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Abstract—While machine learning and artificial intelligence
have long been applied in networking research, the bulk of such
works has focused on supervised learning. Recently there has
been a rising trend of employing unsupervised machine learn-
ing using unstructured raw network data to improve network
performance and provide services such as traffic engineering,
anomaly detection, Internet traffic classification, and quality
of service optimization. The interest in applying unsupervised
learning techniques in networking emerges from their great
success in other fields such as computer vision, natural language
processing, speech recognition, and optimal control (e.g., for
developing autonomous self-driving cars). Unsupervised learning
is interesting since it can unconstrain us from the need of
labeled data and manual handcrafted feature engineering thereby
facilitating flexible, general, and automated methods of machine
learning. The focus of this survey paper is to provide an overview
of the applications of unsupervised learning in the domain of
networking. We provide a comprehensive survey highlighting
the recent advancements in unsupervised learning techniques
and describe their applications for various learning tasks in
the context of networking. We also provide a discussion on
future directions and open research issues, while also identifying
potential pitfalls. While a few survey papers focusing on the
applications of machine learning in networking have previously
been published, a survey of similar scope and breadth is missing
in literature. Through this paper, we advance the state of
knowledge by carefully synthesizing the insights from these survey
papers while also providing contemporary coverage of recent
advances.

I. INTRODUCTION

Networks—such as the Internet and mobile telecom
networks—serve the function of the central hub of modern
human societies, which the various threads of modern life
weave around. With networks becoming increasingly dynamic,
heterogeneous, and complex, the management of such net-
works has become less amenable to manual administration,
and can benefit from leveraging support from methods for
optimization and automated decision-making from the fields of
artificial intelligence (AI) and machine learning (ML). Such AI
and ML techniques have already transformed multiple fields—
e.g., computer vision, natural language processing (NLP),
speech recognition, and optimal control (e.g., for developing

autonomous self-driving vehicles)—with the success of these
techniques mainly attributed to firstly, significant advances in
unsupervised ML techniques such as deep learning, secondly,
the ready availability of large amounts of unstructured raw data
amenable to processing by unsupervised learning algorithms,
and finally, advances in computing technologies through ad-
vances such as cloud computing, graphics processing unit
(GPU) technology and other hardware enhancements. It is
anticipated that AI and ML will also make a similar impact
on the networking ecosystem and will help realize a future
vision of cognitive networks [1] [2], in which networks will
self-organize and will autonomously implement intelligent
network-wide behavior to solve problems such as routing,
scheduling, resource allocation, and anomaly detection.

The initial attempts towards creating cognitive or intelligent
networks have relied mostly on supervised ML methods, which
are efficient and powerful, but are limited in scope by their
need for labeled data. With network data becoming increas-
ingly voluminous (with a disproportionate rise in unstructured
unlabeled data), there is a groundswell of interest in leveraging
unsupervised ML methods to utilize unlabeled data, in addition
to labeled data where available, to optimize network perfor-
mance [12]. The rising interest in applying unsupervised ML
in networking applications also stems from the need to liberate
ML applications from restrictive demands of supervised ML
for labeled networking data, which is expensive to curate
at scale (since labeled data may be unavailable and manual
annotation prohibitively inconvenient) in addition to being
suspect to being outdated quickly (due to the highly dynamic
nature of computer networks) [13].

We are already witnessing the failure of human network
administrators to manage and monitor all bits and pieces of
network [14], and the problem will only exacerbate with fur-
ther growth in the size of networks with paradigms such as the
Internet of things (IoT). An ML-based network management
system (NMS) is desirable in such large networks so that
faults/bottlenecks/anomalies may be predicted in advance with
reasonable accuracy. In this regard, networks already have
ample amount of untapped data, which can provide us with
decision-making insights making networks more efficient and
self-adapting. With unsupervised ML, the pipe dream is that
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Survey paper Published In Year # Refer-
ences

Areas Focused Unsupervised
ML

Deep
Learning

Pitfalls Future
Challenges

Patcha et al. [3] Elsevier
Computer Networks

2007 100 ML for Network Intrusion Detec-
tion

≈ × ×
√

Nguyen et al. [4] IEEE COMST 2008 68 ML for Internet Traffic Classifica-
tion

≈ × × ×

Bkassiny et al. [5] IEEE COMST 2013 177 ML for Cognitive Radios ≈ × × ×
Alsheikh et al. [6] IEEE COMST 2015 152 ML for WSNs ≈ × ×

√

Buczak et al. [7] IEEE COMST 2016 113 ML for Cyber Security Intrusion
Detection

≈ × ×
√

Klaine et al. [8] IEEE COMST 2017 269 ML in SONs ≈ × ×
√

Meshram et al. [9] Springer
Book Chapter

2017 16 ML for Anomaly Detection in In-
dustrial Networks

≈ × ×
√

Fadlullah et al. [10] IEEE COMST 2017 260 ML for Network Traffic Control ≈
√

×
√

Hodo et al. [11] ArXiv 2017 154 ML Network Intrusion Detection ≈
√

× ×
This Paper - 2017 323 Unsupervised ML in Networking

√ √ √ √

TABLE I: Comparison of our paper with existing survey and review papers. (Legend:
√

means covered; × means not covered;
≈ means partially covered.)

every algorithm for adjusting network parameters (be it, TCP
congestion window or rerouting network traffic in peak time)
will optimize itself in a self-organizing fashion according to
the environment and application, user, and network’s Quality of
Service (QoS) requirements and constraints [15]. Unsupervised
ML methods, in concert with existing supervised ML methods,
can provide a more efficient method that lets a network
manage, monitor, and optimize itself, while keeping the human
administrators in the loop with the provisioning of timely
actionable information.

Unsupervised ML techniques facilitate the analysis of raw
datasets, thereby helping in generating analytic insights from
unlabeled data. Recent advances in hierarchical learning, clus-
tering algorithms, factor analysis, latent models, and outlier
detection, have helped significantly advance the state of the
art in unsupervised ML techniques. Unsupervised ML has
many applications such as feature learning, data clustering,
dimensionality reduction, anomaly detection, etc. In particular,
recent unsupervised ML advances—such as the development
of “deep learning” techniques [16]—have however signifi-
cantly advanced the ML state of the art by facilitating the
processing of raw data without requiring careful engineering
and domain expertise for feature crafting. The versatility of
deep learning and distributed ML can be seen in the diversity
of their applications that range from self-driving cars to the
reconstruction of brain circuits [16]. Unsupervised learning is
also often used in conjunction with supervised learning in a
semi-supervised learning setting to preprocess the data before
analysis and thereby help in crafting a good feature represen-
tation and in finding patterns and structures in unlabeled data.

The rapid advances in deep neural networks, the democrati-
zation of enormous computing capabilities through cloud com-
puting and distributed computing, and the ability to store and
process large swathes of data, have motivated a surging interest
in applying unsupervised ML techniques in the networking
field. The field of networking also appears to be well suited
to, and amenable to applications of unsupervised ML tech-
niques, due to the largely distributed decision-making nature
of its protocols, the availability of large amounts of network
data, and the urgent need for intelligent/cognitive networking.

Consider the case of routing in networks. Networks these days
have evolved to be very complex, and they incorporate multiple
physical paths for redundancy and utilize complex routing
methodologies to direct the traffic. Our application traffic does
not always take the optimal path we would expect, leading to
unexpected and inefficient routing performance. To tame such
complexity, unsupervised ML techniques can autonomously
self-organize the network taking into account a number of
factors such as real-time network congestion statistics as well
as application QoS requirements [17].

The purpose of this paper is to highlight the important
advances in unsupervised learning, and after providing a
tutorial introduction to these techniques, to review how such
techniques have been, or could be, used for various tasks in
modern next-generation networks comprising both computer
networks as well as mobile telecom networks.

Contribution of the paper: To the best of our knowledge,
there does not exist a survey that specifically focuses on
the important applications of unsupervised ML techniques in
networks, even though a number of surveys exist that focus
on specific ML applications pertaining to networking—for
instance, surveys on using ML for cognitive radios [5], traffic
identification and classification [4], anomaly detection [3] [9].
Previous survey papers have either focused on specific unsu-
pervised learning techniques (e.g., Ahad et al. [18] provided
a survey of the applications of neural networks in wireless
networks) or on some specific applications of computer net-
working (Buczak and Guven [7] have provided a survey of
the applications of ML in cyber intrusion detection). Our
survey paper is timely since there is great interest in deploying
automated and self-taught unsupervised learning models in the
industry and academia. Due to relatively limited applications
of unsupervised learning in networking—in particular, the
deep learning trend has not yet impacted networking in a
major way—unsupervised learning techniques hold a lot of
promises for advancing the state of the art in networking in
terms of adaptability, flexibility, and efficiency. The novelty
of this survey is that it covers many different important
applications of unsupervised ML techniques in computer net-
works and provides readers with a comprehensive discussion
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Fig. 1: Outline of the Paper

of the unsupervised ML trends, as well as the suitability of
various unsupervised ML techniques. A tabulated comparison
of our paper with other existing survey and review articles is
presented in Table I.

Organization of the paper: The organization of this paper
is depicted in Figure 1. Section II provides a discussion
on various unsupervised ML techniques (namely, hierarchi-
cal learning, data clustering, latent variable models, outlier
detection and reinforcement learning). Section III presents a
survey of the applications of unsupervised ML specifically in
the domain of computer networks. Section IV describes future
work and opportunities with respect to the use of unsupervised
ML in future networking. Section V discusses a few major
pitfalls of the unsupervised ML approach and its models.
Finally, Section VI concludes this paper. For the reader’s
facilitation, Table II shows all the acronyms used in this survey
for convenient referencing.

II. TECHNIQUES FOR UNSUPERVISED LEARNING

In this section, we will introduce some widely used unsuper-
vised learning techniques and their applications in computer
networks. We have divided unsupervised learning techniques
into five major categories: hierarchical learning, data cluster-
ing, latent variable models, outlier detection, and reinforcement
learning. Figure 2 depicts a taxonomy of unsupervised learning

techniques and also notes the relevant sections in which these
techniques are discussed.

A. Hierarchical Learning

Hierarchical learning is defined as learning simple and com-
plex features from a hierarchy of multiple linear and nonlinear
activations. In learning models, a feature is a measurable
property of the input data. Desired features are ideally infor-
mative, discriminative, and independent. In statistics, features
are also known as explanatory (or independent) variables [19].
Feature learning (also known as data representation learning)
is a set of techniques that can learn one or more features
from input data [20]. It involves the transformation of raw
data into a quantifiable and comparable representation, which
is specific to the property of the input but general enough
for comparison to similar inputs. Conventionally, features are
handcrafted specific to the application on hand. It relies on
domain knowledge but even then they do not generalize well to
the variation of real world data, which gives rise to automated
learning of generalized features from the underlying structure
of the input data. Like other learning algorithms, feature
learning is also divided among domains of supervised and
unsupervised learning depending on the type of available data.
Almost all unsupervised learning algorithms undergo a stage
of feature extraction in order to learn data representation from
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Fig. 2: Taxonomy of Unsupervised Learning Techniques

unlabeled data and generate a feature vector on the basis of
which further tasks are performed.

Hierarchical learning is intimately related to two strongly
correlated areas: deep learning and neural networks. In partic-
ular, deep learning techniques benefits from the fundamental
concept of artificial neural networks (ANNs), a deep structure
consists of multiple hidden layers with multiple neurons in
each layer, a nonlinear activation function, a cost function
and a back-propagation algorithm. Deep learning [21] is a
hierarchical technique that models high level abstraction in
data using many layers of linear and nonlinear transformations.
With deep enough stack of these transformation layers, a
machine can self-learn a very complex model or representation
of data. Learning takes place in hidden layers and the optimal
weights and biases of the neurons are updated in two passes,
namely, feed forward and back-propagation. A typical ANN
and typical cyclic and acyclic topologies of interconnection
between neurons are shown in Figure 3. A brief taxonomy of
Unsupervised NNs is presented in Figure 4.

An ANN has three types of layers (namely input, hidden and
output, each having different activation parameters). Learning
is the process of assigning optimal activation parameters
enabling ANN to perform input to output mapping. For a
given problem, an ANN may require multiple hidden layers
involving long chain of computations, i.e., its depth [34]. Deep
learning has revolutionized ML and is now increasingly being
used in diverse settings—e.g., object identification in images,
speech transcription into text, matching user’s interests with

items (such as news items, movies, products) and making
recommendations, etc. But until 2006, relatively few people
were interested in deep learning due to the high computational
cost of deep learning procedures. It was widely believed that
training deep learning architectures in an unsupervised manner
was intractable, and supervised training of deep NNs (DNN)
also showed poor performance with large generalization errors
[35]. However, recent advances [36]–[38] have shown that
deep learning can be performed efficiently by separate unsuper-
vised pre-training of each layer with the results revolutionizing
the field of ML. Starting from the input (observation) layer,
which acts as an input to the subsequent layers, pre-training
tends to learn data distributions while the usual supervised
stage performs local search for fine-tuning.

1) Unsupervised Multilayer Feed Forward NN: Unsuper-
vised multilayer feed forward NN, with reference to graph
theory, has a directed graph topology as shown in Figure 3. It
consists of no cycles, i.e., does not have feedback path in input
propagation through NN. Such kind of NN is often used to
approximate a nonlinear mapping between inputs and required
outputs. Autoencoders are the prime examples of unsupervised
multilayer feed forward NNs.

a) Autoencoders: An autoencoder is an unsupervised
learning algorithm for ANN used to learn compressed and
encoded representation of data, mostly for dimensionality
reduction and for unsupervised pre-training of feed forward
NNs. Autoencoders are generally designed using approxima-
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Fig. 3: Illustration of an ANN (Left); Different types of ANN topologies (Right)

Fig. 4: Taxonomy of Unsupervised Neural Networks

tion function and trained using backpropagation and stochastic
gradient decent (SGD) techniques. Autoencoders are the first
of their kind to use back-propagation algorithm to train with
unlabeled data. Autoencoders aim to learn compact represen-
tation of the function of input using the same number of input
and output units with usually less hidden units to encode a
feature vector. They learn the input data function by recreating
the input at the output, which is called encoding/decoding, to
learn at the time of training NN. In short, a simple autoencoder
learns low-dimensional representation of the input data by
exploiting similar recurring patterns.

Autoencoders have different variants [39] such as varia-
tional autoencoders, sparse autoencoders, and denoising au-
toencoders. Variational autoencoder is an unsupervised learn-
ing technique used clustering, dimensionality reduction and
visualization, and for learning complex distributions [40]. In
a sparse autoencoder, a sparse penalty on the latent layer is

applied for extracting unique statistical feature from unlabeled
data. Finally, denoising autoencoders are used to learn the
mapping of a corrupted data point to its original location in
the data space in unsupervised manner for manifold learning
and reconstruction distribution learning.

2) Unsupervised Competitive Learning NN: Unsupervised
competitive learning NNs is a winner-take-all neuron scheme,
where each neuron competes for the right of the response to a
subset of the input data. This scheme is used to remove the re-
dundancies from the unstructured data. Two major techniques
of unsupervised competitive learning NNs are self-organizing
maps and adaptive resonance theory NNs.

Self-Organizing/ Kohonen Maps: Self-Organizing Maps
(SOM), also known as Kohonen’s maps [41] [42], are a special
class of NNs that uses the concept of competitive learning,
in which output neurons compete amongst themselves to be
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TABLE II: List of common acronyms used

ADS Anomaly Detection System
A-NIDS Anomaly & Network Intrusion Detection System

AI Artificial Intelligence
ANN Artificial Neural Network
ART Adaptive Resonance Theory
BSS Blind Signal Separation

BIRCH Balanced Iterative Reducing and Clustering Using Hierarchies
CDBN Convolutional Deep Belief Network
CNN Convolutional Neural Network
CRN Cognitive Radio Network
DBN Deep Belief Network
DDoS Distributed Denial of Service
DNN Deep Neural Network
DNS Domain Name Service
DPI Deep Packet Inspection
EM Expectation-Maximization

GTM Generative Topographic Model
GPU Graphics Processing Unit

GMM Gaussian Mixture Model
HMM Hidden Markov Model
ICA Independent Component Analysis
IDS Intrusion Detection System
IoT Internet of Things

LSTM Long Short-Term Memory
LLE Locally Linear Embedding
LRD Low Range Dependencies

MARL Multi-Agent Reinforcement Learning
ML Machine Learning

MLP Multi-Layer Perceptron
MRL Model-based Reinforcement Learning
MDS Multi-Dimensional Scaling
MCA Minor Component Analysis
NMF Non-Negative Matrix Factorization
NMS Network Management System
NN Neural Network

NMDS Nonlinear Multi-dimensional Scaling
OSPF Open Shortest Path First

PU Primary User
PCA Principal Component Analysis
PGM Probabilistic Graph Model
QoE Quality of Experience
QoS Quality of Service
RBM Restricted Boltzmann Machine
RL Reinforcement Learning

RLFA Reinforcement Learning with Function Approximation
RNN Recurrent Neural Network
SDN Software Defined Network
SOM Self-Organizing Map
SON Self-Organizing Network
SVM Support Vector Machine
SON Self Organizing Network
SSAE Shrinking Sparse Autoencoder
TCP Transmission Control Protocol

t-SNE t-Distributed Stochastic Neighbor Embedding
TL Transfer Learning

VoIP Voice over IP
VoQS Variation of Quality Signature
VAE Variational Autoencoder
WSN Wireless Sensor Network

activated in a real-valued output, results having only single
neuron (or group of neurons), called winning neuron. This is
achieved by creating lateral inhibition connections (negative
feedback paths) between neurons [43]. In this orientation, the
network determines the winning neuron within several itera-
tions; subsequently it is forced to reorganize itself based on the
input data distribution (hence they are called Self-Organizing
Maps). They were initially inspired by the human brain, which
has specialized regions in which different sensory inputs are
represented/processed by topologically ordered computational

maps. In SOM, neurons are arranged on vertices of a lattice
(commonly one or two dimensions). The network is forced to
represent higher-dimensional data in lower-dimensional rep-
resentation by preserving the topological properties of input
data by using neighborhood function while transforming the
input into a topological space in which neuron positions in the
space are representatives of intrinsic statistical features that tell
us about the inherent nonlinear nature of SOMs.

Training a network comprising SOM is essentially a three-
stage process after random initialization of weighted connec-
tions. The three stages are as follow [44].
• Competition: Each neuron in the network computes its

value using a discriminant function, which provides the
basis of competition among the neurons. Neuron with
the largest discriminant value in the competition group
is declared the winner.

• Cooperation: The winner neuron then locates the center
of the topological neighborhood of excited neurons in
the previous stage, providing a basis for cooperation
among excited neighboring neurons.

• Adaption: The excited neurons in the neighborhood
increase/decrease their individual values of discriminant
function in regard to input data distribution through
subtle adjustments such that the response of the win-
ning neuron is enhanced for similar subsequent input.
Adaption stage is distinguishable into two sub-stages: (1)
the ordering or self-organizing phase, in which weight
vectors are reordered according to topological space;
and (2) the convergence phase, in which the map is
fine-tuned and declared accurate to provide statistical
quantification of the input space. This is the phase in
which the map is declared to be converged and hence
trained.

One essential requirement in training a SOM is the redun-
dancy of the input data to learn about the underlying structure
of neuron activation patterns. Moreover, sufficient quantity of
data is required for creating distinguishable clusters; with-
standing enough data for classification problem, there exist a
problem of gray area between clusters and creation of infinitely
small clusters where input data has minimal patterns.

Adaptive Resonance Theory: Adaptive Resonance Theory
(ART) is another different category of NN models that is based
on the theory of human cognitive information processing. It
can be explained as an algorithm of incremental clustering
which aims at forming multi-dimensional clusters, automat-
ically discriminating and creating new categories based on
input data. Primarily, ART models are classified as unsu-
pervised learning model; however, there exist ART variants
that employ supervised and hybrid learning approaches as
well. The main setback of most NN models is that they
lose old information (updating/diminishing weights) as new
information arrives, therefore an ideal model should be flexible
enough to accommodate new information without losing the
old one, and this is called the plasticity-stability problem.
ART models provide a solution to this problem by self-
organizing in real time and creating a competitive environment
for neurons, automatically discriminating/creating new clusters
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TABLE III: Applications of Hierarchical Learning/ Deep Learning in Networking Applications

Reference Technique Brief Summary

Internet Traffic Classification

Lotfollahi et al. [22] SAE & CNN SAE and CNN were used for feature extraction from the Internet traffic data for classification and
characterizing purpose.

Wang et al. [23] CNN CNN is used to extract features from the Internet traffic where traffic is considered as an image for
malware detection.

Yousefi et al. [24] Autoencoder Autoencoder is used as a generative model to learn the latent feature representation of network
traffic vector, for cyber attack detection and classification.

Anomaly/Intrusion Detection

Aygun et al. [25] Denoising Autoen-
coder

Stochastically Improved autoencoder and denosing autoencoder are used to learn feature for zero
day anomaly detection in Internet traffic.

Putchala et al. [26] RNN Gated recurrent unit and random forest techniques are used for feature extraction and anomaly
detection in IoT data.

Tuor et al. [27] RNN RNN and DNN are employed to extract feature from raw data which then used for threat assessment
and insider threat detection in data streams.

Network Operations, Optimization and Analytics

Aguiar et al. [28] Random Neural
Network

Random neural network are used for extracting the quality behavior of multimedia application for
improving the QoE of multimedia applications in wireless mesh network.

Piamrat et al. [29] Random Neural
Network

Random neural network are used for learning the mapping between QoE score and technical
parameters so that it can give QoE score in real-time for multimedia applications in IEEE 802.11
wireless networks.

Emerging Networking Application of Unsupervised Learning

Karra et al. [30] DNN&CNN Hierarchical learning is used for feature extraction from spectrogram snap shots of signal for
modulation detection in communication system based on software defined radio.

Zhang et al. [31] CNN Convolutional filters are used for feature extraction from cognitive radio waveforms for automatic
recognition.

Moysen et al. [32] ANN Authors expressed ANN as a recommended system to learn the hierarchy of the output, which is
later used in SON.

Xie et al. [33] RNN RNN variant LSTM is used for learning memory based hierarchy of time interval based IoT sensor
data, from smart cities datasets.

among neurons to accommodate any new information.

ART model resonates around (top-down) observer expecta-
tions and (bottom-up) sensory information while keeping their
difference within the threshold limits of vigilance parameter,
which in result is considered as the member of the expected
class of neurons [45]. Learning of an ART model primarily
consists of a comparison field, recognition field, vigilance
(threshold) parameter and a reset module. The comparison
field takes an input vector, which in result is passed, to best
match in the recognition field; the best match is the current
winning neuron. Each neuron in the recognition field passes a
negative output in proportion to the quality of the match, which
inhibits other outputs therefore exhibiting lateral inhibitions
(competitions). Once the winning neuron is selected after a
competition with the best match to the input vector, the reset
module compares the quality of the match to the vigilance
threshold. If the winning neuron is within the threshold, it is
selected as the output, else the winning neuron is reset and the
process is started again to find the next best match to the input
vector. In case where no neuron is capable to pass the threshold
test, a search procedure begins in which the reset module
disables recognition neurons one at a time to find a correct
match whose weight can be adjusted to accommodate the new
match, therefore ART models are called self-organizing and
can deal with the plasticity/stability dilemma.

3) Unsupervised Deep NN: In recent years unsupervised
deep NN has become the most successful unsupervised struc-
ture due to its application in many benchmarking problems and
applications [46]. Three major types of unsupervised deep NNs
are deep belief NNs, deep autoencoders, and convolutional
NNs.

Deep Belief NN: Deep Belief Neural Network or simply
Deep Belief Networks (DBN) is a probability based generative
graph model that is composed of hierarchical layers of stochas-
tic latent variables having binary valued activations, which are
referred as hidden units or feature detectors. The top layers in
DBNs have undirected, symmetric connections between them
forming associative memory. DBNs provide a breakthrough in
unsupervised learning paradigm. In the learning stage, DBN
learns to reconstruct its input, each layer acting as feature
detectors. DBN can be trained by greedy layer-wise training
starting from the top layer with raw input, subsequent layers
are trained with the input data from the previous visible layer
[36]. Once the network is trained in unsupervised manner
and learned the distribution of the data, it can be fine tuned
using supervised learning methods, or supervised layers can be
concatenated in order to achieve the desired task (for instance,
classification).

Deep Autoencoder: Another famous type of DBN is the deep
autoencoder, which is composed of two symmetric DBNs—
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the first of which is used to encode the input vector, while
the second decodes. By the end of the training of the deep
autoencoder, it tends to reconstruct the input vector at the
output neurons, and therefore the central layer between both
DBNs is the actual compressed feature vector.

Convolutional NN: Convolutional NN (CNN) are feed for-
ward NN in which neurons are adapted to respond to overlap-
ping regions in two-dimensional input fields such as visual
or audio input. It is commonly achieved by local sparse
connections among successive layers and tied shared weights
followed by rectifying and pooling layers which results in
transformation invariant feature extraction. Another advantage
of CNN over simple multilayer NN is that it is compara-
tively easier to train due to sparsely connected layers with
the same number of hidden units. CNNs represent the most
significant type of architecture for computer vision as they
solve two challenges with the conventional NNs: 1) scalable
and computationally tractable algorithms are needed for pro-
cessing high-dimensional images; and 2) algorithms should be
transformation invariant since objects in an image can occur
at an arbitrary position. However, most CNNs are composed
of supervised feature detectors in the lower and middle hidden
layers. In order to extract features in an unsupervised manner,
a hybrid of CNN and DBN, called Convolutional Deep Belief
Network (CDBN), is proposed in [47]. Making probabilistic
max-pooling1 to cover larger input area and convolution as
an inference algorithm makes this model scalable with higher
dimensional input. Learning is processed in an unsupervised
manner as proposed in [37], i.e., greedy layer-wise (lower to
higher) training with unlabeled data.

CDBN is a promising scalable generative model for learning
translation invariant hierarchical representation from any high-
dimensional unlabeled data in an unsupervised manner taking
advantage of both worlds, i.e., DBN and CNN. CNN, being
widely employed for computer vision applications, can be
employed in computer networks for optimization of Quality of
Experience (QoE) and Quality of Service (QoS) of multimedia
content delivery over networks, which is an open research
problem for next generation computer networks [48].

4) Unsupervised Recurrent NN: Recurrent NN (RNN) is
the most complex type of NN, and hence the nearest match
to an actual human brain that processes sequential inputs.
It can learn temporal behaviors of a given training data.
RNN employs an internal memory per neuron to process such
sequential inputs in order to exhibit the effect of previous event
on the next. Compared to feed forward NNs, RNN is a stateful
network. It may contain computational cycles among states,
and uses time as the parameter in the transition function from
one unit to another. Being complex and recently developed, it
is an open research problem to create domain-specific RNN
models and train them with a sequential data. Specifically,
there are two perspectives of RNN to be discussed in the
scope of this survey, namely, the depth of the architecture
and the training of the network. The depth, in the case of a

1Max-pooling is an algorithm of selecting the most responsive receptive
field of a given interest region.

simple artificial NN, is the presence of hierarchical nonlinear
intermediate layers between the input and output signals. In
the case of a RNN, there are different hypotheses explaining
the concept of depth. One hypothesis suggests that RNNs
are inherently deep in nature when expanded with respect to
sequential input; there are a series of nonlinear computations
between the input at time t(i) and the output at time t(i+ k).

However, at an individual discrete time step, certain tran-
sitions are neither deep nor nonlinear. There exist input-
to-hidden, hidden-to-hidden, and hidden-to-output transitions,
which are shallow in the sense that there are no intermediate
nonlinear layers at discrete time step. In this regard, different
deep architectures are proposed in [49] that introduce interme-
diate nonlinear transitional layers in between the input, hidden
and output layers. Another novel approach is also proposed by
stacking hidden units to create hierarchical representation of
hidden units, which mimic the deep nature of standard deep
NNs.

Due to the inherent complex nature of RNN, to the best
of our knowledge, there is no widely adopted approach for
training RNNs and many novel methods (both supervised
and unsupervised) are introduced to train RNNs. Considering
unsupervised learning of RNN in the scope of this paper,
Klapper-Rybicka et al. [50] employ Long Short-term Memory
(LSTM) RNN to be trained in an unsupervised manner using
unsupervised learning algorithms, namely Binary Information
Gain Optimization and Non-Parametric Entropy Optimization,
in order to make a network to discriminate between a set
of temporal sequences and cluster them into groups. Results
have shown remarkable ability of RNNs for learning temporal
sequences and clustering them based on a variety of features.
Two major types of unsupervised recurrent NN are Hopfield
NN and Boltzmann machine.

Hopfield NN: Hopfield NN is a cyclic recurrent NN where
each node is connected to other. Hopfield NN provides an
abstraction of circular shift register memory with nonlinear
activation functions to form a global energy function with
guaranteed convergence to local minima. Hopfield NNs are
used for finding clusters in the data without a supervisor.

Boltzmann Machine: Boltzmann machine is a stochastic
symmetric recurrent NN that is used for search and learn-
ing problems. Due to binary vector based simple learning
algorithm of Boltzmann machine, very interesting features
representing the complex unstructured data can be learned
[51]. Since Boltzmann machine uses multiple hidden layers
as feature detectors, the learning algorithm becomes very
slow. To avoid the slow learning and to achieve faster feature
detection instead of Boltzmann machine, a faster version,
namely restricted Boltzmann machine (RBM), is used for
practical problems [52]. Restricted Boltzmann machine learns
a probability distribution over its input data. It is faster than a
Boltzmann machine because it only uses one hidden layer as
feature detector layer. RBM is used for dimensionality reduc-
tion, clustering and feature learning in computer networks.

5) Significant Applications of Hierarchical Learning in Net-
works: ANNs/DNNs are the most researched topic when creat-
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Fig. 5: Clustering process

ing intelligent systems in computer vision and natural language
processing whereas their application in computer networks
are very limited, they are employed in different networking
applications such as classification of traffic, anomaly/intrusion
detection, detecting Distributed Denial of Service (DDoS)
attacks, and resource management in cognitive radios [53]. The
motivation of using DNN for learning and predicting in net-
works is the unsupervised training that detects hidden patterns
in ample amount of data that is near to impossible for a human
to handcraft features catering for all scenarios. Moreover, many
new research shows that a single model is not enough for
the need of some applications, so developing a hybrid NN
architecture having pros and cons of different models creates
a new efficient NN which provides even better results. Such
an approach is used in [54], in which a hybrid model of ART
and RNN is employed to learn and predict traffic volume in a
computer network in real time. Real-time prediction is essential
to adaptive flow control, which is achieved by using hybrid
techniques so that ART can learn new input patterns without
re-training the entire network and can predict accurately in the
time series of RNN. Furthermore, DNNs are also being used
in resource allocation and QoE/QoS optimizations. Using NN
for optimization, efficient resource allocation without affecting
the user experience can be crucial in the time when resources
are scarce. Authors of [55], [56] propose a simple DBN for
optimizing multimedia content delivery over wireless networks
by keeping QoE optimal for end users. Table III also provides
a tabulated description of hierarchical learning in networking
applications. However, these are just a few notable examples
of deep learning and neural networks in networks, refer to
Section III for more applications and detailed discussion on
deep learning and neural networks in computer networks.

B. Data Clustering

Clustering is an unsupervised learning task that aims to
find hidden patterns in unlabeled input data in the form of
clusters [57]. Simply put, it encompasses arrangement of data
in meaningful natural groupings on the basis of the similarity
between different features (as illustrated in Figure 5) to learn
about its structure. Clustering involves the organization of data
in such a way that there is high intra-cluster and low inter-
cluster similarity. The resulting structured data is termed as
data-concept [58]. Clustering is used in numerous applications

from the fields of ML, data mining, network analysis, pattern
recognition and computer vision. The various techniques used
for data clustering are described in more detail later in Section
II-B. In networking, clustering techniques are widely deployed
for applications such as traffic analysis and anomaly detection
in all kinds of networks (e.g., wireless sensor networks and
mobile adhoc networks), with anomaly detection [59].

Clustering improves performance in various applications.
McGregor et al. [60] propose an efficient packet tracing ap-
proach using the Expectation-Maximization (EM) probabilistic
clustering algorithm, which groups flows (packets) into a small
number of clusters, where the goal is to analyze network traffic
using a set of representative clusters.

A brief overview of different types of clustering methods
and their relationships can be seen in Figure 6. Clustering can
be divided into three main types [61], namely hierarchical
clustering, Bayesian clustering, and partitional clustering.
Hierarchical clustering creates a hierarchical decomposition
of data, whereas Bayesian clustering forms a probabilistic
model of the data that decides the fate of a new test point
probabilistically. In contrast, partitional clustering constructs
multiple partitions and evaluates them on the basis of certain
criterion or characteristic such as the Euclidean distance.

Before delving into the general sub-types of clustering,
there are two unique clustering techniques, which need to
be discussed, namely density-based clustering and grid-based
clustering. In some cases, density-based clustering is classified
as a partitional clustering technique; however, we have kept it
separate considering its applications in networking. Density-
based models target the most densely populated area of a
data space, and separates it from areas having low densities,
thus forming clusters [62]. Chen and Tu [63] use density-
based clustering to cluster data stream in real time, which
is important in many applications (e.g., intrusion detection in
networks). Another technique is grid-based clustering, which
divides the data space into cells to form a grid-like structure;
subsequently, all clustering actions are performed on this grid
[64]. Leung and Leckie [64] also present a novel approach
that uses customized grid-based clustering algorithm to detect
anomalies in networks.

We move on next to describe three major types of data
clustering approaches as per the taxonomy shown in Figure
6.
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Fig. 6: Clustering Taxonomy

1) Hierarchical Clustering: Hierarchical clustering is a
well-known strategy in data mining and statistical analysis
in which data is clustered into a hierarchy of clusters us-
ing an agglomerative (bottom up) or a divisive (top down)
approach. Almost all hierarchical clustering algorithms are
unsupervised and deterministic. The primary advantage of
hierarchical clustering over unsupervised K-means and EM
algorithms is that it does not require the number of clusters
to be specified beforehand. However, this advantage comes
at the cost of computational efficiency. Common hierarchical
clustering algorithms have at least quadratic computational
complexity compared to the linear complexity of K-means
and EM algorithms. Hierarchical clustering methods have a
pitfall: these methods fail to accurately classify messy high-
dimensional data as its heuristic may fail due to the structural
imperfections of empirical data. Furthermore, the computa-
tional complexity of the common agglomerative hierarchical
algorithms is NP-hard. SOM, as discussed in Section II-A2,
is a modern approach that can overcome the shortcomings of
hierarchical models [65].

2) Bayesian Clustering: Bayesian clustering is a proba-
bilistic clustering strategy where the posterior distribution
of the data is learned on the basis of a prior probability
distribution. Bayesian clustering is divided into two major
categories, namely parametric and non-parametric [66]. Major
difference between parametric and non-parametric techniques
is the dimensionality of parameter space: if there are finite
dimensions in the parameter space, the underlying technique
is called Bayesian parametric; otherwise, the underlying tech-
nique is called Bayesian non-parametric. A major pitfall with
the Bayesian clustering approach is that the choice of the
wrong prior probability distributions can distort the projection
of the data. Kurt et al. [67] performed Bayesian nonparametric
clustering of network traffic data to determine the network
application type.

3) Partitional Clustering: Partitional clustering corresponds
to a special class of clustering algorithms that decomposes
data into a set of disjoint clusters. Given n observations, the

clustering algorithm partitions a data into k < n clusters
[68]. Partitional clustering is further classified into K-means
clustering and mixture models.

a) K-Means Clustering: K-means clustering is a simple,
yet widely used approach for classification. It takes a statistical
vector as an input to deduce classification models or classifiers.
K-means clustering tends to distribute m observations into
n clusters where each observation belongs to the nearest
cluster. The membership of an observation to a cluster is
determined using the cluster mean. K-means clustering is used
in numerous applications in the domains of network analysis
and traffic classification. Gaddam et al. [69] use K-means
clustering in conjunction with supervised ID3 decision tree
learning models to detect anomalies in a network. ID3 decision
tree is an iterative supervised decision tree algorithm based
on the concept learning system. K-means clustering provided
excellent results when used in traffic classification. Yingqiu et
al. [70] show that K-means clustering performs well in traffic
classification with an accuracy of 90%.

K-means clustering is also used in the domain of network
security and intrusion detection. Meng et al. [71] propose
a K-means algorithm for intrusion detection. Experimental
results on a subset of KDD-99 dataset show that detection
rate stays above 96% while the false alarm rate stays below
4%. Results and analysis of experiments on K-means algorithm
have demonstrated a better ability to search clusters globally.

Another variation of K-means is known as K-medoids, in
which rather than taking the mean of the clusters, the most
centrally located data point of a cluster is considered as the
reference point of the corresponding cluster [72]. Few of
the applications of K-medoids in the spectrum of anomaly
detection can be seen here [72] [73].

b) Mixture Models: Mixture models are powerful prob-
abilistic models for univariate and multivariate data. Mixture
models are used to make statistical inferences and deductions
about the properties of the sub-populations given only ob-
servations on the pooled population. They are also used to
statistically model data in the domains of pattern recognition,
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computer vision, ML, etc. Finite mixtures, which are a basic
type of mixture model, naturally model observations that are
produced by a set of alternative random sources. Inferring and
deducing different parameters from these sources based on
their respective observations lead to clustering of the set of
observations. This approach to clustering tackles drawbacks
of heuristic based clustering methods, and hence it is proven
to be an efficient method for node classification in any large-
scale network and has shown to yield efficient results compared
to techniques commonly used. For instance, K-means and
hierarchical agglomerative methods rely on supervised design
decisions, such as the number of clusters or validity of models
[74]. Moreover, combining EM algorithm with mixture models
produces remarkable results in deciphering the structure and
topology of the vertices connected through a multi-dimensional
network [75]. Bahrololum et al. [76] used Gaussian mixture
model (GMM) to outperform signature based anomaly detec-
tion in network traffic data.

4) Significant Applications of Clustering in Networks:
Clustering can be found in mostly all unsupervised learning
problems, and there are diverse applications of clustering in
the domain of computer networks. Two major networking
applications where significant use of clustering can be seen are
intrusion detection and Internet traffic classification. One novel
way to detect anomaly is proposed [77], and this approach
preprocesses the data using Genetic Algorithm (GA) com-
bined with hierarchical clustering approach called Balanced
Iterative Reducing using Clustering Hierarchies (BIRCH) to
provide an efficient classifier based on Support Vector Machine
(SVM). This hierarchical clustering approach stores abstracted
data points instead of the whole dataset, thus giving more
accurate and quick classification compared to all past meth-
ods, producing better results in detecting anomalies. Another
approach [64] discusses the use of grid-based and density-
based clustering for anomaly and intrusion detection using
unsupervised learning. Basically, a scalable parallel framework
for clustering large datasets with high dimensions is proposed
and then improved by inculcating frequency pattern trees. Ta-
ble IV also provides a tabulated description of data clustering
applications in networks. These are just few notable examples
of clustering approaches in networks: refer to Section III for
detailed discussion on some salient clustering applications in
the context of networks.

C. Latent Variable Models
A latent variable model is a statistical model that relates

the manifest variables with a set of latent or hidden variables.
Latent variable model allows us to express relatively complex
distributions in terms of tractable joint distributions over an
expanded variable space [86]. Underlying variables of a pro-
cess are represented in higher dimensional space using a fixed
transformation, and stochastic variations are known as latent
variable models where the distribution in higher dimension
is due to small number of hidden variables acting in a
combination [87]. These models are used for data visualization,
dimensionality reduction, optimization, distribution learning,
blind signal separation and factor analysis. Next we will begin

our discussion on various latent variable models, namely mix-
ture distribution, factor analysis, blind signal separation, non-
negative matrix factorization, Bayesian networks & probabilis-
tic graph models (PGM), hidden Markov model (HMM), and
nonlinear dimensionality reduction techniques (which further
includes generative topographic mapping, multi-dimensional
scaling, principal curves, Isomap, localliy linear embedding,
and t-distributed stochastic neighbor embedding).

1) Mixture Distribution: Mixture distribution is an important
latent variable model that is used for estimating the underly-
ing density function. Mixture distribution provides a general
framework for density estimation by using the simpler para-
metric distributions. Expectation maximization (EM) algorithm
is used for estimating the mixture distribution model [88],
through a maximization of the log likelihood of the mixture
distribution model.

2) Factor Analysis: Another important type of latent vari-
able model is factor analysis, which is a density estimation
model. It has been used quite often in collaborative filtering
and dimensionality reduction. It is different from other latent
variable models in terms of the allowed variance for different
dimensions as most latent variable models for dimensionality
reduction in conventional settings use a fixed variance Gaus-
sian noise model. In factor analysis model, latent variables
have diagonal covariance rather than isotropic covariance.

3) Blind Signal Separation: Blind Signal Separation (BSS),
also referred to as Blind Source Separation, is the identification
and separation of independent source signals from mixed input
signals without or very little information about the mixing
process. Figure 7 depicts the basic BSS process in which
source signals are extracted from a mixture of signals. It
is a fundamental and challenging problem in the domain of
signal processing although the concept is extensively used in
all types of multi-dimensional data processing. Most common
techniques employed for BSS are principal component analysis
(PCA) and independent component analysis (ICA).

a) Principal Component Analysis (PCA) is a statistical
procedure that utilizes orthogonal transformation on the data to
convert n number of possibly correlated variables into lesser k
number of uncorrelated variables named principal components.
Principal components are arranged in the descending order of
their variability, first one catering for the most variable and the
last one for the least. Being a primary technique for exploratory
data analysis, PCA takes a cloud of data in n dimensions and
rotates it such that maximum variability in the data is visible.
Using this technique, it brings out the strong patterns in the
dataset so that these patterns are more recognizable thereby
making the data easier to explore and visualize.

PCA has primarily been used for dimensionality reduction
in which input data of n dimensions is reduced to k dimensions
without losing critical information in the data. The choice of
the number of principal components is a question of design
decision. Much research has been conducted on selecting the
number of components such as cross-validation approxima-
tions [89]. Optimally, k is chosen such that the ratio of the
average squared projection error to the total variation in the
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TABLE IV: Applications of Data Clustering in Networking Applications

Reference Technique Brief Summary

Internet Traffic Classification

Adda et al. [78] K-means & EM A comparative analysis of Network traffic fault classification is performed between K-means and
EM techniques.

Vluaductu et al. [79] K-means &
Dissimilarity-based
clustering

Semi supervised approach for Internet traffic classification benefits from K-means and dissimilarity-
based clustering as a first step for the Internet traffic classification.

Liu et al. [80] K-means A novel variant of K-means clustering namely recursive time continuity constrained K-Means
clustering, is proposed and used for real-time In-App activity analysis of encrypted traffic streams.
Extracted feature vector of cluster centers are fed to random forest for further classification.

Anomaly/Intrusion Detection

Parwez et al. [81] K-means & Hierar-
chical Clustering

K-means and hierarchical clustering is used to detect anomalies in call detail records of mobile
wireless networks data.

Lorido et al. [82] GMM GMM is used for detecting the anomalies that are affecting resources in cloud data centers.
Frishman et al. [83] K-means K-means clustering is used for clustering the input data traffic for load balancing for network security.

Dimensionality Reduction and Visualization

Kumar et al. [84] Fuzzy Feature Clus-
tering

A new feature clustering based approach for dimensionality reduction of Internet traffic for intrusion
detection is presented.

Wiradinata et al. [85] Fuzzy C-mean clus-
tering & PCA

This works combines data clustering technique combined with PCA is used for dimensionality
reduction and classification of the Internet traffic.

Fig. 7: Blind signal separation (BSS): A mixed signal composed of various input signals mixed by some mixing process is
blindly processed (i.e., with no or minimal information about the mixing process) to show the original signals.

data is less than or equal to 1% by which 99% of variance is
retained in the k principal components. But, depending on the
application domain, different designs can increase/decrease the
ratio while maximizing the required output. Commonly, many
features of a dataset are often highly correlated; hence, PCA
results in retaining 99% of the variance while significantly
reducing the data dimensions.

b) Independent Component Analysis (ICA) is another tech-
nique for BSS that focuses in separating multivariate input data
into additive components with the underlying assumption that
the components are non-Gaussian and statistically independent.
The most common example to understand ICA is the cocktail
party problem in which there are n people talking simulta-
neously in a room and one tries to listen to a single voice.
ICA actually separates source signals from input mixed signal
by either minimizing the statistical dependence or maximizing
the non-Gaussian property among the components in the
input signals by keeping the underlying assumptions valid.
Statistically, ICA can be seen as the extension of PCA, while
PCA tries to maximize the second moment (variance) of data,

hence relying heavily on Gaussian features; on the other hand,
ICA exploits inherently non-Gaussian features of the data and
tries to maximize the fourth moment of linear combination of
inputs to extract non-normal source components in the data
[90].

4) Non-Negative Matrix Factorization: Non-Negative Ma-
trix Factorization (NMF) is a technique to factorize a large
matrix into two or more smaller matrices with no negative
values, that is when multiplied, it reconstructs the approximate
original matrix. NMF is a novel method in decomposing multi-
variate data making it easy and straightforward for exploratory
analysis. By NMF, hidden patterns and intrinsic features within
the data can be identified by decomposing them into smaller
chunks, enhancing the interpretability of data for analysis,
with positivity constraints. However, there exist many classes
of algorithms [91] for NMF having different generalization
properties, for example, two of them are analyzed in [92], one
of which minimizes the least square error and while the other
focuses on the Kullback-Leibler divergence keeping algorithm
convergence intact.
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5) Hidden Markov Model: Hidden Markov Model (HMM)
are stochastic models of great utility, especially in domains
where we wish to analyze temporal or dynamic processes
such as speech recognition, primary users (PU) arrival pattern
in cognitive radio networks (CRNs), etc. HMMs are highly
relevant to CRNs since many environmental parameters in
CRNs are not directly observable. An HMM-based approach
can analytically model a Markovian stochastic process in
which we do not access to the actual states, which are assumed
to be unobserved or hidden; instead, we can observe a state
that is stochastically dependent on the hidden state. It is for
this reason that an HMM is defined to be a doubly stochastic
process: first, the underlying stochastic process is not observ-
able; and second, another stochastic process, dependent on
the underlying stochastic process, that produces a sequence
of observed symbols [93].

6) Bayesian Networks & Probabilistic Graph Models
(PGM): In Bayesian learning we try to find the posterior
probability distributions for all parameter settings, in this setup,
we ensure that we have a posterior probability for every
possible parameter setting. It is computationally expensive
but we can use complicated models with small dataset and
still avoid overfitting. Posterior probabilities are calculated
by dividing the product of sampling distribution and prior
distribution by marginal likelihood; in simple words posterior
probabilities are calculated using Bayes theorem. Basis of re-
inforcement learning was also derived by using Bayes theorem
[94]. Since Bayesian learning is computationally expensive
a new research trend is approximate Bayesian learning [95].
Authors in [96] has given a comprehensive survey of different
approximate Bayesian inference algorithms. With the emer-
gence of Bayesian deep learning framework the deployment
of Bayes learning based solution is increasing rapidly.

Probabilistic graph modeling is a concept associated with
Bayesian learning. A model representing the probabilistic
relationship between random variables through a graph is
known as probabilistic graph model (PGM). Nodes and edges
in the graph represent a random variable and their probabilistic
dependence, respectively. PGM are of two types: directed PGM
and undirected PGM. Bayes networks also fall in the regime
of directed PGM. PGM are used in many important areas such
as computer vision, speech processing and communication
systems. Bayesian learning combined with PGM and latent
variable models forms a probabilistic framework where deep
learning is used as a substrate for making improved learning
architecture for recommender systems, topic modeling, and
control systems [97].

7) Significant Applications of Latent Variable Models in
Networks: In [98], authors have applied latent structure on
email corpus to find interpretable latent structure as well as
evaluating its predictive accuracy on missing data task. A
dynamic latent model for social network is represented in [99].
A characterization of the end-to-end delay using a Weibull
mixture model is discussed in [100]. Mixture models for end
host traffic analysis has been explored in [101]. BSS is a set of
statistical algorithms that are widely used in different applica-
tion domains to perform different tasks such as dimensionality

reduction, correlating and mapping features, etc. Yan et al.
[102] employ PCA for Internet traffic classification in order to
separate different types of flows in a network packet stream.
Similarly, authors of [103] employ PCA for feature learning
and a supervised SVM classifier for classification in order to
detect intrusion in an autonomous network system. Another
approach for detecting anomalies and intrusions proposed in
[104] uses NMF to factorize different flow features and cluster
them accordingly. Furthermore, ICA has been widely used
in telecommunication networks to separate mixed and noisy
source signals for efficient service. For example, [105] extends
a variant of ICA called Efficient Fast ICA (EF-ICA) for
detecting and estimating the symbol signals from the mixed
CDMA signals received from the source endpoint.

In other literature, PCA uses a probabilistic approach to
find the degree of confidence in detecting anomaly in wireless
networks [106]. Furthermore, PCA is also chosen as a method
of clustering and designing Wireless Sensor Networks (WSNs)
with multiple sink nodes [107]. However, these are just a few
notable examples of BSS in networks, refer to Section III for
more applications and detailed discussion on BSS techniques
in the networking domain.

Bayesian learning has been applied for classifying the
Internet traffic, where Internet traffic is classified based on the
posterior probability distributions. Real discretized conditional
probability is used to construct a Bayesian classifier for early
traffic identification in campus network has been proposed in
[108]. Host level intrusion detection using Bayesian networks
is proposed in [109]. Authors in [110] purposed a Bayesian
learning based feature vector selection for anomalies classi-
fication in BGP. Port scan attacks prevention scheme using
Bayesian learning approach is discussed in [111]. Internet
threat detection estimation system is presented in [112]. A
new approach towards outlier detection using Bayesian belief
networks is described in [113]. Application of Bayesian net-
works in MIMO systems has been explored in [114]. Location
estimation using Bayesian network in LAN is discussed in
[115]. Similarly Bayes theory and PGM are both used in
Low Density Parity Check (LDPC) and Turbo codes, which
are the fundamental components of information coding theory.
Table V also provides a tabulated description of latent variable
models applications in networking.

D. Dimensionality Reduction

Representing data in fewer dimensions is another well-
established task of unsupervised learning. Real world data
often have high dimensions—in many datasets, these dimen-
sions can run into thousands, even millions, of potentially
correlated dimensions [125]. However, it is observed that the
intrinsic dimensionality (governing parameters) of the data is
less than the total number of dimensions. In order to find the
essential pattern of the underlying data by extracting intrinsic
dimensions, it is necessary that the real essence is not lost;
e.g., it may be the case that a phenomenon is observable
only in higher-dimensional data and is suppressed in lower
dimensions, these phenomena are said to suffer from the curse
of dimensionality [126]. While dimensionality reduction is
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TABLE V: Applications of Latent Variable Models in Networking Applications

Reference Technique Brief Summary

Internet Traffic Classification

Liu et al. [116] Mixture
Distribution

An improved EM algorithm is proposed which derives a better GMM and used for the Internet
traffic classification.

Shi et al. [117] PCA PCA based feature selection approach is used for the Internet traffic classification. Where PCA is
employed for feature selection and irrelevant feature removal.

Troia et al. [118] NMF NMF based models are applied on the data streams to find the traffic patterns which frequently
occurs in network for identification and classification of tidal traffic patterns in metro area mobile
network traffic.

Anomaly/Intrusion Detection

Nie et al. [119] Bayesian Networks Bayesian networks are employed for anomaly and intrusion detection such as DDoS attacks in cloud
computing networks.

Bang et al. [120] Hidden Semi-
Markov Model

Hidden semi-Markov model is used to detect LTE signalling attack.

Network Operations, Optimization and Analytics

Chen et al. [121] Bayesian Networks Scale-able Bayesian network models are used for data flow monitoring and analysis.
Mokhtar et al. [122] HMM HMM and statistical analytic techniques combined with semantic analysis are used to propose a

network management tool.

Dimensionality Reduction and Visualization

Furno et al. [123] PCA & Factor
Analysis

PCA and factor analysis are used for dimensionality reduction and latent correlation identification
in mobile traffic demand data.

Malli et al. [124] PCA PCA is used for dimensionality reduction and orthogonal coordinates of the social media profiles
in ranking the social media profiles.

sometimes used interchangeably with feature selection [127]
[128], a subtle difference exists between the two [129]. Feature
selection is traditionally performed as a supervised task with a
domain expert helping in handcrafting a set of critical features
of the data. Such an approach generally can perform well but
is not scalable and prone to judgment bias. Dimensionality
reduction, on the other hand, is more generally an unsupervised
task, where instead of choosing a subset of features, it creates
new features (dimensions) as a function of all features. Said
differently, feature selection considers supervised data labels,
while dimensionality reduction focuses on the data points and
their distributions in N-dimensional space.

There exist different techniques for reducing data dimen-
sions [130] including projection of higher dimensional points
onto lower dimensions, independent representation, and sparse
representation, which should be capable of reconstructing the
approximate data. Dimensionality reduction is useful for data
modeling, compression, and visualization. By creating repre-
sentative functional dimensions of the data and eliminating
redundant ones, it becomes easier to visualize and form a
learning model. Independent representation tries to disconnect
the source of variation underlying the data distribution such
that the dimensions of the representation are statistically in-
dependent [21]. Sparse representation technique represents the
data vectors in linear combinations of small basis vectors.

It is worth noting here that many of the latent variable
models (e.g., PCA, ICA, factor analysis) also function as tech-
niques for dimensionality reduction. In addition to techniques
such as PCA, ICA—which infer the latent inherent structure of
the data through a linear projection of the data—a number of
nonlinear dimensionality reduction techniques have also been

developed and will be focused upon in this section to avoid
repetition of linear dimensionality reduction techniques that
have already been covered as part of the previous subsection.
Linear dimensionality reduction techniques are useful in many
settings but these methods may miss important nonlinear
structure in the data due to their subspace assumption, which
posits that the high-dimensional data points lie on a linear
subspace (for example, on a 2-D or 3D plane). Such an
assumption fails in high dimensions when data points are
random but highly correlated with neighbors. In such environ-
ments nonlinear dimensionality reductions through manifold
learning techniques—which can be construed as an attempt
to generalize linear frameworks like PCA so that nonlinear
structure in data can also be recognized—become desirable.
Even though some supervised variants also exist, manifold
learning is mostly performed in an unsupervised fashion using
the nonlinear manifold substructure learned from the high-
dimensional structure of the data from the data itself without
the use of any predetermined classifier or labeled data. Some
nonlinear dimensionality reduction (manifold learning) tech-
niques are described below:

1) Isomap: Isomap is a nonlinear dimensionality reduction
technique that finds the underlying low dimensional geometric
information about the dataset. Algorithmic features of PCA
and MDS are combined to learn the low dimensional nonlinear
manifold structure in the data [131]. Isomap uses geodesic
distance along the shortest path to calculate the low dimension
representation shortest path, which can be computed using
Dijkstra’s algorithm.

2) Generative Topographic Model: Generative topographic
mapping (GTM) represents the nonlinear latent variable map-
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ping from continuous low dimensional distributions embedded
in high dimensional spaces [132]. Data space in GTM is rep-
resented as reference vectors and these vectors are a projection
of latent points in data space. It is a probabilistic variant of
SOM and works by calculating the Euclidean distance between
data points. GTM optimizes the log likelihood function, and
the resulting probability defines the density in data space.

3) Locally Linear Embedding: Locally linear embedding
(LLE) [125] is an unsupervised nonlinear dimensionality re-
duction algorithm. LLE represents the data in lower dimen-
sions yet preserving the higher dimensional embedding. LLE
depicts data in single global coordinate of lower dimensional
mapping of input data. LLE is used to visualize multi-
dimensional dimensional manifolds and feature extraction.

4) Principal Curves: Principal curves is a nonlinear dataset
summarizing technique where non-parametric curves passes
through the middle of multi-dimensional dataset providing the
summary of the dataset [133]. These smooth curves minimize
the average squared orthogonal distance between data points,
this process also resembles to the maximum likelihood for
nonlinear regression in the presence of Gaussian noise [134].

5) Nonlinear Multi-dimensional Scaling: Nonlinear multi-
dimensional scaling (NMDS) [135] is a nonlinear latent vari-
able representation scheme. It works as an alternative scheme
for factor analysis. In factor analysis, a multivariate normal
distribution is assumed and similarities between different ob-
jects are expressed as a correlation matrix. Whereas NMDS
does not impose such a condition, and it is designed to reach
the optimal low dimensional configuration where similarities
and dissimilarities among matrices can be observed. NMDS is
also used in data visualization and mining tools for depicting
the multi-dimensional data in 3 dimensions based on the
similarities in the distance matrix.

6) t-Distributed Stochastic Neighbor Embedding: t-
distributed stochastic neighbor embedding (t-SNE) is another
nonlinear dimensionality reduction scheme. It is used to
represent high dimensional data in 2 or 3 dimensions. t-SNE
constructs a probability distribution in high dimensional space
and constructs a similar distribution in lower dimensions and
minimizes the KullbackLeibler (KL) divergence between two
distributions (which is a useful way to measure the difference
between two probability distributions) [136].

Table VI also provides a tabulated description of dimension-
ality reduction applications in networking. The applications of
nonlinear dimensionality reduction methods are later described
in detail in Section III-D.

E. Outlier Detection

Outlier detection is an important application of unsupervised
learning. A sample point that is distant from other samples
is called an outlier. An outlier may occur due to noise,
measurement error, heavy tail distributions and mixture of two
distributions. There are two popular underlying techniques for
unsupervised outlier detection upon which many algorithms
are designed, namely nearest neighbor based technique and
clustering based method.

1) Nearest Neighbor Based Outlier Detection: Nearest
neighbor method works on estimating the Euclidean distances
or average distance of every sample from all other samples
in the dataset. There are many algorithms based on nearest
neighbor based techniques, with the most famous extension of
nearest neighbor being k-nearest neighbor technique in which
only k nearest neighbors participate in the outlier detection
[146]. Local outlier factor is another outlier detection algo-
rithm, which works as an extension of the k-nearest neighbor
algorithm. Connectivity based outlier factors [147], influenced
outlierness [148], and local outlier probability models [149] are
few famous examples of the nearest neighbor based techniques.

2) Cluster Based Outlier Detection: Clustering based meth-
ods use the conventional K-means clustering technique to
find the dense locations in the data and then perform den-
sity estimation on those clusters. After density estimation, a
heuristic is used to classify the formed cluster according to
the cluster size. Anomaly score is computed by calculating the
distance between every point and its cluster head. Local density
cluster based outlier factor [150], clustering based multivariate
Gaussian outlier score [151] [152] and histogram based outlier
score [153] are the famous cluster based outlier detection
models in literature. SVM and PCA are also suggested for
outlier detection in literature.

3) Significant Applications of Outlier Detection in Networks:
Outlier detection algorithms are used in many different appli-
cations such as intrusion detection, fraud detection, data leak-
age prevention, surveillance, energy consumption anomalies,
forensic analysis, critical state detection in designs, electrocar-
diogram and computed tomography scan for tumor detection.
Unsupervised anomaly detection is performed by estimating
the distances and densities of the provided non-annotated data
[154]. More applications of outlier detection schemes will be
discussed in Section III

F. Reinforcement Learning
Unsupervised learning can also be applied in the context

of optimization and decision-making. Reinforcement Learning
(RL) is an ML technique that attempts to learn about the opti-
mal action with respect to the dynamic operating environment
[155]. Specifically, a decision maker (or an agent) observes
state and reward from the operating environment and takes the
best-known action, which leads to the optimal action as time
goes by. Due to the dynamicity of the operating environment,
the optimal action for the operating environment is expected
to change; hence the need to learn about the optimal action
from time to time. The state represents the decision-making
factors, and the reward represents the positive or negative
effects of the selected action on the network performance. For
each state-action pair, an agent keeps track of its Q-value,
which accumulates the rewards for the action taken under the
state, as time goes by. The agent selects an optimal action,
which has the highest Q-value, in order to optimize the network
performance. RL techniques can be broadly categorized as
being either model-free or model-based [156]. We use the term
model to refer to an abstraction used by the agent to predict
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TABLE VI: Applications of Dimensionality Reduction in Networking Applications

Reference Technique Brief Summary

Internet Traffic Classification

Cao et al. [137] PCA & SVM Internet traffic classification model is proposed based on PCA and SVM, where PCA is employed
for dimensionality reduction and SVM for classification.

Zhou et al. [138] SOM & Probabilis-
tic NN

Proposed approach probabilistic neural network is used for dimensionality reduction and SOM are
employed for network traffic classification.

Anomaly/Intrusion Detection

Erfani et al. [139] DBN Dimensionality reduction of high dimensional feature set is performed by training a DBN as
nonlinear dimensionality reduction tool for human activity recognition using smart phones.

Nicolau et al. [140] Autoencoders Latent representation learnt by using autoencoder is used for anomaly detection in network traffic,
which is performed by using single Gaussian and full kernel density estimation.

Ikram et al. [141] PCA & SVM A hybrid approach for intrusion detection is described, where PCA is used to perform dimensionality
reduction operation on network data and SVM is used to detect intrusion in that low dimensional
data.

Network Operations, Optimization and Analytics

Moysen et al. [142] PCA PCA is used for low dimensional feature extraction in a mobile network planning tool based on
data analytic.

Ossia et al. [143] PCA & Simple Em-
bedding

PCA combined with simple embedding from deep learning is used for dimensionality reduction
which reduces the communication overhead between client and server.

Dimensionality Reduction and Visualization

Rajendran et al. [144] t-SNE & LSTM LSTM is applied for modulation recognition in wireless data. t-SNE is used to perform dimension-
ality reduction and visualization of the wireless dataset’s FFT response.

Sarshar et al. [145] t-SNE & K-means t-SNE is used for visualizing a high dimensional Wi-Fi mobility data in 3D.

how the environment will respond to its actions—i.e., given
the state and the action performed therein by the agent, the
model predicts stochastically the next state and the expected
reward.

To apply RL, the RL model (embedded in each agent) is
identified by defining the state, action, and reward represen-
tations; this allows an agent access to a range of traditional
and extended RL algorithms, such as the multi-agent approach.
Most applications that apply RL take advantage of the benefits
brought about by its intrinsic characteristics. Notably, RL
takes account of a wide range of dynamic factors (e.g., traffic
characteristics and channel capacity) affecting the network
performance (e.g., throughput) since the reward represents the
effects to the network performance. Also, RL does not need
a model of the operating environment. This means that an
agent can learn without prior knowledge about the operating
environment. Nevertheless, the traditional RL approach comes
with some shortcomings, particularly its inability to achieve
network-wide performance enhancement, large number of
state-action pairs, and low convergence rate to the optimal
action.

In recent times, there has been exciting developments in
combining RL and deep neutral networks to create a more
powerful hybrid approach called “deep reinforcement learning”
that is also applicable to environments in which there are no
handcrafted features available or where state spaces are not
fully observed and low dimensional. Such techniques have
been used to achieve human-level control that comfortably
surpassed the performance of previous algorithms and achieved
a level compared to professional human games tester across
a set of 49 games including Atari 2600 games, using the

same algorithm, architecture, and hyper-parameters [157]. The
generality of such an approach can be used profitably and
applied in the future in a number of networking settings. Next,
we show some popular extended RL models that have been
adopted to address the shortcomings of the traditional RL
approach.

1) Multi-agent Reinforcement Learning: While the tradi-
tional RL approach enables an individual agent to learn about
the optimal action that maximizes the local network perfor-
mance, Multi-agent Reinforcement Learning (MARL) enables
a set of agents to learn about each other’s information, such
as Q-values and rewards, via direct communication or predic-
tion to learn about the optimal joint action that maximizes
the global performance [158]. A notable difference between
MARL and the traditional RL approach is that both own and
neighbors’ information is used to update Q-values in MARL,
while only own information is used in the traditional RL
approach. By using the neighbor agents’ information in the
update of the Q-values, an agent takes account of the actions
taken by its neighbor agents. This is necessary because an
agent’s action can affect and be affected by other agents’
choice of actions in a shared operating environment. As time
goes by, the agents select their respective action that is part
of the joint action, which maximizes the global Q-value (or
network-wide performance) in a collaborative manner. Various
kinds of information can be exchanged including the Q-value
of the current action [159] and the maximum Q-value of the
current state (also called value function) [160].

2) Reinforcement Learning with Function Approximation:
The traditional RL approach keeps track of the Q-values
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of all state-action pairs in a tabular format. The number of
state-action pairs grows exponentially as the number of states
and actions grow, resulting in increased stress on the storage
requirement of the Q-values. RL with function approximation
(RLFA) represents the Q-values of the state-action pairs using
a significantly smaller number of features. Each Q-value is
represented using a feature, which consists of a set of mea-
surable properties of a state-action pair, and a weight vector,
which consists of a set of tunable parameters used to adjust
the appropriateness of the feature [161].

3) Model-based Reinforcement Learning: During normal
operation, an agent must converge to the optimal action;
however, the convergence rate can be unpredictable due to
the dynamicity of the operating environment. While increasing
the learning rate (or the dependence on the current reward
rather than historical rewards) of the RL model can intuitively
increase the convergence rate, this can lead to the fluctuation
of the Q-values if the current reward changes significantly
particularly when the dynamicity of the operating environment
is high. The model-based RL (MRL) approach addresses this
by creating a model of the operating environment, and uses it
to compute and update its Q-values. One way to do this is to
estimate the state transition probability, which is the probability
of a transition from one state to another when an action is
undertaken [160]. Another way to do this is to compute the
probability of the environment operating in a particular state
[162]. The model of the operating environment can also serves
as a learning tool.

4) Q-learning: Q-learning, proposed by Watkins in 1992
[163], is a popular model-free RL approach that allows an
agent to learn how to act optimally with comparatively little
computational requirements. In a Q-learning setting, the agent
directly determines the optimal policy by mapping environ-
mental states to actions without constructing the corresponding
stochastic model of the environment [156]. Q-learning works
by incrementally improving its estimation of the Q-values,
which describe the quality of particular actions at particular
states estimated by learning a Q-function that gives the ex-
pected utility of taking a given action in a given state but
following the optimal policy thereafter.

5) Significant Applications of RL in Networks: RL has been
applied in wide ranges of applications to optimize network
operations due to its versatility. Using MARL, agents exchange
information (e.g., actions, Q-values, value functions) among
themselves to perform target tracking where agents schedule
and allocate target tracking tasks among themselves to keep
track of moving objects in a WSN [159]. Using RLFA, an
agent reduces the large number of state-action pairs, which
represent the probability of a channel being available and
selected for transmission in channel sensing [161]. Using
MRL, an agent can compute the state transition probability,
which is used to select a next-hop node for packet transmission
in routing [164]. Another application of MRL is to compute
the probability of the operating environment operating in a
particular state, which is then used to select a channel to sense
and access in order to reduce interference. RL has also been

proposed as an aid for enhancing security schemes for CRNs
through the detection of malicious nodes and their attacks
they launch [165]. Q-learning is another popular RL technique
that has been applied in the networking context—e.g., we
highlight one example application of Q-learning in the context
of Heterogeneous Mobile Networks (HetNets) [166] in which
the authors proposed a fuzzy Q-learning based user-centric cell
association scheme for ensuring appropriate QoS provisioning
for users with results improving the state of the art.

G. Lessons Learnt
Key lessons drawn from the review of unsupervised learning

techniques are summarized below.
1) Hierarchical learning techniques are the most popular

schemes in literature for feature detection and extraction.
2) Learning the joint distribution of a complex distribution

over an expanded variable space is a difficult task. Latent
variable models have been the recommended and well-
established schemes in literature for this problem. These
models are also used for dimensionality reduction and
better representation of data.

3) Visualization of unlabeled multidimensional data is an-
other unsupervised task. In this research we have explored
the dimensionality reduction as a underlying scheme for
developing a better multidimensional data visualization
tools.

4) Reinforcement learning schemes for learning, decision-
making, and network performance evaluation have also
been surveyed and its potential application in network
management and optimization is considered a potential
research area.

III. APPLICATIONS OF UNSUPERVISED LEARNING IN
NETWORKING

In this section, we will introduce some significant applica-
tions of the unsupervised learning techniques that have been
discussed in Section II in the context of computer networks.
We highlight the broad spectrum of applications in networking
and emphasize the importance of ML-based techniques, rather
than classical hard-coded statistical methods, for achieving
more efficiency, adaptability, and performance enhancement.

A. Internet Traffic Classification
Internet traffic classification is of prime importance in

networking as it provides a way to understand, develop and
measure the Internet. Internet traffic classification is an im-
portant component for service providers to understand the
characteristics of the service such as quality of service, quality
of experience, user behavior, network security and many other
key factors related to overall structure of the network [173].
In this subsection, we will survey the unsupervised learning
applications in network traffic classification.

As networks evolve at a rapid pace, the malicious intruders
are also evolving their strategies. Numerous novel hacking and
intrusion techniques are being regularly introduced causing
severe financial jolts to companies and headaches to their
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TABLE VII: Internet Traffic Classification with respect to Unsupervised Learning Techniques and Tasks

Reference Technique Task Brief Summary

Zhang et al. [167] Non Parametric NN Hierarchical Representa-
tions/ Deep Learning

Applied statistical correlation with non parametric NN to produce efficient and
adaptive results in traffic classification.

McGregor et al. [60] EM-based clustering Data clustering Applied EM probabilistic algorithm to cluster flows based on various attributes
such as byte counts, inter-arrival statistics, etc. in flow classification.

Erman et al. [168] EM-based clustering Data clustering Applied EM-based clustering approach to yield 9% better results compared to
supervised Naı̈ve Bayes based approach in traffic classification.

Yingqiu et al. [70] K-Means Data clustering Applied K-means clustering algorithm to produce an overall 90% accuracy in
Internet traffic classification in a completely unsupervised manner.

Kornycky et al. [169] GMM Data Clustering GMM with universal background model is used for encrypted WLAN traffic
classification.

Liu et al. [170] GMM Data Clustering GMM and Kerner’s traffic theory based ML model is used to evaluate real-time
Internet traffic performance.

Erman et al. [171] K-Means, DBSCAN Data clustering Applied cluster analysis to effectively identify similar traffic using transport
layer statistics to overcome the problem of dynamic port allocation in port based
classification.

Guyen et al. [172] Naı̈ve Bayes clustering Data clustering Applied Naı̈ve Bayes clustering algorithm in traffic classification.
Yan et al. [102] PCA Blind Signal Separation Applied PCA and fast correlation based filter algorithm that yields more accurate

and stable experimental results in Internet traffic flow classification.

administrators. Tackling these unknown intrusions through
accurate traffic classification on the network edge therefore
becomes a critical challenge and an important component of
network security domain. Initially, when networks used to
be small, simple port based classification technique that tried
to identify the associated application with the corresponding
packet based on its port number was used. However, this
approach is now obsolete because recent malicious softwares
use dynamic port-negotiation mechanism to bypass firewalls
and security applications. A number of contrasting Internet
traffic classification techniques have been proposed since then,
and some important ones are discussed next.

Most of the modern traffic classification methods use differ-
ent ML and clustering techniques to produce accurate clusters
of packets depending on their applications, thus producing effi-
cient packet classification [4]. The main purpose of classifying
network’s traffic is to recognize the destination application of
the corresponding packet and to control the flow of the traffic
when needed such as prioritizing one flow over others. Another
important aspect of traffic classification is to detect intrusions
and malicious attacks or screen out forbidden applications
(packets).

First step in classifying Internet traffic is selecting accu-
rate features, which is an extremely important, yet complex
task. Accurate feature selection helps ML algorithms to avoid
problems like class imbalance, low efficiency and low classi-
fication rate. There are three major feature selection methods
in Internet traffic for classification: namely, the filter method,
the wrapper based method, and the embedded method. These
methods are based on different ML and genetic learning
algorithms [174]. Two major concerns in feature selection for
Internet traffic classification are the large size of data and
imbalanced traffic classes. To deal with these issues and to
ensure accurate feature selection, a min-max ensemble feature
selection scheme is proposed in [175]. A new information
theoretic approach for feature selection for skewed datasets
is described in [176]. This algorithm has resolved the multi-
class imbalance issue but it does not resolve the issues of

feature selection. In 2017, an unsupervised autoencoder based
scheme has outperformed previous feature learning schemes,
autoencoders were used as a generative model and were trained
in a way that the bottleneck layer learnt a latent representation
of the feature set; these features were then used for malware
classification and anomaly detection to produce results that
improved the state of the art in feature selection [24].

Much work has been done on classifying traffic based on
supervised ML techniques. Initially in 2004, the concept of
clustering bi-directional flows of packets came out with the use
of EM probabilistic clustering algorithm, which clusters the
flows depending on various attributes such as packet size statis-
tics, inter-arrival statistics, byte counts, and connection dura-
tion, etc. [60]. Furthermore, clustering is combined with the
above model [172]; this strategy uses Naı̈ve Bayes clustering to
classify traffic in an automated fashion. Recently, unsupervised
ML techniques have also been introduced in the domain of
network security for classifying traffic. Major developments
include a hybrid model to classify traffic in more unsupervised
manner [177], which uses both labeled and unlabeled data
to train the classifier making it more durable and efficient.
However, later on, completely unsupervised methods for traffic
classification have been proposed, and still much work is going
on in this area. Initially, completely unsupervised approach for
traffic classification was employed using K-means clustering
algorithm combined with log transformation to classify data
into corresponding clusters. Then, [70] highlighted that using
K-means and this method for traffic classification can improve
accuracy by 10% to achieve an overall 90% accuracy.

Another improved and faster approach was proposed in
2006 [178], which examines the size of the first five packets
and determines the application correctly using unsupervised
learning techniques. This approach has shown to produce
better results than the state-of-the-art traffic classifier, and
also has removed its drawbacks (such as dealing with outliers
or unknown packets, etc.). Another similar automated traffic
classifier and application identifier can be seen in [179], and
they use the auto-class unsupervised Bayesian classifier, which
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automatically learns the inherent natural classes in a dataset.
In 2013, another novel strategy for traffic classification

known as network traffic classification using correlation was
proposed [167], which uses non-parametric NN combined
with statistical measurement of correlation within data to
efficiently classify traffic. The presented approach addressed
the three major drawbacks of supervised and unsupervised
learning classification models: firstly, they are inappropriate
for sparse complex networks as labeling of training data takes
too much computation and time; secondly, many supervised
schemes such as SVM are not robust to training data size; and
lastly, and most importantly, all supervised and unsupervised
algorithms perform poorly if there are few training samples.
Thus, classifying the traffic using correlations appears to be
more efficient and adapting. Oliveira et al. [180] compared four
ANN approaches for computer network traffic, and modeled
the Internet traffic as a time series and used mathematical
methods to predict the time series. A greedy layer-wise train-
ing for unsupervised stacked autoencoder produced excellent
classification results, but at the cost of significant system
complexity. Genetic algorithm combined with constraint clus-
tering process are used for Internet traffic data characterization
[181]. In another work, a two-phased ML approach for Internet
traffic classification using K-means and C5.0 decision tree is
presented in [182] where the average accuracy of classification
was 92.37%.

A new approach for Internet traffic classification has been in-
troduced in 2017 by Vlăduţu et al. [79] in which unidirectional
and bidirectional information is extracted from the collected
traffic, and K-means clustering is performed on the basis of sta-
tistical properties of the extracted flows. A supervised classifier
then classifies these clusters. Another unsupervised learning
based algorithm for Internet traffic detection is described in
[183] where a restricted Boltzmann machine based SVM is
proposed for traffic detection, this paper models the detection
as classification problem. Results were compared with ANN
and decision tree algorithms on the basis of precision and
F1 score. Application of deep learning algorithms in Internet
traffic classification has been discussed in [10], with this work
also outlining the open research challenges in applying deep
learning for Internet traffic classification. These problems are
related to training the models for big data since Internet
data for deep learning falls in big data regime, optimization
issues of the designed models given the uncertainty in Internet
traffic and scalability of deep learning architectures in Internet
traffic classification. To cope with the challenges of devel-
oping a flexible high-performance platform that can capture
data from a high speed network operating at more than 60
Gbps, Gonzalez et al. [184] have introduced a platform for
high speed packet to tuple sequence conversion which can
significantly advance the state of the art in real-time network
traffic classification. In another work, Aminanto and Kim [185]
used stacked autoencoders for Internet traffic classification and
produced more than 90% accurate results for the two classes
in KDD 99 dataset.

Deep belief network combined with Gaussian model em-
ployed for Internet traffic prediction in wireless mesh backbone
network has been shown to outperform the previous maximum

likelihood estimation technique for traffic prediction [186].
Given the uncertainty of WLAN channel traffic classification is
very tricky, [169] proposed a new variant of Gaussian mixture
model by incorporating universal background model and used
it for the first time to classify the WLAN traffic. A brief
overview of the different Internet traffic classification systems,
classified on the basis of unsupervised technique and tasks
discussed earlier, is presented in the Table VII.

B. Anomaly/Intrusion Detection
The increasing use of networks in every domain has in-

creased the risk of network intrusions, which makes user pri-
vacy and the security of critical data vulnerable to attacks. Ac-
cording to the annual computer crime and security survey 2005
[203], conducted by the combined teams of CSI (Computer
Security Institute) and FBI (Federal Bureau of Investigation),
total financial losses faced by companies due to the security
attacks and the network intrusions were estimated as US $130
million. Moreover, according to Symantec Internet Security
Threat Report [204], approximately 5000 new vulnerabilities
were identified in the year 2015. In addition, more than 400
million new variants of malware and 9 major breaches were
detected exposing 10 million identities. Therefore, insecurity
in today’s networking environment has given rise to the ever-
evolving domain of network security and intrusion/anomaly
detection [204].

In general, Intrusion Detection Systems (IDS) recognize or
identify any act of security breach within a computer or a
network; specifically, all requests which could compromise the
confidentiality and availability of data or resources of a system
or a particular network. Generally, intrusion detection systems
can be categorized into three types: (1) signature-based intru-
sion detection systems; (2) anomaly detection systems; and (3)
compound/hybrid detection systems, which include selective
attributes of both preceding systems.

Signature detection, also known as misuse detection, is a
technique that was initially used for tracing and identifying
misuses of user’s important data, computer resources, and
intrusions in the network based on the previously collected
or stored signatures of intrusion attempts. The most important
benefit of a signature-based system is that a computer admin-
istrator can exactly identify the type of attack a computer is
currently experiencing based on the sequence of the packets
defined by stored signatures. However, it is nearly impossible
to maintain the signature database of all evolving possible
attacks, thus this pitfall of the signature-based technique has
given rise to anomaly detection systems.

Anomaly Detection System (ADS) is a modern intrusion and
anomaly detection system. Initially, it creates a baseline image
of a system profile, its network and user program activity.
Then, on the basis of this baseline image, ADS classifies
any activity deviating from this behavior as an intrusion.
Few benefits of this technique are: firstly, they are capable
of detecting insider attacks such as using system resources
through another user profile; secondly, each ADS is based on
a customized user profile which makes it very difficult for
attackers to ascertain which types of attacks would not set an
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TABLE VIII: Anomaly & Network Intrusion Detection Systems (A-NIDS) with respect to Unsupervised Learning Techniques

Reference Technique Brief Summary

Hierarchical Representations/ Deep Learning

Zhang et al. [187] Hierarchical NN Applied radial basis function in a two layered hierarchical IDS to detect intruders in real time.
Rhodes et al. [188] SOM Advocated unsupervised NNs such as SOM to provide a powerful supplement to existing IDSs.
Kayacik et al. [189] SOM Overviewed the capabilities of SOM and its application in IDS.
Zanero & Stefano [190] SOM Analyzed TCP data traffic patterns using SOM and detected anomalies based on abnormal behavior.
Lichodzijewski et al. [191] SOM Applied SOM to host based intrusion detection.
Lichodzijewski et al. [192] SOM Applied a hierarchical NN to detect intruders, emphasizing on the development of relational hierarchies and

time representation.
Amini et al. [193] SOM & ART Applied SOM combined with ART networks in real-time IDS.
Depren et al. [194] SOM & J.48 Decision Tree Applied SOM combined with J.48 decision tree algorithm in IDS to detect anomaly and misuses intelligently.
Golovko et al. [195] Multi-Layer Perceptrons (MLP) Presented a two-tier IDS architecture. PCA in the first tier reduces input dimensions, while MLP in the second

tier detects and recognizes attacks with low detection time and high accuracy.

Data Clustering

Leung et al. [64] Density & Grid Based Clustering Applied an unsupervised clustering strategy in density and grid based clustering algorithms to detect anomalies.
Chimphlee et al. [77] Fuzzy Rough Clustering Applied the idea of Fuzzy set theory and fuzzy rough C-means clustering algorithms in IDS to detect abnormal

behaviors in networks, producing excellent results.
Jianliang et al. [71] K-Means Applied K-means clustering in IDS to detect intrusions and anomalies.
Muniyandi et al. [196] K-Means with C4.5 Decision

Trees
Applied K-means clustering combined with C4.5 decision tree models to detect intrusive and anomalous
behavior in networks and systems.

Casas et al. [197] Sub-space Clustering Implemented a unique unsupervised outliers and anomaly detection approach using Sub-Space Clustering
and Multiple Evidence Accumulation techniques to exactly identify different kinds of network intrusions and
attacks such as DoS/DDoS, probing attacks, buffer overflows, etc.

Zanero et al. [198] Two-Tier Clustering Applied a novel bi-layered clustering technique, in which the first layer constitutes of clustering of packets
and the second layer is responsible for anomaly detection and time correlation, to detect intrusions.

Gaddam et al. [69] K-Means & ID3 Decision Trees Applied K-means clustering combined with ID3 decision tree models to detect intrusive and anomalous
behavior in systems.

Zhong et al. [199] Centroid Based Clustering Presented a survey on intrusion detection techniques based on centroid clustering as well as other popular
unsupervised approaches.

Greggio et al. [200] Finite GMM An unsupervised greedy learning of finite GMM is used for anomaly detection in intrusion detection system.

Blind Signal Separation

Xu et al. [103] PCA Applied PCA and SVM in IDS.
Wang et al. [201] PCA Applied a novel approach to translate each network connection into a data vector, and then applied PCA to

reduce its dimensionality and detect anomalies.
Golovko et al. [202] PCA Applied PCA and dimensionality reduction techniques in attack recognition and anomaly detection.
Guan et al. [104] NMF Applied NMF algorithms to capture intrusion and network anomalies.

alarm; and lastly, it detects unknown behavior in a computer
system rather than detecting intrusions, thus it is capable of
detecting any unknown sophisticated attack which is different
from the users’ usual behavior. However, these benefits come
with a trade-off, in which the process of training a system on
a user’s ‘normal’ profile and maintaining those profiles is a
time consuming and challenging task. If an inappropriate user
profile is created, it can result in poor performance. Since ADS
detects any behavior that does not align with a user’s normal
profile, its false alarm rate can be high. Lastly, another pitfall
of ADS is that a malicious user can train ADS gradually to
accept inappropriate traffic as normal.

As anomaly and intrusion detection has been a popular
research area since the origin of networking and Internet,
numerous supervised as well as unsupervised [205] learning
techniques have been applied to efficiently detect intrusions
and malicious activities. However, latest research focuses on
the application of unsupervised learning techniques in this
area due to the challenge and promise of using big data for
optimizing networks.

Initial work focuses on the application of basic unsupervised
clustering algorithms for detecting intrusions and anomalies. In
2005, an unsupervised approach was proposed based on den-

sity and grid based clustering to accurately classify the high-
dimensional dataset in a set of clusters; those points which
do not fall in any cluster are marked as abnormal [64]. This
approach has produced good results but false positive rate was
very high. In a follow-up work, another improved approach
that used fuzzy rough C-means clustering was introduced [77]
[199]. K-means clustering is also another famous approach
used for detecting anomalies which was later proposed in
2009 [71], which showed great accuracy and outperformed
existing unsupervised methods. However, later in 2012, an im-
proved method which used K-means clustering combined with
C4.5 decision tree algorithm was proposed [196] to produce
more efficient results than prior approaches. [206] combines
cluster centers and nearest neighbors for effective feature
representation which ensures a better intrusion detection, a
limitation with this approach is that it is not able to detect
user to resource and remote to local attacks. Another scheme
using unsupervised learning approach for anomaly detection is
presented in [207]. The presented scheme combines subspace
clustering and correlation analysis to detect anomalies and
provide protection against unknown anomalies; this experiment
used WIDE backbone networks data [208] spanning over six
years and produced better results then previous K-means based
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techniques. Work presented in [209] shows that for different
intrusions schemes, there are a small set of measurements
required to differentiate between normal and anomalous traffic;
the authors used two co-clustering schemes to perform clus-
tering and to determine which measurement subset contributed
the most towards accurate detection.

Another famous approach for increasing detection accuracy
is ensemble learning, work presented in [210] employed many
hybrid incremental ML approach with gradient boosting and
ensemble learning to achieve better detection performance.
Authors in [211] surveyed anomaly detection research from
2009 to 2014 and find out the a unique algorithmic simi-
larity for anomaly detection in Internet traffic: most of the
algorithms studied have following similarities 1) Removal
of redundant information in training phase to ensure better
learning performance 2) Feature selection usually performed
using unsupervised techniques and increases the accuracy of
detection 3) Use ensembles classifiers or hybrid classifiers
rather than baseline algorithms to get better results. Authors
in [212] have developed an artifical immune system based
intrusion detection system they have used density based spatial
clustering of applications with noise to develop an immune
system against the network intrusion detection.

The application of unsupervised intrusion detection in cloud
network is presented in [213] where authors have proposed a
fuzzy clustering ANN to detect the less frequent attacks and
improve the detection stability in cloud networks. Another
application of unsupervised intrusion detection system for
clouds is surveyed in [214], where fuzzy logic based intrusion
detection system using supervised and unsupervised ANN is
proposed for intrusion detection; this approach is used for DOS
and DDoS attacks where the scale of the attack is very large.
Network intrusion anomaly detection (NIDS) based on K-
means clustering are surveyed in [215]; this survey is unique as
it provides distance and similarity measure of the intrusion de-
tection and this perspective has not been studied before 2015.
Unsupervised learning based application of anomaly detection
schemes for wireless personal area networks, wireless sensor
networks, cyber physical systems, and WLANs is surveyed in
[216].

Another paper [217] reviewing anomaly detection has pre-
sented the application of unsupervised SVM and clustering
based applications in network intrusion detection systems.
Unsupervised discretization algorithm is used in Bayesian
network classifier for intrusion detection, which is based on
Bayesian model averaging [218]; the authors show that the
proposed algorithm performs better than the Naı̈ve Bayes clas-
sifier in terms of accuracy on the NSL-KDD intrusion detection
dataset. Border gateway protocol (BGP)—the core Internet
inter-autonomous systems (inter-AS) routing protocol—is also
error prone to intrusions and anomalies. To detect these BGP
anomalies, many supervised and unsupervised ML solutions
(such as hidden Markov models and principal component anal-
ysis) have been proposed in literature [219] for anomaly and
intrusion detection. Another problem for anomaly detection is
low volume attacks, which have become a big challenge for
network traffic anomaly detection. While long range depen-
dencies (LRD) are used to identify these low volume attacks,

LRD usually works on aggregated traffic volume; but since the
volume of traffic is low, the attacks can pass undetected. To
accurately identify low volume abnormalities, Assadhan et al.
[220] proposed the examination of LRD behavior of control
plane and data plane separately to identify low volume attacks.

Other than clustering, another widely used unsupervised
technique for detecting malicious and abnormal behavior in
networks is SOMs. The specialty of SOMs is that they can
automatically organize a variety of inputs and deduce patterns
among themselves, and subsequently determine whether the
new input fits in the deduced pattern or not, thus detecting
abnormal inputs [188] [189]. SOMs have also been used in
host-based intrusion detection systems in which intruders and
abusers are identified at a host system through incoming data
traffic [192], later on a more robust and efficient technique
was proposed to analyze data patterns in TCP traffic [190].
Furthermore, complex NNs have also been applied to solve
the same problem and remarkable results have been produced.
A few examples include the application of ART combined
with SOM [193]. The use of PCA can also be seen in detect-
ing intrusions [201]. NMF has also been used for detecting
intruders and abusers [104], and lastly dimension reduction
techniques have also been applied to eradicate intrusions and
anomalies in the system [202]. For more applications, refer
to Table VIII, which classifies different network anomaly
and intrusion detection systems on the basis of unsupervised
learning techniques discussed earlier.

C. Network Operations, Optimizations and Analytics
Network management comprises of all the operations in-

cluded in initializing, monitoring and managing of a computer
network based on its network functions, which are the primary
requirements of the network operations. The general purpose
of network management and monitoring systems is to ensure
that basic network functions are fulfilled, and if there is any
malfunctioning in the network, it should be reported and
addressed accordingly. Following is a summary of different
network optimization tasks achieved through unsupervised
learning models.

1) QoS/ QoE Optimization: QoS and QoE are measures of
the service performance and end-user experience, respectively.
QoS mainly deals with the performance as seen by the user
being measured quantitatively, while QoE is a qualitative
measure of a subjective metrics experienced by the user.
QoS/QoE for Internet services (especially multimedia content
delivery services) is crucial in order to maximize the user
experience. With the dynamic and bursty nature of Internet
traffic, computer networks should be able to adapt to these
changes without compromising the end-user experiences. As
QoE is quite subjective, it heavily relies on the underlying
QoS which is affected by different network parameters; [236]
and [237] suggested different measurable factors to determine
the overall approximation of QoS such as error rates, bit
rate, throughput, transmission delay, availability, jitter, etc.
Furthermore, these factors are used to correlate QoS with QoE
in the perspective of video streaming where QoE is essential
to end-users.
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TABLE IX: Unsupervised Learning Techniques employed for Network Operations, Optimizations and Analytics

Reference Technique Brief Summary Network Type

Hierarchical Representations/ Deep Learning

Kulakov et al. [221] ART fuzzy Applied ART NNs at clusterheads and sensor nodes to extract regular patterns,
reducing data for lesser communication overhead.

WSN

Akojwar et al. [222] ART Applied ART at each network node for data aggregation. WSN
Li et al. [223] DNN Applied different DNN layers corresponding to WSN layers in order to compress

data.
WSN

Gelenbe et al. [224] RNN Applied RNN to achieve optimal QoS in cognitive packet networks. Cognitive networks
Cordina et al. [225] SOM Applied SOM to cluster nodes into categories based on node location, energy

and concentration; some nodes becomes clusterheads.
WSN

Enami et al. [226] SOM Applied SOM to categorize and select nodes with higher energy levels to become
clusterheads based on node energy levels.

WSN

Dehni et al. [227] SOM Applied SOM followed by K-means to cluster and select clusterheads in WSNs. WSN
Oldewurtel et al. [228] SOM Applied SOMs in clusterheads to find patterns in data. WSN
Barreto et al. [229] DNN Applied a competitive neural algorithm for condition monitoring and fault

detection in 3G cellular networks.
Cellular networks

Moustapha et al. [230] RNN Applied RNN for fault detection. RNN, which is deployed in each sensor node,
takes inputs from neighboring nodes, and generates outputs for comparison with
the generated data; if the difference exceeds a certain threshold, the node is
regarded as anomalous.

WSN

Data Clustering

Hoan et al. [231] Fuzzy C-Means Cluster-
ing

Applied fuzzy C-means clustering technique to select nodes with the highest
residual energy to gather data and send information using an energy-efficient
routing in WSNs.

WSN

Oyman et al. [232] K-Means Clustering Applied K-means clustering to design multiple sink nodes in WSNs. WSN
Zhang et al. [233] K-Means Partitioning Applied K-means clustering to identify compromised nodes and applied

Kullback-Leibler (KL) distance to determine the trustworthiness (reputation) of
each node in a trust-based WSN.

WSN

Blind Signal Separation

Kapoor et al. [234] PCA Applied PCA to resolve the problem of cooperative spectrum sensing in cognitive
radio networks.

Cognitive radio networks

Ristaniemi et al. [235] ICA Applied ICA based CDMA receivers to separate and identify mixed source
signals.

CDMA

Ahmed et al. [106] PCA Applied PCA to evaluate the degree of confidence in detection probability
provided by a WSN. The probabilistic approach is a deviation from the idealistic
assumption of sensing coverage used in a binary detection model.

WSN

Chatzigiannakis et al. [107] PCA Applied PCA for hierarchical anomaly detection in a distributed WSN. WSN

The dynamic nature of Internet dictates network design for
different applications to maximize QoS/QoE, since there is
no predefined adaptive algorithm that can be used to fulfill
all the necessary requirements for prospective application.
Due to this fact, ML approaches are employed in order to
adapt to the real-time network conditions and take measures
to stabilize/maximize the user experience. [238] employed a
hybrid architecture having unsupervised feature learning with
supervised classification for QoE-based video admission con-
trol and resource management. Unsupervised feature learning
in this system is carried out by using a fully connected
NN comprising RBMs, which capture descriptive features of
video that are later classified by using a supervised classifier.
Similarly, [239] presents an algorithm to estimate the Mean
Opinion Score, a metric for measuring QoE, for VoIP services
by using SOM to map quality metrics to features.

Moreover, research has shown that QoE-driven content opti-
mization leads to the optimal utilization of network. Ahammad
et al. [240] showed that 43% of the bit overhead on average can
be reduced per image delivered on the web. This is achieved by
using the quality metric VoQS (Variation of Quality Signature),
which can arbitrarily compare two images in terms of web

delivery performance. By applying this metric for unsupervised
clustering of large image dataset, multiple coherent groups are
formed in device-targeted and content-dependent manner. In
another study [241], deep learning is used to assess the QoE
of 3D images that have yet to show good results compared
with the other deterministic algorithms. The outcome is a
Reduced Reference QoE assessment process for automatic
image assessment, and it has a significant potential to be
extended to work on 3D video assessment.

In [242], a unique technique of the model-based RL ap-
proach is applied to improve bandwidth availability, and hence
throughput performance, of a network. The MRL model is
embedded in a node that creates a model of the operating
environment, and uses it to generate virtual states and rewards
for the virtual actions taken. As the agent does not need to wait
for the real states and rewards from the operating environment,
it can explore various kinds of actions on the virtual operating
environment within a short period of time which helps to
expedite the learning process, and hence the convergence rate
to the optimal action. In [243], a MARL approach is applied in
which nodes exchange Q-values among themselves and select
their respective next-hop nodes with the best possible channel
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conditions while forwarding packets towards the destination.
This helps to improve throughput performance as nodes in
a network ensure that packets are successfully sent to the
destination in a collaborative manner.

2) TCP Optimization: Transmission Control Protocol (TCP)
is the core end-to-end protocol in TCP/IP stack that provides
reliable, ordered and error-free delivery of messages between
two communicating hosts. Due to the fact that TCP provides
reliable and in-order delivery, congestion control is one of
the major concerns of this protocol, which is commonly dealt
with the algorithms defined in RFC 5681. However, classi-
cal congestion control algorithms are sub-optimal in hybrid
wired/wireless networks as they react to packet loss in the same
manner in all network situations. In order to overcome this
shortcoming of classical TCP congestion control algorithms,
an ML-based approach is proposed in [244], which employs a
supervised classifier based on features learned for classifying a
packet loss due to congestion or link errors. Other approaches
to this problem currently employed in literature includes using
RL that uses fuzzy logic based reward evaluator based on game
theory [245]. Another promising approach, named Remy [246],
uses a modified model of Markov decision process based on
three factors: 1) prior knowledge about the network; 2) a traffic
model based on user needs (i.e., throughput and delay); and 3)
an objective function that is to be maximized. By this learning
approach, a customized best-suited congestion control scheme
is produced specifically for that part of the network, adapted
to its unique requirements. However, classifying packet losses
using unsupervised learning methods is still an open research
problem and there is a need of real-time adaptive congestion
control mechanism for multi-modal hybrid networks.

For more applications, refer to Table IX, which classifies
different various network optimization and operation works on
the basis of their network type and the unsupervised learning
technique used.

D. Dimensionality Reduction & Visualization
Network data usually consists of multiple dimensions. To

apply machine learning techniques effectively the number of
variables are needed to be reduced. Dimensionality reduction
schemes have a number of significant potential applications in
networks. In particular, dimensionality reduction can be used
to facilitate network operations (e.g., for anomaly/intrusion de-
tection, reliability analysis, or for fault prediction) and network
management (e.g., through visualization of high-dimensional
networking data). A tabulated summary of various research
works using dimensionality reduction techniques for various
kinds of networking applications is provided in Table X.

Dimensionality reduction techniques have been used to
improve the effectiveness of the anomaly/intrusion detection
system. Niyaz et al. [259] proposed a DDoS detection system
in SDN where dimensionality reduction is used for feature
extraction and reduction in unsupervised manner using stacked
sparse autoencoders. Cordero et al. [260] proposed a flow
based anomaly intrusion detection using replicator neural net-
work. Proposed network is based on an encoder and decoder
where the hidden layer between encoder and decoder performs

the dimensionality reduction in unsupervised manner, this
process also corresponds to PCA. Similarly Chen et al. [261]
have proposed another anomaly detection procedure where
dimensionality reduction for feature extraction is performed
using multi-scale PCA and then using wavelet analysis, so
that the anomalous traffic is separated from the flow. Di-
mensionality reduction using robust PCA based on minimum
covariance determinant estimator for anomaly detection is
presented in [262]. Thaseen et al. [263] applied PCA for
dimensionality reduction in network intrusion detection ap-
plication. To improve the performance of intrusion detection
scheme, another algorithm based on dimensionality reduction
for new feature learning using PCA is presented in [264] [265].
Almusallam et al. [266] have reviewed the dimensionality
reduction schemes for intrusion detection in multimedia traffic
and proposed an unsupervised feature selection scheme based
on the dimensionality reduced multimedia data.

Dimensionality reduction using autoencoders performs a vi-
tal role in fault prediction and reliability analysis of the cellular
networks, this work also recommends deep belief networks
and autoencoders as logical fault prediction techniques for
self organizing networks [267]. Most of the Internet appli-
cations use encrypted traffic for communication, previously
deep packet inspection (DPI) was considered a standard way
of classifying network traffic but with the varying nature of the
network application and randomization of port numbers and
payload size DPI has lost its significance. Authors in [268]
have proposed a hybrid scheme for network traffic classifica-
tion. Proposed scheme uses extreme machine learning, genetic
algorithms and dimensionality reduction for feature selection
and traffic classification. Ansari et al. [269] applied fuzzy
set theoretic approach for dimensionality reduction along with
fuzzy C-mean clustering algorithm for quality of web usage.
In another work, Alsheikh et al. [270] used Shrinking Sparse
AutoEncoders (SSAE) for representing high-dimensional data
and utilized SSAE in compressive sensing settings.

Visualization of high dimensional data in lower dimension
representation is another application of dimensionality reduc-
tion. There are many relevant techniques such as PCA and
t-SNE that can be used to extract the underlying structure of
high-dimensional data, which can then be visualized to aid hu-
man insight seeking and decision-making [136]. A number of
researchers have proposed to utilize dimensionality reduction
techniques to aid visualization of networking data. Patwari et
al. [256] proposed a manifold learning based visualization tool
for network traffic visualization and anomaly detection. Labib
et al. [271] proposed a PCA-based for the detection and visu-
alization of networking attacks in which PCA is used for the
dimensionality reduction of the feature vector extracted from
KDD network traffic dataset. Lokovc et al. [272] used t-SNE
for depicting malware fingerprints in their proposed network
intrusion detection system. Ancona et al. [273] proposed a
rectangular dualization scheme for visualizing the underlying
network topology. Cherubin et al. [274] used dimensionality
reduction and t-SNE of clustering and visualization of botnet
traffic. Finally, a lightweight platform for home Internet mon-
itoring is presented in [275] where PCA and t-SNE is used
for dimensionality reduction and visualization of the network
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TABLE X: Dimensionality Reduction Techniques employed for Networking Applications

Reference Technique Brief Summary Network/Technology
Type

O’Shea et al. [247] Autoencoders Applied autoencoders to design an end-to-end communication system that can
jointly learn transmitter and receiver implementations as well as signal encodings
in unsupervised manner.

MIMO

O’Shea et al. [248] Autoencoders A new approach for designing and optimizing the physical layer is explored
using autoencoders for dimensionality reduction.

MIMO

O’Shea et al. [249] Convolutional Autoencoders Applied autoencoders for representation learning of structured radio communi-
cation signals.

Software Radio/ Cogni-
tive Radio

Huang et al. [250] Multi-dimensional Scaling Applied distance based subspace dimensionality reduction technique for anomaly
detection in data traffic.

Internet Traffic

Zoha et al. [251] Multi-dimensional Scaling Used MDS to preprocess a statistical dataset for cell outage detection in SON. SON
Shirazinia et al. [252] Sparse Gaussian Method Applied sparse Gaussian method for linear dimensionality reduction over noisy

channels in wireless sensor networks.
WSN

Hou et al. [253] PCA Linear and nonlinear dimensionality reduction techniques along with support
vector machine has be experimentally tested for cognitive radio.

Cognitive Radio

Khalid et al. [254] PCA Applied L1 norm PCA for dimensionality reduction in network intrusion
detection system.

Internet Traffic

Goodman et al. [255] PCA Applied PCA for diemensionality reduction in anomaly detection for cyber
security applications.

SMS

Patwari et al. [256] Manifold Learning Proposed a manifold learning based visualization tool for network traffic
visualization and anomaly detection.

Internet Traffic

Lopez et al. [257] Transfer Learning and t-SNE Used transfer learning for multimedia web mining and t-SNE for dimensionality
reduction and visualization of web mining resultant model.

Multimedia Web

Ban et al. [258] Clustering and t-SNE Proposed an early threat detection scheme using darknet data, where clustering
is used for threat detection and dimensionality reduction for visualization is
performed by using t-SNE.

Internet Traffic

traffic. A number of tools are readily available—e.g., Divvy
[276], Weka [277]—that implement dimensionality reduction
and other unsupervised ML techniques (such as PCA and
manifold learning) and allow exploratory data analysis and
visualization of high-dimensional data.

Dimensionality reduction techniques and tools have been
utilized in all kinds of networks and we present some recent
examples related to self-organizing networks (SONs) and soft-
ware defined radios (SDRs). Liao et al. [278] proposed a semi
supervised learning scheme for anomaly detection in SON
based on dimensionality reduction and fuzzy classification
technique. Chernov et al. [279] used minor component analysis
(MCA) for dimensionality reduction as a preprocessing step
for user level statistical data in LTE-A networks to detect the
cell outage. Zoha et al. [251] used multi-dimensional scaling
(MDS), a dimensionality reduction scheme, as part of the
preprocessing step for cell outage detection in SON. Another
data driven approach by Zoha et al. [280] also uses MDS
for getting low dimensional embedding of target key point
indicator vector as a preprocessing step to automatically detect
cell outage in SON. Turkka et al. [281] used PCA for dimen-
sionality reduction of drive test samples to detect cell outages
autonomously in SON. Conventional routing schemes are not
sufficient for the fifth generation of communication systems.
Kato et al. [282] proposed a supervised deep learning based
routing scheme for heterogeneous network traffic control.
Although supervised approach performed well, but gathering
a lot of heterogeneous traffic with labels, and then processing
them with a plain ANN is computationally extensive and prone
to errors due to the imbalanced nature of the input data and
the potential for overfitting. In 2017, Mao et al. [283] has
presented a deep learning based approach for routing and cost
effective packet processing. The proposed model uses deep

belief architecture and benefits from the dimensionality reduc-
tion property of restricted Boltzmann machine. The proposed
work also provides a novel Graphics Processing Unit (GPU)
based router architecture. The detailed analysis shows that
deep learning based SDR and routing technique can meet the
changing network requirements and massive network traffic
growth. The routing scheme proposed in [283] outperforms
conventional open shortest path first (OSPF) routing technique
in terms of throughput and average delay per hop.

E. Emerging Networking Applications of Unsupervised Learn-
ing

Next generation network architectures such as Software
defined Networks (SDN), Self Organizing Networks (SON),
and Internet of Things (IoT) are expected to be the basis of
future intelligent, adaptive, and dynamic networks [284]. ML
techniques will be at the center of this revolution providing
aforementioned properties. This subsection covers the recent
applications of unsupervised ML techniques in SDNs, SONs,
and IoTs.

1) Software Defined Networks: SDN is a disruptive new
networking architecture that simplifies network operating and
managing tasks and provides infrastructural support for novel
innovations by making the network programmable [285]. In
simple terms, the idea of programmable networks is to simply
decouple the data forwarding plane and control/decision plane,
which is rather tightly coupled in current infrastructure. The
use of SDN can also be seen in managing and optimizing
networks as network operators go through a lot of hassle to
implement high level security policies in term of distributed
low level system configurations, thus SDN resolves this issue
by decoupling the planes and giving network operators better
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control and visibility over network, enabling them to make fre-
quent changes to network state and providing support for high-
level specification language for network control [286]. SDN is
applicable in a wide variety of areas ranging from enterprise
networks, data centers, infrastructure based wireless access
networks, optical networks to home and small businesses, each
providing many future research opportunities [285].

Unsupervised ML techniques are seeing a surging interest in
SDN community as can be seen by a spate of recent work. A
popular application of unsupervised ML techniques in SDNs
relates to the application of intrusion detection and mitigation
of security attacks [287]. Another approach for detecting
anomalies in cloud environment using unsupervised learning
model has been proposed by Dean et al. [288] that uses SOM
to capture emergent system behavior and predict unknown and
novel anomalies without any prior training or configuration.
A DDoS detection system for SDN is presented in [259]
where stacked autoencoders are used to detect DDoS attacks.
A density peak based clustering algorithm for DDoS attack is
proposed as a new method to review the potentials of using
SDN to develop an efficient anomaly detection method [289].
Goswami et al. [290] have recently presented an intelligent
threat aware response system for SDN using reinforcement
learning, this work also recommends using unsupervised fea-
ture learning to improve the threat detection process. Another
framework for anomaly detection, classification, and mitigation
for SDN is presented in [291] where unsupervised learning
is used for traffic feature analysis. Zhang et al. [292] have
presented a forensic framework for SDN and recommended
K-means clustering for anomaly detection in SDN. Another
work [293] discusses the potential opportunities for using un-
supervised learning for traffic classification in SDN. Moreover,
deep learning and distributed processing can also be applied
to such models in order to better adapt with evolving networks
and contribute to the future of SDN infrastructure as a service.

2) Self Organizing Networks: Self organizing networks
(SON) is another new and popular research regime in network-
ing, SON are inspired from the biological system which works
in self organization and achieve the task by learning from the
surrounding environment. As the connected network devices
are growing exponentially, and the communication cell size
has reduced to femtocells, the property of self organization
is becoming increasingly desirable [294]. A reinforcement
learning based approach for designing self organization based
small cell network is presented in [295]. Feasibility of SON
application in fifth generation (5G) of wireless communica-
tion is studied in [296] and the study shows that without
(supervised as well as unsupervised) ML support, SON is not
possible. Application of ML techniques in SON has become
a very important research area as it involves learning from
the surroundings for intelligent decision-making and reliable
communication [2].

Application of different ML-based SON for heterogeneous
networks is considered in [297], this paper also describes the
unsupervised ANN, hidden Markov models and reinforcement
learning techniques employed for better learning from the
surroundings and adapting accordingly. PCA and clustering are

the two mostly used unsupervised learning schemes utilized
for parameter optimization and feature learning in SON where
as reinforcement learning, fuzzy reinforcement learning, Q
learning, double Q learning and deep reinforcement learning
are the major schemes used for interacting with the environ-
ment [294]. These ML schemes are used in self-configuration,
self-healing, and self-optimization schemes. Game theory is
another unsupervised learning approach used for designing
self optimization and greedy self configuration design of SON
systems [298]. Authors in [299] proposed an unsupervised
ANN for link quality estimation of SON which outperformed
simple moving average and exponentially weighted moving
averages.

3) Internet of Things: Internet of things (IoT) is an emerging
paradigm with a growing academia and industry interest.
IoT is new networking paradigm and it is expected to be
deployed in health care, smart cities, industry, home automa-
tion, agriculture, and industry. With such a vast plane of
applications, IoT needs ML to collect and analyze data to
make intelligent decisions. The key challenge that IoT must
deal with is the extremely large scale (billions of devices)
of future IoT deployments [300]. Designing, analyzing and
predicting are the three major tasks and all involves ML, a
few examples of unsupervised ML are shared next. Gubbi et
al. [301] recommend using unsupervised ML techniques for
feature extraction and supervised learning for classification
and predictions. Given the scale of the IoT, a large amount
of data is expected in the network and therefore requires a
load balancing method, a load balancing algorithm based on
restricted Boltzmann machine is proposed in [302]. Online
clustering scheme form dynamic IoT data streams is described
in [303]. Another work describing an ML application in IoT
recommends a combination of PCA and regression for IoT to
get better prediction [304]. Usage of clustering technique in
embedded systems for IoT applications is presented in [305].
An application using denoising autoencoders for acoustic mod-
eling in IoT is presented in [306].

F. Lessons Learnt
Key leassons drawn from the review of unsupervised learn-

ing in networking applications are summarized below:
1) A recommended and well studied method for unsuper-

vised Internet traffic classification in literature is data
clustering combined with the latent representation learn-
ing on traffic feature set by using autoencoders. Min-max
ensemble learning will help to increase the efficiency of
unsupervised learning if required.

2) Semi supervised learning is also an appropriate method
for Internet traffic classification given some labeled traffic
data and channel characteristics are available for initial
model training.

3) Application of generative models and transfer learning for
the Internet traffic classification has not been explored
properly in literature and can be a potential research
direction.

4) The overwhelming growth in network traffic and expected
surge in traffic with the evolution of 5G and IoT also
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elevates the level of threat and anomalies in network
traffic. To deal with these anomalies in Internet traffic,
data clustering, PCA, SOM, and ART are well explored
unsupervised learning techniques in literature. Self-taught
learning has also been explored as a potential solution
for anomaly detection and remains a possible research
direction for future research in anomaly detection in
network traffic.

5) Unsupervised learning techniques for network manage-
ment and optimization is a very less explored area as
compared to anomaly detection and traffic classification.
Applications of NN, RBM, Q learning, and deep re-
inforcement learning techniques to Internet traffic for
management and optimization is an open research area.

6) Current state of the art in dimensionality reduction in
network traffic is based on PCA and multidimensional
scaling. Autoencoders, t-SNE, and manifold learning is
a potential area of research in terms of dimensionality
reduction and visualization.

IV. FUTURE WORK: SOME RESEARCH CHALLENGES AND
OPPORTUNITIES

This section provides a discussion on some open directions
for future work and the relevant opportunities in applying
unsupervised ML in the field of networking.

A. Simplified Network Management
While new network architectures such as SDN have been

proposed in recent years to simply network management,
network operators are still expected to know too much, and
to correlate between what they know about how their network
is designed with the current network’s condition through their
monitoring sources. Operators who manage these requirements
by wrestling with complexity manually will definitely welcome
any respite that they can get from (semi-)automated unsu-
pervised machine learning. As highlighted in by [307], for
ML to become pervasive in networking, the “semantic gap”—
which refers to the key challenge of transferring ML results
into actionable insights and reports for the network operator—
must be overcome. This can facilitate a shift from a reactive
interaction style for network management, where the network
manager is expected to check maps and graphs when things go
wrong, to a proactive one, where automated reports and notifi-
cations are created for different services and network regions.
Ideally, this would be abstract yet informative, such as Google
Maps Directions, e.g. “there is heavier traffic than usual on
your route” as well as suggestions about possible actions.
This could be coupled with automated correlation of different
reports coming from different parts of the network. This will
require a move beyond mere notifications and visualizations to
more substantial synthesis through which potential sources of
problems can be identified. Another example relates to making
measurements more user-oriented. Most users would be more
interested in QoE instead of QoS, i.e., how the current condi-
tion of the network affects their applications and services rather
than just raw QoS metrics. The development of measurement
objectives should be from a business-eyeball perspective—and

not only through presenting statistics gathered through various
tools and protocols such as traceroute, ping, BGP, etc. with
the burden of putting the various pieces of knowledge together
being on the user.

B. Semi-Supervised Learning for Computer Networks
Semi-supervised learning lies between supervised and un-

supervised learning. The idea behind semi-supervised learn-
ing is to improve the learning ability by using unlabeled
data incorporation with small set of labeled examples. In
computer networks, semi-supervised learning is partially used
in anomaly detection and traffic classification and has great
potential to be used with deep unsupervised learning architec-
tures like generative adversarial networks for improving the
state of the art in anomaly detection and traffic classification.
Similarly user behavior learning for cyber security can also
be tackled in a semi-supervised fashion. A semi-supervised
learning based anomaly detection approach is presented in
[308]. The presented approach used large amounts of unla-
beled samples together with labeled samples to build a better
intrusion detection classifier. In particular, a single hidden layer
feed-forward NN is trained to output a fuzzy membership
vector. The results show that using unlabeled samples help
significantly improve the classifier’s performance. In another
work, Watkins et al. [309] have proposed a semi-supervised
learning with 97% accuracy to filter out non-malicious data in
millions of queries that Domain Name Service (DNS) servers
receive.

C. Transfer Learning in Computer Networks
Transfer learning is an emerging ML technique in which

knowledge learned from one problem is applied to a different
but related problem [310]. Although it is often thought that
for ML algorithms, the training and future data must be in the
same feature space and must have same distribution, this is not
necessarily the case in many real-world applications. In such
cases, it is desirable to have transfer learning, or knowledge
transfer between the different task domains. Transfer learning
has been successfully applied in computer vision and NLP
applications but its implementation for networking has not
been witnessed—even though in principle, this can be useful in
networking as well due to the similar nature of Internet traffic
and enterprise network traffic in many respects. Bacstuug
et al. [311] used transfer learning based caching procedure
for wireless networks providing backhaul offloading in 5G
networks.

D. Federated Learning in Computer Networks
Federated learning is a collaborative ML technique, which

does not make use of centralized training data, and works by
distributing the processing on different machines. Federated
learning is considered to be the next big thing in cloud
networks as they ensure privacy of the user data and less
computation on the cloud to reduce the cost and energy
[312]. System and method for network address management
in federated cloud is presented in [313] and application of
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federated IoT and cloud computing for health care is presented
in [314]. An end-to-end security architecture for federated
cloud and IoT is presented in [315].

E. General Adversarial Networks (GANs) in Computer Net-
works

Adversarial networks—based on generative adversarial net-
work (GAN) training originally proposed by Goodfellow and
colleagues at the University of Montreal [316]—have recently
emerged as a new technique using which machines can be
trained to predict outcomes by only the observing the world
(without necessarily being provided labeled data). An adver-
sarial network has two NN models: a generatorwhich is re-
sponsible for generating some type of data from some random
inputand a discriminator, which has the task of distinguishing
between input from the generator or a real data set. The two
NNs optimize themselves together resulting in more realistic
generation of data by the generator, and a better sense of what
is plausible in the real world for the discriminator. The use of
GANs for ML in networking can improve the performance of
ML-based networking applications such as anomaly detection
in which malicious users have an incentive to adversarial craft
new attacks to avoid detection by network managers.

V. PITFALLS AND CAVEATS OF USING UNSUPERVISED
ML IN NETWORKING

With the benefits and intriguing results of unsupervised
learning, there also exists many shortcomings that are not
addressed widely in the literature. Some potential pitfalls and
caveats related to unsupervised learning are discussed next.

A. Inappropriate Technique Selection
To start with, the first potential pitfall could be the selection

of technique. Different unsupervised learning and predicting
techniques may have excellent results on some applications
while performing poorly on others—it is important to choose
the best technique for the task at hand. Another reason could
be a poor selection of features or parameters on which basis
predictions are made—thus parameter optimization is also
important for unsupervised algorithms.

B. Lack of Interpretability of Some Unsupervised ML Algo-
rithms

Some unsupervised algorithms such as deep NNs operate as
a blackbox, which makes it difficult to explain and interpret
the working of such models. This makes the use of such
techniques unsuitable for applications in which interpretability
is important. As pointed out in [307], understandability of the
semantics of the decisions made by ML is especially important
for the operational success of ML in large-scale operational
networks and its acceptance by operators, network managers,
and users. But prediction accuracy and simplicity are often in
conflict [317]. As an example, the greater accuracy of NNs
accrues from its complex nature in which input variables are
combined in a nonlinear fashion to build a complicated hard-
to-explain model; with NNs it may not be possible to get

interpretability as well since they make a tradeoff in which
they sacrifice interpretability to achieve high accuracy. There
are various ongoing research efforts that are focused on making
techniques such as NNs less opaque [318]. Apart from the
focus on NNs, there is a general interest in making AI and
ML more explainable and interpretable—e.g., the Defense
Advanced Research Projects Agency or DARPA’s explainable
AI project2 is aiming to develop explainable AI models (lever-
aging various design options spanning the performance-vs-
explainability tradeoff space) that can explain the rationale of
their decision-making so that users are able to appropriately
trust these models particularly for new envisioned control
applications in which optimization decisions are made au-
tonomously by algorithms.

C. Lack of Operational Success of ML in Networking

In literature, researchers have noted that despite substantial
academic research, and practical applications of unsupervised
learning in other fields, we see that there is a dearth of prac-
tical applications of ML solutions in operational networks—
particular for applications such as network intrusion detection
[307], which are challenging problems for a number of reasons
including 1) the very high cost of errors; 2) the lack of
training data; 3) the semantic gap between results and their
operational interpretation; 4) enormous variability in input
data; and finally, 5) fundamental difficulties in conducting
sound performance evaluations. Even for other applications,
the success of ML and its wide adoption in practical systems at
scale lags the success of ML solutions in many other domains.

D. Ignoring Simple Non-Machine-Learning Based Tools

One should also keep in mind a common pitfall that
academic researchers may suffer from: which is not realize
that network operators may have have simpler non-machine
learning based solutions that may work as well as naı̈ve ML
based solutions in practical settings. Failure to examine the
ground realities of operational networks will undermine the
effectiveness of ML based solutions. We should expect ML
based solutions to augment and supplement rather than replace
other non-machine-learning based solutions—at least for the
foreseeable future.

E. Overfitting

Another potential issue with unsupervised models is over-
fitting; it corresponds to a model representing the noise or
random error rather than learning the actual pattern in data.
While commonly associated with supervised ML, the problem
of overfitting lurks whenever we learn from data and thus is
applicable to unsupervised ML as well. As illustrated in Figure
8, ideally speaking, we expect ML algorithms to provide im-
proved performance with more data; but with increasing model
complexity, performance starts to deteriorate after a certain
point—although, it is possible to get poorer results empirically

2https://www.darpa.mil/program/explainable-artificial-intelligence

https://www.darpa.mil/program/explainable-artificial-intelligence
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Fig. 8: Intuitively, we expect the ML model’s performance to
improve with more data but to deteriorate in performance if the
model becomes overly complex for the data. Figure adapted
from [319].

with increasing data when working with unoptimized out-of-
the-box ML algorithms [319]. According to the Occam Razor
principle, the model complexity should be commensurate with
the amount of data available, and with overly complex models,
the ability to predict and generalize diminishes. Two major
reasons of overfitting could be the overly large size of learn-
ing model and less sample data used for training purposes.
Generally data is divided into two portions (actual data and
stochastic noise); due to the unavailability of labels or related
information, unsupervised learning model can overfit the data,
which causes issues in testing and deployment phase. Cross
validation, regularization, and Chi-squared testing are highly
recommended designing or tweaking an unsupervised learning
algorithm to avoid overfitting [320].

F. Data Quality Issues
It should be noted that all ML is data dependent, and the per-

formance of ML algorithms is affected largely by the nature,
volume, quality, and representation of data. Data quality issues
must be carefully considered since any problem with the data
quality will seriously mar the performance of ML algorithms.
A potential problem is that dataset may be imbalanced if the
samples size from one class is very much smaller or larger
than the other classes [321]. In such imbalanced datasets, the
algorithm must be careful not to ignore the rare class by
assuming it to be noise. Although, imbalanced datasets are
more of a nuisance for supervised learning techniques, they
may also pose problems for unsupervised and semi-supervised
learning techniques.

G. Inaccurate Model Building
It is difficult to build accurate and generic models since

each model is optimized for certain kind of applications.
Unsupervised ML models should be applied after carefully
studying the application and the suitability of the algorithm
in such settings [322]. For example, we highlight certain
issues related to the unsupervised task of clustering: 1) random
initialization in K-means is not recommended; 2) number of
clusters are not known before the clustering operation as we
do not have labels; 3) in the case of hierarchical clustering,
we don not know when to stop and this can cause increase

in the time complexity of the process; and 4) evaluating the
clustering result is very tricky since the ground truth is mostly
unknown.

H. Machine Learning in Adversarial Environments
Many networking problems, such as anomaly detection,

is an adversarial problem in which the malicious intruder
is continually trying to outwit the network administrators
(and the tools used by the network administrators). In such
settings, machine learning that learns from historical data may
not perform due to clever crafting of attacks specifically for
circumventing any schemes based on previous data.

Due to these challenges, pitfalls, and weaknesses, due
care must be exercised while using unsupervised and semi-
supervised ML. These pitfalls can be avoided in part by
using various best practices [323], such as end-to-end learning
pipeline testing, visualization of learning algorithm, regular-
ization, proper feature engineering, dropout, sanity checks
through human inspection—whichever is appropriate for the
problem’s context.

VI. CONCLUSIONS

We have provided a comprehensive survey of machine
learning tasks and latest unsupervised learning techniques and
trends along with a detailed discussion of the applications of
these techniques in networking related tasks. Despite the recent
wave of success of unsupervised learning, there is a scarcity
of unsupervised learning literature for computer networking
applications, which this survey aims to address. The few
previously published survey papers differ from our work in
their focus, scope, and breadth; we have written this paper
in a manner that carefully synthesizes the insights from these
survey papers while also providing contemporary coverage of
recent advances. Due to the versatility and evolving nature of
computer networks, it was impossible to cover each and every
application; however, an attempt has been made to cover all
the major networking applications of unsupervised learning
and the relevant techniques. We have also presented concise
future work and open research areas in the field of networking,
which are related to unsupervised learning, coupled with a
brief discussion of significant pitfalls and challenges in using
unsupervised machine learning in networks.

REFERENCES

[1] R. W. Thomas, D. H. Friend, L. A. DaSilva, and A. B. MacKenzie,
“Cognitive networks,” in Cognitive radio, software defined radio, and
adaptive wireless systems, pp. 17–41, Springer, 2007.

[2] S. Latif, F. Pervez, M. Usama, and J. Qadir, “Artificial intelligence
as an enabler for cognitive self-organizing future networks,” arXiv
preprint arXiv:1702.02823, 2017.

[3] A. Patcha and J.-M. Park, “An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends,” Computer
networks, vol. 51, no. 12, pp. 3448–3470, 2007.

[4] T. T. Nguyen and G. Armitage, “A survey of techniques for Internet
traffic classification using Machine Learning,” Communications Sur-
veys & Tutorials, IEEE, vol. 10, no. 4, pp. 56–76, 2008.



29

[5] M. Bkassiny, Y. Li, and S. K. Jayaweera, “A survey on machine-
learning techniques in cognitive radios,” Communications Surveys &
Tutorials, IEEE, vol. 15, no. 3, pp. 1136–1159, 2013.

[6] M. A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan, “Machine learning
in wireless sensor networks: Algorithms, strategies, and applications,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1996–
2018, 2014.

[7] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Com-
munications Surveys Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.

[8] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A survey
of machine learning techniques applied to self organizing cellular
networks,” IEEE Communications Surveys & Tutorials, 2017.

[9] A. Meshram and C. Haas, “Anomaly detection in industrial networks
using machine learning: A roadmap,” in Machine Learning for Cyber
Physical Systems, pp. 65–72, Springer, 2017.

[10] Z. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art deep learning: Evolving machine intel-
ligence toward tomorrows intelligent network traffic control systems,”
IEEE Communications Surveys & Tutorials, 2017.

[11] E. Hodo, X. Bellekens, A. Hamilton, C. Tachtatzis, and R. Atkinson,
“Shallow and deep networks intrusion detection system: A taxonomy
and survey,” arXiv preprint arXiv:1701.02145, 2017.

[12] J. Qadir, K.-L. A. Yau, M. A. Imran, Q. Ni, and A. V. Vasilakos,
“IEEE access special section editorial: Artificial intelligence enabled
networking,” IEEE Access, vol. 3, pp. 3079–3082, 2015.

[13] S. Suthaharan, “Big data classification: Problems and challenges in
network intrusion prediction with machine learning,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 41, no. 4, pp. 70–73, 2014.

[14] S. Shenker, M. Casado, T. Koponen, N. McKeown, et al., “The future
of networking, and the past of protocols,” Open Networking Summit,
vol. 20, pp. 1–30, 2011.

[15] A. Malik, J. Qadir, B. Ahmad, K.-L. A. Yau, and U. Ullah, “Qos in
ieee 802.11-based wireless networks: a contemporary review,” Journal
of Network and Computer Applications, vol. 55, pp. 24–46, 2015.

[16] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[17] J. Qadir, “Artificial intelligence based cognitive routing for cognitive
radio networks,” Artificial Intelligence Review, vol. 45, no. 1, pp. 25–
96, 2016.

[18] N. Ahad, J. Qadir, and N. Ahsan, “Neural networks in wireless net-
works: Techniques, applications and guidelines,” Journal of Network
and Computer Applications, vol. 68, pp. 1–27, 2016.

[19] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature extraction:
foundations and applications, vol. 207. Springer, 2008.

[20] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer
networks in unsupervised feature learning,” in International conference
on artificial intelligence and statistics, pp. 215–223, 2011.

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press,
2016.

[22] M. J. S. M. S. Mohammad Lotfollahi, Ramin Shirali, “Deep packet: A
novel approach for encrypted traffic classification using deep learning.”

[23] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic
classification using convolutional neural network for representation
learning,” in Information Networking (ICOIN), 2017 International
Conference on, pp. 712–717, IEEE, 2017.

[24] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula,
“Autoencoder-based feature learning for cyber security applications,”
in Neural Networks (IJCNN), 2017 International Joint Conference on,
pp. 3854–3861, IEEE, 2017.

[25] R. C. Aygun and A. G. Yavuz, “Network anomaly detection with
stochastically improved autoencoder based models,” in Cyber Secu-
rity and Cloud Computing (CSCloud), 2017 IEEE 4th International
Conference on, pp. 193–198, IEEE, 2017.

[26] M. K. Putchala, Deep Learning Approach for Intrusion Detection
System (IDS) in the Internet of Things (IoT) Network using Gated
Recurrent Neural Networks (GRU). PhD thesis, Wright State Univer-
sity, 2017.

[27] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson,
“Deep learning for unsupervised insider threat detection in structured
cybersecurity data streams,” 2017.

[28] E. Aguiar, A. Riker, M. Mu, and S. Zeadally, “Real-time qoe prediction
for multimedia applications in wireless mesh networks,” in Consumer
Communications and Networking Conference (CCNC), 2012 IEEE,
pp. 592–596, IEEE, 2012.

[29] K. Piamrat, A. Ksentini, C. Viho, and J.-M. Bonnin, “Qoe-aware
admission control for multimedia applications in ieee 802.11 wireless
networks,” in Vehicular Technology Conference, 2008. VTC 2008-Fall.
IEEE 68th, pp. 1–5, IEEE, 2008.

[30] K. Karra, S. Kuzdeba, and J. Petersen, “Modulation recognition using
hierarchical deep neural networks,” in Dynamic Spectrum Access
Networks (DySPAN), 2017 IEEE International Symposium on, pp. 1–3,
IEEE, 2017.

[31] M. Zhang, M. Diao, and L. Guo, “Convolutional neural networks for
automatic cognitive radio waveform recognition,” IEEE Access, vol. 5,
pp. 11074–11082, 2017.

[32] J. Moysen and L. Giupponi, “From 4g to 5g: Self-organized
network management meets machine learning,” arXiv preprint
arXiv:1707.09300, 2017.

[33] X. Xie, D. Wu, S. Liu, and R. Li, “Iot data analytics using deep
learning,” arXiv preprint arXiv:1708.03854, 2017.

[34] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[35] Y. Bengio, “Learning deep architectures for AI,” Foundations and
trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[36] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–
1554, 2006.

[37] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, et al., “Greedy
layer-wise training of deep networks,” Advances in neural information
processing systems, vol. 19, p. 153, 2007.

[38] C. Poultney, S. Chopra, Y. L. Cun, et al., “Efficient learning of sparse
representations with an energy-based model,” in Advances in neural
information processing systems, pp. 1137–1144, 2006.

[39] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y.
Ng, “On optimization methods for deep learning,” in Proceedings of
the 28th International Conference on Machine Learning (ICML-11),
pp. 265–272, 2011.

[40] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016.

[41] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, 1990.

[42] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21,
no. 1, pp. 1–6, 1998.

[43] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain.,” Psychological review, vol. 65,
no. 6, p. 386, 1958.

[44] S. S. Haykin, Neural networks and learning machines, vol. 3. Pearson
Education Upper Saddle River, 2009.

[45] G. A. Carpenter and S. Grossberg, Adaptive resonance theory.
Springer, 2010.

[46] J. Karhunen, T. Raiko, and K. Cho, “Unsupervised deep learning:
A short review,” Advances in Independent Component Analysis and
Learning Machines, p. 125, 2015.

[47] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 609–616, ACM, 2009.



30
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ing flow-based anomaly intrusion detection using replicator neural
networks,” in Privacy, Security and Trust (PST), 2016 14th Annual
Conference on, pp. 317–324, IEEE, 2016.

[261] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau, “A novel anomaly
detection system using feature-based MSPCA with sketch,” in Wireless
and Optical Communication Conference (WOCC), 2017 26th, pp. 1–6,
IEEE, 2017.

[262] T. Matsuda, T. Morita, T. Kudo, and T. Takine, “Traffic anomaly
detection based on robust principal component analysis using periodic

traffic behavior,” IEICE Transactions on Communications, vol. 100,
no. 5, pp. 749–761, 2017.

[263] I. S. Thaseen and C. A. Kumar, “Intrusion detection model using
fusion of PCA and optimized SVM,” in Contemporary Computing
and Informatics (IC3I), 2014 International Conference on, pp. 879–
884, IEEE, 2014.

[264] B. Subba, S. Biswas, and S. Karmakar, “Enhancing performance of
anomaly based intrusion detection systems through dimensionality
reduction using principal component analysis,” in Advanced Networks
and Telecommunications Systems (ANTS), 2016 IEEE International
Conference on, pp. 1–6, IEEE, 2016.

[265] I. Z. Muttaqien and T. Ahmad, “Increasing performance of IDS by
selecting and transforming features,” in Communication, Networks
and Satellite (COMNETSAT), 2016 IEEE International Conference on,
pp. 85–90, IEEE, 2016.

[266] N. Y. Almusallam, Z. Tari, P. Bertok, and A. Y. Zomaya, “Dimension-
ality reduction for intrusion detection systems in multi-data streamsa
review and proposal of unsupervised feature selection scheme,” in
Emergent Computation, pp. 467–487, Springer, 2017.

[267] Y. Kumar, H. Farooq, and A. Imran, “Fault prediction and reliability
analysis in a real cellular network,” in Wireless Communications and
Mobile Computing Conference (IWCMC), 2017 13th International,
pp. 1090–1095, IEEE, 2017.

[268] Z. Nascimento, D. Sadok, S. Fernandes, and J. Kelner, “Multi-objective
optimization of a hybrid model for network traffic classification
by combining machine learning techniques,” in Neural Networks
(IJCNN), 2014 International Joint Conference on, pp. 2116–2122,
IEEE, 2014.

[269] Z. Ansari, M. Azeem, A. V. Babu, and W. Ahmed, “A fuzzy ap-
proach for feature evaluation and dimensionality reduction to im-
prove the quality of web usage mining results,” arXiv preprint
arXiv:1509.00690, 2015.

[270] M. A. Alsheikh, S. Lin, H.-P. Tan, and D. Niyato, “Toward a robust
sparse data representation for wireless sensor networks,” in Local
Computer Networks (LCN), 2015 IEEE 40th Conference on, pp. 117–
124, IEEE, 2015.

[271] K. Labib and V. R. Vemuri, “An application of principal component
analysis to the detection and visualization of computer network at-
tacks,” Annals of telecommunications, vol. 61, no. 1, pp. 218–234,
2006.
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