
Charting an Intent Driven Network
Yehia Elkhatib

School of Computing and Communications
Lancaster University, UK

{i.lastname}@lancaster.ac.uk

Gareth Tyson
EECS

Queen Mary, University of London
London, UK

Geoff Coulson
School of Computing and Communications

Lancaster University, UK

Abstract—The strong divide between applications and the
network control plane is desirable for many reasons; but a
downside is that the network is kept in the dark regarding the
ultimate purpose(s) of applications and, as a result, is unable to
optimize for these. An alternative approach is for applications to
declare to the network their abstract intents and assumptions; e.g.
“this application requires group multicast”, or “this application
will run within a local domain and is latency sensitive”. Such an
enriched semantic has the potential to enable the network better
to fulfil application intent, while also helping optimize network
resource usage across applications. We refer to this approach
as intent driven networking (IDN). We sketch an incrementally-
deployable design to serve as a stepping stone towards a practical
realization of IDN within today’s Internet.

I. INTRODUCTION

A key principle of the early Internet was the provision of
a very simple send/receive interface for applications. As the
complexity of the Internet has grown and new capabilities been
added (multicast, streaming, mobility, etc.), we have attempted
to continue to live with this very simple interface. Although
the approach has served us well so far, clear downsides are
emerging. Essentially, applications operate in the dark with
respect to the capabilities and functioning of the underlying
network and are therefore obliged to include (potentially rather
complex) logic to handle network related events such as faults,
performance fluctuations, service changes (e.g. mobility), etc.
Similarly, network operators do not understand application
needs beyond the issuance of seemingly isolated micro-
transactions (send and receive calls), and is thus unable to
conserve resources or optimize performance for applications.

At the heart of the matter is the inability of the network
to see the underlying intent of the application. Instead, the
network only sees a series of micro-transactions. One solution
is to extend the network API to give direct access to all
the individual network elements such as caches, middleboxes,
routers, etc. But this is clearly problematic for many reasons:
application developers would find it too hard to understand,
the API would regularly mutate in line with corresponding
changes in the technologies, and it would promote unforeseen
interactions between per-technology API elements, with un-
predictable and probably undesirable consequences.

In this paper, we propose Intent Driven Networking (IDN)
as an alternative approach. It enables the formulation of an
application’s “intents” as high level statements of its predicted
macro-level behaviour, i.e. an abstract formulation of what it
desires from the network, while remaining agnostic about the

underlying means used to satisfy them (protocols, etc.). For
example, an intent might be to communicate with a particular
group of users (e.g. collaborative document editing); another
might be to stream a video uninterruptedly while switching
between using a laptop and a smartphone as well as from an
802.11 network to a cellular one. Whereas the current Internet
sees sets of independent micro-transactions, an intent driven
Internet would understand the aims and optimize accordingly.

IDN also allows us to simplify application development by
removing the need to provide “cover all cases” logic. Instead,
user application requirements are fed down to the network
thus providing flexibility in how different requirements are met
without predefined restrictions. For instance, one intent might
implicitly ensure the availability of a certain service despite
the failure of a remote server; another would ensure a certain
level of Quality of Experience (QoE) even if the application is
not designed to seek alternative potentially better routes; etc.
As a consequence, IDN facilitates more fluid development of
end user applications and is conducive to better alignment of
the network to application needs.

Another good example arises in the context of mobility
support. Currently, host mobility is an extremely complicated
process, typically managed in the lower layers of the network
stack by Mobile IP. In essence, these lower layers attempt to
hide the effects of host mobility (e.g. changes in IP addresses)
from the higher layers (e.g. applications) using costly mecha-
nisms such as tunnelling. This measure is necessary as nearly
all applications assume stable, globally reachable addressing,
as well as consistent connectivity, none of which are valid
in the case of mobility. These needs, however, often only
emerge because the lower layers have no understanding of the
intents that exist at the higher layers. Imagine, for example,
that an application has no need for consistent addressing
or, alternatively, only requires access to content within the
local domain (i.e. no need for global addressing). In such
circumstances, the constraints are relaxed and Mobile IP’s
blanket-style behaviour becomes unnecessary. However, due
to the network’s inability to see the application’s intent, there
is no way to decide when such principles should or should
not be applied. Consequently, the lowest common denominator
must always prevail.

In order to attain the IDN vision, we need means by which
application intents are formulated, compiled, and ultimately
reified, i.e. acted upon, in the network (Fig. 1).

We present the concept of an intent driven network using



Intent 
Formulation 

Intent 
Reification 

A
p

p
lic

a
ti

o
n

 
N

et
w

o
rk

 
Intent 
Compilation 

Fig. 1. High level view of an intent driven network.

both a straw man design (§II) and illustrative examples (§III).
We focus particularly on the practical concern of how IDN
might be incrementally and partially deployed in the existing
Internet without restarting at year zero. We comment on the
feasibility (§IV) and implications (§V) of this design, and then
on related work (§VI), and finally lay out a roadmap for the
incremental realization of IDN (§VII).

II. INTENTS

This section defines what an intent is (§II-A), proposes an
approach for the formulation of intents based on compositions
of primitive verbs (§II-B), and discusses the mechanics of
reifying intents using in-network mediators (§II-C).

A. What is an Intent?

An intent is an abstract declaration of what the application
desires from the network on behalf of the user. It is a compo-
sition of a set of primitive “verbs”, each describing a specific
but high-level operation. For example, an intent to update
an Instagram feed might be composed of primitive verbs to
reconfigure the application topology (connect to a service and
to peers), exchange data (update the content), and uphold
a certain QoE level (allocate sufficient network resources).
In response to this, the network carries out the necessary
configuration to best serve such an intent. This could entail
setting up direct connections between users, and allocating fair
shares of router queues considering other network services.

Essentially, intent expression is based on the verb-object-
subject sentence structure used in linguistics, supplemented
by modifiers as an additional set of words. Primitive intents
expressed using such sentences are then composed using
recursive encapsulation to form a full intent.

In more detail, the primitive elements that comprise intents
are expressed using <verb, object, modifiers, subject> tuples.
A verb is an operation that describes the intent based on an
ontology (described next in §II-B). Object identifies a service,
process or item that is the objective of the verb. Modifiers
are then used to specialize or parameterize this; each modifier
can be tagged as either ‘essential’ or ‘desirable’, indicating
prioritization preference. Subject is an (optional) identifier of
another service/process/item to be linked to the object.

Intents are not limited to only user applications; they extend
to those operated by other network players (e.g. ISPs, cloud

service providers, content providers) to express their own
intents.

B. Formulating Intents

An intent verb is expressed using one of the ontology entries
in Fig. 2. This is not a comprehensive ontology; modification
and expansion is possible through collaboration with the
wider research community. The ontology is divided into three
operation categories: Construct, Transfer, and Regulate. Each
of these categories has a number of sub-operations from which
the verb is chosen. Categories are just logical groupings; it is
the verbs that signify the primitive intent.

Verb
Transfer

Regulate

Construct

Push

Pull

Prioritize

Block

Advertize

Discover

Allocate

Level 1
Categories

Level 2
Primitive verbs

Fig. 2. A basic ontology of primitive verbs.

Construct is used when an application needs to form
connections to another application (the object) in a peer-
to-peer fashion, either locally over a broadcast address or
remotely. An example is a request of intent for a VoIP client to
connect to another VoIP client. Discover is issued to look for
certain applications, whilst Advertize allows an application to
announce a new service that is able to serve the intents of other
applications. Examples include nodes spawning a caching or
load balancing service. Announcing various applications to be
discovered or advertized enables an application to dynamically
employ external modules without the latter being a component
of the native application code. This is of particular use to
applications running with scarce resources, e.g. a mobile
gaming application offloading its transcoding processes.

Transfer intents allow applications to pull and push content
(the object). An item of content could be referred to in any of
a number of different ways, as illustrated in Table I. In this
sense, a Transfer intent is analogous to an ICN abstraction,
where the Push verb corresponds to a prefix announcement
whilst Pull corresponds to an interest packet.

Finally, Regulate intents capture the desire of an application
to have traffic handled in a certain way in the network
rather than locally. This is helpful for propagating traffic
management logic higher up the network closer to the source,



TABLE I
EXAMPLES OF DIFFERENT WAYS TO REFER TO CONTENT IN A Transfer INTENT.

URL http://releases.ubuntu.com/16.04/ubuntu-16.04-server-amd64.iso
CCN ubuntu.com/torrent/ubuntu-16.04-server-amd64.iso
BitTorrent 699cda895af6fbd5a817fff4fe6fa8ab87e36f48

which facilitates better network management and aggregation
of interests. An example is an intent to block ssh login attempts
from a certain address block, or to prioritize traffic from a
service like hulu.com.

C. Reifying Intents

Our conceptual architecture relies on a hierarchical structure
of mediators deployed in the network. These are middleboxes
that arbitrate between user intents, network and service oper-
ator policies, and the current state of the network. We refer to
this mediation presence in the network as Maat and each of
the middleboxes as a Maat agent, in reference to the ancient
Egyptian concept of conflict resolution to achieve harmonious
equilibrium and order.

Given this, user intents are initially sent on a specific
broadcast address to be picked up by a local Maat agent. If
a Maat agent is not available as signified by the expiry of a
timer since issuing the intent, the application can widen the
address scope to seek another agent in the parent subnetwork
(and recursively so), or alternatively it could choose to fall
back to non-IDN behaviour.

If a Maat agent is available and able to satisfy an intent,
its job is to “reify” this intent by deploying or activating
the required mechanisms (such as an in-network function)
or identifying candidate services (a nearby deployment), and
consequently sending the relevant information back to the user
application to realign itself accordingly. The Maat agent is also
required to create a session to keep track of how the intent was
met. This is important for auditing mediation efficiency. We
will discuss this further in §V-B.

III. EXAMPLES

We now further illustrate the formulation of intent and its
corresponding reification through a set of use cases.

A. Use case #1: Clustering

Alice is editing a document with her colleagues Bob and
Charlie on the Google Docs cloud service. Currently, this
is handled in a manner that is analogous to a chat server
where the collaborators connect to a cloud-based backend to
push edits and/or receive updates. The problem with this is
that it involves unnecessary communication back and forth to
wherever the remote service is hosted when some or all of the
collaborators may be within a short network distance of each
other.

Using IDN, the local application on Alice’s device (Google
Docs in this case) would express its intent to share updates
between Alice and a set of other users. For that, it needs to
communicate with the Google backend to fetch the addresses

of the collaborators’ devices. These addresses are then used
to formulate an intent as follows:

<allocate,
ip_multicast,
(ttl=32,essential),
<discover,

GoogleDocs,
(userID=92cd701c0be,essential),
(userID=33a88280853,essential),
NULL

>
>

Note that the intent here takes the form of a composition
between discover and allocate verbs. Having first discovered
the various players in this scenario (the GoogleDocs applica-
tion and the relevant users), the network allocates a multicast
group, and Maat responds with the group address. From then
onwards, local communications are exchanged over this group,
and Alice’s application is responsible for sending periodic
updates to the Google backend for backup if it requires. If
the collaborator devices move or change, Alice will issue a
new intent accordingly.

B. Use case #2: Discovery

Serendipitous peer discovery is important for emerging
Internet applications. A particularly important application of
discovery is in Internet of Things (IoT) environments where
a large number of hosts would be operating different services
in any one locality. Currently, discovery relies on the presence
of directory or similar services, which obviously has its
limitations in terms of consistency, scalability (considering the
scale of IoT swarms to come [1]).

In such a context we might signal an intent to build a new
overlay structure from a set of suitable nodes. This would
work in a fashion similar to ARP; a node would seek other
nodes that fit certain criteria on the service(s) they operate,
location, communication mode, QoS metrics, etc. The network
would then propagate this intent announcement according to
the criteria laid out in the intent modifiers.

Consider for instance an actuator in an IoT deployment that
wants to find a nearby node capable of running a MapReduce
analytics workflow over a collection of sensor data. In this
case, the intent is formed by composing a discover primitive
verb with a push one as follows:

<push,
dataset-201507-1800,
(net=1.2.3.0/24,essential),
<discover,

hadoop,
(rtt<50ms,desirable) &



(rtt<80ms,essential),
hadoop-workflow.jar

>
>

This would be examined and collated by Maat to allow the
intent to be expanded and traverse across different networks
and operational environments (if within the specified criteria).
As another example, an intent could emanate from a node in
a sensor network seeking secure data storage, and use IDN
to explore options as diverse as local fixed-power nodes and
remote data centers. Such discovery may also extend beyond
IoT and include intents formed at different levels, such as
the ability to choose which middlebox (intrusion detection,
proxies, interceptors, anonymizers, etc.) to go through.

It is important to explicitly note that this is not a proposal
for another discovery broadcast protocol. On the contrary, a
key objective of IDN is to enable applications to express high
level intents and be agnostic about the means to satisfy them.

C. Use case #3: Edge Deployment

Finally, consider an example involving different stakehold-
ers: content and service providers. Both of these stakeholders
have a lot to gain from a strong presence towards the edge of
the network in areas where there is demand for their services.

Consider for instance a content provider that finds an
increase in the consumption of certain content (say the feature
film “A Beautiful Mind” following the death of John Nash)
in a particular area (say large metropolises in the US). It is
in the provider’s interest to provide good viewing QoE for its
customers and at the same time manage increased load on its
backend services. Accordingly, it might decide to push copies
of the content to cache in different cities.

In this case, the intent will be expressed as a composition
of a verb that discovers suitable caching services (the object)
in certain locales (the modifiers), a verb that pushes content
to the discovered caching points, and a final verb to announce
the new content once cached.

A full intent follows, where asn represents the AS number
which signifies a certain customer base. Other modifiers could
be used to identify target locales at a finer grain.

<push,
ABeautifulMind,
(auth=https://universalstudios.com/oauth),
<push,
831FD96B0.mp4,
NULL,
<discover,

cache,
(asn=123456,essential),
NULL

>
>

>

In a similar fashion, a service provider might deploy appli-
cations to nodes offering hosting services to balance load at
the edge, mitigate flash crowds, or improve user QoE.

IV. FEASIBILITY

We now present a preliminary investigation of the overhead
associated with the straw man design we put forward. For
this, we use the intent types given in the above examples and
identify the costs incurred for a real campus network.

To host the Maat mediators, we use Raspberry Pi devices
as they are highly affordable and have reasonable hosting
capabilities [2].

We focus on assessing the ability of an in-network mediator
in processing incoming application intents as the initial bot-
tleneck in this process. This is important for intent mediation
dimensioning, i.e. to identify the number of mediators required
to cater to expected user application intents in a given network.

For this we develop a Python module to act as a lexer
and recursive descent parser with backtracking. The module
receives over the network intents that are dynamically created
based on the examples given in §III. It parses these intents
in order to identify possible reification paths for each intent.
We run this over 2 different setups: a Linux box with an Intel
i5 1.30GHz processor and 4GB of RAM and running Ubuntu
version 16.04, and also on a Raspberry Pi 2 with Raspbian
Jessie kernel version 4.9 We vary the number of issued intents
between 10 and 1000 intent per second, repeating each input
size 10 times.

Fig. 3. The amount of time taken (vertical axis in seconds) to parse intents
(horizontal axis. ofor the Linux box, and X for the Raspberry Pi 2.

The results, shown in Fig. 3, demonstrate that intent parsing
is significantly sustainable to varying degrees. On the Linux
box, parsing is extremely quick, being able to sustain upto
1000 intent rate under 0.2 seconds, excpet in limited cases
when an intent has several layers of encapsulation.

V. IMPLICATIONS

In realising IDN we do not propose the re-writing of the
entire network stack1. Instead, we propose to overlay the
concept of intents onto the existing Internet architecture. As
such, our straw man IDN architecture has been designed to

1Although an IDN architecture could indeed be approached from this angle,
it is likely to create excessive disincentives that limit its deployment.



support backward compatibility (falling back to non-IDN
behaviour) and incremental/ partial deployment.

As already described, IDN pushes some of the meta-logic
of a deployed application to the network in a form that can
be reified by Maat. As such, IDN opens up a whole new set
of opportunities in research and operational circles, and also
creates some challenges. We now discuss some of these.

A. Opportunities

IDN opens up self-adaptation opportunities for all players
in the network space: users, developers and service providers.
Users benefit from improved QoE through service provi-
sioning that is dynamic and adaptive to their requirements
and contexts. Application developers gain access to higher
programming primitives that facilitate fluid application be-
haviour at runtime, with less reliance on ad hoc means of
connecting services and mitigating failures. Service providers
are empowered to provision their services in a migration-ready
form to be able to provide better QoE for their end users.

IDN also opens a market for hosting services towards
the edge. This can be beneficial particularly for small and
medium sized service providers who cannot afford a highly
customized CDN presence like the Googles and Facebooks of
the world. Instead, they would be able to bid for edge resource
provisioning that in many parts of the world has a wider reach
that traditional CDNs [3], [4].

B. Challenges

With the benefits that IDN brings, it also generates a
number of challenges. The most prominent of these are trust
– specifically: security and efficiency – and deployment.

The security challenge could be summarized by the fol-
lowing question: Could the application trust the network to
interfere with its communications, potentially redirecting it to
an unintended destination? This is indeed a major challenge
that we recognize. We should first clarify that the in-network
Maat agents receive and compile intents, not the subsequent
communication which is more likely to contain sensitive info-
rmation. Based on this, Maat would have information about
the desires of the application such as connecting with peers,
advertising services or content, regulating network traffic, etc.
There is potentially a lot of risk in divulging such information
to outside parties. It is noteworthy that such challenges are
also being faced by the current Internet architecture.

The efficiency concern is summarized with a subtly different
question: Would the application trust the network to potentially
impede or interfere with its performance? Maat will have
significant influence on where the application is redirected
to serve its intent. As far as the application is concerned,
Maat mediators are black boxes that might have interests
conflicting with those of the application users. They could
also be misconfigured, resulting in non-optimal mediation. We
perceive this challenge to in fact be an opportunity for auditing
schemes that ensure the efficiency of mediation. For this, we
envisage regular reporting of intent, and resulting “mediation
logs” that could be scrutinized to ascertain efficiency. In a

multi-mediator market, the mediation score resulting from
such auditing mechanisms would engender competition.

Another challenge relates to deployment and scalability.
The core IDN design lends itself to partial deployment through
independent rollout of Maat agents most likely at the edge.
There are different ways of doing this, one of which is
to augment wireless routers with additional modules. Such
devices, however, are typically resource constrained and might
suffer from performance issues if a large number of services
are advertized on their local address spaces. One way of
avoiding this is to deploy dedicated Maat agents instead of
piggybacking on existing infrastructure. This comes with its
own cost, but is feasible using commodity Linux boxes.

VI. RELATED WORK

We review work that is relevant to our IDN concept, and
briefly discuss some of the technologies that will enable the
reification of intents in the network.

A. x-Centric Approaches

Bringing application awareness to networks has been a long
sought after goal, with a number of technologies and network
architectures being presented.

Resource-centric. The Representational State Transfer
(REST) architectural principle [5] reduces network interactions
to a few verbs (GET, POST, DELETE, etc.). REST professes
an entirely stateless, resource-oriented approach, transitioning
between states using data included in the requests. This makes
infrastructure scalability and manageability easier. However,
REST continues to adopt the “narrow” network API approach
and, thus, continues to suffer from all of the associated
problems discussed in §I.

Network-centric. Information-centric networking (ICN)
solutions have been proposed to convert networks into inherent
content delivery systems [6]. Similarly, service-centric net-
working (SCN) [7], [8], [9], [10], [11] extends ICN principles
to apply to services as well as content. Both ICN and SCN
attempt to align the application and the network, which helps
to break away from statically binding to specific network
resources. However, they only partly address the problems we
have outlined in the specific cases of accessing content/ser-
vices: they do not naturally generalize to other scenarios, e.g.
those involving switching of networks.

Stakeholder-centric. In the Experience-oriented network
architecture (EONA) [12], application and content providers
as well as infrastructure operators exchange information from
their respective control loops to improve user experience. We
take inspiration from EONA, but are concerned about the
viability of its approach. In a world where data is the new oil,
we can not imagine such cooperative exchange of information
happening between parties that ordinarily have conflicting in-
terests [13]. The authors do not provide a reasonable argument
for how this would be realized.

Policy-centric. Policy-Based Management (PBM) lan-
guages and tools have been well established for defining high
level policies and refining such specification into actionable



and quantifiable network-level targets [14]. PBM is typically
constructed around rule-based, goal-driven, or event-driven
principles that are mapped to specific operations. Literature
includes a host of work on specification, management, and
refinement of DiffServ policy hierarchies (e.g. [15], [16]) and
enabling autonomic networking (e.g. [17], [18]). Other PBM
work is also emerging under the ‘network synthesis’ subfield.
Propane [19] compiles a network-wide BGP configuration
from a high-level policy of forwarding and routing constraints,
and has also been extended to adapt to abstract and evolving
topologies [20]. SyNet [21] extends this further through trans-
lating Datalog-defined policies into a confluent set of OSPF
and BGP forwarding rules as well as static routes.

Recent extensions to this philosophy include the RFC on
autonomic networking [22], which defines some high level de-
sign goals of automated implementation of abstract operational
goals i.e. intents. The RFC does not provide any indication of
hot to implement or deploy this. A very recent paper [23]
provides a solution to quantify soft goals associated with
such abstract intents, and to use NFV chains to implement
them. The work focuses on middlebox configuration and
deployment, but does not discuss service discovery. IDN has
more to offer, as it covers more than just soft high-level goals.

However, this work is largely about facilitating malleable
network management that is driven by QoS objectives or
business goals/constraints. A such, they are geared towards
network operators and those dealing with wholesale traffic.
They cannot, for instance, be used for facilitating application-
defined opportunistic service binding at the edge.

Application-centric. Closer to our proposal are recent
efforts in the direction of enabling applications to express
their requirements and allowing these to percolate down to
the underlying network. Pyretic [24] is an open source Python
framework that raises the level of abstraction of writing
network policies, enabling the definition of sophisticated net-
work structures through a high-level language. Merlin [25] is
another declarative language that enables the specification of
a global networking policy, which is expressed as a collection
of logical predicates to identify traffic subsets and a set of
statements indicating the action(s) to be taken on each subset.
Both Pyretic and Merlin focus on issues relating to unifying
network administration rather than identifying and addressing
application requirements.

Other relevant efforts include: yanc [26], a Linux abstraction
to facilitate writing network control logic in any language;
FlowOS [27], a programming model to capture and process
Internet flows; NOSIX [28], an abstraction layer to enable
portable deployments; and P4 [29], a language to configure
switches to process packets and match header fields.

B. Enabling Technologies

The Active networking (AN) paradigm enables users to
modify network behaviour by sending custom code to be
executed on network devices (cf. [30]). Software defined
networking (SDN) removes the need for bit-wise configuration
of network components, and instead allows a central policy

to be applied system-wide. Both AN and SDN technologies
could be used to the benefit of users, but neither helps the
application signify its needs. Thus, they are complementary
to IDN by providing mechanisms to manage and modify the
network in order to reify intents.

VII. SUMMARY AND ROADMAP

We have proposed Intent Driven Networking (IDN), a
concept in which applications and other players such as con-
tent providers formulate their communication-related ‘intents’
in high-level terms that get transformed into network-level
reifications that better support the declared intents. We put
forward a straw man design that specifies how intents might be
formulated (§II-A), involving an ontology of verbs to signify
various application desires (§II-B) and a recursive syntax
that allows encapsulation of intents. Reification relies on the
Maat system that provides in-network mediation between user
intents on the one hand, and policies of network and service
operators on the other (§II-C).

Apart from enjoying network service levels that better match
their intents, applications also benefit from IDN in that some
of their logic could be pushed to the network. No longer
are they expected to ship with intricate conditional logic to
work around unexpected network behaviour. (They still could
employ such logic, but they would thereby be limiting their
ability to be deployed in foreign environments and under
unforeseen conditions.)

Maat also exploits the semantic content to optimize resource
usage within the network. It does this by explicitly negotiating
how each intent might best be reified to produce the most
“friendly” way in which each network interaction can be
performed, considering the needs of all stakeholders.

There is a huge body of future work required to develop
IDN into a viable implementation. We capture some of the
required next steps in a roadmap (Fig. 4). This, however,
is undoubtedly a non-exhaustive plan of action. Therefore,
we solicit contributions from the wider systems research
community, architects and developers of different disciplines.

We see the process of developing a proof-of-concept real-
ization of our design as falling into three main workpackages.
First, we will work on the formalism of intent specification
and its compilation into a format that can be used by Maat.
This will involve refining the ontology presented here, defining
a domain-specific language for the formulation of intents on
the basis of this, and also the creation of associated developer
tools. It will also involve investigating the semantics of the
(recursive) composition of intents in terms of existing intents
and ultimately in terms of primitive verbs. Semantics must take
into account the effects of composing network functions that
interact in complex ways: for example how caching strategies
change when associated with mobility.

The second workpackage involves the definition of the
negotiation protocol employed between Maat agents. This
should be independent of any particular set of verbs and rely
on generic notions of utility and priority as derived from intent
specification, and be capable of handling negotiations between



Formulation Compilation Mediation Brokerage Reification 

Common 
Ontologies 
Common 

Ontologies 
Prioritization Prioritization SDN Mappings SDN Mappings 

Conflict 
Resolution 

Conflict 
Resolution 

Trust Trust 

Security Security 

Compositional 
Semantics 

Compositional 
Semantics 

Developer 
Tools 

Developer 
Tools 

Auditing & 
Arbitration 
Auditing & 
Arbitration 

Fig. 4. A roadmap for the realization of IDN.

multiple stakeholders and converging on distributed consensus.
It is clear that mediation is a highly complex task as it is
likely that many conflicts will emerge. For example, a user
streaming content would want high quality delivery at low
cost, a publisher would wish to have their content viewed
as many times as possible, and an ISP would prefer to have
low-cost (locally available) content viewed. Such potentially
conflicting stances will need to ensure thorough negotiation
that all stakeholders are incentivized to cooperate.

The third workpackage would then focus on practical as-
pects of the deployment of Maat agents, as discussed in §V-B.

As a final consideration, marketplace brokerage is an area
with a lot of potential for reifying spontaneous and strategic
intent. Reification is likely to create the need for running in-
network services towards the edge. Marketplaces of resources
to host such services might benefit from the operation of
brokerage and arbitrage agencies, a role which might be co-
located with Maat. For this, thorough investigation is required
to alleviate concerns regarding trust and security. Efforts are
also sought for reifying mediation outcomes in the form of
adjusting the network control plane (using SDN technologies)
or providing information that could be used by applications
for late-binding.

We hope that our IDN proposal will serve as an initial step
towards a long-term research campaign that focuses on higher-
layer needs of Internet stakeholders rather than forcing them
into using fixed and constrained abstractions.

REFERENCES

[1] E. Lee et al., “The swarm at the edge of the cloud,” IEEE Design &
Test, vol. 31, no. 3, 2014.

[2] Y. Elkhatib, B. F. Porter, H. B. Ribeiro, M. F. Zhani, J. Qadir, and
E. Rivière, “On using micro-clouds to deliver the fog,” Internet Com-
puting, vol. 21, no. 2, pp. 8–15, March 2017.

[3] Y. Elkhatib, “Mapping Cross-Cloud Systems: Challenges and Opportu-
nities,” in HotCloud, 2016.

[4] R. Fanou, G. Tyson, P. Francois, and A. Sathiaseelan, “Pushing the
frontier: Exploring the African web ecosystem,” in WWW, 2016.

[5] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[6] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in CoNEXT, 2009.

[7] M. J. Freedman, M. Arye, P. Gopalan, S. Y. Ko, E. Nordstrom,
J. Rexford, and D. Shue, “Service-centric networking with
SCAFFOLD,” http://www.dtic.mil/cgi-bin/GetTRDoc?Location=
U2&doc=GetTRDoc.pdf&AD=ADA571380, Princeton University,
Tech. Rep. 885-10, September 2010.

[8] T. Braun, A. Mauthe, and V. Siris, “Service-centric networking exten-
sions,” in Symposium on Applied Computing, 2013, pp. 583–590.

[9] D. Griffin, M. Rio, P. Simoens, P. Smet, F. Vandeputte, L. Vermoesen,
D. Bursztynowski, and F. Schamel, “Service oriented networking,” in
European Conf. on Networks and Communications, 2014.

[10] C. Tschudin and M. Sifalakis, “Named functions and cached computa-
tions,” in CCNC, 2014, pp. 851–857.

[11] A. Sathiaseelan, L. Wang, A. Aucinas, G. Tyson, and J. Crowcroft,
“SCANDEX: Service centric networking for challenged decentralised
networks,” in DIYNetworking, 2015, pp. 15–20.

[12] J. Jiang, X. Liu, V. Sekar, I. Stoica, and H. Zhang, “Eona: Experience-
oriented network architecture,” in HotNets, 2014, pp. 11:1–11:7.

[13] D. D. Clark, S. Bauer, W. Lehr, K. C. Claffy, A. D. Dhamdhere,
B. Huffaker, and M. Luckie, “Measurement and analysis of internet
interconnection and congestion,” in Telecomm. Policy Research, 2014.

[14] R. Boutaba and I. Aib, “Policy-based management: A historical
perspective,” Journal of Network and Systems Management, vol. 15,
no. 4, pp. 447–480, 2007. [Online]. Available: http://dx.doi.org/10.
1007/s10922-007-9083-8

[15] R. Rajan, D. Verma, S. Kamat, E. Felstaine, and S. Herzog, “A policy
framework for integrated and differentiated services in the internet,”
IEEE Network, vol. 13, no. 5, pp. 36–41, Sep 1999.

[16] A. K. Bandara, E. C. Lupu, A. Russo, N. Dulay, M. Sloman, P. Flegkas,
M. Charalambides, and G. Pavlou, “Policy refinement for ip differen-
tiated services quality of service management,” IEEE Transactions on
Network and Service Management, vol. 3, no. 2, pp. 2–13, April 2006.

[17] B. Jennings, S. V. D. Meer, S. Balasubramaniam, D. Botvich, M. O.
Foghlu, W. Donnelly, and J. Strassner, “Towards autonomic manage-
ment of communications networks,” IEEE Communications Magazine,
vol. 45, no. 10, pp. 112–121, October 2007.

[18] F. Meyer and R. Kroeger, “A framework for autonomic, ontology-
based it management,” in 11th International Conference on Network
and Service Management (CNSM), Nov 2015, pp. 78–84.

[19] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Don’t
mind the gap: Bridging network-wide objectives and device-level con-
figurations,” in Proceedings of the ACM SIGCOMM Conference. ACM,
2016, pp. 328–341.

[20] ——, “Network configuration synthesis with abstract topologies,” in
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). ACM, June 2017, pp.
437–451.

[21] A. El-Hassany, P. Tsankov, L. Vanbever, and M. T. Vechev, “Network-
wide configuration synthesis,” in Proceedings of the International Con-
ference on Computer-Aided Verification (CAV), July 2017.



[22] M. H. Behringer, M. Pritikin, S. Bjarnason, A. Clemm, B. Carpenter,
S. Jiang, and L. Ciavaglia, “Autonomic Networking: Definitions and
Design Goals,” RFC 7575 (Informational), RFC Editor, Fremont, CA,
USA, pp. 1–16, June 2015. [Online]. Available: https://www.rfc-editor.
org/rfc/rfc7575.txt

[23] E. J. Scheid, C. C. Machado, M. Franco, R. L. dos Santos, R. Pfitscher,
A. Schaeffer-Filho, and L. Z. Granville, “INSpIRE: Integrated NFV-
baSed Intent Refinement Environment,” in Proceedings of the 16th
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 2017). IEEE, May 2017.

[24] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN programming with Pyretic,” Technical Report of USENIX, 2013.

[25] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster, “Managing
the network with merlin,” in HotNets, 2013, pp. 24:1–24:7.

[26] M. Monaco, O. Michel, and E. Keller, “Applying operating system
principles to SDN controller design,” in HotNets, 2013, pp. 2:1–2:7.

[27] M. Bezahaf, A. Alim, and L. Mathy, “FlowOS: A flow-based platform
for middleboxes,” in HotMiddlebox, 2013, pp. 19–24.

[28] M. Yu, A. Wundsam, and M. Raju, “NOSIX: A light- weight portability
layer for the SDN OS,” SIGCOMM Comput. Commun. Rev., vol. 44,
no. 2, pp. 28–35, 2014.

[29] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014.

[30] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden,
“A survey of active network research,” IEEE Communication Magazine,
vol. 35, no. 1, pp. 80–86, 1997.


