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Abstract—The recently employed demand-response (DR)
model enabled by the transformation of the traditional power
grid to the SmartGrid (SG) allows energy providers to have a
clearer understanding of the energy utilisation of each individual
household within their administrative domain. Nonetheless, the
rapid growth of IoT-based domestic appliances within each
household in conjunction with the varying and hard-to-predict
customer-specific energy requirements is regarded as a challenge
with respect to accurately profiling and forecasting the day-to-
day or week-to-week appliance-level power consumption demand.
Such a forecast is considered essential in order to compose
a granular and accurate aggregate-level power consumption
forecast for a given household, identify faulty appliances, and
assess potential security and resilience issues both from an end-
user as well as from an energy provider perspective. Therefore,
in this paper we investigate techniques that enable this and
propose the applicability of Deep Neural Networks (DNNs)
for short-term appliance-level power profiling and forecasting.
We demonstrate their superiority over the past heavily used
Support Vector Machines (SVMs) in terms of prediction accuracy
and computational performance with experiments conducted
over real appliance-level dataset gathered in four residential
households.

Index Terms—Smart Grid, Power Forecasting, Deep Learning

I. INTRODUCTION

Recently, governments of developed and developing coun-
tries have been introducing legislative procedures enforcing
energy providers to install smart-meters in every residential
or commercial building within their administrative domain.
By 2020 the EU alone aims to replace 80% of traditional
electricity meters with smart meters to support the objective of
reducing greenhouse emissions up to 9% and further enabling
a flexible and beneficial business model that optimally utilises
energy resources for both themselves as well as their clientele
[1]. These new Advanced Metering Infrastructures (AMIs) as
composed by individual smart-meters encapsulate the main
technological innovations in the general SmartGrid domain
and act as the functioning block for the Demand-Response
(DR) model in which energy demands are offered based on
a client-explicit usage demand basis and in parallel provides
proactive response in scenarios related to energy shortages or
outages. Hence, the DR at the energy provider’s side relies
heavily on components that deal with the process of profiling
and further forecasting the energy usage as reported by each
smart-meter within each AMI.

Apart from profiling and forecasting the energy usage based
on the aggregated measurements provided by smart-meters, it
is also seen as far more accurate to characterise and forecast
the usage patterns of individual appliances within a given
household [2]. Further, enabled by the Internet of Things (IoT)
technology, a modern household may be mapped as a Home
Area Network (HAN) in which IoT appliances/devices (e.g. a
washing machine) report their energy usage enabling a client
to be fully aware of the consumption for each appliance in their
household. Essentially, appliance-level short-term (i.e. day-to-
day, week-to-week) load forecasting provides consumers the
opportunity to map and manage their daily electricity usage
profiles for each appliance, engage further in the DR business
model through their smart-meters over the AMI and thus select
suitable price plans. However, the task of accurately compos-
ing, profiling and forecasting models using such fine-grained
and generally highly non-linear measurements are considered
to be quite challenging and hard to confront especially on a
short-term basis. In addition, the gathered measurements from
each appliance are in many cases hard to predict since they are
generated and related with exogenous factors such as weather
conditions, consumer’s social behavior, geographical locations,
time of day, and day of the week. Hence, it is crucial to
develop new profiling and forecasting methods that provide
higher prediction accuracy through including and considering
such factors.

Hence, the work introduced in this paper contributes by
demonstrating the applicability of Deep Neural Networks
(DNNs) for the purpose of appliance-level short-term power
consumption profiling and forecasting. Due to their natural
formulation as composed by multiple hidden layers, we find
DNNSs capable to adequately identify, relate and profile hidden
structures between data features gathered by diverse data
sources, thus providing accurate power consumption predic-
tions in the context of our work. In more detail, using a
Principal Component Analysis (PCA)-based feature selection
scheme, we assess the efficiency of the Feed-Forward Deep
Neural Network (FF-DNN) and the Recurrent Deep Neural
Network (R-DNN) formulations in terms of prediction accu-
racy and computational performance over datasets gathered
from appliances in four individual households. In addition,
the paper compares the aforementioned formulations with the
commonly used Support Vector Machine (SVM) algorithm and



demonstrate their superiority. To the best to our knowledge
we are the first to go beyond single-layer neural networks
and demonstrate the applicability and benefits offered by
DNNss in the context of appliance-level short-term power load
forecasting.

The remainder of this paper is structured as follows: sec-
tion II briefly discusses existing solutions available for short
term load forecasting. Section III is dedicated at describing the
algorithms used within this work whereas section IV presents
the methodology employed in this research work. SectionV is
dedicated to present the outcomes of our evaluation. Finally,
section VI concludes and summarises this paper.

II. BACKGROUND & RELATED WORK

Power consumption profiling and forecasting can be divided
into four main categories, namely: (i) very short term load
forecasting (VSTLF), (ii) short term load forecasting (STLF),
(iii) medium term load forecasting (MTLF) and (iv) long term
load forecasting (LTLF). These categories represent the time
granularity in which measurements are assessed (e.g. hour-to-
hour, day-to-day, week-to-week, year-to-year, etc.) [1].

Recently, a number of studies have gone beyond traditional
statistical forecasting schemes (e.g. as in [3], [4]) and adopt
some of the benefits offered by machine learning (ML)-
oriented techniques for STLF. Mainly, the direction towards
ML solutions is seen as beneficial due to the ability of
such approaches to model underlying patterns among several
linear and non-linear data features gathered by heterogeneous
inputs. Al-oriented techniques such as feed-forward neural
networks (FF-NN), recurrent neural networks (RNN), radial
basis functions (RBFs) and support vector machines (SVMs)
are employed throughout current and past literature [1], [2],
[5], [6]. The closest to our work is discussed in [2] in which
the authors propose a multilayer FNN that in synergy with
a wavelet-based analysis aids to predict the load of a given
household based on various price signals as well as the
power consumption measurements on individual appliances.
The authors also introduce a comparison of the proposed
scheme in terms of the obtained forecasting error with other
formulations such as the traditional ANN and a hybrid linear
model. Another interesting approach is introduced in [5] where
an RNN-based model is proposed to formulate a prediction
scheme for per-hour appliance-level power load forecasting in
a given household.

Innovative, ML-based methodologies to improve the fore-
casting accuracy have also been proposed such as same day
selection method, aggregating forecasting at different levels,
feature selection method and weather station selection method
[6]. Considering all these we argue that our work differs
significantly since we are the first to go beyond single-
layer neural networks. Our approach employs a pre- feature
selection process! using PCA and further uses computationally
efficient and accuracy-wise beneficial, multi-layer Deep Learn-
ing (DL) techniques to perform STLF by using appliance-level
measurements.

A process not performed in the studies we investigated.

III. DEEP NEURAL NETWORKS & SUPPORT VECTOR
MACHINES

Traditional single-layer neural networks (e.g. ANN) which
consist of one hidden layer, can model higher abstractions with
minimal complexity. However, their successors that employ the
”deep” architecture (e.g. FF-DNN) and we use in this work,
are capable at extracting granular and hidden structural repre-
sentations due to their n-number of hidden layers at the cost
of higher complexity and eventually higher processing time.
The complexity and processing constraints are confronted by
Hinton et al. [7] proposing the Deep Belief Network (DBN)
where it is demonstrated that “deep” architectures can be
trained using a greedy layer approach. By virtue of their
applicability in several domains and particularly in image
processing, deep architectures are now considered as efficient
in modelling non-stationary time series as it happens in the
datasets used within this work.

A. Feed-forward Deep Neural Network (FF-DNN)

FF-DNN is a prototypical deep learning model, also called
multi layer perceptron (MLP). As structurally inspired by the
human neural network, the basic unit of FF-DNN, is a neuron.
In humans, a signal with varying strength passes through
synaptic junctions and aggregates at the neuron’s activation
as input. Similarly in the FF-DNN model, the inputs x are
combined with weights w and biases b at the neuron using
equation 1 as follows:

N-1
= Wty +b (1)

n=0

A nonlinear activation function ¢ is applied on computed ¢
which produces an output and sends as input to other con-
nected neurons. The basic goal of FF-DNN is to approximate
the function o ().

FF-DNNs are made up of many neurons interconnected in
different layers. The first layer of the network is the data input
layer and represents the input feature space, in our case this is
denoted as the feature set for each appliance as derived by the
PCA feature selection scheme that we explain in section IV.
The first layer in FF-DNN is then followed by multiple hidden
layers accumulating non-linear activation functions. Finally,
the last layer is the output layer and represents the output space
based on either a classification or a regression problem. Given
the nature of STLF we employed a regression problem in order
to obtain a forecast estimation. In addition, we note that the
output of the model is fully decided by weights and biases and
the overall FF-DNN algorithm is able to learn by adjusting
weights to minimize a given loss function in relationship with
the pre-produced training dataset. The loss function is given
by equation 2 as follows:

Loss(q|W, B) 2

where ¢ represents each training example in the data, W is
the matrix of weights and B is the set of biases.



B. Recurrent Deep Neural Network (R-DNN)

In FF-DNN, connections between neurons do not make
cycles and information from input to output flows only in
one direction. FF-DNN are powerful but lack in incorporating
sequences and thus temporal patterns. R-DNN tackle this
problem by utilising sequential information, thus R-DNN
executes the same function on a given input recurrently and
holds the outputs of previous iterations to be used in every
new iteration. The multi-layer perceptron is the simplest form
of R-DNN in which output of one hidden layer along with the
input is fed back in the network.

The R-DNN can be seen as having X (¢) being the input
at time ¢, Q(t) the output, Q(¢t — 1) is input at time ¢, W; is
the weight for input layer, whereas W, represents the weight
for the time delay input and W, is the weight for the output
layer. Finally, f; and f; are hidden and output layer transfer
functions. The time delay unit is required to hold the output
and feed back at the next time step. The following non-linear
equations delineate the functionality of the R-DNN’s structure.

Q) = fr(X(#) * Wi+ Q(t — 1) * Wiq) (3)
Y(t) = f2(Q(t) * Wi) “4)
C. Support Vector Machines (SVM)

The traditional two-class support vector machine (SVM)
algorithm is a supervised learning model that does not belong
into the DNN domain. This class of models is seen to be
applicable for both classification and regression problems as
demonstrated in [8]. The basic idea behind SVM is to map
the original data nonlinearly into a higher dimensional feature
space and then a linear model is applied to classify the given
feature space, which in our case is the PCA output in the
pre-processing stage we explain in section IV. The overall
formulation of the SVM algorithm may be summarised in the
following equation as:

fla,w) = wigi(z) +b ©)
=1

where ¢;(x) represents the nonlinear transformation applied on
the original input data and b is the bias term. The e-insensitive
loss function is used to estimate the correctness of nonlinear
transformations defined as:

o 07 lf |y—f(x,w)|§e;
Lely, f(z,w)) = { ly — f(z,w)| — €, otherwise.
(6)
The empirical risk of the function is calculated as:
n
Remp = 1/nzLe(yuf(xuw)) (7)
i=1

In addition, the regularized risk function is minimized to
estimate the parameters w and b.

N
R(C) = (C/N) Y L(di, yi) + w* /2 ®)

i=1
C, e and kernel parameters influence the estimation accuracy

TABLE I
DATASET MAIN FEATURES

Features

Date Time Furnace HRV Microwave

Dish Washer  Fridge Dryer Bedroom Lights
Temperature  Condition Humidity Visibility

Pressure Wind Speed  Cloud Cover Wind Bearing
Precipitation =~ Dew point Precip Probability ~ Total Consumption

of the SVM and their tuning is a significant stage within our
experimentation.

IV. METHODOLOGY
A. Data & Feature Selection

The datasets used in this work are appliance-level datasets
and represent a year-long dataset for four individual houses
obtained from the Smart* project 2 in the year 2016. As
depicted in Table I each measurement sample contains the
power consumption for each appliance alongside some envi-
ronmental features. In order to achieve meaningful comparison
between each house we perform some pre-processing since
each house has differing appliances reported. Thus, within our
experimentation we have selected the common appliances as
depicted in Table I namely: furnace HRV, microwave, dish
washer, fridge, dryer and bedroom lights.

Based on the datasets collection process reported in the
Smart * project, the appliance-level power consumption values
have been collected by sensors with varying measurement
samples in each household (e.g. 1, 15, 30 minutes). Therefore,
it is essential for our experimentation to normalise all data in
order to ensure that they complied with the same sampling.
For instance, the environmental measurements (e.g. humidity,
fog, visibility etc.) is converted to the numerical values 1 to
10 using direct mapping and subsequently normalised under
the min-max normalisation approach. The reason for applying
normalisation is that large values in the datasets would es-
sentially require large weights during the weight initialisation
process in the employed DNNs, thus large biases would occur.

Within the preprocessing process we remove the features
that have extremely small consumption values. These features
include the consumption from various outlets and circuits
in the house that can be considered as negligible based on
empirical observations visualising the appliance level time-
series. To further refine and extract prominent features the
PCA technique is employed [9]. The principal components
derived from the PCA algorithm can be assessed based on the
variability between them. They illustrate the features that are
mostly seen in the actual dataset; hence, the most dominant
features. With the employment of PCA it is feasible to reduce
the high-dimensionality of the examined datasets. Despite the
fact that the original datasets require less complex models to
produce some forecasting results it can be observed that the
usefulness of the features on the post-PCA process increase

2Smart*: An Open Data Set and Tools for Enabling Research in Sustainable
Homes: http://traces.cs.umass.edu/index.php/Smart/Smart



complexity but also improve the resulted prediction accuracy.
Table II lists the most significant features extracted using PCA.

TABLE II
FEATURE SELECTION USING PCA

Features

Date Time Furnace HRV ~ Microwave
Dish Washer Fridge Dryer Bedroom Lights
Temperature Humidity  Cloud Cover Wind Bearing

Total Consumption

B. Algorithm Parameter Selection

Subsequent to the PCA-based feature selection process, a
critical step was to select and tune the hyper parameters for
the estimators of the utilised FF-DNN, R-DNN and SVM algo-
rithms that we briefly described earlier in section III. Naturally,
the accuracy performance of these models relies heavily on
the optimal selection of the hyper-parameters related to each
algorithm/estimator. In order to achieve an optimal selection it
was necessary to employ a trivial grid search technique which
in practise considers all parameter combinations and chooses
the best combination that provides the lowest prediction errors.

For instance, the FF-DNN’s parameter selection process
performed a grid search on activation functions, hidden layers,
[1 and [2 regularization, learning rate, momentum, dropout
ratio, number of epochs and epsilon. Table III depicts the
outcome of the grid-based parameter search with the optimal
values for each of the aforementioned activation functions.

TABLE III
FF-DNN OPTIMAL PARAMETERS

Parameters

Training function ReLU  Epochs 500

L1 0.0001 L2 0.0001
Learning rate 0.005 Epsilon 0.0001
Dropout ratio 0.1 Hidden layer  [10 10]

By contrast with the FF-DNN algorithm, the R-DNN has
cyclic connections and delays between layers and the nodes
that behave as internal memory and assist the algorithm to
remember previous computations. Though feedback connec-
tions increase the convergence time and require more resources
for computations, this eventually helps in getting accurate
predictions with least errors. Nonetheless, the majority of
hyper parameters in R-DNN are similar with those in the FF-
DNN and through the grid search technique it was feasible to
obtain the most optimal values as shown in table IV.

TABLE IV
R-DNN OPTIMAL PARAMETERS

Parameters
Training function  trainlm  Epochs 200
L1 0.0001 Hidden layer [555]

Learning rate 0.01 Dropout ratio 0.1

The SVM model’s prediction performance depends on the
gamma and C parameters as well the chosen kernel function.

In our case it was derived that the Radial Basis Function
(RBF) was the most suitable and accuracy-wise efficient
since several trials with the other functions (e.g. gaussian,
sigmoid) produced erroneous outputs with high processing
requirements. Similarly with the parameter selection process
in FF-DNN and R-DNN we applied the grid search technique
and derived the most optimal values for gamma to be equal
to 1.0 and C to be equal to 0.5.

V. EVALUATION

The proposed models are evaluated on the basis of three
error metrics; the mean squared error (MSE), the root mean
squared error (RMSE) and the mean absolute error (MAPE).
These metrics are selected due to their wide use in several
studies (e.g. as in [8]) and their joint view provides a holistic
viewpoint with respect to the prediction performance of the
examined algorithms. The MSE metric allows to calculate
mean errors among actual measurements and predictions, how-
ever it cannot compensate the effects of outliers in the error
distributions. Thus, we address this problem by calculating
the RMSE that considers the squares of difference between
actual and prediction values and captures the effects of lower
and higher consumption values. Finally, we choose to use
the MAPE metric since it provides a percentage-based error
visualisation. In addition, we use appliance-level data gathered
for 2 weeks in order to compose a training model for each
algorithm and choose new testing data from a random day of
the week and perform a prediction for that particular day.

As evidenced in table V we map the RMSE and the MSE
metrics to indicate the normalised loss of KW/h for a given day
forecast as being the main objective of any STLF application.
In parallel, we also assess the computational performance with
respect to the time taken for each algorithm to produce a
prediction. Based on the outcomes of our experimentation,
we witness in all forecasts, that both DNNs outperform the
SVM formulation in most of cases. In particular the FF-DNN
algorithm is the most computationally optimal for providing
quick predictions. For instance, by closely observing the
outcomes for House A, the R-DNN holds the lowest MSE
from all three evaluated algorithms however it has comparably
a very close value on the RMSE metric with FF-DNN and
same MAPE on a percentage basis. On the other hand, the
SVM formulation seems to perform better than FF-DNN on
the MSE metric, nonetheless extremely worse in the RMSE
and MAPE metrics. Also, by comparing all three algorithms
for House A it is also evidenced that the most computationally
intensive model is the R-DNN followed by SVM.

The observations for House A are quite similar for the rest
three residential households and surely there is a trade-off
between accuracy and computational performance. We argue
that these outcomes are produced due to the intrinsic formula-
tions of each algorithm individually. The high computational
cost but the high accuracy performance obtained for R-DNN
relates to the fact that the R-DNN relies on two inputs at
times ¢ and ¢ — 1 due to the cyclic connections between nodes
and layers. Thus, it requires time to store/access information



TABLE V
SUMMARY FOR DAY AHEAD STLF PREDICTION ERRORS AND COMPUTATIONAL TIME FOR FF-DNN, R-DNN AND SVM

House Model MAPE(%) RMSE(KW/h) MSE(KW/h) Time(sec)
House A SVM 0.32 0.21 1.96 133
FF-DNN 0.01 0.008 11.7 1.37
R-DNN 0.01 0.004 1.49 960
House B SVM 0.26 0.23 3.88 215
FF-DNN 0.003 0.002 4.35 1.40
R-DNN 0.017 0.0023 11.7 995
House C SVM 0.37 0.28 2.51 223
FF-DNN 0.003 0.002 3.39 1.44
R-DNN 0.020 0.0034 1.66 985
House D SVM 0.93 0.37 2.55 200
FF-DNN 0.13 0.03 3.62 2.64
R-DNN 0.0012 0.0002 0.90 979

and repetitively compare any newly tested instance with its
nodes on each layer. In parallel, the SVM formulation spends
a lot of effort on constructing the high-dimensional vectors
and it seems to perform worse than DNNs in general since
its marginal boundaries cannot adequately capture the high
variations of power usage on the appliance-level measure-
ments. On the other hand, the FF-DNN algorithm performs
reasonably better in terms of both the accuracy performance
as well as the minimal computational time required. FF-DNN’s
do not need to store/access information as in R-DNNs and
their corresponding weight initialization for nodes and layers
is performed relatively quickly, hence providing a prediction
much quicker than the R-DNN but with slightly less accuracy.
VI. CONCLUSIONS

Short-term Load Forecasting (STLF) is an important task
in the context of optimal energy management for both the
energy provider as well as the individual client. A granular
and accurate approach for composing STLF is to consider the
measurements gathered by each appliance in a given house-
hold. Nonetheless, the dynamic, customer-specific behaviour
of power utilisation over different appliances as well as their
indirect relationships with exogenous features (e.g. weather,
humidity, etc) pose a challenge to any STLF scheme and a
method to capture these properties is required. Therefore, in
this work we go beyond traditional forecasting schemes and
we propose the applicability of Deep Neural Networks (DNNs)
for the STLF in individual households by using appliance-
level measurements. We propose a methodology in which
a critical step is a PCA-based feature selection process is
present and we subsequently assess and compare 2 DNN-based
approaches, the FF-DNN and the R-DNN, with the commonly
used SVM formulation for day-ahead forecasting using real
data from 4 individual households. Our results demonstrate
the superiority of the DNN-based solutions due to their ability
to adequately relate the actual appliance-level power mea-
surements with exogenous features with reasonably acceptable
trade-offs between accuracy and performance for the FF-DNN

formulation in particular. We argue that our results establish a
concrete basis for further exploitation of DNNs in the context
of power consumption profiling for improving future energy
management systems and also broadening the avenues for
domains such as appliance-level fault diagnosis and security.
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