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I t d tiIntroductionIntroduction 
M t f th l ti i l fi d 2D t i l h ll i k l d d t h i W h i ti t dMeasurement of thermal properties in nanoscale confined 2D materials are challenging our knowledge and techniques We have investigatedMeasurement of thermal properties in nanoscale confined 2D materials are challenging our knowledge and techniques. We have investigated 
h th ti h f ti f l b f l f f 2D t i l h M S d Bi S U i ihow these properties change as a function of sample number of layers for a range of 2D materials: graphene MoS2 and Bi2Se3 Using scanninghow these properties change as a function of sample number of layers for a range of 2D materials: graphene, MoS2 and Bi2Se3. Using scanning 
thermal microscopy (SThM) and Finite Element method we discuss the thermal conductivity dependence on multiple parametersthermal microscopy (SThM) and Finite Element method, we discuss the thermal conductivity dependence on multiple parameters.  

N th l d t 2D t i l i t f i l ti lti t i t diNanothermal conductance 2D materials interfacial properties multiparametric studiesNanothermal conductance,  2D materials,  interfacial properties,  multiparametric studies. 

Scanning thermal microscopy Mapping thermal conductivity of 2D materialsScanning thermal microscopy Mapping thermal conductivity of 2D materialsScanning thermal microscopy Mapping thermal conductivity of 2D materials 
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