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Abstract

As most robust combinatorial min-max and min-max regret problems with dis-
crete uncertainty sets are NP-hard, research in approximation algorithm and approx-
imability bounds has been a fruitful area of recent work. A simple and well-known
approximation algorithm is the midpoint method, where one takes the average over
all scenarios, and solves a problem of nominal type. Despite its simplicity, this
method still gives the best-known bound on a wide range of problems, such as ro-
bust shortest path or robust assignment problems.

In this paper, we present a simple extension of the midpoint method based on
scenario aggregation, which improves the current best K-approximation result to
an (εK)-approximation for any desired ε > 0. Our method can be applied to min-
max as well as min-max regret problems.

Keywords: robust combinatorial optimization; approximation algorithms; scenario
aggregation; min-max optimization; min-max regret optimization

1 Introduction

We consider uncertain combinatorial optimization problems of the form

min
{
ctx : x ∈ X ⊆ {0, 1}n

}
(P)

where X is the set of feasible solutions, and c is an uncertain objective function that
comes from some uncertainty set U . Two frequently studied approaches to reformulate
such an uncertain problem to a robust counterpart are min-max optimization

min
x∈X

max
c∈U

ctx
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FPTAS
Problem LB UB for fixed K

M
in

-M
ax

Shortest Path Ω(log1−εK) K ! [KZ07]

Spanning Tree Ω(log1−εK) O(log2K) ! [ABV07]
s-t Cut Ω(log1−εK) K

Assignment Ω(log1−εK) K

Selection Ω(1) O( logK
log logK ) ! [KZ07]

Knapsack Ω(1) - ! [ABV07]

R
eg

re
t

Shortest Path Ω(log1−εK) K ! [KZ07]

Spanning Tree Ω(log1−εK) K ! [ABV07]
s-t Cut Ω(log1−εK) K

Assignment Ω(log1−εK) K

Selection Ω(1) K ! [KZ07]
Knapsack not approx. not approx.

Table 1: Current best known approximation guarantees (UB) for unbounded number of
scenarios K, and best known inapproximability results (LB) (see [KZ16]).

and min-max regret optimization

min
x∈X

max
c∈U

(
ctx− opt(c)

)
where opt(c) = miny∈X c

ty is used as an additional normalization term. Both types
of problems have received significant attention in the research literature, see, e.g., the
surveys [KY97,ABV09,KZ16] on this topic. In this paper we focus on the case of discrete
uncertainty, i.e., the uncertainty set is of the form U = {c1, . . . , cK} ⊂ Rn.

For most combinatorial problems where the deterministic version can be solved in
polynomial time (e.g., shortest path, spanning tree, selection), both robust counterparts
turn out to be NP-hard. Therefore, the approximability of such problems has been
analyzed (see, e.g., [ABV07]).

A popular approximation algorithm due to its generality and simplicity is the midpoint
method (see, e.g., [CG15]). The idea is to define a new scenario ĉ := 1

K

∑
i∈[K] ci, which

is the average of all scenarios in the uncertainty set, and to solve a nominal problem
with respect to these costs. This method is known to be a K-approximation algorithm
for both min-max and min-max regret optimization. In the case of interval uncertainty,
this approach even gives a 2-approximation [KZ06, Con12]. Quite surprisingly, this is
still the best known approximation guarantee for several problems, see Table 1. In col-
umn ”FPTAS for fixed K”, we denote if a fully polynomial-time approximation scheme
(FPTAS) is known for the problem with fixed number of scenarios K.

In this paper a simple improvement of the midpoint approach is presented, where the
basic idea is to aggregate scenarios not into a single scenario, but into a sufficiently small
set of scenarios instead. We show that if the min-max problem for a constant number of
scenarios is sufficiently approximable, then there is a polynomial-time εK-approximation
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for any constant ε > 0. With a slight modification, this also holds for min-max regret.
This result hence improves all entries of Table 1 where the best-known approximation is
K and the column ”FPTAS for fixed K” is checked. Interestingly, this also leads to the
first-ever approximation algorithm for min-max knapsack problems with unbounded K.

Note that this method is not a PTAS. While a PTAS exists for most problems when
K is fixed, it has exponential runtime in K. Our approach remains polynomial in K,
but does not give a constant approximation guarantee.

The remainder of this paper is structured as follows. In Section 2 we present our
improved approximation algorithm in the case of min-max robustness, and discuss its
application to min-max regret in Section 3. We describe two computational experi-
ments for the proposed aggregation scheme in Section 4 before we conclude the paper in
Section 5.

2 Min-Max Approximation

In this section, we show how to improve the K-approximation algorithm for the min-max
problem to a εK-approximation algorithm for any constant ε > 0, if a 2-approximation
is available for a fixed number of scenarios. The basic idea is the following. Let us
assume we have K = 16 scenarios. Solving the robust problem with all 16 scenarios
would yield a 1-approximation (i.e., an optimal solution). Solving the problem with
only one aggregated scenario gives a 16-approximation. We show that intermediate
scenario aggregations also yield intermediate approximation guarantees (see Figure 1).

Figure 1: Basic aggregation scheme.

Now let us assume we would like to have a K/2-approximation algorithm. We could
aggregate to two scenarios, and solve the resulting problem. However, solving a min-
max problem with two scenarios is usually already NP-hard. Hence, we aggregate to
four scenarios instead (which would give a K/4-approximation if solved exactly, which
is more than we need), and solve this problem with an algorithm that guarantees a
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2-approximation. In total, this method then yields a 2 ·K/4 = K/2-approximation. In
the following, we explain the details of this procedure.

For simplicity, we assume K = 2k here, but our results readily extend to any K. If K
is not equal to 2k for some integer k, we set k′ = dlog2Ke and create an uncertainty set
U ′ with 2k

′
scenarios by copying any scenarios from U until the required size is reached.

Note that |U ′| ≤ 2|U|, and this does not change the corresponding robust optimization
problem. We then apply our analysis to the uncertainty set U ′.

Let any partition of [K] into sets Sj , j ∈ [K/2], with cardinality 2 be given. For each
Sj = {j1, j2}, set cj = 1

2(cj1 + cj2), i.e., cj is the midpoint scenario of scenario set Sj .

Lemma 1. Let x be an optimal solution for the min-max problem with scenario set
U = {c1, . . . , cK/2}. Then, x is a 2-approximation for the min-max problem with scenario
set U .

Proof. Let x be an optimal solution for U , and x∗ an optimal solution for U . Let
i∗ = argmaxi∈[K] c

t
ix be the index of the worst-case scenario in U with respect to x, and

choose j∗ such that i∗ ∈ Sj∗ = {j∗1 , j∗2}. Then

max
i∈[K]

ctix = cti∗x ≤ ctj∗1x+ ctj∗2x ≤ 2 max
j∈[K/2]

(
cj1 + cj2

2

)t

x

= 2 max
j∈[K/2]

ctjx ≤ 2 max
j∈[K/2]

ctjx
∗ ≤ 2 max

i∈[K]
ctix
∗

We repeatedly apply Lemma 1 to reduce the number of scenarios. Denote by U(k) the
original scenario set U containing all scenarios. After the first level of aggregation we
end up with scenario set U(k− 1) containing 2k−1 scenarios. Repeating the aggregation
process we create sets U(`) for ` from k to 0.

Corollary 2. Applying Lemma 1 repeatedly, we get a scenario set U(`) with 2` scenar-
ios such that solving the min-max problem with respect to U(`) gives a 2k−` = K/2`-
approximation for the min-max problem with scenario set U .

We present an instance where the approximation guarantee obtained in Corollary 2 is
tight for the min-max shortest path problem. Let K = 2k be the number of scenarios
and 2` the number of scenarios that are used in the aggregation. Consider an instance
of the shortest path problem with 2 disjoint paths of length K. The top path is divided
into 2` blocks of r := 2k−` edges. All edges in the ith block have cost 1 in scenario
(i−1) · r+ 1 and cost 0 in all other scenarios. Hence, the objective value of the top path
is equal to r. The cost structure for the bottom path is different: The ith edge of the
bottom path has cost 1 in the ith scenario and cost 0 in all other scenarios. Hence, the
objective value of the bottom path is 1. Consider the aggregation schema as in Figure 1.
For both paths it holds that after the aggregation the cost of an edge of the ith block has
cost 1

r in the ith aggregated scenario and 0 in all other aggregated scenarios. Hence, both
paths are identical with respect to the aggregated scenarios and the optimal solution of
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Figure 2: An instance of the min-max shortest path problem with 8 scenarios. An edge
with vector ei has cost 1 in the ith scenario and 0 in all other scenarios. For this
instance the approximation guarantee of Corollary 2 is tight if we aggregate
to 4 scenarios.

the aggregated problem may consist of the top instead of the bottom path. This leads
to a gap of 2k−` = K/2`. In Figure 2, we present this worst case instance for K = 8 and
` = 2.

Lemma 3. A solution that is an α-approximation for U(`) is also an (αK/2`)-approximation
for U .

Proof. Analogously to the proof of Lemma 1.

We can now state the main result of this section.

Theorem 4. Let a constant 0 < ε ≤ 1 be given, and let K be unbounded. If there exists
a 2-approximation algorithm for the min-max problem with a fixed number of scenarios,
there exists a polynomial-time algorithm that gives an (εK)-approximation for the min-
max problem.

Proof. Let ε ≤ 1 be constant. We choose `′ := dlog 1
ε + 1e. As K is unbounded, we

can assume that K ≥ `′. According to Corollary 2 we construct the set U(`′) with 2`
′

scenarios. Using the 2-approximation algorithm for the min-max problem with a fixed
number of scenarios, we find a 2-approximation for U(`′). Using Lemma 1, we conclude

that the solution is a 2 · 2k−`′ = 2K/2dlog
1
ε
+1e ≤ K/1ε = εK-approximation. Note that

the running time of this procedure is polynomial since the value of ε and, therefore, also
`′, is fixed.

Corollary 5. Let a constant 0 < ε ≤ 1 be given, and let K be unbounded. Then there
exists a polynomial-time (εK)-approximation algorithm for the min-max shortest path,
spanning tree, selection, and knapsack problem.

As examples, let us consider the min-max selection and shortest path problems. For
both problems we need a 2-approximation algorithm for the min-max problem with a
fixed number of scenarios.

• For selection, there exists an FPTAS that finds for a fixed number of scenarios

K̃ a (1 + ε̃)-approximation with running time O
(

pK̃n

ε̃K̃−1

)
(see [KZ07]). Hence,
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using Theorem 4, an (εK)-approximation is possible in O
(
p

4
εn
)

by aggregating

to K̃ = 2dlog
1
ε
+1e scenarios, and approximating the resulting problem with a factor

of 2, i.e., choosing ε̃ = 1.

• For shortest path, there exists an FPTAS that finds for a fixed number of sce-

narios K̃ a (1 + ε̃)-approximation with running time in O
(

mnK̃

ε̃K̃−1

)
, which makes

it possible to find an (εK)-approximation in time O
(
mn

4
ε

)
by aggregating to

K̃ = 2dlog
1
ε
+1e scenarios, and approximating the resulting problem with a factor

of 2, i.e. choosing ε̃ = 1.

3 Min-Max Regret Approximation

To translate the results obtained for min-max to min-max regret problems we need to
modify the aggregation procedure, as the following example shows.

Example 6. Consider the min-max regret shortest path instance shown in Figure 3a.
There are four scenarios. An optimal solution is to take the path in the middle with a
regret of 1. If we aggregate the first two and the last two scenarios, we arrive at the
instance shown in Figure 3b. Here, all three paths are optimal with a perceived regret
of 1 (the top and bottom part have a regret of 1 in the first scenario, while the middle
path has a regret of 1 in the second scenario). Without loss of generality we can hence
assume that an optimization algorithm will return the top path, but its true regret is 4.
Hence, in this example, we obtain only a 4-approximation and not a 2-approximation as
in the case of the min-max objective function.

s t

(4, 0, 0, 0)

(0, 4, 0, 0)

(1, 1, 1, 1)

(a) Instance with 4 scenarios.

s t

(2, 0)

(2, 0)

(1, 1)

(b) Instance with aggregated scenarios

Figure 3: An example instance where aggregating from four to two scenarios leads to a
4-approximation for min-max regret.

Instead of simply aggregating pairs Sj = {j1, j2} of scenarios and solving a min-max
regret problem on this new scenario set, we consider the following problem

min
x∈X

max
j∈[K/2]

ctjx−
1

2
opt(cj1)− 1

2
opt(cj2) (*)
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Note that we do not use the objective ctj−opt(cj), as would be usual for min-max regret.
Further generalizing, we call a problem

min
x∈X

max
i∈[K]

ctix− d(ci)

with arbitrary d a generalized min-max regret problem.

Lemma 7. Solving the generalized min-max regret problem (*) on U = {c1, . . . , cK/2}
is a 2-approximation for U .

Proof. Let x be optimal for problem (*), and x∗ optimal for the original problem with
uncertainty set U . Again, denote by i∗ = argmaxi∈[K] c

t
ix − opt(ci) and choose j∗ such

that i∗ ∈ Sj∗ = {j∗1 , j∗2}. Then

max
i∈[K]

(
ctix− opt(ci)

)
= cti∗x− opt(ci∗)

≤ ctj∗1x− opt(cj∗1 ) + ctj∗2x− opt(cj∗2 )

≤ max
j∈[K/2]

(
(cj1 + cj2)tx− opt(cj1)− opt(cj2)

)
= 2 max

j∈[K/2]

(
ctjx−

1

2
opt(cj1)− 1

2
opt(cj2)

)
≤ 2 max

j∈[K/2]

(
ctjx
∗ − 1

2
opt(cj1)− 1

2
opt(cj2)

)
= max

j∈[K/2]

(
ctj1x

∗ − opt(cj1) + ctj2x
∗ − opt(cj2)

)
≤ 2 max

i∈[K]

(
ctix
∗ − opt(ci)

)

Note that the arguments used in the proof of Lemma 7 can be generalized to the case
where scenarios are aggregated repeatedly, i.e., we aggregate to sets Sj with more than
two elements. Similar to Corollary 2 we obtain:

Corollary 8. Given an aggregated scenario set U(`) where each of the 2` scenarios is
given as cj := 1

2k−`

∑
s∈Sj

cs. The optimal solution of the generalized min-max regret
problem

min
x∈X

max
j∈[2`]

cjx−
1

2k−`

∑
s∈Sj

opt(ck)

yields an (K/2`)-approximation of the min-max regret problem with scenario set U .

Similar to min-max, we can use a 2-approximation for the generalized min-max regret
problem with a fixed number of scenarios to obtain an (εK)-approximation for the min-
max regret problem. Using the same arguments as in the proof of Theorem 4 we obtain:
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Theorem 9. Let a constant 0 < ε ≤ 1 be given, and let K be unbounded. If there
exists a 2-approximation algorithm for the generalized min-max regret problem with a
fixed number of scenarios, then there exists a polynomial-time algorithm that gives an
(εK)-approximation for the min-max regret problem.

Note that in our construction of the generalized problem, we have d(ci) ≤ opt(ci).
Hence, we can use the same proof as in [ABV07] using the FPTAS for multi-objective
spanning tree to show that there is an FPTAS for our generalized min-max regret span-
ning tree problem. The same approach applies to the min-max regret selection problem.

Furthermore, we can modify any generalized min-max regret shortest path problem
by adding an edge from s to t with costs d(ci) in scenario i. We create an additional
scenario where the costs of each edge is 0, and the costs of the new edge is a sufficiently
large value M . As d(ci) ≤ opt(ci), we can then solve a classic min-max regret problem on
this instance, giving the same objective value as before. Hence, the FPTAS for min-max
regret shortest path (see [ABV07]) can also be applied to our generalized problem.

Corollary 10. Let a constant 0 < ε ≤ 1 be given, and let K be unbounded. Then there
exists a polynomial-time (εK)-approximation algorithm for the min-max regret shortest
path, spanning tree, and selection problem.

4 Computational Experiments

In this section, we present two experiments to test the proposed aggregation method.
In both experiments the underlying problem is a robust shortest path problem with a
discrete uncertainty set. The underlying graph of the shortest path problem is a complete
layered graph with 10 layers and width 4. The scenario set consists of randomly generated
scenarios. The cost of each edge is chosen uniformly in [0, 1] for each scenario.

In the first experiment, we investigate the influence of the aggregation scheme on so-
lution quality and computation time. We start by solving the robust problem exactly
using an IP formulation which contains one additional constraint per scenario. In the
next step, we aggregate two consecutive scenarios. This reduces the number of con-
straints in the IP formulation. We solve the reduced IP formulation and repeat the
aggregation process until we end up with a single scenario. To make the aggregation
scheme work properly we have to ensure at the beginning of the aggregation that the
number of scenarios is a power of two. This is done by duplicating some of the scenar-
ios. For example the scenario set {c1, c2, c3, c4, c5} is replaced with the scenario multiset
{c1, c1, c2, c2, c3, c3, c4, c5}. We evaluate each computed solution using the original set
of scenarios and divide the objective value of the solution by the objective value of the
optimal solution. The results are shown in Figure 4. Additionally, we measure the time
which is necessary to solve the resulting IP formulations see Figure 5. All results are
averaged over 10,000 experiments. The IP formulation are solved with CPLEX v12.6
using a desktop computer with 8 GB RAM and a i5 quad-core processor with 3.2 GHz.

The aggregation level 0 corresponds to the original set of scenarios, i.e. solving the
original problem to optimality. The aggregation level 1 means that the number of sce-
narios is halved, etc. An increasing number of aggregation reduces the solution quality.
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Figure 4: The horizontal axis gives the number of scenarios. The relative worst case
performance of the different solutions for the different levels of aggregation is
shown on the vertical axis.
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Figure 5: The horizontal axis gives the number of scenarios. The computation times
(in ms) for the different levels of aggregation is shown on the vertical axis in
logarithmic scale.
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But each additional aggregation level has a smaller impact. Note also that the relative
performance of the aggregated solutions is far below the theoretical performance guaran-
tee. The solution time depends only on the number of scenarios which remains after the
aggregation. Recall the duplication of scenarios which increases the number of scenarios
to the next power of two.

In the proposed aggregation scheme (see Figure 1) always two consecutive scenarios
are aggregated. This rule is arbitrary. In the second experiment, we test if a more so-
phisticated aggregation rule can lead to an improved solution quality. For the improved
aggregation scheme we aggregate similar scenarios. To this end, we computed a mini-
mal cost perfect matching between the different scenarios. We set the cost of matching
scenario i with scenario j to the Euclidean distance of scenario i and j. The optimal
matching produces a list of pairs of scenarios. We sort this list with respect to the
Euclidean distance between the scenarios of the pair. We then iteratively aggregate the
matched pairs of scenarios, beginning with the pair which has the smallest Euclidean dis-
tance, until all matched pairs are aggregated. Then we recompute the perfect matching
and repeat the aggregation process. This is repeated until all scenarios are aggregated to
a single scenario. To model the naive approach we iteratively aggregate two consecutive
scenarios until we have halved the number of scenarios. Then we repeat the aggregation
process from the beginning, until we end up with a single scenario. For the experiment
we used a robust shortest path problem with 16 scenarios. The results of the experiment,
averaged over 10,000 instances, are shown in Figure 6.

It can be seen that the more involved aggregation rule based on scenario similarity
gives indeed better results for intermediate aggregation levels. For full or no aggregation,
the used aggregation rule is of course irrelevant.

5 Conclusions

The midpoint method is a central approximation algorithm in robust optimization. De-
spite its simplicity, it has been the best-known method for several classic combinatorial
problems. In this paper, we presented a simple variant of the method, where the un-
certainty set is not aggregated to a single scenario, but to a sufficiently small set of
scenarios instead. This reduced scenario set is then approximated using, e.g., an FPTAS
for discrete uncertainty of constant size. Our approach can be used to find polynomial
time (εK)-approximations for any constant ε ∈ (0, 1], thus improving several currently
known best approximability results.

Our results hold for any aggregation scheme. However, for practical purposes, aggre-
gating similar scenarios is reasonable, so as to preserve the structure of the uncertainty
set as far as possible. To quantify this effect we considered a computational experiment
using random shortest path instances. Our results indicate that approximation guar-
antees are considerably smaller on these instances than the theoretical bounds suggest,
and that aggregating similar scenarios does indeed improve the quality of solutions.

Another frequently considered approximation algorithm for min-max problems is the
element-wise worst-case approach (see [ABV09]). That is, when two scenarios ci =

10



1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

R
el

at
iv

e 
w

o
rs

t 
ca

se
 p

er
fo

rm
an

ce

Number of aggregated scenarios

Figure 6: The horizontal axis gives the number of scenarios that remain after each ag-
gregation. The relative worst case performance of the different solutions for
the different levels of aggregation is shown on the vertical axis. The straight
line shows the performance when aggregating similar scenarios and the dashed
line shows the performance of the consecutive aggregation scheme.

(ci1, . . . , cin) and cj = (cj1, . . . , cjn) are aggregated, the resulting scenario is given as
c = (max{ci1, cj1}, . . . ,max{cin, cjn}). With an analogous analysis as in Section 2, one
can also show that the same aggregation approach can be used in this setting.
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