>(y + 1)[x - 1];
                clustMerge.y = clusterN;
            }
            else
            {
                // Do nothing - already assigned to this cluster
            }
        }
    }
#endif
}
OFCluster::OFCluster(EdgeSobel* eS, HANDLE sObj) : eSob(eS), Threaded(sObj)
{
}
void OFCluster::setup(cv::Mat& oF, cv::Mat& n, cv::Mat& f, cv::Mat& d, std::vector<cv::Point2f>& o)
{
    oldFrame = oF;
    next = n;
    frame = f;
    dNormC = d;
    ofPoints = o;
}
void OFCluster::work()
{
    oldFrame.copyTo(next);
    for (unsigned int y = 0; y < dNormC.rows; y++)</pre>
    {
        for (unsigned int x = 0; x < dNormC.cols; x++)</pre>
        {
            if (dNormC.at<double>(y, x) >= eSob->eGUI->getCValue() || dNormC.at<double>(y, x) <= 0 - eSob->eGUI ✔
    ->getCValue())
                ofPoints.push_back(cv::Point2f(x, y));
        }
    }
    std::cout << "Optical flow points " << ofPoints.size() << std::endl;</pre>
    if (ofPoints.size() > 0)
        eSob->edgeOpticalFlow(frame, next, ofPoints);
}
```

This file has been produced at the Intelligent Systems Research Laboratory at InfoLab21, Lancaster University under the supervision of Professor Plamen Angelov. Reproduction of the code is permitted for academic and research purposes only without the express permission of the author. All code taken from this document must have this header at the top of the new source file.

\_1

K

|                                      | Filename:<br>Author:<br>Date Created:<br>Description:                                                                                                                                                                                                                                                                                                                                    | RDE_class.cpp<br>Gruffydd Morris<br>27/01/2014<br>This file contains the implementation of the<br>algorithm calculations occur in this file. T<br>thresholding incorporated. The output is a c | e WIDE class functions. The<br>This class does not have<br>density gradient in grayscale. |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
|                                      | Amendments                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |                                                                                           |  |
|                                      | *****                                                                                                                                                                                                                                                                                                                                                                                    | ***************************************                                                                                                                                                        | ****************                                                                          |  |
|                                      | * Date  <br>* I                                                                                                                                                                                                                                                                                                                                                                          | Description of change                                                                                                                                                                          | Initials *                                                                                |  |
|                                      | * 12-02-14                                                                                                                                                                                                                                                                                                                                                                               | Addition of WIDE implementation that                                                                                                                                                           | GM *                                                                                      |  |
|                                      | *                                                                                                                                                                                                                                                                                                                                                                                        | can be called from the thread class                                                                                                                                                            | *                                                                                         |  |
|                                      | *                                                                                                                                                                                                                                                                                                                                                                                        | Addition of overloaded init_RDE function                                                                                                                                                       | *                                                                                         |  |
|                                      | * 14-02-14                                                                                                                                                                                                                                                                                                                                                                               | Updated result to the MAT_SIZE type and                                                                                                                                                        | GM *                                                                                      |  |
|                                      | *                                                                                                                                                                                                                                                                                                                                                                                        | RDE PRECISION defined in DataSizes h This                                                                                                                                                      | *                                                                                         |  |
|                                      | *                                                                                                                                                                                                                                                                                                                                                                                        | allows for easy changing of the data types                                                                                                                                                     | *                                                                                         |  |
|                                      | *                                                                                                                                                                                                                                                                                                                                                                                        | stored in the Mat array, and precision of                                                                                                                                                      | *                                                                                         |  |
|                                      | *                                                                                                                                                                                                                                                                                                                                                                                        | the RDE output without having to                                                                                                                                                               | *                                                                                         |  |
|                                      | *                                                                                                                                                                                                                                                                                                                                                                                        | change the entire program                                                                                                                                                                      | *                                                                                         |  |
|                                      | *****                                                                                                                                                                                                                                                                                                                                                                                    | ***************************************                                                                                                                                                        | **********                                                                                |  |
| ***                                  | ****                                                                                                                                                                                                                                                                                                                                                                                     | *****                                                                                                                                                                                          | ******                                                                                    |  |
| <pre>#inn #inn #in RDE { RDE {</pre> | <pre>clude <stdio.h><br/>clude <iostream><br/>clude <math.h><br/>clude <process.h<br>clude "RDE_class<br/>clude <utils.h><br/>::RDE()<br/>this-&gt;currPtr =<br/>::RDE(cv::Mat&amp; f<br/>sObj) : Threade<br/>this-&gt;currPtr =<br/>this-&gt;initFlag<br/>this-&gt;rst = res<br/>this-&gt;rowSz = r<br/>this-&gt;frameNumb</utils.h></process.h<br></math.h></iostream></stdio.h></pre> | <pre>&gt; .h" 1; rameIn, cv::Mat&amp; oFrame, unsigned int dim, ur d(sObj) 1; = false; et; owS; er = 1;</pre>                                                                                  | nsigned int rowS, unsigned int reset, HANDLE                                              |  |
|                                      | <pre>if (dim == HORZ {     this-&gt;in =     this-&gt;out =     this-&gt;dimen     this-&gt;set_t     this-&gt;init_ } else if (dim == {     this-&gt;in =     this-&gt;out = </pre>                                                                                                                                                                                                     | )<br>frameIn;<br>oFrame;<br>sion = dim;<br>rails_output(oFrame.col(0).data);<br>RDE_reset(frameIn.rows, frameIn.channels(), f<br>VERT)<br>frameIn;<br>oFrame;                                  | frameIn.col(0).data, in.cols);                                                            |  |
|                                      | this->dimen                                                                                                                                                                                                                                                                                                                                                                              | sion = dim;                                                                                                                                                                                    |                                                                                           |  |

```
this->set_trails_output(oFrame.row(0).data);
        this->init_RDE_reset(frameIn.cols, frameIn.channels(), frameIn.row(0).data);
    }
    else
    {
        this->in = frameIn;
        this->out = oFrame;
        this->dimension = dim;
        this->set_trails_output(oFrame.data);
        this->init RDE reset(frameIn.rows * frameIn.cols, frameIn.channels(), frameIn.data);
    }
}
void RDE::work()
{
    if (dimension != TIME_DOMAIN)
    {
        if (dimension == HORZ)
        {
            for (unsigned int x = 1; x < this->in.cols; x++)
            {
                this->set_trails_output(this->out.col(x).data);
                this->update_RDE_reset(this->in.col(x).data, x, in.cols);
            }
        }
        else
        {
            for (unsigned int y = 1; y < this->in.rows; y++)
            {
                this->set_trails_output(this->out.row(y).data);
                this->update_RDE_reset(this->in.row(y).data, y);
            }
        }
    }
    else
    {
        if (frameNumber == 1)
            this->frameNumber++;
        else
        {
            this->update_RDE_reset(this->in.data, this->frameNumber);
            frameNumber++;
        }
    }
}
/* This is run at the start to create a new RDE frame, or when a new "window" begins */
int RDE::init_RDE(int num_data_points, int num_features, unsigned char* data)
{
    data_points = num_data_points;
    features = num_features;
    if (initFlag == false)
    {
        RDE_storage = (RDE_PRECISION*)calloc(data_points * (features + 1), sizeof(RDE_PRECISION));
        initFlag = true;
    }
    else
    {
        memset(RDE_storage, 0, sizeof(RDE_PRECISION) * data_points * (features + 1));
    }
    /* Creates int variables for loops and offsets */
    int i, j, originalOffset, rdeOffset;
    /* Creates double variables to store intermediate data */
    RDE_PRECISION x_eucl_norm = 0, xMu_eucl_dist = 0, mu_eucl_norm = 0, data_value = 0, result = 0;
    /* Loops through each row of pixels in the video stream */
    for(i = 0; i < data_points; i++)</pre>
```

```
{
        /* Creates offsets due to different number of channels */
        originalOffset = i * features;
        rdeOffset = i * (features + 1);
        /* Resets intermediate values for each pixel */
        x_eucl_norm = 0;
        xMu_eucl_dist = 0;
        mu_eucl_norm = 0;
        /* For each channel per pixel column */
        for (j = 0; j < \text{features}; j++)
        {
            /* Normalizes the pixel value */
            data_value = (static_cast<RDE_PRECISION>(data[originalOffset + j])-MIN_DATA_VALUE) / (MAX_DATA_VALUE 
    -MIN_DATA_VALUE);
            /* Set the mean to equal the current value of the pixel */
            RDE_storage[rdeOffset + j] = data_value;
            /* Update the scalar product which is the Standard Euclidean Norm of the original pixel values */
            RDE_storage[rdeOffset + features] += (data_value * data_value);
            /* Calculates standard Euclidean distance between x and Mu for density (should be zero) */
            xMu_eucl_dist += (data_value - RDE_storage[rdeOffset + j]) * (data_value - RDE_storage[rdeOffset +
    j]);
            /* Need to calculate standard euclidea norm of mu for density */
            mu_eucl_norm += (RDE_storage[rdeOffset + j] * RDE_storage[rdeOffset + j]);
        }
        /* Calculates density, should all equal 1 on the first run through */
        result = (1 / (1 + xMu_eucl_dist + RDE_storage[rdeOffset + features] - mu_eucl_norm));
        result *= 255;
        RDE_result[i] = static_cast<MAT_SIZE>(result);
    }
    return 0;
}
int RDE::init RDE_reset(int num_data_points, int num_features, unsigned char* data)
{
    data_points = num_data_points;
    features = num_features;
    if (initFlag == false)
    {
        RDE storage = (RDE PRECISION*)calloc(data points * (features + 1), sizeof(RDE PRECISION));
        initFlag = true;
    }
    else
    {
        memset(RDE_storage, 0, sizeof(RDE_PRECISION) * data_points * (features + 1));
    }
    /* Allocate sufficient memory to the history - to store all pixel values up to the frame number we want
    (rst) */
    histMem = (RDE_PRECISION*)calloc(data_points * features * rst, sizeof(RDE_PRECISION));
    /* Creates int variables for loops and offsets */
    int i, j, originalOffset, rdeOffset;
    /* Creates double variables to store intermediate data */
    RDE_PRECISION x_eucl_norm = 0, xMu_eucl_dist = 0, mu_eucl_norm = 0, data_value = 0, result = 0;
    /* Loops through each row of pixels in the video stream */
    for(i = 0; i < data_points; i++)</pre>
    {
        /* Creates offsets due to different number of channels */
```

```
D:\Downloads\EdgeFlow_Static\EdgeFlow_Static\Source\RDE_class.cpp
                                                                                                                 4
        originalOffset = i * features;
        rdeOffset = i * (features + 1);
        /* Resets intermediate values for each pixel */
        x_eucl_norm = 0;
        xMu_eucl_dist = 0;
        mu_eucl_norm = 0;
        /* For each channel per pixel column */
        for (j = 0; j < \text{features}; j++)
            /* Normalizes the pixel value */
            data value = (static cast<RDE PRECISION>(data[originalOffset + j])-MIN DATA VALUE) / (MAX DATA VALUE
    -MIN_DATA_VALUE);
            /* Assign the initial value to the first history block of the pixel history memory */
            histMem[originalOffset + j] = data_value;
            /* Set the mean to equal the current value of the pixel */
            RDE_storage[rdeOffset + j] = data_value;
            /* Update the scalar product which is the Standard Euclidean Norm of the original pixel values */
            RDE_storage[rdeOffset + features] += (data_value * data_value);
            /* Calculates standard Euclidean distance between x and Mu for density (should be zero) */
            xMu_eucl_dist += (data_value - RDE_storage[rdeOffset + j]) * (data_value - RDE_storage[rdeOffset +
                                                                                                                  j]);
            /* Need to calculate standard euclidea norm of mu for density */
            mu_eucl_norm += (RDE_storage[rdeOffset + j] * RDE_storage[rdeOffset + j]);
        }
        /* Calculates density, should all equal 1 on the first run through */
        result = (1 / (1 + xMu_eucl_dist + RDE_storage[rdeOffset + features] - mu_eucl_norm));
        RDE_result[i] = static_cast<MAT_SIZE>(result);
    }
    return 0;
}
int RDE::init RDE_reset(int num_data_points, int num_features, unsigned char* data, unsigned int orientation)
{
    data_points = num_data_points;
    features = num_features;
    if (initFlag == false)
    {
        RDE storage = (RDE PRECISION*)calloc(data points * (features + 1), sizeof(RDE PRECISION));
        initFlag = true;
    }
    else
    {
        memset(RDE_storage, 0, sizeof(RDE_PRECISION) * data_points * (features + 1));
    }
    /* Allocate sufficient memory to the history - to store all pixel values up to the frame number we want
    (rst) */
    histMem = (RDE_PRECISION*)calloc(data_points * features * rst, sizeof(RDE_PRECISION));
    /* Creates int variables for loops and offsets */
    int i, j, originalOffset, rdeOffset, memOffset;
    /* Creates double variables to store intermediate data */
    RDE_PRECISION x_eucl_norm = 0, xMu_eucl_dist = 0, mu_eucl_norm = 0, data_value = 0, result = 0;
    /* Loops through each row of pixels in the video stream */
    for(i = 0; i < data_points; i++)</pre>
    {
        /* Creates offsets due to different number of channels */
```

}

{

}

{

```
originalOffset = (orientation * i * features);
        memOffset = i * features;
        rdeOffset = i * (features + 1);
        /* Resets intermediate values for each pixel */
        x_eucl_norm = 0;
        xMu_eucl_dist = 0;
        mu_eucl_norm = 0;
        /* For each channel per pixel column */
        for (j = 0; j < \text{features}; j++)
        {
            /* Normalizes the pixel value */
            data_value = (static_cast<RDE_PRECISION>(data[originalOffset + j])-MIN_DATA_VALUE) / (MAX_DATA_VALUE 
    -MIN_DATA_VALUE);
            /* Assign the initial value to the first history block of the pixel history memory */
            histMem[memOffset + j] = data_value;
            /* Set the mean to equal the current value of the pixel */
            RDE_storage[rdeOffset + j] = data_value;
            /* Update the scalar product which is the Standard Euclidean Norm of the original pixel values */
            RDE_storage[rdeOffset + features] += (data_value * data_value);
            /* Calculates standard Euclidean distance between x and Mu for density (should be zero) */
            xMu_eucl_dist += (data_value - RDE_storage[rdeOffset + j]) * (data_value - RDE_storage[rdeOffset +
    jl);
            /* Need to calculate standard euclidea norm of mu for density */
            mu_eucl_norm += (RDE_storage[rdeOffset + j] * RDE_storage[rdeOffset + j]);
        }
        /* Calculates density, should all equal 1 on the first run through */
        result = (1 / (1 + xMu_eucl_dist + RDE_storage[rdeOffset + features] - mu_eucl_norm));
        RDE_result[i] = static_cast<MAT_SIZE>(result);
    }
    return 0;
/* Frees the calloc'ed memory */
int RDE::close_RDE()
    free(RDE_storage);
    return 0;
int RDE::update_RDE(unsigned char* data, int iteration)
    /* Creates loop counters and variables for offsets */
    int i, j, originalOffset, rdeOffset;
    /* Creates variables for storing intermediate results */
    RDE PRECISION x eucl norm = 0, xMu eucl dist = 0, mu eucl norm = 0, data value = 0, result = 0;
    /* For each row of pixels */
    for(i = 0; i < data_points; i++)</pre>
    {
        /* Creates offsets due to different number of channels */
        originalOffset = i * features;
        rdeOffset = i * (features + 1);
        /* Resets intermediate values for each pixel */
        x_eucl_norm = 0;
        xMu_eucl_dist = 0;
        mu_eucl_norm = 0;
```

```
/* Loops through each channel */
        for (j = 0; j < features; j++)
        {
            /* Normalizes the pixel value */
            data_value = (static_cast<RDE_PRECISION>(data[originalOffset + j])-MIN_DATA_VALUE) / (MAX_DATA_VALUE 
    -MIN_DATA_VALUE);
            /* Update the mean for each colour channel */
            RDE_storage[rdeOffset + j] = update_mean(data_value, RDE_storage[rdeOffset + j], iteration);
            /* Calculate the Standard Euclidean Norm for each pixel value for calculation of Scalar Product */
            x eucl norm += (data value * data value);
            /* Calculates Standard Euclidean Distance between x and Mu for Density */
            xMu_eucl_dist += (data_value - RDE_storage[rdeOffset + j]) * (data_value - RDE_storage[rdeOffset +
                                                                                                                  V
    j]);
            /* Need to calculate Standard Euclidean Norm of the means for Density */
            mu_eucl_norm += (RDE_storage[rdeOffset + j] * RDE_storage[rdeOffset + j]);
        /* Updates the scalar product */
        RDE_storage[rdeOffset + features] = update_scalar_product(x_eucl_norm, RDE_storage[rdeOffset + features] ∠
    ,iteration);
        /* Calculates the new RDE */
        result = (1 / (1 + xMu_eucl_dist + RDE_storage[rdeOffset + features] - mu_eucl_norm));
#ifdef MAT NOFP
        result *= 255;
#endif
        if (result > 170)
            result = 255;
        else
            result = 0:
        RDE_result[i] = static_cast<MAT_SIZE>(result);
    }
    return 0;
}
int RDE::update_RDE_reset(unsigned char* data, int iteration)
{
    /* Creates loop counters and variables for offsets */
    int i, j, originalOffset, rdeOffset;
    /* Creates variables for storing intermediate results */
    RDE_PRECISION x_eucl_norm = 0, xMu_eucl_dist = 0, mu_eucl_norm = 0, data_value = 0, result = 0,
    old_eucl_norm = 0;
    /* For each row of pixels */
    for(i = 0; i < data_points; i++)</pre>
    {
        /* Creates offsets due to different number of channels */
        originalOffset = i * features;
        rdeOffset = i * (features + 1);
        /* Resets intermediate values for each pixel */
        x_eucl_norm = 0;
        xMu_eucl_dist = 0;
        mu_eucl_norm = 0;
        old_eucl_norm = 0;
        /* Loops through each channel */
        for (j = 0; j < \text{features}; j++)
        {
            /* Normalizes the pixel value */
            data_value = (static_cast<RDE_PRECISION>(data[originalOffset + j])-MIN_DATA_VALUE) / (MAX_DATA_VALUE
```

D:\Downloads\EdgeFlow\_Static\EdgeFlow\_Static\Source\RDE\_class.cpp

{

```
-MIN_DATA_VALUE);
            if (iteration > rst)
            {
                /* Update the mean for each colour channel */
                RDE_storage[rdeOffset + j] = update_mean_reset(data_value, RDE_storage[rdeOffset + j], histMem
                                                                                                                  K
    [originalOffset + (currPtr * data_points * features) + j]);
                /* Calculate the old euclidean norm that we want to remove during reset, must do it here because m{arksymp}
     we're going to overwrite
                   the old data feature with the new one in the next line */
                old eucl norm += histMem[originalOffset + (currPtr * data points * features) + j] * histMem
    [originalOffset + (currPtr * data_points * features) + j];
            }
            else
            {
                /* Update the mean for each colour channel */
                RDE_storage[rdeOffset + j] = update_mean(data_value, RDE_storage[rdeOffset + j], iteration);
            }
            /* Assign the current value to the history block in accordance to where the pointer is for the
                                                                                                                  K
    history block*/
            histMem[originalOffset + (currPtr * data_points * features) + j] = data_value;
            /* Calculate the Standard Euclidean Norm for each pixel value for calculation of Scalar Product */
            x_eucl_norm += (data_value * data_value);
            /* Calculates Standard Euclidean Distance between x and Mu for Density */
            xMu_eucl_dist += (data value - RDE storage[rdeOffset + j]) * (data value - RDE storage[rdeOffset +
    j1);
            /* Need to calculate Standard Euclidean Norm of the means for Density */
            mu_eucl_norm += (RDE_storage[rdeOffset + j] * RDE_storage[rdeOffset + j]);
        }
        /* Updates the scalar product */
        if (iteration > rst)
            RDE storage[rdeOffset + features] = update scalar product reset(x eucl norm, RDE storage[rdeOffset + ∉
     features], old eucl norm);
        else
            RDE_storage[rdeOffset + features] = update_scalar_product(x_eucl_norm, RDE_storage[rdeOffset +
    features], iteration);
        /* Calculates the new RDE */
        result = (1 / (1 + xMu_eucl_dist + RDE_storage[rdeOffset + features] - mu_eucl_norm));
#ifdef MAT NOFP
        result *= 255;
#endif
        //if (result < 200)</pre>
            RDE_result[i] = static_cast<MAT_SIZE>(result);
        //else
            //RDE_result[i] = 0;
    }
    // Add one to the history block pointer to point to the next block to store the next frame pixel values
    currPtr++;
    // If the history block pointer is the same size as the history, reset it to the start of the array
    if (currPtr == static_cast<unsigned>(rst))
        currPtr = 0;
    return 0;
}
int RDE::update_RDE_reset(unsigned char* data, int iteration, unsigned int orientation)
    /* Creates loop counters and variables for offsets */
    int i, j, originalOffset, rdeOffset, memOffset;
```

```
/* Creates variables for storing intermediate results */
RDE PRECISION x eucl norm = 0, xMu eucl dist = 0, mu eucl norm = 0, data value = 0, result = 0,
old_eucl_norm = 0;
/* For each row of pixels */
for(i = 0; i < data_points; i++)</pre>
{
    /* Creates offsets due to different number of channels */
   originalOffset = (orientation * i * features);
   memOffset = i * features;
   rdeOffset = i * (features + 1);
    /* Resets intermediate values for each pixel */
   x_eucl_norm = 0;
    xMu_eucl_dist = 0;
   mu_eucl_norm = 0;
   old_eucl_norm = 0;
    /* Loops through each channel */
    for (j = 0; j < features; j++)
        /* Normalizes the pixel value */
        data_value = (static_cast<RDE_PRECISION>(data[originalOffset + j])-MIN_DATA_VALUE) / (MAX_DATA_VALUE 
-MIN_DATA_VALUE);
        if (iteration > rst)
        {
            /* Update the mean for each colour channel */
            RDE_storage[rdeOffset + j] = update_mean_reset(data_value, RDE_storage[rdeOffset + j], histMem 🖌
[memOffset + (currPtr * data_points * features) + j]);
            /* Calculate the old euclidean norm that we want to remove during reset, must do it here because m{arksymp}
 we're going to overwrite
               the old data feature with the new one in the next line \ensuremath{^{\prime\prime}}
            old_eucl_norm += histMem[memOffset + (currPtr * data_points * features) + j] * histMem[memOffset ∠
 + (currPtr * data_points * features) + j];
       }
       else
        {
            /* Update the mean for each colour channel */
            RDE_storage[rdeOffset + j] = update_mean(data_value, RDE_storage[rdeOffset + j], iteration);
        }
        /* Assign the current value to the history block in accordance to where the pointer is for the
history block*/
       histMem[memOffset + (currPtr * data_points * features) + j] = data_value;
        /* Calculate the Standard Euclidean Norm for each pixel value for calculation of Scalar Product */
        x_eucl_norm += (data_value * data_value);
        /* Calculates Standard Euclidean Distance between x and Mu for Density */
        xMu_eucl_dist += (data_value - RDE_storage[rdeOffset + j]) * (data_value - RDE_storage[rdeOffset +
                                                                                                               j]);
        /* Need to calculate Standard Euclidean Norm of the means for Density */
        mu_eucl_norm += (RDE_storage[rdeOffset + j] * RDE_storage[rdeOffset + j]);
   }
    /* Updates the scalar product */
    if (iteration > rst)
        RDE_storage[rdeOffset + features] = update_scalar_product_reset(x_eucl_norm, RDE_storage[rdeOffset + ✔
 features], old_eucl_norm);
    else
       RDE_storage[rdeOffset + features] = update_scalar_product(x_eucl_norm, RDE_storage[rdeOffset +
features], iteration);
    ///* Calculates the new RDE */
    result = (1 / (1 + xMu_eucl_dist + RDE_storage[rdeOffset + features] - mu_eucl_norm));
```

```
#ifdef MAT_NOFP
        result *= 255;
#endif
        //if (result < 200)</pre>
            RDE_result[(i * orientation)] = static_cast<MAT_SIZE>(result);
        //else
            //RDE_result[i] = 0;
    }
    // Add one to the history block pointer to point to the next block to store the next frame pixel values
    currPtr++;
    // If the history block pointer is the same size as the history, reset it to the start of the array
    if (currPtr == static_cast<unsigned>(rst))
        currPtr = 0;
    return 0:
}
int RDE::set_trails_output(unsigned char* output)
{
    RDE_result = (MAT_SIZE*)output;
    return 0;
}
RDE_PRECISION RDE::update mean(RDE_PRECISION data value, RDE_PRECISION old mean, int iteration)
{
    RDE PRECISION result = 0;
    result = ((static_cast<RDE_PRECISION>(iteration) - 1)/static_cast<RDE_PRECISION>(iteration))*old_mean;
    result += (1/static_cast<RDE_PRECISION>(iteration))*data_value;
    return result;
}
RDE_PRECISION RDE::update_scalar_product(RDE_PRECISION euclidean_norm, RDE_PRECISION old_scalar, int iteration)
ł
    RDE PRECISION result = 0;
    result = ((static_cast<RDE_PRECISION>(iteration) - 1)/static_cast<RDE_PRECISION>(iteration)) * old_scalar;
    result += (1/(static_cast<RDE_PRECISION>(iteration))) * euclidean_norm;
    return result;
}
RDE_PRECISION RDE::update_mean_reset(RDE_PRECISION data_value, RDE_PRECISION old_mean, RDE_PRECISION
                                                                                                                   Ľ
    oldest_value)
{
    RDE_PRECISION result = 0;
    result = (static cast<RDE PRECISION>(rst * old mean) - oldest value + data value) / static cast
                                                                                                                   1
    <RDE_PRECISION>(rst);
    return result;
}
RDE_PRECISION RDE::update_scalar_product_reset(RDE_PRECISION euclidean_norm, RDE_PRECISION old_scalar,
                                                                                                                   V
    RDE PRECISION oldest value)
{
    RDE_PRECISION result = 0;
    result = (static_cast<RDE_PRECISION>(rst * old_scalar) - oldest_value + euclidean_norm) / static_cast
                                                                                                                   Ľ
    <RDE_PRECISION>(rst);
    return result;
}
RDEInstance::RDEInstance(cv::Mat& frame, unsigned int numThreads, unsigned int type, unsigned int reset, HANDLE 🖌
    sObj) : numT(numThreads), rdeType(type), resetValue(reset), Threaded(sObj)
{
#ifndef MAT_NOFP
    showRDE = cv::Mat::zeros(frame.rows, frame.cols, CV_64FC1);
#else
    showRDE = cv::Mat::zeros(frame.rows, frame.cols, CV_8UC1);
```

#endif

```
blockDivider(frame, blocks, numT, rdeType);
                                                               // Divide the input frame into blocks
    blockDivider(showRDE, resultBlocks, numT, rdeType);
                                                               // Divide the result frame into blocks
    myRDE = (RDE**)std::calloc(blocks.size(), sizeof(RDE*));
                                                                   // Initialise the RDE array pointer
    pThreadIDs = (HANDLE*)std::calloc(blocks.size(), sizeof(HANDLE));
    for (unsigned int i = 0; i < blocks.size(); i++)</pre>
    {
        pThreadIDs[i] = CreateEvent(NULL, true, false, NULL);
        myRDE[i] = new RDE(blocks[i], resultBlocks[i], rdeType, frame.rows, resetValue, pThreadIDs[i]);
    }
}
RDEInstance::~RDEInstance()
{
    showRDE.release();
    blocks.clear();
    resultBlocks.clear();
}
void RDEInstance::work()
{
    for (unsigned int i = 0; i < blocks.size(); i++)</pre>
    {
        myRDE[i]->run();
    }
    DWORD dwMulti = WaitForMultipleObjects((DWORD)blocks.size(), pThreadIDs, true, INFINITE);
    switch (dwMulti)
    {
        case WAIT_OBJECT_0:
        {
            for (unsigned int i = 0; i < blocks.size(); i++)</pre>
                                                                           // Loop through each mutex, releasing
                                                                                                                        K
    each one ready for the next frame loop
            {
                ResetEvent(pThreadIDs[i]);
//std::cout << "Event reset " << i << std::endl;</pre>
            }
            break;
        }
        default:
            std::cout << "Error waiting for event " << std::endl;</pre>
    }
}
cv::Mat& RDEInstance::getResult()
{
    return this->showRDE;
}
```