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ABSTRACT 

 

This thesis investigates the interactions between tectonics and erosion in the eastern Himalaya 

through the study of paleo-Brahmaputra deposits in the foreland basin. Sediment depositional 

dating of two sedimentary sections is performed using magnetostratigraphy, apatite fission-track 

and luminescence dating. Provenance analysis using zircon and apatite U-Pb dating allows the 

reconstruction of the Miocene-Quaternary paleo-drainage of the Brahmaputra River and the 

documentation of the tectonic evolution of two poorly understood Himalayan features: the Shillong 

Plateau and the Namche Barwa Syntaxis. 

 

The Shillong Plateau is the only elevated topography in the Himalayan foreland and the timing of its 

surface uplift is debated. Decoupling between of the time of rock exhumation and surface uplift has 

been explained by differences in rock erodibilities of the plateau between the Shillong Precambrian 

basement and the overlying Cenozoic sedimentary rock. New detrital zircon U-Pb data and 

lithospheric stress field modelling presented here date the rise of the Plateau between 5.2 Ma and 

4.4 Ma leading to the redirection of the Brahmaputra River at that time, and the role of tectonics in 

the rise of the plateau is invoked. 

 

The Namche Barwa syntaxis is located at the eastern Himalayan termination and its development is 

widely debated. It has been subjected to anomalously young (<10 Ma) peak metamorphism, and 

unusually high exhumation rates (up to 10 mm/yr), in comparison with the Himalayan main arc of 

the orogen. However, the timing of the onset of rapid exhumation of the Namche Barwa syntaxis is 

poorly constrained (between 10 and 3 Ma). Focusing on the proximal detrital record of material 

eroded from the syntaxis, new rutile U-Pb, white-mica 40Ar/39Ar and zircon fission-track data, 

together with published data are incorporated in a thermokinematic model which suggests an older 

onset (>10 Ma) of rapid exhumation, and at high but not extreme rates (<5 mm/yr).  
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THESIS STRUCTURE 
  

This manuscript is a thesis by papers divided into six sections. These is an introduction followed 

by four scientific papers published, submitted or in preparation for submission, with a discussion 

incorporating these four chapters in an overall conclusion. The supplementary material provided 

presents detailed methodology and data tables for each paper. Constructed from two field areas 

each with their respective research questions, this thesis contains two sub-projects which are linked 

together in the introduction and the discussion sections. Chapters 1 and 2 focus on the Shillong 

Plateau region and chapters 3 and 4 on the eastern syntaxis. This paragraph provides information on 

the structure, a brief summary of the content and the contribution of the author for each chapter.  

 

Introduction – This chapter provides a broad overview of the nature and the geological history of 

the Himalayan orogeny including an explanation of the significance of this study in the perspective of 

developing our understanding of the processes involved in the Himalayan orogenic evolution. The 

objectives of the present thesis are described and followed by a description of the study areas and a 

summary of the approach and methods used as part of this study. Parts of this chapter are inspired 

or issued from Robert (2008), Henderson (2010), Chirouze (2011), Abrahami (2015) and (Mascle et 

al., 2010). 

 

Chapter 1 – Late Miocene-Pleistocene evolution of India-Eurasia convergence partitioning 

between the Bhutan Himalaya and the Shillong Plateau: New evidences from foreland basin 

deposits along the Dungsam Chu section, eastern Bhutan. Paper by Coutand, I.; Barrier, L.; Govin, 

G.; et al. published in 2016 in Tectonics (DOI: 10.1002/2016TC004258). Focusing on a foreland basin 

Siwalik sediment section exposed to the north of the Shillong plateau in south-eastern Bhutan, this 

chapter uses a combination of detailed sedimentology, palynology, apatite fission-track, vitrinite 

reflectance and magnetostratigraphy analyses to reconstruct the environment of deposition of these 

sedimentary rocks through time. The outcomes of this study are related to the rise of the Shillong 

Plateau and its potential climatic consequences. It constitutes a relevant introduction to, and 

provides the depositional dating of the sedimentary rocks also investigated in chapter 2. The author 

of the thesis (third author of the publication) collected and analysed the magnetostratigraphic 

samples of the upper part of the studied sedimentary section (samples SA1 to SA140). The same 

author has interpreted the magnetostratigraphic results from the entire section, including the lower 

part of the section which was sampled and analysed prior to the start of the Ph.D. The 

magnetostratigraphic correlations and the writing of the magnetostratigraphic section have also 
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been done by G. Govin. G. Govin also helped in the use of Qupydon software to decipher the best 

correlation and contributed to the writing of the entire paper manuscript. The preferred correlation 

of this publication is the Qupydon best correlation; however the third author prefers to rely on 

correlation C, which is the best manual correlation, the closest from the Qupydon best correlation. 

The reason for this preference is the more realistic correlation of Chrons in the upper part of the 

section using the manual correlation (see Appendix V). The later correlation is therefore selected for 

the subsequent study of chapter 2.   

 

Chapter 2 - Timing and mechanism of the rise of the Shillong Plateau in the Himalayan foreland. 

Paper by Govin, G.; Najman, Y.; Copley, A.; et al. submitted twice to Geology, each time rejected 

with invited resubmission. The last rejection dates from April 2017 and the reviewer’s main 

comments mostly relate to a request to rewrite the introduction to help a broader readership 

understand the wider significance of the work. Resubmission is planned post thesis submission. This 

manuscript investigates the time and mechanism of Shillong plateau topographic uplift. It provides 

the first precise dating of the Shillong topographic growth and a novel explanation for the transition 

from rock exhumation matched by erosion to surface uplift. The dating of the latter transition has 

been performed using an original approach of provenance analysis using zircon U-Pb dating in the 

Dungsam Chu sedimentary section (dated by magnetostratigraphy in chapter 1). The results provide 

evidence of a drainage reorganisation due to the rise of the Plateau such that the Brahmaputra River 

has been redirected due to the Shillong Plateau uplift. The cause of the transition from exhumation 

to surface uplift of the Shillong Plateau has previously only been explained by a difference in 

erodibility of the sedimentary rocks overlying the plateau and the hard Shillong Precambrian 

bedrock. This study proposes another explanation and highlights the role of another factor in the 

mechanism of this transition by modelling lithospheric stresses in the Shillong region. The first 

author has collected and analysed the samples, interpreted the results, conceived the model of the 

evolution of the Brahmaputra River incorporating data from this study and published data. The same 

author has written the manuscript, with the exception of the lithospheric stresses modelling part 

developed by A. Copley.  

 

Chapter 3 - Paleo-drainage evolution and rapid exhumation of the Namche Barwa Syntaxis 

recorded in the Siwaliks of the easternmost Himalaya (Arunachal Pradesh, India). This manuscript 

has been submitted in April 2017 to American Journal of Science by Govin, G., Najman, Y., Dupont-

Nivet, G. et al. This chapter investigates the Late Neogene-Quaternary drainage evolution in the 

syntaxis region. Using apatite fission-track, magnetostratigraphy and luminescence dating, this study 
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constrains the depositional age frame and presents detailed sedimentology of the Siwalik 

sedimentary rocks the most proximal to the eastern syntaxis. The provenance analysis of these 

deposits has been performed using apatite and zircon U-Pb. The first author has collected the 

samples and realised the sedimentological descriptions and interpretations. G. Govin also collected 

the magnetostratigraphic and zircon U-Pb data and interpreted the entire data-set (including the 

Luminescence and apatite double data provided by the co-authors P. O’Sullivan and C. Mark) and 

written the manuscript. This chapter constitutes the basis of the study for the chapter 4, as it 

describes and dates the Sibo-Remi-Siang sedimentary section and constrains the provenance of 

these deposits.  

 

Chapter 4 – Onset of rapid exhumation in the Namche Barwa syntaxis. This study has been 

conducted by Govin, G., Najman, Y., van der Beek, P et al., and will be submitted to a broad audience 

journal in the near future. It has been presented in a talk format by the first author at the EGU 

general assembly 2017 (April 2017). This manuscript investigates the debated onset of the rapid 

exhumation of the Namche Barwa syntaxis using thermochronological and geochronological detrital 

dating of the Sibo-Remi-Siang section sedimentary rocks. Detrital zircon fission-track, white-mica 

40Ar-39Ar and rutile U-Pb data have been acquired and interpreted by the first author who has also 

collected and prepared the samples. The results, along with published data from bedrock and 

detrital data from the eastern syntaxis region have been incorporated in a 1D version of the 

thermokinematic model Pecube, to reconstruct the syntaxis evolution from Miocene to present day. 

The modelling part of the chapter has been performed by P. van der Beek, and the manuscript, 

including the model interpretations, written by the first author.  

 

Discussion - This final chapter collectively summarises, discusses and concludes the major results 

and discoveries of the preceding papers. It also suggests the nature of potential further work 

relevant to solve the new research questions that arise from this thesis.          
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INTRODUCTION 

1. THE HIMALAYA  
 

1.1. Major challenges in studying the Himalaya 
 

1.1.1. Geography of the Himalaya 

The Himalayan arc is the largest and highest modern-day mountain belt on Earth. With a width of 

160 to 320 km, the Himalayan belt extends in an E-W arc shape with a length of ~2400 km (Fig. 1). 

The Himalaya hosts India, Tibet, Nepal, Bhutan, Pakistan and Afghanistan. At least the 100 highest 

summits on the planet are Himalayan with Mount Everest as the highest (8848 m) in Nepal (and 

Tibet), K2 (8610 m) in Pakistan occupying second position and Kangchenjunga (8586 m) on the 

Nepal-Indian boundary with the third highest position. Adjacent to the belt in the north lies the 

Tibetan plateau at an elevation averaging more than 4500 m and stretching over ~1000 km north-

south and 2500 km east-west. The Himalayan belt is drained by two major river systems, both 

sourced in Mount Kailash in Tibet, north of Nepal. To the west of this summit, the Indus flows 

westward along the India-Asia suture zone, north of the Himalayan belt before crossing the range 

southward at the western Himalayan termination, to reach the foreland basin and the Indus Fan in 

the Arabian Sea. To the east of Mount Kailash, the Yarlung-Tsangpo flows eastward along the suture 

zone, along the southern edge of the Tibetan Plateau, before crossing the Himalayan range at its 

eastern tip, then drains the eastern Himalayan foreland basin as the Brahmaputra River before 

reaching the Bengal Fan in the Indian Ocean.  

 

 

Fig. 1: Geography and drainage map of the Himalayan range. Figure from 

https://goo.gl/images/QCaSuL 

https://goo.gl/images/QCaSuL
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1.1.2. Challenges for Himalayan inhabitants 

The Himalayan inhabitants face challenges of various natures at the present day and in the future. 

The vast remoteness of many Himalayan villages makes living conditions particularly arduous, 

especially in the modern world globalisation context. The diversity of Himalayan societies is strongly 

influenced by religions and cultural traditions. Although Buddhism, Hinduism, and Islam are the most 

popular influences, the lifestyle of many Himalayan communities has developed in symbiosis with 

their environment. The culture and faith of most Himalayan people involve the surroundings, with 

many legends and holy places (Fig. 2). For example, Mount Kailash, located in the southern Tibetan 

Plateau is the centre of the Buddhist universe. The Tantric Buddhists regard Mount Kailash as home 

of the supreme blissed Buddha Demchok. For the Hindus, Mount Kailash is where “Lord Shiva”, the 

destroyer of evil, is in perpetual meditation with his Shakti Parvati, translated as “daughter of 

mountains”. Additionally, the mountain is at the heart of six mountain ranges symbolizing a lotus, 

and represents the pillar of the world with four faces legendary known as made 

of crystal, ruby, gold, and lapis lazuli. The Bön, a Tibetan religion, regard the mystical Mount Kailash 

as the seat of all spiritual power. Every year, thousands of people make a pilgrimage to Kailash, 

following a tradition thousands of years old. Climbing on the Mount Kailash is a dire sin for all 

religions that worship the mountain which is believed to lead to heaven. The Chinese authorized a 

Spanish team to climb Mont Kailash in 2001, but it provoked international disapproval which led to 

the prohibition of any attempt to climb the peak. Reinhold Messner said: "If we conquer this 

mountain, then we conquer something in people's souls”. This illustrates how threatened are the 

thousands year old traditions in Himalayan regions due to the fast and recent expansion of tourism. 

As well as the introduction of western technologies, mass tourism has deep influence on local 

communities and their environment, in some instance causing unfortunate detrimental effects. 

Pollution is one on them, as for the Everest region, heavily visited and polluted by the vast increase 

of visiting tourists and mountaineers but also at a  larger scale involving waste management 

difficulties in the Himalayan countries. Water is particularly sensitive to these problems, and very 

efficient in spreading pollution. The Asian monsoons dominate the economies of half of the global 

population; they are a capital factor for agriculture, transport, infrastructures and more generally for 

humans; they feed the rivers providing people fresh water. They are controlled by the worldwide 

warming climate, and their climatic impact is highly important. The devastating floods in Pakistan in 

2010 attest to this global environmental sensitivity. The Himalayan civilisations and the entire Asian 

population are threatened by natural catastrophes and their consequences. The geo-hazards 

characterised by low probability and high consequence events, threaten catastrophic events. They 

are often focused in limited areas but their consequences can be global as growing densely 

https://en.wikipedia.org/wiki/Tantric_Buddhism
https://en.wikipedia.org/wiki/Chakrasamvara
https://en.wikipedia.org/wiki/Shiva
https://en.wikipedia.org/wiki/Crystal
https://en.wikipedia.org/wiki/Ruby
https://en.wikipedia.org/wiki/Gold
https://en.wikipedia.org/wiki/B%C3%B6n
https://en.wikipedia.org/wiki/Pilgrimage
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populated areas, and at a larger scale of the entire Himalayan region and its sphere of influence. For 

instance events such as landslides, glacial damming breakups are often limited to small scale impact. 

However, localised earthquakes lead to a high probability of damages at a large distance from the 

epicentre. The earthquake of April 2015 in Nepal and its aftershocks have impacted a large area 

including regions in India, China and Bangladesh, although at various intensities. The damages 

caused by this earthquake were also of various subsequent natures such as avalanches, landslides, 

and glacial dams bursting.  

For these reasons, studying the Himalayan belt is of primary importance in the general perspective 

of understanding the processes causing increased risk. The interaction between climatic forces and 

topographic evolution in active mountain belts are an important sub-set of these processes. The 

study of geology in the Himalaya is necessary to understand the complex links and feedbacks 

between climate, topography and erosion. 

 

 

Fig. 2: Photograph of Mount Kailash from https://goo.gl/images/q1asxa 

 

1.1.3. Himalayan exploration history 

The Himalayan belt provides a great opportunity, not only to understand ancient orogenesis and 

orogenic formation and development, but also to study the timing and sequence of the Himalayan 

collision and convergence events and how they interact with other aspects of the Earth system. Like 

the mountaineering expeditions, the scientific expeditions began in the 20th century in the 

https://goo.gl/images/q1asxa
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Himalayas. A famous Swiss geologist, Augusto Gansser (1919-2012) started to explore the Himalayas 

in 1936. The report of his detailed studies was published in 1939, entitled “Central Himalaya – 

Geological observations of the Swiss Expedition 1936”. From these various discoveries such as the 

Indus suture zone concept and the first geological map of the Himalayas (Fig. 3), including numerous 

publications, Augusto Gansser received the title of “Baba-ye Himalaya” (father of the Himalaya) from 

Peshawar University in Pakistan. Augusto Gansser opened the route to nearly a century of 

Himalayan geological research, of which knowledge is still to be learned from these fascinating 

mountains.   

 

 

Fig. 3: Geological map of the Himalaya, from Augusto Gansser (1964) - https://goo.gl/images/mFYijI 

 

1.2. The Himalayan belt as a natural laboratory 
 

1.2.1. Tectonics, climate and erosion processes  

The Himalayan orogen is a natural laboratory to understand mountain building and evolution, and 

the processes involved, through various and complementary scientific disciplines. The mountain 

belt’s topography results from the interaction between « internal » and « external processes » 

within the range. Internal processes are defined by the tectonics and the resulting continental 

deformation. Tectonics initiates and develops positive relief, i.e. massifs, and negative relief, i.e. 

basins, along major tectonic features. This relief influences the repartition of precipitation 

(Bookhagen and Burbank, 2006; Grujic et al., 2006; Roe, 2005) and facilitates erosion through slope 
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steepening. External processes are related to climate, which influence the topographic evolution 

with erosion and sedimentation processes, through precipitation, large scale temperature changes 

and the impact of climate on drainage network and vegetation (e.g. Bonnet and Crave, 2003; 

Bookhagen et al., 2005a; Dadson et al., 2003; Reiners et al., 2003). Feedbacks between tectonic and 

climate via erosion have been documented by the scientific community over the past two decades 

(Fig. 4). Erosion and transport of material from high elevations towards low elevations, i.e. foreland 

or distal basins, lead to mass redistribution at the surface Earth. The mass equilibration is associated 

with a isostatic rebound, which is the uplift of the continental lithosphere in the source region 

(Whipple, 2009).  

 

Fig. 4: Relations between tectonics, climate and erosion, modified after Beaumont et al. (2000). 

  

Additionally, rock erosion and weathering influence atmospheric CO2 concentration through two 

major reactions: silicates hydrolyse and carbonate dissolution. The dissolution and precipitation of 

carbonate rocks have a null balance at the geological scale in terms of atmospheric CO2 

consumption. However, the mean residence time of a limestone at the Earth’s surface being around 

500 Ma, carbonate formation is regarded as atmospheric carbonate storage at a long time scale. By 

contrast, silicate rocks hydrolysis is a very efficient reaction for consumption of atmospheric CO2. 

This gas is one of the important greenhouse gases regulating the temperature of the atmosphere. 

Therefore, an increase in silicate weathering would lead to climate cooling (Raymo and Ruddiman, 

1992). Through these mechanisms and chemical reactions, the erosion and alteration processes 
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impact on the climate. These two examples of coupling highlight the complexity of the exchanges 

and interactions between the different terrestrial, atmospheric and marine environments and 

reservoirs; and therefore the complexity of the main controlling factors: tectonics and climate via 

erosion (Molnar, 2009; Whipple, 2014).  

 

Studying surface processes and their quantification is necessary to understand the evolution of the 

topography and the main factors involved. The Himalayan range is influenced by very active tectonic 

and climatic processes. Indeed, the climate in the Himalayan region is dominated by the Asian 

monsoon, a seasonal phenomenon which corresponds to large changes of wind directions, leading 

to variability in the intensity and the spread of rainfalls throughout a year. Additionally, the 

Himalayan range is defined in an active tectonic context, with a relatively constant convergence rate 

since ~12 Ma (15-20 mm.yr-1; Avouac, 2003; Mugnier et al., 2004) and a high seismic hazard with 

earthquakes of magnitude higher than Mw=8. The sedimentary record, material eroded from the 

mountain belt transported by rivers and deposited in the low relief areas such as the Himalayan 

foreland basin and as distal as the Indus and the Bengal Fans, represent fundamental archives of the 

history of their source area and their depositional environment. The study of these sediments is 

critical to constrain the global evolution of surface processes at the basin scale, from the source 

areas to the depositional areas of these sedimentary rocks; and allows us to unravel the climatic, 

tectonic and erosion history of the mountain range. Numerous tools have been developed to analyse 

in detail these sediments and to track the temporal variation of the sedimentary accumulation, flux 

and erosion from the source area. Petrographic, isotopic and geochronological studies allow the 

acquisition of quantitative information of the relative contribution relative of the different source 

areas (e.g. Garzanti et al., 2004; Najman, 2006). Thermochronology, geochronology and provenance 

studies in the sedimentary record also allow the reconstruction of the tectonic history of the 

mountain belt (e.g. Lang et al., 2016). The comparison of the chronology of the sedimentary records 

with the climatic indicators such as palynology analysis allows determination of the influence of the 

climatic variabilities on the studied area (Kudrass et al., 2001). The Himalayan belt represents an 

ideal study area to understand the interplays between tectonics, erosion and climate.  

 

1.2.2. Topographic aspect 

The Himalayan belt has a first order homogeneous topography along strike which could be divided 

into four main units (Bookhagen and Burbank, 2006; Duncan et al., 2003; Yin et al., 2006) (Fig. 5). 

The Ganga and Brahmaputra plains with very flat topographies, present elevations ranging between 

100 and 200 m, with the exception of the 1800 m high Shillong Plateau, the only elevated 
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topography in the Himalayan foreland basin. The Himalayan foothills are located in the frontal zone 

of the range, they are about one hundred kilometres wide and culminate at a mean elevation of 

2000 m (Bookhagen and Burbank, 2006). North of the Himalayan foothills, the altitude sharply 

increases, over a band wide of ~50 km. This is the high part of the belt, which comprises the highest 

summits and an important relief with steep slopes, its elevation averages 5000 m. The Tibetan 

Plateau to the north, presents a low relief of high altitude (4500-5000 m), and extends over more 

than 1000 km to the north. These topographic units are less well defined in the eastern and western 

regions of the range, where the transition between the front of the range and the high relief zone is 

not as well defined (Yin et al., 2006), especially in Bhutan and further to the east where the 

transversal slopes are smoother (Bookhagen and Burbank, 2006; Duncan et al., 2003). 

 

1.2.3. Climatic aspect  

The climate in the Himalayan region is dominated by two major atmospheric systems, the Indian 

Summer Monsoon (ISM) and the Westerlies (Kotlia et al., 2015). In the northern hemisphere 

summer, air masses enriched in moisture are transported from the Bay of Bengal towards the 

Himalayan range (e.g. Molnar et al., 2010). In winter, the moisture is mostly carried from the 

Mediterranean, Black and Caspian seas by the Westerlies (Benn and Owen, 1998; Cannon et al., 

2015). The Westerlies have a stronger influence on the western Himalaya (Cannon et al., 2015; 

Caves et al., 2015; Kotlia et al., 2015), whereas the eastern Himalaya, more proximal to the Bay of 

Bengal, is characterised by  high humidity (Bookhagen and Burbank, 2010). On the Indian continent, 

the Westerlies are called the dry season or the winter monsoon whereas the ISM is called the wet 

season and constitutes 60 to 90% of the annual precipitations in the range (Bookhagen and Burbank, 

2010) and in the plain (Rao, 1973).  The initiation of the ISM has been suggested to occur at the 

Paleogene-Neogene transition or in Late Eocene times and its temporal variations are thought to 

influence the erosion rates in the Himalaya (Bookhagen et al., 2005a; 2005b; Clift et al., 2008a; Clift 

et al., 2008b; Licht et al., 2014; Thiede et al., 2005; Thiede et al., 2004; Vance et al., 2003; Wobus et 

al., 2003). 

 

1.2.4. Interplays between tectonics, climate and erosion  

The Himalayan range acts as an orographic barrier and therefore has a major influence on global and 

local climate (Boos and Kuang, 2010; Molnar et al., 2010). Bookhagen and Burbank (2006; 2010) 

have studied the spatial distribution of the precipitations along the Himalayan range using satellite 

records over a 10 years period (1998-2007) (Fig. 5). They observed a spatial correlation between the 

topography of the orogen and the distribution of the precipitation (Bookhagen and Burbank, 2006; 
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2010). Indeed, the parts of the range presenting well defined transitions between the foothills and 

the high range are affected by two bands of precipitation whereas precipitation is more diffuse and 

better spread over the different topographic units at the eastern and western Himalayan 

terminations. Additionally, the results show that the southern slope of the Shillong Plateau is 

characterised by high precipitation.  

 

 

Fig. 5: Top figure - Calibrated TRMM-based monsoon rainfall amounts averaged from January 1998 

to December 2005. The data comprises instantaneous rainfall measurement with a spatial resolution 

of ~5 x 5 km. Bottom figure - Swath profiles running from south (S) to north (N) from the a) north-

western, b) and c) central, and d) eastern Himalaya as indicated on the top figure. Shaded areas 

denote ±2σ ranges. Light grey shading denotes topographic and dark grey shading rainfall profiles. 

Heavy, black line indicates relief. (Bookhagen and Burbank, 2006) 
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The extensive Himalayan river drainage network is considered to be controlling 25% of the global 

sediment budget (Raymo and Ruddiman, 1992). The Asian monsoon strengthening led to a higher 

amount of rainfall in the southern edge of the Himalaya, increasing the net discharge of the 

southern Himalaya. During the summer monsoon, the amount of precipitations and the river 

discharge are reduced in the drier region of the northern and central regions of the Himalaya. This 

creates semi-arid environments where much of the summer river discharge is derived from the 

melting of snow cover. River courses can be strongly influenced by tectonic uplift (Friend et al., 

1999). The structural features and the bedrock lithologies can control river paths, the latter are likely 

modified by tectonic uplift during orogenic development (Stokes et al., 2008). Transverse rivers 

bisect large scale geological features (Oberlander, 1985), whereas rivers flowing parallel to the 

strikes of such structures are known as longitudinal or axial. The drainage pattern in the Himalaya is 

unusual: the central part of the range is drained by the Ganga and its tributaries, and the eastern 

and western terminations are exclusively drained by the Brahmaputra and the Indus rivers, 

respectively. The latter rivers take their source in Mount Kailash and have near symmetrical courses, 

each of them flowing along the range in opposite directions as axial rivers. They become transversal 

when crossing the eastern and western terminations before flowing in the foreland basin to 

eventually reach the Bengal and the Indus Fans, respectively. Another characteristic of the 

Himalayan drainage network is that the high range does not constitute a major drainage barrier 

despite its high elevation. As the Indus and the Brahmaputra, numerous rivers flowing in the 

Himalayan foreland basin have their source to the north of the high range. The gaps allowing these 

rivers to reach the south of the range are characterized by high exhumation rates (Burbank et al., 

1996; Jessup et al., 2008; Thiede et al., 2006; Zeitler et al., 2001). It is widely considered that the 

mountain landscapes and their geomorphology are mainly shaped through erosion. Sediments are 

removed and redistributed in the lithosphere, and the resulting mass re-equilibration can lead to 

lithospheric uplift and rock exhumation through isostatic rebound. Rock exhumation is the result of 

erosion and uplift. In other words, the creation of high topography lead to isostatic rebound and 

fresh rock exposure erosion, and therefore exhumation processes.  

 

Numerous studies suggest that a strong coupled feedback mechanism exists between erosion and 

tectonic forcing where surface erosion can encourage metamorphic exposure and lithospheric 

deformation (e.g. Avouac and Burov, 1996; Beaumont et al., 1992; Willett, 1999; Zeitler et al., 2014; 

Zeitler et al., 2001). Zeitler et al. (2001) proposed that the rapid exhumation and young peak 

metamorphism of the Himalayan syntaxes has been enhanced by intense river incision. In this 

model, the tectonic aneurysm model, the removal of upper crustal layers by erosion and incision 
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weakens the lithospheric crust and allows warmer material from mid crustal depths to flow towards 

the surface in an attempt to fill the topographic gap created by erosion. In this hypothesis, if the 

erosion persists, exhumation and upward flow of crustal material will occur, sustaining high relief 

and elevation. In this context of ductile material exhumation, decompression melting and low 

pressure/high temperature metamorphism of this lower crustal material may occur (see summary in 

Bracciali et al., 2015). Similarly, the Channel Flow model (Beaumont et al., 2001) suggests that 

focused erosion on the southern front of the Tibetan Plateau has encouraged the ductile extrusion 

of the Greater Himalayan units. However, these models are challenged (e.g. Bracciali et al., 2015; 

Hubbard, 1989; Robert, 2008; Wang et al., 2014b; Yin, 2006) and the debate remains as to whether 

erosion is a triggering factor for tectonics, or if it is the contrary, the exhumation and uplift as the 

trigger of intense erosion. 

 

Overall, tectonics and climate are inter-dependent; the tectonics of orogens is moderated by climate 

through erosion. Rock exposure by tectonics or erosion is critical to the feedback governing changes 

in climate, whilst topography influences rainfall. In order to better constrain the interplay between 

tectonic-climate-erosion processes in the Himalaya, it is necessary to acquire a good understanding 

of the nature and timing of Himalayan events involving these factors. 

 

1.3. Geology of the Himalaya 

The Himalaya and the Tibetan Plateau result from continental collision between Indian and Asian 

lithospheric plates (Powell and Conaghan, 1973). The Indian plate separated from Gondwana 

between 120 and 130 Ma (Metcalfe, 1996) and progressed northward, the Indian plate eventually 

subducting below the Asian margin (Dercourt et al., 1993). The subsequent closure of the Tethyan 

sea portion which existed between the Indian and Asian plates has been dated at 50-55 Ma 

(DeCelles et al., 2004; Najman et al., 2012; Rowley, 1996). In the western part of the Himalaya, the 

closure of the Tethys was accommodated by two north dipping subduction zones active in the latest 

Cretaceous-Paleogene times ; one subduction zone was under the south Asian active margin, at the 

modern Shyok suture zone and the other subduction was intra-oceanic, localised further south and 

corresponding to the modern Indus suture zone (Corfield et al., 1999; Mahéo et al., 2000; Reuber et 

al., 1987; Robertson, 2000). Two volcanic arcs formed as a consequence, the Transhimalayan 

Andean-style batholith which crops out along the southern Asian margin (e.g. Honegger et al., 1982) 

and an intra-oceanic arc (e.g. Dietrich et al., 1983). This process has functioned until the India-Asia 

continent-continent collision in early Eocene times (Dupont-Nivet et al., 2010; Najman et al., 2010; 

Najman et al., 2017; Zhuang et al., 2015), with a sharp decrease of convergence rates between the 
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two plates from ~15 cm.yr-1 to 4-5 cm.yr-1 (Guillot et al., 2003; Molnar and Tapponnier, 1975; Patriat 

and Achache, 1984). The resulting crustal thickening and shortening has led to the formation of the 

Tibetan Plateau and the Himalayan belt (Hodges, 2000; Yin and Harrison, 2000). The collision and the 

continuous convergence have then deformed both lithospheric plates and to the progressive 

formation of an orogenic prism constituted of a successive stacking of Indian plate crust sheets. This 

deformation has affected a large part of the Asian continent, from the Hindu Kush to the China Sea 

and from the southern edge of the Himalayan belt to Siberia, and led to the south-eastward lateral 

extrusion of the Eurasian continent (Molnar and Tapponnier, 1975; Replumaz and Tapponnier, 2003; 

Tapponnier et al., 1982; Tapponnier et al., 2001). The deformation remains active at the present day 

and the resulting earthquakes affect the entire Himalayan system (Kumar et al., 2006).  

 

The total shortening accommodated by the Himalayan range is estimated from reconstruction of the 

relative movement of the tectonic plates. Over a total post-collision convergence of 2600±900 km 

between India and Asia, 1700±610 km are associated with the Asian block deformation (Achache et 

al., 1984; Besse and Courtillot, 1988; 1991; Patriat and Achache, 1984). The remaining 900 km are 

regarded as accommodated by Himalayan shortening (Le Pichon et al., 1992). 

 

The Himalayan mountain belt strikes in a general NW-SE direction and delimitates the Tibetan 

Plateau to the north from the Indian sub-continent to the south. The range’s eastern and western 

extremities are the Himalayan syntaxes, respectively the Namche Barwa and the Nanga Parbat 

syntaxes. The main geological terranes which comprise the Himalaya are described as follows, from 

north to south (Figs. 6 and 7).  

 

 



25 
 

 

Fig. 6: General and simplified geology of the Himalayan range (Galy and France-Lanord, 1999; 

Robert, 2008). 

 

 

Fig. 7: Simplified N-S geologic cross-section of the central Himalayan range showing the main 

Himalayan faults and tectonostratigraphic units. Abbreviations are: MFT- Main Frontal Thrust; MBT – 

Main Boundary Thrust; MCT – Main Central Thrust; STD – South Tibetan Detachment. (Bookhagen 

and Burbank, 2006; Robert, 2008) 

 

The Lhasa and Karakoram Blocks, to the far north of the Himalayan are both considered of similar 

affinity and to represent the original Eurasian continental plate (e.g. Gaetani, 1997; Gaetani et al., 

1990; Le Fort et al., 1994; Rolland et al., 2002a), now separated by the Karakoram Fault (Searle et al., 

1988). The Lhasa-Karakoram Block is composed of metamorphic basement of Mid Proterozoic – 
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Early Cambrian age, overlain by Palaeozoic to Mesozoic low grade meta-sediments (Yin and 

Harrison, 2000).  

 

The Kohistan Ladakh Island Arc formed as a result of intra oceanic subduction within the Tethys 

Ocean and lies at the southern margin of the Lhasa-Karakoram Block.  The Kohistan Ladakh Island 

Arc migrated further north due to the oceanic crust subduction under the Eurasian margin. The 

subsequent arc-continent collision eventually occurred at Mid-Cretaceous to Early-Paleogene times 

(e.g. Clift et al., 2000; Maheo et al., 2006; Najman et al., 2017; Robertson and Degnan, 1994; Rolland 

et al., 2000; Rolland et al., 2002b; Schärer et al., 1984; Searle et al., 1988; Sutre, 1990; Treloar et al., 

1996; 1989), creating the Shyok Suture Zone (SSZ; Robertson and Collins, 2002). Northward 

subduction of oceanic lithosphere beneath the Eurasian southern margin continued after arc-

continent collision (e.g. Allegre et al., 1984; Garzanti et al., 1987; Honegger et al., 1982) leading to 

Andean style plutonism and volcanism forming the granodioritic continental arc of the 

Transhimalayan Batholith.  

 

The Transhimalayan batholiths are extensively distributed over ~2500 km across the Lhasa terrane of 

southern Tibet. This elongated and continuous magmatic belt of Cretaceous-Paleogene age is 

characterized by geochemical variations throughout its length. Numerous Transhimalayan batholiths 

have been sub-categorised and classified according to their location and geochemistry (e.g. Lin et al., 

2013), see Fig. 8. The main Transhimalayan suite is the Gangdese Batholith that consists dominantly 

of Cretaceous to Eocene metaluminous granitoids with I-type geochemical affinity (Debon et al., 

1986; Ji et al., 2009a; b; Wen et al., 2008; Wu et al., 2010).  The Bomi-Chayu Batholith is another 

Transhimalayan suite, located in the eastern Himalaya (Chiu et al., 2009; Lin et al., 2013), see Fig. 8. 

The Gangdese Batholith or the entire Transhimalayan magmatic belt in general, has long been 

regarded as the main continental arc component produced by northward subduction of the Neo-

Tethyan oceanic slab beneath the Lhasa terrane.  
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Fig. 8: Sketch geological map showing the distribution of major batholiths from southern Tibet to 

west Burma. JS, Jinshajiang suture; BNS, Bangong-Nujiang suture; YTS, Yarlung-Tsangpo suture; PMZ, 

Paung Lauang-Mawchi zone; IMR, Indo-Myanmar ranges; TMB, Tagaung-Myitkyina belt. (Lin et al., 

2013 and references therein) 

 

The collision is recorded by the Indus-Yarlung suture zone (IYSZ), which juxtaposes the remnants of 

the pre-collision Indian passive margin sequence onto the Transhimalayan Asian batholiths and the 

Neo-Tethyan ophiolites (Hébert et al., 2012 and references therein).The Indus-Yarlung Suture Zone 

represents the line of collision between the Eurasian and Indian plates (Gansser, 1964). The suture 

zone is mainly composed of the Cenozoic Indus Basin sedimentary rocks (Clift et al., 2001; Searle et 

al., 1990; Wu et al., 2007) deposited in a basin setting evolving from forearc to intermontane during 

the initial phases of India-Eurasia collision. Therefore, the Cenozoic Indus Basin sediments record the 

pre-collisional marine to post-collisional continental history (Henderson et al., 2010; 2011; Searle et 
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al., 1990; van Haver, 1984). Basaltic pillow lavas of the Dras Arc units corresponding to Tethyan 

Cretaceous intra-oceanic volcanism and associated volcanoclastic turbidite sediments deposited in 

the forearc of the Nidam Formation are also present in the Suture Zone along with the Aptian 

platform carbonates of the Khalsi Limestone (Clift et al., 2000; Reuber, 1989; Robertson and Degnan, 

1994; Sutre, 1990). The Indus Basin sediments either are thrust bound or overlie  unconformably the 

Transhimalaya rocks to the north (Gansser, 1977). 

 

South of the Indus-Yarlung Suture Zone are the main Himalayan litho-tectonic units extending 

throughout the entire Himalayan arc and separated by north dipping crustal faults (Le Fort, 1975; Yin 

and Harrison, 2000). These units present variations restricted to certain part of the orogen (e.g. 

windows, klippens, gneiss domes or out-of-sequence thrusts) (Hodges, 2000).  

 

The Tethyan Himalayan Series lie directly to the south of the Indus-Yarlung Suture Zone, and are 

composed of marine carbonate and siliciclastic sedimentary rocks. They were deposited during Late 

Proterozoic to Eocene times on the Indian continental passive margin and are intercalated with 

Paleozoic and Mesozoic volcanic rocks (Gaetani and Garzanti, 1991; Garzanti et al., 1986; Yin et al., 

2006). Lying in the southern part of the Tibetan Plateau, the Tethyan Himalayan Series lithology and 

stratigraphy varies along the orogen and is also present in more meridional location within the belt 

as tectonic klippens. The Tethyan Himalaya is delimited to the north by the normal fault system of 

the South Tibetan Detachment which was active until Early Miocene time (Burchfiel et al., 1992; 

Kellett et al., 2013). 

 

The crystalline Greater Himalayan Series crop out to the south of the Tethyan Himalayan Series and 

comprise part of the highest Himalayan summits. They consist of Neoproterozoic – early Palaeozoic 

metasedimentary rocks and associated Cambro-Ordovician intrusive rocks of Indian plate origin 

(schist, gneisses, and migmatites deformed and metamorphosed) (DeCelles et al., 2000; Gansser, 

1983; Gehrels et al., 2003; Myrow et al., 2003; Parrish and Hodges, 1996; Richards et al., 2005). High 

grade metamorphism and intrusive crystalline complexes generally compose the Greater Himalayan 

Series. The Himalayan orogenesis affected the Greater Himalayan Series with a polyphase 

metamorphic event in the Cenozoic. Barrovian-to-Buchan style prograde metamorphism occurred 

between 37-25 Ma (Searle et al., 1992; Simpson et al., 2000; Vance and Harris, 1999; Vannay and 

Hodges, 1996; Walker et al., 1999) with subsequent leucogranites intrusion between 25-12 Ma as a 

result of decompression melting of the Indian Plate during the advanced stages of collision (Gansser, 

1964; Guillot et al., 1993; Hodges et al., 1996; Le Fort, 1975; Le Fort, 1996; Le Fort et al., 1987; 
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Parrish and Hodges, 1996; Prince et al., 1999; Searle et al., 1997; Simpson et al., 2000; Vance and 

Harris, 1999). In the western Himalayan extremity region, the Greater Himalayan Series can be 

difficult to differentiate from the Tethyan Himalayan Series and is present as a sedimentary series of 

low-grade metamorphism (Yin et al., 2006). The Greater Himalayan Series are bounded to the south 

by the Main Central Thrust (MCT). The MCT is defined as a ductile shear zone wide of between few 

tens of meters to few kilometres (Le Fort, 1975) which initiated at least between 23-20 Ma (Hodges 

et al., 1996; Hubbard, 1989). 

 

Adjacent to the Greater Himalayan Series to the south are the Lesser Himalayan Series, 

predominantly composed of low-grade (greenschist facies) to unmetamorphosed Proterozoic to 

Early Miocene sedimentary rocks from the Indian shelf (DeCelles et al., 1998b; Frank et al., 1995b; 

Oliver et al., 1995; Tewari, 1993; Valdiya, 1980; Valdiya and Bhatia, 1980; Yin et al., 2006). Meta-

volcanic rocks and intrusive gneisses are also present in this unit (e.g. DeCelles et al., 1998a; Frank et 

al., 1995a; Upreti, 1999), as well as Palaeocene-Eocene limestone formations in rarer abundance. 

Fossil assemblages lacking within the Lesser Himalaya led to difficulties in attempting stratigraphic 

reconstruction. However the Lesser Himalaya is divided into two groups (e.g. Myrow et al., 2003), 

separated by a discordance (Upreti, 1999) in some regions: 1) the Paleo-Proterozoic to Meso-

Proterozoic volcano-clastic sedimentary rocks and orthogneisses of the Inner Lesser Himalaya and 2) 

the dominantly Neoproterozoic-Cambrian phyllites and marbles of the Outer Lesser Himalaya 

(Richards et al., 2005), the marbles being associated with quartz-arenite of Mesozoic series of the 

Gondwana (Gansser, 1964) and Cenozoic series. The Lesser Himalayan series are delimited to the 

south by the Main Boundary Thrust (MBT) and are also present in tectonic windows. The initiation of 

the MBT is estimated at 12 to 10 Ma (Delcaillau, 1997; Meigs et al., 1995) or latter, at ~8 Ma (Huyghe 

et al., 2005). 

 

South of the MBT lies the Sub-Himalayan unit, which comprises Himalayan foreland basin sediments 

of Eocene to Pleistocene age. Among these sediments constituting the erosion products of the 

Himalayan range, the Miocene to Pleistocene Siwalik Series form an apron in the southern edge of 

the front belt (Yin et al., 2006). These are detrital fluvial deposits sub-divided in three units, the 

Upper, Middle and Lower Siwaliks (Gautam and Appel, 1994; Gautam and Fujiwara, 2000; Ojha et al., 

2009). The oldest Lower Siwaliks consist of clayey sandstones deposited by meandering rivers 

(Nakayama and Ulak, 1999). The typical sandstones of the Middle Siwaliks were deposited by sandy 

braided rivers and the Upper Siwalik by conglomeratic braided rivers. The Siwalik sedimentary rocks 

are exposed along the range over a width varying between 40 km in Nepal and few kilometres only 
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in north-eastern India. The Main Frontal Thrust (MFT) system emplaces the Siwalik sedimentary 

rocks over the modern day foreland basin sediments of the Indo-Gangetic plains (Gansser, 1983; 

Hodges, 2000; Molnar, 1984). The MFT is the most recent thrust and the most external to the range. 

It defines the front of the range and progresses southward. It has initiated at about 2 Ma in the 

Central Himalaya (Mugnier et al., 2004; van der Beek et al., 2006) and is seismically active  (Lavé et 

al., 2005; Mugnier et al., 2013). 

 

Structural and geophysical studies have suggested that the major thrusts of the fold and thrust 

Himalayan belt are linked in depth as a main crustal décollement, the Main Himalayan Thrust (MHT), 

along which the Indian plate is underplated under Tibet (Avouac, 2003; Nábělek et al., 2009; Schulte-

Pelkum et al., 2005; Zhao et al., 1993). Additionally, various investigations have provided evidence of 

lateral variations of the structure of the MHT along the range (Berger et al., 2004; Coutand et al., 

2014; Robert et al., 2011). The MHT appears to have a ramp-flat-ramp geometry with lateral 

variations in the localisation, the depth and the dip of the ramps (Avouac, 2003; Jouanne et al., 

2004; Schulte-Pelkum et al., 2005). 

 

The Himalayan syntaxes are distinct from the main central part of the range. The development of the 

Himalayan syntaxes remains highly debated; they have been subjected to anomalously young (<10 

Ma) high grade metamorphism, melting and high rates of exhumation (>5 to 10 km/Myr) (Booth et 

al., 2009; Booth et al., 2004; King et al., 2016; Lang et al., 2016; Seward and Burg, 2008; Zeitler et al., 

2014), compared to the central Himalaya where Early Miocene metamorphism and modern 

exhumation rates of ~2mm/yr are common (e.g. Thiede and Ehlers, 2013). They are constituted of 

Greater Himalayan gneiss domes which form important massifs of high elevation. These massifs are 

the Nanga Parbat to the west and the Namche Barwa to the east. These syntaxes present numerous 

similarities and an important symmetry. Sharp changes in orientation of the main structures which 

turn at 90°, forming tectonic windows cutting the overlying terrane are observed in the syntaxial 

regions. The Nanga Parbat exhumes across the Kohistan Ladakh arc terrane whereas the Namche 

Barwa exhumes through the Transhimalayan batholiths. Additionally, these two massifs are highly 

incised by the Indus and Yarlung-Brahmaputra rivers, respectively.  
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2.  STUDY AREAS AND OBJECTIVES OF THE Ph.D. 

In this section, the study areas of the thesis are presented as well as the questions investigated 

further in this manuscript. The eastern Himalayas constitute the focus of this Ph.D. and are 

characterised by the eastern syntaxis and the neighbouring Shillong plateau.  

 

2.1. The Shillong Plateau 

A unique feature in the Himalayas, the Shillong plateau is the only elevated topography in the 

Himalayan foreland basin. Located south of the orogen deformation front, it forms a 1600 m high, 

40000 km2 Indian plate Precambrian basement tilted northward by 2-4 ° and overlain by a  few 

patches of Cenozoic sedimentary rocks (Biswas et al., 2007; Clark and Bilham, 2008; Yin et al., 2010). 

Being the wettest place on Earth on its southern flank (Bookhagen and Burbank, 2010), it has also 

been described as a barrier preventing winds transporting moisture from the Bay of Bengal towards 

the Himalayan front (Bookhagen et al., 2005a; Grujic et al., 2006). The Shillong plateau has been 

proposed to have had a major influence on eastern Himalayan tectonics in terms of strain 

partitioning as well as on regional climate leading to reduced erosion rates in the orogen in its lee. 

To understand these tectonic-erosion-climate couplings in the eastern Himalayas, constraining the 

timing of the Shillong Plateau surface uplift is critical. 

 

The Shillong plateau, along with the Mikir hills, is located between the Indo-Burman Range to the 

east and south and the Himalayan range to the north and is surrounded by the Brahmaputra River to 

the north and west. It is a crystalline Protero-Paleozoic basement (Chatterjee et al., 2007; Ghosh et 

al., 1994; Mitra and Mitra, 2001) bounded by two steep reverse and seismically active faults which 

are possibly of crustal scale (Mitra et al., 2005). The northern WNW-ESE trending fault is named 

Oldham Fault and was the site of the largest recorded intraplate earthquake (Bilham and England, 

2001; Oldham, 1899; Rajendran et al., 2004). The southern E-W trending Dauki Fault juxtaposes the 

Shillong Precambrian metamorphic and intrusive rock basement against the 18 km thick Cenozoic 

sedimentary rocks from the southern adjacent Surma basin (Alam et al., 2003; Johnson and Alam, 

1991). The Shillong Plateau has been proposed to be uplifted either  1) as a popup structure along 

the Oldham and Dauki Faults (Bilham and England, 2001; Islam et al., 2011); 2) through the Dauki 

Fault being a north dipping thrust implying the Oldham Fault to be a back thrust (Yin et al., 2010); or 

3) as a fault propagation fold where the Oldham structure would be a back thrust and the Dauki 

structure the surface expression of a blind fault dipping northward (Clark and Bilham, 2008). The 

plateau is separated from the Mikir hills by the NW-SE trending Kopili shear zone (Kayal et al., 2010) 

which accommodates the differential clockwise rotation between the Shillong and the eastern 
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Assam blocks by a 3 mm.yr-1 dextral displacement (Vernant et al., 2014). The plateau is located 

where the forebulge of the Himalayan foreland basin should be in NE India (Rath et al., 1997; Singh 

et al., 1998) and it has been suggested that the Himalayan forebulge and foredeep have been 

replaced by a shallow basin floor north of the Shillong plateau (Clark and Bilham, 2008; Dasgupta et 

al., 1987). Continental sedimentary rocks aged Late Cretaceous lie unconformably on the Shillong 

basement in its southern, eastern and western part, indicating that the basement surface itself has 

been exposed to erosion at this time (Biswas et al., 2007). Then the plateau has been submerged 

and buried under a Cenozoic shallow marine and deltaic sedimentary cover reaching at least 3 km in 

thickness (Chakraborty, 1972). This sedimentary cover contains the erosion production of the 

Himalaya deposited by the palaeo-Brahmaputra in its flood plain from Early Miocene times (Bracciali 

et al., 2015) until the uplift of the Shillong Plateau in Pliocene times (Johnson and Alam, 1991; 

Najman, 2006; Najman et al., 2016; Uddin and Lundberg, 1999). 

 

Climatic models have been proposed such as the Shillong plateau acting as a shield located in the 

Indian Summer Monsoon trajectory, perturbing the regional precipitation pattern (Grujic et al., 

2006). Apatite fission-track data from an EW transect along Bhutan indicate slower erosion rates in 

the lee of the Shillong plateau rain shadow, than in western Bhutan. Additionally, a deceleration in 

erosion rates in eastern Bhutan, i.e. in the region protected from the summer monsoon, has been 

observed after 5.9 Ma. This timing has been interpreted as the maximum age of the onset of Shillong 

plateau uplift (Grujic et al., 2006). This hypothesis has been questioned by Adlakha et al. (2013), 

Adams et al. (2015) and Coutand et al. (2014) who prefer these variations in erosion rates to be 

explained by variable strain partitioning controlling the exhumation of the plateau. Presenting a 

unique geometry in comparison with the Himalayan arc (Bendick and Bilham, 2001), the Shillong 

absorbs up to 1/3 of India-Asia convergence in the eastern Himalayas, protecting Bhutan from 

seismic risk at the expense of Bangladesh (Bilham and England, 2001). Considering the Indian-Sunda 

plates convergence, the Shillong plateau uplift might also have played an important role in 

facilitating the recent and fast westward propagation of Indo-Burman Ranges outer wedge (Maurin 

and Rangin, 2009). These combined processes might have been responsible for major changes in the 

paleo-drainage of the Brahmaputra River. Also, Clark and Bilham (2008) propose that the potential 

coeval kinematic changes (e.g. initiation of EW extension in Central Tibet, eastward expansion of 

high topography in Tibet, onset of rotation of crustal fragments in SE Tibet and reestablishment of 

eastward subduction beneath the IBR) could have been originated by the onset of Shillong plateau 

exhumation. Better constraint to the Shillong plateau evolution is essential to understand associated 

climate-tectonism-erosion couplings in the eastern Himalayas.  
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The timing of Shillong plateau uplift has been debated since the last two decades. Exhumation rate 

studies of the Shillong Precambrian bed rock differ from modern GPS velocity measurements 

(Vernant et al., 2014). A decoupling between rock exhumation and surface uplift has thus been 

suggested. Paleo-erosion surfaces in the denudated northern part of the plateau and Cretaceous 

apatite (U-Th)/He and fission-track ages suggest the absence of significant burial after this time 

(Biswas et al., 2007). However, Cenozoic burial heating from a thick sedimentary cover followed by 

the plateau exhumation initiated at least 15-9 Ma ago have been determined from bedrock 

thermochronology in the southern part of the plateau (Biswas et al., 2007; Clark and Bilham, 2008). 

Different sediment cover and basement erodibilities has been proposed to explain the chronological 

decoupling between exhumation and surface uplift, the latter remaining poorly constrained at some 

time after 3-4 Ma (e.g. Biswas et al., 2007). In the Surma basin, a shift in sediment thickening 

direction from south to north has been studied and interpreted as the change from a passive margin 

to a flexural basin resulting from loading by the uplifting Shillong Plateau. Johnson and Alam (1991) 

and Uddin and Lundberg (2004) suggested this major subsidence associated with the Shillong 

plateau uplift to be occurring in Pliocene times. However, using seismic data and sedimentary record 

in the Surma basin, along with flexural modelling, Najman et al. (2016) propose the Shillong Plateau 

topographic growth to be aged 3.5 to 2 Ma.  

 

The aim of the chapters 2 and 3 is to precisely constrain the timing of the rise of the Shillong Plateau, 

and to better understand the causes of its surface uplift.   

 

2.2. The Namche Barwa syntaxis 

Located at the eastern termination of the Himalaya, the Namche Barwa syntaxis corresponds to the 

NE Indian plate indentor and presents outstanding characteristics arousing a wide interest in the 

earth scientists’ community.  The Namche Barwa region is dominated by extreme relief and deep, 

steep gorges (up to 5.6 km of local relief ; Korup et al., 2010)). In the core of the syntaxis, the 

Namche Barwa and the Gyala Peri massifs reach elevations of >7 km. The Tsangpo gorge, a <200-m 

wide, 200-km long fluvial knick-zone descending >2 km between the Namche Barwa and the Gyala 

Peri peaks is one of the deepest on Earth (e.g., Lang et al., 2013; Zeitler et al., 2001). With highest 

recorded erosional exhumation rates recorded on the planet (>5 mm/yr)(Larsen and Montgomery, 

2012; Stewart et al., 2008), the eastern syntaxis (only 2 % of the Yarlung-Tsangpo drainage area) 

contributes up to 50-70% of the Brahmaputra sediments (Enkelmann et al., 2011; Garzanti et al., 

2004; Lang et al., 2013; Singh and France-Lanord, 2002; Stewart et al., 2008). 
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The Namche Barwa syntaxis is composed of medium to high grade metamorphic crystalline rocks 

(schist, gneisses, and migmatites deformed and metamorphosed) of the Greater Himalaya intruded 

by Miocene Leucogranites. The structural trend bends around the eastern syntaxis, changing from E-

W to N-S striking. The Indian plate rocks are thought to have deformed into a sharp NE terminating 

complex antiformal uplift, that has folded the YTSZ (Burg et al., 1997). The resulting elongated NE 

plunging antiform (Burg et al., 1997) characterizing the Namche Barwa massif, has been suggested 

to expand both vertically and laterally and migrated northward since its initiation (Seward and Burg, 

2008). The MCT segments bounding the syntaxis have strike-slip components that are left-lateral 

and right-lateral to the west and to the east of the syntaxis, respectively (e.g. Burg et al., 1998). The 

northern tip of the syntaxis, cored by the Namche Barwa and the Gyala Peri massifs, is bounded by 

the IYSZ with the dextral Jiali–Parlung Fault zone to the NE (timing of the main stage motion 

between 18 and 12 Ma (Lee et al., 2003)) and the north dipping Nam-La thrust to the south of the 

Namche Barwa (e.g. Zeitler et al., 2014). The latter has been proposed to acts as a southern 

boundary of a pop-up structure with the Namche Barwa massif at its core (Ding et al., 2001). 

 

Very young bedrock thermochronological ages within the syntaxis record late Neogene (<10 Ma) 

high grade metamorphism and rapid syntaxial exhumation (e.g., Booth et al., 2009; Burg et al., 1998; 

Ding et al., 2001; Finnegan et al., 2008; Seward and Burg, 2008; Stewart et al., 2008; Zeitler et al., 

2014). In comparison,  peak metamorphism in the main arc of the range occurred in the Early 

Miocene, and lower exhumation rates of ~2 km/Myr are typical (e.g., Thiede and Ehlers, 2013 and 

references therein). The youngest phase of metamorphism restricted to the ~40 by 40 km area in 

the NE tip of the syntaxis, within the Namche Barwa and Gyala Peri massifs has been recorded by 3–

10 Ma with bedrock U–Pb zircon dating (Booth et al., 2004; Zeitler et al., 2014). The exceptionally 

young geo- and thermo-chronologic ages of this domal pop-up (rutile U-Pb <3 Ma) imply very high 

exhumation rates (>4 km/Myr) (Bracciali et al., 2016 and references therein). By contrast, the SW 

part of the syntaxis, south of the domal pop up, show generally older ages (Palin et al., 2014), with 

rutile U-Pb >9 Ma (Bracciali et al., 2016) and the entire syntaxial anticline shows evidence of 

Miocene (ca 24 to 16 Ma) metamorphic events within GHS rocks similar to the main part of the 

Himalaya (Burg et al., 1998; Palin et al., 2014). The decompression related to exhumation has been 

controversially suggested to have occurred after 4 Ma (Burg et al., 1998; Seward and Burg, 2008) 

and around 10 Ma (Booth et al., 2009; Zeitler et al., 2014; Zeitler et al., 2001) from bedrock studies. 

Published Neogene detrital thermochronological data from the eastern Himalayan foreland basin 

have inferred the syntaxial exhumation 1) to have increased by a 5 to 10-fold increase between 5 

and 6 Ma (Lang et al., 2016); 2) did not accelerate significantly before 4 Ma (Chirouze et al., 2013); 3) 



35 
 

had not significantly initiated prior to late-Pliocene time, and exhumed a at rates >4 km/Myr in the 

last 3 Myr (Bracciali et al., 2016).  

 

Several models have been proposed to explain the syntaxial rapid exhumation, and remain 

questioned. Bendick and Ehlers (2014) have modelled the 3-D thermomechanical evolution of plate 

collision with non-planar geometries, and explain the localized deformation and exhumation of the 

eastern syntaxis by the subduction geometry implying collision and deformation of geometrically-

stiffened syntaxial indentor in subducting slab. Structural buckling due to contraction in the orogenic 

indenter corner has also been suggested as an explanation for the rapid exhumation of the Namche 

Barwa syntaxis (Burg et al., 1997). Additionally, the peculiar drainage in the syntaxis area, for 

instance with its “big bend” (Zeitler et al., 2014), has been suggested to have evolved as a direct 

consequence of the syntaxial development, through river distortion and capture events (e.g. Clark et 

al., 2004; King et al., 2016). Alternatively, thermomechanical feedback has been suggested to explain 

the rapid exhumation, in which focused and intense incision of the Yarlung River after capture by the 

Siang-Brahmaputra led to rapid exhumation of the Namche Barwa massif, weakened the lower crust 

and set up tectonic inflow of material into what has been termed a “tectonic aneurism” (Koons et 

al., 2013; Zeitler et al., 2014; Zeitler et al., 2001). The latter model is challenged by the work of Wang 

et al. (2014b) suggesting that fluvial incision in the Namche Barwa region is the result of an increase 

in rock uplift after ~4 Ma; an uplift at this time being consistent with bedrock geochronological and 

thermochronological ages from Burg et al. (1998), Finnegan et al. (2008) and Seward and Burg 

(2008). Additionally, detrital studies have suggested that the timing of capture is of Early-Middle 

Miocene times (Bracciali et al., 2015; Lang and Huntington, 2014). Bracciali et al. (2016) invoke the 

ductile extrusion of weak lower crust from beneath Tibet possibly by “channel flow” decompression 

(Beaumont et al., 2001), initiating modestly in Miocene times followed by a Pleistocene acceleration 

of the syntaxis exhumation.  

 

In order to better document the models proposed to explain the outstanding syntaxial exhumation, 

the main objectives of chapter 2 and 3 are to constrain the timing of the onset of the rapid 

exhumation of the Namche Barwa syntaxis, and the exhumation rates prior to and after the onset.  
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3. APPROACH 

The Brahmaputra River flows to the north and the west of the Shillong Plateau and carries erosion 

products of the Namche Barwa syntaxis. Its deposits in the Himalayan foreland basin are the key 

elements of this thesis and are described in this section as their study constitutes the approach of 

this research work.  

 

3.1. The Brahmaputra River 

The Brahmaputra takes its source at Mount Kailash, where it is called the Yarlung-Tsangpo River, and 

flows for more than 1000 km to the east along the suture zone, before crossing the range to the 

south. Its course describes a 180 degrees turn when incising between the Gyala Peri and the Namche 

Barwa massifs, within the Himalayan eastern syntaxis. Downstream of Namche Barwa, the Yarlung-

Tsangpo River becomes the Siang River until it reaches the foreland basin in Arunachal Pradesh 

where it takes its most famous name, the Brahmaputra River. In the Brahmaputra flood plain, the 

river flows westward and turns southward, flowing around the Shillong Plateau, before reaching the 

Bay of Bengal.   

 

Since the Brahmaputra drains the Namche Barwa syntaxis, and its course has likely been perturbed 

by the uplift of the Shillong Plateau, the study of the Brahmaputra deposits allows us to answer the 

main research questions of this thesis.  

 

In the foreland basin, the Shillong Plateau rise is thought to have shifted the Brahmaputra north and 

west from its previously relatively straight SSW direction, in Miocene times (e.g. Chirouze et al., 

2013; Najman et al., 2016; Uddin and Lundberg, 1999). Upstream of the foreland basin, hypotheses 

on the palaeo-drainage of the Yarlung-Tsangpo River and its continuation as the Brahmaputra are 

numerous and remain debated. Harrison et al. (1992) argue that the modern drainage had been 

installed before the Himalayan orogenesis, while Bracciali et al. (2015) and Robinson et al. (2014) 

suggest that it has been installed since the early Miocene; and others propose that the modern 

drainage has been installed at least since 10 Ma (Brookfield, 1998; Chirouze et al., 2013; Lang and 

Huntington, 2014; Royden et al., 2000; Seeber and Gornitz, 1983). These various studies that 

propose river capture rather than antecedence suggest that the palaeo-Yarlung-Tsangpo had flowed 

further to the east into the Red and/or Irrawaddy rivers, east of the Namche Barwa (Bracciali et al., 

2015; Brookfield, 1998; Clark et al., 2004; Lang and Huntington, 2014; Seeber and Gornitz, 1983). 

Then the Siang River likely captured the Yarlung-Tsangpo by 1) headward erosion (Clark et al., 2004), 

2) lateral propagation of the massif (Seward and Burg, 2008) or 3) glacial dams mechanisms (Cina et 
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al., 2009). This capture could partly explain the impressive Tsangpo gorge knick point and the 

coincidence of fluvial incision and rapid rock exhumation (Zeitler et al., 2001). However, isotopic 

geochemistry data from the Bengal Fan supports the idea of a Yarlung-Tsangpo-Brahmaputra system 

depositing into the Bengal fan since the Mid-Miocene (Galy et al., 2010). Rapid erosion in the 

eastern Syntaxis explains the dominant input from the Namche Barwa area in the isotopic signature 

of modern Brahmaputra sediments in Assam, with minor contribution from Himalayan tributaries 

(Singh and France-Lanord, 2002). 

 

This work investigates the Neogene-Quaternary evolution of the paleo-Brahmaputra River to inform 

the tectonic history of the Shillong Plateau and the eastern syntaxis through provenance analysis in 

the foreland basin sediments.  

 

3.2. The Himalayan foreland basin Siwalik sediments 

A foreland basin is defined as a region of potential sediment accommodation formed in response to 

the growth of an orogenic belt (DeCelles and Giles, 1996) and filled with its erosion products. The 

Himalayan foreland basin contains the Paleogene-Quaternary erosion products of the range: the 

Siwalik sedimentary rocks which are deformed as the fold and thrust belt propagates southward. 

These sediments form an apron along the southern flank of the Himalayan belt (Yin et al., 2006); 

they are located between the MFT and the MBT. The Siwalik Group  is divided into three distinct 

units based on sedimentary facies: the Lower, Middle and Upper Siwaliks (DeCelles et al., 1998b; Yin 

et al., 2006). Up-section coarsening in the Siwaliks is interpreted as due to the progressive transition 

from deposition by low-gradient sinuous channels in a fluvio-deltaic setting to deposition by steep 

braided rivers in alluvial fans along the Himalayan front, as the Main Frontal Thrust propagated 

southward (Chirouze et al., 2012; Coutand et al., 2016). The Lower Siwaliks are mainly composed of 

alternating fine-grained sandstones and siltstones with common leaf-impressions and paleosols, 

interpreted in this area as deposited in a fluvio-deltaic plain environment (Chirouze et al., 2012; 

Coutand et al., 2016). The Middle Siwaliks, interpreted as a braided fluvial facies, consist of massive 

medium- to coarse-grained sandstone layers, with frequent cross-bedding, soft sedimentary 

deformation and increasing occurrence of conglomerates up-section. The Upper Siwaliks are mainly 

composed of conglomerates interbedded with sandstones and some siltstones, interpreted as 

pebbly braided-river deposits (e.g., Chirouze et al., 2012; Cina et al., 2009; Coutand et al., 2016; Lang 

and Huntington, 2014).  
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The Siwalik sedimentary rocks provide important information for the understanding of orogenesis as 

they record evidence of the tectonic (e.g., Coutand et al., 2016; DeCelles et al., 1998b; Lang et al., 

2016; Szulc et al., 2006), erosional (e.g., Bernet et al., 2006; Chirouze et al., 2013; Harrison et al., 

1993; van der Beek et al., 2006) and climatic (e.g., Quade et al., 1995a; Vögeli et al., in press) 

evolution of the hinterland. 

 

3.3. Provenance analysis in the Siwaliks 

Provenance studies help to unravel 1) the unroofing history of the source and 2) the potential 

control of foreland basin tectonics on the palaeo-drainage networks (DeCelles and Giles, 1996). The 

Brahmaputra River presents a characteristic Asian margin provenance signature as it drains rocks 

from the Mesozoic-Paleogene Transhimalayan batholiths in the southern Tibetan plateau before 

reaching the foreland. These rocks have a distinct composition and age characteristics useful to 

unravel erosion and sediment transport history (e.g. Cina et al., 2009). The distinction between 

Jurassic to Early Cenozoic Transhimalayan batholith of the Lhasa terrane and the mainly Proterozoic 

Himalayan rocks largely composed of variably metamorphosed Proterozoic-Eocene rocks with a few 

Miocene leucogranites (Chu et al., 2006; Mo et al., 2007) constitute relevant signals for provenance 

analysis. This method has been applied in the eastern Himalayan foreland basin  to better constrain 

the palaeo-drainage system in this region using εHf, bulk εNd data and zircon U-Pb dating (e.g. 

Bracciali et al., 2015; Chirouze et al., 2013; Cina et al., 2009; Lang and Huntington, 2014). In the 

Surma remnant ocean basin, Bracciali et al. (2015) observed palaeo-Brahmaputra detritus from c.a. 

18 Ma to 2.5 Ma interpreted as the result of an early Miocene Yarlung-Tsangpo-Siang capture. 

Numerous provenance studies have been performed on the Siwaliks in the eastern part of the 

Himalayan foreland (Fig. 9) and it has been inferred that the palaeo-Brahmaputra did not reach the 

Tista river NW of the Shillong plateau in Siwalik times (Cina et al., 2009) but it had flowed, from east 

to west, through the Siang section (Lang and Huntington, 2014), the Likabali section (Lang and 

Huntington, 2014), possibly in the Subansiri section (modern river sample shows Brahmaputra 

signature interpreted to be eroded from Neogene Siwalik deposits) (Cina et al., 2009), Kimin section, 

Itanagar section (Lang and Huntington, 2014) as Brahmaputra signature have been observed in all 

present Siwalik units. The Kameng section contains Gangdese batholith detritus from 7 to 3 Ma 

(Chirouze et al., 2013; Cina et al., 2009), see Fig. 9. 
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Fig. 9: Map of the eastern Himalayan syntaxis region (Lang and Huntington, 2014 and references 

therein). (a)The Yarlung River follows the Indus–Yarlung Suture Zone (IYSZ, dashed) along the 

southern margin of Tibet before sharply turning southward to flow through the eastern Himalayan 

syntaxis, becoming the Siang River prior to joining the Brahmaputra River in the eastern Himalayan 

foreland basin (drainage area shaded). (b) Regional geological map illustrating potential source 
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areas for <300 Ma zircons in igneous rocks north of the IYSZ and within the eastern Himalaya. Major 

tectonic features are labelled for reference: the Tipi Thrust (TPT), Main Boundary Thrust (MBT), Main 

Central thrust (MCT), and South Tibetan Detachment (STD).   

 

Additionally, 1) the very young (10 to <1 Ma) mineral growth and cooling ages of the Namche Barwa 

syntaxis (Booth et al., 2004; 2009; Bracciali et al., 2016; Burg et al., 1998; Ding et al., 2001; Finnegan 

et al., 2008; Zeitler et al., 2014) and 2) geochronological and thermochronological ages distinctive of 

the syntaxis in particular zircon rim U-Pb ages <10 Ma Bracciali et al. (2016), constitute a clear 

syntaxial signature. These diagnostic ages for specific thermochronological and geochronological 

systems have been used in the eastern Himalayan Siwaliks to track the eastern syntaxial detritus 

(Bracciali et al., 2016; Lang et al., 2016). Lang et al. (2016) applied zircon fission-track and white mica 

40Ar-39Ar dating on sedimentary rocks from the Siji section; they suggest an acceleration of the 

eastern syntaxis exhumation rates between 6 Ma and 5 Ma. 

 

The approach of this thesis is to track paleo-Brahmaputra and syntaxial deposits in two Siwalik 

sections. The first one, the Dungsam Chu section is located in the north of the Shillong Plateau. The 

depositional dating and sedimentary analysis of the Dungsam Chu is presented in chapter 1. The 

provenance analysis through zircon U-Pb geochronological system is described in chapter 2. 

Together, chapter 1 and 2 date the onset of the rise of the Shillong Plateau as deduced from shifting 

of the Brahmaputra River, and investigate its causes and consequences. 

 

The second section, the Sibo-Remi-Siang section is the easternmost Siwalik section and the most 

proximal to the syntaxis. The depositional dating, sedimentology analysis and U-Pb geochronological 

analysis for provenance is detailed in chapter 3. The syntaxial provenance analysis and constraint to 

exhumation of the syntaxis from data from the Sibo-Remi-Siang section has been carried out using 

thermochronology and rutile U-Pb geochronology and is summarized in chapter 4. Both chapter 3 

and 4 document the Neogene-Quaternary evolution of the Namche Barwa syntaxis. 
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4. METHODS 

This section describes the methods used in this thesis work. Analyses performed by the author are 

developed here whilst data provided by collaborators are only briefly mentioned. Complementary 

information for each analytical method used in this manuscript is provided in the appropriate 

chapters and the corresponding appendices.  

 

4.1. Depositional age determination  

The main sedimentary depositional age determination of this work has been realised through 

magnetostratigraphy, for both Dungsam Chu and Sibo-Remi-Siang section (chapters 1 and 3). 

Therefore, general notions of magnetism and its application to the magnetostratigraphic dating of 

sedimentary rocks are presented here, followed by a brief description of complementary dating 

methods used in this thesis. The main descriptions of magnetism principles of this section are issued 

from Butler (1992). 

 

4.1.1. Magnetic field 

The magnetic field H (Note that the variables formatted in bold are vectors throughout the section) 

is characterized by intensity and direction has a fundamental unit of A/m (SI). The magnetic moment 

is noted M of fundamental unit A.m2 and tends to align the axis of a dipole parallel to the magnetic 

field such as:  

E = −M.H = −M.H. cos⁡(θ) 

where E is the potential energy and θ the angle between M⁡and H.   

 

The magnetic intensity, J, or magnetization of a material is the sum of the magnetic moments per 

unit of volume enclosing those magnetic moments:  

J = (∑Mi
i

) /volume 

where⁡Mi is the constituent magnetic moment. 

 

In paleomagnetism, the direction of a vector such as the surface geomagnetic field is usually defined 

by the angles shown in Fig. 10a. The vertical component, Hv, of the surface geomagnetic field, H, is 

defined as positive downwards and is given by: 

Hv = H. sin⁡(I) 

where H is the magnitude of H and I is the inclination of H from horizontal, ranging from –90° to 

+90° and defined as positive downward.  
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The horizontal component, Hh, is given by: 

Hh = H. cos(I) 

and the geographic north and east components are respectively: 

Hn = H. cos(I). cos⁡(D) 

He = H. cos(I). sin⁡(D) 

where⁡D is the declination, i.e. the angle from geographic north to horizontal component, ranging 

from 0° to 360°, positive clockwise. The determination of I and D completely describes the direction 

of the geomagnetic field. 

 

A concept that is central to many principles of paleomagnetism is that of the geocentric axial dipole 

(GAD), shown in Fig. 10b. In this model, the magnetic field produced by a single magnetic dipole at 

the centre of the Earth and aligned with the rotation axis is considered. In this model, the inclination 

of the field can be determined by: 

tan⁡(I) = 2. tan(λ) 

where⁡λ is the geographic latitude, ranging from –90° at the south geographic pole to +90° at the 

north geographic pole. This relationship between⁡I and⁡λ is often referred to as “the dipole 

equation” and is essential to understanding most of paleogeographic and tectonic applications of 

paleomagnetism.  

  

 

Fig. 10: (a) Principal components of the Earth magnetic field H. (b) Geocentric Axial Dipole model 

(after Butler, 1992 and references therein). 

 

A B 
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4.1.2. Natural Remanent Magnetism (NRM) 

In situ magnetization of rocks is the vector sum of two components: 

J = Ji + Jr 

where Ji is the induced magnetization and Jr is the natural remanent magnetism. The magnetic 

susceptibility, χ, can be regarded as the magnetizability of a substance. Presence of the local 

geomagnetic field, H, produces the induced magnetization: 

Ji = χ.H 

Where the bulk susceptibility, χ, is the susceptibility resulting from contributions of all minerals. This 

induced magnetization Ji usually parallels the local geomagnetic field and can be the dominant 

component for many rock types. However, acquisition of induced magnetization is a reversible 

process without memory of past magnetic fields. It is the remanent magnetization that is of concern 

in paleomagnetism. 

 

The Natural Remanent Magnetization (NRM) is the remanent magnetization present in a rock 

sample prior to laboratory treatment. NRM depends on the geomagnetic field and geological 

processes during rock formation and during the history of the rock. NRM is typically composed of 

more than one component. The NRM component acquired during rock formation is referred to as 

primary NRM and is the component sought in most paleomagnetic investigations. However, 

secondary NRM components can be acquired subsequent to rock formation and can alter or obscure 

primary NRM. The secondary components of NRM add vectorially to the primary component to 

produce the total NRM: 

NRM = primary⁡NRM+ secondary⁡NRM 

 

4.1.3. Detrital Remanent Magnetism  

Detrital remanent magnetism (DRM) is acquired during deposition and lithification of sedimentary 

rocks. When a detrital rock is deposited, magnetic particles contained in the sedimentary material 

from the suspended load are subjected to water friction forces, gravity and a magnetic field. 

Suspended load will orientate parallel to the magnetic field. During deposition, the major part of the 

particles will conserve this orientation which is the orientation of the natural Remanent 

magnetisation of deposition. This orientation classically presents an error in inclination towards the 

horizontal plane. However, in an environment where hydrodynamic forces are important, this 

orientation is not perceptible. On the contrary, when the sediment is recent, the cohesion between 

particles is low and magnetic particles can re-orientate in the magnetic field at the time, especially if 

grainsize is low. It is an early post-detrital magnetisation which generally does not present bias on 

the inclination. This implies a time difference between the deposition and the acquirement of this 
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magnetisation. However, in the Himalayan foreland basin, the high accumulation rates lead to no 

significant time difference in the dating. The sediment is then buried and compacted mechanically. 

During diagenesis, post-deposition physical and chemical processes such as dissolution, 

precipitation, cementation or bioturbation can affect the magnetization and the material is 

susceptible to acquiring a secondary magnetisation and therefore effect on the paleomagnetic 

record. 

 

4.1.4. Magnetic field inversion and GPTS 

Numerous inversions of the Earth’s magnetic field occurred over geologic time. These inversions 

allowed the establishment of a magnetic polarity stratigraphic scale, with periods of normal or 

reverse polarities. These inversions are worldwide documented and reported in geomagnetic 

polarity time scales (GPTS) where the time of the inversions has been constrained using independent 

dating methods. For instance, in Neogene times, geochronology on lavas and bio-stratigraphy in 

sedimentary rocks are the main independent dating techniques to constrain inversion times. For 

older periods, inversions observed in oceanic floor in both sides of oceanic ridges are used, assuming 

a constant extensional rate. Several GPTS have been elaborated, in this thesis the GPTS of Gradstein 

et al. (2012) is used.  

 

4.1.5. Magnetostratigraphy 

The principle of paleomagnetic dating is to correlate the GPTS with a succession of measured 

inversions in a sedimentary sequence for which the dating is unknown, unlike the stratigraphic 

positions of the periods. The inversion periods of the GPTS are called chrons and are of variable 

duration as the magnetic inversions are of aleatory occurrence. This length variability is used for the 

correlations; it allows the dating of sedimentary sections and to deduce accumulation rates. This 

approach is based on fundamental hypotheses regarding the sedimentation processes: 1) the 

sedimentation must be continuous in time, without significant sedimentary gaps or erosion 

unconformity over a period sufficiently long to identify enough inversions; 2) the sedimentation rate 

must be relatively constant on short time scales, as the thicknesses of the detected inversions will be 

correlated with the length of the GPTS inversions.  

 

Magnetostratigraphy dating allows the dating in a “pseudo-absolute” way of sedimentary 

sequences, poorly or not constrained with classical absolute dating such as biostratigraphy or 

isotopic methods. In fluvial continental series without magmatic rocks, the isotopic dating of 

sedimentary deposition is very difficult.  
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4.1.6. Analytical procedure 

Samples are collected and orientated at regular stratigraphic intervals in a sedimentary section. Then 

the samples are thermally demagnetised in an amagnetic oven. The thermal demagnetisation is 

based on the Curie temperature principle. Above this temperature, any magnetic body loses its 

magnetisation. The thermal demagnetisation of the samples is performed through temperature 

steps. At each temperature step, magnetic grains exposed to temperature higher than their 

respective demagnetisation temperature lose their magnetization orientation and re-orientate in 

the current local magnetic field. As the samples are cooled in a null field magnetic chamber, they 

present a remanent magnetisation carried exclusively by particles of higher Curie temperature than 

the temperature at which they have been exposed. In this way, increasing stepwise the temperature 

of the samples allows identification of the different components of the Remanent magnetisation and 

the minerals which carry them, and eventually the polarity of the period they are contained in. From 

the results of all samples from a sedimentary succession, a polarity column can be realised and 

correlated to the GPTS.  

 

4.1.7. Maximum depositional age constraint 

Since magnetostratigraphy is a “pseudo-absolute” dating method, a correlation can only be 

successful if independent time constrains are provided. Indeed, correlating without a required 

minimum knowledge on the approximate time of deposition is very difficult considering the high 

number of reversals in geological history. A relevant method for sedimentary sections without ash 

layers or biostratigraphy is detrital thermochronology. In this thesis, the apatite fission-track 

thermochronological system has been used to define maximum depositional ages. Unless reset, an 

apatite grain cannot be deposited prior to its fission-track age. Consequently, the apatite fission-

track age is regarded as a maximum age for the deposition of the sediments deposited above the 

apatite sample in the stratigraphic section. This method is briefly described in the thermochronology 

section, and detailed further in chapter 1 and 3 as it has been respectively performed by I. Coutand 

and P. O’Sullivan.  

 

4.1.8. Age uncertainties 

The uncertainties on magnetostratigraphic ages are of several natures. They can be related to the 

chosen correlation. Indeed, several correlations are possible for a sedimentary sequence (see 

chapter 1 and 3), and arguments to discriminate between correlations are not necessary possible. 

The preferred correlation is the main factor of bias. The quality of a correlation is dependent on the 

quality of the column (sampling density, magnetic properties, lithology and continuous exposure of 
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outcrop). Additionally, the hypothesis that the accumulation rate is relatively constant is also a 

source of uncertainty in the correlation and therefore the dating.  

 

4.1.9. Other applications 

Magnetostratigraphy offers other applications, for instance in chapter 3, it helped in the choice of a 

relevant “absolute” dating technique. Sedimentary rocks from the Sibo outcrop of the combined 

Sibo-Remi-Siang section (chapter 3) were not of sufficient exposure to allow magnetostratigraphic 

dating. These sedimentary rocks have been estimated to be of Late Quaternary age based on field 

observations. Towards the objective of dating more precisely these sedimentary rocks, 

paleomagnetic analysis has been carried out and the results indicate deposition during a normal 

polarity period. An age between 0 and 0.8 Ma has been inferred from this results, as the last and 

current period is normal since 0.8 Ma. Consequently, luminescence dating for this time scale has 

been performed. This method will not be developed in this section, as it has been carried out by S. 

Lowick in Bern University, but described in chapter 3 and the corresponding appendix.  

 

4.2. Provenance analysis  

The provenance analysis of this thesis involves isotopic dating of different minerals, using different 

isotopic systems. These can be grouped in two main categories, U-Pb geochronology and 

thermochronology. Although both categories imply temperature, in this section, U-Pb 

geochronology refers to temperature of crystallisation whereas thermochronology dating it based 

on lower temperatures. However, in chapter 3, rutile U-Pb dating is regarded and used as a 

thermochronological system contrarily to zircon U-Pb which is only used as a geochronological 

system throughout the manuscript. For this reason rutile U-Pb dating will be mentioned in both 

categories.  

 

4.2.1. Mineral separation 

The samples collected in the field areas were prepared in order to extract the minerals of interest for 

the provenance analysis. A series of laboratory stages allowing the separation are described here. 

Sample preparation was conducted at Lancaster University for the crushing, sieving and part of the 

picking stages and at NIGL, BGS (Keyworth) for the density and magnetic separations. 

 

The first step is to dry the rock samples at a temperature low enough to avoid any crystal resetting, 

for instance <35 °C has been adopted by the author. A small fraction of each sample has been stored 

at this step, for storage and archive. The remaining fractions were crushed using a jaw crusher at 
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Lancaster University to reduce the rocks to sand samples. The resulting material was sieved using a 

500 μm sieve at Lancaster University. The >500 μm fraction was packed for storage. The fine 

fractions were washed with tap water at NIGL, and processed through a Haultain superpanner for 

wet gravimetric separation. The separates have been dried at <35 °C. Then white micas for 40Ar-39Ar 

dating were handpicked from the light fraction at Lancaster University. The remaining light fractions 

were stored. A hand magnet was used to remove the major part of magnetic minerals, in any, from 

the dry heavy fraction. The resulting low magnetic sample separate was poured into a dropping 

funnel containing di-iodomethane. This heavy liquid has a density of which has a density of ~3.3 

which allows minerals of higher ρ to be separated, for instance zircon and rutile grains. Heavy 

minerals sink to the bottom of the dropping funnel, whereas light ones float. Apatites are of a lower 

density, and the light fractions from the heavy liquid separation were sent to ISTerre (Grenoble, 

France) for separation through lower density heavy liquid (density of ~3.1). The remaining fractions 

were collected on separate filter papers and rinsed with acetone, then dried under a heat lamp. The 

resulting heavy fractions were stepwise passed through Franz isodynamic barrier laboratory 

separator. This magnetic separation was kept to a minimum to avoid biasing mineral populations. 

The resulting separates were of different magnetic strength, and the low-magnetic fractions were 

used for rutile and zircon handpicking. Zircon and rutile grains were handpicked at NIGL or Lancaster 

University, taking special care to select all grain types with respect to morphology, colour and grain 

size. More than 100 zircons and rutile grains were separately mounted in epoxy, polished and 

photographed to help identify the grains of U-Pb dating. The zircon mounts were also imaged by 

cathodo-luminescence using an FEI Scanning Electron Microscope at NIGL to ensure suitable core or 

rims areas were targeted during analysis. During core analysis, all grains were targeted, with no 

selection relative to morphology or size of grains. For zircon fission-track analysis, more than 300 

zircon grains were mounted in Teflon at ISTerre by the author for some samples. Throughout the 

entire sample preparation process, large efforts were made to prevent sample contamination.  

 

4.2.2. U-Pb Geochronology 

The U-Pb dating method is used for dating minerals that crystallised during the cooling of igneous 

melts. The method is based on the uranium radioactive decay scheme. The measurement of parent 

and daughter isotopes in the mineral allows us to determine its U-Pb age. The parent isotope 238U 

decays to daughter isotope 206Pb with a constant  λ of 1.55125 x 10-10 yr-1, and the decay of 235U to 

207Pb has a radioactive constant  λ of 9.8485 x 10-10 yr-1 (Jaffey et al., 1971). These decay processes 

are described in the following equations: 
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where 𝑃 is the current abundance of nuclide, 𝐼 is the initial abundance of nuclide and 𝑡⁡is the age of 

the system. The isotope 204Pb is non-radiogenic and thus used as a stable reference isotope in the 

above equations.  

 

Because the half-life of 235U is considerably shorter than that of 238U, 235U has been consumed more 

rapidly by radioactive decay, leading to a present-day 238U/235U ratio of 137.818 (Hiess et al., 2012). 

As a result, the 235U/207Pb ratio is more difficult to measure precisely in younger samples than the 

238U/206Pb ratio. For this reason, 238U/206Pb ages are generally preferred for younger grains (<1200 Ma 

in this study), whereas 207Pb/206Pb ages are preferred for older grains. (Gehrels et al., 2006).U and Pb 

elements in silicates can be mobile during weathering and metamorphism (Davis and Krogh, 2001; 

Neymark and Amelin, 2008; Roberts and Finger, 1997). As a result, the mineral dated may not 

necessarily remain as a closed U-Pb system, and this directly impacts on the accuracy of the U-Pb 

age determinations. The unique property of the U-Pb system involving two separate decay schemes 

with common parent and daughter nuclides is that it allows us to assess whether a mineral has 

suffered system disturbance.  

 

When a system has remained closed throughout its lifetime, i.e. no parent or daughter isotopes have 

escaped, correction has been made for initial common Pb (see below), then the measured age of the 

system is concordant. In this closed system context, the mineral undergoing U-Pb decay will plot on 

the concordia curve (the locus of all points where the 207Pb/235U and 206Pb/238U ages are equal; Fig. 

11). This case is ideal, but in some cases the system opens and the mineral experiences lead loss. 

Consequently, the ratios will be discordant and the measured 206Pb*/238U (* refers to radiogenic) 

value will be lower than the concordant value. The discordant ages are plotted along a linear array 

between the point on the concordia at which the open system developed and a lower intercept, 

called a discordia. The lower intercept between the discordia and concordia lines commonly 

corresponds to the time at which the system opened, and the upper intercept to the age of the 

crystallisation of the mineral. If the lead loss is only partial the age can be obtained, however, the 

dating is impossible if the system has suffered total Pb* loss as the point will return to the origin (t = 

0) on the concordia diagram.  
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Fig. 11: Zircon U-Pb concordia diagram of standard 91500 (Wiedenbeck et al., 2004) used for U-Pb 

dating in this study. Analyses are plotted as Wetherill concordia diagram, using the Isoplot v. 4.14 

add-in for Microsoft Excel (Ludwig, 2003). The dotted dark blue line is the concordia curve where 

ages are indicated in Ma. Data point ellipses are at the 2σ level.   

 

The effects of Pb-loss can be minimized by using minerals which strongly bind uranium in their 

crystal lattice, and which have low Pb-diffusion rates.   Zircon (ZrSiO4), rutile (TiO2) and apatite 

(Ca5(PO4)3(F,Cl,OH)) are suitable minerals for U-Pb dating. They occur as accessory minerals in 

igneous rocks, have a high temperature sensitivity for Pb diffusion at >900 °C for zircon; 575±75 °C 

for rutile and 375-550 °C for apatite (Bracciali et al., 2016; Cherniak et al., 1991; Cherniak, 2010; 

Cherniak and Watson, 2001; Cochrane et al., 2014; Mezger et al., 1989; Schmitz and Bowring, 2003; 

Smye and Stockli, 2014) and are ultra-stable (zircon and rutile) and stable (apatite) heavy minerals 

(Morton and Hallsworth, 1999 and references therein). These properties make these minerals 

relatively resistant to weathering and post-crystallisation events (e.g. metamorphism) that might 

reset their respective system. 

 

Zircon has traditionally been the most commonly used mineral for U-Pb dating.  Zircon strongly 

incorporates uranium during crystallisation, while, common lead is largely excluded. The levels of 

common Pb present in zircon are generally low enough that no correction for common Pb is 

required.  By contrast, rutile and apatite commonly incorporate relatively high levels of common Pb 
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during crystallisation, and as a result may give discordant ages. For rutile and apatite, it is commonly 

necessary to apply a common Pb correction.  In this study, rutile model ages were derived following 

the approach of Bracciali et al. (2013), by regressing data points through a fixed terrestrial common 

Pb composition (0.844±0.008) on Tera-Wasserburg plots. Apatite U-Pb data processing was 

performed using an iterative approach to obtain a 207Pb/206Pb intercept value based on a starting 

estimate generated from the terrestrial Pb evolution model of Stacey and Kramers (1975) as 

described in Chew et al. (2011). This was used to calculate apatite 207Pb-corrected 206Pb/ 238U ages. 

 

With detrital mineral data, it is difficult to constrain whether discordance is entirely due to the 

presence of common Pb, or whether there is a component of Pb-loss.  For this reason, in attempting 

to determine the youngest age component in a sample, it is important to identify populations of 

young grains with consistent 206Pb/238U ages, rather than relying on single grain ages.  It may also 

be appropriate to perform multiple spot analyses on young grains in order to test for Pb-loss. 

 

Zircon, rutile and apatite U-Pb dating provides the ages of source rocks, which could be derived from 

both igneous and high grade metamorphic terranes, or may be recycled from second cycle 

sedimentary sources. Apatite is more brittle than zircon and rutile, and is less likely to survive 

multiple recycling.  The U-Pb zircon dating method has been widely applied in the Himalaya, both in 

detrital and source characterisation studies (e.g. Bracciali et al., 2015; DeCelles et al., 2004; Gehrels 

et al., 2008). However, apatite U-Pb dating in Himalaya has not been investigated as far the author is 

aware. Consequently, this thesis provides the first Himalayan apatite U-Pb dataset. Detrital zircon 

and apatite U-Pb dating are used for provenance analysis sensu-stricto, i.e. to investigate the 

paleodrainage of the Brahmaputra River, in chapter 2 and 3 of this thesis whereas rutile U-Pb is used 

as thermochronometer documenting the Namche Barwa syntaxis evolution in chapter 4.  

 

The author has dated, regressed and interpreted zircons and rutiles with I. Millar using a laser 

ablation inductively coupled plasma mass spectrometer (LA-ICPMS) at the NERC Isotope Geoscience 

Laboratory, Keyworth (UK),  and an ion probe at GRPG Nancy (France) (for part of the samples in 

chapter 2). The apatite U-Pb data was provided as part of apatite double-dating (fission-track and U-

Pb) performed by P. O’Sullivan, regressed by C. Mark and interpreted by the author. Full details on 

the analytical methods are provided in appropriate chapters and appendices. 
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4.2.3. Thermochronology  

Thermochronological dating allows the reconstruction of the temperature evolution in rock 

formations and to deduce exhumation rates. The thermochronological methods date the moment 

when a mineral is exposed to a temperature at which the isotopic-mineral system is sensitive. This 

temperature corresponds to the maximum temperature under which the products of radioactive 

decay of radiogenic isotopes are conserved within the mineral in the case of white-mica 40Ar-39Ar or 

rutile U-Pb systems for example; or the retention of latent tracks of spontaneous fission of 238U in 

the case of apatite or zircon fission-track systems for example. This temperature, commonly called 

closure temperature, is specific to the thermochronological system considered and depends on the 

cooling rates of the mineral (Dodson, 1973) (Fig. 12).  

 

 

Fig. 12: Effective closure temperature (Tc) as a function of cooling rate for common He, Fission-track 

(FT), Ar-Ar and U-Pb thermochronometers (modified after Reiners and Brandon, 2006). 
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The reconstruction of the temperature history allowed by this type of dating has a wide application 

field in geosciences: the estimation of denudation or exhumation rates in orogenic or stable 

continental zones (e.g. Fitzgerald et al., 1995; Gallagher et al., 1998), the burial history in 

sedimentary basins (e.g. Armstrong, 2005; Najman et al., 2001; Najman et al., 1997), the dating of 

fault activity (e.g. Tagami, 2005) and also the tracking of detrital sediments (Carter and Moss, 1999; 

Hurford and Carter, 1991; Najman, 2006; White et al., 2002).  

 

In this section, the author presents the thermochronological techniques of apatite and zircon fission-

track, and white-mica 40Ar-39Ar systems and how the results are used in this study. Note that the 

apatite fission-track dating presented in this thesis has been performed by the traditional external 

detector method (e.g. Gallagher et al., 1998) and interpreted by I. Coutand in chapter 1 and by ICP-

MS method (Donelick et al., 2005) by P. O’Sullivan. Both zircon fission-track dating, carried out using 

the external detector method, and white-mica 40Ar-39Ar dating have been acquired by the author 

under the guidance of M. Bernet at ISTerre (France) and J. Wijbrans and L. Gemignani at the VU 

University (The Netherlands), respectively.  

 

4.2.3.1. FISSION-TRACK DATING 

This section describes the general principles of zircon (and apatite) fission-track dating and the 

analytical technique of zircon fission-track dating using the external detector method carried out by 

the author.   

 

4.2.3.1.a. Fission-tracks formation 

Zircon (and apatite) fission-track, ZFT (and AFT), method is based on the accumulation of damages 

(the fission-track) within zircon (and apatite) crystals. These tracks are formed by spontaneous 

fission of heavy atomic nuclei such as 235U, 238U and 232Th. The amount of spontaneous tracks formed 

by other isotopes other than 238U is neglected since their half-life decay constant is very long and 

their proportion is low in zircon and apatite minerals. The 238U isotope decays through emission of α 

particle or by spontaneous fission. There are about 2 x 106 disintegrations through α emission per 

spontaneous fission; it thus represents a minor decay mode. The fission of a Uranium atom leads to 

the release of two daughter ions ejected in opposite directions with a total kinetic energy in the 

order of 200 MeV creating a track in the crystal, linked to the ionisation of the atoms encountered 

(Fig. 13). Above the closure temperature, the resulting tracks in the crystal anneal and the mineral 

fission-track age is reset, whereas below the closure temperature, tracks are retained in the mineral. 

The closure temperature range, called the annealing zone (PAZ) for the zircon fission-track system, is 
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ranges between ~200 and 450 °C (Bernet, 2009; Tagami et al., 1998), and ~100±20 for the apatite 

fission-track system (Wagner and Van den haute, 1992), Fig. 12. Minerals that have suffered re-

heating to PAZ temperatures can be affected by partial track annealing, and therefore partial age 

resetting, in which case the fission-track age determined will be younger. The tracks can only be 

observed using a transmission electron microscope. It is only after chemical etching that the tracks 

are revealed and observable with an optical microscope (x 1000). 

 

 

Fig. 13: Cartoon representation of the ion spike explosion model and the formation of fission tracks in 

a mineral. (a) Trace amounts of radioactive 238U are present in the crustal lattice (dark circles). (b) 

Spontaneous fission of 238U. (c) Resulting fission track. (Gallagher et al., 1998) 

 

4.2.3.1.b. Dating of the system closure 

The conventional fission-track method and the most widely used is the external detector method 

(Fig. 14), which the author has adopted for zircons. Another method using ICP-MS has been 

performed on apatites by P. O’Sullivan at Geosep (USA) as described in chapter 3 and the 

corresponding appendix.  

 

The external detector method consists of counting the spontaneous tracks in the zircon (or apatite) 

crystals and the induced tracks in an external detector (micas with low Uranium content) in contact 

with the crystal during irradiation with thermal neutrons in a nuclear reactor (Gallagher et al., 1998).  
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Fig. 14: The external detector method (Gallagher et al., 1998 and references therein). 

 

For an effective age determination, knowledge of the relative abundance of the parent and daughter 

elements is necessary. Considering that each spontaneous track corresponds to the fission of an 

atom 238U, the track density is a function of the initial 238U content and the time at which the closure 

isotherm has been crossed. Spontaneous track density per surface unit ρs is estimated by counting 

using an optical microscope after etching of the polished crystal. The determination of the initial 238U 

content in the crystal can be deciphered from the measurement of the 235U content, since the 
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238U/235U ratio is constant and equal to 137,88. The sample irradiation by thermic neutrons provokes 

235U fission only which creates a new set of tracks, the induced tracks. Damages formed by these 

induced tracks are recorded in the external detector. Similarly to the spontaneous tracks, the 

induced track density ρi is determined by counting after etching of the mica sheet. ρi is function of 

the initial 235U content in the crystal and of the irradiation intensity, i.e. the fluence ϕ (neutrons.cm-

2). Fission-track dating is described with the following fundamental equation:  

t =
1

λd
⁡ ln(1 +⁡

ρsgλαϕσI

ρiλf
) 

where t  is the age; ρs and ρiare the spontaneous and induced track density, respectively; λd is the 

total radioactive decay constant; λα is the radioactive decay constant of 238U per α emission (1,55125 

x 10-10.yr-1); λf is the radioactive decay constant of 238U through spontaneous fission-track (8,216 x 

10-17.yr-1); g is the geometric factor of the mineral, dependant on the system considered; ϕ is the 

neutron fluence;  σ is the efficient section of 235U by thermal neutron capture (570,8 x 10-22.cm-2); 

and I is the 235U/238U ratio (7,2527 x 10-3).  

The fluence ϕ parameter is estimated through track counting on two standard glasses of known 235U 

content, mounted with external detectors (dosimeter) attached to the samples during irradiation. 

The track density of the dosimeter (ρd) allow determining the fluence ϕ since the uranium content is 

known, using the following equation: 

ϕ = Bρd 

where B is a dosimeter constant.  

 

In these equations, parameters such as λf or B are difficult to evaluate accurately. The problem can 

be tackled using a calibration constant ζ (Hurford and Green, 1983). This constant allows the 

estimation of these parameters using standard material of known age. For instance, Fish Canyon Tuff 

standard, aged of 27,98±0.15 Ma (Dazé et al., 2003) has been used in chapter 3. The calibration 

parameter is defined by the following equation: 

ζ =
BσI

λf
 

The injection of the later equation in the first equation gives:  

t =
1

1 + ⁡λd
⁡ ln(λd +

ρs
ρi
⁡ρdζg)⁡⁡⁡ 

The determination of ρs and ρi in the standard samples of known age (tst) allows the determination 

of ζ as following: 

ζ =
eλαtst − 1
ρs⁡(st)
ρi(st)

ρdλαg
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Note that the ζ factor depends on the track counter, and can vary throughout the life of the 

operator.  

 

A detailed methodology of the fission-track analysis of this project is provided in each chapter 

involving fission-track dating (chapter 1, 3 and 4).  

 

4.2.3.2. WHITE-MICA 40Ar-39Ar 

This section describes the general principles of white-mica 40Ar-39Ar dating carried out by the author, 

and further details are provided in chapter 4 and the corresponding appendices.   

 

The white-mica 40Ar-39Ar dating method is based on the decay of 40K to the isotope radiogenic 40Ar   

with a decay constant of 5.81 x 10-11 yr-1 and described by the following equation:  

Ar ∗⁡
40 =

λe
λ

K⁡
40 (eλt − 1) 

Where Ar ∗⁡
40  is the argon radiogenic isotope, λe is the decay constant for K⁡

40  through electron 

capture, and λ is the total decay constant of K⁡
40 .  

 

Before the development of the 40Ar-39Ar method, the K-Ar method was initially used. In the former 

K-Ar analysis, K and Ar were analysed separately, involving sample splitting and accuracy problems. 

The new 40Ar-39Ar method allows simultaneous measurement of both 40Ar and 39Ar and this presents 

the advantages of improvement on precision, accuracy and error reduction, in comparison with the 

older approach. 

 

Prior to analysis, the white-mica samples along with the reference materials are irradiated in a 

nuclear reactor. The irradiation induces the decay reaction: 39K + n → 39Ar + p through a fast 

neutrons bombardment which converts part of the 39K into 39Ar. The resulting 39Ar content is used as 

a proxy for the determination of the initial 39K content in the sample. Prior to irradiation the 

reference material, a standard of known age, is analysed in order to calculate the 39K content 

transformed into 39Ar during the irradiation. The relatively long half-life of the 39Ar (269 years) allows 

approximating this isotope as stable over the time length between the irradiation and the 

measurement. The age equation modified for 40Ar-39Ar dating is consequently as following: 

t =
1

λ
ln(

Ar ∗⁡
40

Ar⁡
39

J + 1) 

where t is the 40Ar-39Ar age; λ is the radioactive decay constant of 40K (~5,5 x 10−10 year−1, 

corresponding to a half-life of ~1.25 billion years); and J is the irradiation factor, i.e. the fluence of 
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the neutron bombardment during irradiation; the denser the flow of neutron particles is, the more 

atoms of 40K will convert to 40Ar. The easiest way to quantify J is to assume that  Jsample =⁡ Jstandard 

since the age of the standard is known.  

 

After irradiation, the radioactive samples must be safely cooled down before the analysis can be 

performed. The samples are then degassed through heating which causes the mineral crystal 

structure to degrade, allowing trapped gas to release. The 40Ar-36Ar and 39Ar-36Ar ratios are 

simultaneously measured with a noble gas mass spectrometer. These ratios are plotted on a straight 

isochron line of a slope proportional to the 40Ar-39Ar age of the sample (Fig. 15). In this way the 40Ar-

39Ar age can be determined, and then corrected. Because neutron activation is non-selective, 

interference of argon isotopes derived from other nuclides is frequent during the irradiation, i.e. 40Ca 

and 42Ca, 40K, 35Cl and 37Cl (40K + n → 40Ar + p; 40Ca + n → 36Ar + n α ; 40Ca + n → 37Ar + α → 37Cl; 42Ca + 

n → 39Ar + α → 39K; 35Cl + n → 36Cl → 36Ar; 37Cl + n →38Cl → 38Ar), and the resulting argon excess is 

corrected using appropriate correction factors. Additionally, contamination with atmospheric argon 

(representing 1% of the atmospheric composition of the Earth) is avoided by use of a sealed vacuum 

within the mass spectrometer created prior to analysis. Despite this precaution, atmospheric 

contamination can still occur either within the mass spectrometer or prior to analysis and an 

atmospheric argon correction is necessary. This correction is based on the known atmospheric 

40Ar/36Ar ratio, equal to 296, and consists on subtracting 296 times the measured 36Ar from the 

measured 40Ar, such that the remaining 40Ar content represents the radiogenic 40Ar.    

 

 

Fig. 15: Argon isotope correlation diagram, showing a correlation between atmospheric and 

radiogenic argon components forming an isochron. Any pure 40Ar component would lie at the origin 

and thus any excess argon component tends to pull the point B towards the origin. (Kelley, 2002) 
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Muscovite (KAl2(AlSi3O10)(F,OH)2) is composed of ~9.7 % of potassium, rendering this mineral 

suitable for 40Ar-39Ar dating method. The closure temperature of white-mica 40Ar-39Ar varies 

between 300 and 450 °C (Jäger, 1967; McDougall and Harrison, 1999). Above this temperature 

range, the system opens and argon gas is released from the crystal and the white-mica 40Ar-39Ar age 

is therefore reset. Under this temperature, the system is closed and its age is recorded within the 

crystal.   

 

White-mica 40Ar-39Ar dating of this project was performed on a ThermoFisher Helix MC+ multi-

collector noble gas mass spectrometer, as detailed in the supplementary material of chapter 4. 

 

4.2.3.3. DETRITAL THERMOCHRONOLOGY 

Detrital rocks are composed of grains which arise from different areas of the orogen and which have 

recorded different cooling histories. This record is then buried in sedimentary basins along the 

range. A detrital rock can therefore record the exhumation of different source areas within the 

orogen and a burial history within the basin. Deciphering the message archived in the sediment thus 

represents a major challenge in this approach.   

 

In this thesis, thermochronology is used for two main aims: 1) determining the maximum 

depositional age of the sedimentary rock and 2) reconstructing the cooling and exhumation history 

of the source massif. If thermochronological ages are not reset, they can inform both questions. For 

both aims, the minimum age peak population for each thermochronological system is of primary 

importance. The way to define the youngest age populations within a sample is described in the 

methodology of each relevant chapter (chapter 1, 3 and 4) and involves statistical analysis. For both 

aims, it is necessary to date a sufficient amount of grains so that the populations are well defined 

(note that this is also important for the provenance analysis of this thesis involving apatite and zircon 

U-Pb, in chapter 2 and 3). The required number of dated grains to determine efficiently the 

populations in a detrital sample remains poorly constrained (Vermeesch, 2004). In this study, the 

number of dated grains has been targeted to more than a hundred. However, because of limitations 

such as the low abundance of grains of a specific mineral, their quality for dating, and the costs of 

analyses, this value has only rarely been reached.  

 

As mentioned previously, apatite fission-track is used for maximum depositional age determination 

(chapters 1 and 3), since it has a lower closure temperature compared to the other 

thermochronological systems used in this study. Indeed, the lower closure temperature of the 
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apatite fission-track dating implies a higher sensitivity of the system to resetting. Therefore, apatite 

fission-track ages are more likely to be younger than ages from other higher closure temperature 

system within the same sample (see discussion in chapter 4). Consequently, if apatites are not reset 

after their deposition, the maximum depositional age determined with apatite fission-track will be 

closer to the true depositional age than if determined with a higher closure temperature system. 

Post-depositional resetting by burial heating can be assessed in several ways. For instance additional 

vitrinite reflectance analysis has been performed in chapter 1, to determine the maximum 

temperature at which a stratigraphic layer has been exposed. Comparison of this maximum 

temperature with the closure temperature of apatite fission-track indicates if the system is likely to 

have suffered total or partial annealing. In chapter 3, analysis of the evolution of the minimum age 

peak throughout the sedimentary section has been performed, as well as a comparative study of the 

nearby Siwalik sections. In this study, apatite fission-track dating is strictly used to determine the 

minimum depositional age and to constrain the magnetostratigraphic correlations; whereas higher 

closure temperature thermochronological systems are only used for tectonic reconstruction of the 

source area. These distinct uses of the thermochronological systems are a strategical choice to avoid 

circular reasoning in the lag times study (see below). 

 

Zircon fission-track, white-mica 40Ar-39Ar and rutile U-Pb dating have been used for exhumation 

reconstruction of the source area in chapter 4. Once the minimum age peak has been determined 

for the thermochronological system considered, and the dating of sediment deposition is 

constrained, for instance through magnetostratigraphy, lag-times can be deduced (Fig. 16). The lag 

time can be defined as the time difference between the thermochronological age (for instance, the 

minimum age peak) and the depositional age of the sample (Garver and Brandon, 1994; Garver et 

al., 1999). It is, in other words, the time difference between the age of the closure of the 

thermochronological age in the source area and the age of deposition of the eroded material. 

 

Rocks from the source area are exhumed from deeper warm crustal zones to the surface, such that 

they cross the closure isotherm and the lag time begins. Lag times can be transformed to 

exhumation rates, assuming simplifying hypotheses. The first hypothesis is that the time of transport 

of the sediment from the moment when the rock reaches the surface and the moment when it is 

deposited is insignificant compared to the time from the closure of the system to the moment when 

the rock reaches the surface, i.e. the exhumation time. In an active mountain belt, this hypothesis is 

likely (Bernet et al., 2004b). Another necessary hypothesis is the estimations of the geothermal 

gradients and, in the case of rapid exhumation zones (>1 km/Ma), the induced isotherms 
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perturbation must be taken into account. These estimations are integrated in a model developed by 

P. van der Beek (UJF Grenoble); and are described in chapter 4 and the corresponding appendices.   

 

 

 

Fig. 16: The lag-time of a sample is the time required for the sample to cool, get exhumed to the 

surface, and then get deposited in a nearby basin. As a rock is exhumed to the surface, the rock cools 

below the closure temperatures of the different thermochronometers: when this happens, various 

isotopic clocks start. Eventually the rock reaches the surface where it is subject to erosion. Apatite, 

zircon, mica and rutile grains are released into sediment and transported by glaciers and rivers into 

the adjacent basins, where they are deposited. The time for erosion and sediment transport is 

generally regarded as geologically instantaneous (e.g. Bernet et al., 2004a), but this is not always the 

case. The lag time integrates the time between closure and the time of deposition, and mainly 

represents the time needed to exhume the rock to the surface. The lag-time plot represents the 

calculated lag times for the youngest components in the samples where different evolution phase in 

the source region are identified. (modified after Bernet and Garver, 2005) 

 

 

 

 

 

 



61 
 

CHAPTER 1 
Late Miocene-Pleistocene evolution of India-Eurasia convergence partitioning 
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ABSTRACT 

The Shillong Plateau is a unique basement-cored uplift in the foreland of the eastern Himalaya that 

accommodates part of the India-Eurasia convergence since the late Miocene. It was uplifted in the 

late Pliocene to 1600 m, potentially inducing regional climatic perturbations by orographically 

condensing part of the Indian Summer Monsoon (ISM) precipitations along its southern flank. As 

such, the eastern Himalaya-Shillong Plateau ISM is suited to investigate effects of tectonics, climate, 

and erosion in a mountain range-broken foreland system. This study focuses on a 2200m thick 

sedimentary section of the Siwalik Group strategically located in the lee of the Shillong Plateau along 

the Dungsam Chu at the front of the eastern Bhutan Himalaya. We have performed 

magnetostratigraphy constrained by vitrinite reflectance and detrital apatite fission-track dating, 

combined with sedimentological and palynological analyses. We show that (1) the section was 

deposited between ~7 and 1Ma in a marginal marine deltaic transitioning into continental 

environment after 5 Ma, (2) depositional environments and paleoclimate were humid with no major 

change during the depositional period indicating that the orographic effect of the Shillong Plateau 

had an unexpected limited impact on the paleoclimate of the Bhutanese foothills, and (3) the 

diminution of the flexural subsidence in the basin and/or of the detrital input from the range is 
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attributable to a slowdown of the displacement rates along the Main Boundary Thrust in eastern 

Bhutan during the latest Miocene-Pleistocene, in response to increasing partitioning of the India-

Eurasia convergence into the active faults bounding the Shillong Plateau. 

 

1. INTRODUCTION 

Sedimentary archives of the Neogene-Quaternary Siwalik Group preserved in the Himalayan 

foreland basin have been extensively documented along the Himalayan arc from Pakistan to Nepal, 

providing valuable information on mountain building in space and time, past organization of 

drainage networks, and paleoclimate (e.g. Najman, 2006, and references therein). Recent studies 

have also focused on sections of the Siwalik Group in eastern India, in the states of West Bengal 

(More et al., 2016) and Arunachal Pradesh (Chirouze et al., 2012; Chirouze et al., 2013; Lang et al., 

2016); however, there is still a lack of information in the frontal Bhutan Himalaya, leaving about 400 

km along the strike of the orogen of undocumented foreland basin deposits regarding ages, 

thicknesses, sedimentary facies, and depositional paleoenvironments. Bhutan is located directly 

north of the Shillong Plateau, the only raised topography in the foreland of the Himalayas (Fig. 17), 

which corresponds to a 1600m high ancient erosion surface tilted northward by 2–4° (Biswas et al., 

2007; Clark and Bilham, 2008). This plateau is made of Proterozoic-Paleozoic basement (Chatterjee 

et al., 2007; Ghosh et al., 1994; Mitra and Mitra, 2001; Selvam et al., 1995; Yin et al., 2010), uplifted 

along steep and seismically active crustal-scale reverse faults: the E-W trending Dauki Fault in the 

south and the inferred WNW-ESE trending Oldham Fault in the north (Bilham and England, 2001; 

Biswas and Grasemann, 2005; Mitra et al., 2005; Rajendran et al., 2004); (Fig. 17). The Shillong 

Plateau is bounded to the east by a NW-SE trending shear zone, the Kopili fracture zone (Kayal et al., 

2010), accommodating right-lateral displacement at a rate of 3 mm/yr through the differential 

clockwise rotation between the Assam and Shillong blocks (Vernant et al., 2014); to the west it is 

marked by the NW-SE trending Goalpara right-lateral shear zone (Diehl et al., 2016). At the longitude 

of central and eastern Bhutan, the Himalayan foreland corresponds to a “broken foreland basin” 

(e.g. Jordan, 1995; Strecker et al., 2011), with a foredeep that may be <1 km thick, in contrast to 

areas west and east of Bhutan where the Brahmaputra/Ganges foredeep reaches depths >4 km 

(Dasgupta, 2000; Verma and Mukhopadhyay, 1977; Vernant et al., 2014, Figure 1b). On the Dauki 

Fault at the southern front of the Shillong, horizontal displacement averaged over the last 9–15 Ma 

was estimated at 0.65–2.3 mm/yr (Biswas et al., 2007) or 1–2.9 mm/yr (Clark and Bilham, 2008), 

while GPS data indicate much faster modern rates increasing eastward from 3 to 7 mm/yr (Vernant 

et al., 2014), suggesting that the amount of India-Eurasia convergence accommodated on the Dauki 

Fault is up to 3 times faster than the average rate in the past 10 Ma (Vernant et al., 2014). The 
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surface uplift of the Shillong Plateau has occurred in the Pliocene between 3–4Ma (Biswas et al., 

2007) and 3.5–2Ma (Najman et al., 2016), thereby disturbing Indian Summer Monsoon (ISM) 

precipitations migrating northward from the Bay of Bengal by orographically condensing portion of 

these moisture-bearing winds along its southern flank (Bookhagen and Burbank, 2010). Over the last 

8 to 6 Ma, spatial and temporal variations in exhumation and erosion rates were documented in the 

Bhutan Himalaya (Coutand et al., 2014; Grujic et al., 2006; McQuarrie and Ehlers, 2015). Grujic et al. 

(2006) proposed that these variations were the result of climatic changes in the lee of the Shillong 

Plateau, a hypothesis later modulated by Adams et al. (2015), Biswas et al. (2007), and Coutand et al. 

(2014) who proposed instead that most of the variations reflected increased contractional strain 

partitioning into the Shillong Plateau. As of now, it remains debatable as to whether tectonic or 

climatic processes related to the formation of the Shillong Plateau have had the most measurable 

impact on the upper crustal exhumation of the Bhutan Himalaya. 

 

 

Fig. 17: Digital topography and major structural features of southern Bhutan and Shillong Plateau 

area. Elevation data are from Shuttle Radar Topography Mission 3 data (U.S. Geological Survey). 

Structural data are from Gansser (1983), Biswas and Grasemann (2005), and Hirschmiller et al. 

(2014). The light shaded area south of the Shillong Plateau represents the location of the Surma 

Basin after Najman et al. (2016). Abbreviations are MBT: Main Boundary Thrust, MFT: Main Frontal 

Thrust, C: Churanthi river section (More et al., 2016), and K: Kameng section (Chirouze et al., 2012; 

Chirouze et al., 2013). 
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To address this question, this study takes advantage of a strategically located foreland basin 

sedimentary section exposed along the Dungsam Chu near the town of Samdrup Jongkhar at the 

front of the eastern Bhutan Himalaya (26.8°N, 91.5°E) (Figs. 17 and 18). To decipher the sedimentary 

record through time, we have performed geochronological (magnetostratigraphy constrained by 

vitrinite reflectance data and detrital apatite fission-track dating), sedimentological, and 

palynological analyses on this 2200m thick continuous stratigraphic section of the Siwalik Group 

deposits. We provide new evidences supporting an increasing strain partitioning of the India-Eurasia 

convergence into the Shillong Plateau since the latest Miocene. 

 

2. GEOLOGICAL SETTING 

The Dungsam Chu section located in the foothills of the Himalaya in eastern Bhutan (Figs. 17 and 18) 

is composed of synorogenic Neogene-Quaternary foreland sediments of the Siwalik Group forming a 

2216m thick section with a continuous exposure on freshly eroded stream banks. The section 

belongs to the modern Himalayan foreland fold-and-thrust belt as defined by Hirschmiller et al. 

(2014) and is bounded to the north by the Main Boundary Thrust (MBT), along which the Lesser 

Himalayan Sequence (LHS) has been thrust over the Siwalik Group since the late Miocene (10–12 

Ma) (Coutand et al., 2014), and to the south by the Main Frontal Thrust (MFT), which juxtaposes the 

Siwalik Group strata against the modern Ganges-Brahmaputra plain alluvial sediments (Figs. 17 and 

18) (e.g. Burgess et al., 2012, and references therein). Based on detrital thermochronology and/or 

the presence of growth strata, ongoing displacement on the MFT is suggested to have started ~2 Ma 

ago in central and western Nepal (Mugnier et al., 2004; van der Beek et al., 2006) and ~1 Ma ago in 

Arunachal Pradesh (Chirouze et al., 2013), while the timing remains undetermined in Bhutan. 

 

The three lithostratigraphic subgroups of the lower, middle, and upper Siwaliks crop out along the 

Dungsam Chu section. All along the Himalayan range, the recognition of these subgroups is based on 

textural differences, specifically on the proportion of different grain sizes (for a definition, see Auden 

(1935), Gautam and Rösler (1999), and Quade et al. (1995a). Typically, the coarsest sediments of the 

lower, middle, and upper Siwalik subgroups correspond to thin-bedded fine- to medium-grained 

sandstones, thick-bedded medium to coarse-grained sandstones, and thin- to thick-bedded 

conglomerates, respectively. Accordingly, along the Dungsam Chu section, the boundary between 

the lower and middle Siwalik subgroups occurs at the first occurrence of few meters thick coarse-

grained sandstone packages upsection, while the transition between the middle and upper Siwalik 

subgroups is where conglomeratic layers first appear (Bhargava, 1995; Gansser, 1983) (Fig. 18). 
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Fig. 18: Geological map of the Siwalik Group around the Dungsam Chu (for location, see black frame 

labelled DC on the geological map of Bhutan in inset and red frame in Fig. 17). Abbreviations are TSS: 

Tethyan Sedimentary Sequence, STD: South Tibetan Detachment, GHS: Greater Himalayan Sequence, 

LHS: Lesser Himalayan Sequence, MBT: Main Boundary Thrust, and MFT: Main Frontal Thrust. The 

Dungsam Chu section presented in this study stretches from the anticline axial plane trace to the 

south (26.807567°N, 91.502100°E) to the overturned syncline axial plane trace to the north 

(26.834967°N, 91.483617°E) (black squares). 

 

3. DATING OF THE DUNGSAM CHU SEDIMENTARY SECTION 

To constrain the age of the Siwalik Group deposits in eastern Bhutan, we have dated the Dungsam 

Chu section using magnetostratigraphy constrained by vitrinite reflectance data combined with 

detrital apatite fission-track (DAFT) dating (Fig. 19). 
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Fig. 19: Sample location and magnetostratigraphy results of the Dungsam Chu section. (a) Simplified 

stratigraphic column (for details, see Fig. 26). The horizontal scale labels C, s, S, p, c, and B are 
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abbreviations for clay, silt, sand, pebbles, cobbles, and boulders. (b) Locations of vitrinite reflectance 

(VR), palynology (PN), detrital apatite fission-track (DAFT), and magnetostratigraphy (PMag) 

samples. Maximum depositional ages deduced from DAFT are indicated by the DAFT P1 age (solid 

color square) and the associated 1σ errors (light coloured bars). (c) Virtual geomagnetic poles (VGP 

latitude) are indicated by black dots for reliable Q1 and Q2 ChRM directions, open circles depict 

unreliable Q3 and Q4 directions, and grey dots indicate unreliable isolated polarity directions in the 

lower part (below 1400m level) and normal polarity directions in the upper part (above 1400m level) 

that are unreliable due to potential normal overprints (see text). (d) Polarity column defined from our 

magnetostratigraphic measurements where black and white intervals indicate normal (N) and 

reverse (R) polarity zones, respectively. Grey intervals represent poorly constrained polarities defined 

either by only one or by potentially biased normal overprints in the upper part (above 1400m level). 

Intervals with a cross indicate gaps in the sampling. (e) Proposed correlations of the polarity column 

to the geomagnetic polarity timescale (GPTS) of Gradstein et al. (2012). Black solid lines indicate the 

robust correlation of the lower part based on the combination of DAFT and reliable paleomagnetic 

data. Green, purple, and light blue solid lines indicate uncertain correlations A, B, and C, respectively, 

for the upper part of the record based on DAFT and paleomagnetic data potentially biased by normal 

overprints. GPTS created using TSCreator v. 6.4 software from 

https://engineering.purdue.edu/Stratigraphy/tscreator/index/index.php based on timescale of 

Gradstein et al. (2012). 

 

3.1. Peak temperatures from vitrinite reflectance 

Vitrinite reflectance analysis is used to quantify the heating of the sediments during burial and, in 

this study, helped to select the thermochronometer most appropriate to constrain the depositional 

ages of the sedimentary series. Sampling strategy and analytical procedure are provided in Text S1 in 

the supporting information (ASTM, 2010; Barker and Pawlewicz, 1994). The samples collected for 

the vitrinite reflectance analysis are composed of large coaly or banded coal particles with almost no 

mineral matter. They are entirely made of vitrinite, mostly derived from woody tissues, with almost 

no other macerals such as organic constituents derived from other non-woody tissue like spores, 

pollen, resin, or other oxidized constituents (i.e., fusinites) (ICCP, 2001). All the samples yielded 

values below 0.5% Rm, in the upper to lower range of lignite (Fig. 20a and Figure A of Appendix I). 

The peak temperatures of the stratigraphically lower seven samples range between 59.5±3.5 and 

75.8±6.1°C, without a distinguishable trend upsection, yielding a mean burial temperature of 

67.1±5.5°C for the lower part of the section (Fig. 20a). 
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Fig. 20: (a) Vitrinite reflectance data plotted against stratigraphic depth. In blue are the Rm % and in 

orange are the peak temperatures calculated according to the calibration of the Rm by Barker and 

Pawlewicz (1994). (b) Detrital apatite fission-track mean central ages (white circles) and P1 ages 

(blue circles) plotted as a function of stratigraphic thickness from the bottom (0 m) to the top (2,216 

m) of the section. 

 

This lack of temperature gradient with increasing depth may be attributed to different factors: 

1. The samples were collected along a northward tilted section; hence, upsection, the samples 

migrate along the depositional profile toward thicker portions of the Siwalik sedimentary wedge. 

Equivalent spatial trend of burial temperatures was observed in the North Alpine Foreland basin 

(Mazurek et al., 2006). 

2. Basin modelling there (e.g. Mazurek et al., 2006) indicates that geothermal gradients can 

substantially deviate from linearity due to the lower thermal conductivity of weakly consolidated 

sediments at the surface as compared with the underlying basement rocks. 
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3. Rapid cycles of burial and exhumation of Siwalik sediments have likely prevented thermal 

equilibration at the scale of the basin (see example of the intramontane Angastaco Basin in NW 

Argentina (Coutand et al., 2006)). In this type of young (<15 Ma) dynamic orogenic sedimentary 

basins, thermal states are transient and rapidly vary along and across strike implying that our 

observations are hardly comparable with similar data collected >100 km east in Arunachal Pradesh 

by Chirouze et al. (2013) and several hundreds of kilometres west in central Nepal by (Mugnier et al., 

1995). 

 

Thus, the maximum burial Tpeak at the base of the section is significantly lower than the closure 

temperature of ~120±20°C apatite fission-track thermochronometry, excluding full thermal resetting 

of this radiometric system. Furthermore, the mean burial temperature of the basal sediments 

(67.1±5.5°C) is in the range of the lowermost thermal levels of the apatite fission-track partial 

annealing zone (for details, see Text S2 in the supporting information), suggesting that minimal to no 

partial resetting of the thermochronometric system occurred after deposition of the base of the 

section and hence mostly preserved the thermochronometric signal from the source area. 

 

3.2. Detrital Apatite Fission-Track (DAFT) Thermochronometry 

Vitrinite reflectance results yielded maximum burial temperatures that suggest that DAFT 

thermochronometry is likely to yield unreset cooling ages representing a maximum depositional age 

of the strata from which the detrital sample is derived. For details on DAFT method and sampling, 

see Appendix I (Brandon, 1992; Brandon, 1996; Brandon, 2002; Coutand et al., 2014; Donelick et al., 

2005; Galbraith and Green, 1990; Reiners and Brandon, 2006; Vermeesch, 2012). 

The central age of the basal samples is the oldest at 7.8±0.7 Ma (sample SB07) (Table 1 and Fig. 20b; 

raw data are available in Table S1 of Appendix I). From sample SB54 up to sample SB83 at the top of 

the section, the central ages are younger and vary from 4.5±0.6 Ma to 5.9±0.7 Ma but remain 

identical within error (Fig. 20b). Three out of the seven samples fail the χ2 test (Galbraith, 2005) with 

P(χ2)<5% (Table 1), indicating that dispersion in the fission-track grain-age distributions may be 

significant. Apatite fission-track samples collected from bedrock samples across the modern 

landscape in eastern Bhutan vary significantly in a north-south direction (Coutand et al., 2014). 

Therefore, the age dispersion observed in the detrital data along the Dungsam Chu section may be 

attributed to different provenance areas characterized by different exhumation rates in the 

upstream catchments. 
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Altogether, vitrinite reflectance and DAFT data clearly indicate that no partial resetting occurred 

along the section. In fact, the bottommost sample yields maximum burial temperatures of 65±4°C 

and the temperature of the uppermost levels of the apatite fission-track partial annealing zone is 

comprised between 75 and 60°C for holding time of 1 to 10 Ma, respectively (e.g. Reiners and 

Brandon, 2006). Moreover, central DAFT ages decrease upsection (Figs. 19 and 20b and Table 1), 

while the opposite would be expected if the samples had been reset in the sedimentary basin and 

subsequently re-exhumed. To better constrain the stratigraphic age of the section, we have 

extracted the youngest component of the detrital age signal by decomposing the fission-track grain-

age distribution into peaks using the Binomfit software (Brandon, 1992; Brandon, 1996; Brandon, 

2002) (Table 1). The three samples failing the χ2 test (samples SB54, 79, and 83) and the basal 

sample SB07 yield two peaks. The older peak (P2) represents a minor component of about 10% of 

the total detrital fraction for most of the samples and up to 30% for sample SB83 at the top of the 

section (Table 1). The younger peak (P1) represents the mode of AFT age derived from the fastest-

eroding parts of the source catchment. The fact that P1 gets younger upsection (Fig. 20b), and that 

there is a marked dispersion of single-grain ages, supports vitrinite reflectance results suggesting 

that burial heating has little or not reset AFT single-grain ages after deposition. Therefore, we use P1 

as a proxy for the maximum depositional age of the Siwalik Group along the Dungsam Chu 

sedimentary section. This implies that the sediments cannot be older than 6.9–1.2/+1.4 Ma at the 

bottom of the section (sample SB07) and 3.6–0.8/+1.0 Ma at the top (sample SB83) (Table 1 and Fig. 

20b). Our results are supported by unpublished detrital zircon (U-Th)/He data collected from a 

sample located a few meters underneath our basal sample, yielding discordant single-grain ages with 

a younger cluster at 7Ma (N. McQuarrie, personal communication, 2016). 
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Table 1: Detrital apatite fission-track resultsa 
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3.3. Paleomagnetic Analysis 

To date the sedimentary section, we undertook a magnetostratigraphic study constrained by 

vitrinite reflectance and DAFT data. For details on sampling and analytical procedure, see Text S3 in 

the supporting information. 

 

3.3.1. Magnetization Characteristics 

Initial Natural Remanent Magnetization (NRM) intensities vary between 105 and 101 A/m and 

generally increase upsection, suggesting an increasing concentration of strongly magnetic iron 

oxides such a magnetite. Throughout the section, we observed various thermal demagnetization 

behaviours from which Characteristic Remanent Magnetization (ChRM) components were defined 

and plotted on vector end point diagrams and stereographic projections (Fig. 21). Two different 

thermal demagnetisation behaviours related to lithological changes characterize the lower (below 

1400 m) and the upper (above 1400 m) parts of the sedimentary section. 

In the lower part composed of the lower and middle Siwalik subgroups where the samples are fine 

grained, (paleomagnetic samples SJ1- SJ224; for sample location, see Fig. 19), demagnetizations 

were mostly complete below 400°C (Figs. 21a and 21c). A viscous low temperature component was 

often removed below 150°C, while a low-temperature component (LTC) of normal polarity generally 

demagnetized between 130 and 300°C and was interpreted as an overprint. A medium temperature 

component (MTC) was also typically demagnetized between 130 and 400°C and often overlapped 

with the LTC along great circle paths on stereographic projections (Fig. 21d). This MTC displays either 

normal or reversed polarity directions and was interpreted as representing the ChRM in the lower 

and middle Siwalik subgroups. Above 300°C, an increase in both remanence intensity and 

susceptibility is characteristic of the transformation of iron sulphides into magnetite upon heating. 

This suggests that iron sulphides, such as greigite, may be carrying the ChRM in the rocks of the 

Siwalik Group as it was observed elsewhere in the eastern Himalaya (Chirouze et al., 2012). 

 

The upper part of the section, composed of the middle and upper Siwalik subgroups, is characterized 

by an abrupt increase of the sample grain size from fine- to dominantly medium-grained sandstones 

(paleomagnetic samples SA1-SA140; for sample location, see Fig. 19). These samples yielded 

generally higher initial NRM intensities but more erratic unstable thermal demagnetization paths 

such that many samples did not yield interpretable directions (Figs. 21e and 21f). This is attributed to 

the larger grain size yielding multidomain magnetic grains (Butler, 1992). The samples that did yield 

interpretable demagnetization paths had much higher unblocking temperatures ranging from 300 to 
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600°C and sometimes extending up to 680°C. This behaviour is typical of a remanence dominated by 

magnetite-like minerals and the occasional occurrence of hematite. 

 

 

Fig. 21: Representative thermal demagnetization diagrams. Full and open symbols are projections on 

the horizontal and vertical planes, respectively. The numbers next to the symbols indicate the 

temperature of demagnetization step in °C. (a and b) Reliable direction and polarity from group Q1. 

(c and d) Reliable polarity but unreliable direction from group Q2. Fig. 21d is a typical 

demagnetization path on which great circle analysis was performed on stereographic projection 

(McFadden and McElhinny, 1988). (e and f) Unreliable direction and polarity from group Q3. Samples 

SJ are from the lower part of the section, while samples SA are from the upper part of the section. 

 

3.3.2. ChRM Direction Analyses 

ChRM directions were calculated using a minimum of four consecutive heating steps usually 

decreasing toward the origin such that line fits were generally not anchored to the origin. Some 

demagnetization paths showing a steady direction but no significant decrease in intensity upon 

demagnetization were forced through the origin (Fig. 21; data are provided in Table S2 of Appendix 

I). Line fits with a Maximum Angular Deviation (MAD) above 30° were systematically rejected. 

Because of the common occurrence of secondary overprints with normal polarities, sometimes 

persisting at relatively high demagnetization temperatures, a careful selection of ChRM directions 

was performed by ordering them into four quality groups (Table S2 of Appendix I). In the Quality 1 
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(Q1) group are the ChRM directions of normal or reversed polarity from which a well-defined 

direction was determined from stable and linear demagnetization paths, yielding MAD typically 

below 15° (Figs. 21a and 21b). In the Quality 2 (Q2) group, normal or reversed polarities are clearly 

defined but the directions are less reliable because of directional scatter and/or overlapping 

secondary overprint (Figs. 21c and 21d). The polarity determination of Quality 3 (Q3) remains 

ambiguous due to the weakness of the signal and/or strong overlapping with the normal secondary 

polarity (Figs. 21e and 21f). This group also includes poorly indurated samples that were destroyed 

before we could process enough measurements to extract reliable ChRM directions. 

The Quality 4 (Q4) group includes data displaying outlying directions that were rejected following an 

iterative cutoff protocol described in the paragraph below. 

 

The reversed polarity directions were more reliably identified than normal ones because the latter 

may have resulted from a full overprint of an originally reversed direction. The distinction between a 

primary component and a normal secondary overprint was also aided by the fact that the primary 

directions have been affected by significant counter-clockwise rotations about vertical axes (Fig. 22). 

Great circle analysis (McFadden and McElhinny, 1988) was applied to some Q2 and Q3 samples, 

when the contribution of the direction of the secondary normal polarity overlapped a reversed 

polarity direction carried by only a few points. 

 

      

  

Fig. 22: (a) Stereographic projections of Q1 and Q2 ChRM directions projected on the lower (filled 

symbols) and upper (open symbols) hemispheres. Directions reported in red have VGP over 45° from 

the mean VGP and were iteratively cut off. (b) Great circle analysis. The set point (black dot) is 
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defined by the mean of Q1 directions (blue dots). Obtained reversed directions (red points) are 

defined by the point on each great circle that is nearest to the set point. Filled (open) symbols are 

projections on the lower (upper) hemisphere. 

 

For this procedure the mean of the Q1 reverse polarity directions was used as set point, and the 

procedure described by (McFadden and McElhinny, 1988) was used to extract the primary direction 

from the great circle analysis (Fig. 22). To remove greatly outlying and transitional directions, an 

iterative cutoff was applied to the virtual geomagnetic poles (VGPs) derived from the obtained 

ChRM Q1 and Q2 directions. VGP directions lying more than 45° from the mean VGP were iteratively 

cut off and rejected in the Q4 quality group. This procedure was performed on normal and reversed 

polarity data sets separately. The remaining Q1 and Q2 ChRM directions cluster in antipodal fashion 

after tilt correction, suggesting a primary origin of normal and reversed polarities (Fig. 23). 

 

 

Fig. 23: The reversals test (Tauxe, 1998) applied to Q1 and Q2 ChRM directions is negative as shown 

in this figure. In this test normal and reversed directions are compared in X, Y, Z coordinates (top row) 

before and (bottom row) after flipping reversed directions into normal coordinates. The test is 

positive if these directions are indistinguishable at 95% level of confidence such that their 95% 

confidence interval overlaps on bottom diagrams. In XYZ coordinates, 95% confidence intervals of 

average normal and reverse directions are statistically different as shown in the figure. 
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The section being monoclinally tilted, a fold test was not applicable. The reversals test (Tauxe, 1998), 

applied to Q1 and Q2 ChRM directions, was negative after flipping reversed directions to antipodal 

normal orientations. The negative reversals test is expected with data including partially overprinted 

directions obtained from great circle analysis, but it does not affect the validity of the reversed 

polarity determinations. The resulting set of 220 Q1 and Q2 ChRM directions provides 

paleomagnetic polarity determination at an average interval of 10m throughout the stratigraphic 

section with several larger gaps due to a lack of outcrop or the inadequacy of rock type (usually 

weathered coarse-grained sandstones) that yielded non-interpretable demagnetization paths (Fig. 

19). Reversed polarity directions were unequivocally recognized, but normal polarity directions have 

been determined more cautiously with regard to possible secondary normal overprints. 

 

In the lower part of the section, normal polarities are well expressed in linear demagnetization paths 

and systematically observed in consecutive intervals yielding credit to these normal polarity zones. 

In addition, normal overprints observed in reversed polarity samples of the lower part usually do not 

persist above 300°C such that higher-temperature normal directions can be confidently identified. In 

the upper part of the section, however, normal polarity directions are often unstable, not 

systematically consecutive, and normal overprints of reversed direction are found in high-

temperature ranges suggesting that some samples have been fully remagnetized. 

 

3.3.3. Magnetostratigraphy: C Correlation to the Geomagnetic Paleomagnetic Polarity Timescale 

Because the dating from biostratigraphy or volcanic ash layers is not possible, our 

magnetostratigaphic study relies on detrital apatite fission-track analysis to provide independent 

constraints for the correlation of our paleomagnetic results with the geomagnetic polarity timescale 

(GPTS) of Gradstein et al. (2012). Several layers in the section are thus assigned a maximum 

depositional age based on unreset DAFT ages from the sedimentary series (Figs. 19b and 19d and 

Table 1). Polarity zones are defined by at least two consecutive paleomagnetic sites bearing the 

same polarity such that isolated points were discarded from the definition of polarity zones. Twenty 

polarity zones including 10 normal (N1 to N10) and 10 reversed (R1 to R10) were identified in the 

section (Fig. 19). Because normal overprinting commonly occurs in the coarser-grained top part of 

the section, the normal zones (N2, N3, N4, and N5) are considered less reliable and have been given 

less weight in the following correlations. 

 

 



77 
 

3.3.3.1. Correlation of the Lower Part of the Section 

DAFT data suggest that the stratigraphic age at the bottom of the section is younger than 6.9–

1.2/+1.4 Ma (Table 1). As a starting point for our correlations, we used the longest observed 

reversed polarity interval R8 yielding the most reliable result below the 1400m level within fine-

grained facies in the lower to middle Siwalik subgroups. In the age range allowed by DAFT data, 

there are three possible correlations of the long reversed interval R8: (a) a combination of C3Br.2r to 

C3A (starting at 7.454 and ending at 6.733 Ma, respectively), (b) C3r (6.033–5.235 Ma), or (c) C2Ar 

(4.187–3.596 Ma) (Figs. 19d and 19e). Correlating R8 with C2Ar is easily rejected because the short 

N8, N7, and N6 overlying R8 likely do not represent the relatively long dominantly normal interval 

C2A. Correlating R8 to C3Br.2r and C3Ar implies that the two normal chrons within C3B have been 

missed, while below R8, the dominantly normal polarity zones N9 to N10 provide a good counterpart 

to C4n chrons. However, above R8, the relatively short N8 and N7 do not provide a good fit to the 

relatively long normal chrons of C3A without involving substantial variations in sediment 

accumulation rate. Finally, correlating R8 with C3r provides the best fit without chron omission and 

significant accumulation rate variations. Below R8, N9 and N10 can be easily linked to C3An.1n and 

C3An.2n, respectively, while above, N8 fits well with Cn3.4n. This correlation places the base of our 

stratigraphic section at <7Ma and the lower to middle Siwalik subgroups boundary at ~6 Ma. This is 

our preferred correlation for the basal part of the Dungsam Chu section. 

 

3.3.3.2. Correlation of the Upper Part of the Section 

The upper part of the section comprises coarser-grained lithologies and is more challenging to 

interpret. It is bracketed at the bottom by R8 that we preferentially correlate with C3r and 

constrained by a maximum depositional age of 3.6–0.8/+1.0 Ma by DAFT data at the top. Under 

these conditions, we hereafter investigate the possibilities of correlating the most reliable long 

reversed zones R6 and R4 to the longest reversed chrons C2Ar, C2r, or C1r.3r (Fig. 19). 

 

3.3.3.2.1. Correlation A 

Correlation A relies on correlating R4 with C2Ar (start at 4.187 Ma) and R6 to C3n.2r (start at 4.799 

Ma). In this case, each normal polarity zone between R4 and R8 has a matching chron within the 

GPTS without omission. R5, R6, and R7 correlate with C3n.1r, C3n.2r, and C3n.3r (starting at 4.493, 

4.799 and 4.997 Ma), respectively. The normal zones N5, N6, N7, and N8 are consequently 

correlated with C3n.1n to C3n.4n (starting between 4.300 and 5.235 Ma). This correlation places the 

middle to upper Siwalik subgroups boundary at ~4 Ma and implies that the top of the section is 

about 3Ma in age. 
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3.3.3.2.2. Correlations B and C 

In correlation B, we link R6 to C2Ar (4.187–3.596 Ma), N7 to C3n.1n, and hence assume that C3n.2n 

and C3n.3n have been missed. Normal zones N5 and N6 fit relatively well with C2An.1n and C2An.3n 

chrons with a potentially missed normal zone between N5 and N6 corresponding to C2An.2n that 

could coincide with the isolated normal polarity point located within the R5 zone. Above N5, two 

correlations can be proposed. Either (B) the zones R1, R2, R3, and R4 correspond to the dominantly 

reversed interval C2r (ranging between 1.945 and 2.581 Ma) assuming that N2, N3, or N4 are normal 

overprints or (C) the zones R1, R2, R3, and R4 correspond to the reverse chrons from C1r.1r to C2r.2r 

(ranging between 0.781 and 2.581 Ma) assuming that N2, N3, or N4 are normal polarity zones within 

the corresponding chrons range. Correlations B and C place the middle to upper Siwalik subgroups 

boundary at 2–2.5 Ma and 1.5 Ma, respectively.  

 

It remains difficult to discriminate between correlation A, which a priori yields a better pattern fit to 

the GPTS, and correlations B or C, which cannot be rejected because of the potential secondary 

overprints in the upper part of the section. 

 

3.3.4. Magnetostratigraphic Correlations Using Qupydon Software 

To quantify the ambiguities in the manual (i.e., deterministic) magnetostratigraphic correlations, we 

have performed stochastic modelling of the polarity column using the software Qupydon (Lallier et 

al., 2013) implementing the Dynamic Time Warping algorithm. Input data are the geomagnetic 

polarity timescale (GPTS) of (Gradstein et al., 2012) and the thicknesses of polarity zones measured 

in the Dungsam Chu sedimentary section. By constraining the length of the GPTS, we have explored 

the above discussed correlation schemes by performing two sets of correlations (Table 2). 

 

As a reference polarity section, we first selected the segment of the GTPS that covers all the known 

depositional ages of Siwaliks (e.g. Ojha et al., 2009), which range from chron C1n to C5ADr (0–14.775 

Ma). Our polarity column contains 19 polarity zones, and the reference section of the GTPS contains 

80 chrons. Accordingly, we have calculated 20,000 correlations and analysed the 5000 best 

correlations determined via the best fit (or “minimum cost” (Lallier et al., 2013)) correlation. The 

numerical algorithm includes three calculation parameters: a maximum substitution, a gap factor, 

and a substitution distance. The maximum substitution is the maximum number of reference chrons 

that may be correlated to one chron of our polarity column. A gap factor equal to 0 yields a 

correlation with higher sedimentation rate, while a high gap factor (e.g. 10) stretches the correlation 

within the imposed reference timescale. A substitution distance equal to 1 allows short-term 
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variation in sedimentation rate, while for a substitution distance >1, the software is forced to find 

correlations that minimize local variations of the sedimentation rates inducting gaps in the 

correlation (Lallier et al., 2013).We set the values of those three parameters by trial and error. We 

set the gap factor between 10 and 0, the maximum substitution to 10, and in all our analyses, 

substitution distances of 1 or 2 yielded significantly lower cost correlations than a substitution 

distance of 10. 

 

Table 2: List of magnetostratigraphic correlations, the modelling parameters, and the costs of the 

best correlationsa 

 

 

When setting the age of the base of the Siwalik Group at ~14 Ma as is suggested elsewhere along the 

strike of the range (e.g. Ojha et al., 2009), statistical distribution of the 5000 best correlations 

yielded a large range of correlations (Table 2). However, along the Dungsam Chu section, because 

the DAFT analysis indicates that the base cannot be older than ~7 Ma, we have performed a second 

correlation using a reference scale covering chrons C1n-C4r.2r (0–8.771 Ma) (Table 2 and Fig. 25). In 

all the analyses, we observed that the cost of correlation starts to decrease for the best 100 

correlations (see related discussion by Lallier et al. (2013)), while the approximately 20 best 

correlations yield the least scatter. The best runs are Q1, Q2, Q5, and Q9 (Table 2). Q5 is 

incompatible with DAFT data and hence was discarded; Q1, Q2, and Q9 yielded nearly identical 

correlations with Q9 having the lower cost and representing the best model. For this model, we 

therefore further analysed the 13 best correlations in which the 14 older polarity zones yield the 

same goodness of fit to the reference scale, while the top 5 zones display some scatter (Fig. 24). The 

top of this correlation is similar to slightly younger than the manual correlation C, the top polarity 

zone correlating with C1r.3r (1.185–1.778 Ma) or C2r.2r (2.148–2.581 Ma), with the former having 
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higher probability (Fig. 25c). The bottom of the section correlates well with chron C3Ar (6.733–7.140 

Ma).  

 

We conclude that the stochastic correlation Q9 close to manual correlation C is the best option for 

the Dungsam Chu section, with an age at the base of ~7 Ma and at the top of ~1 Ma (Fig. 25c). 

 

 

 

Fig. 24: Weighted density age versus depth plot of the 13 best correlations for the Dungsam Chu 

section for the best run Q9. On the top is the GTPS chart, and on the left side is our polarity column 

(PC). Results with reference scale C1n-C4r.2 r (from GPTS of Gradstein et al. (2012)). Number of 

results = 1000, maximum paths = 10,000, gap factor = 0, maximum substitutions = 10, and 

substitution distance = 1. Dashed vertical lines indicate the “best solution” (cost = 5.9), also indicated 

in Fig. 25. Horizontal green lines are the detrital apatite fission-track ages. The color column to the 

right is the weighted density of points indicative of the goodness of fit. 
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Fig. 25: (a–c) Comparison of the best stochastic correlation with deterministic correlations A, B, and 

C. In the middle is the GTPS of Gradstein et al. (2012). To the left is the best correlation obtained by 

the Qupydon software using the younger part of the reference scale (Q9). To the right are the manual 

correlations A, B, and C. 

 

4. SEDIMENTOLOGY 

In addition to geochronological analyses, we have performed a sedimentological study of the Siwalik 

deposits to establish the nature and changes of their sedimentary environments in eastern Bhutan. 

 

4.1. Facies Analysis 

We carried out a sedimentological analysis using a standard method of facies analysis. Twelve facies 

were identified on the basis of their lithology, sedimentary structures, and trace fossils before being 

interpreted in terms of depositional processes (Table 3). Along the Dungsam Chu section, these 

facies co-occur in four assemblages, which were interpreted in terms of depositional environments 

(Table 4). Indeed, facies assemblages are more representative of depositional environments than 
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individual facies alone, the latter rather depending on the sediment nature or on elementary 

hydrodynamic, bioturbation, and pedogenic processes. 

 

The facies assemblages were recognized in specific locations throughout the sedimentary section 

and used to divide it into four units bearing different environmental characteristics. The distribution 

of these units was documented by a stratigraphic column constructed from outcrop observations 

along the Dungsam Chu transect (Figs. 18 and 26). Along this transect, horizontal distances were 

measured using both a GPS and a decametre scale before being converted into sediment thicknesses 

using strike and dip measurements. 
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Fig. 26: Measured sedimentary section of the Siwalik Group deposits exposed along the Dungsam 

Chu near Samdrup Jongkhar (see Fig. 17 for location). (a) Stratigraphic column. The horizontal scale 
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labels C, s, S, P, C, and B are abbreviations for clay, silt, sand, pebbles, cobbles, and boulders. Current-

generated features include current-ripple laminations, tabular cross beddings, through cross 

beddings, and flat beddings. Wave-generated features comprise undulating and wave-ripple 

laminations. (b) Depositional environment evolution. (c) Sedimentation rate evolution obtained for 

the best correlation from Qupydon. 

 

Descriptions and interpretations of the four identified units in terms of depositional processes and 

environments are presented below, from the bottom (unit 1) to the top (unit 4) of the section. Unit 1 

comprises eight facies: one pedogenic (F1), two clayey (F2 and F3), one heterolithic (F4), and four 

sandy facies (F5, F8, F9, and F10) (for a detailed description, see Tables 3 and 4 and Fig. 27). Among 

these facies, the presence of thick-bedded (centimetres to meters thick) dark grey to black claystone 

layers indicates subaqueous sediment fallout from suspension; massive or normally graded to flat- 

and cross-laminated sandstones and occasional soft-sediment deformation point to subaqueous 

gravity flow; flat- to cross-bedded sandstones combined with climbing and wave ripples, as well as 

bioturbation (among which burrows of Planolites and Diplocraterion), suggest the deposition of a 

sandy bed load transported by subaerial to subaqueous either confined or unconfined flow (the 

difference is not discernible in the field). Altogether, these deposits are interpreted as representing 

different parts of a river-dominated deltaic system (e.g. Collinson, 1969; Hyne et al., 1979; Marshall, 

2000; Tye and Coleman, 1989). This system may have developed in either a lacustrine or a marine 

environment because inferred depositional processes can occur in both settings (e.g. Collinson, 

1969; Hyne et al., 1979; Marshall, 2000). Moreover, the sedimentary series does not contain any 

macrofossil or microfossil (e.g. shells or foraminifera) that can help to discriminate the nature of the 

water body. At first glance, a lack of obvious marine evidence thus suggests a lacustrine delta. 

However, the occurrence of trace fossils of marine affinity like Diplocraterion and glauconite in clay 

composition (Grujic, personal communication, 2016), together with some mangrove to freshwater 

swamp pollen taxa (Nypa and Neocouperipollis; for details, see section 5), suggests an environment 

influenced by brackish water and indicates that a marine interpretation is viable. At its top, unit 1 

grades quickly (within a few meters) into unit 2 where new facies (F6 and F7) appear, their first 

occurrence being dated at ~6.4 Ma. Unit 2 comprises 10 facies: one pedogenic (F1), two clayey (F2 

and F3), two heterolithic (F4 and F6), and four sandy facies (F5, F7, F8, F9, and F10) (Tables 3 and 4 

and Fig. 27). Facies characteristics are similar to unit 1 but additionally include massive or wavy- to 

flaser-bedded sandstones with undulating, hummocky, and swaley laminations of wave ripples 

indicating deposition or reworking by waves. These deposits represent a wave-influenced deltaic 

depositional system (e.g. Chan and Dott Jr, 1986; Helland‐Hansen, 2010; McCormick and Grotzinger, 
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1993; Myrow et al., 2008). As for unit 1 and without clear sedimentary features, trace fossils, or 

fossils supporting one hypothesis or the other, this deltaic environment may have developed in 

either a lacustrine or a marine setting. However, the occurrences of trace fossils of marine affinity 

like Diplocraterion, of glauconite (D. Grujic, personal communication, 2016) and of some mangrove 

to freshwater swamp pollen taxa (Nypa and Neocouperipollis, together with Pelliciera and 

Brownlowia; for details, see section 5), associated with the wave-influenced facies, rather indicate 

that the deltaic system of unit 2 was subjected to intermittent marine influences. At the top, unit 2 

sharply gives way to unit 3 at ~4.9 Ma. Unit 3 comprises two sandy facies (F10 and F11) (Tables 3 and 

4 and Fig. 27). In this unit, the presence of massive or bedded sandstones with erosional basal 

surfaces, meter-scale compound cross beds, and scattered pebbles indicates the deposition of a 

sandy and pebbly bed load transported by subaerial either stream or sheet flows. These deposits are 

interpreted as representing a sandy alluvial environment (e.g. Jo et al., 1997; Marshall, 2000; 

McCormick and Grotzinger, 1993; Miall, 1977; Miall, 1985; Wizevich, 1992). At its top, unit 3 shifts to 

unit 4 over a sharp transition dated at ~3.8 Ma. Unit 4 comprises three facies: two sandy facies (F10 

and F11) and one conglomeratic facies (F12) (Tables 3 and 4 and Fig. 27). Facies characteristics are 

similar to unit 3 but additionally include massive or bedded conglomerates with erosional basal 

surfaces suggesting the deposition of a gravelly bed load transported by subaerial either stream or 

sheet flows. These deposits represent a gravelly alluvial environment (e.g. Jo et al., 1997; McCormick 

and Grotzinger, 1993; Miall, 1977; Miall, 1985). The limited lateral extent of the studied section and 

its rock exposure (a few tens of meters) precludes clear determination of the channel pattern 

(braided or meandering) and organization (radial or not) of this alluvial system. Yet the analogy of 

our observations with the modern fluvial fans in the Himalayan foreland basin suggests that units 3 

and 4 likely represent the distal and more proximal parts, respectively, of a braided-streamflow fan 

environment (Jain and Sinha, 2003; Kumar et al., 2004; Shukla et al., 2001). In unit 4, a few pollens of 

mangrove to freshwater swamp taxa (Neocouperipollis and Nypa; for details, see section 5) are also 

found. However, in the absence of other marine criteria (sedimentary figures, trace fossils, or clays) 

and provided that these taxa may also occur in tidally influenced rivers and freshwater swamps 

relatively far inland (Giesen et al., 2007; Morley, 1991; Tomlinson and Tomlinson, 1994), this is not 

necessarily inconsistent with an alluvial interpretation for the associated deposits. 

 

 

Table 3: Summary of the facies characteristics observed in the Dungsam Chu Section and their 

interpretations in terms of depositional processes 
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Table 3 (continued) 
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Table 3 (continued) 
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Table 4: Summary of the characteristics of the facies assemblages, corresponding units observed in 

the Dungsam Chu section, and their interpretations in terms of depositional environments 
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Fig. 27: Photographs of outcrops depicting the most typical facies observed in the Dungsam Chu 

sedimentary section. (a) Facies F1 (units 1 and 2): example of a root trace. (b) Facies F2 (units 1 and 

2): carbonaceous shale. (c) Facies F3 (units 1 and 2): noncarbonaceous shale. (d) Facies F4 (units 1 

and 2): heterolithics with flat and undulating laminations, some rip-up clasts, and irregular surfaces 

of the base of the sandstone layers. (e) Facies F5 (units 1 and 2): centimetres to a decimetre thick 

sequences of normal gradings and flat laminations. (f) Facies 6 (unit 2): a sandstone layer of this 

heterolithic facies showing flaser beddings, undulating and swaley laminations, and intrabed gutter 

casts. Among other burrows, note the decimetre-scale Diplocraterion and the frequent millimetre-

scale Planolites. (g and h) Facies 7 (unit 2): sandstone with disturbed laminations, wavy to flaser 

beddings, soft-sediment deformation structures, and millimetre- to centimetre-scale burrows. (i) 

Facies 7 (unit 2): sandstone with wavy to flaser beddings and wave ripples. (j) Facies 7 (unit 2): 

sandstone with flaser beddings, undulating, hummocky, and swaley laminations of wave ripples, and 

millimetre- to centimetre-scale burrows. (k) Facies 7 (unit 2): sandstone with disturbed laminations, 

soft-sediment deformation structures, and pervasive bioturbation. (l) Facies 8 (units 1 and 2): 

sandstone with cross laminations and climbing ripples. (m) Facies 9 (units 1 and 2): sandstone with 

flat and cross beds, lignite laminations, and soft-sediment deformation structures. (n) Facies 10 (units 

1–4): sandstone with climbing-ripple cross-laminations, flat and cross beds, and reactivation 

surfaces. (o) Facies 11 (units 3 and 4): sandstone with flat and cross beds underlined by scattered 

pebbles. (p) Facies 12 (unit 4): conglomerate with an erosional basal surface and winnowed gravels 

at the top. 

 

4.2. Sedimentation Rates 

Using our preferred magnetostratigraphic correlation, we have constructed two sedimentary 

accumulation curves for the Dungsam Chu section. First, we have used the median value for the 

calculated sediment accumulation rates from Qupydon and the median age for each polarity zone 

(Fig. 26c) and second, we have plotted the measured sedimentary thickness against the ages of 

corresponding GPTS 2012 chrons (Figs. 26c and 28). The first curve provides instantaneous 

sedimentation rates for each chron, while the second one smooths the signal over several chrons 

and yields a longer-term trend in accumulation rates. In units 1 and 2, sedimentation rates range 

between 0.4 and 0.6 mm/yr with a peak at 0.9 mm/yr at the base of unit 2. Unit 3 displays scattered 

rates at the base with two peaks at 1.0 and 1.3 mm/yr and stable values of 0.3 mm/yr in the upper 

half portion continuing into the lower part of unit 4, decreasing to values <0.1 mm/yr at the top of 

the section. The slopes of the best fit lines for the three groups of datapoints in Fig. 28 indicate a 

clear tendency for a slowdown of the sediment accumulation rates from ~0.63 mm/yr in units 1, 2, 
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and base of unit 3 to ~0.3 mm/yr at the top of unit 3 and the base of unit 4 and ~0.07 mm/yr at the 

top of the section (see also the red curve in Fig. 26c). 

 

 

Fig. 28: Age versus depth plot of the Dungsam Chu section using the correlation from Fig. 25c. 

 

5. PALYNOLOGY 

To constrain the local paleoclimate and complement our understanding of the paleodepositional 

environment, we have looked for the palynological content of the sediments at Dungsam Chu. 

Sampling strategy and analytical procedure are described in Text S4 in the supporting information 

(Hoorn et al., 2000; Traverse, 1988). 

 

In this exploratory palynological study of the Siwaliks sediments in Bhutan we have listed the 

sporomorphs by their botanical affinity, or with a form generic name, or morphological indication 

and type number (see caption Fig. 29). The taxa were further grouped into four main categories 

(Poaceae, other herbs, angiosperms/gymnosperms, and pteridophytes; see Table 5), in order to 

compare the Dungsam section with the Surai Khola section in Nepal (Hoorn et al., 2000) (Figure B of 

Appendix I). Overall, the pollen diversity is high with over 100 form genera (Table S3 of Appendix I) 
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observed in 16 samples (for sample location, see Fig. 19b). Pre-Cenozoic sporomorphs were 

uncommon and listed under “corroded/indeterminate sporomorphs” in Table S3 of Appendix I. This 

was not expected, given the deltaic (i.e., river-influenced) nature of the depositional environment 

and the common occurrence of these forms in Siwalik deposits documented elsewhere (e.g. in West 

Bengal, More et al., 2016)). This suggests that sediment reworking has had no marked influence on 

the pollen composition of the Dungsam Chu section. Ferns and fern allies (Pteridophytes) are very 

abundant and range mostly from 50 to 75% throughout the section (Table S3 of Appendix I, Table 5 

and Fig. 26d). They are indicative of humid, wet local conditions and are often found in the presence 

of a mountain forest. Bhattarai et al. (2004) have demonstrated that in Nepal, the maximum fern 

richness along the topographic gradient is found at around 2000m and that at these elevations, ferns 

are strongly dependent on moisture and do not tolerate frost. The presence of Ceratopteris and 

Selaginella (Table S3 of Appendix I) is also typical for open freshwater conditions. Poaceae are 

frequent (5–25%), with peak occurrences (~50%) in the lower part of environmental unit 2 (Table S3 

of Appendix I, Table 5 and Fig. 26d). Peaks of Asteraceae occurrence (5%) coincide with the Poaceae 

record. In contrast with findings in Pakistan (De Franceschi et al., 2008), the Bhutanese record 

presents low abundance to absence of Chenopodiaceae-Amaranthaceae in the Dungsam Chu 

samples, which is a group of wide ecological range, but particularly common in arid environments. 

Taxa of broadleaved, deciduous forest, such as Alnus, Betula, Corylus, Myrica, and Fagaceae (Table 

S3 of Appendix I), occur throughout the section but in relatively low abundances which, combined 

with the presence of taxa from high elevations (Ericaceae), suggest the presence of a broadleaved, 

deciduous forest over a pronounced topographic gradient. The presence of tropical lowland taxa 

such as Sapotaceae, Anacardiaceae, Bombacoideae, and Rubiaceae is representative of the pollen 

influx from a lowland, evergreen rain forest. In contrast, the tree pollen referred to as “other 

Angiosperms/Gymnosperms” in Fig. 26c, from unit 2, suggests less open vegetation until the top of 

the section. Finally, there are punctuated single occurrences of mangrove to back-mangrove taxa 

indicative a coastal setting such as Brownlowia in the bottom half of unit 2. Brownlowia may also 

occur in tidally influenced freshwater swamps along the coastal plain (Morley, 1991; Tomlinson and 

Tomlinson, 1994). In addition, several single occurrences of palm tree-type pollens such as Nypa and 

the extinct Neocouperipollis representing palms from the coastal environment, and extending 

toward tidally influenced rivers and freshwaters swamps further inland (Giesen et al., 2007; Monga 

et al., 2015), are observed along the entire section (Table S3 of Appendix I). 
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Fig. 29: Optical micrographs of representative sporomorph taxa of the Neogene-Pleistocene 

Dungsam Chu section, Bhutan. The sample number and England Finder reference are given for each 

specimen. (1) Magnolia type; slide PN28-4; EF: E18-F18. (2) Reworked bisaccate; slide PN51-4; EF: 

U24-25/4-3. (3) Poaceae; slide PN85-4; EF: S30. (4) Platanus? (Type 39); slide PN85-4; EF: D22-4. (5) 

Myricoid-Betuloid type; slide PN21A-4; EF: Q33-3. (6) Myricoid-Betuloid type; slide PN21A-4; EF: T16-

2. (7) Nypa (Type 38); slide PN21-4; EF: S13-3. (8) Nypa (Type 38); slide PN37-4; EF: R26-3. (9) 

Neocouperipollis (Type 36); slide PN37-4; EF: P12-2. (10) Meliaceae (Type 9); slide PN20A-4; EF: O34-

3 (see also PN28-4; R31). (11) Corylus (Types 48 and 55); slide PN14B-4; EF: K-L23. (12) 

Juglandaceae/Pandaceae? (Type 19); slide PN28-4; EF: Q13-14/4-3. (13) Carpinus? (Type 63); slide 

PN85-4: U20-3. (14) Alnus; slide PN13A-4; EF: M22-23. (15a-b). Rubiaceae (Types 7 and 25); slide 

PN28-4; EF: T-U18. (16) Rubiaceae? (Type 6); slide PN20A; EF: E-F18/3-1. (17) Quercus; slide PN85-4; 

EF: H31. (18a-b) Alangium (Type 10); slide PN20A; EF: Q35-2. (19) Reticulate, tricolporate (Type 66); 

slide PN85-4; M20/1-2. (20a-b) Reticulate, tricolporate (Type 66); slide PN85-4; EF: W-V27-28. (21) 

Myrtaceae; slide PN13A-4: EF: M26. (22) Malvaceae? (Type 52); slide PN14B; EF: O20-4. (23) Nypa 
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(Type 50); slide PN14B; EF: L-M/23-24. (24) Asteraceae; slide PN20A; EF: K34-1. (25) Asteraceae, 

Centaurea type; slide PN21-4; EF Q-R/31/3-1. (26) Asteraceae? slide PN20A; EF: J18. (27) 

Sapotaceae? (Type 65); slide PN85-4; EF: V25/1-2. (28a-b) Sapotaceae (Type 87-91); slide PN60-4; EF: 

S31-1. (29) Brownlowia (Type 18); slide PN28-4; EF: Q25-26/2-1. (30a-b) Alangium (Type 42); slide 

PN37-4; EF: X23-3. (31) Acanthaceae, Justicia type (Type 75); slide PN51A-4; EF: L19-1. (32) 

Oncosperma (Types 21 and 47); slide PN28-4; EF: R25/1-3. (33a-c) Anacardiaceae? (Type 32); slide 

PN37; EF: L28. (34a-b) Mitragyna, Rubiaceae; slide PN60-4; EF: N31-32. (35a-b) Reticulate, tricolpate 

indet.; slide PN60-4; EF: L32-3. (36a-c) Rubiaceae, reticulate, triporate (Types 74 and 86); slide PN60-

4; EF: M28. (37) Rubiaceae, reticulate, and triporate (Types 74 and 86); slide PN55-4; EF: K-L/33-34. 

(38a-c) Verrucate and tricolporate (Type 61); slide PN85-4; EF: P27-3. (39) Caesalpiniaceae? (Type 

73); slide PN51A-4; EF: M27-2. (40) Caesalpiniaceae? (Type 73); slide PN51A-4; EF: H-J28/4-2. (41) 

Indeterminate sporomorph; Slide PN28-4; E: O15-3? (42) Monolete spore; slide PN20A; EF: E24-3. 

(43) Polypodiaceae; slide PN85-4; J23 and J28-29. (44) Nephrolepis, Davalliaceae; slide PN20A; EF: 

N15. (45) Stenochlaena palustris, Blechnaceae; slide PN85-4; EF: U29/1-2. (46) Pteris type, 

Pteridaceae (Type 60); slide PN85-4; EF: N15-2. (47) Pteris type, Pteridaceae (Type 11); slide PN20A; 

EF: Q16-3. (48) Pteris type, Pteridaceae (Type 30); slide PN21A-4: EF: Q25-2. (49) Selaginella? (Type 

77); slide PN31A-4; EF: N24-4. (50) Selaginella (Type 62); slide PN85-4; EF: R26-27/4-3. (51a-b) 

Verrucate/gemmate, trilet (Microlepia?) (Type 37); slide PN37-4; EF: Q-R16/4-2. (52) Lycopodium 

cernuum type (Type 34); slide PN37-4; EF: P21/2-4. (53) Praedapollis sp. (Type 35); slide PN37-4; EF: 

P19-1 and S30-2. (54) Pteris type, Pteridaceae (Type 33); slide PN37-4; EF: O20-1. (55a-b) 

Ceratopteris, Pteridaceae; slide PN21A-4; EF: Q32-2. (56) Bryophyte/Hepatic spore? (Type 51); slide 

PN14B; EF: O21-3. 

 

 

 

 

Table 5: Summary of the palynological group countsa 
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6. DISCUSSION 

6.1. Age of the Siwalik Group 

Magnetostratigraphic results suggest that along the Dungsam Chu, the age of the base of the section 

is at ~7 Ma (Fig. 25c), the boundaries between the classic lithological subgroups of the Siwalik Group 

being determined at ~6 Ma for the lower to middle Siwalik subgroups and at ~3.8 Ma for the middle 

to upper Siwalik subgroups, while the top of the section is ~1 Ma (Figs. 25c and 26). Previous 

magnetostratigraphic correlations in the Neogene-Quaternary Himalayan foreland basin from 

Pakistan to Arunachal Pradesh document ages ranging from 8 to 12Ma for the lower to middle 

Siwalik transition (e.g. Chirouze et al., 2012; Gautam and Fujiwara, 2000; Ojha et al., 2009; Ojha et 

al., 2000; Tokuoka et al., 1986) and from 2 to 3.5 Ma for the middle to upper Siwalik transition (e.g. 

Behrensmeyer et al., 2007; Ojha et al., 2009; Sanyal et al., 2004) (Fig. 30a). Therefore, in the 

Dungsam Chu section, the boundary between the lower and middle Siwalik subgroups is 2 to 6 Ma 

younger than documented elsewhere along the Himalayan arc. Furthermore, the duration of 

deposition of the middle Siwalik subgroup varies from 3 to 6 Ma in central and western Nepal (Surai 

and Muksar Khola sections) (Ojha et al., 2009) to about 2–3Ma in Bhutan (Dungsam Chu section) to 

as long as 8Ma in Arunachal Pradesh (Kameng section, Fig. 30a) (Chirouze et al., 2012).  

 

Apparently, the Kameng section differs significantly from the Nepalese and Bhutanese sections (Fig. 

30a) although these differences are not straightforward to explain. Indeed, it has been clearly 

demonstrated that vertical transitions between lithostratigraphic formations and their lateral 

diachroneity cannot be interpreted simply in terms of tectonic and climatic forcing, especially in 

foreland basins (e.g. Barberà et al., 2001; Burbank et al., 1986; Charreau et al., 2009; Heermance et 

al., 2007). These changes reflect the 4-D space-time evolution of depositional profiles documented 

by one-dimensional vertical sections located at different positions, more proximal or more distal, 

with respect to the mountain range and its foreland. Consequently, extensive and careful 

spatiotemporal constraints, both parallel and perpendicular to the orogenic system, are necessary to 

properly discuss what controls the vertical and lateral transitions between the lithostratigraphic 

formations in a foreland basin. Additionally, a sedimentological and stratigraphical reading of such 

variations in terms of paleoenvironmental, paleogeographical, and sequential evolution is often 

more pertinent than a strictly lithostratigraphic approach. 
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Fig. 30: (a) Summary of magnetostratigraphic correlations to the GPTS of stratigraphic sections of 

Siwalik deposits along the eastern Himalayan arc (modified after Hirschmiller et al. (2014)). USG: 

upper Siwalik subgroup, MSG: middle Siwalik subgroup, LSG: lower Siwalik subgroup. Si, SS, and Cg 

are abbreviations for siltstone, sandstone, and conglomerate. (b) Lateral variations of depositional 

environments. Stratigraphic sections are from Nakayama and Ulak (1999) and Ojha et al. (2009) 

(Surai and Muksar Khola), this study (Dungsam Chu), and Chirouze et al. (2012) (Kameng River). 
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6.2. Depositional Environments and Paleogeography 

The Siwalik Group in Bhutan shows an overall distal to proximal trend as observed everywhere else 

in the Himalayan foreland basin (e.g. Chirouze et al., 2012; DeCelles et al., 1998b; Kumar et al., 2003; 

Nakayama and Ulak, 1999). This long-term progradational trend, which is typical of the filling 

sequence of foreland basins at their active margin (e.g. Jordan, 1995; Puigdefàbregas et al., 1986; 

Schlunegger et al., 1997; Sinclair and Allen, 1992; Stockmal et al., 1992) is controlled by the 

propagation of the deformation front, generally together with an increasing erosion and sediment 

flux, related to the horizontal and vertical growth of the adjacent mountain range. 

 

To the west of the system, the sedimentary paleoenvironments are thus interpreted as meandering 

and braided fluvial depositional systems (lower and middle Siwalik subgroups) grading into alluvial 

fan systems (upper Siwalik subgroup) (Fig. 30b). This kind of environmental evolution is uniformly 

observed from Pakistan (Abbasi and Friend, 2000; Willis, 1993; Zaleha, 1997) to western India 

(Brozovic and Burbank, 2000; Johnson et al., 1983; Kumar et al., 2003; 2004; Suresh et al., 2004) and 

Nepal (DeCelles et al., 1998b; Huyghe et al., 2005; Nakayama and Ulak, 1999; Ojha et al., 2009). In 

some places, floodplains with intermittent lacustrine conditions attributed to seasonal flooding are 

also recorded (DeCelles et al., 1998b; Hoorn et al., 2000) but always in a continental environment. A 

paleoenvironmental change occurs east of Nepal where thick deltaic deposits appear in the lower 

and middle Siwalik subgroups (Fig. 30b). Along the Churanthi River in West Bengal (Fig. 17), brackish 

water to shallow marine conditions are documented by palynological data and trace fossils in the 

undated middle Siwalik subgroup (More et al., 2016). Farther east, our observations indicate that 

along the Dungsam Chu, the basal environmental units 1 and 2 correspond to deposits of a river-

dominated deltaic system and a wave-influenced deltaic environment, respectively, associated with 

marine trace fossils, glauconite, and some coastal pollen taxa, suggesting a marine setting before ~5 

Ma (Fig. 30b). After that, the deposits grade to units 3 and 4, which represent a sandy and a gravelly 

alluvial system, respectively. Along the Kameng section in Arunachal Pradesh (Fig. 17), Chirouze et al. 

(2012) also describe a lacustrine to marine deltaic environment in the lower Siwalik subgroup (Dafla 

Formation) before ~10.5 Ma (Fig. 30b). Moreover, the overlying braided river sediments of the 

middle Siwalik subgroup (Subansiri Formation) and alluvial fan deposits of the upper Siwalik 

subgroup are reported to both bear paleobotanical evidences of brackish water or near coastal 

environments (e.g. Chirouze et al., 2012; Mehrotra et al., 1999; Singh and Tripathi, 1989). We 

speculate that these brackish water to shallow marine paleoenvironments are linked to those 

observed to the northeast of the Shillong Plateau in the foreland of the Naga Hills of Assam (e.g. 
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Bhandari et al., 1973; Reimann and Hiller, 1993) and to the south in the well-dated Surma Basin of 

northern Bangladesh  (e.g. Alam et al., 2003; Najman et al., 2012; Worm et al., 1998) (Fig. 17). 

 

In the foreland of the Naga Hills in Assam, paleoenvironmental data indicate marine influence during 

the Neogene, although the chronological constraints on sediment deposition remain poorly 

constrained (Bhandari et al., 1973; Evans, 1932; Mallet, 1876; Reimann and Hiller, 1993). The 

Miocene Surma Group displays fossil assemblages pointing toward shallow marine to brackish water 

environments, whereas the overlying Mio-Pliocene Tipam Group is characterized by lithologic 

characteristics and floral assemblages symptomatic of a fluvial environment in a subtropical to 

temperate climate (e.g. Bhandari et al., 1973; Reimann and Hiller, 1993). 

 

The Surma Basin in Bangladesh also records nearshore to marine conditions in strata 

contemporaneous with the marine facies recorded in Bhutan (e.g. Johnson and Alam, 1991). The 

latest Miocene-Pliocene Surma Group consists of the Bhuban and Bokabil Formations. The Bhuban 

Formation displays a proximal marine deltaic system associated with mangrove taxa and is 

interlayered with shallow marine incursions. The overlying Bokabil Formation is characterized by the 

presence of foraminiferal tests associated with mangrove taxa. The top of the Surma Group is 

characterized by the Upper Marine Shale, which represents the final marine incursion to this area, 

dated at 2.5–3.9 Ma. Above this, the overlying Tipam and Dupi Tila Formations were then deposited 

in a fluvial environment (e.g. Gani and Alam, 2004; Johnson and Alam, 1991; Najman et al., 2012; 

Worm et al., 1998). 

 

There are extensive lateral variations in lithologies and thicknesses of the different sediment 

sequences described in those different areas, some of them located quite far (a few hundred 

kilometres) from the Dungsam Chu section. However, we speculate that the observations 

collectively suggest that the marine incursions emanating from the Bay of Bengal to the south and 

recorded both in the Naga Hills and the Surma Basin until the deposition of fluvial facies from ~3.9 

Ma may have had a peripheral impact on the facies observed at the front of the Himalayan range in 

eastern India (Chirouze et al., 2012; More et al., 2016) and in Bhutan until at least ~5 Ma. Our 

hypothesis supports a post-Miocene full continentalisation of the eastern Himalayan foreland basin, 

much later in time than previously suggested in this area (e.g. Alam et al., 2003; Johnson and Alam, 

1991) and than farther west. In Nepal the peripheral foreland basin shows clear evidence for an 

extensive unconformity separating marine facies below and fluvial facies above (DeCelles et al., 

1998a). The youngest marine facies are generally considered to be Mid-Eocene in age although this 
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matter remains debated (e.g. Bhatia and Bhargava, 2006; Najman, 2007), while the fluvial facies 

commenced, at the latest, by 20 Ma (Ojha et al., 2009; White et al., 2002), which is at least 15 Ma 

earlier than observed in Bhutan. 

 

The post-Miocene continentalisation of the Dungsam Chu region and the eastern Himalayan 

foreland basin likely result from a combination of two main factors including (1) the long-term 

progradation of the foreland depositional landscape related to the growth of the Himalayan 

orogenic wedge, which has probably produced a southward migration of the shoreline of the Bay of 

Bengal, and (2) the long-term sea level fall initiated since the late Miocene (Hansen et al., 2013; 

Miller et al., 2005). Superimposed on this second-order eustatic trend, a relative sea level high 

occurred before 4.9 Ma (Hansen et al., 2013; Miller et al., 2005) which potentially has promoted a 

marine influence in our study area until the wave-influenced deltaic environment changed for a 

river-dominated environment. Finally, the deformation and surface uplift of the Shillong block must 

have decreased the subsidence of the eastern Himalayan foreland before creating a topographic 

barrier into the basin after 4–3 Ma (Biswas et al., 2007; Najman et al., 2016). 

 

6.3. Palynology and Paleoclimate 

The predominance of grass and fern sporomorphs and a highly diverse assemblage of angiosperms 

and pteridophytes, which collectively are typical for tropical lowland vegetation, characterize the 

composition of the palynological assemblage in the Dungsam Chu section. In essence, this 

assemblage is comparable to the palynological results obtained in central Nepal along the Surai 

Khola (Hoorn et al., 2000) (Figure B of Appendix I), but the larger variety of lowland taxa in eastern 

Bhutan suggests a more diverse tropical lowland vegetation upstream of the sedimentary basin. 

 

In terms of temporal evolution, the composition of the palynological assemblage does not 

significantly change through the 7–1 Ma interval documented by the Dungsam Chu section. In 

contrast, the Surai Khola section shows a shift at around 6.5 Ma, when ferns drop and grasses 

predominate from then onward (Hoorn et al., 2000). The Bhutanese record thus resembles the pre-

6.5 Ma Nepalese record, rather than its post-6.5 Ma temporal equivalent (Figure B of Appendix I). 

This suggests that the environment and probably the paleoclimate in Bhutan, in the lowland and 

floodplain, were consistently more humid than the coeval environments and paleoclimate in Nepal, 

as is the case nowadays (Bookhagen and Burbank, 2006; 2010). The palynological record thus 

indicates that the orographic perturbation of ISM precipitations exerted by the surface uplift of the 
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Shillong Plateau 4–3 (Biswas et al., 2007) to 3.5–2 Ma ago (Najman et al., 2016) did not measurably 

modify the wet local climate observed in the Bhutanese foothills since 7 Ma. 

 

6.4. Accumulation Rates and Deformation 

In foreland basins, the rates of sediment preservation are conditioned by the spatiotemporal 

evolution of the subsidence, which primarily generate accommodation space for deposits, and by 

sediment supply derived from the erosion of the adjacent mountain range (DeCelles and Giles, 

1996). Consistent with the forelandward migration of the basin flexure associated with the lateral 

and vertical growth of the orogenic system, the foredeep depozones of foreland basins are generally 

characterized by an overall acceleration of subsidence through time recorded by increasing 

accumulation rates and convex up subsidence curves (e.g. Charreau et al., 2009; Ojha et al., 2009; 

Xie and Heller, 2009). For the Himalayan foreland basin, such increasing or constant accumulation 

rates calculated from the non-decompacted sedimentary thicknesses of the Siwalik deposits have 

been mostly interpreted in terms of flexure associated with the slip history of the Main Boundary 

Thrust (MBT) (e.g. Burbank et al., 1996; Meigs et al., 1995; Ojha et al., 2009). Contrary to other 

foreland sedimentary sections from Pakistan to Arunachal Pradesh (See Chirouze et al., 2012, Figure 

10; Ojha et al., 2009, Figure 13), the Dungsam Chu section has a unique characteristic which is that 

the accumulation rate decreases steadily from ~0.63 mm/yr between ~7 and ~4.5 Ma to ~0.3 mm/yr 

between ~4.5 and ~3.5 Ma and ~0.07 mm/yr between ~3.5 and ~1 Ma (Figs. 26c and 28). Different 

mechanisms including climatically or tectonically driven decrease in subsidence and/or in sediment 

supply to the foreland basin may potentially account for this deceleration of accumulation rate in 

eastern Bhutan. First, the detrital influx entering the basin may have decreased due to a climatically 

driven slowdown of erosion in the hinterland of the orogen. Second, a tectonically driven decrease 

in subsidence could have resulted from the forelandward propagation of the fold-and-thrust belt 

and the integration of the study area into the thrust-wedge depozone of the basin. Third, the 

subsidence and/or the sediment supply may have diminished due to a tectonically driven decrease 

of shortening rates along the frontal Himalayan structures generating decay of crustal thickening and 

erosion in the hinterland and decay of the lithospheric flexure in the foreland. First, in Bhutan, a 

decrease in detrital influx may have resulted from a climatically driven slowdown of erosion in the 

range during the Pliocene (Grujic et al., 2006), in response to the surface uplift and orographic effect 

of the Shillong Plateau (Biswas et al., 2007). Yet the lack of paleoclimatic changes in our 

palynological data and the steady stable isotopic record from authigenic clay minerals across the 

stratigraphic section (D. Grujic, personal communication of unpublished data, 2016) refute this 

hypothesis. Second, a tectonically driven decrease in subsidence in relation with the propagation of 
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the deformation front toward the foreland could also be plausible. Indeed, the Dungsam Chu section 

has migrated from the foredeep to the wedge-top depozone of the basin (e.g. DeCelles and Giles, 

1996), since it is currently located in the hanging wall of the Main Frontal Thrust (MFT) (Fig. 18). 

Therefore, the time at which this thrust was activated becomes of critical importance. Based on 

detrital thermochronology and/or the presence of growth strata, ongoing displacement on the MFT 

is suggested to have started ~2 Ma ago in western and central Nepal (Mugnier et al., 2004; van der 

Beek et al., 2006) and ~1 Ma ago in eastern India in Arunachal Pradesh (Chirouze et al., 2013) and 

possibly at an unspecified younger time (Burgess et al., 2012), while the timing remains 

undetermined in Bhutan. However, the accumulation rates at Dungsam Chu have decayed since at 

least 4.5 Ma. Given the post ~2–1 Ma MFT activation documented along the eastern Himalayan arc, 

it hence seems reasonable to assume that during most of its deposition, the Dungsam Chu section 

remained located in the foredeep depozone and has not experienced a reduced creation of 

accommodation space due to the forelandward propagation of the Himalayan deformation front 

(MFT) before the Pleistocene. Third, the last option available to explain the deceleration of 

accumulation rates observed in eastern Bhutan is a tectonically driven decrease in subsidence 

and/or detrital influx due to a change in the deformation of the range and its foreland. What makes 

the Dunsgam Chu section special along the Himalayan arc is its location north of the Shillong Plateau, 

a unique basement-cored uplift in the Himalayan foreland (Fig. 17). At the longitude of central and 

eastern Bhutan, the Himalayan foreland corresponds to a broken foreland basin (e.g. Jordan, 1995; 

Strecker et al., 2011), rather than a classical foreland system (e.g. DeCelles and Giles, 1996). In this 

area, the foredeep is very shallow (maybe <1 km), in contrast to areas west and east of Bhutan 

(depths >4 km) (Dasgupta, 2000; Verma and Mukhopadhyay, 1977; Vernant et al., 2014, Figure 1b). 

The exhumation/cooling of the Shillong Plateau’s basement initiated 9–15 Ma ago (Biswas et al., 

2007; Clark and Bilham, 2008) and its surface uplift 3–4 Ma (Biswas et al., 2007) to 3.5–2 Ma ago 

(Najman et al., 2016). Both likely have had a significant influence in a reorganization of the regional 

paleogeography and the partitioning of India-Eurasia convergence along the Bhutanese range front. 

Based on thermokinematic modelling of thermochronometric data tied to a sequential balanced 

cross section, McQuarrie and Ehlers (2015) suggested that in the LHS of eastern Bhutan, shortening 

rates decreased between 8 and 0 Ma. Inverting a thermochronometric data set using 3-D 

thermokinematic modelling, Coutand et al. (2014) inferred a 50% decrease in long-term exhumation 

rates at~6 Main eastern Bhutan. At the time, Coutand et al. (2014) were not able to differentiate 

whether this drop in erosion rate should be attributed to climatic- or tectonic-related processes. 

Because in the Dungsam Chu section there is a lack of change of both the palynological record (Fig. 

26d and Table S3 of Appendix I) and stable isotope climatic proxies (Grujic, personal communication 
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of unpublished data, 2016) after 6.5 Ma (for most of the section deposition), we contend that 

tectonics had a prominent influence on the nature and magnitude of the foreland basin filling in 

eastern Bhutan. The onset of the Shillong block’s deformation and the slowdown of the 

displacement rates along the MBT in eastern Bhutan during the latest Miocene-Pleistocene would 

have had a direct impact on the accommodation space created in the basin, as well as on the detrital 

influx derived from the Himalayan orogenic wedge, decreasing them both. In the northeastern 

corner of India, plate reconstruction suggests that the convergence between India and Eurasia has 

been 44 mm/yr over the past ~11 Ma (Molnar and Stock, 2009), out of which GPS measurements 

indicate that a contraction of 14–17 mm/yr (Vernant et al., 2014) is currently accommodated in 

Bhutan. The discrepancy observed between long-term (0.65–2.9 mm/yr over the last 10 Ma (Biswas 

et al., 2007; Clark and Bilham, 2008)) and short-term (3–7 mm/yr (Vernant et al., 2014)) contraction 

rates accommodated on the Dauki Fault suggests that the amount of horizontal shortening 

accommodated by the Shillong Plateau has increased during the last 10 Ma, while it has 

concomitantly decreased by 3–8 mm/yr in the Bhutan Himalaya (Vernant et al., 2014). We hence 

attribute the late Miocene-Pleistocene decrease in sedimentary accumulation rates observed in 

eastern Bhutan to a tectonically driven change in subsidence and/or detrital influx in the basin, in 

response to an increasing partitioning of the India-Eurasia total convergence into the Shillong 

Plateau. 

 

7. CONCLUSIONS 

This multidisciplinary study of the exposed Siwalik Group along the Dungsam Chu in eastern Bhutan 

leads to the following conclusions: 

 

(1) Magnetostratigraphy constrained by vitrinite reflectance and detrital AFT data indicate 

that the Siwalik Group was deposited during the latest Miocene and the Pleistocene, 

between ~7 Ma and ~1 Ma. 

 

(2)  Depositional environments include river-dominated and wave-influenced deltaic 

systems at the base which, associated with marine trace fossils, glauconite, and some 

coastal pollen taxa, suggest a marine setting potentially linked to marine incursions from 

the Bay of Bengal. At around 5 Ma, a transition to a sandy and then gravelly alluvial 

environment occurs. Together with the sedimentological observations in eastern India 

(West Bengal, Arunachal Pradesh, and Assam) and northern Bangladesh, this 

paleoenvironmental evolution is consistent with a post-Miocene complete 
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continentalisation of the eastern Himalayan foreland basin at least 15 Ma later than is 

observed in the western Himalayan foreland basin.  

 

(3) The sporomorphs represent taxa from different vegetation types in the proximal 

Himalayan orogenic system and point to diverse tropical lowlands and rain forest 

vegetation throughout the ~7–1 Ma time period. The palynological record also indicates 

that depositional environments and paleoclimate were consistently more humid in 

Bhutan than the coeval in Nepal. This is similar to modern precipitation patterns along 

the strike of the Himalaya, which are characterized by an east-to-west decrease in ISM 

precipitation intensity. Furthermore, no major change in moisture or temperature is 

documented in Bhutan between 7 and 1 Ma, indicating that the orographic blockage of 

ISM precipitations exerted by the surface uplift of the Shillong Plateau 3.5–2 Ma ago did 

not measurably modify the wet local climate documented in the Bhutanese foothills 

since 7 Ma. 

 

(4) During the last 7 Ma, the sustained decrease in accumulation rates of the Siwalik Group 

sediments in the Dungsam Chu section results from a progressive diminution of the 

flexural subsidence in the basin and/or of the detrital input from the range, which we 

attribute to the onset of the Shillong block’s deformation and a slowdown of the 

displacement rates along the MBT in eastern Bhutan during the latest Miocene-

Pleistocene, in response to an increasing partitioning of the India-Eurasia convergence 

into the Shillong Plateau. 
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SUPPLEMENTARY MATERIAL 

The supplementary material of this chapter is presented in Appendix I as listed here.  

Methods:  

 Vitrinite reflectance: sampling strategy and analytical procedure 

 Detrital apatite fission-track (DAFT) thermochronometry method and sampling 

 Paleomagnetic analysis: sampling and analytical procedure 

 Sedimentological analysis: method 

 Palynological analysis: sampling and analytical procedure 

Data tables: 

 Table S1: Vitrinite reflectance data 

 Table S2: Magnetostratigraphy data 

 Table S3: Palynological data  
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ABSTRACT 

The Shillong Plateau is the only elevated topography in the Himalayan foreland. Knowledge of its 

surface-uplift history is important for understanding couplings between erosion, climate and 

tectonics, as well as strain partitioning within the Himalaya. Exhumation of the plateau was initiated 

by 9–15 Ma. Surface uplift only began in the Pliocene but its timing of initiation is not well 

constrained. We use the sedimentary record of the Himalayan foreland basin north of the Shillong 

Plateau to show that the paleo-Brahmaputra river was redirected north and west by the rising 

plateau between 5.2-4.4 Ma. The onset of surface uplift has previously been explained by the 

erosion level reaching resistant Precambrian basement. We suggest that this onset is instead a result 

of convergence of the Shillong and the Tibetan plateaus, leading to increased fault-slip rates in 

response to stresses caused by the Indian lithosphere bending beneath the Himalaya.  
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1. INTRODUCTION 

The interplay of tectonics, lithospheric structure, erosion and climate in the evolution of collisional 

belts is highly complex (e.g. Garcia-Castellanos and Jiménez-Munt, 2015). It has been suggested that 

the 1600 m high Shillong Plateau formed in response to an along-strike change in strain partitioning 

in the orogen (Clark and Bilham, 2008). Additionally, lower exhumation rates in the Himalaya north 

of the Shillong Plateau, compared to elsewhere along the range, have been attributed to changes in 

strain partitioning due to Shillong Plateau development (e.g. Coutand et al., 2014), or the plateau 

acting as an orographic barrier to precipitation caused by the Indian Summer Monsoon (Grujic et al., 

2006). 

 

 

Fig. 31: Topography and main geologic features of the eastern Himalaya (modified from Lang and 

Huntington, 2014; Long et al., 2011). Red and black stars represent the Dungsam Chu and Kameng 

sections, respectively.  

 

The timing and cause of the plateau’s surface uplift remain poorly understood. Thermochronological 

data indicate that basement rock exhumation was initiated between 9-15 Ma (Biswas et al., 2007; 

Clark and Bilham, 2008). Surface uplift of sufficient magnitude to create remarkable flexural loading 

of the Indian plate is recorded much later, at 3.5 Ma in the Surma Basin south of the plateau 
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(Najman et al., 2016). However, the timing of initiation and early stages of surface uplift remain 

unknown. Additional evidences for the conversion of rock uplift into surface uplift sometime in the 

Pliocene include: 1) a slowdown of basement cooling rates from 4-6 Ma; 2) the removal of >6000 m 

of Cenozoic sediments overlying a well-preserved Cretaceous paleo-surface with very little incision 

of the top of the basement; and 3) the presence of marine/proximal delta sediments <9 Ma on the 

plateau. Surface uplift therefore appears to be decoupled from exhumation, and occurred after a 

period when rock uplift was compensated by surface erosion (± isostatic adjustment) (Biswas et al., 

2007). However, when and why the transition occurred remains uncertain.  

 

It has been suggested that surface uplift of the Shillong Plateau, along with the westward 

propagation of the Indo-Burman ranges (Chirouze et al., 2013; Najman et al., 2016), diverted the 

Brahmaputra River from a relatively straight SSW direction into its present course between the 

Himalaya and the Shillong Plateau (e.g. Johnson and Alam, 1991; Uddin and Lundberg, 1999). 

Therefore, documenting the first occurrence of paleo-Brahmaputra deposits in the foreland basin 

directly north of the plateau constrains the minimum age of initiation of its surface uplift. Here we 

report new provenance analysis of Himalayan foreland-basin sediments (Siwalik Group) from 

Bhutan. We use these, together with published data, to propose a model of the Brahmaputra 

drainage evolution from Late Miocene to present, and determine when the river was deflected due 

to the initiation of uplift of the Shillong Plateau. Furthermore, we model the evolution of the 

lithospheric stress field in the Shillong region as it approached the Himalayan orogen, in order to 

assess the role of tectonics in the transition from exhumation to surface uplift. 

 

2. GEOLOGICAL CONTEXT 

The Indus-Yarlung suture zone in southeastern Tibet (Fig. 31) is the boundary between Mesozoic-

Paleogene Transhimalayan batholiths in the Lhasa terrane to the north, and Indian plate rocks to the 

south (Le Fort, 1975). Along the southern Himalayan edge, the Sub-Himalaya is a southward-

propagating foreland fold-and-thrust belt bounded by the Main Boundary Thrust and the Main 

Frontal Thrust (Hirschmiller et al., 2014).  

 

The Yarlung River flows eastward along the suture zone, before crossing the Himalayan range at the 

eastern syntaxis as the Siang River (Fig. 31). Downstream, the Siang reaches the foreland basin and 

becomes the Brahmaputra River. The Yarlung-Brahmaputra connection exists since the Early 

Miocene (e.g. Bracciali et al., 2015 and references therein). The Brahmaputra currently flows north 
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and west of the Shillong to the Bay of Bengal. Before the rise of the plateau, it took a more direct 

SSW course to its mouth (Uddin and Lundberg, 1999). 

 

The Shillong Plateau is located within the region affected by flexure of the Indian Plate beneath the 

Himalaya (Hammer et al., 2013). The Shillong and adjacent Mikir hills are mainly formed of 

Proterozoic-Paleozoic basement rocks overlain by outliers of Cenozoic sedimentary rocks (Mitra and 

Mitra, 2001). The plateau is bounded by two steep, active, crustal-scale reverse faults (Mitra et al., 

2005): the northern WNW-ESE trending Oldham Fault and the southern E-W trending Dauki Fault. 

The latter juxtaposes Precambrian basement against the Cenozoic sediments of the Surma Basin to 

the south, with a vertical offset of ~10 km (Biswas et al., 2007). The Shillong Plateau has been 

uplifted either as a pop-up structure (Bilham and England, 2001), along the Dauki Fault as a north 

dipping thrust (Seeber and Armbruster, 1981), as a fault-propagation fold (Clark and Bilham, 2008), 

or as an asymmetric basement-cored uplift (Biswas et al., 2007) implying lithospheric bending in the 

forebulge (e.g. Hilley et al., 2005).  

 

3. PROVENANCE ANALYSIS 

Here we report detrital zircon U-Pb data from the Dungsam Chu section of the Siwaliks located 

directly north of the Shillong Plateau (Figs. 31 and 32). Unlike other Siwalik sections in the eastern 

Himalaya (e.g. the Kameng section of Chirouze et al., 2013), encroachment of the Brahmaputra in 

this region could only have occurred through northward deflection of its course due to the uplift of 

the plateau.  

 

Transhimalayan zircons are typically of Cretaceous-Paleogene age and constitute a distinct 

component of the detritus in the Brahmaputra River (e.g. Gehrels et al., 2011).  In contrast, zircons 

derived from Himalayan drainages are dominated by Proterozoic, Cambro-Ordovician and Miocene 

zircons from the Indian plate (e.g. Cina et al., 2009; Gehrels et al., 2011; Lang and Huntington, 2014) 

(Fig. 32). The presence of Transhimalayan detritus in Siwalik sediments east of the Dungsam Chu 

section indicates that a longitudinal river system, the Brahmaputra River, draining the southern 

Lhasa block and flowing through the Siang River, or further to the east, was established by 7 Ma 

(Chirouze et al., 2013; Cina et al., 2009; Govin et al., in review; Lang and Huntington, 2014) (Fig. 33). 
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Fig. 32: (a) Sedimentary log of the Dungsam Chu section and depositional ages determined with 

magnetostratigraphy (Coutand et al., 2016), see Appendix IV; (b) detrital zircon U-Pb ages. Stars and 

dots represent samples with and without paleo-Brahmaputra signature, respectively. Data are 

plotted as kernel density plots (Vermeesch, 2012). Pie charts show the fraction of zircon U-Pb ages 

<150 Ma, x/xx = number of <150 Ma grain analyses remaining after data screening / total number of 

grain analyses. Ages from Dungsam Chu samples are compared to characteristic ages of zircons from 

different Himalayan source units from Hu et al. (2012) and references therein, presented in the 

source-area compilation. Ages characteristic of Transhimalayan sources are highlighted by the grey 

band. 

 

Zircons from eight sandstones from the Dungsam Chu section were dated using the CAMECA IMS 

1270 ion-microprobe at CRPG (France) and the Nu Instruments AttoM single-collector inductively 

coupled plasma mass spectrometer (SC-ICP-MS) at NIGL (UK). Sample locations, methods and data 

are presented in Appendix II. The sampled sandstones were deposited between 7 and 1 Ma 

(Coutand et al., 2016). Samples SJ1b-SJ7 (≥4.4 Ma) contain only one zircon of Cretaceous-Paleogene 

age among 450 dated zircons (Fig. 32). We argue that this is negligible and could be due to minor 

sample contamination either in-situ or during sample preparation. In contrast, samples SJ8-SJ12 

(≤5.2 Ma) show a minimum of 13% of Cretaceous-Paleogene grains, which we interpret as being 

derived from the Transhimalaya. The zircon U-Pb data therefore show a shift to Brahmaputra-type 

values between 5.2-4.4 Ma. 

 

4. DISCUSSION 

4.1. Brahmaputra paleo-drainage 

Foreland basin sediments have previously been studied for provenance northeast and south of the 

Shillong Plateau. We combine these with our new results into an evolutionary model of 

Brahmaputra drainage (Fig. 33). Since Transhimalayan deposits are documented in the paleo-

Brahmaputra catchment upstream of the Dungsam Chu area, as far north as the Siang location from 

the late Miocene, a hypothetical transverse Yarlung-Brahmaputra connection west of the Siang is 

unlikely (e.g. Cina et al., 2009; Lang and Huntington, 2014; Fig. 33). Furthermore, detrital rutile U-Pb 

ages characteristics of the syntaxis (<9 Ma, Bracciali et al., 2016) are found in sample SJ8 (see 

Appendix VII), implying that these deposits are sourced from the Siang River. Therefore, the arrival 

of Transhimalayan detritus at Dungsam Chu between 5.2-4.4 Ma reflects diversion of the paleo-

Brahmaputra River to this location. Prior to this time, Dungsam Chu Siwalik sediments were 

deposited exclusively by transverse rivers draining the southern slopes of the Himalaya. 
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Prior to 7 Ma, the Brahmaputra flowed directly SSW to the Bengal Fan (Fig. 33a; Uddin and 

Lundberg, 1999). By 7 Ma, the paleo-Brahmaputra reached the paleo-location of the Kameng section 

(Chirouze et al., 2013; Fig. 33). Unlike Dungsam Chu, the Kameng site is not within the sphere of 

influence of the plateau uplift on the drainage pattern. Therefore, the presence of paleo-

Brahmaputra deposits in the Kameng section at that time might be due to an earlier rise of the Mikir 

Hills, deflecting the river northward. Although the timing of uplift of the Mikir Hills is unknown, their 

location north-east of the Shillong suggests that they may have been uplifted before the plateau, if 

the uplift history is affected by proximity to the Himalaya (see below).  

 

Between 5.2-4.4 Ma, the paleo-Brahmaputra reached Dungsam Chu due to the uplift of the Shillong 

Plateau deflecting the river north- and westward. Coeval paleo-Brahmaputra deposits, arguably not 

recycled from older units, are also found in the Surma Basin (Bracciali et al., 2015). This could be 

explained by an unequal distribution in time and space of displacements on the Oldham and Dauki 

Faults (Biswas et al., 2007), resulting in an irregular uplift pattern and frequent switching of the 

Brahmaputra to courses east and west of the rising plateau.  
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Fig. 33: Late-Miocene to present evolutionary model of the Brahmaputra drainage system (modified 

from Chirouze et al., 2013), constructed using provenance studies from various sedimentary sections: 

Dungsam Chu (this study); Likabali (Lang and Huntington, 2014); Remi (Govin et al., in review);  Tista 

(Cina et al., 2009); Kameng (Chirouze et al., 2013) and Surma Basin (Bracciali et al., 2015). 

 

After 2.5-2.0 Ma, the paleo-Brahmaputra course east of the plateau closed due to the combination 

of westward propagation of the Indo-Burman Ranges and the plateau rise (Najman et al., 2016). 

Since then, the river has flowed exclusively to the north and west of the plateau. 

 

4.2. Causes of the transition from rock uplift to surface uplift 

Decoupling between exhumation and surface uplift has been proposed to result from differences in 

erodibility between basement rocks of the plateau and the overlying Cenozoic sedimentary cover 

(Biswas et al., 2007). At present, basement rocks are the dominant source of sediment south of the 

plateau (Najman et al., 2012). However, Himalayan-derived Cenozoic sedimentary cover rocks 

previously overlying the plateau were the primary material eroded and deposited in the bounding 

basin until as recently as 1.5 Ma; the difference in sediment source being clearly recorded by 

contrasting white-mica 39Ar-40Ar and zircon fission-track ages of the basement and cover rocks 

(Bracciali et al., 2016). Thus, there appears to be a 3-4 Myr hiatus between the surface uplift (5.2-4.4 

Ma) and the time of transition from predominantly cover to basement erosion (after 1.5 Ma). This 

suggests that the transition from sediment to basement erosion is not the dominant factor 

responsible for the change from exhumation to surface uplift of the Shillong Plateau. 

 

A possible tectonic driver for that change could involve an increase in slip rates of the faults 

bounding the plateau, such that surface denudation could no longer keep pace with rock uplift, 

causing topography growth. Because the Shillong lies in the foreland basin of the southward 

advancing Himalaya, the stresses acting on the faults bounding the plateau would have changed 

through time. Copley et al. (2011) calculated the stress state in the Indian plate, considering the far-

field plate driving forces, the buoyancy force exerted on India by the Tibetan Plateau, and the 

stresses induced by bending of the Indian lithosphere beneath the Himalaya, using a model in which 

Indian crust is broken by faults within the foreland. The methodology is therefore distinct from 

purely elastic flexural models, and the important input into the model is the seismogenic thickness 

(Mitra et al., 2005), not the elastic thickness calculated assuming an unbroken elastic plate (Craig 

and Copley, 2014) (see Appendix II). The calculations of Copley et al. (2011) show that the maximum 

differential stress on the faults, and in the upper part of the underlying ductile mantle, increases by a 
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factor of ~1.5 as the Indian lithosphere bends beneath the Himalaya over a wavelength of hundreds 

of kilometres. 

 

Fault-slip rates are thought to be non-linearly related to the stress state at the base of the 

seismogenic layer, either through non-linearity in the rate-state friction equations that describe the 

loading of faults by aseismic creep on their down-dip extensions (Marone, 1998), or by stress 

accumulation due to pervasive dislocation creep immediately beneath the seismogenic layer (Zoback 

and Townend, 2001). Regardless of which of these mechanisms is responsible for fault loading, the 

non-linear relationship between applied stress and fault-loading rate for both mechanisms means 

that an increase in differential stress near the brittle-ductile transition by a factor of ~1.5 could 

result in a slip-rate increase by a factor of 2, and possibly higher (see Appendix II). Such an increase 

in slip rate is a plausible cause for the transition from only exhumation to exhumation and surface 

uplift in the Shillong region. The apparent ~3-fold increase in slip rate on the faults bounding the 

Shillong Plateau since the Miocene, inferred from comparing  GPS and geological estimates (Biswas 

et al., 2007; Clark and Bilham, 2008), is consistent with our suggestions.   

 

The timescale for such a change depends upon how long it takes the plateau to be transported 

through the region affected by bending stresses as India underthrusts the Himalaya. The width of 

the negative gravity anomaly associated with the foreland basin further west indicates the width of 

the region subject to significant bending stresses (see Appendix II). The complex geometry of faults 

and basins makes this distance difficult to pinpoint in the Shillong region itself. However, we assume 

that the bending stresses occur over a similar distance from the Himalayan front in the region of the 

Shillong Plateau as further west. The depth distribution of earthquakes is the same in these two 

regions (Craig et al., 2012), suggesting that the material properties of the Indian lithosphere change 

minimally along-strike and that this assumption is justified. This logic implies that the Shillong has 

been transported ~150 km into the region affected by stresses relating to the bending of the Indian 

lithosphere beneath southern Tibet. At a convergence rate of ~15 mm/yr between Shillong and 

southern Tibet (Vernant et al., 2014), it would take ~10 Myr for the region that is now the Shillong 

Plateau to have been transported this distance into the foreland basin, and be increasingly affected 

by the bending stresses. Such a timescale is consistent with the lag-time between the onset of 

exhumation (9-15 Ma) and surface uplift (~5.2-4.4 Ma) of the Shillong region.  
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5. CONCLUSIONS 

We date the initiation of topographic growth of the Shillong Plateau and ensuing modification of the 

paleo-drainage of the Brahmaputra River between 5.2-4.4 Ma. Rock uplift in the plateau was 

balanced by surface erosion between 9-15 Ma and 5.2-4.4 Ma, such that no topography was created, 

a situation potentially enhanced by the high erodibility of the Cenozoic sedimentary cover of the 

plateau (Biswas et al., 2007). We link plateau-surface uplift to accelerated displacement along the 

Dauki Fault caused by bending stresses resulting from the northward underthrusting of the Indian 

plate beneath Tibet.  
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ABSTRACT 

 The Siwalik sedimentary rocks of the Himalayan foreland basin preserve a record of Himalayan 

orogenesis, paleo-drainage evolution, and erosion. This study focuses on the still poorly studied 

easternmost Himalaya Siwalik record located directly downstream of the Namche Barwa syntaxis. 

We use luminescence, magnetostratigraphy, and apatite fission-track dating to constrain the 

depositional ages of three Siwalik sequences: the Sibo outcrop (Upper Siwaliks at ~190 ka), the Remi 

section (Middle and Upper Siwaliks at ~0.8-6.5 Ma), and the Siang section (Middle Siwaliks at ~7-11 

Ma). Cretaceous-Paleogene detrital zircon and apatite U-Pb ages, characteristic of the 

Transhimalayan Gangdese Batholiths that crop out north-west of the syntaxis, are present 

throughout the Sibo-Remi-Siang succession. They indicate a continuous Transhimalayan provenance 

and confirm the existence of a Yarlung-Brahmaputra connection since at least the Late Miocene. 

Early Cretaceous zircon and apatite U-Pb ages are rare in the Sibo-Remi-Siang succession, but 

abundant in modern Siang River sediments. These ages are characteristic of the Transhimalayan 

Bomi-Chayu batholiths, which crop out east of the syntaxis and are eroded by the Parlung River, a 
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modern tributary of the Siang River. The difference in relative abundance of Early Cretaceous U-Pb 

ages between the modern and ancient sediments indicates capture of the Parlung by the Siang 

within the last ~190 kyr. Additionally, apatite and zircon U-Pb dating suggest input from the young 

metamorphic syntaxis in the Sibo-Remi-Siang section since at least ~6 Ma, and therefore the onset of 

rapid exhumation of the syntaxis by that time. Approximately concomitant increase in zircons aged 

500 Ma may reflect greater exhumation of the Tethyan Himalayan associated with syntaxial 

evolution, or change in the palaeo-drainage routing from Yarlung-Lohit-Brahmaputra to Yarlung-

Siang-Brahmaputra. 

 

1. INTRODUCTION 

The study of Himalayan foreland basin sediments provides important complementary information to 

bedrock analysis for the understanding of orogenesis. It is particularly valuable where bedrock 

regions are inaccessible, or where the early record of metamorphism and exhumation has been lost 

in the bedrock record due to overprinting by later metamorphism or removal by erosion. In the 

Himalaya, Neogene-Quaternary sedimentary rocks of the Siwalik Group form an apron along the 

southern flank of the range (Yin et al., 2006). The sedimentary record of material eroded from the 

orogen and preserved in the Siwalik Group record evidence of the tectonic (e.g. Coutand et al., 2016; 

DeCelles et al., 1998b; Lang et al., 2016; Szulc et al., 2006), erosional (e.g. Bernet et al., 2006; 

Chirouze et al., 2013; Harrison et al., 1993; van der Beek et al., 2006) and climatic (e.g. Quade et al., 

1995a; Vögeli et al., in press) evolution of the hinterland. 

 

The eastern and western Himalayan syntaxes are the loci of young (<10 Ma) high-grade 

metamorphism, melting and extreme rates of exhumation of up to 5-10 km/Myr (Booth et al., 2004; 

2009; Lang et al., 2016; Seward and Burg, 2008; Zeitler et al., 2014). In comparison,  peak 

metamorphism in the main arc of the range occurred in the Early Miocene, and lower exhumation 

rates of ~2 km/Myr are typical (e.g. Thiede and Ehlers, 2013 and references therein). Models 

proposed to explain the development of the Himalayan syntaxes (e.g. Bendick and Ehlers, 2014; Burg 

et al., 1997; Zeitler et al., 2001; 2014) predict different onset timing and rates of exhumation. 

However, the exhumation history of the syntaxes remains insufficiently constrained to test the 

models. We focus here on the eastern Namche Barwa syntaxis. A wealth of existing bedrock 

exhumation ages and readily accessible - yet until recently poorly explored - sedimentary records 

make this area ideally suited to investigate the controversy. Bedrock studies of the Namche Barwa 

syntaxis have been interpreted to imply extremely rapid exhumation since either 3-4 Ma (Seward 

and Burg, 2008) or 8-10 Ma (Zeitler et al., 2014). In contrast, detrital studies have inferred ages of 7 
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Ma to <3 Ma (Bracciali et al., 2016; Chirouze et al., 2013; Lang et al., 2016) for the onset of rapid 

exhumation in the eastern syntaxis.  

 

Bendick and Ehlers (2014) modelled the 3-D thermomechanical evolution of plate collision with non-

planar geometries, and explained the localized deformation and exhumation of the eastern syntaxis 

by the subduction geometry. Structural buckling due to contraction in the orogenic indenter corner 

has also been suggested as an explanation for the rapid exhumation of the Namche Barwa syntaxis 

(Burg et al., 1997). Alternatively, thermomechanical feedback has been suggested to explain the 

rapid exhumation, in which focused rapid incision of the Yarlung River after capture by the Siang-

Brahmaputra led to rapid exhumation of the Namche Barwa massif, weakened the lower crust and 

set up tectonic inflow of material into what has been termed a “tectonic aneurism” (Koons et al., 

2013; Zeitler et al., 2001). However, detrital studies have suggested that the timing of capture is 

early-middle Miocene (Bracciali et al., 2015; Lang and Huntington, 2014), while the onset of rapid 

incision may not have taken place until the early Quaternary (P. Wang and others, 2014), suggesting 

a major time difference between the two and casting doubt on a direct link. Despite this disconnect, 

a self-sustaining feedback between erosion, deformation and rock uplift could still be operating. 

Indeed, metamorphism, partial melting and focused deformation has been proposed to begin when 

the southeastern Tibetan Plateau was uplifted at ca.10 Ma (Zeitler et al., 2014) and likely remained 

active since due to feedback between these processes and erosion (Bracciali et al., 2016; Zeitler et 

al., 2014). In order to better document this hypothesis, it is necessary to investigate the poorly 

constrained Neogene-Quaternary drainage evolution and the associated timing of river capture and 

exhumation (e.g. Bracciali et al., 2016; King et al., 2016; Lang et al., 2016).  

 

This study focuses on sedimentary sections located directly downstream of, and most proximal to, 

the eastern Himalayan syntaxis, which record the evolution of this anomalously exhuming region. 

We constrain the depositional age frame of the sedimentary record using infrared-stimulated 

luminescence (IRSL), magnetostratigraphy and apatite fission-track (AFT) analyses and assess the 

provenance of these deposits using U-Pb dating of apatite, and zircon cores and rims. 

 

2. BACKGROUND 

2.1. Main geologic features of the Himalaya 

The collision between the Indian and Asian plates in early Eocene times (Dupont-Nivet et al., 2010; 

Najman et al., 2010; Yin and Harrison, 2000; Zhuang et al., 2015) and the associated crustal 

thickening and shortening has led to the formation of the Tibetan Plateau and the Himalayan belt 
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(Hodges, 2000; Yin and Harrison, 2000) (Fig. 34). North-dipping crustal faults extending throughout 

the entire E-W Himalayan arc separate the main Himalayan units (Le Fort, 1975; Yin and Harrison, 

2000). Collision took place along the Indus-Yarlung suture zone (IYSZ), which juxtaposes the 

remnants of the pre-collision Indian passive margin sequence to the south and the Transhimalayan 

Asian batholiths and Neo-Tethyan ophiolites to the north (Hébert et al., 2012 and references 

therein). The Mesozoic-Paleogene Transhimalayan Andean-type batholiths adjacent to the Indus-

Yarlung suture zone (Chu et al., 2006) provide evidence for an Andean-style margin prior to collision. 

The Transhimalayan rocks in the eastern Himalaya include the Cretaceous-Paleogene Gangdese and 

Bomi-Chayu batholiths (e.g. Chiu and others, 2009; J.G. Wang and others, 2014).  

 

 

Fig. 34: Digital elevation model and main geologic features of the eastern Himalaya (modified from 

Lang and Huntington, 2014; Govin and others, in review and references therein). The red star labelled 

SRS represents the Sibo-Remi-Siang section; the black stars show other dated Siwalik sections in the 

eastern Himalaya: S – Siji, K - Kameng and DC – Dungsam Chu. Lo indicates the Lohit modern riverbed 

sample from Cina et al. (2009). Black box indicates location of Fig. 35. Abbreviations are: NB - 

Namche Barwa, GP – Gyala Peri, MFT - Main Frontal Thrust, MCT - Main Central Thrust, MBT - Main 

Boundary Thrust, STD - South Tibetan Detachment and IYSZ - Indus-Yarlung Suture Zone. 
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South of the Indus-Yarlung suture zone, the Tethyan Himalayan Series are composed of Upper-

Proterozoic to Eocene sedimentary to low-grade meta-sedimentary rocks deposited on the northern 

Indian pre-collision passive margin. According to the map of Zeitler et al. (2014), the Tethyan 

Himalaya wraps around the eastern syntaxis, where it terminates, with no further outcrop further 

east. The medium- to high-grade metamorphic rocks (schists, gneisses, and migmatites) of the 

Greater Himalayan Series crop out south of the Tethyan Himalayan Series and are separated from 

them by the extensional South Tibetan Detachment. The Greater Himalayan Series are intruded by 

Miocene leucogranites and bounded by the Main Central Thrust in the south. South of the Main 

Central Thrust, the Lesser Himalayan Series are composed of low-grade Proterozoic meta-sediments 

along with late Paleozoic, Mesozoic and Paleogene sedimentary rocks. Both the Greater and Lesser 

Himalayan Series originate from the Indian plate. South of the Lesser Himalayan Series, the Sub-

Himalayan sedimentary fold-and-thrust belt is bounded by the Main Boundary Thrust to the north 

and the Main Frontal Thrust to the south. The Sub-Himalayan Series contain the Neogene to 

Quaternary detrital sediments of the Siwalik Group. Undeformed Recent deposits of the Himalayan 

foreland basin occur south of the Main Frontal Thrust (Gansser, 1983; Hodges, 2000). 

 

2.2. Structure of the eastern Himalaya 

At the eastern termination of the Himalaya, the structural trend bends around the eastern syntaxis, 

changing from E-W to N-S striking. In the core of the syntaxis, the Namche Barwa and the Gyala Peri 

massifs reach elevations of >7 km (Fig. 34). This region is dominated by extreme relief and deep, 

steep gorges. The Tsangpo gorge, a <200-m wide, 200-km long fluvial knick-zone descending >2 km 

between the Namche Barwa and the Gyala Peri peaks, is one of the deepest on Earth (e.g. Lang et 

al., 2013; Zeitler et al., 2001). The syntaxis constitutes an antiformal structure, exposing high-grade 

metamorphic rocks of Indian origin (Burg et al., 1997). The north-plunging antiform characterizing 

the Namche Barwa massif has been suggested to have expanded both vertically and laterally 

through time, and is thought to have migrated northward since its initiation (Bracciali et al., 2016; 

King et al., 2016; Seward and Burg, 2008). Very young bedrock thermochronological ages within the 

syntaxis record late Neogene (<10 Ma) metamorphism and rapid syntaxial exhumation (e.g. Booth et 

al., 2009; Burg et al., 1998; Ding et al., 2001; Finnegan et al., 2008; Seward and Burg, 2008; Stewart 

et al., 2008; Zeitler et al., 2014). Due to these extreme erosion rates, the Namche Barwa may 

contribute up to 50-70% of the Brahmaputra sediments (Enkelmann et al., 2011; Garzanti et al., 

2004; Lang et al., 2013; Singh and France-Lanord, 2002; Stewart et al., 2008).  
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2.3. Drainage of the eastern Himalaya 

The Brahmaputra River is sourced at Mount Kailash in southern Tibet and flows more than 1000 km 

eastwards along the suture zone as the Yarlung Tsangpo. It crosses the range to the south and turns 

180 degrees after incising a deep gorge between the Gyala Peri and the Namche Barwa massifs. At 

this turn the river connects with the tributary Parlung River to the north, which is itself connected to 

the Yigong River a few tens of kilometres upstream (Fig. 34). The Yigong River flows toward the 

southeast whereas the Parlung River upstream of its confluence with the Yigong River flows toward 

the NW and erodes the Bomi-Chayu batholiths ENE of the eastern syntaxis (Fig. 34). Downstream of 

the Namche Barwa massif, the Yarlung Tsangpo becomes the Siang River until it reaches the foreland 

basin in Arunachal Pradesh, where it becomes the Brahmaputra River. In the foreland, the tributary 

Lohit River, flowing SW and also draining the Bomi-Chayu batholith, connects with the Brahmaputra 

River along with other eastern tributaries such as the Dibang River, which erodes the Lohit plutonic 

suite (Fig. 34).     

 

The evolution of the complex drainage pattern in the eastern Himalayan region remains 

incompletely understood. This river network is suggested to result from drainage reorganization as a 

consequence of river-capture and -reversal events (Clark et al., 2004; Clift et al., 2006). The 

Brahmaputra River probably captured the Yarlung Tsangpo in Early-Miocene times (Bracciali et al., 

2015; Lang and Huntington, 2014; Robinson et al., 2014). The Sr–Nd–Os isotopic composition of 

sediments from the Bengal Fan supports the idea of drainage stability of the southeastern Tibetan 

Plateau and the captured Yarlung-Brahmaputra system feeding the Bengal Fan since the Mid-

Miocene (Galy et al., 2010). It has been proposed that, prior to capture, the paleo-Yarlung-Tsangpo 

flowed further to the east into the Red and/or Irrawaddy rivers (Brookfield, 1998; Clark et al., 2004; 

Robinson et al., 2014), although this scenario has recently been questioned (Licht and others, 2013; 

J.G. Wang and others, 2014). The drainage evolution since Miocene times involves various 

hypotheses such as the Yarlung flowing through the Parlung River to the Irrawaddy River, prior to its 

capture by the Siang through headward erosion, leading to Parlung River reversal (Clark et al., 2004). 

Alternatively, recent studies have argued that the Parlung-Yarlung connection postdates the 

establishment of the Yarlung-Siang connection and occurred during the Quaternary (King et al., 

2016; Lang and Huntington, 2014), possibly related to lateral propagation of the Namche Barwa 

massif (Seward and Burg, 2008). Lang and Huntington (2014) proposed that prior to this capture 

event, a paleo-Parlung-Lohit connection existed upstream of the Brahmaputra-Lohit confluence.  
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2.4. Provenance analyses in the eastern Himalaya 

The Yarlung-Siang-Brahmaputra River drains the Transhimalayan Gangdese batholith in the southern 

Tibetan plateau. These Gangdese rocks have distinct compositional and age characteristics (as 

recorded by whole-rock Sr and Nd isotope ratios as well as Hf isotopes and U-Pb ages in zircons), 

different from rocks of the Indian plate Himalayan units south of the Indus-Yarlung Suture Zone. The 

Himalayan units are largely composed of Proterozoic-Eocene rocks variably metamorphosed during 

the Cenozoic, with Miocene leucogranites (DeCelles et al., 2004; Gehrels et al., 2011). The Tethyan 

Himalaya differs from the Greater Himalaya in its distinctive population of zircons aged 500 Ma. 

These ages from the Indian plate contrast with the typically Cretaceous-Early Paleogene zircons of 

the Gangdese batholiths (Chu et al., 2006; Mo et al., 2007). Early Cretaceous ages are poorly 

represented in the Transhimalayan Gangdese batholith zircon U-Pb signal, but are abundant in the 

Bomi-Chayu igneous sources east of the Namche Barwa syntaxis (Booth et al., 2004; Chiu et al., 

2009; Haproff et al., 2013; Lang and Huntington, 2014; Liang et al., 2008; Xu et al., 2012; Zhang et al., 

2012). Additionally, the Lohit Plutonic Suite (Fig. 34) has been suggested to be a source of Early- and 

Late-Cretaceous zircons (Cina et al., 2009; Haproff et al., 2013). This characterization of zircon U-Pb 

ages has allowed partial reconstruction of the paleo-drainage system in the eastern Himalayan 

region (e.g. Bracciali and others, 2015; Cina and others, 2009; Lang and Huntington, 2014). Whereas 

zircon U-Pb dating is widely used in the eastern Himalaya, no apatite U-Pb dating has yet been 

performed in this area. Therefore, apatite U-Pb age characterization of both the eastern syntaxis and 

the Transhimalayan batholith source remains unconstrained.  

 

The Namche Barwa massif of the eastern syntaxis is characterized by very young (10 to <1 Ma) 

mineral growth and cooling ages (Booth et al., 2004; 2009; Bracciali et al., 2016; Burg et al., 1998; 

Ding et al., 2001; Finnegan et al., 2008; Zeitler et al., 2014). Geochronological and 

thermochronological ages distinctive of the syntaxis have been described by Bracciali et al. (2016); in 

particular zircon rim U-Pb ages <10 Ma constitute a clear syntaxial signature. These diagnostic ages 

for specific thermochronological and geochronological systems have been used in the eastern 

Himalayan foreland basin to track the eastern syntaxis detritus (Bracciali et al., 2016; Lang et al., 

2016).  
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2.5. Sedimentary record of the eastern Himalaya 

The Siwalik Group in the Himalayan foreland is divided into three distinct units based on 

sedimentary facies: the Lower, Middle and Upper Siwaliks (DeCelles et al., 1998b; Yin et al., 2006). 

Up-section coarsening in the Siwaliks of the eastern Himalaya is interpreted as the progressive 

transition from deposition by low-gradient sinuous channels in a fluvio-deltaic setting to deposition 

by steep braided rivers in alluvial fans along the Himalayan front, as the Main Frontal Thrust 

propagated southward (Chirouze et al., 2012; Coutand et al., 2016). The Lower Siwaliks are mainly 

composed of alternating fine-grained sandstones and siltstones with common leaf-impressions and 

paleosols, interpreted in this area as deposited in a fluvio-deltaic plain environment (Chirouze et al., 

2012; Coutand et al., 2016). The Middle Siwaliks, interpreted as a braided fluvial facies, consist of 

massive medium- to coarse-grained sandstone layers, with frequent cross-bedding, soft sedimentary 

deformation and increasing occurrence of conglomerates up-section. The Upper Siwaliks are mainly 

composed of conglomerates interbedded with sandstones and some siltstones, interpreted as 

pebbly braided-river deposits (e.g. Chirouze et al., 2012; Cina et al., 2009; Coutand et al., 2016; Lang 

and Huntington, 2014). 

 

Only three Siwalik sections have hitherto been dated by magnetostratigraphy in the eastern foreland 

basin (Fig. 34): the Dungsam Chu section in Bhutan (Coutand et al., 2016), the Kameng section in 

western Arunachal Pradesh (Chirouze et al., 2012), and the Siji section in eastern Arunachal Pradesh 

(Lang et al., 2016). In these sections, the oldest Lower Siwalik sedimentary rocks have been dated at 

~13 Ma, with a Lower-Middle Siwalik transition estimated at ~10.5 Ma in the Kameng (Chirouze et 

al., 2012), and as young as 6 Ma in Dungsam Chu (Coutand et al., 2016). 

 

3. THE SIBO-REMI-SIANG SUCCESSION 

We have studied Siwalik sedimentary rocks at three different locations (Remi, Sibo and Siang) within 

a 20 km-long segment along the eastern Himalayan front (Fig. 35).  

 

Middle and Upper Siwalik rocks are exposed at these locations, as defined by correlation with the 

typical Middle and Upper Siwalik lithologies throughout the basin described above. These are the 

most easterly dated sections of the Siwaliks, with the Siang section located where the modern Siang 

River reaches the foreland basin. The main sedimentary characteristics in these locations are similar 

to the Upper and Middle Siwalik sedimentary rocks of the eastern Himalaya described previously; 

more detailed sedimentological descriptions are presented in Table 6. Clast counts in each section 

have been performed in the field (Figs. 36, 37 and 38), to supplement isotopic provenance data. One 
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hundred pebbles per location were counted and determined with regard to their lithology. Clasts 

were randomly selected by counting the first hundred encountered in a sample bag for outcrops, 

and along an arbitrary line in the riverbed for modern river sediments.  

 

 

Fig. 35: Digital elevation model and main geologic features of the study area (modified after Luirei 

and Bhakuni, 2008 and Srivastava and others, 2009). Samples are indicated according to the method 

applied (mineral analysed); samples in white are from Lang and Huntington (2014), samples in blue 

and red are from this study. 
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Table 6: Sedimentological descriptions of Siwalik sedimentary rocks from the Sibo, Remi and Siang 

locations, eastern Arunachal Pradesh. 

LOCATION UNIT LITHOLOGY SEDIMENTARY FEATURES CLASTS 

SIBO 
Upper 

Siwaliks 

 
Medium to coarse-grained 
sandstones, coarsening up-
section, alternating with 
conglomerates, the proportion of 
which increases up-section 
 

Very few lenses of clays 

Sub-angular to well 
rounded; 10-170 mm 
long axis; 5-90 mm 
short axis 

REMI 

Upper 
Siwaliks 

Interlayered medium-grained 
sandstones and conglomerates. 
Thickness of conglomerate bands 
increases up-section to reach 
several meters; matrix grain size 
also coarsens up-section 

Occasional finer-grained 
layers from claystones to 
fine-grained sandstones; 
frequent coal fragments 

Sub-angular to 
rounded; 5-95 mm 
short axis; 10-130 
mm long axis 

Middle 
Siwaliks 

Cliffs up to 20 m high of “salt and 
pepper” medium-grained to 
pebbly sandstones. Sandstone 
beds are up to tens of meters 
thick. Coarsening up-section with 
an increasing occurrence of 
pebbly material 

Occasional pebbly layers 
at the base of sandstone 
beds; intercalated silt or 
mud lenses. Common 
large-scale cross-bedding, 
fossil wood and coal 
fragments; 
medium-grained 
sandstones occasionally 
bioturbated 

Angular to rounded; 
5-65 mm short axis; 
5-100 mm long axis  

SIANG 
 
 

Middle 
Siwaliks 

East 
bank 

Cliffs up to 20 m high of medium 
to coarse-grained “salt and 
pepper” and orange-weathered 
coloured sandstone. Mica rich 
sandstones overlained by 
Quaternary conglomeratic 
terraces. Occurrence of pebbles, 
the proportion of which increases 
up-section  

Common carbonised 
fossil wood of millimetre- 
to meter size (up to 3.80 
m); frequent cross 
bedding and centimetre-
scale diagenetic nodules; 
occasional roots and 
bioturbation, ripple 
marks and channels; 
common wood clasts 

 
Centimetre-scale 
siltstone pebbles (2-
30 cm long axis); 
millimetre- to 
centimetre-scale 
quartz-arenite 
pebbles at the base 
of the sand beds; 
presence of a meter 
thick quarzitic 
conglomerate bed 
(clast sizes of 5-10 
cm). 
 

Middle 
Siwaliks 

West 
bank 

Greenish to light grey salt and 
pepper fine to coarse-grained 
sandstone; containing muscovite, 
biotite, garnet, amphiboles, 
hornblende and perhaps chlorite 
and/or epidote 

Less indurated, compared 
with the east bank, 
indistinct bedding, finer-
grained and more 
weathered  

Presence of coal 
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3.1. Sibo outcrop 

The Sibo outcrop exposes ~20 stratigraphic meters of Upper Siwalik sedimentary rocks tilted 10° 

towards the NW (Fig. 36). A large-scale channel fill is clearly observed in the upper part of the 

outcrop. In the lowermost part of the outcrop, the sandstones contain a significant amount of 

muscovite; in contrast, no muscovite has been observed in the sandy matrix of the nearby 

conglomerates. The dominant clast material in the Sibo section is quartz-arenite as illustrated in the 

clast count results (Fig. 36). The modern Sibo riverbed comprises numerous quartz-arenite pebbles 

with subordinate basalt and sandstone clasts.  

 

 

Fig. 36: Photograph of the Sibo Upper Siwalik outcrop. The main paleo-channel is highlighted by the 

dashed line, the SIBO sample is represented with a black square. The pie chart shows the clast-count 

results of the conglomerate (location is indicated by the black dot).  

 

3.2. Remi section 

The Remi section is composed of ~700 m of Upper Siwaliks and 1200 m of Middle Siwaliks, 

homoclinally tilted ~40° towards the NW (Fig. 37). The section is bounded to the north by the north-

dipping Mingo Thrust and to the south by the Main Frontal Thrust (Fig. 35).  
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Fig. 37: Stratigraphic profile of the Remi section and photographs of Upper Siwalik, Middle to Upper 

Siwalik transition and Middle Siwalik outcrops. Current-generated features include tabular cross-

bedding, trough cross-bedding, and flat bedding. Results of clast counts are shown in pie charts. The 

part of the section sampled for magnetostratigraphy is highlighted in pink, the upper- and lowermost 

magnetostratigraphic samples are indicated. Geochronological samples are shown with black 

squares.  

 

A minor north-dipping thrust in the upper part of the Middle Siwaliks has also been observed (below 

and south of sample REM15 in Figs. 35 and 37, respectively). The Siwalik rocks in the Remi section 

coarsen up-section, from medium sandstones to conglomerates. The sandstones are often 

weathered and poorly indurated. Apart from cross-bedding, features indicating paleo-current 

directions are rare. It was not possible to precisely measure paleo-current directions in the section. 

The clasts from the Remi section are mainly composed of quartz-arenite and sandstone (Fig. 37), 

whereas the modern Remi riverbed material is mainly composed of gneiss and quartz-arenite 

pebbles. 

 

3.3. Siang section 

The Siang section is crossed by the Siang River, and is therefore composed of two separate outcrops 

located on the east and west banks of the river, respectively (Figs. 35 and 38). On both banks, 

Middle Siwalik sandstones crop out, dipping 35 to 55° to the NW, in tectonic contact with the Lesser 

Himalayan Series to the north along the Main Boundary Thrust. The west-bank outcrop appears 

more weathered and finer-grained than the east-bank outcrop. Additionally, the bedding orientation 

with respect to the location of both outcrops leads us to suggest an older age for the west-bank 

outcrop in comparison with the east-bank outcrop. The modern Siang riverbed is mainly composed 

of quartz-arenite, volcanic, metasedimentary, carbonate and plutonic pebbles, with subordinate 

gneisses, meta-breccias and sandstones (Fig. 38). 
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Fig. 38: (a) Photograph of Middle Siwalik outcrop from the west bank of the Siang section at the 

locations of samples SG11 and SG15. (b) Photographs of the modern Siang River bed; pie chart shows 

results of the clast count at this location. The bottom photograph shows a green meta-breccia clast. 

(c) Stratigraphic log of the east-bank Siang section and photograph of the SG1 sample location.    

 

4. METHODS 

4.1. Depositional dating 

In order to date the deposition of the sedimentary rocks from the compiled Sibo-Remi-Siang 

succession, we used luminescence dating for the Sibo outcrop, apatite fission-track dating to 

determine maximum depositional ages for the Remi and Siang sections, and magnetostratigraphy to 

date the upper part of the Remi section.  

 

4.1.1. Luminescence dating 

The Upper Siwalik conglomerates at Sibo are only slightly tilted (10° to the NW), suggesting a young 

depositional age. Two core samples have been analysed using the magnetostratigraphic method 

described below. They showed normal directions, implying a Middle Pleistocene or younger age, as 

the Earth’s magnetic-field polarity is normal since 0.8 Ma. Luminescence dating was carried out at 
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the Luminescence Laboratory of the University of Bern (Switzerland) to refine the age of these 

sedimentary rocks. Sampling was performed using a paleomagnetic drill to extract the SIB core 

sample (2.5 cm in diameter), taking care to avoid exposure to light. This sample was prepared and 

analysed along with samples from Abrahami et al. (in review), with the same methodology and in the 

same conditions (see Appendix III). Since preliminary Optically Stimulated Luminescence (OSL) 

analysis of quartz led to dim signals that rendered further measurements impractical, we applied 

Infrared-Stimulated Luminescence (IRSL) of feldspar instead, using the IRSL50 protocol (e.g. Lowick et 

al., 2012). Dose recovery tests were performed to confirm the efficiency of the protocol and the 

dose-rate response calculation was used to determine the equivalent dose (De). Central-age and 

minimum-age models (Galbraith et al., 1999) were applied to determine the age and the dispersion 

of the De distribution, and to identify the population of De values representing well-bleached grains 

prior to burial. Fading tests were conducted on six aliquots in order to correct the burial age and 

avoid age underestimation. 

 

4.1.2. Apatite fission-track dating 

Apatite fission-track (AFT) analysis has been carried out to constrain the maximum depositional ages 

for sedimentary rocks from the Remi and Siang sections. Six medium- to coarse-grained sandstones 

from the Remi section and two from the Siang section were sampled at regular stratigraphic 

intervals (Fig. 35). The youngest sample from the Remi section (REM3) did not contain sufficient 

apatite to allow robust dating. Apatite separation was performed at ISTerre, Université Grenoble 

Alpes (France) using standard techniques; fission-track analysis was performed by GeoSep Services 

(USA) using the LA–ICP–MS method (Donelick et al., 2005). Full details of sample preparation and 

analytical procedures are provided together with data tables in Appendix III. 

 

The youngest age peak for each sample was identified using the minimum age-peak method 

implemented in the Density Plotter software (Vermeesch, 2012). Minimum age peaks were 

generated using the dataset of ages between 0 and 20 Ma, in order to reduce the error on the 

minimum age peak. We use the resulting minimum ages obtained with this method to constrain the 

maximum depositional age for each sample. As the AFT system is partially annealed at temperature 

between ~60-120°C (Gallagher and others, 1998; Reiners and Brandon, 2006), it is possible that the 

more deeply buried samples do not retain their pre-depositional age signal. We assess the possibility 

of post-depositional AFT annealing in our samples using the observed age-depth pattern (van der 

Beek et al., 2006; see section 6.1). 
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4.1.3. Magnetostratigraphy 

Only the upper part of the Remi section has sufficient continuous exposure to allow meaningful 

magnetostratigraphic sampling and analysis. A total of 186 paleomagnetic sites were sampled at 

stratigraphic intervals of 5-6 meters on average, with some larger gaps due to the lack of outcrop or 

unsuitable lithologies (weathered gravelly sandstone). Remanent magnetizations of samples were 

analysed on a 2G Enterprises DC SQUID cryogenic magnetometer inside a magnetically shielded 

room, at the Geosciences Rennes paleomagnetic laboratory (France). Details of the sampling 

strategy and analysis are provided in Appendix III.  

 

4.2. Provenance analysis 

4.2.1. Zircon U-Pb geochronology 

U-Pb dating was carried out on detrital zircon cores from Sibo, Remi and Siang samples, in order to 

decipher the provenance of the deposits from these sections. In addition, U-Pb dating of thin zircon 

rims from Remi samples was also performed to compare with the analyses of Bracciali et al. (2015), 

who found zircon rim ages <10 Ma, interpreted as young metamorphic overgrowths characteristic of 

the syntaxis, in paleo-Brahmaputra deposits south of the Shillong Plateau.   

 

Nine medium- to coarse-grained samples were selected at regular stratigraphic intervals throughout 

the compiled section. One sample is from the Sibo outcrop, six are from the Remi section and two 

from the Siang section (Fig. 35). Remi samples have been analysed for both zircon rims and cores, 

detected using cathodoluminescence imaging prior to analysis. For the Siang samples, we compare 

our data with that of Lang and Huntington (2014), who previously dated zircons from the Siang 

section using the U-Pb method (Fig. 35). Zircon grains were separated and imaged at Lancaster 

University and at the NERC Isotope Geosciences Laboratory (NIGL, UK), as detailed in Appendix III. 

Zircon U-Pb dating was performed at NIGL (UK) using a Nu Instruments AttoM single-collector 

inductively coupled plasma mass spectrometer (SC-ICP-MS). 

 

Several rim-dating methods were tried, using different laser-spot diameters, to increase the chances 

of measuring the <20-µm rims in the most robust way. Because a thin laser spot leads to increased 

fractionation of U and Pb, it can be challenging to obtain clear and precise ages for such small 

surfaces. We tried raster and single-spot techniques on normal grain mounts and on the external 

surfaces of grains with thin rims that had been extracted from the mounts. We carried out several 

measurements of the same rim when preliminary ages were young. The young (<100 Ma) grains are 

commonly discordant due to their low U content and relatively high common Pb. For this reason, 
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and because of the fractionation bias related to the small laser-spot diameter, we use a different 

screening procedure for rims and cores, being less selective for the rim than for the core ages. We 

also regressed data points for the likely youngest rims measured through a fixed common Pb 

composition. The analytical data and details of standard calibration and isotopic corrections are 

presented in Appendix III.  

 

4.2.2. Apatite U-Pb geochronology 

The use of the LA-ICP-MS technique for AFT analyses has the advantage that it permits apatite U-Pb 

ages to be determined on the same grains in the same analytical session (see Appendix III for 

detailed description of the analytical procedure, age correction, and data processing). Apatite U-Pb 

age treatment followed the approach of Chew et al. (2011), using an iterative approach to obtain a 

207Pb/206Pb intercept value based on a starting estimate generated from the terrestrial Pb evolution 

model of Stacey and Kramers (1975). This was used to calculate a 207Pb-corrected 238U/206Pb age. 

Since the 207Pb-based correction assumes U-Pb* (radiogenic Pb) concordance, which may not be the 

case for detrital grains, knowledge of likely source area ages is required to discriminate partially 

reset ages in the same manner as for detrital AFT analysis. As none of the apatite U-Pb ages were 

concordant, data screening was performed with a similar approach to that described by Zattin et al. 

(2012) and Mark et al. (2016). Apatite U-Pb results are discussed in the U-Pb geochronology section 

where they are compared with zircon U-Pb data.  

 

5. RESULTS 

5.1 Luminescence dating 

IRSL results are presented in Table 7. The dose-response curve shows a saturation plateau reached 

at ~1.2 kGy (Fig. 39a) and all De values range between 300 and 800 Gy (Fig. 39b). This resulted in a 

mean burial dose of 430±21 Gy, and an uncorrected age of 115±11 ka. The De distribution shows 

measurements for the 28 aliquots describing 25% over-dispersion, similar to the samples from 

Abrahami et al. (in review), suggesting partial bleaching is not a problem in these samples. Fading 

tests were relatively uniform and result in a mean g‐value used for De correction of 4.73±0.83 % per 

decade. As the signal is too high on the dose-response curve to make a reliable correction for fading, 

the resulting corrected age of 190±18 ka must be regarded as a minimum age. 
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Table 7: Infrared Stimulated Luminescence results. Abbreviations are: ntot: number total of aliquots 

analysed; n: number of aliquots showing good signal; OD: over-dispersion of De; g-value: measured 

fading rate; De: estimated Dose. Age is the minimum age without fading correction and Age c. is the 

minimum age corrected for fading. 

 

 

 

 

 

Fig. 39: Infrared Stimulated Luminescence dating (IRSL) analysis. (a) Dose-response curve. (b) De 

values of SIB aliquots.  

 

5.2. Apatite fission-track dating 

Single-grain apatite fission-track ages range between ~2 and 500 Ma. The minimum age populations 

generated from our results are generally and within error younging from the stratigraphically lowest 

sample in the Siang section (SG15), with a minimum age population of 10.3±1.4 Ma, to the 

uppermost sample in the Remi section (REM7), with a minimum age population of 4.4±1.1 Ma (Fig. 

40).  

 

Sample 
Depth 

(m) 

Grain 
size 

(µm) 

Radionuclide concentration 
(ppm) Dose rate  

(Gy ka
-1

) 
ntot 
n 

OD 
(%) 

g-value  
%/decade 

 De (Gy) Age (ka) Age c. (ka) 

K (%) Th  U 

SIB 0.2 
150-
200 

1.9±0.1 11.0±0.6 2.4 ±0.1 1.8±0.1 
28 
27 

25 4.7±0.8 430.7±21.0 115.9±11.0 190.2±18.2 

Table 1 

 

Table 2 
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Fig. 40: Apatite fission-track data for samples from the Remi and Siang sections. The left column 

shows ages <20 Ma for each sample, plotted as adaptive Kernel density plots (Vermeesch, 2012) with 

overlying histograms; n=number of grains <20 Ma. Framed number shows the minimum age peak 

generated with Density Plotter program (Vermeesch, 2012). The right column shows AFT data 

reported in radial plots and considering the total number of dated grains in each sample, indicated 

next to sample name (n=X). The central age, dispersion, χ2 probability and main peak ages (± 1σ, with 

percentages referring to the relative importance of each peak) are indicated. 

 

5.3. Magnetostratigraphy 

5.3.1. Magnetization characteristics 

The initial Natural Remanent Magnetization (NRM) intensities range from 10-5 to 10-1 A/m and 

generally increase up-section. This increase, also observed in the bulk susceptibility, likely reflects a 

higher concentration of strongly magnetic iron oxides, such as magnetite, in the upper levels of the 

section. Two clearly different thermal demagnetization behaviours, separated by the stratigraphic 

level 1200 m, represent a change in both lithology and demagnetization behaviour. We used these 

behaviours to define Characteristic Remanent Magnetization (ChRM) components, plotted on vector 

end-point diagrams and stereographic projections (Fig. 41).  

 

Demagnetizations from the lower part (below the 1200 m-level) were mainly complete below 550 °C 

(Fig. 41c) and a viscous low-temperature component (VLTC) often removed below 200 °C. A low-

temperature component (LTC) of normal polarity mostly demagnetized between 150 and 300 °C was 

interpreted as an overprint. A medium-temperature component (MTC), generally demagnetized 

between 150 and 400 °C, often overlapped with the LTC along great circle paths on stereographic 

projections (Fig. 41). This MTC, of normal or reversed polarity directions, was interpreted as 

representing the ChRM. The increase in remanence intensity and susceptibility upon heating above 

~300 °C is characteristic of iron sulphide transformation to magnetite. As also observed in other 

sections from the eastern Himalayan Siwaliks (Chirouze et al., 2012; Coutand et al., 2016), this 

suggests that iron sulphides, such as greigite, might be carrying the ChRM. 

 

The upper part of the section (above the 1200 m-level) is characterized by a dramatic increase in 

grain size (Fig. 37). Generally, samples yielded higher initial NRM intensities than in the lower part of 

the section. However, the thermal demagnetization paths were more erratic and unstable, and 

many samples did not yield interpretable directions (e.g. Figs. 41e and 41f). This is explained by the 

larger grain size, which yields multi-domain magnetic grains (Butler, 1992). Samples presenting 
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interpretable demagnetization paths have generally much higher unblocking temperatures, between 

300 and 670 °C, suggesting magnetite-like minerals and the occasional occurrence of hematite.  

 

 

Fig. 41: Representative thermal demagnetization paths presented on vector-end point diagrams and 

stereographic projection (c). Full and open symbols are projections on the horizontal and vertical 

plane, respectively. The numbers next to the symbols indicate the temperature of the 

demagnetization step in °C. a) and b) are reliable directions and polarities from group Q1. c) and d) 

are reliable polarities but of less reliable directions from group Q2. c) is a typical demagnetization 

path on which great-circle analysis was performed on a stereographic projection (McFadden and 

McElhinny, 1988). e) and f) are unreliable directions and polarities from group Q3. Figures were 

generated using Paleomagnetism.org (Koymans et al., 2016). 
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5.3.2. ChRM direction analyses 

We calculated the ChRM directions using at least four consecutive heating steps, usually decreasing 

towards the origin. Line fits were generally not anchored to the origin. However, some 

demagnetization paths showing a steady direction but no significant intensity decrease were forced 

to the origin. We rejected the line fits with a Maximum Angular Deviation (MAD) above 30°. When 

the contribution of a secondary normal polarity direction overlapped a reversed polarity direction 

carried by only a few points, we carried out a great-circle analysis (McFadden and McElhinny, 1988) 

(Fig. 42).  

 

Fig. 42: Great-circle analysis. Stereographic projections of reverse selected Q1 and Q2 ChRM 

directions on the lower (filled symbols) and upper (open symbols) hemispheres. The set point 

represented with thick black open circle is defined by the mean of selected Q1-Q2 directions. Q1 and 

Q2 directions are represented by black dots. Obtained reverse directions represented with grey dots 

are defined by the point on each great circle that is nearest to the set point. The dashed and straight 

lines are the fitted great circles projected in the lower and upper hemisphere, respectively.  

 

ChRM directions were carefully classified in four quality groups (Figs. 41 and 42), since secondary 

overprints of normal polarities were common and sometimes persisting at relatively high 

demagnetization temperatures. Quality 1 (Q1) are well-defined directions determined from a stable 

linear demagnetization path of MAD <15° (Figs. 41a and 41b). Quality 2 (Q2) have clearly defined 

polarities but less robust directions because of secondary overprint and/or directional scatter (Figs. 

41c and 41d). Quality 3 (Q3) have ambiguous polarities, usually due to a strong overprint and/or a 

weak scattered signal (Figs. 41e and 41f). Also included in Q3 are poorly indurated samples that 

crumbled before sufficient measurements were acquired to extract reliable ChRM directions. Quality 

4 (Q4) are Q1 or Q2 directions with Virtual Geomagnetic Poles (VGPs) lying more than 45° from the 

mean VGP (see Figure A in Appendix III). This 45° cut-off procedure was performed separately for 
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normal and reversed polarity datasets to avoid introducing a bias. In total 25 Q1 and 54 Q2 

directions were defined and used for further analyses, while Q3 and Q4 directions were 

systematically rejected. 

 

These remaining Q1 and Q2 ChRM directions cluster in antipodal fashion after tilt correction 

indicating the section has not been fully remagnetized, although a fold test was not applicable as the 

Remi section is homoclinally tilted. The reversal test is negative, suggesting the presence of partial 

overprints. The normal directions do not share a common true mean direction with the antipodal of 

the reversed directions (Koymans et al., 2016). This is expected with data that include partial normal 

overprints affecting both normal and reversed directions. In this case, reverse polarity 

determinations are clearly reliable but for normal polarities there remains the possibility of a total 

overprint of an original reverse direction, despite the care taken in isolating ChRM directions. For 

this reason, we have been especially cautious in defining normal polarities. This is particularly critical 

in the upper part of the section, where commonly unstable demagnetization yielded non-

consecutive normal polarity directions. These included originally reversed directions with normal 

secondary overprints extending to high temperature ranges, suggesting some other samples may be 

fully remagnetized into normal polarities. In the lower part of the section, however, normal 

polarities were usually well defined by higher-temperature linear demagnetization paths and 

observed in consecutive intervals, validating normal polarity zones. Nevertheless, we present the 

normal polarity intervals as not fully reliable throughout the section to convey the possibility of 

normal overprints into the record.  

 

The remaining 79 ChRM directions from Q1 and Q2 groups thus provide paleomagnetic polarity 

determinations at intervals averaging 13.6 m throughout the Remi section. Several larger gaps could 

not be avoided due to lack of outcrop or inadequate rock type (generally weathered coarse-grained 

sandstones) yielding non-interpretable demagnetization paths (Fig. 43). To define polarity zones, 

isolated polarities were systematically rejected. We thus identified two normal polarity (N1 and N2) 

and three reverse (R1, R2 and R3) zones in the section. The upper part of the magnetostratigraphic 

section shows a significant number of isolated normal polarity directions. Because these are isolated 

and they occur in the coarser-grained part of the sedimentary section where normal overprinting is 

common, they are considered unreliable. However, it is possible that these isolated normal polarity 

sites reflect original normal polarity zones that are not confidently deciphered by our results. Also, 

the isolated reverse polarity samples and the 20-m gap observed within the normal polarity zone N2 

could potentially be the poor expression of initial reverse polarity zones. 
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Fig. 43: Sample location and magnetostratigraphy results of the Remi section. (a) Stratigraphic 

column and AFT samples with Maximum Depositional Ages in Ma. (b) Magnetostratigraphy samples 

plotted against their Virtual Geomagnetic Pole Latitudes (VGP Lat.); results are indicated using black 

dots for reliable Q1 and Q2 ChRM of reverse polarity direction. Grey dots with black outline indicate 

Q1 normal polarity directions and isolated Q2 reverse polarity directions; plain grey dots indicate Q2 

normal polarity directions. Open circles depict unreliable Q3 and Q4 directions. The polarity column is 

defined from our magnetostratigraphic measurements; black and white intervals indicate normal (N) 

and reverse (R) polarity zones, respectively. Grey intervals represent poorly constrained polarities 

defined by only one sample. Intervals with a cross indicate gaps in the sampling or in polarity 

determination. (c) Proposed correlations of the polarity column to the geomagnetic polarity time 

scale (GPTS) of Gradstein et al. (2012). Correlation A and B are presented in grey and dashed lines, 

respectively. The preferred correlation C is presented in solid black lines. (d) GPTS created using 

TSCreator v. 6.4 software from 

https://engineering.purdue.edu/Stratigraphy/tscreator/index/index.php, based on time scale of 

Gradstein et al. (2012). (e) Maximum Depositional Ages determined with AFT indicated by solid 

squares and the associated errors by light bars, for the samples shown in (a); each color indicates an 

individual sample.  

 

5.4. U-Pb zircon and apatite geochronology 

In this section we refer to age abundances in order to describe the data; however, we acknowledge 

that these distributions only approximately represent the natural proportions within a sample, 

especially when the number of dated grains of a sample is low.  

 

5.4.1. U-Pb zircon cores 

Between 32 and 116 zircons from each analysed sample have core U-Pb ages of good quality (Fig. 

44). Throughout the combined section, ages range between 21 and 3054 Ma. All samples contain a 

significant proportion of zircons with ages <300 Ma (between 12% and 54%); within this age range, 

grains are mainly of Cretaceous-Early Paleogene age (40-140 Ma), with a few zircons younger than 

40 Ma, and most samples contain a few zircons of Early Cretaceous age (100-140 Ma). The main 

population of >300 Ma zircons is Paleozoic in age, defining a peak at around 500 Ma. This 500 Ma 

population increases from being fairly limited (until REM20), to substantial (from REM15), at around 

4 Ma. Two other peaks with Proterozoic ages, around 900 and 1600 Ma, show increasing importance 

and definition up-section. In Fig. 44, pie charts show the fractions of ages comprised between 0 and 

40 Ma, 40 and 300 Ma, and >300 Ma. The proportion of grains aged 40 to 300 Ma shows an 
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apparent decrease up-section, with a major change occurring between samples SG11 and REM15. 

This is particularly visible when plotting the zircon ages as a cumulative age distribution (Fig. 45). The 

cumulative age distribution curve illustrates this change and refines its interval between samples 

REM21 and REM15; samples SG15, SG11 and REM21 have a significantly larger proportion of 40-300 

Ma ages compared to samples from REM15 to SIBO. Sample REM20 appears transitional between 

the two modes observed.  

 

The results of Lang and Huntington (2014) from the Siang section show the same trend of decreasing 

proportion of zircons aged between 40 and 300 Ma up-section (Fig. 44). However, the exact 

percentages of such young grains are not comparable between the two studies due to the different 

data-processing criteria. 
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Fig. 44: U-Pb zircon and apatite data for samples from the Sibo-Remi-Siang section and from modern 

riverbeds compared to potential source regions. Data are plotted as kernel density plots (Vermeesch, 

2012) with overlying histograms in grey. Data from this study is plotted in blue for zircon and red for 

apatite; data from Lang and Huntington (2014) in black. Sample PA2 from Lang and Huntington 

(2014) is from the same location as sample SG1 from this study (see Fig. 35). Pie charts show the 

fraction of zircon/apatite U-Pb ages >300 Ma interpreted as Himalayan origin in dark blue, ages 

comprised between 40 and 150 Ma interpreted as sourced from Gangdese and Bomi-Chayu 

batholiths in green, and ages <40 Ma interpreted as young Himalayan material in light blue. n=x 

indicates the number of grains for each column, presenting the total ages and the ages <300 Ma. 

Zircon U-Pb source-area compilation: ages of zircons characteristic of different Himalayan source 

units. Greater Himalayan Series ages are plotted in grey, Lesser Himalayan Series in black, Tethyan 

Himalaya in purple, Gangdese ages in green from Gehrels et al. (2008) and references therein and 

Bomi-Chayu ages in orange from references in Lang and Huntington (2014). Characteristic ages of 

Gangdese sources are highlighted in both apatite and zircon columns by light-green shade and 

characteristic ages of Bomi-Chayu sources by light-orange shade. The yellow shade in the apatite 

column highlights the range of ages characteristic of the syntaxis for this sample, deposited recently. 

The top graph presents data from modern riverbeds, the Lohit River ages (Cina et al., 2009) are 

presented in black and the Siang River ages (Lang et al., 2013) in grey. Depositional ages of samples 

determined in this study are shown to the left of the plots with their respective errors; depending on 

the dating method the abbreviations Min. and Max. indicate minimum and maximum depositional 

age, respectively. 
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Fig. 45: Cumulative age distribution of zircon U-Pb data plotted using DZ Stats software (Saylor and 

Sundell, 2016). The time interval considered (40-300 Ma) is interpreted as the characteristic ages of 

the Transhimalayan batholiths, including both Bomi-Chayu and Gangdese batholiths. 

 

5.4.2. U-Pb zircon rims 

U-Pb zircon-rim ages with <5% discordance range from 16 to 3704 Ma. If grains with a higher 

discordance percentage are included, the results present a few ages as young as 15.2±0.4 Ma (6.5% 

discordant, in sample REM3) for age discordance limited to 10%, and as young as 5.1±0.2 Ma (55.5% 

discordant, in sample REM7) with no discordance limit on the data (Fig. 46 and Appendix III). The 

oldest sample to contain rim ages of 10 Ma or less, without discordance distinction, is REM21 

(maximum depositional age ~6 Ma). Concordia diagrams of the rim analyses showing ages ≤20 Ma 

are plotted in Fig. 46. The youngest lower intercept of the discordia line with the concordia curve 

calculated from several analyses of the same rim is 8.5±1.9 Ma (MSDW=3.00) in sample REM11.  
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Fig. 46: Zircon-rim U-Pb concordia diagrams of samples from the Remi section. Data showing ages 

≤20 Ma after data screening are plotted as Wetherill concordia diagrams, using the Isoplot v. 4.14 

add-in for Microsoft Excel (Ludwig, 2003). The dotted dark blue line is the concordia curve with 

corresponding ages indicated in Ma. Data-point ellipses are at the 2σ level and coloured as a function 

of the rim analysed. The youngest data points with discordance <5%, <10% and with no discordance 

limit, are indicated in black, with the discordance bracketed. Dotted lines are regression lines 

calculated for several analyses of the same zircon rim; the lower intercept age is indicated in the 

color corresponding to the rim analysed. 
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5.4.3. Apatite U-Pb geochronology 

We obtained between 13 to 37 robust U-Pb ages per sample, ranging between 5 and 1635 Ma. The 

age populations identified using apatite U-Pb dating are similar to those observed using zircon U-Pb 

dating. The main age peaks and the age distributions follow a similar trend in both datasets. 

Although the temperature sensitivity (assuming thermally-activated volume diffusion) of these two 

geochronological systems differ by several hundred °C (U-Pb apatite temperature sensitivity of ~375-

550 °C; zircon >900 °C; Cherniak and others, 1991; Cochrane and others, 2014; Schmitz and Bowring, 

2003 and references therein), the respective age populations match well, suggesting age spectra are 

dominated by ages recording igneous crystallization. However, the proportion of grains <300 Ma is 

higher in the apatite compared to the zircon data, varying from 80 % to 100 %. This contribution 

decreases up-section, similarly to the zircon ages, but the decrease is less well defined. There is a 

sharp change between SG11 and SG1, mirroring the zircon data. SG1 and subsequently-deposited 

samples all yield numerous apatite U-Pb ages <40 Ma, but these are represented by just a single 

grain in sample SG11 at the base of the sequence. Whilst the signature below the shift is only 

defined by one sample, we consider the trend meaningful in view of the fact that it mirrors the trend 

found in the zircon U-Pb data.  

 

Few apatite grains are of Early Cretaceous age, and these are exclusively from samples that also 

contain zircons of this age, strongly indicating an igneous source as opposed to metamorphic 

resetting of the more thermally sensitive apatite U-Pb system. Grains older than 300 Ma, low in 

number compared to the zircon data, tend to be concentrated in age peaks similar to the Paleozoic 

and Proterozoic age peaks observed for zircons (especially 500 Ma and 1600 Ma). We note the 

extremely young apatite U-Pb ages in sample REM7 of 5.7±0.5 and 9.5±0.8 Ma, and a well-defined 

age population between 10 and 40 Ma present in every sample except SG11. 

 

6. DISCUSSION 

Here, we first discuss the age model for deposition of the Sibo-Remi-Siang section, followed by the 

tectonic and geomorphic implications of our U-Pb provenance data. 

 

6.1. Depositional age of the Sibo-Remi-Siang succession 

The IRSL results, AFT ages and the magnetostratigraphic analysis, along with the field observations, 

allowed us to constrain the depositional ages of parts of the sedimentary sections and to propose an 

age model for the Sibo-Remi-Siang succession.  
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The Sibo outcrop is interpreted as containing the youngest Upper Siwalik deposit in the studied area, 

deposited at or before ~190 ka. These sedimentary rocks have subsequently been gently tilted by 

the active Main Frontal Thrust, associated with the southward propagation of the Himalayan front 

(e.g. Srivastava et al., 2009). 

 

For the Remi section, AFT ages can provide initial constraints on depositional age if they are not 

reset by burial heating. Apatites anneal at different temperatures, depending on their chemistry 

(e.g. Carlson et al., 1999), and it is possible that partially reset ages are present in our data. To 

investigate this possibility we first review burial estimates from other Siwalik sections. Vitrinite 

reflectance data and illite crystallinity analyses from Siwalik sections in Nepal have indicated 

maximum temperature-depth couples that indicate a geothermal gradient of 18-24 °C/km, 

consistent with well data in western India, and leading to partial resetting of the AFT system at burial 

depths greater than ~2500 m (e.g. Huyghe et al., 2005; van der Beek et al., 2006). Similar results 

were obtained in the Kameng section of western Arunachal Pradesh (Chirouze et al., 2013). In the 

2200 m thick Dungsam Chu section (Bhutan), the maximum burial temperature determined with 

vitrinite reflectance is 80 °C and AFT ages are unreset throughout the section (Coutand et al., 2016). 

The Remi section is only ~1900 m thick; therefore, total resetting of the AFT system is unlikely for 

any of the Remi samples. This is substantiated by the younging upward trend of minimum ages in 

the section. Estimating the initial maximum thickness of the Siang section is not straightforward 

because the upper part of the sedimentary pile does not outcrop at present. Additionally, thrusts 

both within and bounding the Siang and Remi sections (e.g. Sompa Fault, Mingo Thrust; Fig. 35) 

could have buried parts of the sections significantly deeper than the stratigraphic depth, rendering 

the maximum depth and temperature difficult to estimate. However, since apatite fission-track 

central and minimum ages are also younging up in the Siang section, we interpret our ages as 

unreset, or at most slightly partially reset due to potential post-depositional burial heating. Thus, we 

consider the youngest AFT ages as the maximum depositional age for each sample in the Remi and 

the Siang sections.  

 

In general, the Siwalik sections yield short minimum AFT lag times of <2 Ma in Nepal and in the 

nearby Kameng section (Chirouze et al., 2013; van der Beek et al., 2006). Furthermore, compiled 

zircon fission-track and mica 40Ar/39Ar lag-time data from the Siwaliks along the Himalayan range 

indicate shorter lag times in areas proximal to the syntaxes compared to the central part of the 

range; these short lag times near the eastern syntaxis shorten even more up-section (Lang et al., 
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2016). Therefore, the depositional ages in the Remi and the Siang section are likely to be statistically 

indistinguishable from the minimum AFT age peaks, which have confidence intervals >1.4 Ma.  

 

We conclude that the Siwaliks in the Remi section were deposited from 6.0±1.8 Ma (REM21). In the 

Siang section, SG11 was deposited at or after 10.3±1.4 Ma and SG1 at or after 7.1±1.4 Ma (Fig. 40). 

The relatively short time difference between the lowermost sample in the Remi section (REM21) and 

the uppermost sample in the Siang section (SG1) allows us to assume the Remi-Siang sections to be 

roughly continuous. As the same relationship is also observed between the Sibo outcrop and the 

uppermost Remi section sample (REM3), we make the approximation that the entire Sibo-Remi-

Siang succession is nearly continuous. 

 

For the Remi section, further age control is provided by correlating our magnetostratigraphic results 

to the Geomagnetic Polarity Time Scale (GPTS; Gradstein et al., 2012). As a starting point of our 

correlation we use the reverse zone R2 that is unequivocally defined and is located within the more 

reliable lower part of the section. Five stratigraphic levels are assigned a maximum depositional age 

determined using the independent constraints provided by the detrital apatite fission-track dating 

(Fig. 43).  In particular, the stratigraphic age at the base of the Remi paleomagnetic section is 

<5.8±1.5 Ma (Fig. 43). This age constraint yields three possibilities for correlating R2 to the GPTS: A) 

to C3.4r (starting at 6.0 and ending at 5.2 Ma), B) to C2A.3r (4.2 to 3.6 Ma) and C) to the combination 

of C2.3r to C2.1r (2.6 to 1.9 Ma) (Fig. 43). 

 

Correlation A links R2 to the oldest reverse chron allowed by the AFT-derived maximum depositional 

age and the lengths of the N1, R2 and N2 zones relative to each other. This correlation suggests that 

N2 is correlated to the chrons C3.1n to C3.2n, implying a missing reverse polarity zone within N2, 

which would be possible considering the gap and reverse isolated site within N2. Lower in the 

section, R3 is correlated to C3A.2r and the overlying N1 matches chron C3.4n. Above N1 however, 

the correlation is not straightforward. We can speculatively correlate the normal isolated polarities 

within R2 to the interval from C3.3r to sometime in C2A.3r, which includes relatively short normal 

chrons (C3.1n, C3.2n and C3.3n).  

 

In correlation B, R2 is correlated to C2A.3r. This implies N2 to correspond with the chrons from C3.1n 

to C3.4n and the subsequent R3 zone to C3.4r. This would imply missing polarity zones C3.1r, C3.2r 

and C3.3r, which would represent a significant amount of missed reverse polarity directions, possibly 

due to secondary overprinting. Above R2, N1 is logically correlated to C2A.3n, but R1 is too long to 
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be realistically correlated to C2A.2r. This correlation would imply a very significant number of 

missing polarity zones, reverse in the lower part of the section and normal in the upper part.  

 

In correlation C, correlating R2 with the C2.1r to C2.3r interval implies that the two very short normal 

zones of the GPTS within this time interval are missing in our data. Below R2, the correspondence of 

N2 to the chrons from C2A.1n to C2A.3n is straightforward, although it implies that the isolated 

reverse direction site and the sampling gap within N2 respectively reflect and hide the missing 

chrons C2A.1r and C2A.2r. Below N2, R3 is easily linked to C2A.3r. Above R2, the long reverse zone 

R1 fits well with the C1 reverse chrons. From this point, the correlation becomes challenging to 

interpret with numerous options. These are based on assumptions made on the isolated normal 

sites, which could independently reflect original normal polarities or result from secondary 

overprinting. Since the potential solutions are multiple, they are not detailed here. However, as the 

top of the section clearly indicates a reverse polarity zone, it must be older than C1.1n, i.e. ~0.8 Ma.  

 

The correlations A and B are not as straightforward as correlation C, in particular because they do 

not fit well the upper part of the determined polarity zones with the GPTS. Additionally, correlation 

A places the Middle to Upper Siwalik transition at ~5.5 Ma, whereas it has been dated between 2 

and 3.8 Ma throughout the Himalayan sections from Pakistan to eastern India (e.g. Chirouze et al., 

2012; Coutand et al., 2016; Ojha et al., 2009; Sanyal et al., 2004) (Fig. 47). Correlation B requires 

many assumptions on gaps and isolated polarities; moreover, N1and R2 do not match the GPTS. For 

these reasons we reject correlations A and B and prefer correlation C, which provides the best fit 

while omitting the fewest number of chrons.  

 

We therefore infer the base of the magnetostratigraphically dated part of the Remi section to be 

younger than 4.2 Ma. The Middle to Upper Siwalik boundary in the Remi section is constrained at 

~2.5 Ma, which is consistent with the nearby dated Kameng and Siji sections (Chirouze et al., 2012; 

Lang et al., 2016). The Lower to Middle Siwalik boundary is generally around 10±2 Ma along the 

Himalayan foreland basin (Chirouze et al., 2012; Gautam and Fujiwara, 2000; Harrison et al., 1993; 

Johnson et al., 1985; Meigs et al., 1995; Ojha et al., 2000; 2009), which also is in agreement with our 

interpretation, as the Sibo-Remi-Siang succession does not contain Lower Siwaliks (Fig. 47). 

Additionally, the oldest dated Lower to Middle Siwalik transition has been constrained at ~11 Ma 

(Johnson et al., 1985; Ojha et al., 2000; 2009) in the Chinji, Khutia Khola and Tinau Khola sections of 

Pakistan and Nepal (Fig. 47). Therefore, we assume that the oldest Middle Siwalik sedimentary rocks 

of the Sibo-Remi-Siang succession are ≤11 Ma.  
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6.2. Sediment accumulation patterns 

The magnetostratigraphy indicates accumulation rates averaging 0.21 mm/yr for the upper part of 

the Middle Siwaliks and the lowermost part of the Upper Siwaliks in the Remi section. The length of 

the reverse zone R1 in the top of the section suggests a significant increase in accumulation rates in 

the Upper Siwaliks, to a minimum of 0.55 mm/yr assuming the age of the top of the Remi section to 

be close to the base of the Brunhes chron at 0.8 Ma. Such an increase in accumulation rates up-

section is recorded in most of the Siwalik sections in the Himalayan foreland basin (Fig. 47), with the 

notable exception of the Dungsam Chu section in Bhutan. There, accumulation rates decrease up-

section, which is interpreted as due to the influence of the adjacent Shillong Plateau (Coutand et al., 

2016; Govin et al., in prep). Our results from an area east of Bhutan but unaffected by the Shillong 

Plateau further support this interpretation for the unusual accumulation rates in the Dungsam Chu 

section. 

 

The Upper Siwaliks in sedimentary sections of the Himalayan foreland basin from NW to NE India 

present accumulation rates that vary from 0.1 mm/yr in the Dungsam Chu section and 0.34 mm/yr in 

the Haripur section to 0.59 mm/yr in the Surai Khola section (Chirouze et al., 2012; Coutand et al., 

2016; Meigs et al., 1995; Ojha et al., 2009; Sanyal et al., 2004). The Upper Siwalik alluvial fan 

deposits are strongly influenced by their proximity to the southward-propagating Himalayan thrust 

front. Therefore, local faults associated with the Main Frontal Thrust could explain this variability in 

accumulation rates along strike. For instance, activity on the Mingo Thrust has likely allowed rapid 

erosion of its hanging wall. Overall, the rates obtained here for NE India are consistent with Upper 

Siwalik accumulation rates along the range (Fig. 47). This consistency contrasts with the Middle 

Siwaliks, which show significantly lower rates in both the eastern and western extremities of the 

Siwalik apron compared to the central region (Fig. 47). This pattern holds true also for the Lower 

Siwaliks in the western extremity vs the central part of the basin. No data from Lower Siwaliks are 

currently available to constrain accumulation rates in the eastern Himalaya.  
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Fig. 47: Compilation of ages and accumulation rates of Siwalik sections dated with 

magnetostratigraphy between the Indus and Brahmaputra Rivers. Transitions between Lower 

Siwaliks (LS) and Middle Siwaliks (MS) and between Middle and Upper Siwaliks (US) are indicated 

with black lines. The sections presented in this diagram are: Chinji (Johnson et al., 1985); Rothas 

(Behrensmeyer et al., 2007); Ranital Kolta, Haripur (Sanyal et al., 2004); Jawalamukhi (Meigs et al., 

1995); Khutia Khola (Ojha et al., 2000); Karnali (Gautam and Fujiwara, 2000); Surai Khola, Tinau 

Khola, Muksar Khola (Ojha et al., 2009); Bakiya Khola (Harrison et al., 1993); Dungsam Chu (Coutand 

et al., 2016); Kameng (Chirouze et al., 2012); Siji (Lang et al., 2016).  

 

Along-strike variations in flexural subsidence are not likely the cause of the differences in Siwalik 

accumulation rates along strike of the range. Whereas the wavelength of lithospheric flexure is 

shorter in the eastern Himalayan foreland basin compared to the west (Hammer et al., 2013), the 

change in flexural wavelength occurs to the west of Bhutan and cannot explain the differences in 

accumulation rates between the Remi and Siji sections, which are only ~60 km apart in the 

easternmost Himalaya. Differences in sediment supply are also unlikely to constitute a suitable 

explanation for the low accumulation rates in these syntaxial areas in comparison with the central 

Himalayan foreland basin, since the two major orogen-traversing rivers, the Indus and the Yarlung-

Siang-Brahmaputra, provide high sediment influx to both the eastern and western extremities of the 

foreland basin. Analysis of further records along strike are required to validate whether there is 

indeed a systematic difference in accumulation rate between the syntaxial regions and the main arc 

of the orogen, or whether these variations are simply related to differences in activation of local 

structures through time. 
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6.3. Provenance and drainage evolution 

6.3.1. Syntaxial influence 

A significant decrease in the proportion of Jurassic-Early Paleogene ages (40 to 300 Ma) upward in 

the Sibo-Remi-Siang section has been detected in the zircon and apatite U-Pb data. Although this 

decrease is observed in the relative abundances of age components, which does not necessarily 

reflect strictly the natural proportions, we argue it likely approximates the natural trend within the 

Sibo-Remi-Siang section as the zircon U-Pb cumulative age distributions show a clear transition 

between REM21 and REM15 (depositional ages of ~6 Ma and 4.1 Ma, respectively) (Fig. 45). This 

decrease indicates a dilution of Transhimalayan detritus, and thus a relatively increased contribution 

of detritus sourced from Indian plate Himalayan units. The decrease in the proportion of 

Transhimalayan ages appears to occur gradually from sample SG11 (depositional age of ~10 Ma; Fig. 

40), as illustrated by the zircon core U-Pb data pie charts (Fig. 44). The increase in the 500 Ma 

population from the Indian plate Tethyan Himalaya occurs sharply, between sample REM20 (4.6 Ma) 

and REM15 (4.1 Ma). We interpret this dilution of the Transhimalayan detritus as due to the 

exhumation of the syntaxis in the upstream Siang, in view of the synchronicity with syntaxial 

exhumation determined from detrital thermochronological data as described below: 

 

Bracciali et al. (2015) have documented zircon-rim ages <10 Ma in deposits of the Surma Basin 

(Bangladesh) and have interpreted these as indicating syntaxial provenance. We find similarly aged 

zircon rims in our samples from 6 Ma; the lag times calculated for the youngest zircon-rim U-Pb ages 

in the Remi samples are ≤10 Ma. If interpreted similarly to Bracciali et al. (2015), this suggests 

syntaxial input at least as early as the depositional age of sample REM21 (maximum depositional age 

6.0±1.8 Ma; Fig. 40). However, these young rim ages are highly discordant (up to >90%) with high 

common Pb contents, and may also have suffered Pb loss. The lag times calculated with a 

discordance restriction of <10% are >10 Ma for all samples, and further investigations are necessary 

to confirm our interpretation. The technical challenge involved in thin zircon-rim U-Pb dating is 

significant. In this study, the narrowness of the metamorphic zircon overgrowths required the use of 

small laser spots during analysis, which could lead to significant U-Pb fractionation and therefore a 

dating bias. For this reason, the analytical methodology of dating young and thin rims needs to be 

further developed before this technique can be used as a robust self-sufficient syntaxial provenance 

tool. In our case, the zircon-rim analysis includes ages as young as 8.5±1.9 Ma (MSWD = 3.00) for 

REM11 (depositional age of ~3.2 Ma), calculated by regression of multiple single-rim analyses (Fig. 

46), which provides support for a syntaxial origin of the young-rim zircons, rendering the 

interpretation less speculative. 
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The apatite fission-track data show very young ages (as young as 2 Ma), and we suspect lag times 

shorter than 2 Ma for grains in the REM7, REM11 and REM15 samples (depositional ages of ~1.5, 3.2 

and 4.0 Ma, respectively) when comparing the AFT minimum ages to the age of deposition 

determined by magnetostratigraphy. These short lag times remain speculative, however, since 

errors on both the depositional and cooling ages are large and both ages overlap. Furthermore, we 

cannot uniquely interpret these young grains of very short lag time as being derived from the 

syntaxis, since grains of similarly young AFT age have been recorded in the Himalayan bedrock (e.g. 

Coutand et al., 2014) and such short lag times are observed in Himalayan foreland basin deposits 

outside the syntaxial regions (Chirouze et al., 2013; van der Beek et al., 2006). 

 

Apatite double dating provides additional information to AFT-dated grains, with U-Pb ages helping to 

identify an eastern syntaxis source in the Sibo-Remi-Siang sedimentary rocks. Our results from both 

apatite and zircon U-Pb systems show similar trends in age population abundances. Zircon and rutile 

U-Pb ages <10 Ma are unique to the eastern syntaxis and represent its unusually young 

metamorphism in comparison to the main Himalayan arc (Bracciali et al., 2016). Since the U-Pb 

geochronological system in rutile has a temperature sensitivity which overlaps with that of apatite 

U-Pb (~640-490 °C; Kooijman et al., 2010), we interpret apatite grains yielding U-Pb ages of <10 Ma 

as syntaxial detritus. However, source characterization confirming that young apatite U-Pb ages are 

unique to the syntaxis remains required to validate this interpretation. In sample REM7, two young 

double-dated grains have been detected (depositional age of ~1.5 Ma; U-Pb age <10 Ma and AFT age 

<3 Ma). Such young apatite grains are not found further down-section. The lack of young, potentially 

syntaxially derived grains further down-section would be at variance with our interpretation of 

syntaxially derived detritus from ~6 Ma discussed above. This discrepancy may be explained by the 

overall rarity of these young apatite grains, likely related to large uncertainties on their U-Pb ages, 

leading to rejection of young ages in the data screening process. The lack of such grains down-

section could also be a consequence of the apatite double-dating (U-Pb and fission-track combined) 

approach. A population of very young grains may go undetected due to their low track density, low 

U content and/or high common-Pb content in some grains. Therefore, if an independent U-Pb 

apatite analysis was carried out, without restriction of analyses to grains previously selected for 

fission-track dating, the results may show younger U-Pb age populations lower down the section, 

which would mirror the interpretation of the zircon-rim data.  

 

In conclusion, the combination of AFT, U-Pb apatite, U-Pb zircon core and rim dating suggests that 

the presence of detritus sourced from the rapidly exhuming eastern syntaxis is likely at least from ~6 
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Ma in the Remi section (sample REM21), as indicated by the U-Pb zircon-rim data, and consistent 

with the timing suggested from thermochronological studies of the Sibo-Remi-Siang section and the 

adjacent Siji section (Govin et al., 2016; Lang et al., 2016). Additionally, sample REM7 (depositional 

age of ~1.5 Ma) exhibits robust young apatite of syntaxial origin. 

 

In the above scenario, the increasing percentage of the 500 Ma grains indicative of Himalayan 

(Tethyan) input, between ~4.1 Ma and 4.6 Ma, and the dilution of the contribution of 

Transhimalayan zircon inferred between samples SG11 and REM15, i.e. between ~10.3 Ma and 4.1 

Ma, are thus interpreted to result from the progressive exhumation of the syntaxis in the upstream 

Siang, which would increase the proportion of Himalayan Indian plate input through time. However, 

these changes could also potentially be explained by two other possible mechanisms; either 1) the 

progressive southward propagation of the Himalayan thrust belt, or 2) river capture events, 

specifically a change from Yarlung-Lohit-Brahmaputra routing to Yarlung-Siang-Brahmaputra routing. 

 

Southward propagation of the Himalayan thrust belt would lead to an increase in Himalayan-derived 

detritus as the thrust belt became more proximal to the foreland basin. However, we prefer to 

explain the change as due to syntaxial exhumation due to the synchronicity with this event as 

determined independently from thermochronological data. 

 

A change from Yarlung-Lohit-Brahmaputra routing to Yarlung–Siang–Brahmaputra routing could also 

explain the decrease in Transhimalayan detritus up-section, and the significant increase in 500 Ma 

Tethyan Himalayan zircon grains at ~4 Ma. The Tethyan Himalaya does not extend eastward of the 

Himalayan syntaxis (e.g. see the geological map of Cina and others, 2009). Therefore, a Yarlung-

Lohit-Brahmaputra routing would only have contained a small amount of Tethyan aged (500 Ma) 

zircons, picked up as the Yarlung Tsangpo drained along the suture zone at low gradient. This low 

percentage of 500 Ma zircons is similar to the present day Yarlung Tsangpo signature, and contrasts 

with modern day Himalayan transverse rivers which drain the Tethyan Himalaya at high gradient 

(e.g. Cina et al., 2009). Subsequent cut back and river capture by the Siang would have resulted in a 

higher proportion of Tethyan input to the sedimentary deposits, because the Tethyan rocks extend 

to this region. However, the major change in proportion of 500 Ma zircon grains in the Remi section 

occurs at ~4 Ma, 2 million years after we, and others (e.g. Lang et al., 2016) document a syntaxial 

signal, diagnostic of Siang drainage. For this reason, we prefer to explain these up-section changes in 

terms of syntaxial exhumation. 
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6.3.2. Drainage development 

6.3.2.1. Cretaceous-Early Paleogene ages: Yarlung-Brahmaputra connection by Late Miocene 

The presence of Cretaceous-Early Paleogene zircons and apatites in the Sibo-Remi-Siang succession 

since ~11 Ma indicates that the Yarlung-Brahmaputra connection was established since this time. 

This detritus is interpreted as derived from the Gangdese batholiths and transported by the palaeo-

Brahmaputra through the Yarlung Tsangpo and a transverse river such as the Siang (Fig. 48). This 

conclusion is compatible with previous provenance studies in the eastern Himalayan Siwaliks 

(Chirouze et al., 2013; Cina et al., 2009; Govin et al., in prep; Lang and Huntington, 2014), which 

provided evidence for a Yarlung-Brahmaputra connection established at least since deposition of the 

Middle (and in the case of Lang and Huntington (2014), the Lower) Siwaliks, i.e. since Late-Miocene 

times. Our data are also consistent with the presence of Transhimalayan detritus in the Bengal Fan 

since at least 12 Ma (Galy et al., 2010). More distal records in Bangladesh and Myanmar (Bracciali et 

al., 2015; Robinson et al., 2014) suggest the connection to be even older, i.e. Early Miocene, but 

cannot distinguish between a possible Yarlung-Lohit-Brahmaputra and a Yarlung-Siang-Brahmaputra 

connection at this time. Since the Sibo-Remi-Siang succession contains syntaxial deposits from ~6 

Ma, the Yarlung-Brahmaputra connection via the Siang has likely existed since at least the Late 

Miocene (Fig. 48).  
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Fig. 48: Early-Miocene to Late-Quaternary evolutionary model of the drainage system in the eastern 

syntaxis area (modified from Lang and Huntington, 2014) constructed using provenance analysis 
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from this study, Lang and Huntington (2014), Clark et al. (2004), Robinson et al. (2014), and 

references therein. The question mark and the dotted drainage line indicates a potential paleo-

drainage scenario in which the Yarlung-Brahmaputra connection existed through the Siang River 

since the Early Miocene, but other scenarios are possible such as a Yarlung-Brahmaputra connection 

through the Lohit River. Red star labelled SRS represents the Sibo-Remi-Siang composite section. The 

arrows symbolize the northward growth of the antiformal Namche Barwa syntaxis. Abbreviations 

are: ES – Eastern Syntaxis, MFT - Main Frontal Thrust, MCT - Main Central Thrust, MBT - Main 

Boundary Thrust, STD - South Tibetan Detachment and IYSZ - Indus-Yarlung Suture Zone.  

 

6.2.3.2. Early-Cretaceous ages: major river reorganization since ~190 ka 

Our U-Pb data also show minor input of Early Cretaceous (and Late Jurassic; 100-150 Ma) zircon and 

apatite throughout the Sibo-Remi-Siang succession. By contrast, the modern Siang River 

sedimentary rocks show a major contribution of such zircon grains (Lang et al., 2013) (Fig. 44). Early 

Cretaceous U-Pb ages have been reported as a major age population of the Bomi-Chayu batholiths, 

in only minor amounts from the Gangdese batholiths, and may also be present in the Lohit Plutonic 

Suite (Cina et al., 2009; Haproff et al., 2013) (Fig. 44). Due to uncertainty of the paleo-location of our 

studied Siang-Remi-Sibo sedimentary succession with respect to the trunk Brahmaputra River and its 

various tributaries draining these potential source regions, we can only speculate as to which region 

sourced the minor amount of Early Cretaceous grains found in our samples. By contrast, the 

significant proportion of such grains in the modern Siang River implies a Bomi-Chayu source, in 

which such grains are prevalent. Therefore, the difference between the modern and paleo-samples 

suggests major river reorganization since deposition of the Sibo sedimentary rocks, i.e. more recent 

than ~190 ka.  

 

The Bomi-Chayu granites are eroded by the Parlung River, which currently connects to the Siang via 

the narrow Parlung gorge north of Namche Barwa (Figs. 34 and 48). Previous workers have proposed 

that the Parlung River originally flowed southeastward through a Yigong-Parlung-Lohit connection 

draining the Bomi-Chayu rocks (e.g. Lang and Huntington, 2014) (Fig. 48a). Initiation of the Parlung-

Siang connection, implying reversal of the Parlung River, is inferred to have occurred during the 

Quaternary (Lang and Huntington, 2014) and probably during the past 1 Myr (King et al., 2016) (Fig. 

48c). We propose that the arrival of major amounts of Early Cretaceous aged zircons in the foreland 

basin within the last 190 kyr is a direct consequence of Parlung-Yigong capture by the Siang River. 

This scenario is consistent with previous studies (King et al., 2016; Lang and Huntington, 2014) and 

our results more precisely constrain the timing estimates inferred in these studies. This Late 
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Quaternary age implies that the Parlung capture could have been strongly influenced by glacial 

activity such as drainage-divide retreat or temporary ice damming (e.g. Korup et al., 2010; Oskin and 

Burbank, 2005; Riedel et al., 2007). The extremely high recent exhumation rates in the Parlung river 

area reported by King et al. (2016) may originate from this capture and do not necessarily require 

northward growth of the syntaxial antiform.  

 

6.4. Sediment recycling 

The dilution of Transhimalayan detritus shows an increasing trend toward the top of the Sibo-Remi-

Siang section. This general trend can be observed in the U-Pb zircon data throughout the entire 

section. However, some samples do not follow this trend. In the Siang section, the results of Lang 

and Huntington (2014) are in accordance with the general trend, but our data show a slight decrease 

in the dilution of Transhimalayan zircons up-section. This difference is almost certainly due to the 

relatively small number of grains dated from our Siang samples, compared to the number analysed 

grains by Lang and Huntington (2014).  

 

In the Remi section, the up-section trend of increasing dilution is well depicted up to sample REM7 

(depositional age of ~1.5 Ma). In contrast, from REM7 to REM3 (depositional age of ~1 Ma), the 

Transhimalayan age proportion doubles, from 12% for REM7 to 26% for REM3. Accumulation rates 

also drastically increase in the same interval, from ~0.21 mm/yr to ~0.55 mm/yr (Fig. 43). From 

REM3 to the top of the section (Sibo), the trend is respected again. The high proportion of 

Transhimalayan ages in sample REM3, distinct from the rest of the section, could reflect either 

natural variation or sedimentary recycling of older Siwalik material into REM3. In the latter case, a 

reasonable explanation for such a recycled Siwalik component could be the onset of deformation in 

the Siwaliks between deposition of REM7 and REM3, possibly through activation of the Mingo thrust 

(Fig. 35). The onset of activity on the Main Frontal Thrust was estimated at <1 Ma in the Kameng 

section, with activation of an internal Siwalik thrust (the Tippi Thrust) at ~1 Ma (Chirouze et al., 

2013). This scenario appears very similar to the proposed evolution in the Remi section, in which 

recycling was caused by initiation of the Mingo Thrust between ~1.5 and 1 Ma. This is also consistent 

with the observed transition to more proximal facies of the Upper Siwaliks and the increase in 

accumulation rate recorded in the Remi section between 2 and 1 Ma, both of which are diagnostic of 

thrust propagation and loading.  

 

The zircon U-Pb data do not suggest recycling in the younger Sibo outcrop, as the up-section 

increase in dilution of Transhimalayan zircon is respected in the SIBO sample. This difference 
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between the REM3 and the SIBO samples, which are stratigraphically close, may be explained by the 

geographic distance between the two locations. In effect, the SIBO outcrop is located much closer to 

the main Siang trunk stream, and deposition at this location may be dominated by material carried 

by the Siang, overwhelming any locally recycled source. 

 

6.5. Apatite U-Pb data: a promising tool for provenance analysis 

Comparison of apatite U-Pb data with the more commonly used zircon U-Pb ages allows assessment 

of the efficiency of apatite U-Pb dating as a provenance method in the eastern Himalaya. As 

discussed previously, the zircon U-Pb data contain a major population of ages with Transhimalayan 

characteristics. Zircon U-Pb age peaks older than 300 Ma are interpreted as mainly derived from 

Indian-plate Himalayan units (Fig. 44) (Gehrels et al., 2011). The Paleozoic age peak is associated 

with Tethyan Himalayan units, whereas the two main Proterozoic age peaks could be associated 

with Lesser, Higher or Tethyan Himalayan units (Fig. 44) (Gehrels et al., 2011). The youngest 

population of ages <40 Ma is also interpreted as predominantly sourced from metamorphic rocks of 

the Greater Himalayan Series and the Miocene leucogranites (e.g. Lang and Huntington, 2014). The 

conformity in age population between zircon and apatite U-Pb data indicates high-temperature 

sources, such as primary igneous and granulite-facies metamorphic rocks. 

 

Although the apatite U-Pb ages are generally younger than the zircon ages, they are also 

characteristic of the Transhimalayan Bomi-Chayu and Gangdese batholiths. Proterozoic to Late-

Paleozoic and Mid- to Late-Cenozoic age populations likely representative of the Greater Himalayan 

Series, Lesser Himalayan Series and Miocene leucogranites, respectively, are also present. The 

important decrease up-section of Transhimalayan age populations observed in zircon U-Pb ages is 

also noticeable with apatite U-Pb dating. However, we note that the relative abundances of 

Transhimalayan versus Himalayan ages differ between the two systems. These differences are also 

recognized for the Proterozoic ages, commonly associated with Lesser Himalayan Series rocks, which 

are less abundant in the apatite than in the zircon U-Pb data. This could be explained by the fact that 

datable apatites are notoriously sparse in the Lesser Himalayan Series rocks (e.g. Coutand et al., 

2014). 

 

While we can therefore explain some of the age differences between zircon and apatite U-Pb data, 

apatite U-Pb source characterizations are necessary for more detailed investigations. In this study, 

apatite U-Pb dating has proven to be particularly relevant, as it allowed the detection of very young 

grains that we interpret as being sourced from the Namche Barwa syntaxis. The coherence between 
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apatite and zircon U-Pb data demonstrates the quality of such a dataset. Therefore, the apatite U-Pb 

system represents a powerful provenance tool, especially convenient when combined with AFT 

analysis using ICP-MS AFT dating. However, double dating may not be the optimal choice to record 

very young age populations due to the trade-off between the large spots (~30 μm) desirable for U-

Pb analysis, and the smaller spots (~15 μm) typically preferred for AFT analysis in order to target 

precise grain zones. Apatite U-Pb dating independent of AFT dating, preferably in combination with 

rutile U-Pb analysis to effectively target the high-grade metamorphic rocks, would be a more 

promising approach for this purpose.   

 

7. CONCLUSIONS 

We have constrained the depositional ages of, and applied geochronological provenance techniques 

to, a previously unstudied Himalayan foreland-basin sedimentary succession located in the extreme 

east of the orogen, as summarized in Fig. 49. The composite section covers Middle to Upper Siwalik 

rocks deposited from Late-Miocene to Pleistocene times, with accumulation rates increasing from 

~0.21 mm/yr (Upper Middle Siwaliks) to at least ~0.55 mm/yr (Upper Siwaliks). The depositional 

dating combined with our detrital zircon U-Pb, and double-dated apatite U-Pb and AFT data, permit 

the following conclusions on the regional evolution to be drawn:  

 

(1) The previously developed hypothesis that the Yarlung-Brahmaputra fluvial connection has 

existed since at least the Late Miocene (e.g. Lang and Huntington, 2014) is confirmed. We 

have demonstrated the systematic presence of Transhimalayan detritus throughout the 

Sibo-Remi-Siang succession since Middle Siwaliks deposition (from at least ~10 Ma) using 

zircon-U-Pb dating.  

 

(2) The onset of rapid exhumation in the Namche Barwa syntaxis during the Late Miocene, likely 

at least from ~6 Ma, is recorded in the Sibo-Remi-Siang section. We infer erosion of syntaxial 

sources directly by combining apatite U-Pb and zircon-rim U-Pb data, and indirectly from a 

strong up-section dilution in Transhimalayan aged zircons in the succession. This new 

constraint on the onset of rapid exhumation is consistent with previous estimates (Lang et 

al., 2016); however, more precise estimates remain necessary to discriminate between 

proposed mechanisms for the initiation of very rapid exhumation in the Namche Barwa 

syntaxis.    
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Fig. 49: Summary of depositional dating and provenance analysis in Sibo-Remi-Siang succession with 

main interpreted events. Dating methods are indicated for each sample; IRSL: infra-red stimulated 

luminescence, Pmag: magnetostratigraphy, AFT: apatite fission-track. Depositional ages for analysed 

samples are plotted with error bars, determined according to the different dating techniques. As 

maximum depositional ages below sample REM15 are constrained by AFT dating only, the upper 

error bars are prolonged up to REM15, the oldest sample dated by magnetostratigraphy. Paleo-

Brahmaputra and Bomi-Chayu provenances determined with apatite and zircon U-Pb dating are 

indicated in green and orange, respectively. Detection of the rapidly exhuming syntaxis with apatite 

U-Pb dating is shown in red, the possible occurrence of syntaxis signal refers to the U-Pb zircon-rim 

data. Pie charts of apatite and zircon U-Pb ages are copied from Fig. 44. 

 

(3) Deformation of Siwalik sedimentary rocks in the Remi section initiated at ~1.5 Ma, resulting 

from southward propagation of Himalayan deformation and onset of activity on the intra-

Siwalik Mingo Thrust. This deformation is recorded by sedimentary zircon U-Pb ages 

suggesting recycling at ~1 Ma, and is supported by the increase in accumulation rates at the 

same time.  

 

(4) Parlung-Yigong capture by the Siang River is constrained to have occurred after ~190 ka, as 

shown by the arrival of significant amounts of Early-Cretaceous zircons characteristic of the 

Bomi-Chayu batholiths within this time interval. We suggest that this capture has enhanced 

erosion and exhumation rates in the region NE of the Namche Barwa syntaxis.  
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SUPPLEMENTARY MATERIAL 

The supplementary material of this chapter is presented in Appendix III as listed here.  

Analytical methods: 

 Luminescence dating 

 Detrital apatite fission-track and U-Pb double dating 

 Magnetostratigraphy 

 Detrital zircon U-Pb dating 

Data tables: 

 Table S1: Sample location  

 Table S2: Magnetostratigraphy data  

 Table S3: Zircon U-Pb source area compilation 

 Table S4: Apatite fission-track - U-Pb data  

 Table S5A: Zircon core and rim U-Pb data 

 Table S5B: Zircon standard U-Pb data 
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ABSTRACT  

The evolution of the eastern and western Himalayan syntaxes is debated: they have been subjected 

to anomalously young (~10 Ma) high-grade metamorphism, melting and unusually high rates of 

exhumation (up to 10 mm yr-1), compared to the main arc of the range where peak metamorphism 

occurred in the Early Miocene and exhumation rates of ≤2 mm/yr are more common. The timing of 

metamorphism and the onset of rapid exhumation of the eastern Namche Barwa syntaxis is poorly 

constrained. Bedrock studies suggest rapid exhumation since either 3-4 Ma or 8-10 Ma and detrital 

studies infer the onset of rapid exhumation in the last 7 Myr, up to Plio-Pleistocene times. Several 

models have been proposed to explain the syntaxial evolution, invoking different controlling factors, 

such as compressive crustal-scale folding orthogonal to the strike of the mountain belt, subduction 

geometry in the indentor region, or tectonic-surface process interactions and crustal channel flow. 

To understand the Namche Barwa syntaxis evolution, we report new detrital zircon fission-track, 

white-mica 40Ar-39Ar and rutile U-Pb data from the most proximal detrital record of material eroded 

from the syntaxis by the paleo-Siang River: the dated Sibo-Remi-Siang Siwalik located directly 

downstream of the syntaxis. Our results, along with published detrital data from the syntaxis region 

are incorporated in a 1D version of the thermokinematic model Pecube. We highlight the high 

relevancy of using the rutile U-Pb thermochronological system for studying the syntaxis and we 
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suggest an older onset of exhumation of the Namche Barwa, as old as ~13 Ma, at slower rate (~4 

mm yr-1) than widely expected. 

 

1. SIGNIFICANCE  

The Himalaya is the result of ongoing collision between Asian and Eurasian plates which begun at 

~60-50 Ma. Evolution of rock exhumation in the main Himalayan arc is relatively well understood 

over the last ~20 Ma. However, the history of the eastern and western terminations, the Himalayan 

syntaxes, remains poorly known and vigorously debated. Active research suggests they have been 

subjected to extremely high exhumation rates in the last 10 Ma. Using thermochronological dating 

of sediments eroded from the eastern syntaxis, we show that the onset of rapid exhumation is 

possibly 1-3 Ma older and up to twice as slow as predicted. Our results bring new insights regarding 

the early development of the eastern Himalayan termination, this is critical information to take into 

account when attempting to explain the evolution of the eastern Himalayan syntaxis.   

 

2. INTRODUCTION 

The development of the Himalayan syntaxes remains highly debated; they have been subjected to 

anomalously young (<10 Ma) high grade metamorphism, melting and high rates of exhumation (>5 

to 10 km/Myr) (Booth et al., 2009; Booth et al., 2004; King et al., 2016; Lang et al., 2016; Seward and 

Burg, 2008; Zeitler et al., 2014), compared to the central Himalaya where Early Miocene 

metamorphism and modern exhumation rates of ~2mm/yr are common (e.g. Thiede and Ehlers, 

2013). The eastern Namche Barwa syntaxis exhibits extreme erosion rates (>5 mm/yr (Finnegan et 

al., 2008)) and topography (up to 5.6 km of local relief (Korup et al., 2010)); exceptionally young geo- 

and thermo-chronologic ages (rutile U-Pb <3 Ma) implying very high exhumation rates (>4 km/Myr) 

(Bracciali et al., 2016 and references therein); a poorly known complex structural setting (Burg et al., 

1998) and a peculiar drainage pattern (Zeitler et al., 2014). These outstanding geologic and 

geomorphologic features of the Namche Barwa syntaxis provoke a wide interest in the geoscience 

community.   

 

The processes involved in the evolution of the eastern syntaxis rapid exhumation are poorly 

understood. Several models have been proposed to explain the syntaxial rapid exhumation: 1) 

Structural buckling due to contraction in the orogenic indentor corner (Burg et al., 1997); 2) 

Subduction geometry implying collision and deformation of geometrically-stiffened syntaxial 

indentor in subducting slab (Bendick and Ehlers, 2014); 3) Ductile extrusion of weak lower crust from 

beneath Tibet by “channel flow” decompression  (Beaumont et al., 2001), initiating modestly in 



168 
 

Miocene times followed by a Pleistocene acceleration of the syntaxis exhumation (Bracciali et al., 

2016); 4) Thermomechanical feedback between focused and intense erosion and growth of the 

Namche Barwa crustal antiform (Zeitler et al., 2014; Zeitler et al., 2001). The latter model has been 

successively challenged by  the work of Wang et al. (2014b) suggesting that fluvial incision in the 

Namche Barwa region is the result of uplift; and by provenance studies inferring that the major 

capture leading to the Yarlung-Brahmaputra system predates substantially the onset of the Namche 

Barwa exhumation and in such  oppose the tectonic aneurysm model (e.g. Bracciali et al., 2015; Lang 

and Huntington, 2014). Although these models are difficult to test, knowledge of the timing of 

initiation and rates of the exhumation of the eastern syntaxis is a prerequisite necessary to 

understand how the eastern syntaxis developed.  

 

The decompression related to exhumation has been controversially suggested to have occurred after 

4 Ma (Burg et al., 1998; Seward and Burg, 2008) and around 10 Ma (Booth et al., 2009; Zeitler et al., 

2014; Zeitler et al., 2001) from bedrock studies. However, the earlier history of the sampled region 

removed by erosion is archived in the sedimentary record and detrital studies are necessary to fully 

comprehend the syntaxis exhumation history. Published Neogene detrital thermochronological data 

from the eastern Himalayan foreland basin have inferred the syntaxial exhumation to have increase 

by a 5 to 10-fold increase between 5 and 6 Ma (Lang et al., 2016). The modern riverbed detritus 

present very young thermochronologic ages, in particular zircon fission-track (ZFT) ≤2 Ma, white-

mica 40Ar-39Ar (Mar) ≤2 Ma and rutile U-Pb (RU-Pb) ≤9 Ma, which have been interpreted as 

characteristic syntaxial signals of the syntaxis (Bracciali et al., 2016 and references therein; 

Gemignani et al., submitted). Here we track these signals in Neogene sediments the most proximal 

to- and directly downstream from- the syntaxis (Govin et al., in review) and we model these new 

results along with published detrital data to answer the debated questions: When has the rapid 

exhumation begun and how substantial was the change in exhumation rate?  

 

3. GEOLOGICAL SETTING 

The Himalayan orogen is the result of the Cenozoic collision and ongoing convergence between India 

and Asia (e.g. Najman et al., 2010), the Indus-Yarlung suture zone (IYSZ) is the boundary between the 

two plates (Le Fort, 1999) (Fig. 50). The Yarlung-Tsangpo flows eastward along the suture zone 

before crossing the range as the Siang River, at the eastern termination; where the structural trend 

direction changes sharply from EW to NS. The Namche Barwa syntaxis corresponds to the NE Indian 

plate indentor, where the Indian rocks have deformed into a sharp NE terminating complex 

antiformal uplift that has folded the IYSZ (Burg et al., 1997; Palin et al., 2015). The latter antiform has 
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been suggested to expand both vertically and laterally and migrate northward since its initiation 

(Seward and Burg, 2008). The northern tip of the syntaxis is bounded by the YTSZ with the dextral 

Jiali–Parlung Fault to the NE and the north dipping Nam-La thrust to the south (e.g. Zeitler et al., 

2014) which has been proposed to act as the southern boundary of a pop-up structure with the 

Namche Barwa massif at its core (Ding et al., 2001). The Namche Barwa and the Gyala Peri massifs 

culminate at >7 km in the core of the syntaxis composed of medium to high grade metamorphic 

crystalline rocks of the Greater Himalayan Series (GHS) intruded by Miocene leucogranites.  

 

A youngest phase of metamorphism restricted to the northern tip of the syntaxis is recorded by 

bedrock zircon U-Pb ages of 3–10 Ma (Booth et al., 2004; Zeitler et al., 2014). By contrast, the SW 

part of the syntaxis shows older ages (e.g. Palin et al., 2015) with, for instance, RU-Pb >9 Ma 

(Bracciali et al., 2016). Additionally, the entire syntaxial anticline shows evidences of Miocene (c.a. 

24 to 16 Ma) metamorphic events within GHS rocks similar to the main part of the Himalaya (Burg et 

al., 1998; Palin et al., 2015).  

 

South of the syntaxial GHS, the Siang River drains the low grade meta-sediments of the Lesser 

Himalayan Series (LHS), separated from the GHS by the Main Central Thrust (MCT). Downstream lie 

the sub-Himalayan series which contain the Neogene-Quaternary sediments of the Siwalik Group 

and the undeformed deposits of the Himalayan foreland basin. The Siwalik group is bounded by the 

Main Boundary Thrust (MBT) to the north and the Main Frontal Thrust (MFT) to the south (Gansser, 

1983; Hodges, 2000). The easternmost Siwalik sediments of the Sibo-Remi-Siang (SRS) section were 

deposited between ~11 and 0.2 Ma and constitute the archive the most proximal to the Siang River 

and thus to the syntaxis (Govin et al., in review) (Fig. 50). 
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Fig. 50: (a) Topography and main geologic features of the eastern Himalaya (modified from Govin et 

al., in review). Abbreviations are: MFT – Main Frontal Thrust; MBT – Main Boundary Thrust; MCT – 

Main Central Thrust; STD – South Tibetan Detachment. (b) Topography and main geologic features of 
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the Namche Barwa syntaxis area (modified from Lang et al., 2016; Bracciali et al., 2016; Govin et al., 

in review; and references therein). The red stars labelled represent the Sibo-Remi-Siang section 

(Govin et al., in review); the black star shows the Siji section (Lang et al., 2016). Pasighat is the 

location of the Siang modern riverbed composite sample from Bracciali et al. (2016); Enkelmann et al. 

(2011); Gemignani et al. (submitted); Lang et al. (2016); Stewart et al. (2008). Abbreviations are: NB - 

Namche Barwa, GP – Gyala Peri, NLT – Nam La Thrust, JPF – Jiali-Parlung Fault. Yellow and Orange 

lines are contours of cooling ages <3 Ma from zircon fission-track and biotite 40Ar-39Ar dating, 

respectively; red dot indicates rutile U-Pb age of 1.4±0.1 Ma (Bracciali et al., 2016; and references 

therein). 

 

4. MATERIAL AND METHODS 

4.1. Thermochronology 

Minerals from ten sandstones, sampled at regular stratigraphic interval throughout the SRS section 

were isolated by standard mineral separation techniques at the NERC Isotope Geosciences 

Laboratory (NIGL), Keyworth (UK). The ZFT dating was carried out at ISTerre laboratory, Grenoble 

(France), the MAr dating at VU University, Amsterdam (The Netherlands) and the RU-Pb dating at 

NIGL, Keyworth (UK). The extracted youngest age populations for each sample and each system are 

presented in Fig. 51, against their depositional age from Govin et al. (in review). The minimum age 

peaks have been determined using the minimum age mixture model from Density Plotter program 

(Vermeesch, 2012) for ZFT and MAr data; and regressing together the youngest ages through a fixed 

common Pb for RU-Pb data. Results, sample locations, sample preparation and analytical methods 

are provided in the Supplementary Material.  

 

4.2. Thermokinematic modelling 

We use a modified version of Pecube, a finite-element numerical code used for interpreting 

thermochronological data (Braun, 2003; Braun et al., 2012) to predict a time series of cooling ages 

resulting from a step change in the late Cenozoic exhumation rate. We use a 1-D version of the code 

(e.g. Thiede and Ehlers, 2013) and aim to fit the minimum age peaks observed in the detrital data. 

We therefore model the most rapidly exhuming part of the syntaxis (i.e. the core of the Namche 

Barwa massif), implicitly assuming the locus of most rapid exhumation has remained fixed through 

time. Pecube accounts for heat advection during exhumation and predicts thermochronological ages 

using a mathematical model for fission-track annealing and diffusion models for noble-gas based 

thermochronometers (Braun et al., 2006). The 1D model neglects lateral heat transfer out of the 

system as well as potential temporal variations in topographic relief. The former is probably 
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insignificant compared to the extreme vertical component of heat transfer. Varying topographic 

relief is extremely hard to resolve from detrital data (e.g. Whipp et al., 2009). Thermal parameters 

used in the model are detailed in the Supplementary Material. We use the annealing parameters for 

zero-damage zircon (Rahn et al., 2004) for predicting ZFT ages using the annealing equations of 

Galbraith and Laslett (1997); the diffusion parameters of Hames and Bowring (1994) and an average 

grain size of 250 µm for predicting MAr ages; and the diffusion parameters of (Cherniak, 2000) and a 

grain size of 100 µm for RU-Pb ages.  

 

We use the code in inverse mode, employing the Neighbourhood Algorithm inversion (Sambridge, 

1999) to explore the parameter space. We explore simple two-stage exhumation scenarios reflecting 

changes in three parameters: the time of change in exhumation rate (between 0 and 15 Ma), and 

the initial, and the final exhumation rate, which were respectively fixed between 0 and 2 km Myr-1, 

and between 2 and 10 km Myr-1, values characteristic of rates interpreted from bedrock samples. For 

each model run, we used the chi-square deviation to compare cooling age predictions to our 

observations for each thermochronometer system. The composite reduced chi-square error from all 

three sets of models is shown in Fig. 52. 

 

5. RESULTS 

ZFT, MAr and RU-Pb minimum age peaks from the SRS section are presented in Fig. 51, and show a 

general trend of younging up-section although exceptions are common. The minimum age peaks are 

comprised between 3.3±0.3 and 16.0±1.5 Ma for ZFT; 4.2±0.4 and 18.2±0.4 Ma for MAr; and 2.5±0.1 

and 35.8±8.5 Ma for RU-Pb. Comparison of these detrital mineral cooling youngest age components 

with their host sediment depositional age provides lag times (Garver et al., 1999). The depositional 

ages of the upper part of the section has been constrained through luminescence dating (SIBO) and 

magnetostratigraphy (REM3 to REM15); the lower part (REM20 to SG15) is constrained by a 

maximum depositional age from apatite fission track dating (Govin et al., in review). Although 

maximum depositional ages approximate the depositional ages, it leads to large uncertainties that 

we have taken into account when considering lag times. Data points from the upper part of the 

section (samples SG1 to SIBO, depositional ages of ~0.2 and 7.1 Ma, respectively) generally show 

young minimum age peaks, especially for RU-Pb ages, and lag times <6 Ma with a majority <2.5 Ma. 

In contrast, the lower part of the section (samples SG11 and SG15, depositional ages of ~10.3 and 

11.0 Ma, respectively) presents older ages and lag times >4 Ma and up to >20 Ma. The lowest 

temperature thermochronological system of this study is ZFT (Tc up to 380°C; Rahn et al., 2004), 

followed by MAr (Tc up to 450°C; Hames and Bowring, 1994; Reiners and Brandon, 2006) and the 
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highest Tc is reached by the RU-Pb system (Tc up to 750°C; Cherniak, 2000). The youngest age peaks 

show expected older ages for higher Tc thermochronological system, whereas this order is not 

respected in the upper part of the section.  

 

 

Fig. 51: Minimum age peak data and lag times from the SRS section. Sample names (from Govin et 

al., in review) are indicated at their depositional age level. ZFT, MAr and RU-Pb minimum age peaks 

are represented in yellow, orange and red, respectively; with their horizontal error bars. N indicates 

the total number of grains dated following data screening and n the number of grains from which the 

minimum age peak has been determined (see Supplementary Material) for each thermochronological 

system in its corresponding colour frame. Vertical error bars correspond to the depositional age 

errors from Govin et al. (in review). Lag times of 0; 2.5; 5 and 10 Ma are indicated with dark blue 

lines.  

 

6. DISCUSSION 

6.1. Syntaxial signal 

Short lag times from ZFT (<3 Ma) and MAr (<4 Ma) dating in Siwalik sediments deposited by the 

paleo-Brahmaputra River have been interpreted as reflecting the rapid exhumation of the eastern 

syntaxis (Chirouze et al., 2013; Lang et al., 2016). These lag times are similar to ZFT and MAr lag 

times from the upper part of the SRS section, approaching cooling ages from modern riverbed 

sediments. By comparing bedrock and detrital thermochronologic ages in the syntaxis area, Bracciali 

et al. (2016) have characterised ZFT ages <2Ma and MAr ages <2Ma as typical signals of syntaxial 

detritus in riverbed; additionally, the authors identify RU-Pb ages <9Ma as unique to the syntaxis 

and not found in the typical GHS sequence. The RU-Pb <9 Ma ages are systematically observed in the 

upper part of the SRS section. Therefore, we argue that detritus from this upper part (SG1 to SIBO) 

are sourced from the rapidly exhuming syntaxis confirming the young zircon-rim U-Pb data 

interpretation of Govin et al. (in review). By contrast, the lower part of the SRS section (SG15 to 

SG11) is dominated by longer lag times and older minimum age peaks (RU-Pb>22 Ma). The latter 
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ages are also observed in the modern Yarlung-Tsangpo deposits upstream of the syntaxis and in 

Brahmaputra rivers draining the southern Himalayan slopes farther west from the syntaxis (Bracciali 

et al., 2016). This suggests that the lower part of the SRS section records Himalayan erosion prior to 

the rapid exhumation of the Namche Barwa syntaxis.  

 

Overall, our data indicate a sharp lag time decrease up-section between ~10 and 7 Ma that we 

interpret as reflecting the onset of the rapid exhumation of the Namche Barwa syntaxis. This trend is 

particularly well defined with the RU-Pb system with few exceptions such as sample REM3 which 

stands out from the neighbouring samples’ minimum ages. This sample has previously been inferred 

to result from sedimentary recycling (Govin et al., in review) and for this reason will not be 

considered further.  

 

The disrupted order of the minimum age peaks for the different systems in the upper part of the 

section is also observed, to a minor extent, in samples from modern rivers draining the syntaxis 

(Bracciali et al., 2016). These disruptions can partly be interpreted as a consequence of isotherm 

perturbation in the context of rapid exhumation. For instance, under rapid cooling conditions, 

zircons are likely damage-free leading to an elevation of the ZFT system Tc approaching MAr Tc 

(Reiners and Brandon, 2006 and references therein). However, in the SRS section, the disruptions 

seem too substantial to be solely explained by isotherm perturbation, as the youngest ZFT and MAr 

ages are respectively up to >5 Ma and ~2 Ma older than RU-Pb ages in some samples (e.g. REM21) 

and the Tc prediction of RU-Pb remain higher of >200°C than ZFT and MAr Tc (Cherniak, 2000). Here 

we investigate the potential factors explaining these discrepancies. 

 

The minimum age peaks have been defined in the same manner for MAr and ZFT, but differently for 

RU-Pb ages (see Supplementary Material). However, the youngest RU-Pb age populations 

determined using the same procedure as for MAr and ZFT are very similar to those defined with the 

more robust method we have adopted for RU-Pb (see Supplementary Material). Thus, the 

differences in the minimum age peak determination procedure of this study do not explain the 

thermochronological disruptions. However, the typical age error for each thermochronological 

system (e.g. ZFT error >MAr error) influences the minimum age peaks. The number of dated grains 

together with the data screening strategy also plays an important role in the youngest age peak 

determination, although for instance in sample SG1, the minimum RU-Pb age peak extracted from a 

low number of dated rutiles is younger than the minimum MAr age peak determined with a higher 

number of dated white micas. Gemignani et al. (submitted) have observed dissimilarities in young 
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age abundances in different samples from the same location (Pasighat), despite the use of similar 

analytical procedures for both detrital ZFT and MAr systems for each sample (Enkelmann et al., 

2011; Lang et al., 2016; Stewart et al., 2008). Generally, age distributions from detrital studies are 

undoubtedly indicative of major age populations but only approximately represent the natural 

proportions within a sample, minor age population could unlikely be missed out (e.g. Vermeesch, 

2004). 

 

Another possible explanation for the thermochronological disruption is the limitations relative to 

each thermochronological system, which can occasionally prevent the dating of young ages leading 

to biases of the minimum age peak toward older ages, and therefore limit the tracking of the rapidly 

exhuming eastern syntaxis, as discussed by Bracciali et al. (2016). These are 1) the limited robustness 

of ZFT data in defining the true age components of a sample (e.g. zircon etching, zircon U content, 

and associated ZFT biases (Malusà et al., 2013)); 2) the potential biases from source fertility (e.g. 

Malusà et al., 2016) (today, white micas are reputedly scarce in the Namche Barwa area); and 3) the 

analytical limitation (e.g. grain size, low Ar content for young micas, fission-track density). Since the 

SRS section is the most proximal location to the syntaxis in the foreland basin, the dilution effects for 

each dated mineral are minimized. Although RU-Pb ages are commonly discordant due to high Pb 

content (e.g. Bracciali et al., 2013), Bracciali et al. (2016) demonstrate the  efficiency of rutile U-Pb in 

capturing differences in provenance related to the thermochronologic evolution of the rock sources 

at upper crustal level, especially those of the rapidly exhuming Namche Barwa. Whilst RU-Pb ages <9 

Ma are unique to the syntaxis, such ages for the ZFT and MAr systems are encountered in Himalaya 

outside of the syntaxial region (e.g. Bracciali et al., 2016). For these reasons and because of the 

limitations of ZFT and MAr systems that we have discussed, we particularly rely on the RU-Pb data. 

 

6.2. Model of the syntaxial evolution 

To quantitatively constrain the evolution of the exhumation of the Namche Barwa syntaxis, we use a 

1-D thermokinematic model that predicts cooling ages resulting from a step change in exhumation 

rate. We model three selections of data, all together incorporating our new data, along with modern 

riverbed ZFT, MAr and RU-Pb data from Pasighat (Fig. 50) (Bracciali et al., 2016; Enkelmann et al., 

2011; Gemignani et al., submitted; Lang et al., 2016; Stewart et al., 2008); and Siwalik ZFT and MAr 

data from the Siji section (Lang et al., 2016) ~60 km west of the SRS section (Govin et al., in review).   

 

Model A includes all available data (ZFT, MAr and RU-Pb). The inversion results show similar values 

between best fit and expected model despites a wide low misfit (i.e. high probability) region in the 
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scatter plot (Fig. 52a). This model predicts an initial exhumation rate similar to the estimations of 

Gemignani et al. (submitted) from modern riverbed ZFT and MAr ages in the southern Himalayan 

flank west of the syntaxis region (0.5-1.5 km Myr-1). The model calculations of the final exhumation 

rate (5.3±1.7 km.Myr-1) are higher than the estimates of Gemignani et al. (submitted) (2-4 km Myr-1), 

but consistent with those of Bracciali et al. (2016) (>4 km Myr-1). The model predicts an acceleration 

of exhumation significantly earlier than the suggested Plio-Pleistocene rapid exhumation of the 

latter authors, but consistent with predictions from a Siwalik study based on detrital ZFT and MAr 

ages (~6 Ma; Lang et al., 2016). Overall, this model reproduces well the input data although it fits 

better the RU-Pb data than the ZFT and MAr data.  

 

Despite the fact that it only incorporates the RU-Pb data, model B fits particularly well the entire 

dataset, including ZFT and MAr data (Fig. 52b). In contrast to model A, it predicts a simple 

exhumation history for each thermochronologic system. Additionally, the region of low misfit is 

better defined. Initial and final exhumation rates in this model are lower than in the previous model, 

and  particularly consistent with estimations of Gemignani et al. (submitted). The resulting onset 

time of 12.8±1.6 Ma is older than inferred from all published estimations (up to 10 Ma, Zeitler et al., 

2014).  

 

Lastly, model C (Fig. 52c) compiles the ZFT and MAr solely and its outcome not only does not fit the 

RU-Pb data, but neither particularly well the ZFT nor MAr data compared with models A and B. The 

calculated initial exhumation rate is inconsistent with the estimations of Gemignani et al. 

(submitted). Furthermore, misfit values of the poorly defined low misfit area are higher than those 

of the previous models.   

 

Ultimately, model B fits better the ages from the three thermochronological systems with more 

accurate inversion results in comparison with model A and C. For this reason, and considering the 

RU-Pb efficiency in tracking the syntaxial detritus discussed earlier, we argue that model B is the 

more conclusive scenario. Consequently, we suggest that the change in exhumation rates of the 

Namche Barwa could be as old as ~13 Ma, with high but not extreme exhumation rates in the order 

of ~4 km Myr-1, consistent with the estimates of Gemignani et al. (submitted). 
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Fig. 52: Results of thermal modelling of detrital data from Siwalik sediments from this study (ZFT, 

MAr and RU-Pb), Lang et al. (2016) (ZFT and MAr) and modern riverbed data from Bracciali et al. 

(2016); Enkelmann et al. (2011); Gemignani et al. (submitted); Lang et al. (2016); Stewart et al. 

(2008) (ZFT, MAr and RU-Pb). Models incorporating a) all data; b) RU-Pb data only and c) ZFT and 

MAr data only). The forward lag time results for the three thermochronometers are presented in the 

top diagrams, in which the bold and thin coloured lines indicate the best fit model results and the 

end-members of the expected model, respectively. The table indicates the initial and final 

exhumation (E) rates and the onset time of the best fit and the expected model resulting from the 

inversion of which the misfit scatter plots along with corresponding probability density plots are 

illustrated in the bottom.   

 

6.3. Implications for the syntaxis development 

Our new estimates for the initiation of the rapid exhumation of the Namche Barwa syntaxis allows a 

revision of our knowledge regarding the early development of this peculiar syntaxial evolution and 

its timing.  
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As mentioned previously, Bracciali et al. (2016) invoke a ductile extrusion of weak lower crust from 

beneath Tibet initiating modestly in Miocene times followed by a Pleistocene acceleration of the 

syntaxis exhumation; such that the domal pop-up of the northern part of the syntaxis has exposed a 

deep-seated metamorphic zone of GHS rocks “before its time”  (relative to the main Himalayan arc), 

providing a window into processes within the deep crust of the Himalayan hinterland. This 

interpretation is compatible with the study of Palin et al. (2015) inferring two stage cooling in the 

syntaxis area, with an initial slow cooling occurring from ~23 Ma and a final rapid cooling from ~8 

Ma, the latter corresponding to the rapid exhumation of the syntaxial dome. Since our results 

indicate that the initiation of the rapid exhumation of the Namche Barwa syntaxis could possibly be 

as old as ~15 Ma, they are compatible with the hypothesis that both the early Miocene Himalayan 

exhumation and the later syntaxial exhumation episodes are related. However, our data do not 

provide indications of  extreme syntaxial exhumation rates initiating in Plio-Pleistocene time, as 

suggested by Bracciali et al. (2016). Our conclusions are thus dissimilar, but if regarded in detail both 

datasets are not incompatible. Estimates of the onset of rapid exhumation of Bracciali et al. (2016), 

anytime from 7 to 3 Ma, are mainly based on thermochronological data including ZFT, MAr and RU-

Pb ages, are comparable to the results of our model A, also including ZFT, MAr and RU-Pb ages. 

Additionally, bedrock studies and previous detrital studies (e.g. Bracciali et al., 2016; Burg et al., 

1998; Burg et al., 1997; Lang et al., 2016; Seward and Burg, 2008) do not contain as long a history of 

syntaxial exhumation due to either overprinting by later metamorphism or removal by tectonism or 

erosion in the source region, or lack of older sedimentary archives. This disadvantage may explain 

the very young ages (<10 Ma) systematically proposed for the onset of rapid exhumation in previous 

studies. 

 

The tectonic aneurysm model (Zeitler et al., 2001) implying an early onset of syntaxial exhumation at 

~10 Ma, caused by river capture,  is better supported by our estimations. The early version of this 

model (Zeitler et al., 2001) invokes major drainage reorganisation, which would have initiated and 

sustained rapid exhumation of the syntaxis. A major capture event such as the Yarlung-Irrawaddy by 

the Siang-Brahmaputra River, has been inferred in Early Miocene times by later studies (e.g. Bracciali 

et al., 2015; Robinson et al., 2014), implying the non-synchronicity of the two events and therefore 

calling into question the original tectonic aneurysm model. Our new data showing earlier onset of 

rapid syntaxial exhumation brings the event closer to synchronicity with the timing of proposed river 

capture of the Yarlung Tsangpo by the Brahmaputra, although not identically close. Uncertainty in 

depositional age dating may explain the discrepancy. Furthermore, recent studies (Govin et al., in 

review; King et al., 2016; Lang and Huntington, 2014) provide evidence of the complexity of the 
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drainage evolution in the Namche Barwa area and propose multiple capture events in the Late 

Miocene in the Namche Barwa area. The timing of river capture which first brought arc material to 

the Bengal Basin need not be the same river capture as caused the river to flow over the syntaxis. 

Therefore, although we cannot prove the focused and intense erosion of the Yarlung-Siang River at 

the origin of the rapid growth of the Namche Barwa, we do not challenge this model.  

 

7. CONCLUSION 

We have 1) collected detrital thermochronological data using three different systems, ZFT, MAr and 

RU-Pb in the Siwalik sediments the most proximal to the eastern Himalayan syntaxis deposited from 

11 Ma; 2) extracted the minimum age peaks for each system and 3) modelled our results, along with 

published detrital ages from modern river bed and Siwalik sediments proximal to the syntaxis. Our 

results highlight the efficiency of detrital analysis to reconstruct the early history of the source area 

and confirm the efficiency of rutile in tracking the youngest age populations in material eroded from 

the Namche Barwa syntaxis. We provide evidence of the possibility of an onset of syntaxial 

exhumation >10 Ma, which is earlier than previously published determinations, and at rates in the 

order of ~4 mm/yr. 
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 White mica 40Ar-39Ar dating 
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Data tables: 
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 Table S3: White-mica 40Ar-39Ar data  

 Table S4: Rutile U-Pb data  
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DISCUSSION 

 

This section is a summary of the major outcomes of the thesis, and their implications in our 

understanding of the interplays between tectonics, erosion and climate. The discussion is articulated 

in four parts, the first focuses on the Siwalik sedimentary rocks deposition in the eastern Himalayan 

foreland basin in comparison with the entire Siwalik apron along the range; the second part 

summarizes the knowledge acquired on the drainage evolution in the eastern Himalayan region; the 

third presents the major conclusions on the two main research questions of this work i.e. the 

evolution of the Shillong Plateau and the Namche Barwa syntaxis; the last section indicates 

directions for further work in the area.  

 

1. DEPOSITION OF THE SIWALIK SEDIMENTS IN THE EASTERN HIMALAYA FORELAND BASIN  

The depositional age of two sedimentary sections in the eastern Himalayan foreland has been 

constrained in chapter 1 and 3 of this work. These Siwalik sections are the Dungsam Chu section, 

located in the northern lee of the Shillong Plateau in south-eastern Bhutan, and the easternmost 

Sibo-Remi-Siang section located in Arunachal Pradesh. The depositional ages have been determined 

using magnetostratigraphy and apatite fission-track thermochronology, with the additional 

luminescence dating for the Sibo-Remi-Siang section. Additionally, the sedimentology of these 

sections has been described and palynology analysis has been performed in the Dungsam Chu 

section. The results allow the reconstruction of the paleo-environment and the accumulation rates 

evolution of both sections. 

 

1.1. The Dungsam Chu section 

Lower, Middle and Upper Siwalik sedimentary rocks deposited between ~7 Ma and ~1 Ma have been 

identified in the Dungsam Chu section. The Lower to Middle Siwalik transition has been determined 

at ~6 Ma and the Middle to Upper Siwalik transition at ~3.8. Note that the authors of chapter 1 have 

chosen the magnetostratigraphic correlation generated with the Qupydon software (Lallier et al., 

2013). However, the author of the thesis prefers the best manual correlation (correlation C), as 

explained in the Introduction chapter and the Appendix V. Therefore, the best manual correlation is 

used in chapter 2. The latter correlation places the Lower to Middle Siwalik transition at a similar 

date to the Qupydon correlation, but the Middle to Upper Siwalik transition at ~2.5 Ma. This age 

discrepancy highlights the challenges involved in depositional dating by magnetostratigraphy and 

the uncertainty related to the choice of the preferred correlation introduced in the Introduction 

chapter. Both correlations indicate a decrease in accumulation rate up-section from ~0.6 mm/yr at 
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the bottom of the section to ~0.07 mm/yr or ~0.2 mm/yr at the top, using Qupydon or the best 

manual correlation, respectively. The depositional environments in the Dungsam Chu section include 

river-dominated and wave-influenced deltaic systems with a marine setting prior to ~5 Ma, likely 

reflecting marine incursions from the Bay of Bengal at the base of the section. At this time (~4.4 Ma 

using the preferred manual correlation), a transition to a sandy and then gravelly alluvial 

environment occurs. The vegetation in the Dungsam Chu area has been inferred as presenting 

diverse tropical lowlands and rain forests without substantial changes throughout the deposition of 

the Siwalik sediments in the section. 

 

1.2. The Sibo-Remi-Siang section 

The Sibo-Remi-Siang section is a combination of the Sibo outcrop, the Remi section and the Siang 

section located within a 20 km-long segment along the eastern Himalayan front. The Middle and 

Upper Siwalik sub-Groups outcrop in the Remi section, whereas Upper and Middle Siwaliks only are 

found in the Sibo and Siang section, respectively. The Siwalik sedimentary rocks of the Sibo-Remi-

Siang section were deposited between ~11.0 Ma and ~0.2 Ma, with the Middle to Upper Siwalik 

transition constrained at ~2.5 Ma. The accumulation rates over the entire section increase from 

~0.21 mm/yr in the upper part of the Middle Siwaliks to at least ~0.55 mm/yr in the Upper Siwaliks. 

The Middle Siwaliks of the Sibo-Remi-Siang section have been interpreted as braided fluvial facies 

whereas the Upper Siwaliks are pebbly braided-river deposits. Similar to the Dungsam Chu section, 

up-section coarsening is interpreted as the progressive transition from deposition by low-gradient 

sinuous channels in a fluvio-deltaic setting to deposition by steep braided rivers in alluvial fans along 

the Himalayan front, as the Main Frontal Thrust propagated southward (Chirouze et al., 2012; 

Coutand et al., 2016). Zircon U-Pb dating in the Remi section indicates the recycling of older Siwalik 

material in younger Upper Siwalik deposits which have been interpreted as reflecting the onset of 

activity on the Main Frontal Thrust in the section, at ~1.5 Ma. 

 

1.3. Siwalik deposits along the Himalayan front 

The Siwalik record presents multiple variations in terms of depositional age, accumulation rate and 

depositional environment along strike at the Himalayan scale but also within the eastern foreland 

basin as documented by this thesis. This section investigates these regional and Himalayan variations 

though comparison of the Dungsam Chu and the Sibo-Remi-Siang section, to the central and western 

Himalayan Siwaliks.  
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The age of the Siwalik sub-Group boundaries differs substantially in the two dated sections of this 

thesis. Previous magnetostratigraphic correlations in the Neogene-Quaternary Himalayan foreland 

basin from Pakistan to Arunachal Pradesh document ages ranging from 8 to 12 Ma for the Lower to 

Middle Siwalik transition (e.g. Chirouze et al., 2012; Gautam and Fujiwara, 2000; Ojha et al., 2009; 

Ojha et al., 2000; Tokuoka et al., 1986) and from 2 to 3.5 Ma for the Middle to Upper Siwalik 

transition (e.g. Behrensmeyer et al., 2007; Ojha et al., 2009; Sanyal et al., 2004) (Fig. 53). Therefore, 

whilst in both Dungsam Chu and Sibo-Remi-Siang sections the Middle to Upper Siwalik transitions 

are relatively synchronous in comparison with Siwalik deposits along the entire range, the boundary 

between the Lower and Middle Siwalik subgroups in Dungsam Chu section is 2 to 6 Ma younger than 

documented elsewhere along the Himalayan arc. Furthermore, the duration of deposition of the 

Middle Siwalik subgroup varies from 3 to 8 Ma in the Siwalik apron (Chirouze et al., 2012; Meigs et 

al., 1995; Ojha et al., 2009). The longest Middle Siwalik deposition is observed the Kameng section 

(~8 Ma; Chirouze et al., 2012), whereas the Middle Siwaliks of the adjacent Dungsam Chu section 

have been deposited during about 2–3 Ma. These variations in depositional age along strike are not 

straightforward to explain. Indeed, it has been demonstrated that vertical transitions between 

lithostratigraphic formations and their lateral diachroneity cannot be interpreted simply in terms of 

tectonic and climatic forcing, especially in foreland basins (e.g. Barberà et al., 2001; Burbank et al., 

1986; Charreau et al., 2009; Heermance et al., 2007). These changes reflect the 4-D space-time 

evolution of depositional profiles documented by one-dimensional vertical sections located at 

different positions, more proximal or more distal, with respect to the mountain range and its 

foreland. Consequently, extensive and careful spatiotemporal constraints, both parallel and 

perpendicular to the orogenic system, are necessary to properly discuss what controls the vertical 

and lateral transitions between the lithostratigraphic formations in a foreland basin. Additionally, a 

sedimentological and stratigraphical reading of such variations in terms of paleoenvironmental, 

paleogeographical, and sequential evolution is often more pertinent than a strictly lithostratigraphic 

approach. 
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Fig. 53: Compilation of ages and accumulation rates of Siwalik sections dated with 

magnetostratigraphy between the Indus and Brahmaputra Rivers, figure extracted from chapter 3. 

Transitions between Lower Siwaliks (LS) and Middle Siwaliks (MS) and between Middle and Upper 

Siwaliks (US) are indicated with black lines. The sections presented in this diagram are: Chinji 

(Johnson et al., 1985); Rothas (Behrensmeyer et al., 2007); Ranital Kolta, Haripur (Sanyal et al., 

2004); Jawalamukhi (Meigs et al., 1995); Khutia Khola (Ojha et al., 2000); Karnali (Gautam and 

Fujiwara, 2000); Surai Khola, Tinau Khola, Muksar Khola (Ojha et al., 2009); Bakiya Khola (Harrison et 

al., 1993); Dungsam Chu (Coutand et al., 2016); Kameng (Chirouze et al., 2012); Siji (Lang et al., 

2016).  

 

The Dungsam Chu and the Sibo-Remi-Siang sections present distinct accumulation patterns. Whilst 

the accumulation rates increase up-section in the Sibo-Remi-Siang section similar to most of the 

Siwalik sections in the Himalayan foreland basin (Fig. 53), the accumulation rates decrease in the 

Dungsam Chu section. In foreland basins, the rates of sediment deposition are conditioned by the 

spatiotemporal evolution of subsidence, which primarily generates accommodation space for 

deposits, and by sediment supply derived from the erosion of the adjacent mountain range (DeCelles 

and Giles, 1996). Consistent with the forelandward migration of the basin flexure associated with the 

lateral and vertical growth of the orogenic system, the foredeep depozones of foreland basins are 

generally characterized by an overall acceleration of subsidence through time recorded by increasing 

accumulation rates and convex up subsidence curves (e.g. Charreau et al., 2009; Ojha et al., 2009; 

Xie and Heller, 2009). For the Himalayan foreland basin, such increasing or constant accumulation 
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rates calculated from the non-decompacted sedimentary thicknesses of the Siwalik deposits have 

been mostly interpreted in terms of flexure associated with the slip history of the Main Boundary 

Thrust (MBT) (e.g. Burbank et al., 1996; Meigs et al., 1995; Ojha et al., 2009). Different mechanisms 

including climatically or tectonically driven decrease in subsidence and/or in sediment supply to the 

foreland basin may potentially account for the deceleration of accumulation rate in the Dungsam 

Chu section. These mechanisms have been discussed in chapter 1, and the peculiar accumulation 

rate pattern of the Dungsam Chu section has been attributed to a tectonically driven change in 

subsidence and/or detrital influx in the basin, in response to an increasing partitioning of the India-

Eurasia total convergence into the Shillong Plateau. However, results from chapter 2 indicate that 

the sediments of the Dungsam Chu section were deposited by the paleo-Brahmaputra River, from ~5 

Ma. At this time, chapter 3 and 4 document that the Yarlung-Brahmaputra River flowed through the 

rapidly exhuming and eroding eastern syntaxis. Consequently, a low detrital influx in the Dungsam 

Chu section during the deposition of the upper part of the Middle Siwalik and the Upper Siwalik is 

unlikely. Instead, the interpretations from chapter 2 are consistent with a tectonically driven change 

in subsidence related to the surface uplift of the Shillong Plateau during the Middle Siwalik 

deposition in the Dungsam Chu section, constituting a better explanation for the decrease in 

accumulation rates. This explanation could also apply to the unusually short duration time of the 

Middle Siwalik deposition in the Dungsam Chu section, as well as to the young Lower to Middle 

Siwalik transition. By contrast to the Dungsam Chu section, the accumulation rates in the Upper 

Siwaliks of the Sibo-Remi-Siang section are very high in comparison with other Upper Siwalik 

deposits along the Himalayan orogenic-arc (Fig. 53). This can be explained by the fact that the Upper 

Siwalik alluvial fan deposits are strongly influenced by their proximity to the southward-propagating 

Himalayan thrust front. Therefore, local faults associated with the Main Frontal Thrust could explain 

this variability in accumulation rates along strike. The comparison of accumulation rates in the 

Middle and Lower Siwaliks along the Himalayan front seems to indicate lower rates in both the 

eastern and western extremities of the Siwalik apron compared to the central region. Potential 

explanations to this trend have been investigated in chapter 2, however the authors encourage the 

analysis of further records along strike to validate whether there is indeed a systematic difference in 

accumulation rate between the syntaxial regions and the main arc of the orogen, or whether these 

variations are simply related to differences in activation of local structures through time. 

 

The Siwalik Group in the sections investigated in this study show an overall distal to proximal trend 

as observed everywhere else in the Himalayan foreland basin (e.g. Chirouze et al., 2012; DeCelles et 

al., 1998b; Kumar et al., 2003; Nakayama and Ulak, 1999). This long-term progradational trend, 
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which is typical of the filling sequence of foreland basins at their active margin (e.g. Jordan, 1995; 

Puigdefàbregas et al., 1986; Schlunegger et al., 1997; Sinclair and Allen, 1992; Stockmal et al., 1992) 

is controlled by the propagation of the deformation front, generally together with an increasing 

erosion and sediment flux, related to the horizontal and vertical growth of the adjacent mountain 

range. 

 

Although the observations from the Sibo-Remi-Siang section do not allow straightforward 

conclusions on the depositional environment in terms of marine vs continental deposition, lacustrine 

to marine deltaic environment in the lower Siwalik subgroup, before ~10.5 Ma, has been described 

in the nearby Kameng section (Chirouze et al., 2012). Moreover, the overlying braided river 

sediments of the Middle Siwaliks and alluvial fan deposits of the Upper Siwaliks in the Kameng 

section have been reported as bearing paleo-botanical evidences of brackish water or near coastal 

environments (e.g. Chirouze et al., 2012; Mehrotra et al., 1999; Singh and Tripathi, 1989). To the 

west of the Himalayan Siwalik apron, meandering and braided fluvial depositional systems (Lower 

and Middle Siwaliks) grading into alluvial fan systems (Upper Siwaliks) are uniformly observed from 

Pakistan to Nepal (Abbasi and Friend, 2000; Brozovic and Burbank, 2000; DeCelles et al., 1998b; 

Huyghe et al., 2005; Johnson et al., 1983; Kumar et al., 2003; 2004; Nakayama and Ulak, 1999; Ojha 

et al., 2009; Suresh et al., 2004; Willis, 1993; Zaleha, 1997). Floodplains with intermittent lacustrine 

conditions attributed to seasonal flooding are also recorded (DeCelles et al., 1998b; Hoorn et al., 

2000) but always in a continental environment. A paleo-environmental change occurs east of Nepal 

where thick deltaic deposits appear in the Lower and Middle Siwaliks (Fig. 54). Further east, along 

the Churanthi River in west Bengal (Fig. 54), brackish water to shallow marine conditions have been 

documented by palynological data and trace fossils in the undated middle Siwalik subgroup (More et 

al., 2016).  
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Fig. 54: Lateral variations of depositional environments, figure extracted from chapter 1. 

Stratigraphic sections are from Nakayama and Ulak (1999) and Ojha et al. (2009) (Surai and Muksar 

Khola), this study (Dungsam Chu), and Chirouze et al. (2012) (Kameng River). 

 

The shallow marine paleo-environment interpreted in the Dungsam Chu section prior to ~5 Ma, as 

well as similar marine settings to the northeast of the Shillong Plateau in the foreland of the Naga 

Hills of Assam and to the south in the Surma Basin of northern Bangladesh (e.g. Alam et al., 2003; 

Bhandari et al., 1973; Najman et al., 2012; Reimann and Hiller, 1993; Worm et al., 1998) are 

consistent with a post-Miocene complete continentalisation of the eastern Himalayan foreland basin 

at least 15 Ma later than in the western Himalayan foreland basin. Furthermore, the striking 

synchronicity of the continentalisation of the Dungsam Chu paleo-location and the surface uplift of 

the Shillong Plateau, the timing of which has been documented in chapter 2, suggests a cause-effect 

link between the two events. Indeed, the deformation and surface uplift of the Shillong block must 

have decreased the subsidence of the eastern Himalayan foreland before creating a topographic 

barrier into the basin at ~5 Ma. 

 

Since palynological studies are lacking in the Sibo-Remi-Siang section, comparison of paleo-

vegetation with the Dungsam Chu section is not possible. However, the author of this thesis has 

contributed to a study which compares the paleo-vegetation in two Siwalik sections located in the 

east and in the west of the Himalayan foreland basin using δ13C and δ18O values of soil carbonate 

and associated δ13C values of bulk organic carbon (Vögeli et al., in press). The latter study uses the 
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paleo-vegetation archive as a marker of monsoon intensity and seasonality and focuses on the 

Kameng section for the eastern record, allowing comparison with the nearby Dungsam Chu section 

and is presented in Appendix VI. The results from the stable isotope analyses in the Kameng section 

(Vögeli et al., in press) and the palynological analyses from the Dungsam Chu section (chapter 1, 

Coutand et al., 2016)   are consistent. Within the respective depositional duration of both sections 

(1-13 Ma for the Kameng section, Chirouze et al., 2012; and 1-7 Ma for the Dungsam Chu, chapter 1) 

the vegetation has remained relatively constant in the two location. Both studies provide evidence 

of depositional environments and paleoclimate more humid in the east than the coeval central and 

western Himalayan foreland basin. Since the eastern Kameng section is a lot more proximal to the 

main moisture source of precipitation (the Bay of Bengal) in comparison with the western Himalaya, 

Vögeli et al. (in press) suggest that even though climate may have varied, it remained more humid, 

inhibiting the evolution of plants preferring intense light, warm and water-stressed conditions (C4 

plants; Ehleringer, 1989) which likely also reflect less seasonality in the east. Vögeli et al. (in press) 

also noticed the presence of soil carbonate in the west and its absence in the east, in the Kameng 

section. Carbonate soil have not been found in the Dungsam Chu and Sibo-Remi-Siang sections 

neither. Vögeli et al. (in press) interpret this difference in the occurrence of pedogenic carbonates as 

an indication of lateral climatic variation that ranges from arid in the west to highly humid in the 

east. This paleo-climate trend is similar to the modern precipitation patterns along the strike of the 

Himalaya, which are characterized by an east-to-west decrease in the Indian Summer Monsoon 

(ISM) precipitation intensity. By contrast, a shift from C3 to C4 vegetation has been interpreted at ~7 

Ma in central and western Himalaya, through δ13C and palynological analyses (e.g. Hoorn et al., 

2000; Quade and Cerling, 1995; Quade et al., 1989; 1995; Sanyal et al., 2010; Singh et al., 2013). As 

C3 plants are favoured in a cool and humid climate (Ehleringer, 1989), this vegetation shift also 

indicates a climate change at that time. This shift has been interpreted as resulting from a regional 

change towards a more seasonal climate in the west possibly linked to a decrease of the influence of 

the Westerlies, delivering less winter precipitation and the east being very humid due to its 

proximity of the moisture source (Vögeli et al., in press). Overall, these observations suggest that the 

environment and probably the paleoclimate of the eastern Himalayan lowland and floodplains were 

consistently more humid than the coeval environments and paleoclimate in Nepal, as is the case 

today (Bookhagen and Burbank, 2006; 2010). In the Bhutanese Dungsam Chu section, the absence of 

indications of major change in moisture or temperature between 7 and 1 Ma, suggests that the 

orographic blockage of the ISM precipitations exerted by the surface uplift of the Shillong Plateau as 

proposed by Grujic et al. (2006) did not measurably modify the wet local climate documented in the 

Bhutanese foothills. However, a study involving the collaboration of the author of the thesis (Grujic 
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et al., in prep.) analyses the oxygen isotopic composition of the clay minerals in the Dungsam Chu 

section. The results show an increase in δ18O values since ~5-4 Ma. This time corresponds to the 

initiation of the Shillong Plateau uplift inferred from the chapter 2 of this thesis. The increase of δ
18O 

values is related to a decrease in mean precipitation rates since this time, which is interpreted as a 

direct consequence of the Shillong Plateau uplift.  

 

Depositional dating, sedimentology and paleo-environment analyses preformed on Siwalik 

sedimentary rocks in this thesis, and together with the comparison to Siwalik sediments throughout 

the entire Himalayan arc leads to critical information on the evolution of the tectonics, the erosion 

and the climate in the Himalayan range and its foreland basin during the duration their deposition. 

The major conclusions of the Siwalik deposits analyses described above have been investigated 

further with- and have permitted- provenance analyses and tectonic reconstructions in the Shillong 

Plateau and the Namche Barwa syntaxis regions.  

 

2. DRAINAGE EVOLUTION IN THE EASTERN HIMALAYA  

Provenance analysis in the Dungsam Chu and the Sibo-Remi-Siang sections, using zircon and apatite 

U-Pb described in chapters 2 and 3 led to an improved knowledge of the drainage evolution in the 

eastern Himalaya since the Late Miocene. This section describes the main provenance 

interpretations from both chapters, firstly in the foreland basin with a reconstruction of the paleo-

drainage of the Brahmaputra River and secondly in the eastern syntaxis area, within the orogen.  

 

2.1. Brahmaputra paleo-drainage 

Transhimalayan deposits in the eastern Himalayan foreland basin have been interpreted as derived 

from the Gangdese batholiths and transported by the palaeo-Brahmaputra through the Yarlung 

Tsangpo crossing the range via a transverse river such as the modern Siang River. Such deposits have 

been documented as first occurring sometime between 5.2 and 4.4 Ma in the Dungsam Chu section 

and from ~11 Ma in the Sibo-Remi-Siang section. These new results indicate that the Yarlung-

Brahmaputra connection was established since at least 11 Ma, consistently with estimates from 

previous provenance studies in the foreland basin with the earliest estimation in Early Miocene 

times (~18 Ma, Bracciali et al., 2015; Chirouze et al., 2013; Cina et al., 2009; Galy et al., 2010; Lang 

and Huntington, 2014). The combination of these provenance studies with the new results from this 

thesis allowed the development of an evolutionary model of Brahmaputra drainage presented in 

chapter 2 (Fig. 55). Since Transhimalayan deposits are present in the Sibo-Remi-Siang section from 

~11 Ma, as shown in chapter 3, the Yarlung-Brahmaputra connection must have existed upstream 
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the paleo-location of the Sibo-Remi-Siang section since at least this time. Therefore, hypotheses of 

transverse Yarlung-Brahmaputra connection west of the Siang are unlikely (e.g. Cina et al., 2009; 

Lang and Huntington, 2014; Fig. 55). Prior to 7 Ma, the Brahmaputra flowed directly SSW to the 

Bengal Fan (Fig. 55a; Uddin and Lundberg, 1999). By 7 Ma, the paleo-Brahmaputra reached the 

paleo-location of the Kameng section (Chirouze et al., 2013; Fig. 55) interpreted in chapter 2 as 

possibly due to the rise of the Mikir Hills, deflecting the river northward. The arrival of 

Transhimalayan detritus at Dungsam Chu between 5.2-4.4 Ma indicates the north- and west-ward 

diversion of the paleo-Brahmaputra River due to uplift of the Shillong Plateau at this time. The 

occurrence of unrecycled paleo-Brahmaputra deposits found in the Surma Basin until ~2.5 Ma 

(Bracciali et al., 2015) is explained in this thesis by an unequal distribution in time and space of 

displacements on the Oldham and Dauki faults bounding the Shillong Plateau (Biswas et al., 2007), 

resulting in an irregular uplift pattern and frequent switching of the Brahmaputra to courses east 

and west of the rising plateau. Eventually, after 2.5-2.0 Ma, the paleo-Brahmaputra course east of 

the plateau closed due to the combination of westward propagation of the Indo-Burman Ranges and 

the plateau rise (Najman et al., 2016). Since then, the river has flowed exclusively to the north and 

west of the plateau. 
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Fig. 55: Figure extracted from chapter 2. Late-Miocene to present evolutionary model of the 

Brahmaputra drainage system (modified from Chirouze et al., 2013), constructed using provenance 

studies from various sedimentary sections: Dungsam Chu (this study); Likabali (Lang and Huntington, 

2014); Remi (Govin et al., in review); Tista (Cina et al., 2009); Kameng (Chirouze et al., 2013) and 

Surma Basin (Bracciali et al., 2015). 

 

2.2. Paleo-drainage in the eastern syntaxis area 

Chapters 3 and 4 of this manuscript provide new constraints on the paleo-drainage in the syntaxis 

area. The occurrence of syntaxial deposits in the Sibo-Remi-Siang section from sometime between 

~10 and 7 Ma indicates that the Yarlung-Brahmaputra connection via the Siang River, flowing 

through the Namche Barwa syntaxis, has existed since at least this time (Fig. 56). Before then, 

although the evidence of a Yarlung-Brahmaputra connection through a transverse river upstream of 

the Sibo-Remi-Siang paleo-location is clear, the river through which the Brahmaputra and the 

Yarlung rivers were connected remains unclear. A potential connection through the Lohit River has 

been considered in chapter 3, implying a change from Yarlung-Lohit-Brahmaputra routing to 

Yarlung–Siang–Brahmaputra routing on the basis of the decrease of Transhimalayan detritus up-

section and a substantial increase in Tethyan Himalayan zircon grains from ~4 Ma. However, the 

occurrence of syntaxial deposits demonstrated in both chapter 3 and 4 is inconsistent with this 

hypothesis from ~7 Ma. Yet, prior to ~7 Ma this scenario might be possible. In this case, the 

differences in weathering and in abundance of Cretaceous-Paleogene apatite U-Pb ages between the 

east bank and the west bank outcrops of the Siang section would be consistent. Indeed, the 

differences in weathering between the east and the west bank outcrops of the Siang section could 

reflect a difference in lithology, rendering the sedimentary rocks more or less sensitive to 

weathering. Furthermore, the apatite U-Pb ages interpreted as sourced from Transhimalayan 

Batholiths constitute 38 % of the sample from the east bank of the Siang section (SG1), whereas the 

sample from the west bank of the section (SG11) contains only 2 % of such aged apatite grains (Fig. 

49, chapter 3).  However, these observations need to be further investigated to test this hypothesis, 

as developed in the further investigation section (see below).  

 

Overall, the drainage evolution in the Namche Barwa area is complex and necessitates additional 

research. Indeed, as described in the chapter 3 of this thesis, the Sibo-Remi-Siang section shows 

various changes in the abundance of different apatite and zircon U-Pb age populations. These 

changes are of relative clarity, and their interpretation is challenging (see Fig. 49, chapter 3). It is 

likely that a succession of multiple capture events have modified the paleo-drainage in the eastern 
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syntaxis area since the Early Miocene. For instance, chapter 3 constrains a Parlung-Yigong capture by 

the Siang River after ~190 ka, as shown by the arrival of substantial amounts of Early Cretaceous 

zircons characteristic of the Bomi-Chayu batholiths at this time. The dating of this capture refines the 

estimates from previous studies (King et al., 2016; Lang and Huntington, 2014). The Parlung-Siang 

connection implies the reversal of the Parlung River originally flowing south-eastward through a 

Yigong-Parlung-Lohit connection as suggested by e.g. Lang and Huntington (2014), see Fig. 56.  
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Fig. 56: Figure extracted from chapter 3. Early-Miocene to Late-Quaternary evolutionary model of 

the drainage system in the eastern syntaxis area (modified from Lang and Huntington, 2014) 
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constructed using provenance analysis from this study, Lang and Huntington (2014), Clark et al. 

(2004), Robinson et al. (2014), and references therein. The question mark and the dotted drainage 

line indicates a potential paleo-drainage scenario in which the Yarlung-Brahmaputra connection 

existed through the Siang River since the Early Miocene, but other scenarios are possible such as a 

Yarlung-Brahmaputra connection through the Lohit River. Red star labelled SRS represents the Sibo-

Remi-Siang composite section. The arrows symbolize the northward growth of the antiformal 

Namche Barwa syntaxis. Abbreviations are: ES – Eastern Syntaxis, MFT - Main Frontal Thrust, MCT - 

Main Central Thrust, MBT - Main Boundary Thrust, STD - South Tibetan Detachment and IYSZ - Indus-

Yarlung Suture Zone.  

 

3. RECONSTRUCTION OF THE TECTONIC EVOLUTION OF THE STUDY AREAS  

This section summarizes the major findings regarding the Shillong Plateau and the eastern syntaxis 

Late Miocene evolution acquired through this thesis, essentially from chapters 3 and 4. 

 

3.1. Shillong Plateau 

Provenance analysis in the Dungsam Chu section using zircon U-Pb dating allows the detection of 

paleo-Brahmaputra deposits from sometime between 5.2-4.4 Ma at this location. The deposition of 

these detritus in the Dungsam Chu section are interpreted as reflecting the topographic growth of 

the Shillong Plateau which has deflected the course of the Brahmaputra in its northern lee. In this 

way, the study presented in chapter 2 dates the initiation of the surface uplift of the Shillong Plateau 

between 5.2 and 4.4 Ma, previously estimated between ~4 and 2 Ma (Biswas et al., 2007; Najman et 

al., 2016). Prior to this time, the rock uplift in the Plateau was balanced by surface erosion from 9-15 

Ma, as inferred by previous studies (Biswas et al., 2007; Clark and Bilham, 2008), such that no 

topography was created. The transition from rock exhumation to surface uplift of the Shillong 

plateau has previously been tentatively explained by differences in erodibilities between the high 

erodibility of the Cenozoic sedimentary cover and the hard Precambrian basement of the plateau 

(Biswas et al., 2007). However, this explanation is called into question in chapter 2, as a 3-4 Myr lag 

time between the surface uplift initiation and the time of transition from predominantly cover to 

basement erosion is noted, after comparison of published provenance studies south of the Shillong 

Plateau, to be in the Quaternary (Bracciali et al., 2015; Najman et al., 2012). Consequently, chapter 2 

assesses the role of tectonics in the transition from rock exhumation to surface uplift through 

lithospheric stress field modelling. The model suggest that the onset of the rise of the Shillong 

Plateau is instead a result of the convergence of the Shillong and the Tibetan plateaus, leading to 

increased fault-slip rates in response to stresses caused by the Indian lithosphere bending beneath 



194 
 

the Himalaya. This scenario implies that surface denudation could no longer keep pace with rock 

uplift, causing topography growth sometime between 5.2-4.4 Ma with an apparent ~3-fold increase 

in slip rate on the faults bounding the Shillong Plateau inferred from comparing  GPS and geological 

estimates since the Miocene (Biswas et al., 2007; Clark and Bilham, 2008; Vernant et al., 2014).  

Chapter 2 suggests that the convergence lead to the transport of the Shillong area into the region 

affected by stresses related to the bending of the Indian lithosphere beneath southern Tibet from 

~15 Ma. From this time, rock exhumation of the Shillong plateau occurred and as the convergence 

continued, the Shillong region has been increasingly affected by the bending stresses. This has 

eventually led to surface uplift of the Shillong Plateau between 5.2-4.4 Ma. The authors suggest that 

the uplift history is affected by proximity to the Himalaya and that therefore, the Mikir Hills located 

north-east of the Shillong Plateau might have been uplifted in a similar way prior to the Shillong 

Plateau, at ~7 Ma.  

 

3.2. Namche Barwa syntaxis 

The Namche Barwa is aptly named, as it translates as “flaming thunderbolt” describing well the 

rapidly exhuming massif. However, thermochronology results from chapter 4 indicate that the 

exhumation rates are high but not extreme, and that the initiation of these high exhumation rates is 

young, but older than previously estimated. Indeed, typical syntaxial rutile U-Pb ages (<9 Ma) and 

young zircon fission-track and muscovite 40Ar-39Ar ages are documented in the Sibo-Remi-Siang 

section, from sometime between ~7 and 11 Ma. These are interpreted as derived from the syntaxis, 

in contrast to typically older thermochronological ages of minerals deposited prior to 7-11 Ma, 

interpreted as derived from the equivalent of the Himalayan GHS sequence unaffected by the 

rapidly exhuming syntaxis. Additionally, results from the three thermochronological systems show 

short lag times in the upper part of the section, reflecting the rapidly exhuming syntaxis. This 

evidence of syntaxial input confirm the speculations concerning their occurrence raised in chapter 3, 

using U-Pb dating. The study of the minimum age peaks extracted from the three 

thermochronometer datasets suggests a better efficiency of the rutile U-Pb system in tracking the 

erosion products of the Namche Barwa syntaxis. Indeed, the rutile U-Pb system tracks the youngest 

minimum age peaks in comparison with the two other lower closure temperature systems generally 

showing older minimum age peaks. The predictions of cooling ages resulting from a step change in 

exhumation rate using a 1-D thermokinematic model incorporating detrital thermochronological 

data from published studies and new data from this thesis provides new constraints to the evolution 

of the eastern syntaxis. This model includes detrital rutile U-Pb documenting an earlier onset of 

syntaxial exhumation than previously estimated, possibly as old as 13 Ma, with final exhumation 
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rates as low as ~4 mm/yr. Although these results do not allow discrimination between the models 

which have been proposed to explain the evolution of the syntaxis, they provide new age 

constraints, necessary for the understanding of the mechanisms involved in the development of the 

Namche Barwa syntaxis. 

 

4. CONCLUSION ON THE INTERPLAYS BETWEEN TECTONICS, EROSION AND CLIMATE 

This section reviews the outcomes of this Ph.D. work, focusing on how they inform the interactions 

between tectonics and climate through erosion.  

 

The Shillong Plateau has been suggested to act as an orographic barrier to the ISM coming from the 

south-eastern Bay of Bengal; the resulting rain shadow might have influenced the erosion rates over 

the Bhutanese Himalayan foothills, which have been inferred to be higher to the west of the rain 

shadow and lower north of the plateau (Grujic et al., 2006). The climatic influence of the Shillong 

Plateau topographic growth in its northern lee has not been recorded in the paleo-vegetation 

archive of the Dungsam Chu section (Coutand et al., 2016). However, the study of Grujic et al. (in 

prep.) that analyses the oxygen isotopic composition of clay minerals in the Dungsam Chu section, 

shows an increase in δ18O values synchronous with the initiation of the Shillong Plateau uplift, at ~5 

Ma. This increase is interpreted as related to a decrease in mean precipitation rates since this time. 

Based on this evidence, the Shillong Plateau tectonic uplift must have impacted on the regional 

climate. Although this thesis favours a tectonic explanation for the differential erosion rates in 

Bhutan observed by Grujic et al. (2006) (see below), the study of Grujic et al. (in prep.) demonstrates 

that the rain shadow formation by the Shillong Plateau could indeed constitute another possible 

explanation. Additionally, this thesis has shown the impact of the Shillong Plateau uplift on erosion, 

with a transition from rock exhumation to surface uplift of the Shillong Plateau. Prior to the 

transition, the erosion of the sedimentary rocks covering the Shillong basement matched rock 

exhumation such that no topography, and thus no rain shadow, were created. When surface uplift 

occurred, erosion could not keep pace with rock exhumation. This constitutes a second order 

evidence of the erosion effect on climate in the way that erosion initially prevented the rise of the 

Plateau and therefore, modified the local climate. Nevertheless, results from chapter 3 have shown 

that the causes of the Shillong Plateau uplift is of tectonic origin rather than of erosional origin as 

suggested by Biswas et al. (2007). Shillong Plateau uplift has also modified the paleo-drainage of the 

Brahmaputra River which might have had an influence on the erosion pattern within the Himalayan 

foreland basin. Although this study does not document such effects, it highlights the influences of 

the tectonics related to the uplift of the Shillong Plateau on the accumulation rates in the northern 
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lee of the Shillong Plateau. The results from chapter 2 and 4 suggest that the sediment influx in the 

Dungsam Chu section transported and deposited by the paleo-Brahmaputra River was derived from 

the rapidly exhuming and eroding eastern syntaxis. Therefore, the very low accumulation rates in 

the upper part of the section cannot be explained by a low sediment input. Instead, this work 

suggests that a reduction in accommodation space resulting in low accumulation rates of the Siwalik 

sediments north of the plateau is a consequence of the strain partitioning related to the uplift of the 

Shillong Plateau. Such strain partitioning as proposed by Coutand et al. (2014) and consistent with 

the conclusions of chapter 3, might explain the differential erosion rates observed in Bhutan (Grujic 

et al., 2006). Furthermore, the uplift of the Shillong Plateau has likely contributed to the transition in 

depositional environments of the Siwalik sediments in the Dungsam Chu section, from marine-

influenced to entirely continental. The change in depositional environment itself has had a 

substantial impact on the sedimentation processes.  

 

The eastern syntaxis is the locus of extreme erosion rates of >5 mm/yr (e.g. Larsen and 

Montgomery, 2012) and rapid exhumation rates of ~4 mm/yr as inferred by this study. These two 

coeval dynamic processes are related, as erosion contributes to exhumation. If it is difficult to 

decipher which of these mechanisms drives the other, it is clear that surface uplift tends to increase 

erosion rates through glacial erosion (e.g. Egholm et al., 2009) or through slope and river gradient 

steepening causing landslides (e.g. Lang et al., 2013). In the case of the high topography of the 

Namche Barwa syntaxis, the direct influence of glacial processes (itself highly dependent on 

tectonics and on climate) on the fluvial and hillslope erosion has been demonstrated (Korup and 

Montgomery, 2008; Korup et al., 2010). The eastern syntaxis data and conclusions in this thesis do 

not provide suitable material to explicitly discuss the impact of tectonics on erosion; however, it 

illustrates the links between these two processes. For instance, the short lag times observed in the 

Sibo-Remi-Siang section reflect the combination of rapid exhumation and erosion. Indeed, although 

we cannot quantitatively differentiate the time of rock exhumation from the time of erosion and 

deposition of the detrital mineral considered from the lag times, we qualitatively evaluate the 

efficiency of both processes in the Namche Barwa syntaxis area.  

 

Thermomechanical feedback between focused and intense erosion and growth of the Namche 

Barwa crustal antiform has been proposed to explain the evolution of the syntaxis (Zeitler et al., 

2014; Zeitler et al., 2001). This model, the tectonic aneurysm model, suggests that the removal of 

upper crust has facilitated a local flow of a weaker lower crust with ductile behaviour in the region of 

intense erosion, the syntaxis (Bracciali et al., 2016; Zeitler et al., 2014; Zeitler et al., 2001). The early 
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version of this model (Zeitler et al., 2001) invokes a major drainage reorganisation, which would 

have initiated and sustained the Late Miocene rapid exhumation of the syntaxis (e.g. Booth et al., 

2009; Burg et al., 1998; Ding et al., 2001; Finnegan et al., 2008; Seward and Burg, 2008; Stewart et 

al., 2008). A major capture event such as the Yarlung-Irrawaddy by the Siang-Brahmaputra River, has 

been inferred in Early Miocene times by later studies (e.g. Bracciali et al., 2015; Robinson et al., 

2014), suggesting the non-synchronicity of the two events and therefore calling into question the 

original tectonic aneurysm model. However, the paleo-drainage reconstruction from chapter 3 and 

discussed in section II of this discussion chapter, demonstrates the complexity of the drainage 

evolution and the multiplicity of the capture events in the Namche Barwa region, consistent with 

previous studies (King et al., 2016; Lang and Huntington, 2014). The tectonic aneurysm model has 

also been opposed by Wang et al. (2014b) who propose that the rapid erosion of the Tsangpo gorge 

was a passive response to rapid uplift at ~2.5 Ma, on the basis of the observation of a buried canyon 

upstream of the gorges from this time. However, taking into account the arguments of Zeitler et al. 

(2015) and of Korup and Montgomery (2008; 2010), one can argue that temporary glacial and 

landslide damming could significantly decrease the erosional efficiency and explain the buried 

canyon, not requiring a rapid uplift strictly from 2.5 Ma. The early onset of syntaxial exhumation 

(~10 Ma) implied by the revised version of the tectonic aneurysm model (Zeitler et al., 2014) 

compared to younger estimates largely inferred from thermo- and geo- chronological ages from 

detrital and in situ studies (e.g. Bracciali et al., 2016; Burg et al., 1998; Burg et al., 1997; Lang et al., 

2016; Seward and Burg, 2008), is better supported by the estimations of chapter 4. Although this 

Ph.D. work cannot test the tectonic aneurysm model it does not challenge it.  

 

To conclude, this work has helped to document the tectonic, erosion and climate processes in the 

eastern Himalayan region. However, the author 1) acknowledges the circular reasoning of this 

digressive section; 2) suggests that this circularity is representative of the interplays between 

tectonics, erosion and climate; 3) has overall provided a study consistent with the chicken and egg 

polemic (Molnar, 2009; Molnar and England, 1990). 
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5. FURTHER WORK 

In this section, the author encourages further studies in the continuity of this thesis to better 

document the newly formulated and remaining research questions.  

 

5.1. Method development 

On a methodological aspect, the author suggests further development of the thin zircon rims U-Pb 

dating in the Namche Barwa area. Bracciali et al. (2015) have interpreted detrital zircon-rim ages <10 

Ma in the eastern Himalayan foreland basin as indicating a syntaxial provenance. This thesis 

tentatively reproduced this method in order to track syntaxial signature, but, as described in chapter 

3, the ages obtained were highly discordant and their interpretation challenging. The authors 

explained this dating bias as principally due to the narrowness of the metamorphic zircon 

overgrowths requiring the use of small laser spots during analysis resulting in substantial U-Pb 

fractionation. Therefore, before considering reproducing this type of analysis on thin zircon rims, the 

author strongly recommends further development of the method such as trying with an ion 

micoprobe spectrometer. 

 

By contrast, successful results were obtained using apatite U-Pb dating, in the same chapter. The 

authors have stressed the utility of this method as a provenance tool in the eastern Himalaya. 

However, this thesis provides the first apatite U-Pb data in the Himalayas and yet, no source 

characterization has been performed in this region. Therefore, it would be of great relevance to 

collect further apatite U-Pb data, especially in light of the complex drainage evolution in the eastern 

Himalaya which might be better constrained using this dating technique, as developed below.  

 

Furthermore, this study has confirmed the efficiency of the rutile U-Pb high temperature 

thermochronometer in tracking the youngest detrital age populations within a detrital sample and in 

providing information on the early development of the source rocks. For these reasons, the author 

strongly encourages expanding the use of detrital and in situ rutile U-Pb dating to reconstruct 

tectonic histories.  

 

5.2. Paleo-drainage reconstruction in the Namche Barwa area 

The main question raised from this thesis is where did the Yarlung-Brahmaputra connection occur 

prior to 7-10 Ma, and how did it evolve in the late Miocene? This is of primary importance to 

investigate further the paleo-drainage of the Yarlung-Brahmaputra in this area, because the 

implications are significant. If it has remained through the Siang throughout the deposition of the 
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sediments of the Sibo-Remi-Siang section, then the study of chapter 4 would not be challenged. In 

this scenario, if the paleo-drainage in the syntaxis area had not suffered substantial change since ~15 

Ma then the tectonic aneurysm model would be called into question. On the contrary, if such a 

change occurred around ~13 Ma, the tectonic aneurysm model would have to be considered further. 

Another possible scenario is a major capture occurring at ~7-10 Ma, for instance the potential 

Yarlung-Brahmaputra connection through the Lohit River capture by the Siang River. In this case, the 

interpretations of chapter 4 would need to be reassessed, as the change from old 

thermochronologic ages and long lag times to young ages and short lag times observed in the Sibo-

Remi-Siang section would be explained by a capture event, and not necessarily by the rapidly 

exhuming syntaxis.  

 

In order to decipher which of these hypothesizes is valid, the author suggests 1) to collect more data 

from the Siang section and 2) to characterize better the rock sources drained by the modern Lohit 

River. The first recommendation implies more analysis on samples from the Siang section, at shorter 

stratigraphic intervals, including more zircon U-Pb dating, apatite U-Pb dating and detailed 

sandstone petrology analysis which would help to track a potential change in provenance. Additional 

zircon U-Pb dating would help to better observe the Tethyan zircon grains abundance throughout 

the section. The apatite U-Pb data from the Siang section seem to indicate a sharp change in 

provenance (between sample SG11 and SG1) but the data are too scarce to allow robust 

conclusions. Therefore, supplemental apatite U-Pb dating might be particularly interesting for this 

purpose. Complementary Hf/Nd geochemistry on zircons might also deliver relevant information. 

The second suggestion involves further source characterization from the poorly constrained Lohit 

plutonic suite and the Bomi-Chayu rocks, using both zircon and apatite U-Pb dating to allow a better 

provenance analysis in the Sibo-Remi-Siang section.  

 

5.3. Evolution of the eastern syntaxis 

Supplemental paleo-drainage analysis as prescribed above would document the tectonic aneurysm 

model but additional bedrock studies would also inform the syntaxial development. Indeed, further 

thermochronological studies, especially with the rutile U-Pb system, would certainly provide key 

information. In situ rutile U-Pb dating along a NE-SW transect following the syntaxial antiform axis 

would constrain better the NE progression of the syntaxis.  
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5.4. Detrital syntaxial signal evolution downstream 

In the eastern foreland basin, the young rutile grains characteristics of the syntaxis appear 

surprisingly scarce. The eastern syntaxis (only 2 % of the Yarlung-Tsangpo drainage area) has been 

suggested to contribute up to 50-70% of the Brahmaputra sediments (Enkelmann et al., 2011; 

Garzanti et al., 2004; Lang et al., 2013; Singh and France-Lanord, 2002; Stewart et al., 2008), 

therefore one would expect a substantial occurrence of young thermochronological ages from 

syntaxial detritus as far downstream as the Bengal Fan. However, the paleo-Brahmaputra sediments 

from the Surma basin do not record such young ages until Pliocene times (Bracciali et al., 2015). 

Additionally, preliminary rutile U-Pb results from recent investigations in the Bay of Bengal with the 

IODP expedition, acquired by Y. Najman seem to confirm this trend of scarce young rutile grains 

downstream. However, clear rutile U-Pb age populations <9 Ma have been found in the paleo-

Brahmaputra deposits from the Dungsam Chu section by G.  Govin and I. Millar (see Appendix VII). 

These discrepancies in abundance of young rutile grains within the eastern Himalayan foreland basin 

should be investigated further, with additional dating in the Miocene-Quaternary sedimentary 

record. A dilution study similar to the one preformed on zircon fission-track and white mica 40Ar-39Ar 

Gemignani et al. (submitted) focusing on rutile U-Pb, and as well as on zircon U-Pb, would allow 

quantifying the dilution effect on both U-Pb systems and document the signal evolution downstream 

the syntaxis and the Transhimalayan sources. 

 

5.5. Review paper 

Lastly, it is certain that this work and other Siwalik studies would have been and would be hugely 

facilitated by a review publication on the Siwalik sedimentary record. Indeed, the extensive amount 

of studies of various kinds such as dating, provenance, tectonic and climatic reconstructions, 

weathering, vegetation, paleo-environment, seismology and others should be compiled and 

summarized in one document, to render these studies more accessible for Siwalik investigators.  
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Great things happen when man and mountain meet. 

William Blake 
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APPENDIX I: Supplementary Material of Chapter 1 - Late Miocene-Pleistocene 

evolution of India-Eurasia convergence partitioning between the Bhutan 

Himalaya and the Shillong plateau: New evidences from foreland basin 

deposits along the Dungsam Chu section, Eastern Bhutan 
 

Vitrinite reflectance: sampling strategy and analytical procedure 

Eight coal-bearing mudstones were collected along the section (for sample location, see Fig. 18). 

Kerogen was isolated by Global Geolab Ltd. (Medicine Hat, Alberta, Canada), mounted using epoxy 

resin (EPO-TEK 301) in predrilled plastic stubs, polished and measured by Mike Avery at the 

Geological Survey of Canada - Atlantic (Dartmouth, Nova Scotia, Canada). The mounts were 

examined under oil immersion, incident light at 1000-x magnification using a Zeiss Photometer III 

system. The methodology and procedure used for vitrinite reflectance measurements are standard 

and available in (ASTM, 2010). 

The reflectance was recorded as random reflectance (R0, %). For each sample 34 to 50 

measurements were made (Figure A), from which the mean random vitrinite reflectance (Rm) was 

calculated. All samples yielded a histogram with a single mode in the distribution curve tightly 

clustered about a mean value, which was determined using the Probability Density Plot software by 

Vermeesch (2012). We then used the empirical calibration of the Rm by Barker and Pawlewicz (1994) 

to determine the peak temperature due to sedimentary burial (Tpeak). 
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Figure A: Vitrinite Reflectance data 

 



215 
 

Detrital apatite fission-track (DAFT) thermochronometry method and sampling 

Apatite fission-track is a thermochronometric method based on the formation and retention of 

linear damage zones (or fission tracks) in the crystal lattice of uranium-bearing minerals, caused by 

the spontaneous radioactive decay of 238U. The tracks are retained at temperature below ~120±20 °C 

(e.g., Donelick et al., 2005) and may be partially annealed through diffusion processes until 

temperatures down to 60 °C (for an apatite of average composition and a holding time of about 10 

Ma; see (Reiners and Brandon, 2006)). This temperature interval is called the Partial Annealing Zone 

(PAZ). Detrital apatite crystals contained into clastic sediments yield cooling ages that are 

representative of the bedrock cooling age in the source area when post-depositional burial and 

heating has been limited such as the age remains unreset. Alternatively, the source signal may be 

partially or fully altered by thermally-induced diffusion and resulting track annealing. 

Six medium- to coarse-grained sandstones, about 5-8 kg in weight, were collected through the 

stratigraphic section at an average stratigraphic spacing of 300 m (for sample location, see Fig. 18 

and Table 1). The samples were processed and analysed at the Dalhousie University 

Thermochronology Laboratory using the procedure described in Coutand et al. (2014). Most of the 

fractions were of moderate quality with only few apatites available, cracks and zircon inclusions 

within the crystal were common and sometimes heterogeneous distribution of uranium was 

recorded. To overcome these limitations, we prepared and processed two mounts for each sample; 

yet, it was possible to date only 14 to 26 crystals per sample. For each sample, fission-track grain-age 

distributions were decomposed using the binomial peak-fit method (Galbraith and Green, 1990) 

incorporated into the Binomfit program (Brandon, 1992; Brandon, 1996; Brandon, 2002) to identify 

discrete grain-age populations. 
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Table S1: Apatite fission-track counting data. Ns, number of spontaneous tracks counted; Ni, number 

of induced tracks counted; ρd, induced track density in external detector adjacent to dosimetry glass; 

Na, number of microscope grid squares counted. 
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Paleomagnetic analysis: sampling and analytical procedure 

We sampled the Dungsam Chu section maintaining, when possible, a stratigraphic spacing of the 

paleomagnetic sites to about five meters, although some larger gaps could not be avoided due to 

the lack of outcrop or unfavourable lithologies (for sample location, see Fig. 19). Using an electric 

drill powered by rechargeable batteries and mounted with a diamond-coated drill-bit cooled with 

water, one to three cores, 2.5 cm in diameter, were collected from each paleomagnetic site, 

targeting the finest possible lithologies. Cores were oriented with a custom device integrating a 

clinometer and a compass. Minor local declination (<0.5°) was neglected. Because fine-grained 

sediments were rare, coarser lithologies (medium- to coarse-grained sandstones) were also 

collected. Out of a total of 364 sampled paleomagnetic sites, 303 have yielded results (Fig. 19). 

Bedding attitudes were measured at each site and averaged for portions of the sections with similar 

attitudes for tilt corrections. Remanent magnetizations of samples were measured on a 2G 

Enterprises DC SQUID cryogenic magnetometer within an amagnetic chamber, at the Geosciences 

Rennes paleomagnetic laboratory, France. Pilot samples distributed at 50 meters intervals 

throughout the stratigraphic section were stepwise thermally demagnetized in a shielded oven. 

Tight heating steps from 20 to 670 °C were applied to determine (1) the characteristic 

demagnetization behaviour, (2) the most efficient demagnetization temperature steps, (3) which 

lithology provides the best signal, and (4) identify stratigraphic intervals with potential 

paleomagnetic reversals. These preliminary results guided further processing of the remaining 

samples at higher stratigraphic resolution. Thermal demagnetization was then applied to the 

remaining samples with a carefully defined set of small thermal demagnetization steps including 50 

to 100 °C steps up to 550 °C and 10 to 15 °C steps between 550 and 670 °C. When multiple samples 

were available from one sampling site, if the result from a first sample at a site was ambiguous, a 

second or a third sample was processed to unambiguously identify the polarity at that site. 

 

Table S2: ChRM directions. Abbreviations are: Sample ID. sample identification; level. location in the 

stratigraphic column (0 meters is the bottom); Dec IS and Inc IS. ChRM declination and inclination in 

geographic coordinates. in situ (before tilt-correction); Dec and Inc. ChRM declination and Inclination 

in stratigraphic coordinates in situ (IS) and after tilt-correction (TC); Int. Intensity of magnetization; 

MAD. maximum angular deviation of ChRM direction; Q. reliability criteria Q1. Q2 and Q3 (see text); 

Line fit. calculation of ChRM direction: O – line forced to the origin; * –line unforced. GC– great circle 

(see text); Tinf and Tsup. temperature minimum and maximum in between ChRM; VGP lat. Virtual 

Geomagnetic Pole latitude derived from ChRM direction at sampling location; Dip az. and Dip. 

azimuth of bedding dip and dip averaged over portions of the section. 
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Sedimentological analysis: method 

We carried out our sedimentological analysis using a standard faciological method. Twelve facies 

were identified on the basis of their lithology, sedimentary structures and trace fossils before being 

interpreted in terms of depositional processes (Table 3). Along the Dungsam Chu section, these 

facies co-occur in four associations, which were interpreted in terms of depositional environments 

(Table 4). Indeed, facies associations are more representative of depositional environments than 

individual facies alone, the latter rather depending on the sediment nature or on elementary 

hydrodynamic processes. The facies associations were recognized in specific locations throughout 

the sedimentary section and used to divide it into four units bearing different environmental 

characteristics. The distribution of these units was documented by a stratigraphic column 

constructed from outcrop observations along the Dungsam Chu transect (Figs. 19 and 26). Along this 

transect, horizontal distances were measured using both a GPS and a measuring tape before being 

converted into sediment thicknesses using strike and dip measurements. 
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Palynological analysis: sampling and analytical procedure 

Twenty three samples from brown, grey and black silty/sandy claystones along the Dungsam Chu 

section were selected for palynological analyses. The samples were processed at the Institute for 

Biodiversity and Ecosystem Dynamics (University of Amsterdam, The Netherlands) following a 

standard analytical procedure applied on pre- Quaternary siltstones and claystones and described in 

Hoorn et al. (2000). In general, the palynological slides were rich in organic debris but low in pollen 

and spores (hereafter collectively referred to as sporomorphs). Sixteen samples contained sufficient 

sporomorphs for further analysis, with sums ranging between 87 and 608 specimens (for sample 

location, see Fig. 19b). Modern generic names were used following (Traverse, 1988), while unknown 

species were labelled by their key morphological characteristics. In addition, some suspected extinct 

forms were indicated by their form-generic names. All taxa are listed with individual scores in Table 

S3. The taxa were grouped overall following ecological affinity (Table 5 and Fig. 26d) to display the 

results in compact format and to compare the results with those obtained at the Surai Khola section 

in central Nepal by Hoorn et al. (2000) (Figure. B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S3: Palynological data sheet with counts of sporomorphs found in the Dungsam Chu section. 
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Figure B. Palynological results along a) the Surai Khola section (central Nepal) (Hoorn et al., 2000) 

and b) the Dungsam Chu section (eastern Bhutan). 
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APPENDIX II: Supplementary Material of Chapter 2 - Timing and mechanism of 

the rise of the Shillong Plateau in the Himalayan foreland 
 

ANALYTICAL AND NUMERICAL METHODS 

 

Zircon U-Pb dating 

Six medium-grained sandstones were selected at regular intervals throughout the Dungsam Chu 

section of Siwalik sedimentary rocks (SJ1b, SJ2, SJ4, SJ6b, SJ9 and SJ12) and analysed at GRPG, Nancy 

(France). Two further samples of similar grain size were selected once the change in provenance had 

been detected, within the relevant gap (i.e. between samples SJ6b and SJ9, where the change in 

provenance is observed).  These samples were analysed at NIGL, Keyworth (UK).  

Prior to analysis, samples were dried and sieved to extract the <500-µm fraction at Lancaster 

University. Heavy minerals were extracted at NIGL, BGS Keyworth (UK) by wet separation on a 

Haultain superpanner, and di-iodomethane heavy liquid (with a density of 3.3).  Magnetic separation 

was kept to a minimum to avoid biasing mineral populations. Zircon grains were handpicked, taking 

special care to select all grain types with respect to morphology, color and grain size, within a 

particular fraction of the separate. The zircons were mounted in epoxy, polished and photographed 

to help identify the analysed grains. They were also imaged by cathodo-luminescence using an FEI 

Scanning Electron Microscope to ensure suitable core areas were targeted during analysis. Each 

analysis corresponds to a different zircon grain. Since the objective was to date a maximum number 

of zircon grains, and not their potential metamorphic overgrowth, no multiple analyses were carried 

out on the same grain.    

The zircons mounts of samples SJ1b, SJ2, SJ4, SJ6b, SJ9 and SJ12, were subsequently gold-plated at 

CRPG, Nancy (France). U-Pb zircon dating for these samples was performed using the CAMECA IMS 

1270 E7 ion microprobe facility at CRPG. The analysed masses were: 203.5 (background noise, 

measured for 4 sec), Zr2O (4 sec), 204Pb (8 sec), 206Pb (4 sec), 207Pb (16 sec), 208Pb (4 sec), 238U (4 sec), 

238U16O (3 sec) and 238U16O2 (3 sec). Counting was performed in mono-collection using an electron 

multiplier. Each analysis consists of 12 or 16 iterative cycles over each mass. The mass resolution 

was about 6000, which is sufficient to separate the molecular interferences. The primary current was 

~5 nA using the duoplasmatron (oxygen source). The O2- primary beam is a projected beam of about 

20 µm in diameter (corresponding to the projection of a diaphragm of 200 µm). Before each 

measurement, there is a 120-second pre-sputtering with a 10 µm x 10 µm raster, a centering of the 

secondary beam within the field aperture, the contrast aperture and the energy slit and a centering 

of the mass on Zr2O. 
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The zircon reference material 91500, with an age of 1064 Ma (Wiedenbeck et al., 1995), was 

analysed at regular intervals and was used for determination of the correlation line between 

206Pb/238U and UO/U in order to correct data for instrumental fractionation. The age calculations 

were based on the isotope ratios corrected for background noise and common lead (using 204Pb). 

The U and Pb abundances are calculated on the basis of the Zr2O and UO correlation for the 

standard, and the isotope ratio 238U/206Pb. The 207Pb/206Pb ratio is directly derived from each spot 

analysis. 

U-Pb dating of zircons from samples SJ7 and SJ8 was performed using a Nu Instruments AttoM 

single-collector inductively coupled plasma mass spectrometer (SC-ICP-MS). The instrument was 

tuned such that oxides of U and Th represented less than 0.4% of the signal obtained from the metal 

ion peaks. The Nu AttoM SC-ICP-MS was used in peak-jumping mode with measurement on a 

MassCom secondary electron multiplier. The analysed masses in each sweep were: 202Hg, 204Pb+Hg, 

206Pb, 207Pb, and 235U. Each data integration records 100 sweeps of the measured masses, which 

roughly equates to 0.22 seconds.  Dwell times on each mass are 400 μs on 207Pb and 235U, and 200 μs 

on all other masses; the switching between masses takes 40μs.  238U is calculated using 238U/235U = 

137.818. Laser ablation was performed with a NewWave UP193SS solid-state laser ablation system. 

Ablation parameters were optimized to suit the Pb and U contents of the material and parameters 

adopted were a frequency of 10 Hz, with a fluence of 1.8 to 2.5 J/cm2, a 30 second ablation time, 

and a 25-μm spot size. Three zircon reference materials (91500, GJ-1 and Plesovice; Jackson et al., 

2004; Sláma et al., 2008; Wiedenbeck et al., 1995) were analysed at regular intervals in order to 

correct data for instrumental fractionation. The average bias of the 207Pb/206Pb and 206Pb/238U ratios 

from preferred values derived by TIMS analysis are used for normalization. 206Pb/238U and 207Pb/206Pb 

uncertainties were propagated in the manner advocated by Horstwood (2008), utilizing the 

measurement uncertainty and the reproducibility of the ablation reference material used.   

For the two sets of samples, respective in-house Excel spreadsheets were used for data reduction 

and error propagation, and Density Plotter (Vermeesch, 2012) was used for data presentation. Data 

reduction was undertaken with the age filters summarized in the following screening procedure 

table. Concordant ages within the limits defined in this table were accepted. It is important to 

consider that young zircon grains contain low levels of radiogenic Pb, which means that even low 

levels of common Pb may lead to discordance. Many of the young analysed grains in this study have 

been discarded in order for robustness of the ages to prevail. Concordia diagrams for each sample 

are presented in Figure A. Zircon U-Pb data are presented in data tables S3 and S4 of Appendix II in 

the electronic document attached to the thesis. 
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Table: Data screening procedure 

 

 

 

 

 

 

 

 

 

 

 

 

1 Failed Discarded 

2 206Pb/238U age >100 Ma, uncertainty >10% Discarded 

3 >10% discordant Discarded 

4 206Pb/238U age 100 – 1200 Ma, >5% discordant Discarded 

5 Young grain - 206Pb/238U age <100 Ma, <10% discordant 206Pb/238U age used 

6 206Pb/238U age 100 – 1200 Ma, <5% discordant 206Pb/238U age used 

7 206Pb/238U age >1200 Ma, <10% discordant 207Pb/206Pb age used 



238 
 

 

Figure A: Zircon U-Pb concordia diagrams of samples from the Dungsam Chu section. Data are 

plotted as Wetherill concordia diagrams, using the Isoplot v. 4.14 add-in for Microsoft Excel (Ludwig, 

2003), after data screening. The dotted dark blue line is the concordia curve where ages are indicated 

in Ma. Data point ellipses are at the 2σ level.  
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Stress calculation 

Here we summarize the steps Copley et al. (2011) used to calculate the distribution of stress in the 

Indian lithosphere. Earthquakes and active faults have been observed where the Indian lithosphere 

bends beneath the Himalaya, and also further south within the Indian shield. Copley et al. (2011) 

therefore assumed that the stress within the lithosphere is limited to what can be supported by the 

faults before they break in earthquakes. Two independent estimates of the force balance were then 

used to estimate the stress distribution within the Indian plate: the locations, mechanisms, and 

stress drops of earthquakes within the Indian lithosphere (which give an increase in differential 

stress with depth of ~5 MPa km-1), and the net force transmitted through the Indian plate (estimated 

from the motion of the plate and the forces exerted between India and Tibet; 5.5±1.5 TN m-1 along-

strike). 

If the stress drops in the earthquakes are summed over the seismogenic layer, the total force 

supported by the faults can be estimated to be approximately the same as the independent estimate 

of the total force transmitted through the Indian plate. This result has two implications: (1) the 

majority of the force transmitted through the Indian plate is supported by stresses on faults, and (2) 

the stress drops in the earthquakes represent close to the total pre-earthquake shear stresses on the 

faults. Point (2) means that the variation of stress drop with depth gives an estimate of the total 

stress distribution within the Indian plate, south of the region of bending beneath the Ganges 

foreland basin. 

Beneath the Ganges foreland basin, the far-field tectonic compression is still present, but there are 

additional stresses related to the bending of the Indian plate beneath the Himalaya. This results in 

shallow normal faulting, and deeper thrust faulting. The depth of the transition from normal- to 

thrust-faulting is at 25±5 km. Copley et al. (2011) used this transition depth, along with the 

constraint that the net force transmitted through the lithosphere should match the far-field tectonic 

driving stresses, to calculate the variation of stress with depth within the Indian lithosphere 

underlying the foreland basin. They found that, in order to match the depth of transition from 

normal faulting to thrust faulting, and to also obtain the correct net force transmitted through the 

lithosphere, the faults underlying the foreland basin must have similar coefficients of friction to 

those further south within the Indian shield. In this foreland region, faults that cut through the entire 

seismogenic layer (e.g. the Oldham Fault on the northern margin of the Shillong Plateau that 

ruptured in a M8 earthquake in 1897) have resolved stresses that result in thrust motion. Faults that 

only cut the upper part of the seismogenic layer slip in a normal sense, and those that cut only the 

lower part slip as thrusts (see focal mechanisms in Figure B). 
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The variation of stress with depth suggests that differential stresses at the brittle-ductile transition 

are ~1.5 times higher in the foreland basin than further south within the Indian shield. These 

estimates therefore provide a picture of the changes in stress distribution as an area of the Indian 

Plate moves northwards towards the Tibetan Plateau, and becomes affected by the stresses related 

to bending beneath the Himalaya. 

In models of dislocation creep, the relationship between stress and strain-rate is of the form  

where  is strain rate, and s  is stress. For rate-dependent fault creep, a change in shear stress 

would result in a change in sliding velocity by a factor of exp(Δơ/aN), where Δơ is the change in 

stress, a is the rate-dependent frictional parameter, and N is the effective normal stress. In either of 

these rheological laws, a change in the driving stress by a factor of 1.5 would result in a change in 

the fault-loading rate by a factor of 2 or more. 

In these calculations we neglect local effects relating to erosion, deposition, isostatic balance, and 

strain accumulation in the hangingwalls and footwalls of the faults. As displacement accumulates on 

a thrust fault, the difference in gravitational potential energy across the fault increases, which acts 

to inhibit motion. This effect can be decreased is material is eroded from the hangingwall and 

deposited in the footwall, and if vertical motions occur to maintain isostatic equilibrium. Our 

inference that the slip rates on the faults on the margins of the Shillong Plateau has through time, 

rather than decreased, implies that these local effects on faulting are small compared to the 

imposed far-field compressive and bending stresses. 

 

 

Figure B: (a) Topography and focal mechanisms for the India-Tibet region. Black focal mechanisms 

are thrust and normal earthquakes within the Indian lithosphere, labelled with their centroid depth in 
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km and moment magnitude (see Copley et al. (2011) for details). Thrust faulting occurs throughout 

the seismogenic layer in central India. Beneath the foreland basin, shallow normal faulting is 

underlain by deeper thrust faulting. The red focal mechanism corresponds to the Bhuj earthquake 

(case study of Copley et al., 2011). SP, Shillong Plateau; RK, Rann of Kachchh. (b) Free-air gravity 

anomaly in the same region as shown in (a), from the EIGEN-6C gravity model (Förste et al., 2012).  

The contour interval is 50 mGal. The yellow dashed line shows the southern edge of the negative 

anomaly representing the foreland basin in the central and western part of the Himalayan arc. The 

Shillong Plateau is the positive anomaly marked ‘SP’. (c) and (e) show profiles of differential stress 

against depth form locations in central India, and in the foreland basin, as shown schematically in (d) 

(calculations from Copley et al., 2011).  

 

DATA TABLES 

Data tables are listed here and are presented in the electronic document attached to the thesis, in 

the file of Appendix II. 

Table S1: Sample location  

Table S2: Zircon U-Pb data from source-areas compilation 

Table S3A: Zircon U-Pb Ion Probe data  

Table S3B: Zircon standard U-Pb Ion Probe 

Table S4A: Zircon U-Pb laser ablation data  

Table S4B: Zircon standard U-Pb laser ablation  
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APPENDIX III: Supplementary Material of Chapter 3 - Paleo-drainage evolution 

and rapid exhumation of the Namche Barwa Syntaxis recorded in the Siwaliks 

of the easternmost Himalaya (Arunachal Pradesh, India) 
 

ANALYTICAL METHODS 

 

Luminescence dating 

Sample for optically stimulated luminescence (OSL) dating was prepared and analysed in the OSL 

Laboratory of the University of Bern, simultaneously with- and following the exact same protocol as 

for samples from (Abrahami et al., in review) described here. The core sample was collected and 

transported with extreme care to avoid exposition to light. The entire analysis was performed under 

subdued orange light. The outer part of the core, i.e. the part susceptible to have been exposed to 

day light during sampling, storage and transport, was removed in the laboratory. The remaining part 

was etched to isolate feldspar and quartz grains. First, the sample was treated with 32% hydrochloric 

acid and 30% hydrogen peroxide to remove carbonates and organic component, respectively. Then it 

was sieved to isolate the dominant size fraction of the sample, 150-200 µm. Quartz and potassium-

rich feldspar fractions were gravimetrically separated with Lithium Polytungstate (LST) at δ = 2.70 

and 2.58 g cm-3 respectively. In order to remove the part of the grains affected by alpha irradiation 

and any contamination from the potentially remaining feldspars, the coarse-grained quartz was 

etched in 40 % HF for 60 minutes. Then, grains were immersed in hydrochloric acid to eradicate the 

fluorides.  

Coarse grains were fixed to stainless steel discs using silicon oil. The large grain size of the sample 

allowed the application of 3–20 grains on individual aliquots. Measurements were conducted using 

automated Risø TL/OSL DA-20 readers, fitted with an EMI 9235QA photomultiplier tube. 

Stimulation was performed at 90 % power, using blue (IR) LEDs for quartz (feldspar and 

polyminerals) with the signal detected through 7.5 mm of Hoya U-340 transmission filter (410 nm 

interference filter and one Schott BG-39). A Lifelite full spectrum daylight lamp was used for 

bleaching grains prior to dose recovery tests and measurement of residual doses. For De 

determination, an instrument error of 1.5 % was included for single aliquot measurement. 

About 450 g of material was taken from the surrounding sediment for dose rate calculations. U, Th, 

and K specific activities were measured using high-resolution gamma spectrometry (Preusser and 

Kasper, 2001). 

The sample was analysed for radioactive disequilibrium in the Uranium decay chain using the 

approach described by Zander et al. (2007); some evidence for disequilibrium was found with a loss 

of 238U. Therefore age determination should be considered as a minimum age only. The present day 
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water content of samples was not considered to satisfactorily represent average water content over 

burial time. The deposit will have lain below the water table, and in saturation, for half of the year 

and therefore a water content of 10±5 % was considered to encompass fluctuating water content 

with time and was applied to the sample for dose rate determination. For information, it should be 

noted that a 10 % underestimation of water content over time would result in a 10 % 

underestimation in age. 

Estimated doses values absorbed during burial (De) were measured using modified versions of the 

SAR protocol (Blair et al., 2005; Murray and Wintle, 2000; Murray and Wintle, 2003; Wallinga et al., 

2000). Preliminary analysis of the OSL signal of quartz was conducted and a combination of very dim 

signals, and feldspar contamination rendered further measurements impractical. For feldspar 

measurement, IRSL50 analysis was carried out using a preheat at 250 °C for 60 s, and the signal was 

stimulated using IR LEDs at 50 °C for 300 s. De values for single aliquot measurements were 

determined using the first 10 s of the IRSL decay curve, with background subtraction calculated using 

the last 200 s. IRSL dose response curve was well represented by a saturating exponential plus linear 

function and this was used to determine De value. Measurements with a recycling ratio of >10 % 

were rejected. The measurement of a zero dose was used to monitor recuperation of the signal, and 

expressed as a percentage of the natural signal.  

The Central Age Model (CAM) (Galbraith et al., 1999) was applied to determine the mean age, and to 

determine the over-dispersion of De distribution. The Minimum Age Model (MAM) (Galbraith et al., 

1999) also used to determine the age, as this is recommended to overcome partial bleaching in 

sediments, and used to identify that population of De values that represent grains that were well 

bleached prior to burial.  

Dose recovery tests were performed using single aliquot measurements to determine the ability of 

the measurement protocol to recover a known laboratory dose (Wintle and Murray, 2006). For the 

sample, 28 aliquots were given laboratory doses of 430±21 Gy in average; this performed well 

returning dose recovery ratios of 1.03±0.06.  

Fading tests were conducted in order to correct the burial age and avoid underestimation. To 

determine fading of the IRSL50 signal, six aliquots were measured; these were already sensitized 

having previously been measured for De values. A dose of ~160 Gy was given, and this dose was 

then measured (Auclair et al., 2003). A test dose of ~16 Gy was applied. Fading rates for all aliquots 

were very uniform with an average g-value of 4.73±0.83 % per decade. This resulting g-value was 

used to correct the mean burial dose of 430±21 Gy, resulting to a corrected burial dose of 700±35 

Gy, and an age of 190.2±18.2 kyr.  
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Gamma spectrometry measurements detected radioactive disequilibrium in the sample, with a loss 

of 238U over time, and subsequently any age determinations are rendered minimum age only. Dose 

recovery tests confirmed that the IRSL50 protocol could successfully recover doses to within 10 % 

unity. OD value of 25 % lay within a similar range to those recorded for the feldspar fraction of 

waterlain sediments from Peru that were understood to be well bleached (Trauerstein et al., 2014), 

and would suggest that this sample does not suffer partial bleaching. OD values for all 

measurements from this study and from Abrahami et al. (in review) remain within the same range 

despite the large variation in grain size, and therefore numbers of grains on aliquots, the sample is 

assumed to be well bleached. 

 

Detrital apatite fission-track and U-Pb double dating 

Prior to analysis, samples were crushed, dried, sieved (fraction <500 µm) and washed with tap water 

at Lancaster University. Apatite separation for all samples was performed using standard gravimetric 

and magnetic mineral separation techniques at ISTerre, Université Grenoble Alpes (France) and by 

GeoSep Services (USA). Apatite grains were handpicked taking special care in sampling the greatest 

range of observable characteristics such as roundness, size and colour. 

Apatite grain mounts were prepared and fission-track and U-Pb analysis was performed by Paul 

O’Sullivan at GeoSep Services (USA), using the LA–ICP–MS method (Donelick et al., 2005). 

Spontaneous fission tracks were counted using unpolarised transmitted light under a Zeiss Axiotron 

microscope. LA-ICP-MS data were collected for the isotopic masses 43, 147, 204, 206, 207, 232, and 

238 using a NewWave laser ablation system in line with a Finnigan Element2 magnetic sector, 

inductively coupled plasma mass spectrometer at the Washington State University Geoanalytical 

Laboratory in Pullman (USA). Apatite reference materials (see below) of known U-Pb age were 

analysed at regular intervals for U-Pb data correction. Similarly, an apatite fission-track standard was 

analysed for 238U/43Ca calibration.  

For each sample subjected to apatite fission-track (AFT) analysis, at least one 1 cm2 grain mount, 

consisting of apatite grains immersed in epoxy resin, was prepared, cured at 90 C for 1 hour, and 

polished to expose the internal surfaces of the apatite grains. After polishing, mounts were 

immersed in 5.5 N HNO3 for 20.0±0.5 s at 21±1 C to reveal all natural fission tracks that intersected 

the polished grain surfaces. 

 

A representative kinetic parameter, Dpar (the maximum diameter of fission track etch pits at their 

intersection with the polished and etched c-axis-parallel apatite surface), which is used as a proxy for 

the solubility of fission tracks in their host apatite grains (e.g. Donelick et al., 1999), was measured 
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and spontaneous fission-track densities were counted for each grain considered suitable for dating. 

Between one and four etch pit diameters were measured and an arithmetic mean Dpar value was 

calculated for each datable grain.  

Grains were then revisited using the LA-ICP-MS to make spot analyses within the area used for 

counting spontaneous tracks, to determine U, Th, and Sm concentrations of each grain for which 

natural fission-track densities had been previously determined. A single stationary spot of 16-µm 

diameter was used for each grain, centred in the approximate centre of the area where tracks had 

been counted. Note that if optical examination suggested that natural track densities were even 

moderately variable within a grain, which is evidence of U zoning, that grain was not dated. 

For apatite, the fundamental assumption is made that Ca occurs in stoichiometric amounts in all 

grains analysed. The isotope 43Ca is used as the indicator of the volume of apatite ablated. Samples 

were ablated in a helium atmosphere to reduce condensation and elemental fractionation. A total of 

50 scans over 47 seconds for 238U, 232Th, 147Sm, and 43Ca were performed for each spot analysed. Of 

these scans, approximately 10 were performed while the laser was warming up and blocked from 

contacting the grain surface, during which time background counts were collected. Once the laser 

was permitted to hit the grain surface, a cylindrical pit was excavated to a depth beyond which 

uranium did not contribute fission tracks to the etched grain surface. Between 25 and 35 scans 

performed during pit excavation were required to reach this depth.  The depths of a representative 

number of laser pits were measured and the 238U/43Ca value for each pit as a whole was determined 

based on the weighted mean of the 238U/43Ca value for individual scans relative to the depths from 

which the ablated material was derived (See Donelick et al., 2005; Hasebe et al., 2004). 

Fission-track ages and errors were calculated using: (a) the ratio of the density of natural fission 

tracks present in the grain to the amount of 238U present and (b) a modified version of the 

radioactive decay equation that includes a LA-ICP-MS zeta-calibration factor (See equations 1b for 

age equation and 2b for error calculation in Donelick et al., 2005). The zeta-calibration factor is 

determined for each sample analysed during each LA-ICP-MS session by analysing the U:Ca ratio of 

apatite calibration standards with known ages at the beginning and at the end of each LA-ICP-MS 

session. The standard used was Durango apatite with an age of 30.6±0.3 Ma (Boyce and Hodges, 

2005; McDowell et al., 2005). 

The youngest age was identified using the minimum-age peak method as implemented in Density 

Plotter software (Vermeesch, 2012). Youngest age peaks have been generated using the data set of 

ages comprised between 0 and 20 Ma in order to reduce the error on the minimum-age peak. The 

resulting youngest ages obtained with this method were used to constrain the maximum 

depositional age for each sample.  
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Use of the LA-ICP-MS technique for AFT analyses has the advantage that it permits U-Pb ages to be 

determined on the same grains in the same analytical session. Apatite standards (Durango, Duluth 

Complex, Fish Canyon Tuff, Mount Dromedary, McClure Mountain, Otter Lake, Tioga Bed B) for 

which independently accepted ages are published (Barfod et al., 2005; Boyce and Hodges, 2005; 

Kuiper et al., 2008; Lanphere and Baadsgaard, 2001; McDowell et al., 2005; Paces and Miller, 1993; 

Renne et al., 1998; Roden et al., 1990; Schoene and Bowring, 2006) were designated as primary, 

secondary, and tertiary standards for purposes of age calibration. Two primary and two secondary 

standard spots were analysed prior to and following each group of ~25-30 tertiary standards and/or 

unknown sample spots. Five spots of each tertiary standard were analysed near the beginning and 

again near the end of the session. Standard analyses were used to correct for down-hole 

fractionation, mass bias, and intra-session instrument drift. Fractionation factors were determined 

for each data scan of each primary standard spot and were calculated based on: a) 235U values 

calculated from measured values, b) no fractionation was assumed between 206Pb and 207Pb, and c) 

the independently measured common-Pb 207Pb/206Pb ratio for McClure Mountain apatite (Schoene 

and Bowring, 2006). No alpha-damage correction was applied to fractionation factors.  

Uranium decay constants and the 238U/235U isotopic ratio reported in Steiger and Jäger (1977) were 

used in this study. 207Pb/235Uc (235Uc = 137.88238U), 206Pb/238U, and 207Pb/206Pb ages were calculated 

and background-corrected isotopic sums of each isotope were calculated for all concordant scans. 

The fractionation factor for each data scan was weighted according to the 238U or 232Th signal value 

for that data scan; an overall weighted-mean fractionation factor for all concordant data scans was 

used for final age calculation. If the number of concordant scans for a zircon was greater than zero, 

then either the 206Pb/238U or 207Pb/206Pb age was chosen as the preferred age, whichever exhibited 

the lower relative error.  

Due to the usually high common-Pb content incorporated during crystallization, apatite is typically 

discordant in the U-Pb isotope system. Despite the corrections described previously, all grains 

remained discordant, often strongly so. Following the approach of Chew et al. (2011), a 207Pb-based 

correction was employed, using an iterative approach to obtain a 207Pb/206Pb intercept value based 

on a starting estimate generated from the terrestrial Pb evolution model of Stacey and Kramers 

(1975). As the 207Pb-based correction assumes U-Pb* (radiogenic Pb) concordance, which may not be 

the case for detrital grains, knowledge of likely source-area ages is required to discriminate partially 

reset ages in the same manner as for detrital AFT analysis. Since none of the apatite U-Pb ages were 

concordant, the data cannot be evaluated for quality using discordance criteria such as used for 

zircon U-Pb. However, low-U or very high common-Pb (PbC) content exhibited by some grains leads 

to large analytical uncertainty. Therefore, we follow the approach of Zattin et al. (2012) and Mark et 
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al. (2016) in excluding apatite grains yielding 2σ errors >25%. As radiogenic Pb content is 

proportional to age, younger grains commonly have correspondingly greater age uncertainty. 

Therefore, 2σ errors up to 100% were accepted for apatite grains yielding U-Pb ages <100 Ma. Data 

reduction of apatite U-Pb age measurements was undertaken with the 207Pb age uncertainty filters 

summarized in the screening procedure table (table A). Density Plotter (Vermeesch, 2012) was used 

for data presentation. Ages within the limits defined in table A were accepted.  Apatite fission-track 

and U-Pb data are presented in data table S4 of Appendix III in the electronic document attached to 

the thesis. 

 

Table A:  Apatite U-Pb data screening procedure  

 

 

 

 

 

 

 

Magnetostratigraphy 

One to three core samples of 2.5-cm diameter were collected at each site with an electric drill 

powered by portable batteries and mounted with a diamond-coated drill-bit cooled with water. The 

finest possible lithologies were targeted for each of the 186 sites but coarser lithologies (medium- to 

coarse-grained sandstones) were locally collected to avoid long gaps. Cores were oriented with a 

custom device integrating a clinometer and a compass; bedding orientation was measured regularly 

and averaged throughout the section as similar attitudes were observed. Minor local declination 

(<0.5°) was neglected.  

Remanent magnetizations of samples were analysed on a 2G Enterprises DC SQUID cryogenic 

magnetometer inside a magnetically shielded room, at the Geosciences Rennes paleomagnetic 

laboratory (France). A first selection of pilot samples distributed at ~50 m intervals throughout the 

stratigraphic section was stepwise thermally demagnetized in a shielded oven. Heating steps from 

20 °C to 670 °C were applied to these samples in order to (1) determine the characteristic 

demagnetization behaviour, (2) establish the most efficient demagnetization temperature steps, (3) 

determine which lithology provided the best signal, and (4) identify stratigraphic intervals with 

potential paleomagnetic reversals. Guided by these preliminary results, thermal demagnetization 

was applied to the remaining samples with thermal demagnetization steps of 50 °C to 100 °C up to 

1 Failed Discarded 

2 207Pb age  >100 Ma, uncertainty > 25% Discarded 

3 207Pb age 10-100 Ma,  uncertainty >50% Discarded 

4 207Pb age <10 Ma,  uncertainty >100% Discarded 

5 All other ages Accepted 
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550 °C and 10 °C to 15 °C from 550 °C to 670 °C. When the result from a first sample at a site was 

ambiguous, a second or a third sample was processed to determine the polarity. 

Once the polarities have been determined for each sample, as detailed in the manuscript, a 45° cut-

off procedure was performed separately for normal and reversed polarity datasets as illustrated in 

Figure A.  

 

Figure A: Projections of Q1 and Q2 A) Reverse and B) Normal VGP directions. Directions reported in 

grey and black have VGP over and under 45° from the mean VGP, respectively. The mean VGP is 

represented by the black dot in the centre of the projections. Directions represented in grey are 

rejected after cut-off procedure. 

 

Magnetostratigraphy data are presented in data table S2 of Appendix III in the electronic document 

attached to the thesis. 

 

Detrital zircon U-Pb dating 

Prior to analysis, samples were dried and sieved to extract the <500-µm fraction at Lancaster 

University. Heavy minerals were extracted at NIGL, BGS Keyworth (UK) by wet separation on a 

Haultain superpanner, and di-iodomethane heavy liquid (with a density of 3.3).  Magnetic separation 

was kept to a minimum to avoid biasing mineral populations. Zircon grains were hand-picked, taking 

special care to select all grain types with respect to morphology, colour and grain size, within a 

particular fraction of the separate. The zircons were mounted in epoxy, polished and photographed 

to help identify the analysed grains. They were also imaged by cathodo-luminescence using an FEI 

Scanning Electron Microscope to ensure suitable growth zones were targeted during analysis, i.e. 

zircon cores and metamorphic overgrowths.   
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U-Pb dating of zircons was performed using a Nu Instruments Attom single-collector inductively 

coupled plasma mass spectrometer (SC-ICP-MS). The instrument was tuned such that oxides of U 

and Th represented less than 0.4% of the signal obtained from the metal ion peaks. The Nu Attom 

SC-ICP-MS was used in peak-jumping mode with measurement on a MassCom secondary electron 

multiplier. The analysed masses in each sweep were: 202Hg, 204Pb+Hg, 206Pb, 207Pb, and 235U. Each 

data integration records 100 sweeps of the measured masses, which roughly equates to 0.22 

seconds.  Dwell times on each mass are 400 μs on 207Pb and 235U, and 200 μs on all other masses; the 

switching between masses takes 40μs.  238U is calculated using 238U/235U = 137.818. Laser ablation 

was performed with either a NewWave Research UP193SS or UP193FX laser ablation system. 

Ablation parameters were optimized to suit the Pb and U contents of the material and adapted for 

the cores and the rims analysis. For the cores measurements, a frequency of 10 Hz, with a fluence of 

1.5 to 3.0 J/cm2, a 30 second ablation time, and a 25- to 35-μm spot size were used.  

Several rim measurement methods were tried to increase the chances of measuring the <20-µm thin 

rims in the most robust way. A first method was to measure unpolished zircon mounts for some 

samples, in order to increase the targeted surface and to have as much material as possible from 

potential zircon rims. For this trial, we used a 100-μm raster line, a 20-μm laser spot and 6 passes for 

each measurement. The laser speed was set at 20 μm/s. Conclusive evidence was not obtained using 

this “blind” strategy, so the polished and CL-imaged mounts were used again for more rim 

measurements. 

In the second method, zircon tips were targeted with a 15-μm laser spot. Despite the significant 

fractionation of U and Pb as a consequence of the use of a small laser spot, the second trial was 

more satisfying. In order to increase the dating precision of the youngest rims dated with the second 

strategy, the relevant zircons were extracted from the mount, flipped over and measured several 

times more using the first rim measurement described previously.  

Three zircon reference materials (91500, GJ-1 and Plesovice; Jackson et al. (2004); Sláma et al. 

(2008); Wiedenbeck et al. (1995) were analysed at regular intervals in order to correct data for 

instrumental fractionation. The average bias of the 207Pb/206Pb and 206Pb/238U ratios from preferred 

values derived by TIMS analysis are used for normalization. 206Pb/238U and 207Pb/206Pb uncertainties 

were propagated in the manner advocated by Horstwood (2008), utilizing the measurement 

uncertainty and the reproducibility of the ablation reference material used.   

In-house Excel spreadsheets were used for data reduction and error propagation, and Density 

Plotter (Vermeesch, 2012) was used for data presentation. Data reduction of zircon-core 

measurements was undertaken with the age filters summarized in the screening procedure table 

(table B). Concordant ages within the limits defined in this table were accepted. 
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Table B:  Zircon-core data screening procedure 

 

 

 

 

 

 

 

 

 

 

It is important to consider that young zircon grains contain low levels of radiogenic Pb, which means 

that even low levels of common Pb may lead to discordance. Moreover, a small laser-spot diameter, 

used for analysing narrow zircon rims, leads to increased fractionation bias. Because of these 

analytical difficulties when dating young metamorphic rims we used a different screening and 

regression procedure for zircon-rim dating, presented in table C. Zircon U-Pb data are presented in 

data tables S5A and S5B of Appendix III in the electronic document attached to the thesis, and in 

Figure B. 

 

Table C: Zircon-rim data screening procedure 

 

 

1 Failed Discarded 

2 206Pb/238U age >100 Ma, uncertainty >10% Discarded 

3 >10% discordant Discarded 

4 206Pb/238U age 100 – 1200 Ma, >5% discordant Discarded 

5 Young grain - 206Pb/238U age <100 Ma, <5% discordant 206Pb/238U age used 

6 206Pb/238U age <100 Ma, 5 - 10% discordant 206Pb/238U age used 

7 206Pb/238U age 100 – 1200 Ma, <5% discordant 206Pb/238U age used 

8 206Pb/238U age >1200 Ma, <10% discordant 207Pb/206Pb age used 

1 Failed Discarded 

2 206Pb/238U age >100 Ma, uncertainty >10%  Discarded 

3 206Pb/238U age >100 Ma, >10% discordant Discarded 

4 206Pb/238U age >1200 Ma, >5% discordant Discarded 

5 206Pb/238U age <100 Ma, <5% discordant 206Pb/238U age used 

6 206Pb/238U age <100 Ma, 5 - 10% discordant 206Pb/238U age used 

7 206Pb/238U age <30 Ma, >10% discordant Age from fixed common Pb regression used 

8 206Pb/238U age 30 – 100 Ma >10% discordant 206Pb/238U age used 

9 206Pb/238U age 100 – 1200 Ma, <5% discordant 206Pb/238U age used 

10 206Pb/238U age >1200 Ma, <10% discordant 207Pb/206Pb age used 
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Figure B: Zircon U-Pb concordia diagrams of samples from the Sibo-Remi-Siang section. Data are 

plotted as Wetherill concordia diagrams, using the Isoplot v. 4.14 add-in for Microsoft Excel (Ludwig, 

2003), after data screening. The dotted dark blue line is the concordia curve where ages are indicated 

in Ma. Data point ellipses are at the 2σ level.  

 

DATA TABLES 

Data tables are listed here and are presented in the electronic document attached to the thesis, in 

the file of Appendix III. 

Table S1: Sample location  

Table S2: Magnetostratigraphy data  

Table S3: Zircon U-Pb data from source-areas compilation  

Table S4: Apatite fission-track - U-Pb data  

Table S5A: Zircon core and rim U-Pb data 

Table S5B: Zircon standard U-Pb data 
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APPENDIX IV: Supplementary Material of Chapter 4 - Onset of rapid 

exhumation in the Namche Barwa syntaxis 
 

ANALYTICAL METHODS 

 

Sample preparation 

Prior to analysis, the samples were dried, sieved (fraction <500 µm) and washed with tap water at 

Lancaster University. Heavy minerals were extracted by wet separation on a Haultain superpanner, 

standard di-iodomethane heavy liquid (density of 3.3), and magnetic separation, which was kept to a 

minimum to avoid biasing mineral populations, at the NERC Isotope Geosciences Laboratory, 

Keyworth, UK (NIGL). Zircon and rutile grains were hand-picked, taking special care to select all grain 

types with respect to morphology, colour and grain size, within a particular fraction of the separate. 

White micas where handpicked from the light fraction, separated with the Haultain superpanner.  

 

Zircon fission-track dating 

Zircon grains were mounted in two to four Teflon® sheets per sample, polished and etched in a 

NaOH-KOH solution at 228 °C for 36 to 70 hours, at thermochronology laboratory at ISTerre, 

Université Grenoble Alpes, Grenoble (France). The multi-mount technique with different etch times 

allowed to obtain countable grains from the whole grain age spectrum of a sample (Bernet et al., 

2004b; Naeser et al., 1987). Zircon grain mounts were then covered with muscovite external 

detectors and irradiated together with IRMM541 (50 ppm) dosimeter glasses and Fish Canyon Tuff 

age standards in the FRMII reactor at the Technical University of Munich (Germany). Following the 

thermal neutron irradiation, muscovite sheets, were etched at 21 °C for 18 min in 48% HF. 

Spontaneous (Ns) and induced (Ni) tracks were counted dry, using an optical Olympus BH2 

microscope with 1250× magnification. Between 36 and 105 grains per sample were dated, 

depending on available sample material and zircon quality with respect to zonation, fracture, 

inclusions, defect and metamictisation, using a zeta factor of 105.79±3.68 (Hurford and Green, 

1983). Fission-track data are presented in data table S2 of Appendix IV in the electronic document 

attached to the thesis, and in Figure A. The youngest age populations have been determined for 

each sample, from the data fraction of ages <30 Ma, in linear density plots, using the minimum 

mixture model of the Density Plotter program (Vermeesch, 2012), as illustrated in Figure A. Density 

Plotter (Vermeesch, 2012) was also used for data presentation (radial and Kernel density estimations 

plots). 
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Figure A: Zircon fission-track data for samples from the Sibo-Remi-Siang sections. The left column 

shows ages <30 Ma for each sample, plotted as adaptive Kernel density plots (Vermeesch, 2012) with 

overlying histograms; n=number of grains <30 Ma. Framed number shows the minimum age peak 

generated with Density Plotter program (Vermeesch, 2012). The right column shows ZFT data 

reported in radial plots and considering the total number of dated grains in each sample, indicated 

next to sample name (n=X). The central age, dispersion and main peak ages (± 1σ, with percentages 

referring to the relative importance of each peak) are indicated. 

 

White mica 40Ar-39Ar dating 

White mica 40Ar-39Ar dating by single grain single fusion was performed at the VU University, 

Amsterdam (The Netherlands).  More than 100 white mica minerals have been grouped in a 9 mm 

diameter aluminium foil package for each sample. These packages, along with packages of ~5 mg 

aliquot of reference material, DRA-2 sanidine (Kuiper et al., 2008; Wijbrans et al., 1995) were 

stacked in a 10 mm diameter quartz glass tube. The tube was irradiated in a standard Al-irradiation 

capsule for 12 hrs in the in-core CLICIT facility of the Oregon State University TRIGA reactor. After 

irradiation, minerals were unpacked and loaded in Cu sample trays. Each tray of 66 mm diameter 

contains 185 holes of 2 mm diameter and 3 mm depth. One mica crystal is loaded per hole. The trays 

are then placed in a low volume vacuum UHV gas sample purification line. Single grains were fused 

with a CO2 laser (Synrad 48-5, 25 W + 25 W dual plasma tube instrument, 10.5 μm wave length 

continuous laser). The laser power can be adjusted through a 0–5 V analogue signal to the laser 

control/power supply units. Positioning of the laser beam was achieved using an analogue Raylase 

scan head fitted with a dual mirror system (X-axis and Y-axis adjustment) and a ZnS 300mm focusing 

lens. The beam delivery system achieved a beam diameter of ~300 μm at the focal point. At these 

settings a 5% laser power setting was sufficient to fuse the samples. The scanhead was used to track 

three concentric circles for 0.5 – 1.5 mm diameter to ensure that the grain in the hole was exposed 

to the laser beam. 

In sequence measurements of about 50 grains per sample were performed and before, during and 

after each fourth run system blanks were measured. The system blanks have been stable and 

predictable during the runs. Between every 20 runs, air reference gas measurements were carried 

out to monitor mass discrimination and system performance. The baseline corrected beam 

intensities of the five isotopes of Argon (m/e 40–36) were measured simultaneously on a 

ThermoFisher Helix MC+ multi-collector noble gas mass spectrometer. The beam intensities of the 

40Ar and 39Ar beams were measured on the faraday collectors each fitted with the new 1013 Ohm 

resistor faraday amplifier. The beam intensities of 38Ar and 37Ar were measured on standard compact 
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discrete dynode secondary electron multipliers in pulse counting mode. The beam intensity of 36Ar 

was measured on a compact discrete dynode SEM fitted with a high resolution (>1700) collector slit. 

In this configuration full resolution between argon and hydrocarbon beams is assured. For off-line 

data reduction, we used ArArCalc2.5 (Koppers, 2002). The ages are reported with uncertainties at 2σ 

uncertainty level and since small and young grains lead to low sample beam intensity and are 

therefore difficult to measure we applied the filters presented in the following table to accept or 

reject results from individual runs: 

 

Table A: White mica 40Ar-39Ar data screening procedure 

 

 

 

 

 

 

 

 

 

After the screening, the youngest age populations have been determined for each sample, from the 

data fraction of ages <30 Ma, in linear density plots, using the minimum mixture model from Density 

Plotter program (Vermeesch, 2012) as illustrated in Figure. B. White-mica 40Ar-39Ar data are 

presented in data table S3 of Appendix IV in the electronic document attached to the thesis, and in 

Figure B. 

 
Failed Discarded 

 
Age >20 Ma, uncertainty >20 % Discarded 

 Age <20 Ma and  >5 Ma, uncertainty >50 % Discarded 

 Age <5 Ma, 39Ar V  <0.5 Discarded 

 Age <5 Ma,  uncertainty  >100 % Discarded 

 All other data Accepted  
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Figure B: White-mica 40Ar-39Ar data for samples from the Sibo-Remi-Siang sections, plotted as 

adaptive Kernel density plots (Vermeesch, 2012). The left column shows ages <30 Ma for each 

sample, with overlying histograms; n=number of grains <30 Ma. Framed number shows the minimum 

age peak generated with Density Plotter program (Vermeesch, 2012). The right column shows 40Ar-

39Ar ages  for the total number of dated grains in each sample, indicated next to sample name (n=X).  
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U-Pb rutile dating 

The rutiles were mounted in epoxy, polished, and photographed to help identify the analysed grains. 

U-Pb rutile dating was performed using a Nu Instruments AttoM single-collector inductively coupled 

plasma mass spectrometer (SC-ICP-MS) at NIGL. The instrument was tuned to ensure that ThO and 

UO were less than 0.4%. The Nu Attom SC-ICP-MS was used in peak-jumping mode with 

measurement on a MassCom secondary electron multiplier. The analysed masses in each sweep 

were: 202Hg, 204Pb+Hg, 206Pb, 207Pb, and 235U. Each data integration records 100 sweeps of the 

measured masses, which roughly equates to 0.22 seconds. Dwell times on each mass are 400 μs on 

207Pb and 235U, and 200 μs on all other masses; the switching between masses takes 40 μs. 238U is 

calculated using 238U/235U = 137.818.  

Laser ablation was performed using a New Wave Research UP193SS laser ablation system, with a  

low-volume cell (Horstwood et al., 2003). This cell has a washout to less than 1% of the peak signal in 

less than one second. Ablation parameters were optimized to suit the Pb and U contents with a 

frequency of 5Hz, a fluence of 1.5 to 3.0 J/cm2, a 30 second ablation time, and a 30 to 35 μm spot 

size. 

Four rutile reference materials Sugluk-4, PCA-S207 (Bracciali et al., 2013) and R10, R19 (Luvizotto et 

al., 2009) were analysed at regular intervals in order to correct data for instrumental fractionation. 

The average bias of the 207Pb/206Pb and 206Pb/238U ratios from preferred values derived by TIMS 

analysis are used for normalization. 206Pb/238U and 207Pb/206Pb uncertainties were propagated in the 

manner advocated by Horstwood (2008), utilising the measurement uncertainty and the 

reproducibility of the ablation reference material used. 

 An in-house Excel spreadsheet was used for data reduction and error propagation; Density Plotter 

(Vermeesch, 2012) and Isoplot (Ludwig, 2003) were used for data presentation. 

Data reduction of rutile measurements was undertaken with the age filters summarised in the 

following screening procedure table. Since rutile material is commonly discordant due to relatively 

high common Pb, model ages were derived by regressing data points through a fixed common Pb 

(0.844±0.008) composition on Tera-Wasserburg plots as described in (Bracciali et al., 2013).  

 

Table B: U-Pb rutile data screening procedure 

 

 

 

 

 

1 Failed Discarded 

2 207Pb/206Pb >0.5 Discarded 

3 206Pb <100 counts Discarded 

4 207Pb/206Pb  <0.5 and 206Pb >100 counts   Common Pb-corrected ages  
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The youngest age population has been determined using Isoplot (Ludwig, 2003), a minimum of three 

of the youngest single grain ages have been commonly regressed through the fixed common Pb 

(0.844±0.008), together showing an MSWD value <2. The resulting age defines the youngest 

population for each sample, as shown in Figure C. Rutile U-Pb data are presented in data table S4 of 

Appendix IV in the electronic document attached to the thesis, and in Figure C. 
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Figure C: Rutile U-Pb concordia diagrams of samples from the Sibo-Remi-Siang section. Data are 

plotted as Wetherill concordia diagrams before correction for common Pb content, using the Isoplot 

v. 4.14 add-in for Microsoft Excel (Ludwig, 2003), after data screening. The dotted dark blue line is 

the concordia curve where ages are indicated in Ma. Data point ellipses are at the 2σ level. Sample 

names and depositional ages from Govin et al. (in review) are indicated to the left. The left column 

presents the minimum age population regression, n is the number of rutile grains defining the 

population and the dotted line is the regression line calculated for these analyses. The right column 

presents the total n number of dated grains.  

 

DATA TABLES 

Data tables are listed here and are presented in the electronic document attached to the thesis, in 

the file of Appendix IV. 

Table S1: Sample location and minimum age peaks 

Table S2: Zircon fission-track data 

Table S3: White-mica 40Ar-39Ar data  

Table S4: Rutile U-Pb data  

Table S5: Model parameters 
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APPENDIX V: Magnetostratigraphic correlation of the Dungsam Chu section 
 

G. Govin interpreted the magnetostratigraphic results in the study of Coutand et al. (2016), in 

collaboration with co-authors. However, the author of this thesis does not agree with the final 

preferred correlation of the publication of Coutand et al. (2016). Coutand et al. (2016) prefers the 

best numerical correlation determined with the Qupydon software (Lallier et al., 2013) whereas the 

third author of Coutand et al. (2016) prefers the best manual  correlation, correlation C which is the 

closest manual correlation to the best numerical correlation. The explanations for this preference 

are provided in this appendix, below.  

 

Magnetostratigraphic dating is based on the correlation of the geomagnetic polarity column of the 

sampled sedimentary sequence with the GPTS. This approach is based the hypothesis that the 

sedimentation rates are relatively constant on short time scales, as the thicknesses of the detected 

inversions are correlated with the length of the GPTS inversions. Generally, several correlations are 

possible and the choice of the preferred correlation represents a substantial factor of bias in 

magnetostratigraphic dating. The quality of a correlation depends on the quality of the column 

(sampling density, magnetic properties, lithology and continuous exposure of outcrop), independent 

constraints and where applicable, supplemental statistical analysis.   

In the case of the Dungsam Chu section, the outcrop exposure is sufficiently continuous; the 

sampling density is satisfactory; and the apatite fission-track and vitrinite reflectance data provide 

robust independent constraints. However, the quality of the polarity column is limited in the upper 

part of the section. Indeed, the coarser-grained lithology in the upper part of the section leads to 

less reliable normal polarity zones, since normal overprinting commonly occurs in coarse-grained 

lithologies. Consequently, three possible correlations have been proposed for the upper part of the 

Dungsam Chu section. In order to discriminate between these three correlations, Coutand et al. 

(2016) have performed stochastic modelling of the polarity column using the software Qupydon 

(Lallier et al., 2013). The most conclusive correlation obtained with the Qupydon software is closer 

to the manual correlation C. The best numerical and manual correlations are both presented in 

Figure A. The depositional ages in the lower part of the Dungsam Chu section is identical for both C 

and Q correlations. However, in the upper part of the section, the correlation Q places the Middle to 

Upper Siwalik transition at ~3.8 whereas the correlation C places this boundary at ~2.5. The 

maximum age discrepancy between the two correlations is ~1.6 Ma, in the Upper Siwalik sediments 

(at the ~1800 m stratigraphic level, see Figure B).  
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Coutand et al. (2016) have concluded that the numerical correlation (correlation Q) is the best 

option for the Dungsam Chu section. However, G. Govin does not share the same opinion and 

considers here the reasons why the manual correlation C is the more realistic correlation.  

 

 

 

Figure A: modified version of Fig. 25c. Comparison of the best numerical correlation obtained with 

the Qupydon software (left), with the best manual correlation C (right). The middle column is the 

GTPS of Gradstein et al. (2012) and the right and left columns are the magnetostratigraphic results 

from the Dungsam Chu section. Correlations in black represent similar results for the manual and 

numerical correlations, correlations in red represent the best numerical correlation (Q), and 

correlations in blue represent the best manual correlation.  

 

Lallier et al. (2013) point out that the main flaw of the Qupydon correlation technique is that it 

assumes that all polarity changes recorded in the studied sedimentary section are known in the 

GPTS. Indeed, Lallier et al. (2013) acknowledge that when local sediment re-magnetisation occurs, 
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this limitation may represent an obstacle to a good correlation. As demonstrated in chapter 2, this is 

the case in the coarser-grained lithology of the upper part of the Dungsam Chu section. Therefore, 

the ambiguities in the correlation of the upper part of the section can only be documented by 

Qupydon, and not necessarily solved. The solutions can be explored by ignoring debatable polarity 

zones in the correlation computation and automatically managed by adding a gap if they are actually 

identified in the GPTS, since the Qupydon correlation method manages gaps well (Lallier et al., 

2013). Although few debatable polarity zones from the Dungsam Chu section have been ignored 

before running the software in Coutand et al. (2016), the polarity zones of the upper part of the 

section (from the ~1400 m stratigraphic level) remain generally not completely reliable (Coutand et 

al., 2016). Therefore extreme care must be taken in the magnetostratigraphic interpretation of this 

part of the section, and a careful handle on such delicate correlation is certainly better attained 

manually. The use of Qupydon software should be regarded as a guide in this particular case, instead 

of a judge. 

 

 The software is forced to find correlations that minimize local variations of the sedimentations rates 

(Coutand et al., 2016; Lallier et al., 2013), and this advantage is pertinent in the choice of the best 

manual correlation. However, the resulting correlation strongly depends on the credit accorded to 

the polarities. Therefore, G. Govin acknowledges the efficiency of the Qupydon software in guiding 

the choice of the best manual correlation for the upper part of the Dungsam Chu section, as it 

provides a general overview of the best option. Nevertheless, in detail, the ambiguities related to 

the local variations in the accumulation rates are better addressed with a manual correlation. As 

illustrated in Figure B, correlation Q is forced to the lower local variations in accumulation rates; by 

contrast, correlation C takes into account the less reliable definition of the normal polarity zones.  

 

Furthermore, the one-stage decrease in accumulation rates in the Dungsam Chu section determined 

with the manual correlation C (Figure B) is synchronous with the arrival of paleo-Brahmaputra 

deposits in the section, interpreted as the initiation of the uplift of the Shillong Plateau (see chapter 

2 and discussion). By contrast, the accumulation rates observed using the numerical correlation Q 

show a two-stage decrease and although the first decrease is also synchronous to the uplift of the 

Shillong Plateau, the second stage is more difficult to explain.  
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Figure B: modified version of Fig. 28 Age versus depth plot of the Dungsam Chu section using the best 

numerical correlation in red, and the best manual correlation in blue. In black are the results similar 

for both correlations. Accumulation rates are presented in their corresponding color.  

 

Note that the rutile U-Pb data from the Dungsam Chu section presented in Appendix VII are 

consistent with correlation C. Indeed, the youngest rutile grain from sample SJ8 (see chapter 2) is 

dated at 4.8±0.3 Ma. This age constitutes a maximum depositional age for the stratigraphic level of 

sample SJ8 (~1400 m). If correlation C is used to determine the depositional age of the rocks, the 

stratigraphic level of sample SJ8 has a younger depositional age of ~4.4 Ma; by contrast if correlation 

Q is used, the depositional age is ~4.9 Ma which is older than or within error to the maximum 

depositional age determined with rutile U-Pb dating. Therefore, the rutile U-Pb dating in the 

Dungsam Chu section constitutes supplementary evidence that the manual correlation C is closer to 

the true depositional age of the Dungsam Chu section than the numerical correlation Q. However, 

this depends on the degree of error on the depositional ages determined with both correlations. 

Indeed, the rutile U-Pb ages <9 Ma are sourced from the rapidly exhuming syntaxis, as characterised 

by Bracciali et al. (2016) and this implies that the rutile U-Pb lag times are expected to be very short 

(see chapter 4). 
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ABSTRACT 

The Himalaya has a major influence on global and regional climate, in particular on the Asian 

monsoon system. The foreland basin of the Himalaya contains a record of tectonics and 

paleoclimate since the Miocene. Previous work on the evolution of vegetation and climate has 

focused on the central and western Himalaya, where a shift in vegetation has been observed at ~7 

Ma and linked to increased seasonality, but the climatic evolution of the eastern part of the orogen 

is less well understood. In order to track vegetation as a marker of monsoon intensity and 

seasonality, we analysed δ13C and δ18O values of soil carbonate and associated δ13C values of bulk 

organic carbon from previously dated sedimentary sections exposing the syn-orogenic detrital 

Dharamsala and Siwalik Groups in the west, and, for the first time, the Siwalik Group in the east of 

the Himalayan foreland basin. Sedimentary records span from 20 to 1 Myr in the west (Joginder 

Nagar, Jawalamukhi, and Haripur Kolar sections) and from 13 to 1 Myr in the east (Kameng section), 

respectively. The presence of soil carbonate in the west and its absence in the east is a first 

indication of long-term lateral climatic variation, as soil carbonate requires seasonally arid conditions 

to develop. δ13C values in soil carbonate show a shift from around -10 ‰ to -2 ‰ at ~7 Ma in the 

west, which is confirmed by δ13C analyses on bulk organic carbon that show a shift from around -23 

‰ to -19 ‰ at the same time. Such a shift in isotopic values is likely to be associated with a change 
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from C3 to C4 vegetation. In contrast, δ13C values of bulk organic carbon remain at ~-23 ‰ in the 

east. Thus, our data show that the current east-west variation in climate was established at 7 Ma. 

We propose that the regional change towards a more seasonal climate in the west is linked to a 

decrease of the influence of the Westerlies, delivering less winter precipitation to the western 

Himalaya, while the east remained annually humid due to its proximity to the monsoonal moisture 

source. 

 

1. INTRODUCTION  

The Himalayan belt has a major influence on global and regional climate, by acting as an orographic 

barrier for air masses and humidity (Boos and Kuang, 2010; Molnar et al., 2010). Modern climate 

shows significant east-west variation in the Himalaya: both mean-annual and winter precipitation on 

the plains and foothills are higher in the east, while the west is characterized by more pronounced 

winter aridity (Fig. 1; Bookhagen and Burbank, 2006; 2010). This variation is due to the two major 

atmospheric circulation systems influencing the climate of the Himalayan region: the Indian Summer 

Monsoon (ISM) and the Westerlies (Kotlia et al., 2015). The ISM takes up moisture in the Bay of 

Bengal and transports it towards the Himalaya during the northern-hemisphere summer months 

(e.g. Molnar et al., 2010), whereas the Westerlies bring moisture from the Mediterranean, Black and 

Caspian Seas and are most efficient in winter (Benn and Owen, 1998; Cannon et al., 2015). Generally, 

the influence of the Westerlies is greater in the western part of the Himalayan region (Cannon et al., 

2015; Caves et al., 2015; Kotlia et al., 2015). The proximity to the moisture source in the Bay of 

Bengal, makes the eastern Himalaya very humid (Bookhagen and Burbank, 2010). 

 

These lateral variations in modern climate are linked to vegetation patterns, in particular the relative 

importance of C3 versus C4 plants. C3 plants are favoured in a cool and humid climate, whereas C4 

plants prefer intense light, warm and water-stressed conditions (Ehleringer, 1989). An additional 

factor that possibly influences the evolution of C4 plants is growing season temperature and 

precipitation, favouring C4 plants in drier periods (Cotton et al., 2016). The distinct stable carbon-

isotopic signature of C3 versus C4 vegetation allows paleo-vegetation to be tracked from the 

sedimentary record: pure C3 vegetation has δ13Corg values between -22 ‰ and -30 ‰, whereas 

δ13Corg values of C4 plants range from -10 ‰ to -14 ‰ (Cerling et al., 1997). The lateral variations in 

modern climate and vegetation are expressed by the signature of modern organic carbon 

transported in the foreland (Galy et al., 2008b; Fig. 1): sediments sampled from Himalayan 

tributaries at the mountain front have δ13Corg values around -25 ‰, indicating dominance of C3 

plants at higher elevations within the mountain belt. These values remain stable within the eastern 
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Brahmaputra catchment, whereas they increase to values around -22 ‰ in the Western Ganga 

catchment (Fig. 1), implying laterally varying vegetation (from C4 in the west to C3 in the east) in the 

floodplain. 

 

Fig. 1: Map of the Himalayan region, with δ13C of modern river organic carbon from Galy et al., 

2008b. The Himalayan range is indicated schematically in grey. Sections are indicated in red: JW: 

Jawalamukhi; JN: Joginder Nagar; HK: Haripur Kolar; KM: Kameng. Lower plot shows comparison of 

modern annual precipitation data (TRMM) in proximity to the sampled sedimentary sections in the 

west and east.  

 

An important question is when and why the modern spatial patterns in climate and vegetation were 

established in the Himalayan foreland. The onset of the ISM is dated back to at least the middle 
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Miocene (Dettman et al., 2001) and possibly the Late Eocene (Licht et al., 2014). Likewise, the 

Westerlies have been argued to influence Asian climate since the Eocene (Caves et al., 2015). 

However, the evolution of regional climate and vegetation patterns will depend on the relative 

strength of these two systems through time, which remains largely unknown. 

 

The foreland basin of the Himalaya contains a sedimentary record of vegetation and paleoclimate 

since Miocene times, within the continental detrital pre-Siwalik and Siwalik Groups. The record of 

spatial and temporal variations in vegetation holds information on climate evolution, in particular 

patterns of atmospheric circulation, seasonality and the origin and transport of humidity (e.g. Hoorn 

et al., 2000; Sanyal et al., 2004). Carbon and oxygen isotopic compositions of soil carbonates and soil 

organic matter from pre-Siwalik and Siwalik sediments in Nepal, Northwest India and Pakistan have 

been used to reconstruct changes in vegetation and climate during the Neogene (Quade and Cerling, 

1995; Quade et al., 1989; 1995a; Sanyal et al., 2010; Singh et al., 2013). These records consistently 

show a shift in δ 13C values at ~7 Ma, which has been interpreted as a change from C3 to C4 

vegetation, which was initially interpreted to be related to an intensification of the ISM (Quade et 

al., 1989). Steinke et al. (2010) suggest that this change was rather linked to an increase in aridity, 

and therefore a weakening of the ISM. A similar shift has also been recorded in the distal Himalayan-

derived sediments of the Bay of Bengal (France-Lanord and Derry, 1994). It has been argued that the 

late-Miocene expansion of C4 plants is a global phenomenon due to a decrease in atmospheric pCO2 

(Cerling et al., 1997), global cooling and/or increased aridity (Herbert et al., 2016). Others, however, 

argue that pCO2 was already at a level favourable for C4 plants during Oligocene times (Beerling and 

Royer, 2011; Pagani et al., 2005) and that the spread of C4 plants during the late Miocene should 

therefore have other, more regional triggers. 

 

The focus of previous studies on Himalayan climate and vegetation records has been entirely on the 

western and central Himalayan foreland; no climate and vegetation data are available east of Nepal. 

In order to obtain better spatial insight into the evolution of the monsoon climate, precipitation 

patterns and the expansion of C4 plants along strike in the Himalaya, we present and compare new 

δ13C and δ18O data of pedogenic carbonate and organic matter from the north-western and the 

poorly studied eastern Himalayan foreland basin. Lateral variations in the evolution of the 

vegetation yield further insight into how and under what climatic conditions C4 plants developed or 

not, suggesting that regional influences play a major role. 
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 2. SETTING  

Neogene Himalayan foreland-basin sediments are composed of the fluvial Dharamsala Group of Late 

Oligocene and early Miocene age (Burbank et al., 1996), and the Siwalik Group deposited since the 

early Miocene. The Dharamsala rocks consist of continental fluvial, lacustrine or deltaic sediments, 

and contain fine-to medium grained sandstones, siltstones and overbank mudstones with soil 

carbonate nodules. The sediments of the Siwalik Group are exposed nearly continuously along the 

front of the Himalayan range, with only minor age variation along strike (Burbank et al., 1996). They 

were deposited in the foreland before being incorporated in the foothills due to southward 

propagation of deformation and onset of motion on the Main Frontal Thrust (MFT). 

 

The Siwalik Group shows an overall coarsening- and thickening-upward trend, interpreted as 

recording increasingly proximal deposition (DeCelles et al., 1998a), and is divided into the Lower, 

Middle and Upper Siwaliks (LS, MS, US). The LS were deposited by high-sinuosity streams (Nakayama 

and Ulak, 1999). The Middle Siwaliks (MS) are characterized by thickly bedded sandstones, which are 

medium- to coarse-grained and often rich in mi~The MS represent a depositional environment of 

large braided rivers. The Upper Siwaliks (US) consist of beds of conglomerates alternating with 

sandstone beds, deposited by gravelly braided rivers. Paleosols are developed throughout most of 

the Siwalik sections, with lateral and temporal variations in abundance: they are more abundant in 

the LS and in the west. Paleosols are characterized in western and central Himalayan sections by the 

presence of soil-carbonate nodules. 

 

We sampled three sections exposing Dharamsala and Siwalik deposits in the western Himalaya; the 

Joginder Nagar (JN), Jawalamukhi (JW) and Haripur Kolar (HK) sections in Himachal Pradesh, and one 

Siwalik section in the eastern Himalaya; the Kameng River (KM) section in Arunachal Pradesh (Figs. 1, 

2). All sections have previously been dated by magnetostratigraphy (Chirouze et al., 2012; Meigs et 

al., 1995; Sangode et al., 1996; White et al., 2001). They span a time range of 20-1 Ma in the west 

and 13-1 Ma in the east. In the western sections, we collected paleosols and associated carbonate 

nodules, as well as fine-grained mudstone in zones without well-developed paleosols. Carbonate 

nodules are lacking in the Kameng section (Fig. 2); therefore only mudstones, where possible from 

paleosols, were sampled. Additionally, modern river mud was sampled from riverbanks in proximity 

to the sections in both the west and the east. Modern river samples in the west (Beas River and Jner 

Khad River) were collected at an elevation of ~640 m within the sections, whereas the modern 

Kameng River sample was collected at an elevation of ~100 m downstream of the Siwalik. 
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Fig. 2: Stratigraphy of sections of the Dharamsala and Siwalik Groups in the west (A) and in the east 

(B), with field photos showing sedimentological characteristics of different sub-groups. 

 

3. METHODS 

13C/12C and 18O/16O ratios (expressed as δ13C and δ18O values respectively) of soil carbonate nodules 

were determined using a multiflow analyser linked to an Isoprime 100 continuous flow mass 

spectrometer at the Lancaster University, UK. Approximately 600-700 µg of sample powder was 

drilled from each carbonate nodule and digested online at 90°C with dehydrated phosphoric acid in 

a He-flushed exetainer. Product CO2 was analysed for δ13CCO2 and δ18OCO2 and corrected against 

VPDB and VSMOW, respectively, using within-run analyses of international standards NBS18, LSVEC 

and CO-1. Within-run standard replication (1 σ) was <0.1 ‰ for both C and O isotope ratios. Sample 
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replication based on separate drill aliquots of powder from the same carbonate nodule was <0.1‰ 

for δ13C and <0.2 ‰ for δ18O (1 σ).   

 

13C/12C ratios (expressed as δ13C values) of bulk organic matter were determined using an Elementar 

Vario Micro elemental analyser linked to a VisION continuous flow mass spectrometer at the 

University of Lancaster. The carbonate content of each sample was removed by acid digestion using 

1M ultrapure HCl and the resultant sample washed repeatedly using de-ionised water and 

centrifugation. Approximately 10 mg of each prepared sample was combusted within tin capsules at 

960 °C to yield CO2 for determination of δ13Corg. δ13C values were corrected against VPDB using 

internal reference materials calibrated to international standards. Within-run δ13C replication (1 σ) 

was <0.2 ‰ for standards and <0.25 ‰ for samples. 

 

4. RESULTS 

The three sections in Himachal Pradesh (Western Himalaya) provide a continuous age record over 

the past 20 Ma (Fig. 3). Prior to ~7 Ma, δ13C values of soil carbonate (δ13Csoil carb.) range between -8 ‰ 

and -13 ‰, whereas at ~7 Ma a shift towards more positive δ13C values, ranging from +2 ‰ to -8 ‰, 

is observed (Fig. 3; Supplementary Material 1). δ18O values range mostly from -11 ‰ to -4 ‰, except 

in the older part of the sections, where some values are as low as -14 ‰. A weak trend towards 

more positive δ18O values over time is observed. As noted above, soil carbonate was not present in 

the eastern Himalayan section.  

 

We additionally measured a continuous record of δ13C in organic carbon (δ13Corg) in both the western 

and eastern sections (Fig. 4; Supplementary Material 1). In the west, a clear shift towards more 

positive δ13Corg values is observed at ~7 Ma, synchronous with the δ13Csoil carb. Before 7 Ma, δ13Corg 

values range between -23 ‰ and -27 ‰, while values are less negative, from -18 ‰ to -23 ‰, after 

7 Ma. In the east, in contrast, δ13Corg values remain constant between -29 ‰ and -23 ‰ since the 

middle Miocene and no shift towards more positive values is observed. Organic matter from modern 

river sediments show δ13C values of approximately -26 ‰ and -23.5 ‰ in the west and in the east, 

respectively (Fig. 4). Total Organic Carbon content (TOC) in the western samples is mostly <0.5 % 

although samples from the JN can have up to 15% TOC (Fig. 5). TOC of most Kameng samples is also 

<0.5 %, with some samples showing values up to 3%. There is no correlation between δ13Corg values 

and TOC (Supplementary Material 2). 
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Fig. 3: A: δ13Csoil carb. and δ 18O values of soil carbonate in the western Himalaya. Different symbols 

indicate the different sections (HK: Haripur Kolar; JW: Jawalamukhi; JN: Joginder Nagar). B: δ13Csoil 

carb. and δ 18O values of soil carbonate in Pakistan from Quade and Cerling (1995). 
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Fig. 4: δ13Corg of bulk organic carbon in the western (HK: Haripur Kolar; JW: Jawalamukhi; JN Joginder 

Nagar) and the eastern (KM: Kameng) Himalayan sections. Light and dark grey shaded bars indicate 

δ13Corg values characteristic of C3 and C4 plants, respectively (Cerling et al., 1997). 
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Fig. 5: Total organic carbon content (TOC) vs age [Ma], zoomed in to values below 0.5 % on the left 

and values above 0.5 % on the right. TOC values above 0.07% indicate dominant biogenic Corg, from 

soil organic matter and floodplain vegetation, rather than detrital and fossil Corg (Galy et al., 2008a). 
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5. DISCUSSION  

5.1. Modern river sediments and vegetation 

The modern Ganga/Brahmaputra floodplain is widely used for agriculture and is therefore 

predominantly covered in C3 plants such as rice crops, and in the east by tea plantations (Blasco et 

al., 1996). This is not reflected by the organic carbon transported in the Ganga and Brahmaputra 

Rivers: δ13Corg values of ~-21.9 ‰ in the modern Ganga floodplain are representative of a mixture of 

C4 and C3 plants, suggesting the presence of C4 plants in the west, whereas the modern 

Brahmaputra River carries organic carbon with δ13Corg values of -23.0 ‰ in the range of C3 plants 

(Galy et al., 2008b). 

 

Measured δ13Corg values of modern river muds in both the west (Beas and Jner Khad River) and the 

east (Kameng River) are in the range of C3 plants. However, these modern river sediments were not 

collected in the floodplain but at the mountain front, where they will contain detrital organic carbon 

of C3 plants transported from higher elevations (Dobremez, 1978) and/or fossil organic carbon from 

Himalayan formations (Galy et al., 2008b), which both have a more negative isotopic signal. 

Dharamsala and Siwalik sediments were deposited further into the floodplain, and hence should 

carry a signal of floodplain vegetation.  

 

5.2. Possible factors influencing the isotopic signal 

Earlier studies (Quade et al., 1995a; Quade and Cerling, 1995; Sanyal et al., 2010; Singh et al., 2007) 

measured δ13C on soil carbonate nodules, which can only be found in the western and central 

Himalayan Siwalik sections, and have consistently shown a change towards more positive values at 

~7 Ma from Pakistan to Nepal (Quade et al., 1995a; Quade and Cerling, 1995). This change was 

interpreted in terms of a shift in vegetation, from initially dominated by C3 plants to containing C4 

species. In order to compare the western and the eastern Himalaya in this study, we rely on δ13Corg of 

bulk organic matter, as soil carbonate nodules are absent in the east. In both the western and the 

eastern sections, δ13Corg values range between -23 ‰ and -29 ‰ before 7 Ma, indicating vegetation 

dominated by C3 plants. After 7 Ma, δ13Corg in the western sections demonstrates an isotopic shift to 

values enriched in 13C (~-19 ‰), suggesting that a component of the organic matter comprises C4 

species. Carbonate nodules from western Himalayan sections analysed in this study show a trend 

similar to δ13Corg, demonstrating a shift from C3-dominated vegetation composition, to an increasing 

proportion of C4 species in the younger sections. In the east, in contrast, δ13Corg values stay in the 

range of C3 plants throughout the sedimentary succession (Fig. 4). 
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In modern soils, carbonate precipitates in equilibrium with soil CO2 (Cerling et al., 1989) following an 

isotopic enrichment in 13C of 10.36 ‰, (Cerling et al., 1989). Diffusional effects cause soil-respired 

CO2 to be further enriched in 13C by 4.4 ‰. The total fractionation between soil organic matter and 

soil carbonate is ~14 ‰, at 25°C to ~17 ‰ at 0°C (Cerling et al., 1989). δ13Csoil carb. values show a 

greater (~+10‰) shift towards more positive values after 7 Ma than the δ13Corg values (~+ 6 ‰; Fig. 

6). This discrepancy in the absolute value of the isotopic shift to signatures more enriched in 13C 

likely reflects the nature of carbonate nodule production and organic matter source. Whereas soil 

carbonates reflect only the soil CO2 characteristics and temperature during formation, the δ13Corg 

values are more susceptible to bias by inherited and transported material. 

 

Although δ13Corg is usually interpreted to represent isotopic values of vegetation in the floodplain at 

the time of sediment deposition, it can potentially be biased by several factors, such as input of 

(likely C3 plant dominated) organic carbon from high elevations (Dobremez, 1978) and/or input of 

fossil organic carbon. The amount of fossil organic carbon present in Himalayan river sediments was 

estimated using the radiocarbon content of total organic carbon (TOC) of modern suspended and 

bedload sediments (Galy et al., 2008a; 2008b). Galy et al. (2008a) estimated the total amount of 

fossil organic carbon transported in the Ganga and Brahmaputra Rivers between 0.02 and 0.03 %. 

Sediments of the sampled sections mostly have TOC values >0.1 % (Fig. 5) suggesting that the 

proportion of fossil carbon should be low, <30 % at most, if the modern amounts of transported 

fossil organic carbon can be extrapolated to the past. δ13Corg of fossil organic carbon from Himalayan 

source rocks varies from -28 to -14.6‰ (Galy et al., 2008b); it is therefore unclear what the effect of 

varying proportions of fossil organic carbon on the observed δ13Corg signal would be. However, we 

have no reason to assume the influence of fossil carbon to be very different from east to west and 

our data suggest this influence to be rather constant over time (see below). It is therefore unlikely 

that the spatial and temporal variations in δ13Corg values could be explained by variable fossil organic 

carbon content. 
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Fig. 6: δ13Csoil carb. of soil carbonate nodules vs. δ13Corg of co-existing organic matter of the western 

Dharamsala and Siwalik Group sections. Solid and dashed lines represent isotopic values of 

pedogenic carbonate in isotopic equilibrium with the soil CO2 derived from irreversible oxidation of 

organic matter in a diffusion controlled soil system at different temperatures (Cerling et al., 1989). 

 

Additionally, the efficiency of oxidation of organic carbon and hence the replacement of inherited 

carbon by floodplain carbon can influence the δ13Corg signal in modern river sediments (Galy et al., 

2008b; 2011). Organic-carbon oxidation varies between the Ganges and Brahmaputra foreland 

basin, being more efficient in the Ganges floodplain due to different hydrological settings: the 

Ganges is a meandering river, whereas the Brahmaputra is a braided river with a narrower floodplain 

(Galy et al., 2008b). Oxidation of inherited organic carbon from vegetation at higher altitudes, hence 

with a C3 signal, is efficient in the Ganges floodplain (Galy et al., 2008b), as shown by the proportion 

of C4 organic matter increasing downstream in the Ganges floodplain (Fig. 1). This pattern is not 

present in the Brahmaputra floodplain, suggesting that the influence of inherited carbon could 

therefore be greater in the Brahmaputra. Even though paleosols are less developed in the east, high 

TOC values indicate the presence of organic matter acquired from surface organic litter during 

pedogenesis (Fig. 5). Degradation of organic matter in soils could have an influence on the δ13Corg: 

detrital organic matter has a ~1-2 ‰ more negative δ13C signal than soil organic matter (von Fischer 

and Tieszen, 1995 and references therein). The more negative δ13C values in the Kameng section 



282 
 

could therefore be explained by the presence of more detrital organic matter. Differences in 

floodplain dynamics during transport and a greater influence of inherited organic carbon could 

possibly bias the signal but are unlikely to cancel out the entire C4 signal in the eastern Himalaya.  

 

Further information on different organic carbon sources could potentially be derived from lipid 

biomarker analysis (i.e. compound-specific C- and H-isotope analysis; Freeman and Colarusso, 2001; 

Sachse et al., 2012). We extracted n-alkanes from samples of both the western and the eastern 

sections (see Supplementary Material 3), but unfortunately n-alkane preservation was generally low 

in the sediments. Moreover, evidence of diagenetic overprinting was found in sediments with a 

sufficient concentration, evidenced by an absence of the predominance of odd carbon numbered n-

alkane chain lengths (expressed as the carbon preference index, CPI), which is prevalent in modern 

plant and sediment samples. In modern plant material and immature sediments, CPI values are 

generally significantly >3 and up to 20, whereas we found values around 1 in the Kameng samples, 

indicating diagenetic overprinting or addition of fossil carbon at the time of sedimentation. As a 

result of this, compound-specific hydrogen and carbon stable isotopic values would likely have been 

altered towards less negative values (Radke et al., 2005). While diagenetic overprinting could also 

have affected bulk δ13Corg values by homogenizing the isotopic signal (Bera et al., 2010; Cerling, 

1984), our CPI data remained uniform at values around 1 from the base of the section until ~2 Ma, 

indicating a similar degree of overprinting in these samples. Since we did not find any change in bulk 

δ13Corg values corresponding to changes in CPI values, we argue that any potential overprinting 

affected all samples equally and as such relative changes can still be interpreted from bulk δ13Corg 

values. In addition, the samples presented in Fig. 3 are in the same isotopic range as modern soil 

carbonate nodules, indicating that diagenesis is unlikely to have influenced the isotopic values of the 

sedimentary samples.  

 

The isotopic values of pedogenic carbonate are in equilibrium with soil CO2 derived from irreversible 

oxidation of organic matter in a diffusion-controlled soil system at different temperatures. The 

isotopic equilibrium factor is dependent on temperature, hence if pedogenic carbonate precipitates 

in equilibrium with soil CO2, δ
13Csoil carb should be enriched by ~14 ‰ at 25 °C and by 17 ‰ at 0 °C, 

respectively (Cerling, 1984; Cerling et al., 1989). Carbonate nodules and their corresponding organic 

matter of the Dharamsala and Siwalik paleosols plot mostly at temperatures between 0 and 25°C 

and are therefore not isotopically altered by diagenesis (Fig. 6), but rather formed within this soil 

temperature range. Samples below the 0°C line could reflect an inconsistency in the enrichment of 

13C in soil carbonate nodules compared to the co-existing organic matter. Most of the samples 
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plotting under the 0°C line show a strong C4 signal, and the offset between δ13Corg and δ13Csoil carb. in 

these samples is greater than expected from isotopic equilibrium considerations. A possible 

explanation for this enhanced offset could be that the carbonate nodule formed in a sediment body 

(e.g. another paleosol horizon) that was separate from the parent organic matter. Alternatively, 

organic matter may be more influenced by inherited organic matter from C3 vegetation, whereas 

the δ13Csoil carb would more directly represent the local vegetation cover. However, this inconsistency 

does not reflect a diagenetic overprint, as it is found in the youngest samples, where diagenesis is 

least likely to occur.  

 

δ18Osoil carb. values of the three western sections show a slight change towards more positive values 

(Fig. 3), comparable to δ18O values of the Surai Khola section in Nepal (Quade et al., 1995a). Only 

δ18Osoil carb. values from Pakistan show a clear shift from values <-8 towards more positive values at 

~8-6 Ma (Quade and Cerling, 1995). In contrast, samples from this study already show δ18Osoil carb. 

values >-8 before 7 Ma (Fig. 3). A change in δ18Osoil carb., which forms in-situ from soil water, can be 

associated with a change in either soil temperature (δ18Osoil carb. being positively correlated with 

mean annual temperature; Cerling, 1984) and/or precipitation source: δ18O values of precipitation of 

moisture transported from the Bay of Bengal are generally lighter (more negative) than δ18O values 

of moisture transported by the Westerlies (Caves et al., 2015 and references therein). The isotopic 

change over time was measured on samples of three separate sections (Fig. 2) at different 

longitudinal locations; therefore the isotopic signature from precipitation may be location specific 

rather than representing change over time. However, there is no clear shift in δ18Osoil carb. values 

going from one section to another (Fig. 3), suggesting this effect to be minimal. As all sediments 

were deposited in the foreland, the influences of any altitudinal effects (Dansgaard, 1961) can also 

be excluded. 

 

The coarsening-upward trend of sedimentary rocks throughout the sections reflects a change in 

depositional environment and location in the foreland basin, which varies from a distal floodplain for 

the Dharamsala and Lower Siwaliks to deposition closer to the mountain front in the Upper Siwaliks. 

At different locations in the foreland basin, the source of precipitation may vary from moisture 

influenced by the Westerlies, to moisture sourced from the ISM. More positive δ18Osoil carb. values 

over time could therefore indicate an increasing influence of Westerlies with respect to ISM 

moisture sources, and/or a trend towards a warmer, drier climate, conducive to the growth of C4 

vegetation. 
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5.3. What caused the change of vegetation at ~7 Ma? 

C3 and C4 plants grow in different environments and the δ13C signal can therefore be used as an 

indirect climate indicator. Our data show that a change in vegetation occurred at ~7 Ma in the 

western Himalaya, but not in the east, where C3 plants have been dominant since the middle 

Miocene. As we have argued above, differences in floodplain setting (Galy et al., 2008b; 2011), while 

influencing the signal, cannot explain the observed lateral difference and neither can input of fossil 

organic carbon (Galy et al., 2008a). For this reason, there must be a remarkable lateral variation in 

the evolution of climate in the Himalayan region. The change at 7 Ma in the west and central 

Himalaya has been interpreted as resulting from a “stronger monsoon”, characterized by greater 

seasonality (Quade and Cerling, 1995; Quade et al., 1989; 1995a). However, increased seasonality 

does not necessarily reflect higher amounts of monsoon precipitation; it could also indicate 

relatively less winter precipitation and thus a more arid (annual-average) climate (Molnar, 2005). C3 

plants in the east indicate lower seasonality and higher annually averaged precipitation, consistent 

with modern precipitation patterns (Bookhagen and Burbank, 2010). The expansion of C4 plants in 

the west could therefore be a consequence of decreased winter precipitation, hence more 

seasonality associated with less (annually averaged) humidity, leading to a more arid climate. 

Overall, this difference in the δ13C composition post-7 Ma is proposed to reflect water availability, 

with lower water availability in the west initiating a decline in C3 plants and a rise in C4 species (see 

Freeman and Colarusso, 2001). Dettman et al. (2001) likewise suggest a change in Indian summer 

monsoon characteristics and drying of the climate at 7.5 Ma. This scenario is supported by a change 

in δ18Osoil carb. towards more positive values. 

 

Higher humidity in the east could be explained by the proximity to the Bay of Bengal, which is the 

major moisture source of precipitation in this area (Bookhagen et al., 2005a). The western Himalaya 

is influenced by the Westerlies (Kotlia et al., 2015), which bring in winter precipitation. A decrease in 

the intensity of the Westerlies at 7 Ma would lead to more seasonality in the western floodplain, 

with drier periods in winter. An alternative explanation for a generally more arid climate in the 

western Himalaya could be a decrease of moisture transport from the Bay of Bengal and the Arabian 

Sea, possibly linked to a decrease in the intensity of the ISM. However, this would result in less 

seasonality, hence a less favourable climate for C4 plants. The spatially variable record of δ13Corg 

values strongly suggests that the change in vegetation at 7 Ma did not occur simultaneously along 

the Himalayan foreland, indicating that the change is at least partly driven by regional factors rather 

than being linked only to a global change in atmospheric pCO2. This supports the findings of Pagani 

et al. (2005) and Beerling and Royer (2011), who noted that atmospheric pCO2 levels favouring C4 
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plants were already reached during the Oligocene. Other dry regions such as the Mediterranean 

have been dominated by C3 plants since the Miocene (Quade et al., 1995b; Quade et al., 1994), also 

indicating that the late-Miocene expansion of C4 plants was not a global phenomenon. Regionally 

dependent factors, such as differences in seasonality or humidity, have clearly played a role in 

determining Himalayan vegetation patterns through time. Lateral variations in vegetation suggest 

that there is a threshold somewhere along the Himalayan front, where the amount of (either annual 

or winter) precipitation becomes too large for C4 plants to spread. 

 

6. CONCLUSIONS 

Stable carbon and oxygen isotopes were analysed in carbonate nodules of the Joginder Nagar, 

Jawalamukhi and Haripur Kolar sections in the western Himalaya. δ13Csoilcarb. values show a clear shift 

towards more positive values at 7 Ma, similar to the results of earlier studies in the western and 

central Himalaya. The lack of carbonate nodules in Siwalik sediments of the Kameng section, eastern 

Himalaya, is a first indicator that the lateral environmental and climatic differences in the modern 

Himalaya are representative of long-term climatic patterns. In order to directly compare the western 

and eastern sections, stable carbon isotopes on organic matter were analysed and show a clear 

spatial difference. In the west, δ13Corg values shift towards more positive values at 7 Ma, consistent 

with the results on carbonate nodules, whereas they remain constant over the last 13 Ma in the 

east. The δ13C of organic matter reflects the evolution of vegetation, with the development of C4 

plants in the west and an environment that remains favourable for C3 plants in the east. Such 

variations in vegetation imply differences in climate, which became more seasonal and overall drier 

in the west at 7 Ma. The eastern Himalaya is more proximal to the main moisture source for 

precipitation (the Bay of Bengal); therefore, even though climate may have varied, it remained less 

seasonal and more humid, inhibiting the evolution of C4 plants. Therefore, the change in climate in 

the west and the onset of lateral variation is most likely caused by a change in strength of 

atmospheric circulation, such as a weakening of the influence of the Westerlies. These findings 

suggest that the late-Miocene expansion of C4 vegetation does not depend solely on atmospheric 

pCO2 but also on regional changes in aridity and seasonality. Newly developed methods, such as 

clumped isotopes or stable isotopes on compound-specific organic carbon, even though 

unsuccessful in this study, could provide further insight into the climatic evolution and the 

development of C4 vegetation, both globally and regionally in the Himalayan region. This study has 

provided the first paleo-climate and -vegetation data from the eastern Himalaya; however, more 

such studies are needed to refine our understanding of the evolution of climate and vegetation in 

this area. 
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SUPPLEMENTARY MATERIAL 

Supplementary Material 1:  

Sample overview and results of δ13Corg , δ
13Csoil carb. and δ 18O soil carb. are presented in the data table of 

Appendix VI in the electronic document attached to the thesis. 

 

Supplementary Material 2:  

 

Figure: Total organic carbon (TOC) vs. δ13Corg in the western (a) and eastern (b) sections, respectively. 

Supplementary Material 3: n-alkane analysis on the Kameng river section 

 

Supplementary Material 3: n-alkane analysis on the Kameng river section 

Method 

Sediments were freeze-dried, after which a Total Lipid Extract (TLE) was extracted using a Dionex 

ASE 350 Accelerated Solvent Extractor, with a solvent mixture of 9:1 Dichloromethane (DCM): 

Methanol (MeOH). Samples were separated using silica columns, rinsing them with 12 mL hexane to 

obtain the n-alkane fraction, and 12 mL of 9:1 DCM:MeOH to obtain the polar fraction containing 

fatty acids.  
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The n-alkane fraction of 27 samples were quantified using an Agilent GC MSD (Agilent 5975C MSD, 

Agilent 7890A GC with Agilent J&W HP-5ms column, 30 m x 0.25 mm x 0.25 µm film) connected to a 

Flame Ionization Detector (FID). All analyses were conducted at the organic geochemistry laboratory 

of the Institut für Erd- und Umweltwissenschaften at the University of Potsdam. 

The Carbon Preference Index (CPI) and Average Chain Length (ACL) were calculated as follows.  

 

CPI= 
∑𝑜𝑑𝑑(𝐶21−33)+∑𝑜𝑑𝑑(𝑐23−25)]

2∑𝑒𝑣𝑒𝑛(𝑐22−34)
  ACL= 

∑(𝐶𝑛×𝑛)

∑(𝐶𝑛)
 

 

In sediments CPI is used as an indicator of thermal maturity of the rocks and as a source indicator, 

and ACL indicates different biological source of n-alkanes (Eglinton and Hamilton, 1967). 

 

Results 

Overall, very few n-alkanes were found in the sediments, and in particular long chain n-alkanes (>C25) 

were scarce. CPI values varied between 0.6 and 5.8, and only 8 samples were found to have a CPI >1 

(Figure 1). The total concentration of alkanes in the samples varied between 1 µg/g sediment – 2.7 

µg/g sediment. Ultimately, as little as 3 samples would have been suitable for carbon and isotope 

analysis on long chain n-alkanes, which is too few for any substantiated data analysis.  

 

Figure 1: Carbon Preference Index (CPI). CPI >1 shows an odd over even numbered chain length 

preference; indicating original leaf waxes. 
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APPENDIX VII: Detrital rutile U-Pb dating from the Dungsam Chu section 
 

G. Govin acquired rutile U-Pb data from the sample SJ8 of the Dungsam Chu section (see chapter 2 

for location), under the instruction of I. Millar. This appendix describes the method used and the 

results; the latter are presented in detail in the table corresponding to this appendix. 

 

Sample preparation 

Prior to analysis, the sample was dried, sieved (fraction <500 µm) and washed with tap water at 

Lancaster University. Heavy minerals were extracted by wet separation on a Haultain superpanner, 

standard di-iodomethane heavy liquid (density of 3.3), and magnetic separation, which was kept to a 

minimum to avoid biasing mineral populations, at the NERC Isotope Geosciences Laboratory, 

Keyworth, UK (NIGL). Rutile grains were hand-picked, taking special care to select all grain types with 

respect to morphology, colour and grain size, within a particular fraction of the separate.  

 

Rutile U-Pb dating 

The rutiles were mounted in epoxy, polished, and photographed to help identify the analysed grains. 

U-Pb rutile dating was performed using a Nu Instruments AttoM single-collector inductively coupled 

plasma mass spectrometer (SC-ICP-MS) at NIGL. The instrument was tuned to ensure that ThO and 

UO were less than 0.4%. The Nu Attom SC-ICP-MS was used in peak-jumping mode with 

measurement on a MassCom secondary electron multiplier. The analysed masses in each sweep 

were: 202Hg, 204Pb+Hg, 206Pb, 207Pb, and 235U. Each data integration records 100 sweeps of the 

measured masses, which roughly equates to 0.22 seconds. Dwell times on each mass are 400 μs on 

207Pb and 235U, and 200 μs on all other masses; the switching between masses takes 40 μs. 238U is 

calculated using 238U/235U = 137.818.  

Laser ablation was performed using a New Wave Research UP193SS laser ablation system, with a  

low-volume cell (Horstwood et al., 2003). This cell has a washout to less than 1% of the peak signal in 

less than one second. Ablation parameters were optimized to suit the Pb and U contents with a 

frequency of 5Hz, a fluence of 1.5 to 3.0 J/cm2, a 30 second ablation time, and a 30 to 35 μm spot 

size. 

Four rutile reference materials, Sugluk-4, PCA-S207 (Bracciali et al., 2013) and R10 (Luvizotto et al., 

2009) were analysed at regular intervals in order to correct data for instrumental fractionation. The 

average bias of the 207Pb/206Pb and 206Pb/238U ratios from preferred values derived by TIMS analysis 

are used for normalization. 206Pb/238U and 207Pb/206Pb uncertainties were propagated in the manner 

advocated by Horstwood (2008), utilising the measurement uncertainty and the reproducibility of 

the ablation reference material used. 
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Rutile commonly incorporates a significant amount of common Pb during crystallisation, and as a 

result is typically discordant in the U-Pb isotope system. Following the approach of Chew et al. 

(2011), a 207Pb-based correction was employed, using an iterative approach to obtain a 207Pb/206Pb 

intercept value based on a starting estimate generated from the terrestrial Pb evolution model of 

Stacey and Kramers (1975). This was used to calculate rutile 207Pb-corrected 206Pb/ 238Uages.  

Data reduction of rutile measurements was undertaken with the age filters summarised in the 

following screening procedure table.  

 

Table: U-Pb rutile data screening procedure 

 

 

 

 

 

 

The analytical results are presented in the data table of Appendix VII in the electronic document 

attached to the thesis, and the accepted ages are plotted in the figure below.  

 

Figure: Detrital rutile U-Pb ages for the sample SJ8 from the Dungsam Chu section, plotted as 

adaptive Kernel density plots (Vermeesch, 2012) with overlying histograms; n=number of dated 

grains.  

 

1 Failed Discarded 

2 207Pb-corr. age  >100 Ma, uncertainty >10 % Discarded 

3 207Pb-corr.  age 10-100 Ma,  uncertainty >20 % Discarded 

4 207Pb-corr.  age <10 Ma,  uncertainty >25 % Discarded 

5 All other ages Accepted 
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