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“The road goes ever on and on, 

Out from the door where it began. 

Still round the corner there may wait, 

A new road or a secret gate, 

And though I oft have passed them by, 

A day will come at last when I, 

Shall take the hidden paths that run, 

West of the Moon, East of the Sun.” 

JRR Tolkien 
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Abstract 

The work in this thesis focuses on improving the light output of room temperature emitting 

materials, and nanostructures as a stepping stone for use as single photon sources.   

The primary nanostructures studied are III-V based type-II emitting quantum dots/quantum rings 

(QDs/QR’s), which emit at telecom wavelengths either in the O-band (GaSb/GaAs QRs) or the C-

band (InAs/GaAs QDs capped with GaAsSb).  Individual exciton emission at low temperature was 

observed in these samples using micro-photoluminescence for what we believe is the first time.  

This was achieved by reducing the excitation area of the sample using micropillars and gold 

aperture masks, combined with increasing the extraction efficiency of light using a solid immersion 

lens. The observation of individual exciton emission enabled their contribution to the power 

dependent blueshift of type-II quantum dots to be studied. 

The integration of the InAs/GaAs QDs with silicon was explored by studying their emission when 

they are grown on both GaAs and silicon substrates. Studies such as this are an important step 

towards integrating QDs with on-chip communications.  

Finally, solid immersion lenses formed from a UV-curable epoxy are explored as a method for 

increasing light out of 2D materials. It was found that for Tungsten Diselenide (WSe2) the solid 

immersion lens increased the intensity of the emitted photoluminescence, as well as preventing the 

monolayer from degrading. This method could prove to be an excellent method for increasing the 

light output of 2D material based LED’s, especially WSe2 based single photon sources.   
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1 Chapter 1 

Introduction 

1.1 Quantum and Classical light 
Technologies involving the generation of light are becoming increasingly important in our everyday 

lives. We rely on telecom lasers to transfer our data, when we want to access the internet1,2, energy 

efficient LEDs to light our homes3,4 and recently organic/2D materials are enabling ultra-thin 

flexible LED’s and smart phone screens5,6. All these examples are classical light sources; they emit a 

large number of photons which can be considered as a classical wave, with a higher intensity 

corresponding to the square of the amplitude of the wave increasing.  

Quantum light sources by contrast are sources that can emit photons in a controlled way such that 

the individual particle-like nature of the photon becomes observable. This can lead to many 

interesting effects that arise from being in a quantum state such as superposition and entanglement. 

Many of these effects have interesting future applications in quantum information processing with 

revolutionary technologies such as quantum computing7-9, and quantum cryptography10,11  recently 

receiving heavy research interest12. Quantum cryptography is an especially important application as 

schemes such as quantum key distribution (QKD) can help to make communication 100% secure13, 

which is a step towards reducing cybercrime. At the time of writing, the previous year (2016) 

showed a record 40% increase in data breaches in the USA alone14, with 2017 being already on-track 

to surpass it15. As a result, the worldwide spending on digital security software and services for that 

year was estimated at over $73.7 billion, and is expected to rise to $90 billion by 2018. Quantum 

cryptography can help to play a role in reducing this expenditure, making it an important 

technology to develop. 

 

1.2 Single photons 
An efficient single photon source (SPS), i.e. a light source that can produce a stream of individual, 

and indistinguishable particles of light one at a time; is essential for quantum cryptography 

applications such as QKD. These are relatively more difficult to create compared to a classical light 
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source; and to be successfully used in an application like QKD several requirements must be met. 

The first is that a SPS is deterministic, producing an on-demand series of photons in an easily 

controllable manner. A true single photon source when prompted by the user should also have a 

100% chance of outputting a single photon but a 0% chance of producing either multiple photons or 

no photons. Another requirement is that every photon is indistinguishable from the next, allowing 

quantum interference between two or more photons to occur16,17. For any useful implementation of 

QKD, it is essential for the SPS to have a high photon repetition rate, hence allowing high key 

distribution bit rates, even at large distances where bit losses are inevitable. 

As well as the primary requirements for a SPS discussed above there are other factors that must be 

considered to enable their large-scale implementation, such as the cost and size. A SPS that operates 

at low temperatures for example will inevitably be expensive and bulky due to it requiring a 

dedicated cooling system. A less perfect single photon source which can operate at room 

temperatures may in some implementations become a more viable alternative. The compatibility of 

the SPS with silicon and telecom fibres is also important to enable integration into modern 

communication systems.  A silicon based SPS operating at telecoms wavelengths is easy to 

manufacture due to how established the silicon industry is, and would as a result remove multiple 

market barriers for QKD and other quantum information based technologies. 

Single photon sources are not just valuable for quantum information processing. They are important 

in metrology enabling better standards of detectors, and enhancements in optical measurements18. 

They are also useful for low light sensing in fields such as surveillance, medical imaging and 

astronomy19. Additionally, entangled photons can create interference patterns with resolution 

higher than the diffraction limit of classical light, enabling super-resolution imaging and 

lithography20,21. 

 

1.2.1 Types of single photon sources 
The most common, and arguably the easiest way to create a SPS is by attenuating a pulsed laser 

beam sufficiently, so that on average the number of photons in the pulse is < 1. This has the 

advantage of being very cheap and easy to manufacture. However, because the emission 

characteristics of an attenuated laser pulse exhibits a Poissonian distribution, there is a probability 

that a prompted pulse of light will contain more than one photon or no photons. In applications like 

QKD this is often unacceptable as a pulse having more than one photon makes the scheme 

vulnerable to number splitting attacks22. This limitation can be overcome using decoy states, and 

attenuating the laser beam more heavily, however both of these methods significantly reduce the 

bit-rate. Lasers can also be used in parametric down conversion to create 2 photons, with one 
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photon being measured to herald the existence of the other. However, this also suffers from low bit 

rates due to a low generation efficiency and large losses.23 

An ideal source of single photons would be a single trapped atom; however this is a fairly 

impractical SPS to commercialise due to the cost, and complexity involved in building and operating 

an atom trap24. The emission of a two-level system, with significant confinement of electrons could 

be considered an “artificial atom.” In a semiconductor, these atom-like optical conditions can be 

created by growing what is known as a Quantum dot (QD)25. Quantum dots have thus received 

significant research interest and InAs QDs especially have been shown to be very effective single 

photon emitters25-29. However, these QDs only emit at low temperature, meaning that any practical 

single photon source using these requires a cryostat. Furthermore, they are not easily integrated 

into silicon and they do not emit at typical telecoms wavelengths. Therefore, growing and isolating 

room temperature emitting QDs, that can operate at telecoms wavelengths and are easily integrated 

into silicon is an important avenue of research.  

 

1.3 Thesis Outline 
The work in this thesis focuses on improving the light emission of QDs and other QD-like emitting 

nanostructures that are capable of emitting at room temperature, as a stepping stone for use as 

single photon sources.  

It starts by studying a room temperature telecoms emitter (GaSb/GaAs QDs), and attempts to isolate 

individual excitons at low temperature. The thesis then looks at how InAs/GaAs QD based room 

temperature emitters, can be grown on silicon substrates, for better integration with silicon 

electronics. Finally, techniques for increasing the coupling of light into a system are explored using 

epoxy based solid immersion lenses. Increasing the internal efficiency of these emitters is also 

discussed in the further works section. The chapters covering these topics are outlined below: 

Chapter 2 introduces some of the general background to semiconductor physics, including 2D 

materials and exciton confining structures called Quantum dots (QD). The differences between type-

I and a type-II QDs are presented, and the possible mechanisms behind the power dependent blue 

shift observed in a type-II QDs spectra discussed. This chapter finally gives details on how light out 

of these semiconductors can be enhanced. 

Chapter 3 provides information on the different methods used for testing these semiconductors. The 

methods used to detect light emission, and image the surface of these samples are presented, along 

with information on their fabrication. Additionally, the fabrication of epoxy solid immersion lenses 

(SILs) onto 2D materials performed in chapter 6 is presented in this chapter. 



Chapter 1 – Introduction 

1-4 
 

Chapter 4 introduces GaSb/GaAs Quantum Ring’s (QRs), which are toroidal shaped QDs that emit 

in the telecoms O-band (1260-1360 nm). We use micro-photoluminescence combined with a glass 

SIL and a gold aperture mask to reduce the excitation/emission area and increase the collected light, 

enabling the observation of individual exciton emissions from the QRs. The individual exciton lines 

observed were then used to gain a better understanding of the power dependent blueshift observed 

in their macro-photoluminescence spectra. 

Chapter 5 introduces another type-II QD system, composed of InAs/GaAs QDs capped with GaAsSb. 

These samples emitting in the telecoms C-band (1530-1565 nm), and can be grown on silicon 

substrates making them ideal for on-chip telecoms. The effectiveness of the growth on silicon was 

analysed by comparing the active regions emission to that of identically grown QDs on a GaAs 

substrate. Individual excitons were isolated using micropillars, and their contribution to the power 

dependent type-II blueshift was analysed. 

Chapter 6 introduces a set of 2D materials which emit light called transition metal dichalcogenides 

(TMDs).  A novel approach involving epoxy based liquid formed SILs is used to increase the light 

extraction from these materials. These SILs were fabricated on-top of a flake containing a monolayer 

of WSe2 a TMD material known to show single photon emission30. Photoluminescence maps 

showing the enhancement of light emission due to the epoxy are presented, and the impact of the 

SIL on the monolayers rate of degradation explored. It then goes on to explore preliminary work 

involving plasmonic structures and selective dry etching method, that can be used in conjunction 

with the SIL to enhance 2D materials. 

Finally, chapter 7 concludes this work by summarising the results obtained in the previous chapters 

and highlights future directions of research for each emitter.  
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2 Chapter 2 

Background and Theory 

2.1 Semiconductor background 
This section addresses some of the key concepts in solid state physics that are important to 

understand when considering the light emission of a semiconductor.  

2.1.1 Introduction to semiconductor bands 
A semiconductor is a type of material that exists somewhere between an insulator and a metal 

(Figure 2.1), due to its small energy bandgap. This bandgap is a region of disallowed states, where no 

carriers can exist and consequently the density of states in the region is zero. To conduct electricity 

an electron needs to become unbound from its parent atom and move through the lattice, (i.e. move 

into the conduction band). In a metal, this is relatively easy as the valence and conduction bands 

overlap, so electrons in the top of the valence band are free to move. In an insulator, the conduction 

and valence bands are separated by a very large bandgap and electrons need a lot of energy to jump 

the gap leading to a negligible population of the conduction band even at high temperatures (e.g. 

room temperature) preventing any type of conduction. Semiconductors are somewhere in between 

these extremes, they have a small bandgap (typically around 1 eV)1, which means that electrons 

require only a small amount of energy to jump into the conduction band.  

The dashed line in Figure 2.1 illustrates the Fermi level; this represents the energy which has a 50% 

chance of being occupied when the system is in thermodynamic equilibrium. The semiconductor in 

Figure 2.1 has its Fermi level in the centre of the bandgap which illustrates that it is intrinsic. The 

Fermi level can be moved via the use of doping (intentionally adding an impurity into the crystal) so 

that it moves closer to either the valence or conduction band. This arises from the dopant material 

having a different number of electrons to the surrounding material. When interacting with the bulk 

crystal it either donates an electron moving the Fermi level closer to the conduction band, or 

accepts an electron moving the Fermi level towards the valence band. This repositioning of the 

Fermi level can greatly affect the electrical properties of the sample, a Fermi level close to the 

conduction band will allow electrons to easily populate the conduction band and is known as an n-

type semiconductor, whereas a Fermi level close to the valence band makes it more likely the upper 
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states of the valence band will be empty and is known as a p-type semiconductor. Two of these 

different types of semiconductors placed next to each other is what is known a pn junction, and is 

widely used in electronics to electrically excite structures by getting electrons to flow from the n-

type to the p-type.  

 

Figure 2.1: A simplified diagram showing how the valence and conduction bands vary with respect to metals, 
semiconductors and insulators. 

 

2.1.2 Fermi-Dirac distribution  
Electrons can be excited across the bandgap in a semiconductor at zero kelvin by gaining energy, 

which can be done either via electromagnetic radiation or via electrons being electrically injected 

into the conduction band. However, as the temperature increases there is a higher probability that 

electrons can be thermally excited across the bandgap and thus can populate the conduction band. 

This probability can be described using the Fermi-Dirac function F(ε), which describes the 

probability that an individual electron will exist in an energy state at a given temperature (T), and is 

given in the following equation (2.1), where ε is the electron’s Energy, εf is the Fermi energy and k is 

Boltzmann‘s constant: 

F(ε) =  
1

e(ε−εf) kT⁄ +1
       (2.1)  

This function is shown by the dashed green line in Figure 2.2, where at low temperature it exists up 

to the Fermi level only, meaning that the probability of an electron existing below the Fermi level is 

1 and above zero. At higher temperatures, the Fermi function shifts and a small amount of it exists 

in the conduction band, meaning that a small fraction of the electrons in the crystal can bridge the 

energy gap (this proportionally reduces the amount in the valence band as there are only a finite 

number of electrons). The implications of this is that an intrinsic semiconductor at zero kelvin acts 
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as an insulator as it contains no free electrons. However at temperatures just under the materials 

melting point the same semiconductor will act like metal with a high number of electrons existing 

in the conduction band. This effect is especially important when optically characterising a 

semiconductor that emits light, as measurements often must be performed at low temperature to 

ensure that only the area excited can have carriers in the conduction band. This helps to resolve the 

emission from the conduction bands lowest energy states, due to them not being filled by thermally 

excited electrons. 

 

Figure 2.2: Band diagram illustrating the Fermi function (F(ε)) at both low temperature and 
a high temperature. 

 

The Fermi function gives the probability of an electron existing in a state, however the actual 

population N(ε) also depends on the density of states ρ(ε), and can be calculated by the following 

product: 

𝑁(𝜀)𝑑𝜀 =  𝜌(𝜀)𝑓(𝜀)𝑑𝜀  (2.2) 

This means that despite having a probability of being in the bandgap no carriers will exist there due 

to the density of states in the bandgap being zero at those energies (shown in Figure 2.2 as hashed 

green).   

2.1.3 Direct and indirect semiconductors 
The band diagrams given up to now have been highly simplistic, however in reality they are a lot 

more complex. A crystal lattice is a regularly repeating structure with translational symmetry, 

meaning its properties will be invariant across the entire lattice. This can be modelled by 
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considering the reciprocal lattice, which describes the relative angle and distance of each point of 

the real lattice in terms of a wavevector. The volume inside the reciprocal lattice is known as the 

Brillouin zone and is the elementary building block of the reciprocal lattice, all waves that pass 

through the crystal can be described by how they interact within this zone1.  The Brillouin zone 

contains multiple bands, however for the case of optical emission discussed in this thesis, only the 

shape and position of the conduction and valence band around the energy gap is important.  

If a semiconductor has a valence band (VB) maximum and conduction band (CB) minimum in the 

same position in k-space it is said to have a direct bandgap. This means that an electron excited with 

a photon of energy ħω ≥ Eg will be promoted into the conduction band as shown in Figure 2.3a. If 

the valence and conduction band are offset from one another in k-space like in Figure 2.3b, then the 

semiconductor is said to have an indirect bandgap. A photon in the visible wavelength range has a 

wavevector an order of magnitude lower than the typical momentum of an electron near the 

valence band edge2; therefore the photon cannot promote an electron into the conduction band, as it 

does not have the momentum required (Δk). For an electron to undergo a successful indirect 

transition it requires momentum from an additional source, which in a lattice is most easily 

provided by a phonon. This is a quasiparticle that propagates through lattice vibrations, and 

provides the primary mechanism of heat propagation in a lattice. Phonons of high wavevector are 

common in a lattice even at low temperatures due to phonons having relatively small energies 

compared to the bandgap (0.01-0.03 eV)1. Even so the probability that a photon collides with a 

suitable phonon, or produces a phonon with the correct wavevector to undergo an indirect 

transition is a lot lower than a direct excitation. This has a large impact on the absorption of light, 

with indirect semiconductors having a large dependence on temperature, due to their transitions 

being heavily dependent on the availability of phonons of the suitable wavevector. 

 

Figure 2.3: (a) A direct bandgap semiconductor (e.g. GaAs) undergoing a direct transition via absorption of a 
photon (ħω). (b) An indirect bandgap semiconductor (e.g. Si) undergoing an indirect transition enabled by the 

interaction with a phonon (Δk). 
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The light emission of a semiconductor is also heavily influenced by the band structure. The 

probability that an electron will recombine in an indirect bandgap semiconductor is lower than that 

of a direct bandgap, due to the difference in momentum between the electron and the hole (holes 

are explained further in section 2.2.1). This increases the lifetime of the excited state, making the 

light emission of an indirect bandgap material a lot weaker than a direct one. This accounts for one 

of the main reasons why direct bandgap semiconductors such as GaAs are generally more 

preferential to use as light emitters over indirect semiconductors such as silicon.  

 

2.2 Artificial Atoms 
Since atoms contain electrons confined in orbital shells they are very particular in the light they 

emit when excited. Electrons can only exist in a few allowed states meaning that when they relax to 

ground state they only release photons of distinct frequencies, a good example of this is the 

hydrogen spectral series. An individual atom is an excellent source for single photons, however it is 

not a very convenient emitter, as isolating individual ones require large, expensive atom traps3. It 

would be ideal if a light source like an atom could be made, which could be easily integrated into 

modern technology like a silicon based chip. This section thus describes how atom like emitters, 

(aka artificial atoms) can be formed in a semiconductor by manipulating its band structure to create 

confinement akin that seen in an atom. 

2.2.1 Excitons 
When electrons are excited out of the valence band they leave behind a hole in the valence band’s 

sea of electrons. Electrons in a lattice balance the positive charge of the nuclei due to their negative 

charge, however the absence of an electron (aka a hole), leaves a net positive charge in the holes 

location due to the electron no longer screening the nuclei. Holes can therefore act like a positively 

charged particle and can move through the lattice and respond to electric fields in a similar way to a 

positron. When electrons and holes are produced they feel a mutual coulomb interaction due to 

their opposite charges, this binds them together creating a 2-body quasiparticle called an exciton. 

In the formation of excitons, the mutual coulomb attraction places the electron and hole into a 

lower energy state than if they were free. This binding energy effectively lowers the energy needed 

to excite excitons relative to free electrons and holes, causing new levels to form in the energy gap 

just below the conduction band, which are offset from the conduction band edge by the binding 

energy (BEExciton) as shown in Figure 2.4.  

Excitons can move through the crystal like a particle and thus can act as a method of energy 

transportation. This is very important for the optical properties of the semiconductor as excitons 
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formed at one location can migrate through the lattice and recombine elsewhere. A structure 

embedded underneath the surface of a semiconductor can still be excited by shining light on the 

surface, which creates excitons that migrate to the structure before they recombine. Quite often this 

type of excitation is performed using light with a higher energy than the bandgap of the embedded 

structure, so the exciton can “fall” into it via a non-radiative process.  

 

Figure 2.4: Band diagram showing the formation of an exciton with a binding energy (BEexciton) . 

 

Excitons are charged neutral complexes meaning that although they are charge neutral and only 

transport energy, they can still weakly interact with other objects that possess charge which can 

include other excitons. This can lead to the formation of more complex excitons such as charged 

excitons known as trions which are excitons bound with either an additional electron/hole (eeh or 

ehh), and biexcitons, which are two neutral electron-hole pairs bound together (eehh). 

Electron-hole pairs excited in a semiconductor are known as Wannier-Mott excitons. They are 

weakly bound together with radii larger than the lattice spacing, due to a large amount of electric 

screening and the electrons tending to have a small effective mass (for more information on 

effective mass please refer to Kittel [1]). The exciton can be described in a similar way to a hydrogen 

atom with an electron orbiting a positively charged region (hole), thus the binding energy can be 

given by the following modified Rydberg equation (2.3):  

𝐵𝐸𝑒𝑥𝑐𝑖𝑡𝑜𝑛 =  
𝜇𝑒4

2ℏ2𝜀2𝑛2  (2.3) 

Where e = charge of an electron, ε = dielectric constant, n = principle quantum number, and µ = 

reduced mass, which can be calculated from the electron and hole effective masses i.e: 
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1

𝜇
=

1

𝑚𝑒
∗ +

1

𝑚ℎ
∗         (2.4) 

The implications of this equation are the formation of hydrogen-like states inside the bandgap 

which start to look more atom like, the state with the lowest energy (ground state) will occur when 

n = 1.  

2.2.2 Excitonic Confinement  
To create atom-like light emission it is essential to modify the density of states (DOS) so that the 

exciton can only exist at well-defined energies. This can be achieved in a semiconductor by creating 

an energy well for the exciton, which has a width approaching the electron-hole de-Broglie 

wavelength. As the width decreases and approaches the excitons Bohr radius, the exciton become 

increasingly confined and the electronic density of states splits from a continuum into discrete 

states. As well as the reduction in available energy states the bandgap is also effected, increasing as 

the size of the well decreases; this is an effect that is well described in quantum mechanics by a 

particle in a box4. Confinement can be applied in multiple dimensions to shrink the number of states 

available down, this is shown in Figure 2.5 where each reduction in dimension also reduces the 

density of states (D(E)). The most important of these is the quantum dot which confines the exciton 

in 3 dimensions and forces the DOS into a set of discrete delta functions. This is very similar in 

structure to the DOS of an atom, and there is a large degree of tunability with the exciton energy 

being dependent on the size of the quantum dot. 

 

Figure 2.5: Diagrams showing the density of states of a semiconductor when confined in various dimensions, 
the number to the right of the y-axis denotes the degrees of freedom that an electron can travel in, with a 

bulk semiconductor quantum well, quantum wire and a quantum dot.  

 

Confinement of excitons also helps to improve the emission of light at room temperature. In a bulk 

semiconductor at room temperature the phonon energy is sufficient to overcome the exciton 

binding energy, and pulls the electron and hole apart destroying the exciton. When confined 

however, the exciton has a smaller wave function, giving it an increased binding energy making it 

more difficult for phonons to destroy the particle. An additional effect of confining excitons is an 

increased generation of biexcitons/trions, due to the confining potential forcing excitons to interact 

with each other. Wheras this thesis mainly studies the confinement effects of quantum dots, it 
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should be noted that both quantum wells and wires can also be used in optoelectronic applications. 

Quantum wires can be especially useful due to them allowing a large density of states near the band 

edge. 

2.2.3 Quantum dots 
A semiconductor quantum dot (QD) is a type of heterostructure i.e. layers of two or more different 

semiconductors, grown in a common crystal. The quantum dot itself is a small island of a 

semiconductor (of the order of 10’s of nm for GaAs), with a smaller bandgap than the 

semiconductor surrounding it. They can be formed in multiple different ways such as quantum well 

etching5, site controlled epitaxial growth6,7, and self-assembled growth via the SK method8-12. Two 

examples of QD band structures are shown in Figure 2.6, and are based on real semiconductor 

systems explored in chapters 4 and 5. In type-I QDs the electron and hole wave functions are 

spatially aligned and the exciton (dashed purple line) can recombine using a direct transition. In 

type-II quantum dots the electron and hole are not spatially aligned meaning that the electron hole 

overlap is reduced compared to type-I QDs; this decreases the probability of exciton recombination 

making type-II QDs less bright. TEM images of both InAs/GaAs and GaSb/GaAs QDs can be seen in 

Figures 4.2 and 5.2.  

 

Figure 2.6: Simple band diagrams showing the two different types of quantum dots explored in this thesis, the 
electrons and their wave functions are shown in blue and the holes in red. 

 

The field of quantum dots is very broad and only a brief description is presented here, for a more 

detailed review of the subject the author recommends reading Bimberg, et al. [13] also Bimberg and 

Pohl [14]. 
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2.2.4 Properties of Type-II QDs 
In this thesis type-II QD structures are predominantly studied, and are well known to exhibit a 

strong blueshift in their emission energy with increased excitation power15,16.  The cause of this 

blueshift is not fully understood with coulomb charging17 state filling18 and band bending19 all being 

cited in the literature; each of these effects are summarised below: 

Band Bending: Band bending refers to the distortion of the band into a triangular shape at the 

interface between a nanostructure, and its surrounding material. This distortion arises due to the 

charge separation of carriers creating an electric field, which causes a small potential well to form at 

the nanostructures interface. The shift in the ground state of this well (ΔE ) is dependent on the 

carrier density (n) in the proximity of the nanostructures,  can be calculated using the following 

equation (2.5):15 

Δ𝐸 = (
ℏ

2𝑚
)

1
3⁄

(
9

8
𝜋)

2
3⁄

(
2𝜋𝑒2

𝜀0𝜀𝑟
)

2
3⁄

𝑛
2

3⁄   (2.5) 

m = effective electron mass, ε0 = permittivity of free space, εr = relative permittivity and e = charge 

of an electron. This equation means that changing the excitation and producing more carriers will 

alter the energy of the well, thus causing a shift in the emitted wavelength. 

State Filling: Due to the electrons and holes being spatially separated in a type-II system their 

lifetime in the QD before they recombine is relatively long compared to a type-I system. If the 

injection of carriers is faster than the recombination rate then electrons/holes will not be able to 

occupy the ground state in a confined structure due to the ground state already being filled with 

other carriers. When this occurs if the injected carriers have initially a significantly higher energy 

than the bandgap they will occupy higher energy states. If they radiatively recombine whilst in this 

state, they will produce a photon with higher energy than the bandgap.   

Coulomb charging: Electronic states of a semiconductor are very sensitive to charge due to 

coulomb interactions between electrons. When the number carriers increase, the coulomb 

interactions between the electrons increase as described by the Hartree approximation. This has a 

large effect on the charge of a type-II structure due to their carriers being spatially separated.  

In type-II structures only one carrier is tightly confined the other is either delocalized, or localized 

only by the mutual coulomb interaction between them. Taking GaSb/GaAs QRs studied in chapter 4 

as an example, the hole is tightly bound and forms a spatially indirect exciton state with the 

unbound electron. In a many body regime (lots of carriers) the hole-hole (Ehh) interactions will 

dominate the electron-hole (Eeh) and the electron-electron (Eee) interactions, due to the spatial 

separation of electrons and holes reducing (EEh) and the electrons delocalisation reducing (Eee). 

Based on equation 2.6 this leads to an energetic shift (ΔEex) when there is a change in the hole-hole 
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interaction17. This is different from type-I like structures where all the contributions to ΔEe will be 

roughly equal, due to the electrons and holes having a strong wave function overlap, and very 

similar confinement. 

∆𝐸𝑒𝑥 = 𝐸𝑒𝑒 + 𝐸𝑒ℎ + 𝐸ℎℎ                                                          (2.6) 

Hodgson, et al. [15] showed that the shift in energy can be considered a capacitive effect with each 

hole contributing to an increase in charge and thus an increase in energy i.e. ΔEhh∝ nh. They 

additionally state that (assuming the semiconductor stayed charge neutral) you can use the 

bimolecular recombination approximation to find a relationship between the intensity of the 

emission (I) and the corresponding carrier concentration. This leads to the following relationships: 

band bending ∝ I1/3 and coulomb charging ∝ I1/2. It is therefore expected that under high excitation 

powers coulomb charging should dominate. 

2.2.5 Quantum Yield 
An important term to understand when talking about the light emission of a material is the 

quantum yield (QY) of the system. This is simply the ratio of the number of photons emitted by the 

material compared to the number of photons it absorbed. This value is very important when 

considering the efficiency of a system and its worth as a light source, especially when considering 

single photon sources. A material with a high QY is less likely to de-excite non-radiatively, which 

makes it more likely a system will emit a photon when excited. This is very important for emitters 

like single photon sources, which for their applications such as QKD are required to be 

deterministic20. 

 

2.3 Light emitting 2D materials 
2D materials are generally made from crystals that are very strongly bonded in the same plane, but 

are only weakly bonded by van der Waal interactions to the layers above and below them. A good 

example of this is graphene which has sp2 hybridisation, which keeps all covalent bonds in the same 

plane. These different planes can stack together using van der Waals forces to form the common 

material known as graphite. The reduction of a bulk crystal down to a single atomic layer of the 

crystal, causes confinement of carriers similar to a quantum well (see section 2.2.2), giving 

remarkably different optical and electronic properties from their bulk counterparts21. Monolayer 

Transition Metal Dichalcogenides (TMD) are a set of especially interesting 2D materials that have 

recently seen an explosion of interest from researchers, due to them having a direct bandgap in the 

visible to near infra-red spectrum22-24. 
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2.3.1 Properties of TMD’s 
TMD’s have the formula MX2 where M = transition metal, and X = Chalcogen (Group VI in the 

periodic table). The bandgap of these materials change as they are reduced to just a few layers, 

materials like MoS2 can change from an indirect to a direct bandgap with the removal of just one 

layer. This is demonstrated in Figure 2.7, where from (a-c) very little change in the band structure is 

observed; however upon changing to a monolayer (Figure 2.7d) there is a significant change in the 

band edge which changes the lowest energy transition from indirect (dashed line) to direct (solid 

line). Additionally, TMD’s exhibit a range of interesting optical physics due to their strong exciton 

binding energy and large spin-orbit interaction that can heavily influence their optical spectra25-28.  

TMDs are additionally exciting because they can be integrated into silicon which can enable a wide 

range of innovative technologies. This can be achieved by directly exfoliating using adhesive 

tape29,30, chemically exfoliating with TMD flakes in solution24 or by directly growing onto the 

substrate using Chemical Vapour Deposition (CVD)31,32. TMDs can also easily be stacked on-top of 

each other to create multi-layered heterostructures33,34, enabling novel structures such as ultrathin 

LEDs34. Defects inside monolayer sheets have been shown as capable of emitting single photons at 

low temperature35, these defect layers can be integrated into a heterostructure and electrically 

excited36 opening up the potential of using these materials as a single photon source operating on 

silicon, a highly desirable property for applications such as quantum information processing. 

 

Figure 2.7: – Band structure of MoS2, which a solid arrow showing the lowest energy 
transition whilst in: (a) Bulk, (b) 4 layers, (c) Bilayer and (d) Monolayer.  Reprinted with 

permission from Splendiani, et al. [37]. Copyright 2017 American Chemical Society. 
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Enhancing light 
Light emitted from nanostructures is often insufficient for certain practical applications. A good 

single photon source for example requires an efficient flow of photons that have a high repetition 

rate, good efficiency as well as having a low multi-photon probability and being indistinguishable 

from each other. Quantum dots solve the issue of indistinguishability and prevent multi-photon 

events as only one exciton can exist in a QD state at a time. However, the frequency of the radiative 

emission and the probability that each pulse contains a photon are also essential especially in 

applications such as quantum cryptography, where a high transmission rate is required. There are 

however several strategies that can be used to improve light emission these are: 

• Increasing the internal quantum efficiency of the device, and therefore increasing the 

probability of an exciton undergoing radiative recombination, i.e. increasing the quantum 

yield. 

• Modifying the spontaneous emission rate so they can emit more photons per second (e.g. 

Purcell enhancement). 

• Increase the solid angle of light collected from the nanostructure into your optics (i.e. 

extraction efficiency), which helps to reduce the photons lost to the external environment.  

This section thus describes three different methods that use some of the strategies above to increase 

the light observed from a semiconductor nanostructure. 

2.3.2 The Solid Immersion Lens 
A Solid Immersion Lens (SIL) is a lens that can be placed on the surface of a semiconductor to 

effectively embed the light source within a higher refractive index medium than air; to increase the 

optical extraction efficiency. SIL’s are typically formed from high index glass38, and are placed 

directly on the surface to either enhance the resolution of the optical image, or increase the light 

being coupled out.  

Two different geometries of SIL have been predominantly studied; those with a hemispherical shape 

(h-SILs) and those with a Weierstraß shape (s-SILs)38 (shown in Figure 2.8). S-SILs have a higher 

magnification than h-SILs, scaling as the refractive index of the SIL squared ( n2) as opposed to a 

direct linear relationship for a h-SIL ( n). S-SILs also have the advantage of further increasing the 

light input/output coupling efficiency by being able to refract a higher number of rays at the SIL-air 

boundary, thus collecting/delivering more light to and from a device. The main disadvantage of an 

s-SIL is its strong chromatic aberration, as the increased height leads to more variation in the path 

length taken by different rays. This can be very problematic for good quality imaging of a device, 

but acceptable for low bandwidth emitters such as quantum light LED’s, for which getting the best 

extraction of light is essential.   
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Figure 2.8: Diagram showing the difference in shape between a s-SIL and a h-SIL. The red dashed 
lines highlight how a larger angle of emitted light is collected in the s-SIL relative to the h-SIL. 

 

Due to an s-SIL being wavelength dependent, the geometry often needs to be tuned so that the best 

coupling efficiency is reached.  For an embedded emitter like a quantum dot this can be achieved by 

using the following equation (2.7)39 where h = vertical height, r = radius, n(λ) = refractive index and 

X = distance from the base of the SIL to the emitter. 

h =  r ( 1 +
1

n(λ)
− X)  (2.7) 

The increase in collection efficiency of a SIL comes from reduction in reflection losses at the 

substrate-SIL boundary (KT), combined with a refraction at the SIL-air boundary (Kθ), as shown in 

Figure 2.8. The efficiency of an s-SIL positioned above an embedded emitter can be calculated using 

equation (2.8), where η = collection efficiency, NAobj = numerical aperture of objective, nSIL = 

refractive index of SIL, ns = refractive index of substrate39. 

η =  
1

2
[1 − √1 − (

NAobj nSIL

ns
)

2

]  (2.8) 

Using (2.8) and placing the values for the SIL used in chapter 4, we can calculate that the efficiency 

should increase from 0.8% to 2.7%. 

For the case of putting a SIL on a surface emitter such as a 2D material (as demonstrated in chapter 

6) the above equation (2.8) is no longer valid; as the TMDC thickness is much less than the 

wavelength of emission resulting in a negligible refractive index. The solid angle increase instead 

comes solely from the refraction that occurs at the SIL-air interface (Kθ), for this reason h-SILs will 

not increase the light output for a surface emitter placed in the centre as there will be no refraction. 
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A SIL with a height between that of an s-SIL and an h-SIL will have an enhancement at this 

interface. To calculate the enhancement due to Kθ, the angle of refraction at the SIL-air interface (γ) 

needs to be calculated as a function of the release angle of the light from the monolayer (θ). This is 

shown below in equation 2.9, where a is the minimum distance between the base of the SIL and its 

spherical centre (h-r), n1 is the refractive index of the SIL and n2 is the refractive index of the 

environment (unity for air), 

γ = sin-1 [
a

r
sin(θ)] - sin-1 [

n1a

n2r
sin(θ)] +θ                                         (2.9) 

This equation can be used to find the maximum angle of emission that can be coupled into the 

collection optics. A ray trace simulation is shown in Figure 2.9, highlighting the increase in the 

number of rays that can be launched into the collection optics with a SIL present on the surface. 

 

Figure 2.9: A simulation illustrating how rays from a surface emitter couple to a lens, with and without a solid 
immersion lens (SIL). The SIL increases the coupling efficiency of rays emerging from the emitter. The inset shows 

a magnified region surrounding the SIL. 

 

Glass SILs can be difficult to integrate into complex structures, due to their morphology often 

creating potential air gaps between the bottom of the SIL and the emitter, which reduces the optical 

enhancement. Glass SILs can also be challenging to permanently mount, physical mounts can be 

bulky and potentially reduce the SILs collection area40, whilst gluing methods such as the one used 

in the chapter 4 often create poor interfaces, due to the epoxy having a different refractive index. 

Furthermore, the process of mounting a glass SIL can risk damage to sensitive structures such as 

site controlled quantum dots6,7, and plasmonic structures41, due to the hardness of the glass.  
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SILs however can be formed out of other materials, Born, et al. [42], demonstrated that a SIL could 

be formed out of UV curable epoxy. In this paper, they use a thin needle to finely position then 

dispense a droplet onto their substrate, this can then be cured into a solid object without causing 

any damage to the surface. To create SILs of the correct geometry the dispensing environment is 

incredibly important. The needle must be immersed in a dense liquid phase medium to modify the 

interfacial surface tensions sufficiently to allow a droplet with a contact angle of 90 degrees or 

above to be produced43; this can later be fine-tuned using electrowetting to achieve the desired 

geometry. The flexibility of this method in varying the contact angle makes them ideal for use in 

semiconductor systems where short tuneable focal lengths are required, such as optical wireless 

imaging recievers44. This idea is expanded on in chapter 6 where epoxy based SILs are mounted onto 

2D materials. 

2.3.3 Purcell Effect 
One method of enhancing the light of an emitter is by modifying its’s rate of spontaneous emission 

otherwise known as the Purcell effect45. The rate of spontaneous emission for a light source in a 

weak coupling regime (γ) is given by Fermi’s golden rule, which states that it’s proportional to the 

final density of states (ρ(ω)) as shown in Equation (2.10)46.  

𝛾 =
2𝜋

ℏ2
|⟨𝑑. 𝐸⟩|2𝜌(𝜔)                                                           (2.10) 

Where |⟨𝑑. 𝐸⟩|2 represents the probability, there will be a transition and is a product of the dipole 

moment operator d and the electric field operator E. What this equation means is that by modifying 

the density of states around the dipole emitter (ρ(ω)), and positioning/aligning the dipole emitter at a 

local electric field maximum the spontaneous emission rate can be increased. The maximum 

achievable enhancement is defined as the Purcell factor (Fp) and is given in Equation (2.11), where 

the first bracket is a constant, the second gives the wavelength of light in the material, and the third 

bracket is the ratio between the quality factor (Q) and the mode volume (V) of the cavity. 

𝐹𝑝 = (
3

4𝜋2) (
𝜆0

𝑛
)

3
(

𝑄

𝑉
)                                                         (2.11) 

Semiconductor based Fabry-Pérot microcavities are a common example of the Purcell effect in 

action. In these structures an emitter is placed in the centre of a cavity with distributed Bragg 

reflectors (DBR’s) both above and below it. Both the cavity and the mirrors lengths are tuned to the 

wavelength of emission by λ/n and λ/4n respectively, this allows a resonance to form with an 

electric field maximum at the emitters location increasing the quality factor Q. This can further be 

improved by reducing the mode volume (V) by the formation of micropillars that confine the mode, 

in lateral dimensions47-50.  
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2.3.4 Plasmonic enhancement 
Surface plasmons are oscillations of electrons that can exist at the interface between two materials 

which can couple to light to form surface plasmon polaritons (SPP). For this to happen certain 

conditions of the material interface must be met51: 

1) The real part of the relative permittivity (or dielectric constant) of the material forming the 

surface (e.g. gold) must be of opposite sign to the space it is in (i.e. negative if it’s in air) for 

the wavelength of light incident on it. 

2) The magnitude of the permittivity in the surface (e.g. gold) must be greater than that of the 

space it’s in, to ensure the polaritons are bound to its surface. 

3) For surface plasmons, the propagation constant (commonly denoted as ß) must be greater 

than the wavevector of incident light (k). Therefore, in order to excite SPP’s, the wavevector 

k needs modifying, this can be achieved using a prism or a grating. 

This effect has many physical applications, the one relevant to this work is the enhancement of 

photoluminescence of surface emitters. There are two effects that cause this enhancement, the first 

is an increase in light absorption. This occurs when a pump laser’s light is resonant with a surface 

plasmon, causing an increase in the coupling of EM radiation to the local electric field52. If the 

emitter is close enough, the energy of the electric field can couple to the emitter through the near 

field effectively providing it with an increase in excitation, and thus a larger generation of electron-

hole pairs53. The second effect arises from the large electric fields causing a modification of the 

spontaneous emission rate via the Purcell effect. This increase in exciton recombination can lead to 

dramatic increases in the PL intensity, with enhancements from 2 – 28000 times the original 

intensity being reported52-54.   
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3 Chapter 3 

Experimental Methods and Techniques  

3.1 Optical Spectroscopy 
The core work performed in this thesis is the optical characterisation of semiconducting light 

emitters, which can emit at room temperature. This section will go into further detail on how these 

optical characterisations were performed.  

3.1.1 Photoluminescence 
Photoluminescence (PL) is used throughout this thesis to gain information on the optical emission 

of both III-V nanostructures and 2D materials. PL can be performed in two different regimes macro 

and micro-photoluminescence. In macro-PL, either no lens or a 5x/10x lens is used to image the 

entire sample. This typically gives low power densities, but a wide laser spot, allowing large 

ensembles of Quantum dots (QDs) to be observed. Micro-PL is similar, except it uses a microscope 

objective in a confocal setup to reduce the excitation laser spot down to approximately 1 µm2. This 

is approaching the absolute diffraction limit for far field optics, and allows individual/small groups 

of QDs to be observed, and their variation imaged across the entire sample.  

The setup used to perform micro-PL is shown in Figure 3.1; a frequency doubled 532 nm Nd:YAG 

CW laser is used to illuminate a sample mounted in a dry optical cryostat. The laser light passes 

initially through two neutral density filter wheels to control its intensity, which is then recorded by 

sampling 10% of the light using a calibrated laser power meter.  BS1 is used to reflect the laser light 

into the cryostat, a reflected to transmitted ratio of 8:92 is used a trade-off to increase the light 

transmission from the cryostat to the spectrometer, at the expense of reducing the maximum 

excitation power. The remaining laser light is focussed to a narrow spot by a 50x Olympus LCPLN-

IR objective lens with an NA of 0.65, giving an absolute Abbe diffraction limit for the laser diameter 

of 0.41 µm. This objective was mounted on a piezo stage which can be programmed to move up to 

20 µm in x-y-z, and has a step size of 25 nm. Photoluminescence maps performed with this piezo 

stage have suggested that the laser spot diameter in our system is in reality closer to 1 µm. This 

increased diameter possibly arises due to the laser being focussed though the cryostat window, 

which is most likely acting as a source of scattering. 
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The PL from the sample was analysed by passing it through an Andor Shamrock 500 spectrometer, 

onto either a InGaAs or an EMCCD detector, depending on the wavelength of emission. The PL is 

filtered before entering the spectrometer to remove reflected laser light with a long-pass filter. It 

enters the spectrometer by being focussed through a variable width entrance slit to maximise 

resolution and minimise background signals. 

Additionally, the system contains an LED with a beam splitter (BS2) to couple white light into the 

system along with the laser light, this can be directed into a camera using another beam splitter 

(BS3) to allow visual inspection of the samples surface. After alignment of the optical components is 

completed the white light can be switched off and BS3 removed from the system to ensure 

maximum PL transmission to the spectrometer is achieved.  

Samples are mounted behind an optical window under vacuum in an ICE oxford dry optical 

cryostat. The cryostat employs a Sumitomo GM cryocooler, which is suspended above the cold head 

and coupled using a He4 transfer gas held in a bellows to significantly reduce vibration. Using this 

arrangement temperatures approaching 15K, along with RMS vibrations ~50 nm can be achieved. 

 

Figure 3.1: Diagram showing the low temperature photoluminescence system, the objective lens (50x NIR lens 
with an NA of 0.65) is used to both excite the sample and collect the light emitted. 
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3.1.2 Raman Spectroscopy 
Raman spectroscopy data is presented in Chapter 7, to analyse the structure of a 2D material. In 

Raman spectroscopy, a laser is used to excite vibrational energy levels in a molecule via inelastic 

scattering of a photon. This scattered photon has a slight energy shift equal to the excited energy 

level of the molecule, which can be used to identify that molecular structure. Raman data in Chapter 

7 was taken using a commercial Raman system built by Horiba. A, 100x objective lens was used to 

both excite and collect the light from the sample. 

 

3.2 Fabrication 
In this section, the fabrication techniques used to create the samples that were optically analysed in 

Chapters 4-7 are discussed. The growth of the QD samples in Chapter 4, and 5 was performed by 

collaborators using molecular beam epitaxy (MBE), with the novel step of this work being the 

optical characterisation, and the techniques employed to isolate individual exciton emissions. The 

growth of the individual samples is summarised in the respective Chapters and for more 

information on MBE growth please see P. Frigeri, et al. [1].  

3.2.1 Exfoliation of 2D materials 
The 2D materials used in Chapter 6, were exfoliated onto a SiO2/Si substrate using mechanical 

exfoliation. To perform this, a bulk crystal of either MoS2 or WSe2, was placed onto a low adhesive 

(nitto) tape to remove and produce a single layer using the scotch tape method2. The Si substrate 

had a SiO2 capping layer with a thickness of 300 nm creating an interference colour which gives 

high contrast with respect to a TMD monolayer when under white light illumination3,4. The sample 

was then placed into an oxygen plasma before exfoliation to remove any organic contaminants and 

heat the sample’s surface. This method was found to be very effective at producing mono/bilayers 

with lateral dimensions up to 50 µm. 

3.2.2 Fabricating epoxy SILs 
The basic process involved in fabricating epoxy SILs onto a 2D material is illustrated in Figure 3.3. A 

SiO2/Si substrate with a monolayer exfoliated onto it was immersed into a glycerol bath, which 

provides the liquid phase medium needed to allow high contact angled droplets to form on the 

sample (b). This arises due to a modification of the surface tension experienced by the droplet, and 

can be explained by considering the Young equation, which is given in Equation (3.1) and is 

illustrated in Figure 3.2.5  
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cos(𝜃𝑦) =  
𝛾𝑠𝑓−𝛾𝑠𝑙

𝛾𝑙𝑓
  (3.1) 

When the filler solution is air, the solid-filler surface tension (γsf) is a lot greater than both the solid-

liquid (γsl), and the liquid-filler surface tensions. This makes cos(θy) equal to a large positive number, 

resulting in a small equilibrium contact angle (θy). However, when a filler solution such as glycerol 

is used (γsf) reduces dramatically, making cos(θy) a large negative number; this enables droplets with 

a large contact angle to form. Glycerol is an ideal filler solution due to it being relatively inert with 

respect to the epoxy. Other filler solutions such as water are less ideal as they are known to be 

absorbed by the epoxy, leading to a significant reduction in the SIL’s transparency6. 

 

 

Figure 3.2: Diagram illustrating Youngs equilibrium contact angle (θy), due to the balancing of the solid-liquid 
(γsl), liquid-filler (γlf) and solid-filler (γsf) surface tensions. 

 

The UV-curable epoxy was then formed onto the wafer using an air dispensing system and a 32-

gauge needle (c); this allowed the droplet size to be carefully controlled. The droplet itself can be 

dispensed using two-different methods, both of which have their own advantages: 

• Needle raise method: A tiny amount of epoxy is dispensed at the tip of the needle and is 

pushed into the sample so it wets. Epoxy is then slowly dispensed to increase the size of the 

droplet whilst the needle is carefully raised. This method is useful for getting the centre of 

the SIL in the exact location, however the act of raising the needle whilst dispensing can 

lead to a reduction in the droplets sphericity, effecting the focus of the SIL. 

• Drop method: A droplet of the desired size is dispensed using the needle above the surface. 

The droplet is then gently lowered until it meets the surface, very gentle compression of the 

droplet is used to encourage wetting. This method generally leads to good sphericity as the 

droplet can spread in a motionless environment. However, this uncontrolled spreading 

makes it difficult to ensure the centre of the SIL is positioned directly over small 

nanostructures. 
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The shape of the SIL is highly dependent on the wettability of the surface, the more hydrophilic the 

surface, the tighter the contact angle of the initially dispensed droplet. Contact angle can be reduced 

either by electrowetting or by simply allowing the epoxy to wet then sucking back the epoxy to 

shrink the overall size, as once wetted the epoxy does not tend to lift away from the substrate. 

However, increasing the contact angle after wetting is very challenging; therefore, the initial angle 

that the epoxy makes to the substrate normally dictates the maximum possible angle of SIL that can 

be formed. A good example is bare SiO2 which has a relatively low surface tension and this can only 

create angles close to 90 degrees. This is not however an issue for 2D materials or small-scale 

structures as they themselves modify the surface tension changing the surface wettability and 

increasing the contact angle. Surface roughness enhancing contact angle is known as the lotus 

effect, or superhydrophobicity7,8 and can be exploited to ensure that a SIL has a contact angle large 

enough that it can be later reduced to the desired value.  

Finally, after the needle is retracted, the droplet can be hardened into a SIL by exposure to UV light 

(d). The sample can be removed from the glycerol bath and rinsed with deionised water, to remove 

the residual glycerol. 

 

Figure 3.3: The experimental process used to mount SILs deterministically on to monolayers of 2D materials; (a) 
monolayers were produced via mechanical exfoliation and then transferred onto SiO2; (b) sample was immersed in 
a bath of glycerol; (c) UV curable epoxy UV curable epoxy was dispensed over the monolayer and shaped; (d) the 

epoxy was bonded onto the surface with a UV light source. 

 

 

3.2.3 Electron Beam Lithography 
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Electron beam lithography (EBL) is a technique used to pattern a surface of a semiconductor, using 

a beam of electrons. This pattern is written onto an electron-sensitive photoresist which is spin-

coated onto the surface of the sample. When the electron beam is incident onto the photoresist the 

long molecular chains that form the resist are broken. These shorter chains are dissolvable in an 

appropriate developer, causing the exposed areas to be removed, leaving behind the desired pattern.  

This process typically has a very high resolution, with precision on the order of nm being possible 

due to the short wavelength of high energy electrons. 

In this thesis EBL was used in both Chapter 5 and 7, to create micropillars and plasmonic structures. 

A JEOL-JBX-5500ZD was used to perform this patterning, with a minimum beam diameter of less 

than 1 nm. However, in practice backscattering of electrons makes this closer to 10 nm as the CSAR 

62 resist used is highly sensitive. 

3.2.4 Plasma Etching 
Dry etching or plasma etching, when combined with a photoresist, is a common technique used to 

selectively remove semiconductor material from a sample. Material is removed from unmasked 

areas, whereas masked areas are unaffected due to the masking material having a very reduced etch 

rate compared to the semiconductor, the etch rate difference between these is known as the 

selectivity. There are two etch mechanisms in a plasma: chemical etching where etchant gasses in 

the plasma chemically react with the surface, and physical etching where large unreactive ions (e.g. 

Ar+) bombard the surface removing atoms via sputtering. 

Chemical etching is most predominant in inductively coupled plasma (ICP) systems, which use a 

rotary magnetic field to deliver energy to the plasma, making the ions move in plane with the 

sample. This magnetic field allows the ions to chemically react across the sample is a highly uniform 

way. With the execution of a good etch chemistry, the by-products of these reactions form a vapour 

in the plasma and get extracted with the rest of the gasses. Chemical reactions also play a role in 

reactive ion etching (RIE), however in this system physical etching is more predominant with an 

oscillating electric field used to drive the plasma up and down to enable sputtering. These two 

etching methods can be combined together in an ICP-RIE machine, which combines a rotating 

magnetic field with an oscillating electric field. This allows the advantages of an ICP (high 

selectivity and smooth etched surfaces), and RIE (high anisotropic etching) to be combined, so that 

the plasma density and the momentum of the ions bombarding the surface can be precisely 

controlled. This can enable some very high aspect ratio structures to be formed, such as the 

plasmonic samples presented in Chapter 7. 

 

3.2.5 Deposition 
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In this thesis, two different methods used to deposit materials: electron beam physical vapour 

deposition (EBPVD), and plasma enhanced chemical vapour deposition (PECVD).  

EBPVD is a deposition technique performed at a very high vacuum, where the material to be 

deposited is subjected to an intense electron beam, causing it to heat up and sublimate into a vapour 

due to the low pressure. This vapour then precipitates back into a solid coating anything in the 

chamber with a thin film. This technique usually gives a very high film purity over other techniques 

such as thermal evaporation, due to the very low vacuum. The EBPVD machine used in this work 

was custom built, and achieved its high vacuum of 2𝑥10−7 mbar using a cryopump. This machine 

was used to deposit both the Ti and Au films required for creating plasmonic structures in Chapter 

7. 

PECVD uses a plasma environment to chemically react two different gasses into a solid form. In this 

work Silane gas was reacted with oxygen to create SiO2 which acted as a hard mask for etching 

gold. The PECVD is an ideal machine for this task due to it providing a fast deposition rate and a 

uniform film coverage. 

3.3 Imaging techniques 
A lot of the samples discussed in this thesis have small-scale structures on the order of microns or 

below that cannot be observed sufficiently with the unaided eye, and require more specialist 

equipment. Predominantly, most observations were made using a standard optical microscope in 

conjunction with post processing software to help improve the visual clarity e.g. Figure 6.5. 

However, some of the structures fabricated such as the micropillar in chapter 5, and the plasmonic 

structures in chapter 7 required a resolution beyond the diffraction limit of visible light to fully 

observe. This section thus contains some of the techniques used to image to sub-micron structures.  

3.3.1 Scanning Electron Microscope (SEM) 
A scanning electron microscope (SEM) is an essential tool for surface characterisation. They have 

magnifications more than three orders of magnitude higher than the best optical microscopes, 

combined with large depths of field9. This can enable some incredibly small structures to be imaged, 

for example the SEM used in this work (JEOL JSM-7800F) has resolution of 0.8 nm10. This resolution 

is made possible due to the short wavelength of high energy electrons (0.08 nm at 15 keV). A 

scanning electron microscope works in a similar way to an optical microscope. Electrons are 

produced using an electron gun and focussed into a beam using a series of lenses. In the SEM these 

lenses are called electromagnetic lenses, due to them using magnetic fields to force a beam of 

electrons to travel in a tightening helical motion. This electron beam is directed onto the sample 

surface, where electrons are scattered and are directed into a detector. Unlike an optical microscope, 

however, the beam needs to be raster-scanned across the sample to image an area. This is facilitated 
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by the scanning coils, which deflect the electron beam into a series of lines that sweep over the 

desired imaging area. There are two types of signals released from this process, secondary and 

backscattered electrons. Secondary electrons are produced when the beam dislodges electrons from 

the surface, and provides topological information, whereas backscattered electrons are produced 

sub-surface and can be used to get chemical composition information via energy-dispersive x-ray 

spectroscopy11. In this thesis, the backscattered electrons were used to gain topological information 

of fabricated gold nano-trenches and GaAs based micropillars; allowing their fabricated dimensions 

to be assessed. 

It should be noted that a scanning transmission electron microscope (STEM) is used to image 

individual dots in chapters 4 and 5. This works in a similar way to an SEM, except instead of 

observing backscattered electrons, the electrons that are transmitted through the sample are 

detected. The resultant interference from the electrons interactions, with the atoms of the lattice can 

be detected and reconstructed to get information on the internal structure of the sample. The STEM 

measurements presented in this thesis were performed by collaborators, but are included to allow 

the reader to visualise the embedded quantum dot structures that are not normally observable. For 

more information on STEM, please see Clarke [12]. 

3.3.2 Scanning Probe Microscopy (SPM) 
Scanning probe microscopy is a surface characterisation technique that uses a sharp pyramid 

shaped probe to gain topological, mechanical and electrical information of a samples surface. One of 

the most common and versatile imaging techniques that comes under this term is the atomic force 

microscope (AFM). The success of an AFM arises from its simplicity of design combined with its 

ability to measure non-conductive samples with high sensitivity (the tip is able to detect forces to 

nN precision)13.  A simple diagram showing the operation of an AFM is shown in Figure 3.4. A 

sharp probe is attached to a cantilever and placed carefully into contact with the surface using 

piezoelectric actuators (piezo) mounted to the sample stage. The cantilever is then carefully raster-

scanned across the sample using x-y piezos mounted underneath the sample stage. The cantilever 

tip is very sensitive to the topography of the surface, any slight increase in height will cause the tip 

to experience a repulsive force due to short range, repulsive coulomb interactions between the tip 

and the surface. This force causes the cantilever to deflect, and can be detected by reflecting a laser 

off the cantilever and into a photodetector. The change in position of the laser spot on the 

photodetector is measured and a feedback circuit then moves the z-piezo to keep the force on the 

cantilever constant. The movement of the z-piezo is recorded and used to provide the topography of 

the sample. 

In this thesis AFM measurements in Chapter 7 were performed in tapping mode using a Bruker Icon 

AFM. Tapping mode oscillates the cantilever just below its resonant frequency; this reduces the 
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lateral friction and makes it less likely for the probe to get stuck on the surface. In this mode the 

amplitude of the oscillation is monitored and put into the feedback circuit, so that the Z-piezo can 

keep the tip force constant. Using this method 20 nm gold trenches could be measured, providing 

information on the quality of their fabrication.  

Another type of SPM used by collaborators in this thesis was cross sectional scanning tunnelling 

microscopy (X-STM). This imaging method works by placing a bias between the sample and an 

atomically sharp probe, then bringing the sample close and measuring the tunnelling current that 

passes through. Tunnelling currents are very sensitive to the distance from the sample, which 

combined with the very sharp tip of an STM allows individual atoms to be resolved. Additionally, 

the tunnelling current is dependent on the band structure of the material, therefore enabling the 

chemical composition of each atom to be assessed. This is incredibly useful for understanding the 

growth of quantum dots, and is used in Figure 4.2 to observe the growth of a single GaSb/GaAs 

quantum ring. The STM data in Figure 4.2 was obtained from collaborators, and further details can 

be found by reading Smakman, et al. [14]. 

 

Figure 3.4 – Diagram showing the basic principle of an AFM. Deflections in the height of the cantilever due to the 
sample are detected by reflecting a laser from the end of the cantilever and recording deflections in the reflected 

light using a photodetector.  
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4 Chapter 4 

Enhancing the photoluminescence of GaSb/GaAs QD 
nano-structures 
 

This chapter describes how individual type-II like GaSb/GaAs quantum rings can be isolated to 

allow observations of individual rings with exciton linewidths of 200 µeV. The power dependent 

blueshift of individual peaks is studied and compared to the ensemble’s blueshift, to gain a better 

understanding of the underlying physics of this system. 

4.1 Introduction 
Embedded semiconductor nanostructures such as quantum dots (QDs) and quantum Wells (QW’s) 

have a variety of optical and electronic applications that can be used to perform both classical and 

quantum measurements1. QD’s are especially interesting for use in optical semiconductor devices, 

due to their reduced dimensionality enabling carrier confinement and single photon generation2-5, 

making them suitable for quantum optoelectronic applications6,7. Additionally, QDs are capable of 

improving classical light sources such as lasers, giving them lower threshold currents and higher 

thermal stabilities8.  

Quantum dots can be grown using a variety of methods, such as Metal Organic Chemical Vapour 

Deposition (MOCVD)9, Liquid Phase Epitaxy (LPE)10, Molecular Beam Epitaxy (MBE)11, and can be 

formed either by a random process (SK-growth12) or in a site controlled approach13. One type of 

QDs that have been recently studied are self-assembled Quantum Rings (QRs), which can be formed 

from III-V semiconductor materials and then capped to create an embedded light source. These 

structures were first grown using an MBE by Garcıá, et al. [14], who partially capped InAs quantum 

dots with 5 nm GaAs, and noted a redistribution of the island material during the capping process. 

In 2004 Kobayashi, et al. [15], showed that GaSb/GaAs quantum ring structures could be formed by 

growing a 10 nm “cold layer” (490°C) of GaAs over self-assembled GaSb QDs then “hot capping” 

(580°C) with 100 nm of GaAs. The ring formation arises due to the initial GaAs cold cap dramatically 

increasing the stain felt by the Quantum dot as it becomes forced into the more tightly spaced GaAs 

lattice. This increase in strain is particularly high for GaSb compared to other dot forming materials 

such as InAs (34% larger16). This high strain creates a force that causes the Sb to migrate radially, 
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leaving behind GaAs in the centre and forming a ring structure. There are several different 

mechanisms which have been suggested to facilitate the migration of the Sb from the dot, these are: 

strain driven lateral diffusion, As/Sb exchange and Sb segregation16,17; however it is likely that for 

GaSb QRs that the latter two mechanisms are the most important due to very little intermixing of 

the rings17, (this can be observed in Figure 4.2).  

GaSb QRs are interesting due to them having spatially separated electrons and holes, due to their 

type-II band alignment. Holes become tightly confined in the Sb rich lobes of the ring, whereas the 

electrons are more loosely confined in the surrounding material via their coulomb interaction to the 

hole (shown in Figure 4.1). This spatial separation is a disadvantage for light emitting devices as 

they have a reduced exciton recombination rate compared to a type-I structure, which arises due to 

a smaller electron-hole wavefunction overlap18,19. However, this in turn can have its own 

advantages, allowing for long carrier storage times making them useful for optical/electronic 

memories20.  Furthermore, the deep hole confinement potential in the GaSb ring21 has been shown 

to enable room temperature emission22,23, which opens up their use as a room temperature light 

source both for multiple-photon applications (e.g. LEDs), and single photon applications (e.g. 

quantum information processing).  

To understand if QRs are a viable single photon source there are several challenges that need to be 

overcome. The first is that QR samples are generally too dense in their emission to see individual 

rings using micro-photoluminescence (µPL); their random formation causes high densities of rings 

and dots as well as clusters of Sb to form17 (see Figure 4.1), which can cause a lot of background 

signal. Therefore, to create a single photon source out of these structures there needs to be a method 

that can be used to observe the emission of a single ring, so it can be identified amongst all the other 

signals. This would allow measurements to be performed to test its suitability as a single photon 

source such as a Hanbury Brown-Twiss experiment24.  

Another challenge for these types of emitters is the relatively low optical efficiency that arises from 

the type-II band structure; which needs to be optimised if it is to be a viable light source. This 

chapter will try and address each of the above issues by using aperture masks and solid immersion 

lenses (SILs) to reduce and enhance the excitation/emission area, to enable the observation of 

individual rings. It also explores the physical origin of the power dependent blue-shift that QRs 

display when optically excited.  
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Figure 4.1: Image showing a 3D representation of the band structure of a quantum ring (left), and a 
representation of the structures present on the GaSb/GaAs sample. 

 

4.2 Isolating individual Quantum rings  
GaSb quantum rings studied in this chapter were grown in Lancaster using MBE; details of the 

growth including TEM and STM images of the structure and morphology of the GaSb structures can 

be found by reading Smakman, et al. [17]. These example cross sectional STM and TEM images are 

shown in Figure 4.2 a, b respectively, with Sb atoms represented by the bright yellow in (a), and 

dark grey/black in (b). Very distinct lobes of GaSb are present with a highly pure GaAs centre, the 

average diameter of these rings is approximately 15 ± 5 nm17.  

 

Figure 4.2: Cross sectional images of a Quantum Ring in a similar structure, using in (a) Scanning tunnelling 
microscope (STM) and (b) Transmission electron microscope (TEM), the bright pixels in (a) and the dark in (b) 

show Sb atoms. 

 

The density of the Quantum ring structures for similarly grown samples was found to be 

approximately 1x1010 cm-2  (100 µm-2)25, which means that a laser spot created in the µPL setup (see 

b 

10nm 

a 
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chapter 3) incident on the sample will excite over a thousand structures, which makes it very 

challenging to isolate individual peaks. Figure 4.3a shows the emission of the grown GaSb/GaAs 

samples over a range of different wavelengths, the GaAs, wetting layer and QD/QR peak are 

highlighted and the spectra matches that of previously reported GaSb/GaAs structures21. Figure 4.3b 

shows a typical QR peak for this sample, excited using a 1 µm diameter laser spot at an excitation 

power of 10 µW. The spectra is very rich containing a lot peaks which all overlap due to the density 

of the QR structures, making the observation of individual excitons from a single QR very 

challenging. Another issue arises from the relatively low optical efficiency of the QRs. Their type-II 

band structure causes the intensity of light emitted from the sample to be relatively weak, this can 

be seen by comparing the intensity of the QR peak to the GaAs and wetting layer peak in Figure 

4.3a. The high powers required to observe the QD/QR peak can also cause inhomogeneous 

broadening of the peaks via the generation of a large number of carriers, which cause charge 

fluctuations that produce local electric fields causing a stark shift26. It was therefore clear from these 

results that the ‘normal’ operating resolution in the µPL setup was not sufficient to observe 

individual rings, therefore to isolate a smaller number of rings, additional modifications to the 

experimental setup were required. 

 

Figure 4.3: Photoluminescence showing in (a) 800 – 1550nm sweep of the PL emitted by these QR samples, (b) PL 
spectra of the QR peak. 

4.2.1 Modifying the sample surface 
To isolate individual rings two different structures were added to the surface, a Ti:Au aperture mask 

and a glass super solid immersion lens (s-SIL).  

Glass s-SILs were mounted onto the samples surface to increase the light output, and enhance the 

resolution of the µPL (for more information on this see chapter 2). The glass SILs used in this 

experiment were 1 mm in diameter and formed from LASFN-9 glass with a refractive index of 1.80 

and a height of 800 µm, a side view can be seen in Figure 4.4.  
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Figure 4.4: Side view of the glass SILs mounted on top of the GaSb/GaAs structures taking using an optical 
microscope. 

 

Due to the cryostat having a vertical orientation the SIL had to be physically attached onto the 

sample. This was done using a UV cured epoxy with a closely matched refractive index (NOA 164). 

Applying epoxy in this way presents an additional challenge, as if the epoxy was too thick it would 

create a poor interface under the SIL which would show reduced PL (an example of this can be seen 

in Figure 4.6a). To improve this interface, a SIL mounting device was designed which would reduce 

the epoxy thickness; this can be viewed in Figure 4.5 with (a) and (b) showing a real image and 

schematic image respectively. A 1.5 µm thick layer of UV curable epoxy was spun onto the sample, 

and placed onto the X-Y stage along with a SIL. A glass slide with a 0.8 mm diameter nylon ring was 

then lowered onto the SIL. The purpose of the nylon ring was to grip the SIL and prevent it from 

moving while the X-Y stage is adjusted to the appropriate position using the microscope objective. 

Finally, the z-stage is moved down and the SIL is pressed hard into the sample to squeeze out the 

epoxy and make a very thin film, the SIL is then cured in place by exposing it to UV light. The 

results of this method can be seen by comparing Figure 4.6a showing a SIL mounted by hand and 

Figure 4.6b a SIL mounted using the above apparatus. The film is much thinner in b and more 

importantly much more uniform, although a faint colour sheen was still present suggesting that 

there remains some interference, which could affect the intensity of the observed PL. Overall the SIL 

was found to reduce the laser spot radius from 0.5 µm to approximately 0.3 µm, reducing the 

number of rings by approximately one order of magnitude from >100 to  ~ 30. 

500µm 
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Figure 4.5: (a) showing a picture of the glass SIL mounting device, and (b) showing a schematic diagram of the 
device in (a) 

 

The aperture mask was a 100 nm thick layer of gold (with a 10 nm Ti adhesion layer) deposited onto 

a photolithography patterned GaAs surface. The Au is then lifted off to leave 1 µm diameter 

apertures with some associated labels to allow each aperture to be easily located and can be 

observed in Figure 4.6d. This mask served multiple purposes, firstly it prevents light being emitted 

by structures outside of the excitation area, this effect occurs due to excitons migrating away from 

the laser spot through the GaAs before being captured. The mask also allowed individual exciton 

emissions to be easily relocated, allowing the same area to be observed multiple times, and any 

temperature induced drift of the sample corrected.  
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Figure 4.6: Microscope images showing glass s-SILs being mounted onto GaAs surfaces with a-b, showing the 
effect of having too thick a layer of epoxy, (c) showing the final glass SIL used in the experiment, and (d) showing 

a zoomed in view of the Au Aperture mask the SIL was mounted on.  

 

4.2.2 µPL Results 
Figure 4.7 shows two high resolution µPL spectra from the QRs sample shown in Figure 4.6c at low 

excitation power (~10 µW) and at low temperature (20K). Previously, the PL at this power was 

indistinguishable from the noise whereas in these spectra we can clearly identify the peaks, 

demonstrating the effectiveness of the SIL at coupling light. The identified exciton peaks have a 

variety of linewidths, the sharpest of which were fitted with a Lorentzian fit and were found to be 

approximately 200 µeV in width. This is significantly wider than the linewidth observed for type-I 

QD systems such as InAs and InGaAs QDs, which can be an order of magnitude lower7. This 

increased width likely arises from two sources, the first effect may arise from charge noise causing 

fluctuating electric field around the QR resulting in a stark shift in the emission27. In a type-II 

system such as the QRs the electrons and holes are spatially separated with only a small overlap in 

their wave functions and are therefore likely to be more sensitive to electric field perturbations than 

a type-I system. Charge fluctuations in the bulk around the QRs are also more likely due to there 

being clusters of GaSb around them arising from the random nature of the growth, which will trap 

charge carriers. Another source of increased linewidth may arise from the resolution of the µPL 

system. When these measurements were taken the cryostat had a low frequency vibration of 

200µm 

400µm 

200µm 

40µm 
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amplitude ~300 nm, which can displace the sample from side with respect to the spectrometer. Light 

that successfully gets into the spectrometer travelling at even a slight angle can display a shift in 

wavelength due to the spectrometer being calibrated for light entering perpendicular. A slight 

vibration which moves the light from left to right may cause a slight shift in wavelength that 

broadens every exciton peak by a similar amount. 

 

Figure 4.7: Two example micro-photoluminescence spectra of GaSb QRs taken at low excitation power, the 
resolution limited linewidth of the peak is displayed. 

 

4.3 Power dependent blueshift 
The ability to see individual exciton lines can be very useful to further our understanding of the 

origin of blueshift in these structures. As previously mentioned there are 3 different ideas on how 

blueshift with increased excitation power can arise, band bending, state filling and coulomb 

interactions. By monitoring the individual exciton peak positions with increasing excitation powers, 

we can gain a better understanding of how these different mechanisms contribute.  

To investigate this effect, micro-photoluminescence (µPL) spectra were taken at a range of different 

excitation powers spanning three orders of magnitude, and then normalised and plotted against 

each other (Figure 4.8). To quantify the blueshift a centre-of-mass (COM) fitting procedure was 

performed by integrating the µPL spectra between 1100-1300 nm, then calculating which point on 

the spectra the half area falls (red line in Figure 4.8). This fitting procedure has been shown to be 

reliable for modelling the blue shift in bulk PL from previous work28, and a direct comparison of the 

COM fit in µPL to macro-PL is provided in Figure 4.9b. This can then be compared to the centre 

wavelength of individual exciton lines (blue line Figure 4.8), by fitting the QR peaks with a 

Lorentzian.  Analysing Figure 4.8 it can be seen that the individual peaks (blue) stay roughly 
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constant in wavelength as excitation power is increased, whereas the COM (red) shows a reduction 

in the wavelength indicating an increase in emission energy of ~10 meV.  

To better visualise the blueshift, the excitation power dependence of individual and COM peak fits 

were separately plotted in Figure 4.9a, against their peak energy. Analysing Figure 4.8/9, it is clear 

that the overall COM blueshift does not arise from the shift of the individual exciton lines, with 

there being virtually no change of energy within the resolution of the system. This negligible power 

induced shift of the exciton lines indicates that band bending cannot be providing a significant 

contribution to the observed blueshift, as any change to the bending of the bands would shift the 

energy levels of the potential well. This shift of ground state energy would as a result shift the 

energy of all the confined exciton states, however this is not observed. Instead an increase in 

excitation power appears to shift the overall centre of the ensemble peak. These findings are very 

similar to observations of InP/GaAs type-II quantum dots performed by Iikawa, et al. [29], who also 

showed that despite an overall ensemble shift the individual peaks from QDs remained constant. 

This overall shift of the entire QR ensembles PL can therefore either arise from the filling of new 

higher energy states, or from the coulomb interaction creating a large amount of  positive charge 

which results in a blueshift of the emission energy25. State filling has previously been shown to not 

be a large effect in these structures with Young, et al. [28] showing that an increase in excitation 

power does not create a non-linear behaviour of the peak intensity, which would be expected if the 

higher energy states were being rapidly filled. Indeed, upon looking at the data in Figure 4.8, an 

increase in excitation power does not appear to yield new peaks at higher energy (this observation 

is representative of several different power dependences which were performed). Instead, a gradual 

shift in peak PL signature is detected which is believed to arise from the rings becoming 

increasingly charged with holes as excitation power is increased; as reported by Hayne, et al. [21]. 

This increased positive charge enhances the coulomb interaction between electrons and the 

positively charged lobes of the QR, causing the electron to be better confined in the GaAs resulting 

in an increase of emission energy when the exciton recombines. However, this build-up of charge 

near the material edges is precisely what will cause band bending to occur, and it is curious that this 

increased charging does not start to cause observable band bending effects. It is possible that at 

higher or lower excitation powers, band bending may still be occurring, however we were not able 

to resolve individual exciton peaks outside the excitation powers shown in Figure 4.8. 
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Figure 4.8: Normalised Micro-photoluminescence spectra from QRs as a function of laser power. The numbers on 
the left indicate the intensity before normalisation, the blue markers show the position of a single exciton peak 

calculated using a Lorentzian fit, the red markers show the centre position of the entire QD spectra. 

 

The broad emission observed in the QR peak may arise from holes recombining with electrons 

which are poorly confined. Electrons that exist outside of the lobes of the ring are unconfined 

having a large number of states, therefore when they combine with a hole there can be significant 

variations in photon wavelength, which might lead to the broad peak observed. Electrons that exist 

in the centre of the rings however, are likely to experience 2D confinement from the Sb lobes that 

surround the ring centre. This confinement is likely to reduce the density of states of the electron 

leading to a reduction in the emission linewidth28. It could therefore be possible that the tightly 

confined electrons in the centre of the ring are responsible for the sharp peaks, whereas the 

electrons outside the ring create the broad background. 
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Figure 4.9: Graphs showing in (a) the change in energy of the COM and exciton peaks due to varying excitation 
power (as shown in Figure 4.8), and (b) showing the corrected centre of mass position (E-E0) as a function of 

integrated intensity, for both Micro and Macro-Photoluminescence. 

 

One significant question is whether the COM blueshift measured using µPL is the same as that of a 

large ensemble of QDs measured in macro-PL. To investigate this, a piece of the same wafer was 

immersed in a continuous flow cryostat, and illuminated with an optical fibre giving a 1.6 mm 

diameter spot; a second fibre was then used to collect the spectra. The reason for using this setup 

over the closed cycle cryostat used for µPL, was to reproduce results similar to previous work in this 

field8,21,25,30, therefore eliminating any possibility that the measurement equipment was influencing 

the result. The PL spectra was measured over a wide range of excitation powers at 4.0K, then fitted 

using a Gaussian fit to find the peaks centre. The intensity was then plotted against the energy shift 

of the PL centre position (E-E0) along with the µPL COM fit, and can be seen in Figure 4.9b. The 

emission energy at zero excitation power (E0) (the minimum transition energy), was calculated by 

linearly extrapolating the excitation power vs integrated intensity graph (Figure 4.9a) to zero. The 

reason for recovering this value from the data is due to E0 being sensitive to unintentional doping, 

therefore each sample will have its own unique E0 regardless of how similar the growth.  A log-log 

scale was used to produce a linear fit of the data giving a gradient of 0.38 ± 0.04 for the µPL and 0.44 

± 0.03 for the macro-PL. It can be seen that the two gradients agree within uncertainties showing a 

clear correlation between the blueshift in both regimes indicating that the mechanisms involved in 

the blueshift are highly similar. In fact the power densities used in this experiment were 0.03 - 15 

Wcm-2 for macro-PL and 3.6 – 2700 Wcm-2 for µPL suggesting that the blueshift is consistent over 

five orders of magnitude. The exponents themselves are somewhere between 1
3⁄  and 1

2⁄ , but we 

expected from the theory that it should be closer to 1 2⁄  if the shift was mainly coulomb interactions. 

This is consistent with previous work done on these structures such as that performed by Hodgson, 

et al. [8], who showed that in type-II QR’s exponents are lower than 1
2⁄ . This is attributed by the 

authors to a breakdown of the bimolecular recombination approximation that is used when deriving 
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the exponents presented in the theory section. The work in this chapter thus seems to support their 

hypothesis, that in type-II QR structures the intensity is not proportional to the square of the 

number of holes.   

 

4.4 Conclusions 
In this chapter, we showed that individual type-II GaSb/GaAs quantum rings can be individually 

studied using micro-photoluminescence. To achieve this, an aperture mask and a glass solid 

immersion lens (SIL) were employed to reduce the excitation/emission area, and increase the light 

output coupling.  Individual linewidths down to 200 µeV were detected in the quantum ring sample, 

however this may be resolution limited from the optical setup therefore it is possible that they are 

emitting with a narrower linewidth than this, but a better optical setup would be needed to test this 

theory.  

The observation of individual exciton peaks made it possible to understand how they contribute to 

the ensemble power dependent blueshift that these samples exhibit. It was found that the individual 

lines do not change wavelength with excitation power, instead weaker peaks at shorter wavelengths 

became gradually more intense than the longer wavelengths. This suggests that the cause of the 

power dependent blueshift in these samples is not due to band bending but instead is either caused 

by an asymmetric coulomb charging effect, or state filling. The magnitude of each effects 

contributions was not elucidated in this study, however from previous literature28 it is expected that 

the contribution of state filling is low. Fully understanding the physics behind this blueshift is 

important when designing optical devices such as lasers, and LEDs out of QRs, as any shift in 

wavelength can ruin the effectiveness of an optical cavity.  

A remaining question is whether the spikes observed are confined enough to be a single photon 

source.  To further explore this it would be necessary to see if the emitted photons show signs of 

anti-bunching, which can be found by performing a Hanbury Brown-Twiss experiment24. A few 

attempts were made to perform this; however, it was very difficult to detect the QR emission due to 

the signal being weak and the peaks broadening significantly with high excitation powers. 

Furthermore, cryostat drift and background light placed limits on how long the detectors could be 

left exposing; which meant that light from these individual peaks could not be detected. In the 

future it would be useful to perform this experiment again with a better laboratory environment 

with a more stable cryostat and more sensitive detector.  

An interesting future direction for this work would be to try and isolate a single QR in a tuned 

micro-cavity. This could be accomplished during MBE growth by growing GaAs/AlAs mirror pairs 
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above and below the active region, then after growth patterning the substrate then etching it into 

freestanding pillars. The quantum rings in these tuned pillars should benefit from a Purcell 

enhancement that would make their exciton peaks a lot brighter. These brighter sources would 

allow an anti-bunching experiment like the one mentioned above to be performed, allowing their 

suitability as a single photon source to be assessed.   
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5 Chapter 5 

Integration of III-V based type-II QDs with silicon 
 

This chapter looks at the integration of telecoms wavelength emitting InAs/GaAs quantum dots, 

with silicon (Si). Photoluminescence (PL) measurements on two samples were performed, with one 

grown on silicon with defect filter layers (DFLs) grown underneath the active region, and the other 

grown on a Gallium Arnside (GaAs) substrate. Individual quantum dots on both samples were 

isolated using both micropillars and gold apertures.  

5.1 Introduction 
In the previous chapter we studied the near infra-red (NIR) emission of GaSb/GaAs quantum rings, 

which had emission up to 1300 nm. These emission wavelengths make them suitable for integration 

with fibre optic networks due to their emission lying within a low loss region for silica fibres 1260-

1360 nm (O-band). In this window scattering and chromatic dispersion are highly reduced, making 

these wavelengths good for telecoms1. However, QRs are unlikely to be adopted for telecoms due to 

their wavelength being too short to be enhanced by erbium doped fibre amplifiers (EDFA) which 

produce gain in the 1550 nm region2. These amplifiers have been a key enabling technology for fibre 

communication3, therefore it is desirable that future telecom light sources  emit in the C-band (1530-

1565 nm). 

InAs/GaAs quantum dots are one of the most extensively studied quantum dot systems4, they emit 

at 780–1300 nm5 and are type-I which makes them optically bright making them excellent single 

photon sources6, but their short wavelengths make them unsuitable for long distance telecoms. InAs 

QDs can however be capped with GaAsSb to give them a much longer emission wavelength shifting 

it to over 1500 nm, placing them in the telecoms C-band7. These structures like the GaSb/GaAs 

structures are type-II in their band alignment and have been shown to emit at room temperatures8-

11. Like quantum rings their type II band alignment arises due to the Sb in their capping layer, the 

only difference is that in this system the carrier’s state of confinement is opposite, with the holes 

loosely confined in the cladding layer and the electrons tightly confined within the dot as shown in 

Figure 5.1.  
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Figure 5.1 – Simple cross-sectional diagram showing the structure of a InAs/GaAs quantum dot, showing 
localised electrons and delocalised holes in the GaAsSb cap, compared to a GaSb quantum ring with holes localised 

in the lobes of the ring and delocalised electrons in the GaAs centre. 

 

These GaAsSb capped InAs QDs seem an ideal candidate for a future telecoms single photon source. 

If they could be integrated into silicon electronics, they would be ideal for use in applications such 

as optical networks-on-chip12.  To achieve this GaAs would need to be grown on silicon, however 

this is a problem as these materials have a large lattice mismatch (4.2%) and different thermal 

expansion coefficients, which lead to threading dislocations and other interfacial defects to form in 

the GaAs13,14. The dislocations can propagate through the structure, up into the InAs quantum dot 

layer and act as sites for excitons to be captured, greatly reducing the emission intensity due to the 

excitons recombining non-radiatively. Therefore, if InAs/GaAs quantum dots are to be integrated 

with Si, a solution needs to be found to greatly reduce/remove these dislocations. Additionally, due 

to Si and GaAs being polar/non-polar GaAs, grown on Si forms antiphase domains which results in 

a poor crystallinity, however a simple two process growth has been shown to solve this problem15. 

One method known to reduce dislocations is to grow dedicated layers between the Si interface and 

the active region called dislocation filter layers (DFLs)13. DFLs are sets of strained superlattices 

which bend propagating dislocations into the growth plane so that they meet and annihilate each 

other16. These have been shown to greatly improve room temperature photoluminescence of InAs 

quantum dots grown on silicon, with Yang, et al. [17] demonstrating that emission can be improved 

from less than 10% to 50% of the intensity of a InAs dot grown on a GaAs wafer.  

In this chapter, micro-photoluminescence was used to observe exciton emission originating from 

GaAsSb capped InAs/GaAs quantum dots grown on Si with three DFLs between the wafer and the 

active region. This sample was then compared to identical dots grown on a GaAs wafer to ascertain 

the effectiveness of DFLs when used with a type-II QD system. Single QDs on these samples were 

isolated using micropillars/aperture masks to reduce the number of excited QDs, enabling the study 

of individual quantum dot emission. 
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5.2 Sample structure details 
In this work two samples with identical active regions were grown using MBE, one on a silicon 

substrate, the other on a GaAs substrate. The active region consisted of 50 nm of GaAs followed by 

the InAs QD layer, a 6 nm cap of GaAs0.74Sb0.26 was then grown over the dots, which was followed 

by 50nm of GaAs. The active region was additionally clad with 100 nm of AlGaAs. The wafer grown 

on silicon had additional growth underneath the active region, consisting of an initial 1000 nm of 

GaAs then 3 DFL layers which consist of superlattices of 10 nm In0.18Ga0.82As and 10 nm GaAs. Each 

DFL had 5 repeats and a 350 nm GaAs spacer separating them. A cross-sectional render of the 

structure is shown in Figure 5.2; further details on the growth of the sample are outside of the scope 

of this work, therefore for more information on growth please see Orchard, et al. [18]. 

 

Figure 5.2 – Diagram showing a cross-sectional image of the growth structure 

Figure 5.3a shows a transmission electron microscope (TEM) cross-sectional image of a single 

quantum dot approximately 8 nm high and 23 nm wide, grown on the GaAs wafer. The InAs 

quantum dot is highlighted by a dashed line, the bright band around the dot is the GaAsSb cladding 

layer. It can be seen that there is a non-uniform ring like structure of the capping layer that has 

formed around the dot, this has likely formed from material migrating away from the apex of the 

dot to reduce strain. It was found from energy-dispersive X-ray spectroscopy (EDS) studies that 

there was an additional migration of In out of the QD into the cladding layer.   

Figure 5.3b shows an AFM image of uncapped InAs QDs grown in the same way as the capped 

sample. It can be seen in the image that there are two distinct sizes of QDs that have formed small 

and large. This growth is dense with the small QDs having a density of 80 µm-2 and the large QDs 5 

µm-2; this means that standard micro-PL will excite hundreds of structures making individual lines 

difficult to observe. The sample in the AFM was grown on Silicon, however there should be no 
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significant difference in the structural composition of the GaAs and the Si grown samples due to the 

amount of GaAs grown between it and the wafer. 

The size and distribution of the quantum dots is interesting as other studies of GaAsSb capped 

InAs/GaAs structures have shown no sign of smaller dots just the larger QD sizes.19 This binominal 

distribution is independent of the capping layer, and arises from the growth of the InAs QDs. This 

binominal growth has been shown in other literature to be tuneable by a varying growth 

temperature20,21, and In flux22. This means that it should be possible to both increase the uniformity, 

and reduce the density of QDs with a change of growth recipe; high quality InAs QDs with similar 

sizes have been grown with densities of 1 µm-2 and less23,24. 

 

 

Figure 5.3 – (a) TEM cross sectional image of a single InAs QD with its GaAsSb cap (white region), and (b) 
showing an AFM image showing uncapped QDs grown on the surface. (These images were obtained from fellow 

collaborators R. Beanland of Warwick (a) and M. Tang of UCL (b)). 

 

5.3 Macro- PL results 
Initially a wide spectral range macro-photoluminescence measurement was performed at 70K using 

a 638 nm laser (spot diameter ~ 200 µm) and is shown in Figure 5.4. This was performed so the entire 

NIR emission could be analysed to see how the emission varied between the samples, for different 

excitation powers. Several different features can be seen in these spectra the most important of 

which is the 1500 nm peak which is attributed to the large InAs QDs seen in Figure 5.3. This peak 

being present in both the GaAs and the silicon wafer shows that telecom wavelength emission is 

possible from InAs QDs grown on silicon. There is a very slight reduction in the peak emission 

wavelength from the growth on silicon of a few nm, which is attributed to the residual strain in the 

structure arising from the different thermal expansions of GaAs and Si when at low temperatures. 
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We also observe that the PL intensity from QDs on the GaAs wafer (a) is 20 times higher than that 

of QDs on the Si wafer, which suggests that even though the DFLs are reducing the amount of 

dislocations some are still propagating through the active region. This is further supported by 

analysing the other peaks at 920nm, 1070nm and 1200nm. The 920nm and 1200nm peaks are 

attributed to the InAs wetting layer, and the GaAsSb cladding layer respectively. The 1070 nm peaks 

arise from the smaller InAs quantum dots and are brighter than the larger dots in (a) due to their 

higher density18. Comparing (b) to (a) the peaks attributed to QWs are greatly reduced becoming 

indistinguishable from the broad background, whereas the peaks attributed to QD emission are a lot 

less effected, and are still easily observable. This behaviour is consistent with dislocations being 

present in the active region, as in a QW carriers are able to migrate in-plane until they reach a 

dislocation where they can recombine non-radiatively. This is not the case in a QD due to carriers 

being more spatially confined, preventing exciton migration after capture. When looking at the ratio 

between (a) and (b) (inset of a) it can be seen that the large quantum dots are less affected by the 

presence of dislocations than the smaller set, this is most likely due to the larger quantum dots 

having a deeper confinement potential than the small dots, therefore having a strong barrier to 

prevent migration out of the QD.  

 

Figure 5.4 - Power dependent photoluminescence spectra from GaAsSb capped InAs/GaAs QDs at 70K, grown on 
a GaAs wafer (a) and a Silicon wafer (b). Inset of (a) shows the ratio of the Silicon to the GaAs. (This data was 

collected and plotted by collaborator J. Orchard, et al. [18]). 
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5.4 Isolating individual dots 

5.4.1 Micropillars 
Upon performing initial micro-photoluminescence (µPL) measurements it became immediately clear 

that the high QD density made individual excitons very hard to spot due to a broad ensemble of 

lines and a high background signal. To reduce the excitation area, 1 µm diameter micropillars with 5 

µm spacing’s were patterned into the sample using e-beam lithography (EBL) followed by plasma 

etching using an inductively coupled plasma (ICP). The micropillars are smaller than the excitation 

area, reducing the number of quantum dots observed. Additionally, any quantum dots near the edge 

of the pillar are less likely to emit due to carriers being scattered by the micropillars etched surface. 

An example SEM image of the etched micropillars can be seen in Figure 5.5, the pillars were etched 

to a depth of approximately 500 nm.  

 

Figure 5.5 - SEM image showing (a) an array micropillars and (b) a single micropillar etched into the active 
region. 

Micro-photoluminescence measurements were taken from multiple pillars at 20K using the setup 

described in the methods, and two example low power spectra for both GaAs (a) and Si (b) 

substrates are shown in Figure 5.6. Comparing (a) to (b), as expected the QDs on the Si have a 

reduced intensity and require an order of magnitude increase in excitation power to achieve similar 

emission intensities. All spectra show peaks around 1500 nm on a broad background, each of these 

peaks is attributed to an individual QD in the micropillar, albeit significantly broadened. The FWHM 

of these peaks show a range of values between 1 – 5 meV with the Si showing more broadening 

than the GaAs. This is a lot broader than normal type-I InAs quantum dots which have linewidths 

closer to 10 µeV25. Some of this broadening arises from the type-II nature of the system, causing 

localised electric fields and a large QCSE, similar to the QRs in chapter 4. However, the linewidths 

are 10 times broader than the QRs which are also type-II, suggesting that this broadening cannot be 

explained simply by its type-II nature. It is therefore likely that there are additional charge 

fluctuations in the vicinity of the QDs, which may arise from multiple different sources such as 

inhomogeneous growth or surface states.  

10µm 500nm 
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The linewidths measured from the Si-substrate samples tend to be broader than the GaAs which can 

be attributed to the 10x increase in laser power, and possibly from inhomogeneous broadening due 

to the sample being broken up slightly by defects. In fact, the dislocations can be clearly identified 

in the pillars, with some pillars showing much lower PL than others. This can be clearly seen in (b) 

where Pillar 3’s peak intensity is 8x brighter than Pillar 4 despite being neighbouring pillars and 

having identical excitation. 

It can also be seen from looking at Figure 5.6 that there is a broad background emission which 

partly obscures the individual lines. This background is present even at low excitation powers and 

can completely hide the QD peaks at high excitation. This suggests excitons are recombining 

radiatively outside the quantum dots. The cause of this is unknown; however, it appears to be an 

issue with both the GaAs and the Si substrates, suggesting that like the high density of small QDs it 

is an issue arising from the growth of the active region rather than the Si substrate.  

 

 

Figure 5.6 - Photoluminescence spectra for different micropillars at 20K, showing exciton emission from 
InAs/GaAs QDs grown on a GaAs substrate (a) and a Silicon substrate (b). NB: Pillar 1 is offset from Pillar 2 for 

clarity; the blue dashed line marks its offset zero. 

5.4.2 Apertures 
When looking at the relatively broad linewidths observed in Figure 5.6, it was proposed that this 

broadening might arise from charge fluctuations in the vicinity of the quantum ring. These could 
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arise from two possible sources, either inside the bulk of the semiconductor from charge being 

trapped in sites around the quantum dots, or from surface states that occur around the micropillar 

due to etching. Surface states have been found to decrease the Q-factor of micropillars, due to 

charge fluctuations26, therefore these small micropillars might be a source of the broadening. To 

explore the effects of this a Ti/Au aperture mask similar to the one in chapter 4, was thermally 

evaporating on-top of both GaAs and Si samples. Electron Beam Lithography (EBL) was used to 

pattern the resist, to enable apertures of the same dimensions as the pillars to be formed (see Figure 

5.7).  The opaque metal mask prevents light emission from anywhere but the aperture, and does not 

cause any edge states to form.  

 

Figure 5.7 – SEM images showing the lifted off gold covered apertures with (a) showing the array, and (b) 
showing an individual aperture up close with the removed gold still present on the left of the image.   

 

Figure 5.8 shows two example µPL spectra (a), (b) from apertures on GaAs and Si–substrates 

respectively, both taken using the same excitation power (200 µW). Both samples spectra show 

sharp lines similar to the micropillars, however rather than a reduced linewidth they are slightly 

broader with FWHM ranging from 2 – 5 meV, with once again the Si substrate sample showing 

reduced intensity and increased broadening. It can be seen that these samples required much higher 

excitation powers to achieve a similar intensity to that from the pillar samples, which may indicate 

that there is a poor coupling efficiency of light into and out of the apertures. The slight increase in 

broadening may therefore arise simply from the higher laser power used to excite the structures, as 

these samples all show significant broadening with excitation powers.   

These results therefore give no evidence to suggest that surface states are having a large effect on 

the linewidth, with the emission from the apertures showing no significant reduction. It is therefore 

likely that this broadening is an effect which originates in the bulk semiconductor around the 

quantum dots. Whereas it is impossible to determine the exact causes it is possible to speculate, 

based on what we know of the growth. From analysing the TEM images in Figure 5.3 there are 

10µm 500nm 
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thickness fluctuations of the GaAsSb capping layer where the holes are confined. These fluctuations 

can affect the local electric field around the hole, which in turn can affect how the hole recombines, 

possibly broadening the emission.  Additionally, from EDS measurements of similar samples it is 

clear that Antinomy (Sb) can migrate through the lattice to create non-uniform distributions27, 

which can lead to alloy fluctuations, which are theoretically predicted to effect linewidths of 

radiative transitions28.  

Another possibility is that the some of the broadening arises from a spectral diffusion effect due to 

impurities or structural defects around the QD that come from the growth of the active region29.  

Large quantum dots are known to have generally broader linewidths, being more vulnerable to 

strain related defects30 and inter-dot coupling when grown next to high densities of small quantum 

dots31. Both of these effects could be minimised by more optimised lower density growth, 

additionally resonant excitation may help at reducing the effect of defects trapping excitons. 

 

Figure 5.8 – Micro-Photoluminescence spectra of the QDs observed through gold apertures, with (a) showing the 
GaAs substrate and (b) showing the Si. 

 

5.4.3 Power Dependence 
To explore the type-II nature of these QDs PL was performed for a range of excitation powers, one 

of these power dependence spectra is shown in Figure 5.9. This power dependence was performed 

on the GaAs-substrate sample due to its brighter exciton emission. Since both have identical active 

regions and similar PL at 1500 nm these results should be indistinguishable from the Silicon 

substrate, but are significantly easier to obtain due to the increase in their efficiency. However, to 

ensure this was the case a quick power dependence on the Si was performed and showed similar 

results, but with significantly higher noise.  
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The centre of mass of the exciton emission (shown in Figure 5.9a) was found to blueshift with 

excitation power with significant broadening of the individual peaks at high excitation powers. 

However, the individual lines were found to be relatively independent of excitation power, with 

only a slight red shift observed (as shown by the red data plotted in Figure 5.9b).  This is very similar 

to what we reported for the type-II QRs in the previous chapter (Figure 4.8), where we concluded 

that band bending was not playing a significant role, due to no blueshift occurring to the individual 

QD peaks. This similarity is interesting as these QD structures are very different in terms of the 

confinement of their carriers; the GaAsSb capped InAs/GaAs QDs have tightly confined electrons 

with loosely confined holes, the inverse of the situation in GaSb/GaAs QRs. However, it can be seen 

in Figure 5.3a that there is a ring like structure that has formed around the QD, which from EDS has 

shown to be high in Sb. It is possible that this structure might be loosely confining holes, which is 

overall creating a system similar to the QRs, which could account for the similarities in the power 

dependence.  

The blue line in Figure 5.9b shows the total intensity of the 1450 nm peak with excitation power. Its 

linear dependence on a log-log scale at the lower powers then saturation upon reaching higher 

powers is consistent with single exciton recombination. No lines representing multi-excitonic 

recombination were observed in any spectra from the sample, although it is possible these were 

obscured by the broad background peak.  

 
Figure 5.9 – (a) Micro-Photoluminescence spectra of the QD peak as a function of laser power, red/green lines 
show the change of the individual/ensemble peak respectively, with varying excitation power. (b) Plots the 1450 
nm peak’s total intensity (blue) and the peak wavelength (red) as functions of excitation power on a log scale. 
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5.5 Conclusion 
Type-II GaAsSb capped InAs/GaAs QDs grown on Silicon and containing DFL’s were studied to see 

if dislocations due to the GaAs/Si lattice mismatch could be reduced sufficiently to allow emission. 

The same quantum dots were grown on both a GaAs and a Si substrate to allow the DFL’s 

effectiveness to be assessed. The QDs grown on silicon were found to emit at 1550 nm (telecoms C-

band) but at a reduced intensity compared to the GaAs grown sample, showing that dislocations 

were still present but not in sufficient quantities to inhibit emission. To observe individual exciton 

lines micropillars were etched into the samples to reduce the excitation area, allowing individual 

lines to be observed amongst the high density of emitters. It was found that the whole ensemble 

blueshifts with increased excitation power, but individual QD peaks show very little variation, 

showing a red shift of <2 nm. This shows that similar to the QRs band bending is not a significant 

cause of the blueshift, and it more likely arises from an increase in the intensity of higher energy 

states or the creation of new states at higher excitation power.  

The individual QD peaks were found to be very broad for InAs QDs which was surmised to arise 

from high charge fluctuations around the quantum dot. By comparing apertures to pillars it was 

found that the edge states of the micropillar were not contributing significantly to the broadening. 

These individual lines are significant as they show that III-V type II QD structures can be integrated 

with Si, albeit with some linewidth broadening. It is believed that this is the first reported 

observation of silicon based single QD emission at 1500 nm, although without doing autocorrelation 

measurements it’s impossible to assess its usefulness as a single photon source. 

These Si grown samples could possibly be improved further, by annealing during growth, which has 

been shown to significantly improve the effectiveness of DFLs16. The sample showed significant 

fluctuations of the capping layer height, thickness and composition, so it would be interesting to try 

and grow a more uniform capping layer to see what effect these variations had on the QD peaks 

emission. It is possible a more uniform layer may reduce both the background and the QD 

linewidth. Additionally, a change in the growth of the QD layer to create a lower density and more 

uniform QD size may help to reduce the amount of emission observed.  

To improve this work further performing a µPL map of the Si based sample’s surface before etching 

pillars would allow regions of poor emission (due to defects) to be isolated. This would allow 

micropillars to be sited in more optimal locations where the presence of defects are reduced 

allowing much a better recombination rate making the individual QDs on Si to be more easily 

observed.   Overall this work shows a promising direction towards integrating telecoms wavelength 

emitting QDs with silicon.  
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6 Chapter 6 

Increasing light extraction using UV curable SILs  
 

This chapter describes how a liquid based solid immersion lens (SIL) made from UV curable epoxy 

can be used to enhance the light output of a 2D material. The epoxy SIL described fully encapsulates 

the monolayer helping to prevent physical damage and degradation in air. Micro-

photoluminescence results show a large intensity increase from a monolayer of tungsten dieselenide 

(WSe2) combined with an increase in imaging resolution.  

6.1 Introduction 
Transition metal dichalcogenides (TMDs) as previously discussed are 2D materials that have a direct 

bandgap in the visible to NIR range. They are ideal for optoelectronic applications such as LEDs, 

lasers and photovoltaics1 due to their unique ability to be stacked into heterostructures with 

graphene and boron nitride, to enable electrical excitation. These materials have advantages over 

existing III-V based devices due to their low cost and easy integration with silicon, which as 

discussed in the previous chapter are major drawbacks to III-V materials. Additionally, TMDs have a 

low thickness which makes complex multilayer structures (also known as van der Waal 

heterostructures) a lot more compact and therefore and easy to integrate onto flexible substrates2. 

As well as these many advantages for classical light sources TMDs show a good potential for 

quantum light, with defects in 2D materials capable of confining excitons to form quantum dot like 

emission, that can be electrically excited to make a on demand single photon source3. 

However, TMDs are not without their drawbacks; one of the most significant challenges lies in 

maximising the light output of a monolayer flake. TMDs typically have a low light output compared 

to III-V based devices due to poor quantum yields (QY) which range from 0.01 – 6%4 compared to 

GaAs based QD’s which can be very close to 100%5,6. This can cause significant problems when 

developing a single photon source where any loss of photons can cause a significant reduction in 

performance7. Several recent studies have attempted to improve the materials photoluminescence 

(PL) using several different methods such as: chemical treatments using organic superacids4 and 

functionalisation using chemically active groups8,9, plasmonic structures such as nano-spheres10 and 

gold coated trenches11, microcavities12 and photonic crystals13,14. The gains from these methods 
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predominantly come from either improving the internal quantum efficiency, or increasing the pump 

adsorption coupled with a decrease in the radiative lifetime. Whilst these methods are effective at 

increasing light output none of these fully address the problem of extraction efficiency. A solution 

that can provide increased light coupling into the far field, whilst incorporating a light enhancing 

structure (e.g. a photonic crystal) would be highly desirable for the future of TMD based devices. For 

the rest of this chapter we address this issue by taking the aforementioned epoxy SILs, and employ 

them for the first time directly onto TMDs15. This should not only enhance the light output coupling 

of the TMD, but also will help to protect the TMD flake from degradation in air due to oxidation, 

which can significantly damage the optical and electronic properties of the TMD16.  

6.2 Fabricating SILs onto different surfaces 

6.2.1 Embedded GaSb/GaAs Quantum rings 
To test the viability of epoxy SILs they were initially investigated by fabricating them on a sample of 

embedded GaSb quantum rings using the method outlined in section 3.2.2. The GaSb QR samples 

were initially chosen as reference sample that could easily be compared with PL data taken in 

Chapter 4. Additionally, the GaSb quantum ring samples have a uniform, flat hydrophobic surface 

(GaAs) which enables the formation of high contact angled epoxy droplets with similar contact 

angles to the previously studied glass SILs.  Multiple epoxy SILs were created with varying contact 

angles onto the sample, and the µPL analysed, the results of one of these SILs and its glass 

counterpart are presented in Figure 6.1a, and a side view of this SIL is shown in Figure 6.2a. From 

this data, epoxy SILs appear to be as effective as the glass SILs, with both showing a very similar 

enhancement of their QD peak. It should be noted that the glass SIL has been stuck in place using 

the same epoxy that was used to make the SIL, (as the cryostat it was being measured in has a 

vertical orientation). Therefore, since its interface with GaAs has the same refractive index as the 

epoxy, it is not increasing the light output as effectively as it has the potential to do. Theoretically it 

can be calculated for a perfect s-SIL (using equation 2.8) that the enhancements should be 12x, 6.2x 

for glass and epoxy respectively. This demonstrates that an epoxy SIL is just as useful as a glass SIL 

in applications where the SIL needs to be bonded to the surface.  

The PL of the QD peak of the epoxy SIL in Figure 6.1a is lower than its theoretical value, this was 

most likely due to the SIL being distorted when fabricated. This distortion greatly reduces the SILs 

imaging and collection performance due to both the laser spot and the PL becoming de-focussed. To 

get a better idea of the SILs true potential an epoxy SIL with a close to perfect geometry was formed. 

Figure 6.1b shows the PL from this SIL, from different positions in the centre and compares them to 

a point off the SIL on the substrate (black). The integrated intensity of the PL increases by 5.90x 

which is very close to the theoretical value stated earlier. The addition of the SIL has also increased 
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the imaging resolution by reducing the laser spot size, this means that we can see more detail in the 

quantum dot peak than we can on the substrate, due to less structures being excited.  

 

Figure 6.1 – (a) Compares the PL spectra of a SIL formed from glass (red) and epoxy (blue) to the substrate, (b) 
shows 4 different positions (P) in the centre of the SIL (coloured), compared to the intensity on the substrate (black). 

 

6.2.2 Delicate surfaces 
The work on GaSb QDs showed epoxy SILs have great potential on embedded systems, however one 

of the main advantages of epoxy SILs have over glass SILs is that they have the potential to be 

placed on sensitive surfaces. To test this epoxy SILs were deposited on a range of different samples 

which were too sensitive for glass SIL’s, microscope images of these samples are shown in Figure 

6.2b-d. The MoS2 sample shown in Figure 6.2b was fabricated in Lancaster using mechanical 

exfoliation and shows that the application of the epoxy doesn’t remove the flakes. The image in 

Figure 6.2c shows a SIL on a sample containing site controlled quantum dots made by the Tyndall 

National Institute in Cork18, and have been back etched, to reveal the pyramid tips containing the 

QDs. Figure 6.2d shows a gold grid containing plasmonic nano-rings, fabricated by the University of 

Southampton19. It can be seen from Figure 6.2 that the SILs show excellent optical quality, despite 

being on some very rough and non-uniform surfaces with the samples visually appearing 

undamaged from the encapsulation process. Additionally, various sizes of SIL are possible with 

Figure 6.2a having a radius of 720 µm and Figure 6.2b 325µm. SIL’s less than 250 µm in radius are 

very challenging to fabricate with the current setup for two reasons, firstly their small optical 

window makes positioning of the SIL difficult, secondly a SILs quality is highly dependent on their 

shape, and they become increasingly more effected by slight variations as they reduce in size. 

Figure 6.2c shows a small amount of distortion due to the SIL not being perfectly circular, this arises 

from large features on the surface effecting how the epoxy spreads as it wets to the surface, creating 

non-symmetrical lenses. Although the lens still enhances and roughly works, the slight reduction in 

optical quality will reduce its effectiveness at enhancing PL due to it poorly focusing the PL, and 
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distorting the laser spot.  One solution that was found to be effective was to first spin the same 

epoxy used for the SILs onto the surface at a sufficient thickness to fill the surface so it becomes flat, 

making a smooth surface when cured. The advantage of this is that once cured, the span film has the 

same refractive index as the SIL itself; therefore, the interface should be invisible to the light and 

appear as part of the SIL. When making SILs in this way care must be taken to know the thickness 

of the span epoxy before applying the SIL, as its thickness will slightly change the effective height of 

the SIL, and consequently the optical properties of the SIL. The minimum uniform layer thickness 

that can be achieved with the epoxy used to create the SILs (NOA 81) was found to be 

approximately 1.5 µm 

 

Figure 6.2 - Epoxy SILs mounted onto different surfaces, (a) Side view of a SIL mounted on GaAs whilst inside the 
glycerol bath, (b) A SIL on-top of mechanically exfoliated MoS2 flakes, (c) site controlled pyramid QDs, (d) Gold 

grid containing plasmonic nano-rings 

Figure 6.3 shows a wavelength PL map of a single pyramid isolated inside a SIL, the reduction in the 

laser spot and increase in magnification allows single pyramid to be mapped. The pyramid is 

emitting as expected and the quantum dot peak is observed roughly in the centre of the triangular 

structure with some shorter wavelengths corresponding to its GaAs base appearing around it. This 

shows that these structures PL has been unaffected by the application of the SIL. Unfortunately, the 

high distortion of the SIL shown above made it unsuitable for enhancing emission. This has arisen 

from the non-uniform back etch that has been performed on it making regions of the surface several 

microns higher than others. However, if enhancement of these structure was going to be 
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reattempted, a good first approach would be to try and fill the surface with the epoxy until a flat 

surface could be achieved. Then a SIL with a slightly reduced height could be dispensed onto a 

completely flat surface avoiding any distortion.  

 

Figure 6.3 - Peak wavelength emission map of a site controlled quantum dot (shown in Figure 6.2c) (The white 
individual points arise from the fitting function used trying to incorrectly fit background noise and should be 

ignored). 

 

6.3 Fabricating SILs onto 2D materials 
Following on from the promising results in the previous section, the deposition of SILs onto 

mechanically exfoliated 2D materials was attempted. However, fabricating SILs on these samples 

presented new challenges, the first being that in this system the exact positioning of the SIL was 

essential. Most mechanically exfoliated 2D materials form monolayer flakes between 10 - 50 µm, 

with larger flakes being a lot rarer. This means that the centre of the SIL needs to be perfectly 

positioned to ensure the flake is in the optical window, as unlike previous samples only the 

monolayer flake emits light. The small size and high translucency of a monolayer makes it almost 

impossible to spot without a microscope, presenting extra challenges when fabricating a SIL. To 

overcome these challenges a whole new SIL mounting system was designed, and can be seen in 

Figure 6.4. The most important changes involved making the frame studier to prevent any undesired 

movement during SIL deposition, and adding a vertical magnifying endoscope to enable the flakes 

on the surface of the sample to be viewed, and the needle moved accordingly. The syringe barrel 

itself was angled at 45° and the needle manually bent at the same angle to allow it to deposit 
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vertically. It is very important that the needle is perfectly vertical to prevent the epoxy from 

syphoning up its sides, which prevents a nice droplet being formed, ruining the shape and 

symmetry of the desired SIL. The sample was illuminated from the side using a strong white light 

source, and the needle positioned over the monolayer, using the endoscope to locate the precise 

area. 

 

Figure 6.4 - Picture showing the experimental setup used to mount epoxy SILs onto 2D materials. Inset: Cross-
section of the 3D printed mount holding both the endoscope (vertical) and syringe barrel (diagonal). 

 

An additional challenge that mechanically exfoliated 2D materials presented was having a very non-

uniform surface, due to thick flakes of material being deposited with the monolayer. To prevent this 

from effecting the base of the SIL, approximately 200 nm of NOA 81 (the same epoxy used to 

manufacture the SILs) was spun onto the surface to encapsulate all the flakes and make a uniform 

surface.  
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6.3.1 Enhancement of a Tungsten Diselenide (WSe2) monolayer 
The 2D material explored for use with SILs was Tungsten diselenide, which was chosen for several 

reasons. Firstly because it is one of the most studied 2D materials along with MoS2, and secondly 

due to literature showing that it’s capable of forming atomic level imperfections that act as single 

photon emitters20,21, which could be integrated into an electrical device3. A SIL positioned on top of 

such a device would greatly increase the number of photons coupling out of the device, making it 

much more suitable for quantum security applications due to an increased bit rate22.  

 

 

 

Figure 6.5 shows microscope images of a flake of WSe2 approximately 20 µm2, which contains 

regions of both monolayer and bilayer, both before and after the application of a SIL. The mounted 

epoxy SIL had a radius of 550 ± 5 µm, and a height from apex to base of 700 ± 50 µm creating a 

geometry somewhere between a h-SIL and a s-SIL (77% the height of a perfect s-SIL). This height is 

the maximum that could be achieved when applying a droplet on-top of the cured epoxy, and is the 

closest to an s-SIL that can be achieved without any additional modification of the sample surface. 

From optical microscope measurements of the flake, it was found that the SIL provided a 

magnification increase of 1.80. This magnification increase greatly helps in resolving fine defects and 

Figure 6.5 - Optical microscope image showing an isolated mono/bilayer of WSe2, before (a,b) and after (c,d) 
mounting a SIL; the scale bar in (d) had been adjusted to account for the SILs magnification. 
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cracks in the flakes which were previously difficult to identify, this can be seen between Figure 6.5b 

and d where cracks become easily observable in d which are difficult/cannot be seen in b. It should 

be noted here that there is an argument for the process of fabricating the SIL slightly widening these 

cracks. However, this was not investigated further as it did not appear to affect the optical 

properties of the flake. In Figure 6.5d optical artefacts are observed that are not seen in c, these are 

mainly down to using a narrower aperture in the microscope to take the image. Also observed is an 

iridescent sheen that appeared very abruptly, and was not present upon fabrication, this is possibly 

from a thin film of material contaminating the apex of the SIL sometime after being formed e.g. oil.  

It can also be observed that a few bubbles of either air or glycerol have become encapsulated, but 

providing the bubbles are not directly over the monolayer, these defects will have no effect on the 

light collection efficiency.  

6.3.2 Resolution Enhancement and stability 
To assess the performance of the SIL photoluminescence (PL) intensity maps of the WSe2 flake 

shown in Figure 6.5 were performed both before and after the application of the SIL. These maps 

were performed by integrating the individual spectra between 700 – 900 nm, and assigning the 

integrated area as the intensity for that point. The graph is then interpolated to give a better 

comparison with the optical microscope images, the results of this can be shown in Figure 6.6. The 

increase in magnification previously discussed is easily observed between a-b of the PL maps in 

Figure 6.6, and the distance scales have been adjusted accordingly, with the magnified area 

identified by the orange box. The overall improvement in magnification is 1.80x from an epoxy with 

refractive index of 1.56, which is somewhere between that of an h-SIL (linear dependence with n 

giving 1.56x) and a s-SIL (quadratic dependence with n giving 2.43x)23. This result shows that SILs in 

between the h and s-SIL geometries (shown in Figure 2.7), can give optical properties that are a 

combination of the two, with the studied SIL showing a greater magnification than an h-SIL without 

introducing strong chromatic aberrations. This suggests that gradually increasing the contact angle 

to the substrate from 90° will change the magnifications dependence on refractive index from a 

reciprocal to an inverse square relationship. This means that epoxy SILs have the potential to be 

formed into geometries that can provide optimised trade-offs between magnification and white light 

image quality.  

The resolution increase observed in a SIL derives from a reduction of the lasers spot size as it travels 

from air to the SIL. Theoretically the increase in resolution from a h-SIL in μPL arises from a 

decrease in laser spot diameter, which is proportional to 1 𝑛⁄  (where n is the refractive index of the 

SIL)23. The laser acting as a plane wave will approximately project an airy pattern with a half-width 

at half-maximum (HWHM) of:  

HWHM= 
0.26λ

nNAobj
  (6.1) 
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where n = refractive index of the volume above the TMDC, NAobj = numerical aperture of the µPL 

system and λ = excitation wavelength24. Calculating (6.1) with the experimental parameters here 

gives an expected resolution increase of 1.6 times.  

 

Figure 6.6 - Interpolated photoluminescence maps of a WSe2 flake (outlined) taken both with and without a SIL 
and at low (20K) and high (300K) temperatures, as labelled; panels (a)-(c) show PL maps where the colour scale 

refers to the integrated intensity as a function of position; (d) shows example spectra from positions labelled in (c). 
The orange box in (a) highlights the area seen in (b) and (c). 

 

An important property of a SIL for photoluminescence work is to be very stable at low 

temperatures. This is especially important when developing single photon sources, due to phonons 

heavily influencing the recombination rate and the line width of the emission. Figure 6.6c shows a 

map taken at cryogenic temperatures (20 K); the temperature change has had no detrimental effect 

on the emission of the monolayer. This result shows epoxy SILs are resistant to temperature 

changes, and can thus be used for photoluminescence studies at cryogenic temperatures. Some 

example spectra from Figure 6.6c are shown in Figure 6.6d, these spectra occur all over the sample 

but seem more common around the monolayer-bilayer boundary which could explain the two 

separate peaks. Sharp exciton-like lines can be observed in each of these spectra, this is unusual as 

these sharp peaks do not appear anywhere else on this flake, nor do they appear at room 
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temperature. Since these peaks all occur at the same wavelength, it is unlikely that they are due to 

random QD like impurities that form within the monolayer, but could be due defects/impurities that 

are more likely to occur at the monolayer-bilayer boundary.  

Figure 6.7a/b show wavelength maps that highlight the value of the peak wavelength at 300K and 

20K respectively. It can be observed by comparing (a-b) that there is a shift in wavelength in some 

regions of the monolayer upon cooling to 20K. The 760 nm monolayer peak observed uniformly at 

room temperature, red-shifts to ~ 820 nm everywhere except the region 2. This shift (approximately 

80 nm) is a lot higher than expected from previously published results at low temperature, which 

show up to a 20 nm shift, between 300K and 20K25. Additionally, the regions that shift to 820 nm do 

not have the same spectral signature; this can be seen in Figure 6.7c, where different regions in (b) 

are compared against each other. The edges of the flake (region 1) show a much broader emission 

than region 3 which is in a more central location. The monolayer peak at 780 nm can still be 

detected in both regions 1 and 3, but is lower in intensity relative to the 820 nm peaks. Huang, et al. 

[26], attribute long wavelength exciton-like peaks to “defect related localised state transitions.” It 

could be that the epoxy or the glycerol bath is introducing a residual impurity across the flake, 

which allows a localized state to form within the monolayers bandgap. If excitons were to fall into 

this state they would emit at a longer wavelength, which might explain the shift in the peaks 

observed at low temperatures. The pattern observed may therefore be related to how the 

epoxy/glycerol impurities has interacted with the monolayer, which might explain why edges show 

differences in emission, as the impurities may find it easier to intercalate into these areas. To further 

this idea a power and temperature dependence would need to be performed on these peaks, both 

before and after the application of a SIL. Tracking the peaks in this way would give a greater 

information into the origin of these long wavelength emissions.  
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Figure 6.7 – (a-b): Peak wavelength map of the WSe2 flake shown in Figure 6.6 at 300K and 20K 
respectively (c): Individual spectra from positions (1-3) marked in (b) with Lorentzian fits (F1-F3) 

showing how the peak wavelength in (b) are obtained. 

 

6.3.3 Photoluminescence enhancement 
One of the most important property of any SIL placed on a 2D material is its ability to increase the 

amount of light coupled into and out of the monolayer flake. When comparing Figure 6.6a to Figure 

6.6b, there is a significant and uniform increase in the intensity of the flake (both maps were taken 

for the same laser excitation power).  

Figure 6.8a, shows the measured PL spectra for an arbitary point on the monolayer from figure 

6.6a/b at 10µW of excitation power. Comparing the integrated intensity of the flake both before and 

after the application of a SIL a large enhancement of 300% is observed.  

As described in earlier chapters, the theoretical enhancement of the SIL arises from increasing the 

solid angle of the emission that can be detected, arising from the SIL refracting light at the SIL-air 

boundary. A SIL with the dimensions stated above should increase the solid angle of light emitted 

vertically by 1.33x, however the SiO2 layer will also reflect light back, creating a virtual source 

which will in turn be enhanced by the SIL. Calculating these values, we find that the solid angle of 

the reflected light would be increased by 3.15x, which when scaled to take account of the percentage 

of light that would be reflected and added to the vertical emission we get a total enhancement of 

2.0x (100%) enhancement. This theoretical value is only half the power of the experimental results, 

and could be due to the value only considering the emission from the monolayer and not the effect 
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on the SIL on the excitation source. The laser used to excite the PL must pass through the SIL first, 

which as mentioned previously reduces the radius of excitation, subsequently increasing the power 

density. This change in power density can be approximated based on the change in spot size, and 

was calculated to be 2.4x higher with a SIL. This increase in relative power could explain why the 

observed increase is so much higher than expected. This could in future be looked at experimentally 

by forming a SIL over an electrically excited monolayer flake, since the excitation power would be 

completely unaffected by the SIL it should give a value much closer to the calculated value.  

 

Figure 6.8 - Graphs showing example PL spectra for monolayer WSe2 with and without a SIL for the same 
excitation power (a), and the power dependence of the intensity ratio of SIL to no SIL for three different positions 

on the monolayer (b). 

 

The relative enhancement of the SIL varied with excitation power, this is shown in 

Figure 6.8b where the ratio between SIL to no SIL is plotted vs. excitation power for different 

monolayer positions. The reduction in the intensity with power might be caused due to the 

increased power from the smaller spot size, which can reduce the relative PL intensity through 

charge screening effects, leading to an overall reduction of relative intensity with power. A 

decreased spot size could also cause an increase in localised heating of both the epoxy and the flake, 

which may affect both the emission of the monolayer and the optical properties of the SIL due to 

thermal effects. One explanation for these effects that can be discounted is doping and strain from 

the epoxy, as similar WSe2 monolayers show no enhancement in their PL when they are coated with 

a film of cured epoxy, rather than a SIL (Figure 6.9). 

6.3.4 Issues with Molybdenum Disulphide (MoS2) 
Another heavily researched TMD material is MoS2, primarily due to its abundance thanks to it being 

commonly used as an industrial lubricant27. To study the SILs applicability to other TMDs a SIL was 

mounted onto a MoS2 flake using the same methods as previously used for WSe2 and can be seen in 

Figure 6.2a. Upon performing photoluminescence measurements, very little signal was observed and 
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after repeating with a different sample and SIL it became clear that this was caused by the 

application of the SIL. To investigate this further a 1.5 µm thick layer of epoxy was spin-coated onto 

another monolayer of MoS2 and PL taken before and after the application and can be seen in Figure 

6.9a. Simply spinning and curing epoxy onto the surface of MoS2 causes its PL to become heavily 

supressed, with an order of magnitude reduction of the peak coupled with a red shift of 8nm. If we 

compare this to WSe2 (Figure 6.9b) with the same thickness of film, there is no change in the peak 

intensity when applying the epoxy, however there was observed a blue shift and a slight reduction 

in the peak width. Blue shift of the WSe2 peak is indicative of possible n-type doping28, which 

increases the number of additional electrons, and as consequence enhancing the charged excitons 

(trions) and reducing the neutral exciton peak29. The effect of doping may explain the observed 

changes in monolayer intensities. Since WSe2 is p-type with high hole mobilities30 and shows 

ambipolar behaviour31. A slight increase in negative charge provided by dopants in the epoxy, is 

unlikely to have a large effect on the PL, due to it being cancelled by the positively charged 

enviroment. Mechanically exfoliated MoS2 is known to be naturally n-type arising from point 

defects in its crystal structure29, this means that further increasing the negative charge will cause 

quenching of the PL, as observed by Mouri, et al. [32] who show not only quenching for MoS2 but 

also a slight red shift similar to that observed in Figure 6.9.  

If the epoxy is n-type doping it could be possible to treat the sample with a p-type dopant e.g. 

TCNQ32 or azobenzene molecules29, before applying the epoxy to help neutralise any point charge 

defects in the sheet, and counteract the excess electrons from the epoxy. An alternative approach 

could be to functionalise the surface with covalent molecules8,9 which should help enhance the flake 

and may serve as a barrier to prevent the epoxy from introducing dopants into the flake.  

Another explanation for the quenching of the MoS2 PL could be due to compressive strain rising 

from the curing of the epoxy. It has been previously shown that compressive strain can alter the 

bandgap of MoS2 from direct to indirect33, this would be expected to quench the PL emission. The 

compressive strain values needed to induce a shift from direct to indirect bandgaps for MoS2 and 

WSe2 are 0.5% and 1.5% respectively34. Since the threshold for WSe2 is higher than MoS2, the epoxy 

may have induced enough compressive strain to change the bandgap in MoS2, but not in WSe2.  
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Figure 6.9 – PL spectra of (a) MoS2; and (b) WSe2 before and after the application of a thin film of cured epoxy; 
Inset: graph demonstrating the lack of degradation from aging due to the epoxy SIL, the dashed blue line shows 

the peak intensity before application of the SIL. 

 

6.3.5 Increase in longevity 
The epoxy used to encapsulate the flake has an additional advantage of sealing the TMD material 

from air, which could increase the longevity of the monolayer flake. Under ambient conditions it is 

well known that TMD monolayers degrade due to oxidation and introduction of organic 

contaminants16, which can make them tricky materials to work with due to time constraints. To test 

the stability of our monolayers under the epoxy SILs, the WSe2 flake shown in Figure 6.5 was left in 

ambient conditions for a 6 month time period. The PL peak intensity over this time period is shown 

in Figure 6.9b (inset) where, within the uncertainty of the system the intensity remained constant; 

this combined with no visual change demonstrate that no significant degradation occurred. 

6.4 Conclusions 
In this chapter, we showed that UV-curable epoxy formed solid immersion lenses can be fabricated 

and mounted onto multiple semiconductor structures which are not suitable for more traditional 

glass SILs, improving their resolution and increasing their light output. It was demonstrated that 

these SILs can be applied to 2D materials fully encapsulating and protecting them from the 

environment, with a WSe2 flake showing a 250-300% improvement in its photoluminescence, and 

magnifying the flake by 1.8x. The SILs show they are very temperature stable with thermal cycling 

to 20K not appearing to affect the SIL or the monolayer underneath it.  

The mounting of the epoxy SILs had some effects on the PL emission of the TMD monolayer, blue-

shifting the wavelength of the WSe2 peak at room temperature, causing large positional dependence 

shifts at low temperature, and quenching the PL of MoS2. It is likely that all these effects are linked 
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and arise from impurities in either the epoxy or the glycerol, however the epoxy is much more 

likely due to it containing a mixture of unknown material. The UV epoxy we were using (Norland 

Optical Adhesive) has a composition that is a trade secret and it is not possible to find out exactly 

what chemicals it is made from, however comparing the effects of these impurities to literature it is 

likely that epoxy is donating electrons to the monolayer (n-doping). Further study of these samples 

is needed to confirm this as being the cause, and strain of the monolayer could still be a factor, 

however this doping can potentially be controlled to avoid it causing PL quenching.  

Epoxy SILs have the potential to be an excellent cheap enabling technology for WSe2 based 

optoelectronic devices such as LED’s. The SILs in this study would likely increase light output of a 

LED by 100%, however by tuning the SIL to a perfect s-SIL there is the potential to theoretically 

create a 400% increase. The great advantage of this method of light extraction is that it will interact 

in an accumulative manner with any other emission increasing methods such as photonic crystal 

cavities, or plasmonic structures. A great example of the potential would be to take the single 

photon source made by Palacios-Berraquero, et al. [3], transfer the single photon source to a 

plasmonic array/photonic crystal cavity, then place a SIL over the top to create a bright single 

photon source based on silicon, in a relatively affordable packaging.  
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6.5 Further work 

6.5.1 Increasing the emission of 2D materials  
In this chapter, the problem of low light emission from TMD’s was addressed by increasing the 

collection efficiency via the use of an epoxy based SIL. However, for a surface emitter a SIL does not 

aid in recovering light lost to the substrate, nor does it physically increase the amount of light 

emitted by the TMD’s. Providing the emission is omnidirectional the SIL’s will interact with the 

emitted light multiplicity, meaning that any method that increases the rate of emission will combine 

with the SIL to make a significant increase in light collected. This could be essential to the 

development of efficient 2D based emitting devices and single photon LED’s.  

There are multiple different methods that could be used to increase the light output of 2D materials 

ranging from simple solutions such as growing DBR mirror pairs below the monolayer, to more 

complex solutions such as using either nanocavities35 or plasmonic trenches11 to increase the 

absorption of the pump light that normally goes through the 2D material and gets lost to the silicon.  

Plasmonic structures are especially interesting as they are capable of both enhancing the absorption 

of the pump laser and creating a Purcell enhancement by modifying the local electric field around 

the emitter. Recent reports have shown plasmonic nanogaps enhancing PL by up to 20,000 times 

that of an equivalent flake on a Si substrate11. Combining a WSe2 flake on a gold plasmonic grid with 

an epoxy SIL should dramatically increase light emission from suspended regions of the WSe2 flake. 

This could be especially effective at enhancing defect states in WSe2, by deliberately tuning the 

plasmonic gap to the wavelength of the defects states (typically 720-780 nm20,21), the spontaneous 

emission can be enhanced. The extra light emission from this can then be enhanced further by 

placing an epoxy SIL over the top of the flake to improve the amount of light collected. These defect 

states have been shown to have good single photon emission with values of 3,20,21,36. They can also be 

site controlled by locally modifying the strain of the sheet36 making them a very attractive single 

photon source, with a great integration potential with silicon.  

Preliminary work was performed to try and fabricate gold plasmonic nano-trenches that have a 

plasmonic-gap resonance tuned to somewhere between 720 and 780 nm. The overall goal of this 

work would be to place a WSe2 flake on-top and see if the plasmonic trenches can enhance the PL of 

the defect states at cryogenic temperatures.  Simulations on similar structures in literature, have 

shown that trench widths of 7-12 nm37 and a pitch size of 200 nm11 for a 100 nm thick film of gold 

should create a plasmonic mode in the defect wavelength range. These literature values were used as 

a rough guideline for some initial fabrication, and 150 nm of gold was evaporated onto a Si wafer 

with a 300 nm SiO2 layer. Electron beam physical vapour deposition (EBPVD) was chosen over 

thermal evaporation due to it being performed under a higher vacuum which helps to reduce 
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impurities that can act as sources of non-radiative scattering of plasmon-polaritons. A thin 10 nm 

layer of Ti was evaporated onto the Si wafer before the gold to assist in adhesion to the SiO2.  

 

Figure 7.1: Diagram showing the fabrication steps used to create gold plasmonic nano-trenches. 
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The fabrication process of etching arrays of gold trenches into 150 nm of EBPVD evaporated gold is 

presented in Figure 7.1. A 60nm hard mask of SiO2 is deposited on-top of the gold using plasma 

enhanced chemical vapour deposition (PECVD), followed by a layer of e-beam resist (CSAR 62). The 

e-beam resist was diluted using anisole by 1:5 and span at 500 rpm for 5s, 1000 rpm for 5s and 6000 

rpm for 60s, creating a uniform resist across the sample with a thickness of approximately 50nm. 

This is an important step as the plasmon resonance is highly dependent on the width of the 

trenches,38 the scale of which (10 nm) is pushing the limit of the electron beam lithography (EBL) 

systems resolution (JEOL-JBX-5500ZD). Therefore, a very thin resist is required so that low dosages 

can be used to limit proximity effects from scattered electrons; this will provide a much more 

accurate structure than if a more conventional 80 nm thick resist was used. The CSAR 62 resist was 

also selected over other EBL resists such as PMMA due to its high dosage sensitivity, overall this 

allowed dosages < 100 µC/cm2 to be used and developed successfully. Development itself was 

performed using o-Xylene for 90s combined with very gentle agitation using an ultrasonic bath to 

allow the developed resist to be removed more easily from the very small trenches; the sample is 

then rinsed in IPA to stop further development.  

To create the hard mask the e-beam lithography system exposed arrays of parallel trenches with a 

pitch of 200 nm and varying widths from 8-20 nm. After development the hard mask was then 

etched for 2 mins in an RIE plasma using a SiO2 etching recipe consisting of CHF3 and and 02
39.  

To etch the gold a highly isotropic yet selective etch was required, as the sidewalls need to be 

ideally as vertical as possible for optimum plasmon confinement. Work done by Siegfried, et al. [38] 

suggest that plasmon gap resonance is suppressed in vertical trench depths < 60 nm, and that for an 

optimal resonance in a 10 nm wide trench, verticality should be maintained for 100 nm. Therefore, 

to etch the gold a Cl2 + Ar based plasma was developed for the ICP-RIE based off ICP based recipes 

from literature40,41. The gas ratio of Cl2:Ar was 1:3, the Ar provides a deep anisotropic etch whereas 

the Cl2 provides selectivity and most importantly combines with Au ions to create volatile 

compounds which can be easily removed from the plasma. One of the biggest challenges of etching 

gold is to prevent redeposition onto the surface, due to reactive species not forming a vapour. To 

prevent this, the chamber was heated to 160°C and a low chamber pressure of 5 mT was maintained 

throughout the etch. The full etch recipe is given in Table 7.1, the selectivity of etching SiO2 : Au 

was 2:5 and the etch rate was 12 nm min-1. 

After etching, the SiO2 can be removed using a buffered oxide etch solution which consists of HF, 

NH4F and H20 in the respective ratio 1:7:12. There is also the possibility to suspend these structures 

at this point if the ICP-RIE was intentionally used to etch through the gold, due to the Au being 

deposited on SiO2. The advantage of suspending the structure is it allows it to be easily removed 

from the substrate to allow absorption measurements to be performed to find the plasmonic mode. 
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Figure 7.2 shows SEM and AFM images of some initially fabricated gold nano-trench structures, 

these trenches were patterned to be 20 nm in width. It can be seen in (a) and (b) that the trenches 

are wider than expected ~ 40 nm and show a 10-20 nm fluctuation in width. This most likely arose 

from the EBL step, as this increase in width was also observed in the SiO2 mask. There are multiple 

approaches that can be attempted to solve this problem, the most effective would be to use a more 

sensitive resist to allow lower e-beam dosages thus reducing electron scattering. Carefully 

optimising the development may also help, as well as performing better proximity correction on the 

EBL file, to allow more a uniform dosage across the sample. 

 

 

 

 

 

 

 

 

Table 7.1: ICP-RIE parameters for slow anisotropic etching of gold with a SiO2 hard mask 

 

AFM results in (d) demonstrate that the trenches show good verticality, the triangular feature 

observed is the shape of the tip of the AFM, indicating that for at least 50 nm the trench sidewalls 

are sufficiently vertical that the AFM cannot detect them. Of course, there is the possibility of 

overetching, however without some cross-sectional measurements this would be difficult to confirm. 

It can also be seen that the gold looks rough and there appears to be a lot of grain boundaries. This 

could potentially be improved by rapidly annealing the gold structures, whilst encapsulated in HSQ 

to prevent any deformation in the structures shape42. 

At the time of writing this thesis this is the current point that this work has reached, however the 

next stage will involve shining light through different widths of trenches to see if we can detect any 

absorption of the light that might correspond to gap-plasmon modes. This should allow us to perfect 

the design so the final structure can be fabricated and a WSe2 flake can be transferred on-top of the 

gold, along with an epoxy-SIL, ready for low temperature PL measurements. 

ICP-RIE Au etch Recipe 

Cl2 10 sccm 

Ar 15 sccm 

Chamber pressure 5 mTorr 

Strike pressure 50 mTorr 

RIE power (strike power) 25 (50) W 

ICP power (strike power) 20 (30) W 

Chamber Temperature 160°C 

DC bias 154 V 

Etch rate 12 nm min-1 

Selectivity SiO2 2:5 
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Figure 7.2: Images of fabricated gold trench arrays (a, b) showing SEM images, (c) showing an AFM scan of the 
same area, and (d) showing the height in the highlighted region 

 

6.5.2 Etching TMD’s 
Transition metal dichalcogenides (TMD’s) have highly layer dependent properties; the addition of a 

single atomic layer on-top of a monolayer is enough to change the band structure from direct to 

indirect, greatly reducing the intensity of the TMD and significantly shifting its wavelength. For 

some applications thicker structures can be more preferable, e.g. creating site controlled single 

photon emitters36. However, most methods used to exfoliate/grow TMD’s are inherently random 

making it difficult to control both the thickness and lateral size of an individual flake. One method 

that could be used to overcome this is to grow a slightly thick structure (e.g. a bilayer) then 

controllably etch the flake in a plasma to reduce its thickness43, this can potentially be combined 

with lithography to create only monolayers in predefined areas. The ability to laterally control the 

thickness of a TMD through etching could enable some interesting applications, which could be 

anything from forming large monolayers, to etching lateral heterojunctions. 



Chapter 6 - Increasing light extraction using UV curable SILs 
 

6-21 
 

Xiao, et al. [44] presented a method to etch MoS2 using an ICP plasma which slowly removes layers 

in a controllable way without causing ion impact damage to the sheet. The recipe used SF6 and N2 to 

create NF3 by the following reaction: 

3SF6 +N2 → 2NF3 + 3SF4 

3MoS2 + 16NF3 → 8N2 + 3MoF4 + 6SF6 

In this piece of work we used the above etch chemistry to attempt to etch Tungsten disulphide 

(WS2), to monolayer using an ICP-RIE. WS2 is interesting for this study as its PL tends to be very 

bright compared to other TMDs45,46 such as MoS2 making it more suitable for devices emitting light.  

 

 

 

 

 

 

 

Table 7.2:  ICP-RIE parameters for WS2 bilayer to monolayer etch 

 

Initial studies using an ICP-RIE showed that the etch rate of WS2 could be reduced to a remarkably 

slow rate of 0.1 layers/min, simply by controlling the flow of nitrogen. The parameters for this etch 

on the ICP-RIE are shown in Table 7.2, the selectivity of the etch over the SiO2 substrate is not 

known, however despite this no change in SiO2 thickness has so far been observed.   

A WS2 bilayer flake etched in this way is presented in Figure 7.3, where the flakes 

photoluminescence and physical appearance under a microscope is presented both before (a) and 

after (b) etching. The etching of a monolayer is clearly visible in the PL maps, with the monolayer in 

the top left of (a) being etched away in (b), whilst the bilayer gets substantially brighter due to it 

being reduced to monolayer and gaining a more direct bandgap. This shift to monolayer is clearly 

evident in the individual PL spectra shown in (c), with the increase in intensity accompanied by a 

shift in wavelength to just under 630 nm, very similar to CVD grown monolayers in literature47.  

This is also supported by the Raman spectra in (d) which again matches what has been observed for 

bilayer/monolayer in literature48.  However, when observing the intensity between (a) and (b) it is 

ICP-RIE WS2 etch Recipe 

SF6 0.5 sccm 

N2 35 sccm 

Chamber pressure 30 mTorr 

Strike pressure 50 mTorr 

RIE power (strike power) 2 (10) W 

ICP power (strike power) 15 (150) W 

Chamber Temperature 13°C 

DC bias 0 V 

Etch rate 0.1 layer min-1 
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clear that the etched monolayer’s PL is only half as intense as the original monolayer observed in 

the top left of (a).  There could be many reasons for this, such as the plasma starting to etch away 

parts of the monolayer sheet, or defects being created in the sheet due to the plasma which then acts 

as sources of non-radiative recombination.   

 

 
Figure 7.3: The top row show PL maps and their microscope image (inset) of a bilayer flake of WS2 pre-etch (a) 
and post-etch (b). The bottom row shows the PL spectra (c) and Raman spectra (d) of the flake, both before and 

after etching. 

 

To fully understand the effect etching has on the monolayer, AFM measurements were performed 

on several different bilayer WS2 flakes that were etched to monolayer; one of these scans is 

presented in Figure 7.4. In this AFM image it is clear that the plasma etch is causing the deposition 

of an unknown substance onto the substrate. More detailed scans on the monolayer suggest that the 

roughness has increased a similar amount to the substrate suggesting that this deposition is uniform 

across the sample. Etching performed on MoS2 using the same chemistry and machine did not show 

any traces of this deposition, suggesting that tungsten might be the source of this deposition. 

Tungsten hexafluoride has a vapour pressure under room temperature so can be ruled out as the 

source of the deposition49, however tungsten nitride has a vapour pressure of 646°C50 and is much 
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more likely as the etch recipe has an excess of nitrogen in the chamber. To remove this a change to 

the etch gasses are required, which likely involves reducing the nitrogen and increasing the fluorine 

content of the plasma to promote the tungsten to react with the fluorine to form WF6 which can be 

more easily removed, however this will most likely dramatically increase the etch rate. An 

alternative approach is to add a small amount of oxygen into the plasma to promote WOF4 

formation, which from literature has a vapour pressure of 187.5°C49, which can be reached in the 

ICP-RIE . If the deposition issue can be solved this etch recipe could be a valuable tool for the 

processing of WS2, with lateral heterostructures of monolayer-bilayer possible by simple 

lithography and plasma etch techniques. These structures have shown increased amount of interest 

recently51-54 due to their abrupt interfaces having interesting properties such as type-I quantum 

wells. It may therefore be possible to create some innovative new structures such as lateral resonant 

tunnelling diodes (RTD’s), out of WS2 by utilising this etching method.  

 

Figure 7.4: AFM scans of a bilayer before (left) and after (right) being etched to a monolayer 
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7 Chapter 7 

Conclusions  
 

7.1 Conclusions 
In this work three different solid-state emitters were studied using micro-photoluminescence. The 

room temperature emission and near infra-red (NIR) wavelength of each of these emitters, makes 

them attractive as potential sources of single photons. However, these emitters have relatively low 

efficiencies; with the quantum dot (QD) samples showing high spectral broadening due to their 

type-II band alignment, and 2D materials having low internal efficiencies, making individual 

excitons difficult to observe. Several different techniques such as solid immersion lenses (SILs), 

aperture masks and micropillars were employed to enhance their light emission, and isolate their 

individual exciton transitions.  

The first type of emitter studied was embedded GaSb/GaAs quantum rings (QR) emitting at 1200 - 

1300 nm. These structures have a type-II band alignment with tightly confined holes and more 

loosely confined electrons in their centre. Isolation of individual exciton transitions in micro-

photoluminescence (µPL) was found to be challenging due to the density and broad emission of 

these structures. A glass super solid immersion lens (s-SIL) combined with a gold aperture mask was 

placed onto the surface to increase the numerical aperture, and reduce the excitation and emission 

area simultaneously. Using these methods individual exciton-like emission with linewidths as small 

as 200 µeV were detected at low excitation powers. The observation of individual exciton peaks 

enabled us to understand their contribution to the peak centre of mass (COM) power dependent 

blueshift often observed in these structures. It was found that the individual exciton peaks emission 

does not shift with increasing excitation powers, suggesting that in this range of excitation power 

(five orders of magnitude) band bending does not provide a major contribution to the observed 

COM blueshift. Instead the cause is attributed to an increase of the coulomb attraction between the 

electrons and holes, resulting in an increased confinement, and thus a higher emission energy when 

the exciton recombines. This agrees with several other papers from literature which all attribute 

band bending to be a minor effect1-4.  
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The excitons long lifetime in QRs make them an obvious candidate for use in memories, however 

what might be less obvious is their potential use as an active medium in lasers. The long carrier 

lifetime in the quantum dots should make it easier to maintain a population inversion relative to a 

type-I quantum dot, and increases the probability that an exciton recombines via stimulated 

emission rather than spontaneous emission or a non-radiative process.  However, for other optical 

applications such as single photon sources this low spontaneous emission rate is detrimental to 

their performance. One method that could be used to improve this would be to grow DBR mirrors 

both above and below the active region to create a cavity which can then be etched into 

micropillars. These pillars would have two effects; the first would be to reduce the area of excitation 

so fewer QDs are excited at once, allowing for an improvement in the isolation of individual exciton 

lines. The second effect is the cavity should provide a Purcell enhancement in the light emission 

which should help to reduce the time it takes for the excitons to recombine, reducing the long 

lifetimes created by the type-II band alignment. 

The second emitter studied consisted of an active region containing InAs/GaAs QDs capped with 

GaAsSb to red-shift emission to 1400 - 1600 nm. They possessed a type-II band alignment similar to 

the GaSb/GaAs QRs, but with carriers confined in a different way, with electrons being tightly 

confined in the InAs dot and the holes delocalised in the GaAsSb capping layer. The novel approach 

in this experiment was to grow an identical active region on both a silicon wafer and on a GaAs 

wafer, to analyse the effectiveness of these structures on Silicon. The Silicon grown sample 

contained sets of super lattices called defect filter layers (DFLs) which help to remove dislocations in 

the crystal that form from the lattice mismatch of GaAs and Silicon. Upon performing macro-PL it 

was found that the QD peak on Si was observable but reduced in intensity by an order of magnitude 

compared to the GaAs. This combined with lack of the wetting layer PL peak indicated that some 

dislocations were still present, but not enough to supress QD emission.  

For the first time, we observed single quantum dot emission at 1500 nm from QDs grown on both 

Silicon and GaAs substrates. These sharp lines were isolated using 1 µm diameter micropillars, 

which helped to reduce the number of excited dots by reducing the excitation area. Linewidths from 

1 – 5 meV were observed for both the GaAs and the silicon sample, which indicates that the main 

source of broadening arises from the active region growth rather than from the silicon. However, 

the silicon peaks were on average broader due to a ten-fold increase in excitation required to 

produce the same intensity as observed in the GaAs grown sample. Some pillars showed greatly 

reduced counts, indicating dislocations were present in sufficient number to decrease the radiative 

recombination of carriers. 

These samples had similarities with the GaSb/GaAs QR structures, especially in their power 

dependent blueshift which showed a very similar pattern. Individual exciton peaks stayed relatively 
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constant in wavelength when excitation power increased, whereas the ensemble peak strongly 

blueshifted. It is therefore likely that the main contribution to the blueshift in this structure is also 

capacitive charging due to the coulomb interaction, but with the electron-electron interaction this 

time being dominant. From the TEM images in Figure 5.2a it is possible that the GaAsSb cap is 

loosely confining holes due to the ring like structure that has formed around the dot. This could be 

providing an environment akin to an inverse QR with the holes being loosely confined in the lobes 

of this ring, and electrons tightly confined in the centre. Overall these QDs have excellent 

applications as a light source for quantum telecoms, and show better promise than the QRs due to 

their C-band emission, and easy integration into Si based QKD on-chip devices5. However, 

individual excitons do need to be better isolated so lifetime and autocorrelation measurements can 

be performed, allowing their viability as a single photon source can be fully assessed.  A more 

optimised MBE growth of the active region to reduce the QD density would greatly help towards 

this goal. Additionally, growing DBR’s around the active region to create a cavity would help to 

increase the radiative recombination of carriers through the Purcell effect.  

 

The final solid-state structure studied was a 2D monolayer flake of tungsten diselenide (WSe2) 

mechanically exfoliated onto a silicon/silicon dioxide (Si/SiO2) substrate. This material, like the two 

previously mentioned QD structures, emits at room temperature. It additionally contains defect 

states that at low temperature have been shown to exhibit single photon emission. Monolayer WSe2 

has advantages as a light emitter over semiconductor QD systems previously discussed, due to them 

being fully compatible with silicon, being very cheap and versatile to fabricate, and having unique 

spin-orbit interactions. However, WSe2 has a very poor quantum yield with low absorption of light, 

and omnidirectional emission making it highly inefficient compared to III-V semiconductors. To 

help solve this issue we attempted to increase the coupling of light into/out of the monolayer using 

a SIL formed from liquid UV curable epoxy. The fabrication of the SIL in this way does not cause 

any damage to the monolayer, and helps to protect it from the ambient environment which can 

cause degradation of the structure and a drop in PL intensity. SILs fabricated on-top of WSe2 

monolayers showed 250-300% improvement in the PL intensity at room temperature, and magnified 

the monolayer by 1.8x. The wavelength of emission of the WSe2 was largely unaffected with only a 

slight blueshift detected, however when applied to MoS2 a quenching of the PL was observed. It was 

therefore suggested that the epoxy was either slightly n-doping the material, or was straining the 

monolayer upon curing. There are many ways addressing this issue; changing the composition of 

the epoxy may help prevent doping, or if this isn’t possible a thin coating with an index matched 

polymer such as PMMA could be applied before mounting the SIL. Additionally, since performing 

this work new epoxies with higher refractive indices than used in the above work have become 
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available, which should greatly increase a SIL’s enhancement by focusing a larger solid angle into 

the collection optics.  

Epoxy SILs have great integration potential with any surface; as the epoxy is formed in a liquid 

state, there is no risk of damage or air gaps when mounting. Their only limitation is the wettability 

of the surface they are deposited on, as the surface needs to be reasonably hydrophobic to allow 

high contact angled lenses such as s-SILs to be formed. One way around this limitation might be to 

treat the surface with a chemical designed to increase hydrophobicity. An example of such a 

chemical is 1H, 1H, 2H, 2H-Perfloorooctyltriethoxysilane6,7 however cheaper substances such as 

basic fatty acids8 could also be used to ensure that the most optimised lens is always dispensed.  

Overall this work has presented three different room temperature emitters each with a different 

emission wavelength in the NIR range. Each material system has the capability to emit single 

photons, but each suffers from either a poor internal efficiency or spectra too dense to observe 

individual excitons. For each structure, we presented methods that can be used to overcome these 

issues, enabling an improvement in the optical PL response. These optical improvements could 

enable each of these emitters to be integrated into silicon photonic circuitry, to enable on chip 

technology such as classical networks9 as well as QKD10.  
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8 Glossary of terms/abbreviations 

 

Active region: An intrinsically doped region of an optical device (usually a laser) where carriers 

are injected into. The active region usually contains a light emitting semiconductor structure which 

will capture the carriers where they can recombine to produce photons.  

CVD (Chemical Vapour Deposition): A method of growing crystalline materials by forming 

chemical vapours using a furnace, then channelling these vapours over a substrate allowing them to 

condense and form triangular crystalline structures. 

DFLS (Defect Filter Layers): DFLs are sets of strained superlattices used to reduce the defects in a 

crystal, by bending propagating dislocations so that they meet and annihilate each other. 

Dielectic constant/relative permittivity: A material dependent property that describes the 

amount of resistance encountered when forming an electric field in a material, relative to a vacuum. 

EBL(Electron Beam Lithography): A patterning technique where an electron sensitive resist is 

exposed to a beam of electrons to create a pattern which has a resolution down to 10nm. 

EDX/EDS (Energy-Dispersive X-ray Spectroscopy): A technique used to characterise the 

elemental composition of a material exciting an atoms by promoting an electron from the inner 

shell into free space, then observing the elements unique x-ray which it’s atom emits due to outer 

electrons de-exciting into their ground state.  

Fermi Level (εf): The fermi level is a hypothetical electron energy that usually exists in the 

bandgap, at zero kelvin all the states are filled up to the fermi level. 

Fermi-Dirac function (F(ε)): This function describes the probability that an electron at a given 

energy state will be occupied at a given temperature. 

GaAs (Gallium Arsenide): A crystalline semiconductor often used as a substrate for III-V MBE 

growth. Its bluey-black in appearance, very fragile and has a bandgap of  1.424 eV at 300K.  

III-V Material: A compound made from elements from group III and V of the periodic table such as 

GaAs, InAs, AlSb etc. 
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ME (Mechanical exfoliation): The process of thinning down a large bulk crystal of a 2D material 

using a piece of adhesive tape, then transferring the layer from the tape onto the desired substrate. 

Micropillar: A small cylindrical pillar around a micron is diameter, etched into a semiconductor, 

and commonly used to create cavities for lasers.  

NIR (Near Infra-Red): Electromagnetic radiation at wavelengths between 700 – 2500nm. 

Photon: A single particle of light with zero mass, which are the elementary particle of 

electromagnetism. 

Piezo (piezoelectric acutator): A stack of ceramic plates that use their piezoelectric effect to 

expand in response to being charged. This width change can be submicron, enabling very fine 

movements of a system. 

PL/µPL (Photoluminescence): Using light (normally a laser) to create excite a material with a 

bandgap so it emits light. 

QD (Quantum Dot): A small island of semiconductor that is only a few nm in all directions, often 

embedded in a different semiconductor. This creates an energy well that can confine excitons in all 3 

dimensions and give rise to atom-like emission. 

QKD (Quantum key distribution): A encryption scheme that uses fundamental quantum 

mechanics to create a secure key out of a stream of single photons. 

QR (Quantum Ring): A quantum dot that has been capped in such a way that in explodes into a 

ring/doughnut shape. Holes become confined in the lobes of the ring and electrons outside making a 

spatial separation of carriers and a type-II structure. 

QW (Quantum Well): A thin layer of semiconductor only a few nanometres in width sandwiched 

between two layers of material with a wider bandgap. Carriers can become confined leading to 

more discrete electronic and optical states. 

QY (Quantum Yield): The ratio of the number photons absorbed by the material, to the amount of 

photons that the material emits. 

Si (Silicon): A very highly abundant crystalline group IV semiconductor, used in nearly all modern-

day electronics. 

SIL/SILs (Solid Immersion Lenses): A small optical component that sits on the surface of a 

material and enhances the overall numerical aperture of a microscope system.  
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SPP (Surface plasmon polariton):   Electomagnetic waves that travel along the surface of a 

metal-dielectic interface. They are generated by the coupling of electrical charge in the metal to 

photons in the air. 

TMD (Transition Metal Dichalcogenide: This refers to a material that consists of a lattice of the 

formula MX2 formed from a transition metal (M) e.g. Ti, Ta, W; with 2 chalcogen atoms from group 

VI (X) e.g. S, Se, Te. 

θc (Contact angle): The internal angle a droplet makes to a surface it is in contact with. 

 

 


