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Abstract The stochastic block model (SBM) is widely

used for modelling network data by assigning individu-

als (nodes) to communities (blocks) with the probabil-

ity of an edge existing between individuals depending

upon community membership. In this paper we intro-

duce an autoregressive extension of the SBM, based on

continuous-time Markovian edge dynamics. The model

is appropriate for networks evolving over time and al-

lows for edges to turn on and off. Moreover, we allow

for the movement of individuals between communities.

An effective reversible jump Markov chain Monte Carlo

algorithm is introduced for sampling jointly from the

posterior distribution of the community parameters and

the number and location of changes in community mem-

bership. The algorithm is successfully applied to a net-

work of mice.
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1 Introduction

Network models play a key role in capturing and un-

derstanding population dynamics in a range of scenar-

ios. Networks often show some form of structure rather

than simple random interactions and this has led to a

plethora of network models to capture such dynamics.

Structures studied in the literature include: Barabsi-

Albert model (Albert and Barabási 2002) (a scale-free

model generated by preferential attachment), Watts-

Strogatz model (Watts and Strogatz 1998) (small-world

model), exponential random graph model (ERGM)(Frank

and Strauss 1986) (specified frequencies of subgraphs)

and the stochastic block model (SBM) (Frank and Harary

1982) (community model). This body of research cov-

ers a broad range of subject areas including the social

sciences, statistics, physics and computational biology.

In this paper we consider the statistical detection

of changes in the community structure of a dynamic

network. The challenge of detecting changes in data se-

quences is well-known, receiving considerable attention

in the statistics literature in recent years. Much of this

effort has been focused on changepoint detection within

univariate data sequences, for example, see Davis et al

(2006); Fearnhead and Liu (2007); Picard et al (2007);

Killick et al (2012); Fryzlewicz (2014); Haynes et al

(2017). More recently, the literature has turned to fo-

cus on the detection of changes in more complex set-

tings including multivariate time series (e.g. Matteson

and James (2014); Xie and Siegmund (2013), spatial-

temporal (Altieri et al 2015) and related challenges with

network data (e.g. Fu et al (2009); Yang et al (2011);

Xu and Hero (2014); Matias and Miele (2016)).

Within a network context, changing behaviour can

arise in many different scenarios. This article focuses

on movement of individuals from one community to an-
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other with the interactions between individuals depend-

ing upon their community. Animals changing their mat-

ing partners is a prime example of such behaviour. De-

tecting changes in community structure in animal herds

could help indicate the source of disease outbreaks and

help with decisions such as targeted vaccination pro-

grams. In Section 6, we study the changes in commu-

nity structure in a network of mice first presented in

Lopes et al (2016b).

The different network models described above typ-

ically capture different network features. For example,

the Watts-Strogatz model can create clusters whilst

keeping a small distance between any two chosen nodes.

This model has no simple parametric form, hence non-

parametric methods are used to assess model fit (Ko-

laczyk 2009). The ERGM can create clusters of nodes

with specified sub-graph properties but is known to suf-

fer from identifiability problems (Chatterjee and Diaco-

nis 2013) since two different parameterisations can lead

to the same model. Given that our primary interest is in

community dynamics, we focus on a dynamic, autore-

gressive extension of the SBM, introduced by Holland

et al (1983). The general form of the SBM model is

given by Snijders and Nowicki (1997) who discuss max-

imum likelihood estimation and an Expectation Max-

imisation algorithm for inferring the parameters for the

SBM. The SBM aims to partition the set of nodes in

a network in such a way that the proportion of edges

between nodes in the same block is different to the pro-

portion of edges between nodes in different blocks.

In this paper, the autoregressive stochastic block

model (ARSBM) is introduced. This model is inspired

by populations where the network of contacts (edges)

between individuals evolve over time and depend upon

the community (block) to which individuals belong;

see, for example, the mice network data, Section 6 and

Lopes et al (2016b). The edges are binary states 1/0

which alternate between being on (1) and off (0), spend-

ing time in a given state before transiting to the other

state. The observed data consist of snapshots of the

network over time with snapshots close together in time

typically being more similar to those further apart. The

correlation in the presence/absence of edges is a key fea-

ture of the data we want to explore and capture in our

modelling. In addition, we seek to infer other important

characteristics of the population such as the amount of

movement of individuals between communities (blocks)

and the interactions both within and between blocks.

There have been a number of extensions of the SBM

to include temporal dynamics. Various authors have

considered a continuous-time model based on an SBM

where the edge processes are non-homogeneous Pois-

son point processes (DuBois et al 2013; Guigourès et al

2015; Corneli et al 2016; Xin et al 2017; Matias et al

2017). This is appropriate for event data such as send-

ing emails or SMS. However, for edge processes which

have a duration, such as phone calls and the status of

friendships in a social network, a model which accounts

for the time for which an edge lasts is required. Another

direction which has attracted attention is discrete time

dynamic extensions of the SBM (Fu et al 2009; Yang

et al 2011; Xu and Hero 2014; Matias and Miele 2016).

These papers have focused on discrete-time dynamics

for both community membership and the network evo-

lution over time. A key assumption of these works is

that, conditional upon the community structure, the

networks at each time point are independent SBMs. Re-

laxing the time-independence assumption is an impor-

tant contribution of this work with a view to application

domains with highly correlated edges. For example, in

a computer network, knowing that two machines are

currently connected means they are more likely to be

connected in the near future. Moreover, as we show in

this article, some community structures can only be de-

tected by taking account of the temporal dependencies

in the network dynamics. Finally, the continuous-time

model handles irregularly observed or incomplete data

far more easily than its discrete-time counterparts.

The remainder of the paper is organised as follows:

in Section 2 we introduce the autoregressive stochas-

tic block model (ARSBM), a time-dependent exten-

sion of the SBM. This includes the model definition of

the process governing when nodes change community

membership together with the autoregressive model for

edge processes. Due to the complexity added by the

continuous-time setting, knowledge of some edge states
is needed at the changepoints, where individuals change

community membership. To overcome this, an augmen-

tation scheme is presented to aid inference for the AR-

SBM within a Bayesian framework. Since the number

of changepoints is assumed to be unknown and the

number of parameters of the ARSBM depends on the

number of changepoints then a reversible-jump Markov

chain Monte Carlo (RJMCMC) sampling scheme can

be used to draw samples from the posterior distribu-

tion on the number of changepoints. In Section 3 an

RJMCMC sampling scheme is described for the AR-

SBM. Whilst the primary focus of the paper is on the

movements between communities, a useful by-product

of the RJMCMC is an efficient algorithm for estimating

the underlying network parameters. The performance of

the RJMCMC sampler is sensitive to the initial com-

munity assignments and to combat this we give an ef-

fective mechanism for the initial assignment of nodes

to communities in Section 4. In Sections 5 and 6 the

RJMCMC sampling scheme is demonstrated on simu-



Dynamic stochastic block models 3

lated data sets and a data set involving monitoring so-

cial behaviour in mice (Lopes et al 2016b), respectively.

Finally, in Section 7 we make some concluding remarks

concerning directions for future research in this area.

2 The autoregressive stochastic block model

2.1 Model

The autoregressive stochastic block model (ARSBM)

is built on a hierarchical structure as follows. Suppose

a dynamic network consists of a fixed set of nodes, V

(|V | = N), partitioned into a fixed number of commu-

nities, K. The community membership of the N nodes

is modelled using N independent and identically dis-

tributed community membership processes. Let Ci(·)
denote the community membership process for node i.

It is assumed that Ci(·) is a continuous-time Markov

chain (CTMC) (Norris 1997), which takes values in

{1, 2, . . . ,K}, with Ci(t) = k meaning that individ-

ual i is in community k at time t. We assume that,

regardless of the current community to which it be-

longs, a node spends Exp(λ) time in the community

before moving to a new community chosen uniformly

at random from the remaining communities. (This as-

sumption can easily be relaxed.) Therefore the genera-

tor matrix for the CTMC governing Ci(·) has diagonal

elements equal to −λ and off-diagonal elements equal to

λ/(K − 1). Using properties of CTMCs, the number of

times node i changes community, Mi ∼ Po(λ) with the

times of the changes τi = (τ1i , . . . , τ
Mi
i ) being ordered

and uniformly distributed on [t0, tT ]. The new commu-
nity level, Ci(τ

d
i ), is drawn uniformly at random from

{k 6= ci(τ
d−1
i ) : k = 1, . . . K}, and individual i remains

in that community until τd+1
i . Throughout we denote

the stochastic process by Ci(t) and a given realisation

at time t by ci(t).

In the SBM the probability that an edge exists be-

tween two nodes depends only upon the communities

to which the two nodes belong. In the ARSBM, we

employ a similar model hierarchy with edge dynamics

only depending upon the communities to which the two

nodes belong. We introduce an autoregressive compo-

nent which allows the state of the edge to switch “on”

or “off” with Markovian dynamics. We make the ad-

ditional assumption that all edges with end-nodes in

different communities have similar dynamics, although

this can easily be relaxed. Under this setting, there will

be K + 1 processes to govern the dynamics of edges in

the network: one process for each community k (gov-

erning the edges (i, j) with Ci(t) = Cj(t) = k) and

one process for edges between communities (governing

the edges (i, j) where Ci(t) 6= Cj(t)). This reduces the

number of parameters from O(K2) to O(K).

In order to model edge dynamics, we first define the

community membership of the edge, which is a deter-

ministic function of the community membership of the

end-nodes. Specifically, for the edge between nodes i

and j, its community membership process Cij(·) is de-

fined to be k if both i and j are in community k and 0

otherwise, as in Equation (1).

Cij(t) =

{
Ci(t) if Ci(t) = Cj(t),

0 if Ci(t) 6= Cj(t),

Cij(t) ∈ {0, 1, . . . ,K}.
(1)

Since both Ci(·) and Cj(·) are piecewise constant pro-

cesses, then Cij(·) is a piecewise constant process with

Mij ≤ Mi + Mj step changes. Let Eij(·) denote the

edge status process for the edge between nodes i and j.

Specifically, Eij(t) = 1 if an edge exists (“on”) between

nodes i and j at time t and Eij(t) = 0 if no edge exists

(“off”) between nodes i and j at time t. The edge pro-

cess is assumed to follow a piecewise time-homogeneous

CTMC. That is, whilst the Cij(t) = k, the generator

matrix for the edge process is

G(k) =

(
−αk αk
δk −δk

)
.

The transition rates αk, referred to as the appearance

rates, govern the rate at which an edge appears (tran-

sitions from state 0 to 1) whilst in community k. Simi-

larly, the transition rates δk are referred to as deletion

rates and govern the reverse transition from state 1 to 0.

Throughout, we denote the stochastic process by Eij(t)

and a given realisation at time t by eij(t).

Let πk = αk/(αk+δk), the stationary probability of

an edge being on in community k. This allows for a di-

rect comparison with the static SBM. Furthermore, let

ρk = αk+δk be the combined rate of change for the edge

process with αk = πkρk and δk = (1−πk)ρk. It is help-

ful to use the parameterisation π = (π0, π1, . . . , πK)

and ρ = (ρ0, ρ1, . . . , ρK) for modelling the ARSBM.

2.2 Posterior distribution

We are now in position to construct the likelihood for

the data and the posterior distribution of the parame-

ters and community membership of the nodes.

Suppose that network snapshots of N are collected

at time points t = (t0, t1, . . . , tT ) in the observation

interval [t0, tT ]. In this way, the states eij(ts) are ob-

served for s = 0, 1, . . . , T and i 6= j ∈ {1, . . . , N}. For

brevity, we let esij = eij(ts) be the state of the edge
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between nodes i and j at the sth observation. Similarly,

csi = ci(ts) is the community membership of node i at

observation time s; however, this is a latent variable.

We also let ∆s = ts − ts−1 be the amount of time be-

tween observations s − 1 and s. Let e(t) = {esij |1 ≤
i < j ≤ N, s = 0, 1, . . . , T} denote the set of all net-

work snapshot data. Let ci(t) = {csi |s = 0, 1, . . . , T},
the community membership of node i at every obser-

vation time, with c(t) = {ci(t)|i = 1, 2, . . . , N}, the

set of all community memberships. We are interested

in the joint posterior distribution, which can be decom-

posed into the product of the observation likelihood,

the distribution of the evolution of community assign-

ments and a prior distribution on the parameters as in

Equation (2).

π(θ, c(t)|e(t)) ∝ π(e(t), c(t)|θ)π(θ)

= π(e(t)|c(t),θ)π(c(t)|θ, c(t0))π(θ, c(t0)),
(2)

where θ = (λ,π,ρ) and c(t0) = (c01, c
0
2, . . . , c

0
N ). Note

the dependence on the initial community structure.

We now provide equations for each term in Equa-

tion (2). Firstly, in Equation (3), the likelihood of the

observed edge sequence, given the latent community

memberships and model parameters, is computed.

π(e(t)|c(t),θ) =
∏
s,i
j 6=i

π(esij |es−1ij , cs−1i , csi , c
s−1
j , csj) (3)

The computation of each factor in Equation (3) is non-

trivial since it requires integrating over all possible com-

munity membership processes for all nodes between the

times ts−1 and ts. Since each community membership

process is piecewise constant, it is sufficient to know

the times of the changepoints in node i’s community

membership, τi = (τ1i , . . . , τ
Mi
i ), and the community

membership of the nodes at the changepoints, ci(τi)

with c(τ ) = (c1(τ1), . . . , cN (τN )). Note that cij(τij)

is a deterministic function of ci(τi) and cj(τj), where

τij = (τ1ij , . . . , τ
Mij

ij ) is the set of combined change-

points in nodes i and j community memberships.

Therefore, given that the edge dynamics are gov-

erned by a CTMC with piecewise constant dynamics

then, if cij(t) = k for all time t ∈ [ts−1, ts), then

P
(
es = 1|es−1, c(t)

)
= πk + (es−1 − πk)e−ρk∆s , (4)

where we drop the subscript ij for brevity.

The calculation of the probability of an edge being

in state 1 becomes more involved if there is a change in

community membership of the edge during an interval

[ts−1, ts). It is straightforward, in principle at least, to

compute P
(
esij = 1|es−1ij , cij(t)

)
by summing over the

possible states of the edge ij at each of the changepoints

in the interval [ts−1, ts). Specifically, if τ ∈ [ts−1, ts] is

a changepoint with cij(t) = k for t ∈ [τ, ts), then

P
(
es = 1|es−1, c(t)

)
=

1∑
l=0

P(es = 1|e(τ)= l) P
(
e(τ)= l|es−1

)
=

1∑
l=0

{πk+(l−πk)e−ρk(ts−τ)}P
(
e(τ)= l|es−1

)
,

(5)

where again, we drop the subscript ij for brevity.

Whilst it is possible to compute π(e(t)|c(t), c(τ ),θ)

from (5), it is far simpler to augment the data with

e(τ ) = {eij(τdij); 1 ≤ i, j ≤ N, d = 1, 2, . . . ,Mij}. Let

σi = t∪τi, the ordered times at which the edges are ob-

served or node i changes community membership. Simi-

larly, let σij = σi∪σj denote the ordered times at which

edge (i, j) is observed or changes community member-

ship and contains Tij = T + Mij elements. Thus, the

likelihood of the observed and augmented edges, given

the community structure, π(e(σ)|c(σ), τ ,θ) becomes

∏
i 6=j

Tij−1∏
d=0

P
(
eij(σ

d+1
ij )|eij(σdij), cij(σdij)

)
(6)

where, by letting ∆d+1 = (σd+1 − σd), the factors can

be written as:(
(1− πc(σd))− (e(σd)− πc(σd))e

−ρ
c(σd)

∆d+1

)1−e(σd+1)

×
(
πc(σd) + (e(σd)− πc(σd))e

−ρ
c(σd)

δd+1

)e(σd+1)

The computation of π(c(σ), τ |θ, c(t0)) is straight-

forward. Firstly, σi is deterministic given τi, so

π(c(σ), τ |θ, c(t0))

=

N∏
i=1

π(ci(τi)|τi, c(t0))π(τi|λ)

=

N∏
i=1

π(ci(τi)|τi, c(t0))π(τi|Mi)π(Mi|λ)

=

N∏
i=1

(
1

k − 1

)Mi

× Mi!

(tT − t0)Mi

×{λ(tT − t0)}Mi

Mi!
exp(−λ(tT − t0))

=

(
1

k − 1

)M
λM exp(−λN(tT − t0)), (7)

where M =
∑N
i=1Mi is the total number of change-

points. The three components on the right-hand side of

(7) for node i correspond to; the density of the ordered

Mi time points, the probability of the group transitions
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which take place and the probability that there are Mi

changes in node i’s community membership.

Combining (6) and (7), we have an expression for

π(e(σ), c(σ)|θ, c(t0)), and therefore, an explicit expres-

sion for the right hand side of

π(c(σ), e(τ ), τ ,θ|e(t)) ∝ π(e(σ)|c(σ), τ ,θ)

× π(c(σ), τ |c(t0),θ)× π(c(t0),θ).
(8)

2.3 Identifiability

An important point to consider before introducing the

RJMCMC sampler is the identifiability of the model. As

is well known for SBMs, the parameters can only be ob-

tained up to a label switching of the group nodes (Ma-

tias and Miele 2016). Letting ρk ↓ 0 for k = 0, 1, . . . ,K

whilst keeping π fixed results in λ being unidentifiable.

This is because the graph does not change through time

and hence E(t) = E(s) for all 0 ≤ s < t. Therefore

the graph dynamics are invariant to how fast (or slow)

the nodes switch between blocks since after the initial

configuration, the block to which a node belongs be-

comes irrelevant. More generally, we observe that the

dependence parameter ρk enters the likelihood through

exp(−ρk∆s)), see Equation (4), and robust estimation

of ρk is obtained when exp(−ρk∆s)) is not close to 0

(independence) or 1 (full dependence).

The graph parameters become unidentifiable as λ→
∞, that is the nodes are constantly switching between

blocks. In this case, for each k, l = 1, 2, . . . ,K, the nodes

i and j will spend a proportion 1/K2 time in blocks k

and l, respectively during any period of time. Conse-
quently, regardless of the value of K, as λ → ∞, the

dynamic SBM resembles an SBM with a single block

model, a dynamic Erdös-Rényi random graph, with sta-

tionary probability of an edge π∗ and rate of change ρ∗,

where

ρ∗ =
1

K2

K∑
k=1

ρk +
K − 1

K
ρ0, (9)

and

π∗ =
1

ρ∗

{
1

K2

K∑
k=1

ρkπk +
K − 1

K
ρ0π0

}
. (10)

Letting λ→∞ removes any dependence in block mem-

bership of a node from one time point to the next.

This is linked to the observation in Matias and Miele

(2016) for the discrete time SBM models of Xu and

Hero (2014) and Matias and Miele (2016) that inde-

pendence in block membership from one time point to

the next leads to non-identifiability of the parameters.

If λ = 0 and (ρk, πk) = (ρI , πI) (k = 1, 2, . . . ,K)

(a dynamic affiliation model), then, following the ap-

proach of Frank and Harary (1982) and Allman et al

(2011), it is straightforward to show that E[E12(0)] and

E[E12(0)E13(0)E23(0)] give (πI , π0), as in the case of

the static SBM. Moreover, considering E[E12(0)E12(t)]

and E[E12(0)E13(0)E23(0)E12(t)E13(t)E23(t)] for some

t > 0 is then sufficient to identify (ρI , ρ0). By consider-

ing edge moments involving 4 nodes, we can show that

this extends to small positive λ > 0 by ignoring o(λ)

terms. A further discussion of parameter identifiability

is beyond the scope of this paper but note that we ob-

serve parameter estimation is robust to starting values

in the simulations and application data set up to per-

mutation of block labels, for moderate, positive ρk and

small, positive λ.

3 Reversible jump MCMC

3.1 Sampling scheme

In this section a RJMCMC (reversible jump MCMC)

algorithm is described for obtaining samples from the

joint posterior distribution of θ = (λ,π,ρ) and c(t)

given e(t) using (8) and data augmentation of the val-

ues (τ , c(τ ), e(τ )). The updating of the parameters λ,π

and ρ given (τ , c(τ ), e(τ )) is straightforward using (6)

and (7). Updating τi and the associated augmented

data is more involved as Mi, the number of elements

in τi, is unknown. This naturally leads to a reversible

jump sampler (Green 1995) to explore parameter spaces

of differing dimensions.

An overview of the sampling scheme is given in Al-

gorithm 1. For each step of the sampler, each of the pa-

rameters λ,π,ρ and τ (and M = (M1,M2, . . . ,MN ))

are updated in turn.

By assigning a Gamma(λ01, λ02) prior to λ, it fol-

lows from (7) that, λ|π,ρ, τ , c(σ), e(σ) is distributed

as Gamma (λ01 +M,λ02 +N(tT − t0)).

For π and ρ there is no closed form conditional dis-

tribution and for this reason, a random walk is pro-

posed. Since πk is bounded on [0, 1], a random walk is

proposed on a logit scale, logit(π∗k) ∼ N(logit(πk) , σ2
π).

As for ρk, a random walk on the log scale is proposed,

since ρk > 0, with log(ρ∗k) ∼ N(log(ρk), σ2
ρ). The pri-

ors for πk and ρk are Beta and Gamma distributions

respectively. By performing random walk updates on

transformed scales, we need to take account of the pro-

posal densities with

q(π∗k|πk) =
φ(logit(π∗k) |logit(πk) , σ2

π)

π∗k(1− π∗k)
, (11)
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Algorithm 1 RJMCMC Sampler
Inputs: parameters for Gamma prior for λ, prior distribu-
tions for π and ρ, nRuns and burn-in.
Draw λ, π, ρ from their respective priors. Set M = 0 and
τ = ∅.
for h=1,. . .,nRuns do

Draw λ(h+1) from its conditional distribution.

for k in 1,. . . , C do

Propose π
(h+1)
k by taking a random walk on the

logit scale from π
(h)
k .

Propose ρ
(h+1)
k by taking a random walk on the log

scale from ρ
(h)
k .

if There are no changes in the current sampler state
then

Propose inserting a change
else Draw X uniformly at random from {1, 2}

if X=1 then
Propose inserting a new change to the current

state, with augmented edge states as required.
else X=2

Propose deleting a change from the current state,
removing and adding affected augmented edge states as
required.

Given that M > 0, propose moving each changepoint
into an adjacent observation interval and using a Gaussian
random walk proposal.

Resample the augmented edges.

Discard samples 1, . . . ,burn-in.

and

q(ρ∗k|ρk) =
φ(log(ρ∗k) |log(ρk) , σ2

ρ)

ρk
, (12)

where φ(y;µ, σ2) denotes the probability density func-

tion of a N(µ, σ2) evaluated at y.

In this work, an adaptive scheme is used to adjust

the variance of the proposal distributions to improve

the efficiency of the sampler. The proposal variances σ2
π

and σ2
ρ are set using an adaptive procedure as in Xiang

and Neal (2014). By Roberts et al (1997), an acceptance

rate of approximately 25% is optimal for random walk

Metropolis sampling. To achieve this rate, a proposal

variance σ2 is adjusted at each step during the burn-in

period by

σ2
h+1 =

σ
2
h

(
1− ε√

h

)
if move rejected,

σ2
h

(
1 + 3ε√

h

)
if move accepted,

where the step size ε is chosen as input.

3.2 Updating (τ , c(τ ), e(τ ))

The trans-dimensional sampler for updating τ , and con-

sequently, (c(τ ), e(τ )) is now described. These consti-

tute birth-death moves: inserting a changepoint (insert

a change of community membership in a node) and

removing a changepoint (removes one of the changes

from the current state of the sampler). In each itera-

tion of the algorithm only one move is attempted. In the

case that the current sampler state contains no change-

points, then an insert move is attempted. Otherwise,

the insert move is chosen with probability 0.5. In ad-

dition, we propose moving the time of existing change-

points to obtain a posterior distribution of changepoint

locations.

We begin by describing the process for proposing

to insert a changepoint. Firstly a node i is chosen uni-

formly at random from 1, . . . , N and a time τ∗ is cho-

sen uniformly at random from the interval [t0, tT ]. This

amounts to adding a step change at time τ∗ in Ci(·).
Let k denote the community membership of node i at

time τ∗ prior to the proposed addition of a change-

point at time τ∗. Since the initial community mem-

berships are unknown, the sampler allows for adjust-

ing Ci(·) either prior to, or after, time τ∗. A proposal

“forwards” in time proposes a new community k∗ and

sets Ci(τ
∗) = k∗. Conversely, a proposal “backwards”

in time proposes a new community k∗ for the interval

preceding τ∗. If this previous interval starts at time σ∗,

then the sampler sets Ci(σ
∗) = k∗, where σ∗ = t0 if

there are no previous changes in node i’s community

membership with Ci(τ
∗) = k. See Figure 1 for an ex-

ample of possible insert moves.

2

1

Current State

2

Delete Backwards
1

Delete Forwards

3

2

1

Insert Backwards

2

1

Insert Self-change

2

3

1

Insert Forwards

Fig. 1 Possible moves to insert or delete a changepoint for a
node which currently has one change. After choosing to insert
or delete, a model is proposed proportional to the likelihood.

To allow the sampler to explore the parameter space

more freely, we allow the possibility of self-changes in

community membership. That is, a change in which

node imoves from community k to community k at time

τ∗. Such changes are artificial and are used purely to

allow the sampler to explore the parameter space. The

directionality (“forwards” or “backward” in time) of
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such a change is irrelevant since inserting a self change

is symmetric in time.

There are therefore 2K − 1 ways to propose insert-

ing a change in community membership at time τ∗ for

node i. Rather than drawing a change in community

membership uniformly at random from the possibili-

ties we consider the relative likelihood of the 2K −
1 changes in community membership and propose a

change accordingly. In order to do this, we consider

the set of edges affected by each of the proposed com-

munity changes. In all cases the unobserved states of

edges affected by the change are a subset of Ei(τ
∗) =

(Ei1(τ∗), Ei2(τ∗), . . . , EiN (τ∗)). For an edge (i, j) af-

fected by the change in community membership, we

augment the state space with eij(τ
∗) and set eij(τ

∗) =

1 with probability,

P (eij(τ
∗) = 1|eij(σ∗ ∧ t∗), cij(σ∗) = κ, πκ, ρκ), (13)

where t∗ denotes the last observation prior to τ∗. Let

Ak1,k2 denote the set of additional edges proposed with

the move to ci(σ
∗) = k1 and ci(τ

∗) = k2, where at least

one of k1 or k2 is equal to k. Let A∗ = ∪k1,k2Ak1,k2
and note that edge (i, j) can be included in more than

one Ak1,k2 with different values for eij(τ
∗). We choose

to move to community memberships ci(σ
∗) = k1 and

ci(τ
∗) = k2 for node i with probability

P
(
Ak1,k2 |θ, τ∗

)∑
l1,l2

P(Al1,l2 |θ, τ∗)
. (14)

Therefore the proposal distribution for the proposed

changepoint in node i’s community membership and

A∗ is

P(M + 1|M)

N(tT − t0)
·P(A∗|θ, τ∗) ·

P
(
Ak1,k2 |θ, τ∗

)∑
l1,l2

P(Al1,l2 |θ, τ∗)
. (15)

The reverse move is the deletion of a changepoint for

which we require M > 0. Firstly, we select a change-

point τ∗ to delete uniformly at random. Suppose that

the changepoint occurs in node i’s community mem-

bership. Suppose that σ∗ denotes the previous change-

point in node i prior to τ∗ and that ci(σ
∗) = k1 and

ci(τ
∗) = k2, then there are two choices (unless k1 =

k2, τ∗ represents a self-change), either set ci(σ
∗) = k1

(change the future community membership from time

τ∗) or ci(σ
∗) = k2 (change the community membership

prior to time τ∗). For both of these proposed changes

it is possible that the set of augmented edges required

changes at σ∗ when setting ci(σ
∗) = k2 and the change-

point in node i, should one exist, after τ∗. Let Bk1 and

Bk2 denote the additional augmented edges required

when setting ci(σ
∗) = k1 and ci(σ

∗) = k2, respectively.

For generating edges in Bkl (l = 1, 2), we take the same

approach as when inserting a changepoint simulating

forward the state of an edge by modifying (13) to pro-

pose the edge state at the required time. Then we set

ci(σ
∗) = kl (l = 1, 2) with additional augmented edges

Bkl with probability

P
(
Bkl |θ

)
P(Bk1 |θ) + P(Bk2 |θ)

. (16)

Therefore, the proposal distribution for the proposed

deletion of changepoint τ∗ with associated changes and

B∗ = Bk1 ∪ Bk2 is

P(M − 1|M)

M
· P(B∗|θ) ·

P
(
Bkl |θ

)
P(Bk1 |θ) + P(Bk2 |θ)

. (17)

The generating of A∗ and B∗ in the above proce-

dures are simply to assist with choosing community

membership in an informed way and play no role in

the posterior distribution (parameters and augmented

states) once a set of augmented edges have been cho-

sen. Therefore, we would ideally want to integrate out

A∗ and B∗. This can effectively be done by working

on an expanded state space incorporating all the pos-

sible community membership states of the nodes and

all possible edge states. In this way we can show that

the probability of accepting a proposed move to insert

a changepoint in community i at time t∗ is

π(e(σ′), c(τ ′), τ ′,θ|e(t))

π(e(σ), c(τ ), τ ,θ|e(t))

× P (M |M + 1)N(tT − t0)

P (M + 1|M)(M + 1)
× P(B∗|θ)

P(A∗|θ, τ∗)

×
P
(
Bkl |θ

)∑
l1,l2

P
(
Al1,l2 |θ, τ∗

)
P(Ak1,k2 |θ, τ∗) P(Bk1 |θ) + P(Bk2 |θ)

(18)

where σ′ = σ ∪ τ∗ and τ ′ = τ ∪ τ∗. The acceptance

probability for deleting a changepoint is the reciprocal

of (18).

The two procedures for moving a changepoint are

straightforward. Firstly, each changepoint is moved at

random either to the next observation interval or the

previous observation interval. Secondly, the time of a

changepoint is perturbed using a random walk move

with a Gaussian proposal. The first such move allows for

large changes in the location of a changepoint while the

second allows for small, local moves refining the position

of the changepoint. Suppose that the changepoint to be

adjusted is τ which lies in the interval [tn, tn+1]. We

propose a new time τ∗ to lie in one of the intervals

immediately before or after [tn, tn+1]. We propose that

τ∗ is positioned in the proposed interval proportional

to the location of τ in the current interval such that:

τ∗ =

{
tn−1 + (tn − tn−1) τ−tn

tn+1−tn w.p 0.5

tn+1 + (tn+1 − tn+2) τ−tn
tn+1−tn w.p 0.5.
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The second move allows for refinement of such times

by making a small change in location of τ using a stan-

dard Metropolis-like move. Specifically a value τ∗ is

proposed via τ∗ = τ +N(0, στ ) for στ small.

Finally, each augmented edge states A ∈ A∗ is re-

sampled proportional to the relative likelihood using

Equation (3) in the proposal distribution,

P(A = 1) =
π (A = 1, e(σ)|θ)

π (A = 0, e(σ)|θ) + π (A = 1, e(σ)|θ)
.

In the case that a changepoint τ is close to an observa-

tion time t, the augmented edges at τ will most likely

be resampled in the same state as at the observation

time t.

4 Initialisation of sampler state

In this section some observations are made about the

initial community membership vector c(t0), which is

key to the success of the sampler. Recall that the data

e(t) concerns the state of edges in the network, which

are assumed to be Markov chain distributed with pa-

rameters determined by the latent community member-

ship of the end nodes. These community memberships

are themselves Markov chain distributed conditional on

the initial community assignment, c(t0). This makes the

initial community membership very influential on the

entire model. As such, assigning nodes to the incorrect

community can lead to poor estimates for parameters

π and ρ, and slow convergence of the RJMCMC to the

posterior distribution.

There are a number of possible ways to initialise

c(t0), the initial community membership. The simplest

approach is to model the initial state using a static SBM

to identify the initial block assignments. Given that a

single snapshot of the ARSBM is informative about π

but contains no information concerning ρ, this works

well if the πks (k = 1, 2, . . . ,K) are significantly differ-

ent from π0. However, this approach fails if ρ is the pri-

mary determinant of block membership. Therefore, we

propose and use throughout a robust approach based

on clustering nodes using a distance metric. An alter-

native clustering using a Poisson SBM on the distances

was also considered. In this case, the network snapshots

were projected onto a matrix Md with Md
ij = d(i, j) for

each of the distances introduced in this section. Next,

an SBM with Poisson emission distribution was fitted to

each Md to yield an initial assignment of nodes to com-

munities labelled cd. Finally, the assignment with the

highest likelihood (under the Poisson SBM) was chosen

for the initialisation. The results for using a Poisson

SBM are similar to the proposed clustering method;

however, the clustering procedure is faster to compute.

The distance between two nodes is the weighted av-

erage of two measures. Firstly, d1(i, j) is the fraction of

time that eij(·) is observed in the “on” state in the set of

snapshots. Secondly, d2(i, j) is the number of times that

eij(·) changes state in the set of snapshots. In essence,

d1 is a measure for π and d2 is a measure for ρ. The

metric d is then a weighted average of these two dis-

tances as given in (19).

d(i, j) = γd1(i, j) + (1− γ)d2(i, j) (19)

For networks where the community structure is more

apparent in the ratio of edges within a community com-

pared to the ratio of edges between communities, then

setting γ = 1 in (19) gives a distance measure based

only on this ratio. However, for networks where the

community structure is embedded in the rate of tran-

sition of edge states, then γ = 0 is a more appropriate

choice. This distance will work well in networks with

disassortative community structures, since nodes which

are less likely to be connected are close under this mea-

sure. Since no assumptions are made on the assortivity

of a network, the distance used should not be fixed to

one type of assortivity. A further three distances are

used to measure the similarity of two nodes. All four

distances are given in (20).

d11(i, j) = γ11d1(i, j) + (1−γ11)d2(i, j)

d10(i, j) = γ10d1(i, j) + (1−γ10)(1−d2(i, j))

d01(i, j) = γ01(1−d1(i, j)) + (1−γ01)d2(i, j)

d00(i, j) = γ00(1−d1(i, j)) + (1−γ00)(1−d2(i, j))

(20)

These distances are suited to different types of commu-

nity structure. Firstly, d11 will minimise the distance
between nodes in the same community in a network

which is disassortative in both the fraction of edges

and the number of times edges change state. Such net-

works have few edges between nodes in the same com-

munity, but such edges are persistent across time. Next,

d10 will minimise the distance between nodes in the

same community in a network which is disassortative

in the fraction of edges and assortative in the number

of times edges change state. Such networks have few

edges between nodes in the same community and such

edges change often. By contrast, d01 will minimise the

distance between nodes in the same community in a

network which is assortative in the fraction of edges

and disassortative in the number of times edges change

state. Such networks have more edges between nodes

in the same community and such edges are persistent

in time compared to edges between communities which

are fewer in number and change more frequently. Fi-

nally, d00 will minimise the distance between nodes in

the same community in a network which is assortative
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in both the fraction of edges and the number of times

edges change state. Such networks have more edges be-

tween nodes in the same community compared to edges

between communities which are fewer in number, how-

ever the edges between communities are more persistent

than edges within communities.

Using these distances, the k-means algorithm (Lloyd

1982) can be used to cluster the nodes. A good cluster-

ing should separate nodes which are in different com-

munities. Based on this idea, the k-means algorithm

aims to put nodes which are far apart under d into dif-

ferent communities. As a result, a measure for a good

clustering is the ratio R of squared distances between

nodes in different communities to the total squared dis-

tance between all nodes. The higher this ratio, the more

separated the clusters are.

To set the initial community assignments c(t0), the

network is measured using each of the distances in (20).

Each γ parameter is set by maximising R for each d by

clustering the nodes using k-means. This gives four clus-

tering which are respectively optimal under each dis-

tance. The clustering used to initialise c(t0) is then cho-

sen as the clustering which maximises R among these

four clusterings. This procedure is very quick compared

to the RJMCMC sampling scheme.

5 Simulation study

In order to assess the performance of the RJMCMC

sampler, we conducted a simulation study over a range

of parameter combinations. There are eight parame-

ters which we varied and for each parameter we con-

sidered two settings (Low, High) giving 28 = 256 pa-

rameter combinations. The parameter combinations are

the number of nodes N , the number of communities, C,

the size of each community nc, the expected number of

changes E[M ] (the rate of nodes moving λ) and the

community parameters π and ρ. For the community

parameters, we set all the within-community parame-

ters to be the same, that is, for all i, j = 1, 2, . . . , C,

πi = πj and ρi = ρj . The parameter values are given in

Table 1. For equal community sizes, N/C nodes were

placed in each community. The sizes of communities for

other simulations are given in Table 2. We ran simula-

tion for all parameter combinations with the exception

of πk = π0 and ρk = ρ0, where the resulting network is

indistinguishable from a dynamic Erdös-Rényi random

graph (a stochastic block model with only one commu-

nity). This yielded 192 simulated data sets, each con-

sisting of 30 snapshots of the network equally spaced in

time.

The RJMCMC described in Section 3 was applied to

each simulated data set for H = 20, 000 steps. The prior

Table 1 Parameter settings for simulation study.

Parameter Low High

N 72 120
C 3 6
E[M ] 0.3N 1.0N
πk 0.1 0.5
π0 0.1 0.5
ρ0 0.2 1.2
ρk 0.2 1.2
nc Equal Unequal

Table 2 Number of nodes per community for nc = unequal.

N C = 3 C = 6

72 12, 24, 36 7, 9, 11, 13, 15, 17
120 20, 40, 60 10, 14, 18, 22, 26, 30

distributions for λ, π and ρ were set as Gamma(1,1),

Beta(1,1) and Gamma(2,1) respectively. The algorithm

was initialised with no changepoints (M = 0) and the

first 1000 steps were removed as burn-in. Trace-plots of

the parameters showed that the burn-in was sufficient

and test runs of 50,000 steps on a subset of the data

sets gave similar parameter estimates, indicating that

20,000 steps is sufficient.

In order to assess the performance of the RJMCMC

algorithm the modal values, a 95% credible interval and

mean absolute percentage error against the true value

(MAPE, see (21)) are computed for each of the param-

eters π, ρ, λ and τ . The MAPE of an estimate E from

true value T is given by:

MAPE(E, T ) =

n∑
i=1

|Ei − Ti|
|Ti|

(21)

Additionally, to assess the estimation of commu-

nity assignments c(t), the v-measure (Rosenberg and

Hirschberg 2007) was computed. V -measure is a score

between 0 and 1 given to a clustering of a data set where

true class labels are available Rosenberg and Hirschberg

(2007). It is an information theoretic measure based on

the harmonic mean of two different scores: homogene-

ity and completeness. A clustering is considered homo-

geneous if it assigns only those data points that are

members of a single class to a single cluster, whereas

a clustering is considered complete if it assigns all of

those data points that are members of a single class to

a single cluster. The v-measure lies in the interval [0,1]

with a v-measure of 1 denoting perfect reconstruction

of the classes. Alternative metrics such as the Adjusted

Rand Index (ARI) can also be used for assessing com-

munity assignment.

The v-measure Viht was computed for each data set

i = 1, . . . , 192 at each time point t = 1, . . . , T for each
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step h = 1001, . . . , 20, 000 of the sampler. The mean

v-measure vi =
∑
h

∑
t Viht/(HT ) was computed for

each data set by averaging over time and sampler step.

Across all sampler runs, vi has mean 0.9131 and me-

dian 0.9294 with inter-quartile range [0.8856,0.9548].

Similar results were found using the ARI which had

mean 0.9079, median 0.9404 and inter-quartile range

[0.8644,0.9945]. The lowest v-measure was 0.6476, ob-

tained for a data set with π0 = πk = 0.1 and ρ0 = 0.2

and ρk = 1.2. This is a difficult data set for the sam-

pler since the probability of seeing a given edge at any

time is 0.1 and all the information on the community

structure is encoded in the parameter ρ.

Although λ was estimated well in every simulation

(the true value was in the HPD interval), the number

of changepoints was sometimes underestimated. This

generally occurred because changes close to the start

or end of the observation period or that occur close

to another change are difficult to detect, a well-known

feature of changepoint problems. In such cases the sam-

pler is performing model selection by selecting a more

parsimonious model than the one simulated from. For

example, in the simulation with combined v-measure of

0.6476, the change in community memberships of nodes

26 and 63 are missed at times 1.26 and 2.03, respec-

tively, and instead the sampler assigns the community

they move to as their initial community. Such an early

change is thus difficult to detect but may not be impor-

tant since the important structure (i.e. the community

membership after time 2) is still captured. A similar

boundary effect is present for changes late in the obser-

vation period.

Finally, we investigated in more detail how the algo-

rithm scales with the amount of data (N = 50, 100, 150;

T = 20, 40, 60) and number of blocks (K = 2, 4, 6). The

RJMCMC sampler run-time per iteration scales linearly

with the number of snapshots and quadratically in the

number of nodes which is to be expected as doubling the

number of nodes quadruples the number of potential

edges to evaluate. The number of blocks in the model

appears to have a negligible effect on the run-time of the

algorithm. For a fixed number of iterations the effective

sample sizes of the MCMC output decreases slightly as

N and T increase. Therefore, the main additional com-

putational cost from analysing larger data sets is the

larger likelihood calculations required.

6 Application: Communities of mice

In this section we apply the RJMCMC sampling scheme

to a data set of mice contacts presented in Lopes et al

(2016b). We aim to show how the algorithm can iden-

tify changes in community structure of this dynamic

network. In this study, 90% of a population of 257

mice were observed for a period of 54 days (Lopes et al

2016a). Each nest box was fitted with a sensor which

recorded when two mice were cohabiting. The data were

presented as aggregates of time spent in close proximity,

mainly collected every other day but with some obser-

vations collected every third day. We use the data by

setting the edge Yij(ts) to 1 if mice i and j had any

contact on observation day ts. Since the mice sleep in

nests and are social animals, it is hypothesised that

the contact network will show community structure. In

Lopes et al (2016b) the authors stage an intervention

in some of the subjects by treating them with either

lipopolyaccharide (LPS) or a placebo saline injection.

It is hypothesised that treatment with LPS makes sub-

jects more introverted and thus less likely to contact

other subjects. The authors found that the treatment,

when compared to placebo injections, reduced the de-

gree to which mice interacted with others. We ask if the

mice change their community structure, hypothesising

that the treated mice may change community member-

ship.

A preliminary analysis (Lopes et al 2016b) shows

that the network is split into some disconnected com-

ponents. We take a subset of 107 mice to form a sub-

network. This sub-network contains some almost dis-

connected components with some connections between

components. This sub-network contained 12 mice who

received the active treatment and 17 mice treated with

a placebo. The remaining mice received no treatment.

Initial clustering of subjects was performed using

the distance d11 in Equation (20). This measure is used,

since there is prior knowledge available that the commu-

nities are assortative. The value for γ11 found was 0.999

so this indicates that only the density of edges within

groups was needed to determine the initial community

structure. To determine the number of communities,

K, we consider the between-sum-of-squares (BSS) and

total-sum-of-squares (TSS) ratio RK = BSSK/TSSK .

The BSSk is the sum of the squared distances in the k-

means clustering for all nodes in different communities,

whereas TSSK is the sum of squared distances between

all node pairs. A higher value of RK means the commu-

nities are better separated and as K increases, this mea-

sure RK tends to one. Using an elbow plot in Figure 2

for RK , we chose an analysis based on five communi-

ties, since five is the point where increasing the number

of communities, K, does not substantially increase the

separation between communities as measured by RK .

However, we also include a sixth community with pa-

rameters clamped at zero. This allows for the analysis

to model mice which leave the nest for a period of time.
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Fig. 2 Elbow plot for determining the number of communi-
ties with which to initialise the sampler.

We ran the RJMCMC sampler for 50,000 iterations

discarding the first 10,000 as burn-in. This allows the

number of changes to become stable, since the sam-

pler starts with zero changepoints. The estimates for

the community parameters are given in Table 3 with

around 50 changes in community membership. Trace-

plots are available in the supplementary material. No-

tice that π0 is low, showing that the communities are

mainly disjointed. Contacts in communities 1, 2 and 5

are more likely than contacts in communities 3 and 4

with similar behaviour within these two groups. Note

also that ρ is in the range (0.4, 0.6) for all communi-

ties giving a similar degree of autoregressive behaviour

in the contact process for all mice. The higher value

of ρ0 corresponds to a more rapid turnover of contacts

between mice in different communities, as one would

expect.

Figure 3 shows the a posteriori most probable com-

munity membership through time for each mouse. The

communities are coded by hatching, with the shading

type z used at point (x, y) representing the highest pos-

terior probability at time x of mouse y belonging to

community z. The mice detected to have changed com-

munity were mainly mice which were absent from the

nests over a short period. Such mice were detected to

join the community labelled 6 in Figure 3. However, a

few mice are more active. For example, the mouse with

ID 97 leaves the nest from group 5 for some time then

returns to group 4 and then leaves the nest again. For

each of the 107 mice, we present plots of the poste-

rior probabilities of a mouse belonging to each of the 6

communities over time in the supplementary material.

For comparison, the dynamic SBM (dynSBM) of

Matias and Miele (2016) was fit to the same data. In

this model, the nodes act independently and move be-

tween blocks via a discrete-time Markov chain. This

gives similar dynamics for the nodes as for the ARSBM.

The key difference is in the modelling of the edges. Un-

der dynSBM, given the block memberships of the nodes,

the edges are treated as independent Bernoulli random

variables. Applying the dynSBM to the mice data set

yields similar memberships to those found using AR-

SBM, as seen by comparing Figures 3 and 4. The mean

parameter estimates for the dynSBM are given in Ta-

ble 4 with some differences observed in the estimates

of βk and πk, the probability of an edge existing be-

tween two nodes in community k in dynSBM and AR-

SBM, respectively. This is particularly the case for com-

munities 1 and 2, reflecting the significant changes in

community membership seen in the dynSBM between

these two communities. The dynSBM method estimates

283 changes, more than five times the mean number of

changes estimated using the ARSBM, with the latter

maintaining a more consistent and coherent community

structure.

Finally, we see no evidence that treating mice with

LPS affects community structure of the network, (ex-

cept by leaving the network). Even though mice are

found to interact less by Lopes et al (2016b), those in-

teractions are likely to be with the same group of mice.

Table 3 Parameter estimates for the mice community data
set.

variable 5% mean 95% s.d.
M 49 52.57 56 2.0843
λ 0.0010 0.0019 0.0030 0.0006
π0 0.0003 0.0004 0.0005 0.0001
π1 0.6799 0.6994 0.7182 0.0118
π2 0.6111 0.6660 0.7189 0.0328
π3 0.4152 0.4349 0.4547 0.0121
π4 0.4331 0.4473 0.4609 0.0084
π5 0.6616 0.6821 0.7007 0.0119
ρ0 1.1489 1.3164 1.5059 0.1092
ρ1 0.4740 0.5138 0.5556 0.0248
ρ2 0.3420 0.4104 0.4893 0.0453
ρ3 0.5256 0.5650 0.6054 0.0244
ρ4 0.3915 0.4077 0.4246 0.0102
ρ5 0.6265 0.6851 0.7429 0.0357

7 Concluding remarks

In this paper we have introduced an autoregressive,

continuous-time version of the stochastic block model
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Fig. 3 ARSBM: Maximum a posteriori community member-
ship of each mouse through time. Community labels are: 1 -
red, 2 - yellow, 3 - green, 4 - sky blue, 5 - dark blue, 6 - purple.
These labels match the parameter labels in Table 3.

Table 4 Parameter estimates for the mice community data
set from the dynSBM (β) and ARSBM (π, ρ).

k βk πk ρk
0 0.0948 0.0004 1.3164
1 0.3645 0.6994 0.5138
2 0.7301 0.6660 0.4104
3 0.6415 0.4349 0.5650
4 0.5610 0.4473 0.4077
5 0.7602 0.6821 0.6851

and an effective RJMCMC algorithm to sample jointly

from the posterior distribution of the parameters and

the number and location of individuals’ changes in com-

munity membership. The Markovian nature of the AR-

SBM makes it flexible and allows the model and RJM-

CMC algorithm to be trivially applied to irregularly ob-

served data or data with gaps in the collection process,

both of which are challenging problems for discrete-time

models. The effectiveness of the RJMCMC algorithm is

demonstrated through the simulation study with excel-

lent detection of the changepoints in community mem-

bership. There are a number of exciting avenues for

future research opened up by autoregressive stochas-

tic block models. Firstly, whilst the initialisation pro-

cedure for community allocation worked well in the ex-

amples in this paper, alternative clustering algorithms

could be considered, especially by estimating the com-

munity structure throughout the observation interval.

This would enable the insertion of changepoints into

the model at the start of the RJMCMC algorithm to
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Fig. 4 dynSBM: Trace for community membership of each
node. Community labels are: 1 - red, 2 - yellow, 3 - green, 4
- sky blue, 5 - dark blue, 6 - purple. These labels match the
parameter labels in Table 4.

reduce the potentially lengthy burn-in period. Secondly,

it would be useful to allow the number of communities

to be an unknown parameter which possibly varies over

time. This would avoid the use of ad hoc methods such

as an elbow plot to choose the number of communities

and, more interestingly, allow the number of communi-

ties to vary through time, with the possibility of large

global changes when communities split or merge. Fur-

ther possible extensions include covariate information

on edges or nodes and weighted edges. Both of these

present challenges in efficient evaluation of the likeli-

hood as in this paper we have been able to exploit the

binary state of edges classified solely by the community

membership of the nodes.
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