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Abstract

In the literature on the quadratic 0-1 knapsack problem, several
alternative ways have been given to represent the knapsack constraint
in the quadratic space. We extend this work by constructing analo-
gous representations for arbitrary linear inequalities for arbitrary non-
convex mixed-integer quadratic programs with bounded variables.

1 Introduction

It has long been known that one can obtain useful reformulations of NP-
hard optimisation problems by introducing additional variables representing
products or squares of original variables. This idea has been applied to, e.g.,
0-1 linear programs [18, 22], 0-1 quadratic programs [1, 11, 19], non-convex
quadratic programs [7, 23], non-convex quadratically constrained quadratic
programs [12, 21], and many other problems.

The presence of additional variables leads to some flexibility in the choice
of representing linear constraints. In their paper on semidefinite program-
ming relaxations of the 0-1 quadratic knapsack problem (QKP), Helmberg
et al. [16] consider three different representations of the knapsack constraint.
In his thesis, Helmberg [14], considers also a fourth representation. The pur-
pose of this note is to extend this work, by constructing analogous represen-
tations for arbitrary linear inequalities for arbitrary mixed-integer quadratic
programs (MIQPs). The only restriction is that all variables involved in the
inequality must be explicitly bounded.

The paper has a very simple structure. The literature is reviewed in
Section 2, and the new results are in Section 3.
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2 Literature Review

We now give a brief overview of the relevant literature. We cover general
quadratic 0-1 programs in Subsection 2.1, the QKP in Subsection 2.2, and
bounded MIQP in Subsection 2.3.

2.1 Quadratic 0-1 programming

A quadratic 0-1 program (0-1 QP) with n variables and m constraints is a
problem of the form

max
{
xTQx : Ax ≤ b, x ∈ {0, 1}n

}
,

where Q = {qij} ∈ Qn×n, A ∈ Qm×n and b ∈ Qm. It is well known that
0-1 QPs are strongly NP-hard, yet have many important applications (see,
e.g., [4, 10]).

One can convert 0-1 QPs into 0-1 linear programs using a standard
linearisation trick, due to Fortet [11]. We introduce for all 1 ≤ i < j ≤ n the
binary variable xij , representing the product xixj . To simplify notation, we
identify xji with xij . The 0-1 QP is then formulated as:

max
∑

1≤i≤n qiixi +
∑

1≤i<j≤n(qij + qji)xij

s.t. Ax ≤ b
xij ≤ xi (1 ≤ i ≤ n, j 6= i)

xi + xj ≤ xij + 1 (1 ≤ i < j ≤ n)

xi ∈ {0, 1}n (1 ≤ i ≤ n)

xij ∈ {0, 1}n (1 ≤ i < j ≤ n).

Unfortunately, the LP relaxation of this formulation typically gives a very
weak upper bound. To strengthen it, one can use various families of cutting
planes, such as those presented in [1, 10, 19].

An alternative way to construct a non-trivial relaxation is to use semidef-
inite programming (SDP); see, e.g., [15, 20]. The basic idea is as follows.
Define the matrix X = xxT , along with the augmented matrix

X+ =

(
1

x

)(
1

x

)T

=

(
1 xT

x X

)
.

Clearly, X+ will be real, symmetric and positive semidefinite in a feasible
0-1 QP solution. Moreover, for binary xi we have xi = x2i , meaning that the
main diagonal of X should be equal to x. This leads to the SDP relaxation

max
{
Q •X : Ax ≤ b, diag(X) = x, X+ ∈ S+n+1

}
,

where ‘•’ denotes inner product and ‘S+n+1’ denotes the cone of psd matrices
of order n+ 1. For ways to strengthen this relaxation, see again [15, 20].
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Finally, one can instead use Lagrangian relaxations (e.g., Caprara [8])
or convex QP relaxations (e.g., Billionnet et al. [3]). We omit details, for
brevity.

2.2 The quadratic knapsack problem

The quadratic knapsack problem (QKP) is a special kind of 0-1 QP in which
there is a single linear constraint with non-negative coefficients. A QKP
instance takes the form:

max
{
xTQx : wTx ≤ c, x ∈ {0, 1}n

}
,

where w ∈ Zn
+ is the vector of item weights and c ∈ Z+ is the knapsack

capacity. We refer the reader to [9, 17] for excellent surveys on the QKP.
Helmberg et al. [16] explored three natural SDP relaxations of the QKP.

The simplest, called ‘SQK1’, is:

max
{
Q •X : wTx ≤ c, diag(X) = x, X+ ∈ S+n+1

}
.

The second, called ‘SQK2’, is obtained by replacing the knapsack constraint
wTx ≤ c with the constraint wTXw ≤ c2. The third, ‘SQK3’, is obtained by
adding the following valid inequalities to SQK1:∑

i 6=j

wixij ≤ (c− wj)xj (j = 1, . . . , n).

These latter inequalities can be derived from the original knapsack constraint
by applying the well-known reformulation-linearization technique (RLT) of
Adams & Sherali [1, 22].

Helmberg et al. prove that SQK3 dominates SQK2, which in turns domi-
nates SQK1. In his thesis [14], Helmberg mentions a fourth SDP relaxation,
which he attributes to Bauvin and Goemans. It is obtained by replacing
the original knapsack constraint with wTXw ≤ c(wTx). We will call this
relaxation ‘SQK2+’. Helmberg shows that SQK2+ is intermediate in strength
between SQK2 and SQK3.

A comprehensive computational study of all four SDP relaxations is
given in [17]. It turns out that SQK2+ gives the best compromise between
upper bound strength and computing time, since it typically gives a bound
of similar quality to that of SQK3, but with much less computing effort, due
to the smaller number of linear constraints.

2.3 Mixed-integer quadratic programs

Now we turn our attention to bounded MIQPs, which include 0-1 QPs as a
special case. A bounded MIQP takes the form:

max
{
xTQx+ cTx : Ax ≤ b, 0 ≤ x ≤ u, x ∈ Rn

+, xi ∈ Z (i ∈ I)
}
, (1)
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where I ⊂ {1, . . . , n} and u ∈ Qn
+. (Of course, one can assume w.l.o.g. that

ui ∈ Z+ for all i ∈ I.) Bounded MIQPs are NP-hard in general, and are
especially challenging when Q is not psd (i.e., when the objective function
is non-convex).

A natural SDP relaxation of the MIQP is:

max
{
Q •X + cTx : Ax ≤ b, 0 ≤ x ≤ u, X+ ∈ S+n+1

}
. (2)

Note that this relaxation does not exploit integrality. Moreover, it is un-
bounded in general, since the entries Xii can be increased without limit. To
make it bounded, one can add the upper bounds Xii ≤ u2i . Or, even better,
as pointed out by Anstreicher [2], one can add the constraints

Xii ≤ uixi (i = 1, . . . , n). (3)

The relaxation can be strengthened further by adding various valid inequal-
ities, some of which exploit integrality; see, e.g., [5, 6, 13].

3 Main Results

Consider a non-convex MIQP of the form (1), and let αTx ≤ β be one of
the linear constraints in the system Ax ≤ b. We define the sets

N = {1, . . . , n}
N+ = {i ∈ N : αi > 0}
N− = {i ∈ N : αi < 0}

and the quantities

U =
∑
i∈N+

αiui, L =
∑
i∈N−

αiui.

We assume that L < β < U , since otherwise the linear constraint would be
implied by the bounds 0 ≤ x ≤ u.

Now, by definition, if a pair (x,X) represents a feasible MIQP solution,
we must have L ≤ αTx ≤ β and

(αTx)2 = (αTx)(xTα) = αT (xxT )α = αTXα.

Thus, if we project the set of feasible MIQP solutions in (x,X)-space onto a
2-dimensional subspace having αTx and αTXα as axes, it must be contained
inside the convex region represented in Figure 1. One can check that this
region is defined by the convex quadratic inequality

αTXα ≥ (αTx)2 (4)

and the linear inequality

αTXα ≤ (β + L)αTx− βL. (5)

We have the following result:
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Figure 1: Projection of feasible region onto two-dimensional subspace.

Theorem 1 Consider the SDP relaxation of the MIQP obtained by adding
the constraints (3) to (2). This relaxation satisfies (4). It does not in general
satisfy (5), but it does satisfy the weaker inequality

αTXα ≤ (U + L)αTx− UL (6)

(see Figure 2).

Proof. From the well-known concept of Schur complement, X+ ∈ S+n+1 if
and only if X − xxT ∈ S+n . This implies that αT (X − xxT )α ≥ 0, i.e., that
the SDP relaxation satisfies (4).

We now define vectors xL, xU ∈ Qn
+, as follows. We let xLi = ui for all

i ∈ N− and xLi = 0 for all i ∈ N \ N−. Similarly, we let xUi = ui for all
i ∈ N+ and xUi = 0 for all i ∈ N \ N+. We also define the corresponding
matrices XL = xL(xL)T and XU = xU (xU )T . (Note that αTxL = L and
αTxU = U > β. As a result, the pair (xL, XL) is feasible for the relaxation,
but the pair (xU , XU ) is not.) Now, consider the convex combination

(x̃, X̃) =
U − β
U − L

(xL, XL) +
β − L
U − L

(xU , XU ).

One can check that αT x̃ = β and αT X̃α = βL+ U(β − L). Thus, (x̃, X̃) is
feasible for the relaxation, but violates the inequality (5).

All that remains is to show that the relaxation satisfies (6). We will do
this in three steps. First, for any {i, j} ⊂ N , consider the following principle
submatrix of X+: (

Xii Xij

Xij Xjj

)
Since this submatrix must be psd, it follows that the relaxation satisfies

(
uj −ui

)(Xii Xij

Xij Xjj

)(
uj
−ui

)
≥ 0,
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or, equivalently, 2uiujXij ≤ u2jXii + u2iXjj . Together with (3), this implies

2uiujXij ≤ uiu2jxi + u2iujxj , or, equivalently,

2Xij ≤ ujxi + uixj . (7)

Second, consider the following principle submatrix: 1 xi xj
xi Xii Xij

xj Xij Xjj


We have

(
−uiuj uj ui

) 1 xi xj
xi Xii Xij

xj Xij Xjj

−uiujuj
ui

 ≥ 0,

or, equivalently,

2uiujXij ≥ 2uiu
2
jxi + 2u2iujxj − u2jXii − u2iXjj − (uiuj)

2.

Together with (3), this implies:

2uiujXij ≥ uiu2jxi + u2iujxj − (uiuj)
2,

or, equivalently,
2Xij ≥ ujxi + uixj − uiuj . (8)

Finally, the inequalities (7) imply

αiαjXij ≤ αiαj(ujxi + uixj)/2 (9)

when αiαj > 0, and the inequalities (8) imply

αiαjXij ≤ αiαj(ujxi + uixj)/2− (αiui)(αjuj) (10)

when αiαj < 0. Summing the inequalities (9) for all (not necessarily dis-
tinct) pairs i, j with αiαj > 0, together with the inequalities (10) for all
pairs {i, j} with αiαj < 0, yields (6). �

We are now in a position to define our analogues of SQK1, SQK2, SQK2+

and SKQ3 for bounded MIQPs. The analogue of SQK1 is obtained simply by
taking the SDP (2) and adding the constraints (3). The analogue of SQK2
is obtained from SQK1 by taking each constraint αTx ≤ β in the system
Ax ≤ b and replacing it with the constraint αTXα ≤ β2.

(
This relaxation

is however valid only if (i) b > 0 and (ii) all feasible MIQP solutions satisfy
Ax ≥ −b.

)
The analogue of SQK2+ is obtained by replacing each constraint

αTx ≤ β with the stronger constraint (5). As for the analogue of SQK3, this
is obtained by replacing each constraint αTx ≤ β with the 2n constraints
presented in the following proposition.
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Figure 2: Projection of SDP relaxation onto same subspace.

Proposition 1 Let αTx ≤ β be one of the constraints in the system Ax ≤
b. The following 2n linear inequalities are valid for all pairs (x,X) that
represent feasible MIQP solutions:∑

j∈N αjXij ≤ βxi (i ∈ N) (11)

uiα
Tx−

∑
j∈N αjXij ≤ β(ui − xi) (i ∈ N). (12)

Collectively, they dominate the inequality (5).

Proof. Given that αTx ≤ β and x ≥ 0, we have the quadratic inequality
(β − αTx)xi ≥ 0 for all i ∈ N , which implies (11). Similarly, given that
x ≤ u, we have the quadratic inequality (β−αTx)(ui−xi) ≥ 0 for all i ∈ N ,
which implies (12).

Now, if we take the inequality (11) for some i ∈ N+ and multiply it by
αi, we obtain

αi

∑
j∈N

αjXij ≤ β αixi. (13)

On the other hand, if we take the inequality (12) for some i ∈ N− and
multiply it by αi, we obtain

αi

∑
j∈N

αjXij ≤ βαi xi + (αiui)α
Tx− β(αiui). (14)

Summing up (13) over all i ∈ N+ and (14) over all i ∈ N−, we obtain (5).
�

Note that the proof of Proposition 1 actually implies that it suffices to re-
place each original constraint with only n constraints rather than 2n.
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We end the paper with a final remark. The linear inequality (5) remains
valid if we replace L with:

min
{
αTx : Ax ≤ b, 0 ≤ x ≤ u, xi ∈ Z (i ∈ I)

}
,

or indeed any lower bound on the value taken by αTx in a feasible solu-
tion. In this way, one can strengthen our analogue of SQK2+. It is not clear
whether one could strengthen our analogue of SQK3 using a similar argu-
ment, since the coefficient L does not appear explicitly in the constraints
(11) and (12).
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ported by the Engineering and Physical Sciences Research Council under
grant EP/D072662/1.
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