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Abstract: We discuss a technique for measuring a charged particle’s momentum by means of
multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber
(LArTPC). This method does not require the full particle ionization track to be contained inside of
the detector volume as other track momentum reconstruction methods do (range-based momentum
reconstruction and calorimetric momentum reconstruction). We motivate use of this technique,
describe a tuning of the underlying phenomenological formula, quantify its performance on fully
contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its
performance on exiting muon tracks in simulation. We find agreement between data and simulation
for contained tracks, with a small bias in the momentum reconstruction and with resolutions that
vary as a function of track length, improving from about 10% for the shortest (one meter long)
tracks to 5% for longer (several meter) tracks. For simulated exiting muons with at least one meter
of track contained, we find a similarly small bias, and a resolution which is less than 15% for muons
with momentum below 2 GeV/c.
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1 Introduction and motivation

In this paper we summarize the theory of multiple Coulomb scattering (MCS) and describe how the
underlying Highland formula is retuned based on Monte Carlo simulation for use in liquid-argon
time-projection chambers (LArTPCs). We present a maximum likelihood based algorithm that
is used to determine the momentum of particles in a LArTPC. The only way to determine the
momentum of a particle that exits the active volume of a LArTPC is through MCS measurements.
We demonstrate that this technique works well for a sample of fully contained muons from Booster
Neutrino Beam (BNB) νµ charged-current (CC) interactions, and determine the resolutions and bi-
ases of the measurement. In addition we demonstrate the performance of the method on simulated
exiting tracks.

MicroBooNE (Micro Booster Neutrino Experiment) is an experiment that uses a large LArTPC
to investigate the excess of low energy events observed by the MiniBooNE experiment [1] and to
study neutrino-argon cross-sections. MicroBooNE is the first detector of the Short-Baseline Neu-
trino (SBN) [2] physics program at the Fermi National Accelerator Laboratory (Fermilab), to be
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joined by two other LArTPCs: the Short Baseline Near Detector (SBND) and the Imaging Cosmic
And Rare Underground Signal (ICARUS) detector [3]. In addition to producing valuable physics
output, MicroBooNE serves as an important source of detector and reconstruction development for
future LArTPC experiments, such as the Deep Underground Neutrino Experiment (DUNE) [4].

The MicroBooNE detector [5] consists of a rectangular time-projection chamber (TPC) with
dimensions 2.6 m × 2.3 m × 10.4 m (width × height × length) located 470 m downstream from
the Booster Neutrino Beam (BNB) target [6]. LArTPCs allow for precise three-dimensional re-
construction of particle interactions. For later reference, the z axis of the detector is horizontal,
along the direction of the BNB, while the x direction of the TPC corresponds to the drift coordinate
and the y direction is the vertical direction. The mass of active liquid argon contained within the
MicroBooNE TPC volume is about 90 tons, out of a total mass of 170 tons.

A set of 32 photomultiplier tubes (PMTs) and three planes of TPC wires with 3 mm spacing
at angles of 0, and ± 60 degrees with respect to the vertical are used for event reconstruction. The
cathode plane operating voltage is -70 kV. As illustrated in figure 1, a neutrino in the beam interacts
with an argon nucleus and the charged outgoing particles traverse the medium, lose energy and
leave an ionization trail. The resulting ionization electrons drift in a 273 V/cm electric field to the
wire planes constituting the anode. The passage of these electrons through the first two wire planes
induces a signal in the wires, and their collection on the third plane also generates a signal. These
signals are used to create three distinct two-dimensional views (in terms of wire and time) of the
event. Combining these wire signals allow for full three-dimensional reconstruction of the event,
with PMT signals providing information about the absolute drift (x) coordinate. The boundaries
of the fiducial volume used in this analysis are set back from the six faces of the active volume by
distances of between 20 and 37 cm, depending on the face, to reduce the impact of electric-field
non-uniformities near the edges of the TPC. This volume corresponds to a mass of 55 tons.

The Booster Neutrino Beam (BNB) is composed predominantly of muon neutrinos (νµ) with
a peak neutrino energy of about 0.7 GeV. Some of these neutrinos undergo charged current (νµCC)
interactions in the TPC and produce muons and other particles. For muon tracks that are completely
contained in the TPC, we calculate the momentum with a measurement of the length of the parti-
cle’s track, or with calorimetric measurements which come from wire signal size measurements.
Roughly half of the muons from BNB νµCC interactions in MicroBooNE are not fully contained in
the TPC, and therefore using an established length-based or calorimetry-based method to determine
the momenta for these uncontained tracks is not a possibility; the only way to determine their
momenta is through MCS.

2 Multiple Coulomb scattering

Multiple Coulomb scattering occurs when a charged particle traverses a medium and undergoes
electromagnetic scattering off atomic nuclei. This scattering perturbs the original trajectory of the
particle within the material (figure 2). For a given initial momentum p, the angular deflection
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Figure 1. A diagram of the time projection chamber of the MicroBooNE detector [5]. PMTs (not shown)
are located behind the wire planes.

scatters of a particle in either the x ′ direction or y′ direction (as indicated in the aforementioned
figure) form aGaussian distribution centered at zerowith anRMSwidth,σHL

o , given by theHighland
formula [7, 8]

σHL
o =

S2
pβc

z

√
`

X0

[
1 + ε × ln

(
`

X0

)]
, (2.1)

where β is the ratio of the particle’s velocity to the speed of light (assuming the particle is a muon),
` is the distance traveled inside the material, z is the magnitude of the charge of the particle (unity,
for the case of muons), and X0 is the radiation length of the target material (taken to be a constant
14 cm in liquid argon). S2 and ε are parameters determined to be 13.6 MeV and 0.038, respectively.
In this study, a modified version of the Highland formula is used that includes a detector-inherent
angular resolution term, σres

o

σo =

√
(σHL

o )2 + (σres
o )2. (2.2)

For this analysis, the σres
o term is given a fixed value of 3 mrad which has been determined to be

an acceptable value based on MicroBooNE simulation studies of muons at higher momenta. At
4.5 GeV/c muon momentum and l ≈ X0, equation 2.1 predicts an RMS angular scatter of 3 mrad,
comparable to the detector resolution. The fully contained muons addressed in this analysis have
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momenta below 1.5 GeV/c, making the impact of this detector resolution minimal for that sample.

With the Highland formula, the momentum of a track-like particle can be determined using
only the 3D reconstructed track information, without any calorimetric or track range information.
In neutrino physics experiments, emulsion detectors like those employed by the DONUT [9] and
OPERA [10] collaborations have used MCS to determine particle momenta. Additionally, the
MACRO [11] collaboration at Gran Sasso Laboratory utilized this technique. For LArTPCs, the
ICARUS collaboration has described the MCS-based determination of particle momentum using
a variety of methods [12, 13]. The likelihood-based method discussed in this paper for use in the
MicrobooNE detector and described in detail in section 3, has improved on the ICARUS method
by tuning the underlying phenomenological formula.

ℓ

b

b

b

b

y′

z′

x′

Projected scattered direction

Initial direction

Scattered
direction

θ

θx

Figure 2. The particle’s trajectory is deflected as it traverses the material. The angular scatter in the labeled
x ′ direction is shown as θx .

2.1 Tuning the Highland formula for argon

The Highland formula as written in equation 2.1 originates from a 1991 publication by G. R. Lynch
and O. I. Dahl [8]. The parameters in the equation (S2 and ε) were determined using a global fit
to MCS simulated data using a modified GEANT simulation package of 14 different elements and
7 thickness ranges. All of the simulated particles were relativistic, with β = 1. The materials
studied ranged from hydrogen (with Z=1) to uranium (with Z=92). Given that the parameters in
the formula were determined from a single fit to a wide range of Z with a wide range of material
thicknesses, there is reason to believe that these parameters could differ for scattering specifically in
liquid argon with l ≈ X0. There is also reason to believe that these parameters might be momentum-
dependent for particleswith β < 1, which is the case for some of the containedmuons in this analysis.

In order to re-tune these parameters for liquid argon, a large sample of muons are simulated

– 4 –



with GEANT41 [14] in the MicroBooNE TPC and their true angular scatters are used in a fit,
with l = X0. The reason for using l = X0 is that the Highland formula simplifies to remove its
dependence on ε

σHL
o =

S2
pβc

. (2.3)

The S2 parameter in equation 2.3 is fit for as a function of true muon momentum at each scatter,
in order to explore the β dependence of this parameter. The fitted parameter value as a function of
true momentum is shown in figure 3.

Figure 3. Fitted Highland parameter S2 as a function of true segment momentum for ` = X0 simulated muons
in the MicroBooNE LArTPC. Blue x- error bars indicate the true momentum bin width with data points
drawn at the center of each bin. Shown in red is a fit to these data points with functional form a × p−2 + c,
with best fit values for parameters a and c shown in the legend.

The fitted value of S2 is always less than the nominal 13.6 MeV for momentum greater than
0.25 GeV/c and asymptotically approaches a constant at higher momentum (where β = 1) of about
11.0 MeV. The value increases in the momentum region where β < 1. Shown in red is a fit to
these data points with functional form a × p−2 + c, with best fit values for floating parameters a and
c being 0.105 MeV3c−2 and 11.004 MeV respectively. This functional form is chosen because it
captures the trend in the fit value of S2 with respect to momentum, and asymptotically approaches
a constant value when β approaches 1. This function, used as a replacement for the S2 parameter in
the Highland formula, will henceforth be referred to as κ(p):

κ(p) = 0.105
p2 MeV3c−2 + 11.004 MeV. (2.4)

1The GEANT4 version used in this simulation is 4.9.6.
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To visualize the Highland formula for ` = X0 both before and after the κ(p) replacement,
see figure 4. It is recommended that future LArTPC experiments use this parameterization of the
Highland formula, or at the very least conduct their own studies to tune the Highland formula for
scattering in argon. This formulation can also be checked in LAr-based test-beam experiments such
as LArIAT [15].

Figure 4. The Highland scattering RMS σHL
o for 14 cm segment lengths and σres

o = 0 as a function of
true momentum before and after tuning. In red is shown equation 2.3 (the nominal Highland formula using
S2 = 13.6 MeV) and in blue is the retuned Highland formula (replacing S2 with κ(p)).

With ` = X0, the form of the Highland equation used in this analysis is therefore

σRMS
o =

√
(σo)2 + (σres

o )2 =

√(
κ(p)
pβc

)2
+ (σres

o )2. (2.5)

3 MCS implementation using the maximum likelihood method

This section explains in detail how the phenomenon of multiple Coulomb scattering is used to
determine the momentum of a muon track reconstructed in a LArTPC. In general, the approach is
as follows:

1. The three-dimensional track is divided into segments of configurable length.

2. The scattering angles between consecutive segments are measured.

3. Those angles combined with the modified, tuned Highland formula (equation 2.5) are used
to build a likelihood that the particle has a specific momentum, taking into account energy
loss in upstream segments of the track.
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4. The momentum corresponding to the maximum of the likelihood is chosen to be the MCS-
computed momentum.

Each of these steps is discussed in detail in the following subsections.

3.1 Track segmentation and scattering angle computation

Track segmentation refers to the subdivision of three-dimensional reconstructed trajectory points of
a reconstructed track into portions of definite length. In this analysis, the tracks are automatically
reconstructed by a projection matching algorithm [16] run on the output ofMicroBooNE’s Pandora-
based neutrino event reconstruction chain [17]. The algorithm constructs the three-dimensional
trajectory points by combining two-dimensional hits reconstructed from signals on the different
wire planes along with timing information from the photomultiplier tubes. The segmentation pro-
cess begins at the start of the track, and iterates through the trajectory points in order, defining
segment start and stop points based on the straight-line distance between them. There is no overlap
between segments. Given the subset of the three-dimensional trajectory points that corresponds to
one segment of the track, a three-dimensional linear fit is applied to the data points, weighting all
trajectory points equally in the fit. In this analysis, a segment length of 14 cm is used, which is a
tunable parameter that has been chosen as described in the derivation of κ(p) (equation 2.4).

With the segments defined, the scattering angles between the linear fits from adjacent segments
are computed. A coordinate transformation is performed such that the z′ direction is oriented along
the direction of the linear fit to the first of the segment pair. The x ′ and y′ coordinates are chosen
such that all of x ′, y′, and z′ are mutually orthogonal and right-handed, as shown in figure 2. The
scattering angles with respect to the x ′ direction and the y′ direction are computed as input to the
MCS algorithm. Only the scattering angle with respect to the x ′ direction is drawn in figure 2.

3.2 Maximum likelihood theory

The normal probability distribution for a scattering angle in either the x ′ or y′ direction, ∆θ, with
an expected Gaussian uncertainty σo and mean of zero is given by

fX(∆θ) = (2πσ2
o)−

1
2 exp

[
−1

2

(
∆θ

σo

)2
]
. (3.1)

Here, σo is the RMS angular deflection computed by the modified, tuned Highland formula
(equation 2.5), which is a function of the momentum and the length of that segment. Since energy is
lost between segments along the track, σo increases for each angular measurement along the track.
We therefore replace σo with σo, j , where j is an index representative of the segment.

To obtain the likelihood, we take the product of fX(∆θ j) over all n of the ∆θ j segment-to-
segment scatters along the track. This product can be written as

L(σo,1, ..., σo,n;∆θ1, ...,∆θn) = (2π)−
n
2 ×

n∏
j=1
(σo, j)−1 × exp

−
1
2

n∑
j=1

(
∆θ j

σo, j

)2 . (3.2)
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Rather than maximizing the likelihood it is more computationally convenient to instead min-
imize the negative log likelihood. Inverting the sign and taking ln(L) gives an expression that is
related to a χ2 variable:

− l(σo,1, ..., σo,n;∆θ1, ...,∆θn) = − ln(L) = n
2

ln(2π) +
n∑
j=1

ln(σo, j) +
1
2

n∑
j=1

(
∆θ j

σo, j

)2
. (3.3)

3.3 Maximum likelihood implementation

Given a set of angular deflections in the x ′ and y′ directions for each segment as described in section
3.1 a scan is done over the postulated initial energy, Et , in steps of 1 MeV up to 7.5 GeV. The step
with the smallest negative log likelihood (equation 3.3) is chosen as the MCS energy. Equation
3.3 includes a σo, j term that changes for consecutive segments because their associated energy is
decreasing. The energy of the jth segment is related to Et by

Ej = Et − ∆Ej, (3.4)

where ∆Ej is the energy loss upstream of this segment, computed by integrating the muon stopping
power curve given by the Bethe-Bloch equation described by the Particle Data Group (PDG) [18]
along the length of track upstream of this segment. Equation 3.4 introduces a minimum allowable
track energy determined by the range of the track, as Ej must remain positive. The use of the
Bethe-Bloch equation to determine ∆Ej impacts the MCS algorithm resolution for fully contained
tracks, but does not for exiting tracks where much of the ionization energy loss is not visible. This
value of segment energy, Ej , is converted to a momentum p with the relativistic energy-momentum
relation assuming the muon mass, and is then used to predict the RMS angular scatter for that
segment (σo) by way of equation 2.5.

4 Range-based energy validation from simulation

In order to quantify the performance of the MCS energy estimation method on fully contained
muons in data, an independent determination of energy is needed. Range-based energy, Erange is
used here because the true energy Etrue will not be known in analyzing detector data. The stopping
power of muons in liquid argon is well described by the continuous slowing-down approximation
(CSDA) by the Particle Data Group, and agrees with data at the sub-percent level [19–21]. By
using a linear interpolation between points in the stopping power table of ref. [20], the length
of a track can be used to reconstruct the muon’s total energy with good accuracy. A simulated
sample of fully contained BNB neutrino-induced muons longer than one meter is used to quantify
the bias and resolution for the range-based energy estimation technique. The range is defined as the
straight-line distance between the true starting point and true stopping point of a muon, even though
the trajectories are not perfectly straight lines. The bias and resolution are computed in bins of true
total energy of the muons by fitting a Gaussian function to a distribution of the fractional energy
difference (ERange − ETrue)/(ETrue) in each bin. The mean of each Gaussian yields the bias for that
true energy bin, and the width indicates the resolution. Figure 5 shows the bias and resolution
for the range-based energy reconstruction method. The bias is less than 1% and the resolution
for this method of energy reconstruction increases slightly with true muon energy but remains on
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Figure 5. Range-based energy fractional bias (top) and resolution (bottom) from a sample of simulated fully
contained BNB neutrino-induced muons using true starting and stopping positions of the track. The bias is
less than 1% and the resolution is below ≈4%.

the order of (2-4)%. This result demonstrates that range-based energy (and therefore range-based
momentum) is a good estimator of the true energy (momentum) of a reconstructed contained muon
track in data, assuming that the track is well reconstructed in terms of length.
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5 MCS performance on beam neutrino-induced muons in MicroBooNE data

5.1 Input sample

This part of the analysis is based on triggered neutrino interaction events in MicroBooNE data
corresponding to ≈ 5 × 1019 protons on target, which is a small subset (<10%) of the nominal
protons on target scheduled to be delivered to the detector. These events are run through a fully
automated reconstruction chain that produces reconstructed objects including three-dimensional
neutrino interaction points (vertices), three-dimensional tracks (as described in section 3.1) for each
outgoing secondary particle from the interaction, and PMT-reconstructed optical flashes from the
interaction scintillation light. The fiducial volume used in this analysis is defined in section 1.

5.2 Event selection

The following selection criteria are placed on the reconstructed objects to select νµ charged-current
interactions in which a candidate muon track exiting the interaction vertex is fully contained within
the fiducial volume:

1. The event must have at least one bright optical flash, reconstructed from PMT timing signals,
in coincidence with the expected BNB-neutrino arrival time.

2. Two or more reconstructed tracks must originate from the same reconstructed vertex within
the fiducial volume.

3. The z coordinate of the optical flash, as determined by the pulse height and timing of signals
in the 32 PMTs, must be within 70 cm of any point on the z projection of the candidate muon
track.

4. For events with exactly two tracks originating from the vertex, additional calorimetric criteria
are applied to mitigate backgrounds from cosmic muons that arrive in time with the passage
of the beam, then stop and decay to an electron that is reconstructed as a track.

5. The longest track originating from the vertex is assumed to be a muon, and it must be fully
contained within the fiducial volume.

6. The length of the longest track must be >1 m in order to have sufficient sampling points in
the MCS likelihood to obtain a reasonable estimate of momentum.

These selection criteria are chosen to select a sample of tracks with high purity. In this sample
of MicroBooNE data, 598 events (tracks) remain after all selections. The low statistics in this
sample is due to the size of the input sample and the low efficiency associated with the applied
high-purity selection, described in section 5.1. Each of these events (tracks) was scanned by hand
with a 2D interactive event display showing the raw wire signals of the interaction from each wire
plane, with the 2D projection of the reconstructedmuon track and vertex overlaid. The scanning was
done to ensure the track is well reconstructed with start point close to the reconstructed vertex and
end point close to the end of the visible wire-signal track in all three planes. During the scanning,
obvious mis-identification topologies were removed. An example of such a topology is a stopping
cosmic-ray muon decaying into an electron. After rejecting events (tracks) based on hand scanning,
396 tracks remain for analysis.
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5.3 Validation of the Highland formula

The Highland formula indicates that distributions of angular deviations of the track, segment by
segment, in both the x ′ and y′ directions divided by the width predicted from the Highland equation
σRMS
o (equation 2.5) should be Gaussian with a width of unity. In order to calculate the momentum

p in the Highland equation, p for each segment is computed with equation 3.4, where Et comes
from the converged MCS-computed momentum of the track. For each consecutive pair of segments
in this sample of 396 tracks, the angular scatter divided by the Highland expected RMS (including
detector resolution term, σres

o ) is an entry in the area-normalized distribution shown in figure 6.
These 396 tracks have on average 12 segments each, therefore this histogram has approximately
396 × 12 × 2 = 9504 entries. The additional factor of 2 comes from angular scatters both in the x ′

and y′ directions. The distribution has an RMS of unity, thus validating the MCS technique used
in this analysis.

Figure 6. Segment-to-segment measured angular scatters in both the x ′ and y′ directions divided by the width
σRMS
o predicted by the Highland formula (equation 2.1) for the automatically selected beam neutrino-induced

fully contained muon sample in MicroBooNE data after hand scanning to remove poorly reconstructed tracks
and obvious mis-identification topologies.

5.4 MCS momentum validation

MCS momentum versus range-based momentum for this sample of 396 tracks is shown in figure 7.
The fractional bias and resolution as a function of range-basedmomentum for this sample is shown in
figure 8. In order to compute this bias and resolution, distributions of fractional inverse momentum
difference (p−1

MCS − p−1
Range)/(p

−1
Range) in bins of range-based momentum pRange are fit to Gaussian

functions, where the mean of the fit determines the bias while the width of the fit determines the
resolution for that bin. Inverse momentum is used here because the binned distributions are more
Gaussian since the Highland formula measures inverse momentum in terms of track angles that
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have reasonably Gaussian errors. Simply using the mean and RMS of the binned distributions
yields similar results. Also shown in this figure are the bias and resolutions for a simulated sample
consisting of a full BNB simulation with CORSIKA-generated [22] cosmic overlays passed through
an identical reconstruction and event selection chain. Rather than hand scanning this sample, true
simulation information is used by requiring the longest reconstructed track to be matched well to
the true starting and stopping point of the muon from the νµCC interaction. This removes any
mis-identifications or interference from the simulated cosmics.

Figure 7. MCS-computedmomentum versus range momentum for the automatically selected beam neutrino-
induced fully containedmuon sample inMicroBooNEdata after hand scanning to remove poorly reconstructed
tracks and obvious mis-identification topologies. The color (z) scale indicates number of tracks.

Figure 8 indicates a bias in the MCS momentum calculation on the order of a few percent,
with a resolution that improves from about 10% for contained reconstructed tracks in data and
simulation with range momentum around 0.45 GeV/c (which corresponds to a length of about 1.5
m) to below 5% for contained reconstructed tracks in data and simulation with range momentum
about 1.15 GeV/c (which corresponds to a length of about 4.6 meters). Resolution improving with
length of track is expected; the longer the track, the more angular scattering measurements can be
made to improve the likelihood. The bias and resolutions show reasonable agreement between data
and simulation.

5.5 Impact of Highland formula tuning

In order to examine the impact of the Highland formula tuning described in section 2.1, the fractional
bias and resolution on the simulated sample of contained muons described in section 5.4 both with
the nominal Highland formula (equation 2.2) and with the retuned Highland formula (equation 2.5)
are shown in figure 9. Tuning the Highland formula improves the magnitude of the fractional bias
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Figure 8. Inversemomentumdifference (as defined in the text) fractional bias (top) and resolution (bottom) for
automatically selected contained νµCC-induced muons from full simulated BNB events with cosmic overlay
where the track matches with the true muon track (blue), and automatically selected and hand-scanned (see
text) contained νµCC-induced muons from MicroBooNE data (green).
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Figure 9. Inverse momentum difference (as defined in the text) fractional bias (top) and resolution (bottom)
for automatically selected contained νµCC-induced muons from full simulated BNB events with cosmic
overlay where the track matches with the true muon track both using the nominal Highland formula (equation
2.2) (red) and the retuned Highland formula (equation 2.5) (blue).

to below 2%, and improves the fractional resolution by (2-3)%, with the most improvement at the
lowest momenta.
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6 MCS performance on exiting muons in MicroBooNE simulation

In this section we quantify the MCS algorithm performance on a sample of well reconstructed
exiting muon tracks in simulated BNB νµCC interactions within the MicroBooNE detector. The
tracks are automatically reconstructed by the same Pandora algorithm as described in section 3.1,
and all tracks have a length of at least 1 m within the TPC. This simulation does not include space-
charge effects. Approximately half of muons from νµCC interactions within the specified fiducial
volume exit the TPC, and about two thirds of those muons have at least one meter of track con-
tained inside of the TPC. The relationship between the MCS and the true momenta at the beginning
of the track as given by simulation for this sample of 28,000 exitingmuon tracks is shown in figure 10.

Figure 10. MCS-computed momentum versus true momentum for the sample of simulated exiting muons
from BNB νµCC interactions in MicroBooNE with at least one meter of track contained within the TPC. The
color (z) scale indicates number of tracks.

The distribution of (p−1
MCS − p−1

true)/(p−1
true) is shown for four representative bins of true momen-

tum in figure 11, along with the Gaussian fit to each distribution. Low-momentum tails where the
MCS momentum is underestimated due to poor track reconstruction lie outside the fitted Gaussian
function.

The fractional bias and resolution as a function of true momentum are shown in figure 12. The
bias is below 4% for all momenta, and the resolution is ≈ 14% in the relevant momentum region for
muon from the BNB νµCC interactions (below 2 GeV/c muon momentum). The resolution worsens
for muon momenta above this region because the angular scatters begin to be comparable with the
detector resolution term of 3 mrad. The resolution improves for longer lengths of track contained,
with 10% resolution for muons with p < 2 GeV/c with more than 3.5 meters contained. The mean
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Figure 11. Fractional momentum difference for a few representative bins of true momentum for a sample of
simulated exiting muon tracks. The y-axis is number of tracks, and the x-axis is (p−1

MCS − p−1
true)/(p−1

true).

length of track contained for muons in this analysis is 212 cm.

7 Conclusions

We have described a multiple Coulomb scattering maximum likelihood method for estimating the
momentum of a three dimensional reconstructed track in a LArTPC and have provided motivation
for development of such a technique. Using simulation, we have shown that the standard Highland
formula should be re-tuned specifically for scattering in liquid argon. After validating range-
based momentum-determination techniques with MicroBooNE simulation, we have demonstrated
the accuracy and precision of the MCS-based momentum reconstruction in MicroBooNE data by
comparing its performance to the range-basedmethod. For 398 fully-contained BNB νµCC-induced
muons, the MCS method exhibits a fractional bias below 3% and a momentum resolution below
10%, agreeing with simulation predictions. Using simulation of a separate sample of uncontained
muon tracks in MicroBooNEwith at least one meter contained in the active volume, the MCS-based
reconstruction is shown to produce a fractional bias less than 4% and a momentum resolution of
better than 15% for muons in the relevant BNB energy region of below 2 GeV.
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Figure 12. MCS momentum fractional bias (top) and resolution (bottom) as a function of true momentum
from a sample of exiting reconstructed muon tracks.
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