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Abstract

This thesis considers the problem of searching a large set of items, such as emails, for a small

subset which are relevant to a given query. This can be implemented in a sequential manner

– whereby knowledge from items that have already been screened is used to assist in the

selection of subsequent items to screen. Often the items being searched have an underlying

network structure. Using the network structure and a modelling assumption that relevant

items and participants are likely to cluster together can greatly increase the rate of screening

relevant items. However, inference in this type of model is computationally expensive.

In the first part of this thesis, we show that Bayes linear methods provide a natural approach

to modelling this data. We develop a new optimisation problem for Bernoulli random

variables, called constrained Bayes linear, which has additional constraints incorporated

into the Bayes linear optimisation problem. For non-linear relationships between the latent

variable and observations, Bayes linear will give a poor approximation. We propose a novel

sequential Monte Carlo method for sequential inference on the network, which better copes

with non-linear relationships. We give a method for simulating the random variables based

upon the Bayes linear methodology. Finally, we look at the effect the ordering of the random

variables has on the joint probability distribution of binary random variables, when they

are simulated using this proposed Bayes linear method.
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Chapter 1

Introduction

There are many applications where one may wish to search through a large set of items,

such as emails or documents, to find a small subset of them which is relevant to a query.

Often these items are distributed on edges of a network. We call the problem of finding

relevant items distributed across the edges of a network a network-based search. Network-

based search is increasingly common in many applications and contexts. We give motivating

examples, which we return to later in the thesis.

The first example comes from corporate lawsuits. Companies are often required to hand

over large databases of emails to one another and the information retrieved from these

emails may make up part of their legal battle (Cavaliere et al., 2005). Many corporate

cases rely on evidence from electronic communications such as the case against American

Home Products who were charged with reckless indifference to human life after more than

33 million emails were searched to find emails relating to the charges (Volonino, 2003) and

in Oracle’s defence in Oracle America, Inc. v. Google Inc. where emails suggested Google

was more aware that their use of Java APIs could infringe upon licensing agreements than

was previously claimed (Mullin, 2016). To find and judge which of the emails are relevant

to a case requires searching through a huge network of emails, the majority of which will

be irrelevant, potentially in time pressured situations at the cost of millions of dollars and

thousands of hours (Flynn and Kahn, 2003). Despite this, the courts often see the searching

1
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of emails as not unduly burdonsome.

Also within the legal system, McGinnis and Pearce (2014) state legal search as one of the

five main areas on the cusp of a machine intelligence invasion. Cases that have similar

issues or facts as the current case are used to set a precedent for a trial. To find precedents,

legal teams search through a huge number of cases looking for those with similar topics.

Network analysis has been suggested as a method to find influential cases (Fowler et al.,

2007), where the nodes are the cases and links relate to citations. An alternative would be

to distribute cases on a network, with the people involved as the nodes and the cases on the

edges – in a similar way as emails within a company. As well as searching through cases for

similar topics using network-based search algorithms, the people who tend to work on the

relevant cases could also be found. People who work on one relevant case may be more likely

to work on another. Precedent search is similar to academic searches, and network-based

search algorithms could be used as an alternative to those currently used which are based on

words, citation counts etc. The use of a network-based search may better identify relevant

authors and topics.

Another area to which network-based searches are applicable is intelligence processing. Ef-

ficient military operations and law enforcement rely on the timely processing of intelligence

(Hughbank and Githens, 2010). An overwhelming amount of intelligence is collected daily,

particularly communications intelligence, where the use of social media, text messaging and

emails has drastically increased (Duyvesteyn et al., 2014). Many terrorist attacks could

have been stopped or at least mitigated if the available intelligence was better processed

and analysed (Gorman, 2008). One example is the Christmas Day bombing of Northwest

Airlines Flight 253, for which 14 intelligence failures were reported (Select Committee on

Intelligence, United State Senate, 2010) including failing to uncover key intelligence reports

on the bomber. The National Intelligence Strategy (2009) states a key area of improvement

is to narrow the gap between collecting intelligence and being able to make sense of the

intelligence which is collected. A result of the overwhelming amount of intelligence collected

is that often the processor is faced with a bottleneck of intelligence items; far more are

collected than can be processed. In a time critical situation, the main challenge for the
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processor is to provide the analysts with the largest set of relevant intelligence items in the

given time window.

In these examples, we have a set of emails or other communications, henceforth called items

for simplicity, and we wish to search this set of items to find those which are relevant to the

query of interest. Each of the items involves two or more participants. The participants and

the items between them induce a network where the participants form the nodes. An edge

exists between two nodes if there is at least one item between the two associated participants.

Participants can also be relevant or irrelevant to the query. Relevant items are more likely

to occur between relevant participants. In addition, it is likely that relevant participants

will cluster in groups. Thus, the network contains information that can be exploited to

help decide which items to observe. Furthermore, each of the problems is time pressured

and could involve huge amounts of possible items to search through. Hence, scalable search

methods are required in order to be able to process as many items as possible in a short

period of time and select which items to observe to maximise the chance of of finding relevant

ones. The problem can be seen as having three related steps:

1. Constructing an appropriate joint prior distribution for the relevance of participants

and items.

2. Updating this joint distribution as items are observed.

3. Deciding which item to observe next, given the current joint distribution on the rele-

vance of items and participants.

The focus of this thesis is on developing inference methods for the second step, with method-

ology influenced by the other steps.

In Chapter 2 we discuss some of the literature on graphical models which can be used to

model the random variables in the communication network. The structure of the graphical

model helps minimise the computational cost of inference. Exact inference methods pass

messages around the graph to break the problem down into smaller problems. The junction

tree algorithm is the exact inference method is used in the thesis for the smaller networks.
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For large networks, these exact inference methods become computationally challenging. The

chapter also gives an overview of popular approximate inference methods commonly used in

graphical models. In many cases, constructing a full prior specification can be difficult, we

also introduce an alternative inference method (Bayes Linear) which only requires partial

belief specification.

The problem of deciding which observation to make next, based on the current information,

can be modelled as a sequential decision problem. In Chapter 3 we give a brief introduction

to sequential decisions problems and discuss some of the large body of literature on the

approaches used to solve these problems.

In Chapter 4 we introduce a model based on Bayes Linear methodology. Recent work by

Dimitrov et al. (2016) has shown that using the information about the network structure

together with a modelling assumption that relevant items and participants are likely to

cluster together, can greatly increase the rate of screening relevant items. However their

approach is computationally expensive and thus limited in applicability to small networks.

Bayes Linear methods provide a natural approach to modelling such data; they output

posterior summaries that are most relevant to heuristic policies for choosing future items

and they can easily be applied to large-scale networks. For binary data, we introduce a new

optimisation problem with additional constraints on the posterior summaries incorporated

into the Bayes Linear optimisation problem. For a Bernoulli random variable, the mean will

be in the range [0, 1]. The additional constraints we add ensure the updated expectations are

also in this range. We show the resulting optimisation problem has an analytical solution.

For a small network, we compare the performance of the constrained Bayes linear model

with performance when exact inference is used, which is assumed to be the true model. We

show that for networks formed from an email database, where there is no true underlying

model, the Bayes linear model gives good results, and can be applied to networks which are

too large for the exact inference models. The work in Chapter 4 makes up a paper which has

been submitted for publication with co-authors Professor Paul Fearnhead and Dr Nedialko

Dimitrov.
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The Bayes Linear model developed in Chapter 4 uses a linear approximation to the relation-

ship between the observations and the latent variables. The linear approximation will give

a poor representation of highly non-linear relationships, so the Bayes Linear updates will

give a poor approximation. Chapter 5 introduces an new, alternative approach to inference

for sequential search on binary networks to overcome this problem. The method combines

sequential Monte Carlo and Bayes Linear updates to approximate the joint distribution of

the latent variables given observations; only random variables directly involved in observa-

tions are included in the Monte Carlo approximation. Building on the success of the Bayes

Linear method in Chapter 4, Bayes Linear updates are used to both approximate the re-

maining latent variables and to approximate the probability of the realisations in the Monte

Carlo approximation. Although this method is more computationally expensive than the

Bayes Linear model, it does not require a linear approximation to the relationship between

the latent variables and the observations. We show the method better approximates exact

inference in the binary Markov random field, than simpler approximate inference methods.

A comparison of the computational time for the three methods is given in Section 5.5.3.

The Bayes Linear methods from Chapter 4 and Chapter 5 can be used to define a joint

distribution for binary random variables with a given mean and covariance. This distribution

is specified by ordering the random variables, Z1, . . . , Zn, and using Bayes Linear updates to

calculate the distribution of Zi given Z1, . . . , Zi−1. We show in Chapter 6 that the ordering

of the random variables affects the resulting joint distribution. Furthermore we investigate,

both theoretically and empirically, which aspects of the ordering do/do not affect the joint

distribution.

Finally, Chapter 7 we conclude with a discussion of the main contributions. A discussion of

further possible paths of research is given.



Chapter 2

Inference in Graphical Models

2.1 Introduction to Graphical Models

Performing inference on a large number of random variables can be a computationally

challenging problem. For example, to fully define a set of n binary random variables requires

the specification of 2n probabilities – one for each possible combination of the random

variables. However, data associated with real-world phenomena often have structure, which

can be exploited by representing the data through graphical models. The models provide

an intuitive way to represent the random variables and visualise the relationship between

these variables (Whittaker, 2009).

A graph G = (V,E) is a set of nodes, V = {1, . . . , n}, (also known as vertices) and a set

of edges, E, (also known as links or arcs). An edge in the graph connects two nodes. A

graphical model is a graph where the nodes represent random variables and the edges ex-

press probabilistic relationships between the random variables. Two random variables are

said to be conditionally independent if the value of one variable does not directly impact

the value of the other variable. For example, A and B are conditionally independent given

C if P (A | B,C) = P (A | C). Graphical models allow us to define conditional indepen-

dence relationships between random variables and provide an effective approach to dealing

6
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with the complexities of the data, as computations can be expressed in terms of graphical

manipulations (Koller and Friedman, 2009).

The two major types of graphical models are Bayesian networks (also known as directed

graphical models) and Markov Random Fields (also known as undirected graphical models).

Section 2.1.1 gives a brief introduction to Bayesian networks, and describes the link between

these and Markov Random Fields (MRFs). We mainly focus on the problem of inference in

MRFs with discrete probability distributions associated with the random variables (discrete

MRFs). Section 2.1.2 introduces MRFs and Section 2.2 describes how the structure of the

graph can be exploited to perform inference in a MRF.

2.1.1 Bayesian Networks

Bayesian networks are a type of graphical model where all edges in the graphical model are

directional. They are useful when modelling phenomena where the conditional independence

properties naturally have a direction. For example, Bayesian networks can be used in medical

diagnostics to help infer the likelihood of different causes of illness given the symptoms

(Miller et al., 1982; Nikovski, 2000), to model reactions in biological networks (Needham

et al., 2007) and in the use of Turbo decoding problems in wireless 3G and 4G mobile

telephony standards (Murphy et al., 1999; Berrou and Glavieux, 1996). The graph represents

a factorisation of the joint probability over all random variables. For a set of random

variables X = (X1, . . . , Xn), a Bayesian network is represented by the factorisation:

p(X1, . . . , Xn) =
n∏
i=1

p(Xi|Xpa(i)), (2.1.1)

where pa(i) are the parents of node i. The joint distribution of the Bayesian network in

Figure 2.1.1a can be factorised using the conditional independences as:

p(X1, . . . , X6) = p(X6 | X4)p(X5 | X4)p(X4 | X3, X1)p(X3 | X2, X1)p(X2)p(X1). (2.1.2)
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Classic models like hidden Markov models (Ghahramani, 2001) and neural networks are

examples of Bayesian networks. Many of these have model specific inference methods, such

as the forward-backward algorithm and Viterbi algorithm (Viterbi, 1967) for hidden Markov

models. Generally, the exact inference methods discussed in Section 2.2 for MRFs are also

inference methods for Bayesian networks, where the graph is first moralised to create an

undirected network (the moral graph). The moral graph is formed by adding edges between

all nodes which have a common child and making all the edges undirected. The MRF in

Figure 2.1.1b is the moral graph for the Bayesian network in Figure 2.1.1a.

(a) Bayesian Network (b) Markov Random Field

Figure 2.1.1: Types of graphical models. The MRF in Figure 2.1.1b is the moral graph of
the Bayesian network in Figure 2.1.1a.

2.1.2 Markov Random Fields

MRFs are useful when modelling a variety of phenomena where there is no natural direc-

tionality to the relationship between random variables. They are well-suited to make sense

of large, complicated data sets which are increasingly common in the era of big data. This

natural representation of data has lead to MRFs being widely used to represent data in

many areas of statistics, physics, biology and machine learning. For example, MRFs are

used in image modelling, where pixels are connected to neighbouring pixels (Geman and
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Geman, 1984), to model spacial dependence between neighbouring regions in a map (Besag,

1974; Ripley, 2005) and in many problems in combinatorial optimisation which are defined

in graph-theoretic terms, and thus are naturally recast in the graphical model formalism

(Nemhauser and Wolsey, 1988; Maneva et al., 2007). The Ising model is an example of an

MRF that arose from statistical physics. It was originally used for the modelling of mag-

netic dipole movements of atomic spins in a lattice graph, where each spin interacts with its

neighbours. The model allows the identification of phase transitions as a simplified model

of reality (Baxter, 1982). Many of the ideas behind the Bethe approximation to the Ising

model (Bethe, 1935) are still applicable and have been shown to have links to widely used

approximate variational inference methods, discussed in Section 2.3.1.

Let G = (V,E) denote the graph associated with the set of random variables, X =

(X1, . . . , Xn), where the nodes in the network represent the random variables and the edges

represent direct dependencies. A separating subset for two random variables in the graph,

Xu and Xv, is one where all paths between Xu and Xv pass through the subset. The set

of random variables is said to form a Markov Random Field if Xu and Xv are independent,

given a separating subset of nodes in the network (Bishop et al., 2006).

MRFs induce local dependencies rather than global dependencies, leading to computational

advantages. For example, if the network in Figure 2.1.1b represents a MRF, then using the

notation X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn), the full conditional of P (X1|X−1) is equiva-

lent to:

P (X1|X−1) = P (X1|X2, X3, X4).

A clique in the graph is a subset of nodes such that there exists an edge between all pairs

of nodes in that subset and a maximal clique is one which is not contained within any

other clique. For two random variables a and b connected by an edge, the factor φ(a, b)

describes the affinity between random variables; a probability distribution is also a factor

but factors are not restricted by normalising constants. Using the Hammersley-Clifford

theorem (Hammersley and Clifford, 1971) the joint distribution of the random variables
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can be defined in terms of factors over the maximal cliques of the graph. This can lead to

computational advantages as described below. Hence, the joint distribution of the random

variables is given by:

P (X) ∝
∏
c∈C

φc(Xc),

where C is the set of maximum cliques in G, and φc(Xc) is the factor associated with

maximal clique c. This representation of the random variables reduces the computational

cost of inference and the memory required to specify the full distribution. For the binary

MRF shown in Figure 2.1.1b, the naive specification of the data requires 26 = 64 numbers.

However, using the Hammersley-Clifford theorem the joint distribution can be specified as:

P (X) ∝ φ1(X1, X2, X3)φ2(X1, X3, X4)φ3(X4, X5)φ4(X4, X6),

requiring 23 + 23 + 22 + 22 = 24 probabilities to specify the full distribution.

2.2 Exact Inference in Markov Random Fields

Graphical models can, in principle, be used to answer many types of queries. Often this

involves calculating marginal or conditional probabilities of random variables in the model.

The brute force method for inference in discrete MRFs requires the full joint specification

of the random variables and ignores any conditional independence properties. As a result,

the cost of inference grows exponentially with the number of nodes in the network. Instead,

more efficient inference algorithm exist which involve passing messages around the graph,

exploiting the conditional independence relationships in the graphical model and minimising

the computational cost. These types of algorithms are known as message passing algorithms

and are a type of dynamic programming. Dynamic programming is a method that is used

for solving complex problems by breaking them down into sub-problems, and seeking to

solve each sub-problem only once, reducing the number of computations (Smith, 1991).
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Examples of message passing algorithms in special graphical models include the forward-

backward algorithm and Viterbi algorithm for hidden Markov models and belief propagation

for undirected trees, discussed in Section 2.2.1. Belief propagation forms the basis for the

junction tree algorithm, described in Section 2.2.2. This is the exact inference method used

within this thesis. Overviews of inference in graphical models and examples can be found

in Bishop et al. (2006) and Koller and Friedman (2009).

2.2.1 Belief Propagation

A tree is a graph where there is only one path between any two pairs of nodes in the

graph; there are no loops. Belief propagation (Pearl, 1982) is a message passing algorithm

for inference on tree networks. The method forms the basis of the junction tree algorithm

for exact inference in general graphical models and many of the approximate inference

algorithms which work well for intractable or cyclic graphs, discussed in Section 2.3.1.

The method is an iterative procedure, where neighbouring variables in the tree pass messages

to each other. For the undirected tree, T = (V,E), associated with the random variables

X = (X1, . . . , Xn), a parameterisation for the joint distribution is:

p(X) =
1

Z

∏
(i,j)∈E

φ(Xi, Xj). (2.2.1)

If Ti→j is as the sub-tree containing node i if node j is removed, and XTi→j are all nodes in

this sub-tree, the message Mij(Xj), is defined as:

Mij(Xj) =
∑
XTi→j

φ(Xi, Xj)
∏

(i′,j′)∈Ti→j

φ(Xi′ , Xj′). (2.2.2)

and can be thought of as the message that is passed from node i to node j. The messages

can be recursively computed as:

Mij(Xj) =
∑
Xj

φ(Xi, Xj)
∏

k∈ne(i)\j

Mki(Xi), (2.2.3)
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where ne(i) are the neighbouring nodes to node i. Thus, the marginal distribution of the

random variable Xj is given by:

p(Xj) ∝
∏

i∈ne(j)

Mij(Xj). (2.2.4)

The joint distribution over two random variables is:

p(Xi, Xj) ∝ φ(Xi, Xj)
∏

k∈ne(i)\j

Mki(Xi)
∏

l∈ne(j)\i

Mlj(Xj). (2.2.5)

Algorithm 1 gives the belief propagation algorithm for computing marginal distributions

in undirected trees. For tree networks, the computational cost of belief propagation grows

linearly with the number of nodes in the network.

So far, the case where all variables are hidden has been considered. In many cases, the

marginal distribution when a subset of the variables are observed will be required. Suppose

X is split into two subsets, Z and Y, with observed values Y = y. Prior to computing

the messages,the joint distribution p(X) is multiplied by the product of identity functions∏
i 1(Yi, yi), where 1(Yi, yi) = 1 if Yi = yi and zero otherwise. The product corresponds to

p(Z,Y = y) and hence is proportional to p(Z | Y = y) which is the marginal distribution

over hidden variables. The belief propagation algorithm can then be used to calculate the

marginals where any summations over variables involving Y collapse to a single term.

Algorithm 1 Belief Propagation for Undirected Trees

1. Choose a root node

2. Pass messages from the leaves up to the root and then back down again, using

Mij(Xj) =
∑
Xj

φ(Xi, Xj)
∏

k∈ne(i)\j

Mki(Xi) (2.2.6)

3. Given messages, compute required marginals.



CHAPTER 2. INFERENCE IN GRAPHICAL MODELS 13

2.2.2 Junction Tree Algorithm

There are many variants of the message passing algorithms for exact inference in graphical

models. They all work by systematically exploiting the conditional independence properties

encoded in the pattern of edges to compute marginal probabilities (Jordan, 2004). The

structure of the graphical model means that some sub-expressions only depend on a small

number of variables. Computing these once and caching them means the sub-expressions

do not need to be calculated multiple times. We describe the junction tree algorithm by

Lauritzen and Spiegelhalter (1988) for inference in MRFs. The method can also be applied

to Bayesian networks by first moralising the graph. Other methods, such as conditioning

(Shachter et al., 1994) and clique trees (Shafer and Shenoy, 1990), are computationally

equivalent with some trade off. The sum product algorithm for factor graphs (Kschischang

et al., 2001) uses two types of message in accordance with the two types of node in the

factor graph and can be applied to slightly more general problems than the junction tree

algorithm.

If loops are present in the graph then message passing, like that described in Section 2.2.1,

can lead to overconfidence due to double counting of information and to non-convergent

behaviour (Koller and Friedman, 2009); the marginal distributions will only be approximate.

The junction tree algorithm prevents this by ensuring that different channels of information

communicate with each other to prevent double counting. The general idea is to create a

tree of cliques and perform message passing between these cliques.

Constructing the Junction Tree

The first step in the junction tree algorithm is to construct the junction tree from the

graph. In order to do this, the graph must first be triangulated, and then the junction

tree is constructed from the triangulated network. Triangulation adds edges to the network

so that any chord-less cycles of a size greater than four are eliminated. For example, the

network in Figure 2.2.1 can be triangulated by adding an edge between nodes 1 and 3 or
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Figure 2.2.1: A chord-less cycle. The graph can be triangulated by adding the edge (1, 3)
or (2, 4).

nodes 2 and 4. This removes conditional independence relationships, and enlarges the size

of the distribution.

A junction tree is a tree where the nodes and edges are labelled with a set of variables. The

variables on the nodes are the cliques in the triangulated network, and the variable sets on

edges are called separators. The separators contain all random variables common to both

sets of cliques associated with the involved nodes. A junction tree has two properties:

1. Cliques contain all adjacent separators.

2. If two cliques contain variable X, all cliques and separators on the path between the

two cliques contain X (the running intersection property).

The running intersection property is required for consistency, so local consistency of marginal

distributions between cliques and separators guarantees global consistency. This property

is satisfied by considering cliques in the triangulated network rather than the original MRF.

Converting a triangulated graph to a junction tree is done using Algorithm 2 (Bishop et al.,

2006). This algorithm finds the maximum weight spanning tree of the weighted graph,

where the nodes are the maximal cliques in the triangulated graph and edges exist between
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nodes if they have common variables in the cliques. The weight on an edge represent the

size of the separator associated with the adjacent cliques. The maximum weight spanning

tree can be calculated using Kruskal’s algorithm (Kruskal, 1956) by negating the weights

on each edge.

Algorithm 2 Convert a Triangulated Graph to a Junction Tree

1. Find the set of maximal cliques C1, . . . , Ck.

2. Construct a weighted graph, with nodes labelled by the maximal cliques, and edges
labelled by intersection of adjacent cliques.

3. Define the weight of an edge to be the size of the separator.

4. Run maximum weight spanning tree on the weighted graph to give the junction tree.

The maximal cliques in the triangulated graph correspond to nodes of the junction tree.

Therefore we can write the joint distribution as a product over the nodes of the junction

tree:

p(X) =
1

Z

∏
i

φCi(XCi), (2.2.7)

where Ci is the clique associated with node i of the junction tree. An example of constructing

a junction tree from an MRF is given in Figure 2.2.2.

Message Passing in the Junction Tree

Messages are passed through the junction tree in a similar manner to belief propagation

in a tree network. A clique in the junction tree is only allowed to send a message to a

neighbouring clique j when it has received messages from all other neighbours. This is

known as the message passing protocol. Define Sij = Ci ∩ Cj as the separator between

cliques i and j and let Ti→j be the union of cliques on the i side of j. The message passed
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(a) MRF (b) Triangulated Graph

(c) Maximal Clique Graph (d) Junction Tree

Figure 2.2.2: Example of how a junction tree is calculated from an undirected network.
Figure 2.2.2d shoes a possible junction tree for the MRF in Figure 2.2.2a.

from clique i to clique j in the junction tree algorithm are defined as:

Mij(XSij ) =
∑

XTi→j\Cj

∏
k:Ck⊂Ti→j

φk(XCk
). (2.2.8)

Defining a root node in the junction tree, and then starting at the leaf nodes, the messages

can be computed recursively. The message Mij(XSij ) in (2.2.8) is equivalent to:

Mij(XSij ) =
∑

XCi
\Sij

φ(XCi)
∏

k∈ne(i)\j

Mki(XSki
). (2.2.9)
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On completion of a sweep of message passing from the leaf of the tree up to the root and

then back down again, all marginal probabilities can be calculated from the messages where

the marginal distributions for the cliques i is:

p(XCi) ∝ φ(XCi)
∏

k∈ne(i)

Mki(XSki
). (2.2.10)

The junction tree algorithm for inference in MRFs is given in Algorithm 3. Observations

can be incorporated into the algorithm by multiplying a single clique containing the involved

random variables by the likelihood of the observation and completing a sweep on the message

passing (Koller and Friedman, 2009).

Algorithm 3 Junction Tree Algorithm

Setup:

1. Find the triangulated network

2. Find the junction tree using Algorithm 2

Run:

1. Choose a root node.

2. Pass messages from the leaves up to the root and then back down again, using (2.2.9).

3. Calculate desired marginals.

Computational Cost

The junction tree algorithm works by systematically exploiting the structure of the graphical

model. The majority of the computational cost comes from the message passing stage.

However, the time and space complexity is dominated by the size of the largest clique in

the junction tree; the computational cost grows exponentially with the tree width of the

network. The tree width of the network is the size of the largest clique in the triangulated

network minus one. Finding a triangulation which minimises the size of the largest clique

can have a large effect on the efficiency of exact inference. The problem of finding the

optimal tree width of a graph is NP-hard (Arnborg et al., 1987) so a lot of research has gone

into efficient approximate algorithms (Amir, 2001; Becker and Geiger, 1996; Robertson and
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Seymour, 1986).

In the best case, the tree width is small and the triangulated network which achieves this

tree width is easy to find. In these cases, the junction tree algorithm provides a fast exact

method for inference in graphical models (see Wainwright and Jordan (2008) for examples).

However, in many cases, the graphical model is too complex and the tree width is too large

for exact inference to be viable. In these cases, we rely upon approximate methods to

perform inference in the graphical model.

2.3 Approximate Inference Methods for Graphical Models

A key obstacle in Bayesian inference is calculating marginal and posterior distributions. In

an ideal setting, computing these can be done analytically, such as using the the junction

tree algorithm for random variables in a graphical model. For large, complex data the

computational costs associated with exact inference is too large. Instead, approximate

inference algorithms are used to estimate the quantities of interest.

Exact inference algorithms can act as a starting point for approximate methods. These types

of methods hope to use the structure of the graphical model to aid performance. They exploit

situations where nodes or clusters of nodes are nearly conditionally independent, such as

when node probabilities are well determined by only a subset of neighbouring nodes (Jordan

et al., 1999). Pruning algorithms (Kjærulff, 1994), search based methods (Henrion, 1991)

and localised partial evaluation (Draper and Hanks, 1994) have all been suggested to deal

with these situations. Their advantage is that they still use the conditional independence

properties exploited in the exact inference methods. However, they still suffer from many

of the problems associated with exact inference, like the computational cost, which make

exact inference difficult (Jordan et al., 1999).

Section 2.3.1 and 2.3.2 give an overview of alternative approximate inference methods which

are popular methods for inference in graphical models. Variational methods (Section 2.3.1)

have emerged as fast inference methods for graphical models and an alternative to slower
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Markov Chain Monte Carlo (MCMC) methods (Section 2.3.2). Both variational methods

and Monte Carlo methods require the full specification of prior beliefs. In Section 2.3.3

we introduce Bayes linear methodology which can be used as an approximate inference

technique when only a partial prior specification is required.

2.3.1 Variational Methods

Variational methods (Jordan et al., 1999; Wainwright and Jordan, 2008) are a popular group

of approximate inference methods for graphical models. The methods can be applied to

general probabilistic inference problems but their main application is in graphical models.

The basic idea of variational methods is to characterise a probability distribution as the

solution to a high dimensional optimisation problem, alter this optimisation problem and

solve the altered optimisation problem.

Variational Bayes (VB) is a variational method for approximating the true distribution,

p(X), with the approximating distribution, q(X), where the closeness of the two distributions

is measured through the Kullback-Leibler (KL) divergence. For a set of latent variables

X and observations Y, the interest may lie in the posterior distribution of the unknown

variables given the observations:

p(X | Y) =
p(X)p(Y | X)

p(Y)
(2.3.1)

The VB approximation to the conditional distribution, p(X | Y) assumes a family of distri-

butions, q(X) ∈ D and approximates the distribution p(X | Y) by searching for q∗(X) ∈ D

which minimises the KL divergence:

KL(q(X) || p(X | Y)) = Eq[log(q(X)]− Eq[log(p(X | Y))]. (2.3.2)

Wainwright and Jordan (2008) consider restricting the family of distributions to the expo-

nential family and searching for the optimal distribution within this family. VB can be seen

as an inner approximation which approximates the posterior with a distribution that can be
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used for inference. The complexity of the family of distributions determines the complexity

of the optimisation; it is more difficult to approximate over a complex family than a simple

family. As a result, a common variational family is the mean fields variational family, were

the latent variables are assumed to be mutually independent:

q(X) =
∏
i

qi(Xi). (2.3.3)

The idea for the mean fields approximation was adapted from statistical physics for inference

in graphical model (Jordan et al., 1999; Attias, 1999).

The KL divergence, KL(q | p), is mainly considered for the computational advantages and

can be seen to prefer q in areas of high probability under q. Hence, drawing samples and

integrating with respect to q should be accurate but VB approximation may miss out on

areas of high probability under p. Furthermore, whilst q will give a good approximation

to the joint distribution, the marginals qi(Xi) should not be expected to resemble the true

marginals pi(xi) (Bishop et al., 2006). The approximation can be extended to include

dependencies between random variables, resulting in structured variational inference (Saul

and Jordan, 1996).

The optimisation problems are typically solved using co-ordinate gradient ascent type al-

gorithms. These methods iterate between evaluating each data point and estimating the

hidden structure. One of the most commonly used algorithms for solving the variational

optimisation problem is the co-ordinate ascent mean-field variational inference algorithm

(Blei et al., 2016; Winn and Bishop, 2005), which iteratively optimises each factor of the

mean field variational distribution whilst holding the others fixed, finding a local optimal

solution. The algorithm can be seen as a message passing algorithm; updating a random

variable’s variational parameters based on the variational parameters of the neighbouring

nodes in the MRF. Co-ordinate descent type algorithms requires a full pass through the

data for each iteration and can be time consuming for large datasets. To overcome this

issue, stochastic variational methods (Hoffman et al., 2013) only evaluate a small number

of data points at each iteration.
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An alternative class of algorithms is obtained by considering an outer approximation, where

the set of parameters must satisfy a number of consistency relationships that arise from

local neighbourhood relationships in the graph. A well used outer approximation is the

belief propagation method in Section 2.2.1 when applied to graphs with cycles; called loopy

belief propagation. It is a popular method due to its often remarkably accurate results

(Murphy et al., 1999; McEliece et al., 1998). Loopy belief propagation is equivalent to a

fixed point minimisation of the Bethe free energy equations for the graph (Yedidia et al.,

2003). The Bethe approximation involves only those consistency relationships that rise

from local neighbourhood relationships in the graphical model. There is no guarantee this

algorithm will converge, and a large amount of theoretical and behavioural analysis has

gone into understanding loopy belief propagation. Murphy et al. (1999) suggests that certain

conditions, the approximation can often oscillate rather than converge. Koller and Friedman

(2009) suggest several ways to help the loopy belief propagation work better. Algorithms

known as cluster variational methods have been proposed to extend the Bethe approximation

to higher order clusters of variables (Yedidia et al., 2003) along with other higher order

variational methods (Leisink and Kappen, 2002; Minka, 2001).

Variational methods can be seen as more of an art than a method (Jordan et al., 1999) as

there is a lack of understanding regarding which variational method should be applied in

which case and no easy way to compare the effectiveness of the different methods. Often

the choice has to be considered on case by case basis. Furthermore, theoretical analysis of

variational inference is still relatively unexplored (Blei et al., 2016), although initial steps

have been taken toward the analysis of convergence (Tatikonda and Jordan, 2002). Despite

the lack of understanding of the convergence properties of loopy belief propagation, it has

been successfully applied to various problems, such as stereo vision (Sun et al., 2003) and

turbo decoding problems used in wireless 3G and 4G mobile telephony standards (McEliece

et al., 1998).
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2.3.2 Monte Carlo Methods

Monte Carlo methods rely on repeated random sampling from the distribution of interest to

generate approximations to the true density. Consider a possibly multidimensional random

variable, X, with probability mass function or probability density function, p(x), which is

greater than zero for a set of values X . The expected value of some measurable function

g : X→ Rd, with respect to the probability density p(x) is:

E[g(X)] =

∫
X
g(x)p(x)dx, (2.3.4)

if X is continuous. The integral is replaced by a summation if the probability distribution

is discrete. For a wide class of problems, it is not possible to evaluate the integral (or sum-

mation) analytically. Monte Carlo methods represent a class of techniques where samples,

simulated from the target distribution, can be used to approximate (2.3.4). Perfect Monte

Carlo assumes samples can be drawn directly from the target distribution. If this is possible,

taking n independent and identically distributed samples of X,
{
x(i)
}N
i=1

, from p(X), the

Monte Carlo estimate of the expectation of g(x) is:

ĝ(x) =
1

N

N∑
i=1

g(x(i)). (2.3.5)

Monte Carlo methods are a simple appealing approximation technique with good statistical

properties (Robert, 2004). The Monte Carlo estimator, ĝ(X) is an unbiased estimator of

E[g(X)]. Using the law of large numbers, ĝ(x) will converge almost surely to the E[g(X)]

as N →∞. Furthermore, the variance:

Var(ĝ(X)) = Var(
1

N

N∑
i=1

g(X(i))) =
Var(g(X))

N
, (2.3.6)

exists, then it decreases as the number of samples increases and does not depend on the

dimension of X. The literature on Monte Carlo methods is extensive, see Robert (2004)

and Liu (2008) for further details. The remainder of this chapter gives an overview of

Monte Carlo methods which are commonly used for inference in graphical models and, in
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particular, those that are used in this thesis for inference.

Importance Sampling

In many situations, it is not possible to sample directly from the target distribution. This

problem can be avoided by using an alternative sampling scheme. Importance sampling (IS)

is a Monte Carlo method for evaluating integrals by drawing from a proposal distribution

q(x). The expectation of a function g(x), over the target distribution can be calculated

over the proposal instead. The proposal is chosen to be easy to sample from, and must

satisfy that if p(x) > 0 then q(x) > 0. The samples are weighted based on their fit to

the target distribution; those with larger weights are more influential in the Monte Carlo

approximation.

Using a proposal distribution (2.3.4) can be written as:

E[g(X)] =

∫
X
g(x)p(x)dx,

=

∫
X
g(x)

p(x)

q(x)
q(x)dx,

=

∫
X
g(x)w(x)q(x)dx,

= E[w(X)g(X)], (2.3.7)

which is the expectation of w(X)g(X) with respect to the probability density q(x) and

w(X) = p(X)/q(X) is the importance weight. Sampling
{
x(i)
}N
i=1

from the proposal distri-

bution, the Monte Carlo approximation to E[g(x)] is:

ĝ(x) =
1

N

N∑
i=1

w(x(i))g(x(i)). (2.3.8)

Often, the target distribution is only known up to a constant of proportionality, p(x) = p̃(x)
Z ,
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where Z is the unknown normalising constant. In this case:

E[g(x)] =

∫
g(x)

p̃(x)

Zq(x)
q(x)dx

≈ 1

ZN

N∑
i=1

w̃(i)g(x(i)) (2.3.9)

where w(i) = p̃(x(i))

q(x(i))
and the normalising constant is approximated using the Monte Carlo

sample as:

Z ≈
N∑
i=1

w̃(i). (2.3.10)

Using this, the normalised importance samples are:

ĝ(x) =
1

N

N∑
i=1

w(i)g(x(i)) (2.3.11)

where:

w(i) =
w̃(i)∑N
j=1 w̃

(j)
, i = 1, . . . , N. (2.3.12)

By the law of large numbers, (2.3.11) converges to E[g(x)]. However, the Monte Carlo

estimate is biased, with decreasing bias as the sample size increases. The choice of pro-

posal is important, as the variance of the estimator is dependent on the choice of proposal

distribution (see Robert (2004) for information on the optimal proposal).

Monte Carlo Markov Chain Methods

MCMC methods are an alternative approach to importance sampling. They produce sam-

ples from a Markov chain where the stationary distribution of the chain is the target distri-

bution. This approach no longer creates independent and identically distributed samples.

However, if the chain is sampled for a long time, hopefully enough independent samples can

be collected from the target distribution and these used to approximate the distribution of
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interest. The method has been well studied and applied to several areas of statistics (Liu,

2008). A justification of this approach, and corresponding convergence properties can be

found in Robert and Casella (2013).

A Markov chain is a collection of dependent samples,
{
x(1),x(2), . . .

}
, where the probability

of x(n+1), given the samples at previous time steps, is only dependent on x(n):

p(x(n+1) | x(1), . . . ,x(n)) = p(x(n+1) | x(n)) = T (x(n),x(n+1)) (2.3.13)

and T (·, ·) is known as the transition kernel. The target distribution is said to be the

invariant distribution if the transition kernel satisfies:

∑
x∗

T (x∗,x)p(x∗) = p(x). (2.3.14)

In this case, if the chain converges it will converge to the target distribution. Simulation

from the Markov chain requires an initial distribution p(x(0)). After a suitable burn in

period, the samples from the Markov chain are dependent samples from p(x). If the Markov

chain is irreducible and aperiodic, then:

1

N

N∑
i=1

g(x(i))→ E[g(X)] (2.3.15)

with probability one as N →∞.

The Metropolis-Hastings algorithm (Hastings, 1970) is a method to generate a Markov chain

that will converge to p(x) by successively sampling from an arbitrary proposal distribution

q(x∗ | x) and imposing random rejection steps at each transition. Let x(n) be the state of

the MCMC algorithm after iteration n. To simulate the state at iteration n+ 1 a transition

candidate x∗ ∼ q(x∗ | x(n)) is simulated and with probability α(x(n),x∗):

α(x(n),x∗) = min

{
1,

q(x(n) | x∗)p̃(x∗)
q(x∗ | x(n))p̃(x(n))

}
(2.3.16)

the transition candidate is accepted to give x(n+1) = x∗ and x(n+1) = x(n) otherwise.
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The original Metropolis algorithm (Metropolis et al., 1953) was based on symmetry in the

proposal distribution so that q(x | x∗) = q(x∗ | x). The advantage of the Metropolis-

Hastings algorithm is that the target distribution is only required up to a normalising

constant since this cancels out in the acceptance probability anyway. If the proposal, q(x |

x∗), is chosen to be positive everywhere, then the convergence to p(x) is guaranteed (Robert,

2004). However, the rate of convergence depends on the relationship between q(x | x∗) and

p(x); choosing a q(x | x∗) which minimises the autocovariance results in a more accurate

estimator with a finite sample.

The Gibbs sampler (Geman and Geman, 1984) is a method of simulating a Markov chain, by

successively sampling from the full conditional distributions of the components p(xi | x−i)

where x−i denotes all components of x apart from xi. The Gibbs sampler is a special case of

the Metropolis-Hastings algorithm where the acceptance probability is 1. At each iteration,

each component of x(n) is updated. The ordering of the components can be random or

deterministic (Liu, 2008). The difficulty in the method comes when the full conditionals

are not of a standard form. Sampling methods, such as rejection sampling, can be used

but often a Metropolis-Hastings sampler is used to provide the sample. Gibbs samplers are

particularly applicable to problems of inference in graphical models. Using a MRF results

in the full conditionals simplifying to conditionals dependent on only neighbouring nodes in

the MRF and reduces the computation cost of computing them. A Gibbs sampler can be set

up automatically from the graphical model specification (Gilks et al., 1994). Although the

application of the Gibbs sampler naturally lends itself to inference in graphical model, the

convergence of these types of models can be very poor. For some examples, where mixing

is exponentially slow see Gore and Jerrum (1999).

Generally, MCMC algorithms cannot be applied for parameter inference in MRF as the

normalising constant is doubly intractable. This problem has led to a body of MCMC

methods (Murray et al., 2012; Caimo and Friel, 2011; Møller et al., 2006) to deal with

doubly intractable likelihoods, most of which involve augmenting the posterior density so

that the augmented posterior density can be easily sampled from. Alternative methods avoid

the intractable likelihood problem by taking approximations to the normalising constant by
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a pseudolikelihood which is the product of normalised distributions over lower dimensional

problems (Friel et al., 2009).

MCMC methods are computationally intensive methods. When a large computational cost

is not an issue, MCMC methods can provide accurate samples from the posterior distribu-

tion, providing asymptotically exact samples from the target distribution with convergence

guarantees. However, the methods are less applicable to applications when the posterior

distribution needs to be calculated quickly.

Sequential Monte Carlo Methods

The most widely used type of Monte Carlo methods are MCMC algorithms which can be

applied to estimate the latent space x conditional on observations y. However, consider the

situation where the aim is to track a sequence of distributions and estimate the posterior

distribution. This type of online inference problem is not particularly well suited to MCMC

methods. Each new observation would require simulating an entire new Markov chain for

the new posterior distribution. Instead the samples from the posterior for x1:t−1 within

an algorithm can be used to attempt to approximately samples from the posterior for x1:t.

Sequential Monte Carlo (SMC) methods can be used to do this by approximating a sequence

of probability distributions on a sequence of probability spaces. The Monte Carlo techniques

behind SMC have existed since the 1950s (Hammersley and Morton, 1954) but a lack of

computational power at the time and problems with degeneracy meant these methods were

generally overlooked. Since the introduction of the bootstrap filter (Gordon et al., 1993)

and more general resampling schemes, there has been a large increase in research in this

area. SMC works by taking an empirical approximation of the density using a collection

of samples (also known as particles) and corresponding weights. The typical application is

for inference in state space models, see Doucet and Johansen (2009) for applications of this

type where the SMC models are more commonly known as particle filters.

The latent variables {xt : t ∈ N}, xt ∈ X , are modelled as a Markov process with initial
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distribution p(x0) and transition probabilities p(xt | xt−1):

p(x1:t) = p(x0)

t∏
i=1

p(xi | xi−1). (2.3.17)

The observations at time t, are assumed to be conditionally independent given xt and the

joint distribution over both latent variables and observations is:

p(x1:t,y1:t) = p(x0)
t∏
i=1

p(xi | xi−1)
t∏
i=1

p(yi | xi). (2.3.18)

The aim is to recursively estimate the posterior distribution p(xt | y1:t) using a Monte Carlo

approximation:

p̂(xt | y1:t) =

N∑
i=1

w
(i)
t δx(i)

t
(xt), (2.3.19)

where δ(·) is the Dirac delta function and
{
w

(i)
t ,x

(i)
t

}N
i=1

is the Monte Carlo approximation.

Sequential Importance Sampling (SIS) is one way to sequentially calculate the Monte Carlo

approximation. The approximation to the density is recursively updated as the new obser-

vations are received, without modifying the previously simulated states. SIS propagates the

particles in the Monte Carlo approximation from time t to t + 1 and updates the weights

accordingly, to give an approximation to the posterior density at time t+ 1. Suppose there

is a proposal distribution q(x0:t|y0:t), which is easy to sample from, that has the property

p(x0:t|y0:t) > 0 ⇒ q(x0:t|y0:t) > 0 and can be updated recursively in time so that:

q(x0:t+1|y0:t+1) = q(x0:t|y0:t)q(xt+1|x0:t,y0:t+1). (2.3.20)

Using this proposal distribution, the Monte Carlo approximation at time t can be propagated

to time t+1 without modifying the past. The joint distribution at time t+1 up to a constant
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of proportionality is:

p(xt+1|y0:t+1) ∝
∫
p(yt+1|xt+1)p(xt|y0:t)p(xt+1|xt)dxt,

=

∫
p(xt|y0:t)q(x0:t|y0:t)

q(x0:t|y0:t)

p(yt+1|xt+1)p(xt+1|xt)q(xt+1|x0:t,y0:t+1)

p(yt+1|y0:t)q(xt+1|x0:t,y0:t+1)
dxt

(2.3.21)

Assuming there is a weighted Monte Carlo approximation at time t,
{
w

(i)
t ,x

(i)
t

}N
i=1

to

p(xt|y0:t) then (2.3.21) can be approximated by propagating the set of particles to give{
xit+1

}N
i=1

and unnormalised weights:

w̃
(i)
t+1 = w̃

(i)
t

p(yt+1|xt+1)p(xt+1|xt)
q(xt+1|x0:t,y0:t+1)

, for i = 1, . . . , N. (2.3.22)

The normalised weights are given by:

w
(i)
t+1 =

w̃
(i)
t+1∑N

j=1 w̃
(j)
t+1

,

providing a weighted particle approximation to the marginal distribution at time t + 1.

The joint distribution to {x0:t+1} is approximated by storing the path of the particles

x0:t+1 = (x0:t, xt+1) and still updating the weighting using (2.3.22).

Using the type of proposal distribution in (2.3.20), the weights of the particles can be

sequentially updated in time, as the next observation becomes available. Assume it is

possible to sample from the proposal distribution and both the likelihood and transitional

probability are known. All that is needed is an initial set of samples to be generated. The

proposal weights can be calculated sequentially. The SIS algorithm recursively propagates

weights and particles as observation are received sequentially; it is given in Algorithm 4.

The choice of proposal distribution is important. The variance of the particle weights can

only increase (Kong et al., 1994) for a proposal distribution of the form in (2.3.20). The

variance of the particle weights increasing over time has a harmful effect on the accuracy

and leads to the degeneracy phenomenon. Nearly all but a few particles will have negligible
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Algorithm 4 The Sequential Importance Sampling Algorithm

1. At time t = 0:

(a) For i = 1, . . . , N

i. Sample x
(i)
0 ∼ p(x0)

ii. Evaluate the importance weights up to a normalising constant:

w̃
(i)
0 = p(y0|x(i)

0 )

(b) For i = 1, . . . , N normalise the importance weights:

w
(i)
0 =

w̃
(i)
0∑N

j=1 w̃
(j)
0

2. For t in 1 to T

(a) For i = 1, . . . , N

i. Sample x
(i)
t ∼ q(xt|x

(i)
t−1,y0:t) and x

(i)
0:t = (x

(i)
0:t−1,x

(i)
t )

ii. Evaluate the importance weights up to a normalising constant:

w̃
(i)
t = w̃

(i)
t−1

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1,y0:t)

(b) For i = 1, . . . , N normalise the importance weights:

w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

weight after running some iterations; a lot of work is devoted to updating particles which

have almost zero weight. The degeneracy phenomenon is a big problem in SMC. A good

choice of proposal distribution is key to slowing down degeneracy and can be found by

minimising the variance of the particle weights. The optimal proposal distribution, first

given by Zaritskii et al. (1975) is:

q(xt|x(i)
t−1,y0:t)opt = p(xt|x(i)

t−1,yt),

=
p(yt|xt,x(i)

t−1)p(xt|x
(i)
t−1)

p(yt|x(i)
t−1)

. (2.3.23)
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Substituting this into (2.3.20) gives:

w
(i)
t ∝ w

(i)
t−1p(yt|x

(i)
t−1). (2.3.24)

This means that the importance weights at time t can be calculated, and the particles pos-

sibly resampled (with probability given by the weights), before the particles are propagated

to time t. However, to use (2.3.23) it must be possible to sample from p(xt|x(i)
t−1,yt) and

calculate p(yt|x(i)
t−1), one or both of which are often not possible (Doucet et al., 2000). A

suboptimal choice of importance function must be used. The most popular choice is the

transitional prior, p(xt|xt−1), which gives a weight w
(i)
t ∝ w

(i)
t−1p(yt|xt). It is no longer pos-

sible to calculate the importance weights before the particles have been propagated at time

t. The auxiliary particle filter (Pitt and Shephard, 1999) tries to overcome this problem.

At time t− 1, the auxiliary particle filter tries to predict which samples will be in regions of

high probability masses at time t by sampling each particle at time t − 1 and propagating

the sample forward to time t.

Degeneracy can also be minimised through a good choice of importance function and by

including a resampling step in the SIS algorithm. The Sequential Importance Resampling

(SIR), also known as the bootstrap filter (Gordon et al., 1993), was developed separately

from the SIS algorithm and contains a resampling step at each iteration of the SIS algo-

rithm. Since then, resampling has been shown to have both major practical and theoretical

benefits (Doucet and Johansen, 2009). An IS approximation of the target distribution is

based on weighted samples from q(xt−1|y0:t−1) and hence is not distributed according to

p(xt|y0:t). Resampling provides a way to give an approximation from the target distribu-

tion by resampling N particles from the IS approximation. Each particle is picked with a

probability proportional to the weight associated with it. Particles with low weight have a

high probability of being removed and this results in multiple copies of particles with high

weights. The future of these can then be explored independently. This provides stability in

the future but at the cost of an increase in the immediate Monte Carlo variance (Doucet

and Johansen, 2009). The SIR algorithm is given by Algorithm 5.
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Algorithm 5 The Sequential Importance Resampling Algorithm

1. At time t = 0:

(a) For i = 1, . . . , N

i. Sample x
(i)
0 ∼ p(x0)

ii. Assign weights w̃
(i)
0 = p(y0|x(i)

0 )

(b) For i = 1, . . . , N

i. Normalise weights w
(i)
0 =

w̃
(i)
0∑N

j=1 w̃
(j)
0

2. For t in 1 to T

(a) For i = 1, . . . , N

i. Resample x̃
(i)
t−1 by resampling from

{
x
(i)
t−1

}N
i=1

with probabilities
{
w

(i)
t−1

}N
i=1

to give
{
x̃
(i)
t−1,

1
N ,
}N
i=1

ii. Propagate weights w̃
(i)
t =

p(yt|x(i)
t )p(x

(i)
t )

π(x
(i)
t |x

(i)
0:t−1,y0:t)

(b) For i = 1, . . . , N

i. Normalise weights w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

Although resampling reduces the problem of degeneracy, it introduces other problems which

did not exist with the SIS algorithm. Sample impoverishment happens when there is a loss

of diversity in the particles; only a few of the particles have significant weight and the rest

are insignificant. A common approach is to only resampling when it is needed. To detect

when it is needed, the variability of the weights is monitored. This is commonly done by

calculating the effective sample size (ESS) – which is N if the weights are all equal, and

1 if there is just a single non-zero weight. Thus often resampling is only performed when

this ESS is lower than some pre-chosen threshold. Various strategies have been proposed to

improve the performance of SMC methods in terms of accuracy, convergence, computational

speed, etc. Surveys of these methods have been given over the years (Doucet et al., 2000;

Cappé et al., 2007; Doucet and Johansen, 2009). Additionally, there is a wide variety of

convergence results for SMC methods, most of which are concerned with the accuracy of the

particle approximation of the distribution of interest as a function of N. For applications

in state spaces, there are several studies on the stability of SMC as the time step grows
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(Chopin, 2004; Douc and Moulines, 2007).

Sequential Monte Carlo in Graphical Models

Whilst the majority of approximate inference methods developed for graphical models are

either variational methods or MCMC methods, recently there has been interest in how SMC

can be used for the problem of inference in graphical models. Typically, SMC struggles in

high dimensional problems (Rebeschini et al., 2015) and hence is not considered applicable

to most graphical models. The first approaches that utilised SMC for graphical models

use SMC within a loopy belief propagation framework (Isard, 2003; Sudderth et al., 2010).

Even in the limit of the Monte Carlo sample size going to infinity, these methods are still

approximate as they are taking approximations over loopy belief propagation.

As the dimension increases, the approximation to the target distribution quickly deteriorates

when a single IS step is used (Bengtsson et al., 2008). The approximation error generally

grows exponentially in the model dimension. However, this degeneracy can be avoided by

starting off with a simple distribution and moving to the one of interest (Chopin, 2002). The

stability of these problems is less well studied, although Beskos et al. (2014a) gives analytical

understanding about the effect of dimension on SMC methods for static problems. The

majority of SMC methods on graphical models work by slowly increasing the complexity

of the graphical model to give a Monte Carlo sample which eventually approximates the

full distribution for a static problem. For example, hot coupling (Hamze and de Freitas,

2005) starts with Monte Carlo approximation to a spanning tree of the MRF and edges

are slowly added according to an annealing scheme. The method by Naesseth et al. (2014)

works with the factor graph and sequentially adds factors to increase the probability space.

As a byproduct of the algorithm, this also gives an unbiased estimate of the normalising

constant. Both of these methods can be applied to discrete random variables and can be

used within particle MCMC methods for parameter inference (Naesseth et al., 2014; Everitt,

2012).

Another problem that has recently been studied is SMC for inference in non-static problems
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on networks. Methods include those which break down the graphical model into smaller

blocks. The SMC is independently performed on lower dimensional blocks before correcting

for the blocking (Rebeschini et al., 2015; Briggs et al., 2013). By breaking the graphical

model down, these methods are only approximations to the state space. Beskos et al.

(2014b) introduces a space-time particle filter which uses a local particle filter in space and

a global particle filter in time. Similarly, nested SMC (Naesseth et al., 2016) takes an exact

approximation (Andrieu et al., 2010) to the weights in the SMC algorithm. The proposal

distribution is the one used in fully adapted SMC. Instead of computing this proposal

exactly, the weights are approximated by running an internal SMC sampler for each weight

on the state space model, hence producing an unbiased estimate of the weights to move

from time t to time t+ 1.

2.3.3 Bayes Linear Methodology

Variational Methods and Monte Carlo methods depend on a fully specified prior distribu-

tion for the latent variables. For large complex data, it is often difficult to fully specify a

prior distribution, which agrees with experts’ opinions (Craig et al., 1998). It may only be

possible to specify partial prior beliefs. Instead of working with a full prior probability dis-

tribution, an alternative is to use Bayes Linear (BL) methodology. This methodology works

with the expectations directly rather than probabilities. Beliefs about the latent random

variables are expressed through expectations and covariances rather than full probability

distributions (Goldstein and Wooff, 2007) and these values are updated given observations.

No assumptions are made about the underlying probability distribution of the model. The

method of using subjective expectation to quantify expectations and uncertainty is some-

times known as prevision. A rigorous development of the methodology for working directly

with expectation as the primitive quantity is given in De Finetti (1974).

The link between subjective probability and expectations is easily justified. The expecta-

tions can be used to calculate if an event takes place using indicator functions (Whittle,

2012). If the indicator is one when the event takes place and is zero otherwise, the proba-
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bility of the event is given by the expectation of the indicator function.

BL methodology allows beliefs to be specified at the level of detail required through a set

of random quantities, C = {X1, X2, . . .} where for each Xi, Xj ∈ C, the prior beliefs are

specified though:

• The expectation: E(Xi).

• The variance Var(Xi) quantifying uncertainty in the judgement of E(Xi).

• The covariance Cov(Xi, Xj) expressing the judgement of the relationship between the

random variables, quantifying the extent to which Xi may linearly influence Xj .

For example, for two random variables X and Y , interest may lie in the set of random quan-

tities C =
{
X,Y,X2, Y 2, XY

}
. For each of these random quantities a prior expectation,

along with variances and covariance would need to be specified to use BL methodology. An

alternative way to specify a full probability distribution would be to specify the expectation

of every possible combination of the random variables.

Formally, the belief specification is formed by constructing a linear space 〈C〉 which consists

of all finite linear combinations of the elements of C. Covariance defines an inner product

and norm over the linear space 〈C〉. Hence, the name Bayes Linear follows from this

linearity underlying the inner product structure. Operations which can be done on linear

subspaces can be done in BL methodology. Familiar properties, present when working

with probabilities, are also present when working within BL methodology such as linearity,

convexity, scaling and additivity.

Supposing a set of the random quantities are observed. The beliefs on the remaining expec-

tations and variances are adjusted directly to incorporate the outcome. If the base of the

analysis is C = {X,Y} and the n-dimensional set Y is observed, then judgement on X is

adjusted given Y = y. The adjusted expectation and covariance are the best estimate for

each Xi as a linear combination of the observed quantities. The best estimate is defined in
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terms of minimising the mean squared error. Let Y0 = 1, then the adjusted expectation is:

Ê [Xk|Y] =
n∑
i=0

hiYi, (2.3.25)

which minimises:

E

(Xk −
n∑
i=0

hiYi

)2
 , (2.3.26)

over all collections of h = (h0, h1, . . . , hn) (Goldstein and Wooff, 2007).

This is a convex optimisation problem, and could be found using optimisation software.

However, it is also possible to derive analytical equations for the best estimate. For any

choice h∗ = (h1, . . . , hn), the value of h0 is found by differentiating (2.3.26) with respect to

h0:

∂

∂h0

(
E
[(
Xk − hT∗Y − h0

)2])
=

∂

∂h0

(
E
[
X2
k

]
− 2hT∗E [XkY]− 2h0E [Xk] + 2hT∗E [Y]h0

+hT∗E
[
YTY

]
h∗ + h20

)
,

= −2E [Xk] + 2hT∗E [Y] + 2h0. (2.3.27)

Then setting equation (2.3.27) equal to zero:

h0 = E [Xk]− hT∗E [Y] . (2.3.28)

For this value of h0, the value of h∗ is found by differentiating (2.3.26) with respect to h∗:

∂

∂h∗

(
E
[(
Xk − hT∗Y − E [Xk] + hT∗E [Y]

)2])
=

∂

∂h∗

(
Var(Xk) + hT∗Var(Y)h∗ − 2hT∗ Cov(Y, Xk)

)
,

= 2hT∗Var(Y)− 2Cov(Xk,Y).

Assuming that Var(Y) is of full rank, setting this equal to zero gives:

hT∗ = Cov(Xk,Y)Var(Y)−1,
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and substituting into equation (2.3.25), the BL adjusted expectation is:

Ê [Xk|Y] = E [Xk] + Cov(Xk,Y)Var(Y)−1(y − E [Y]).

The adjusted variance of Xk given Y is:

V̂ar(Xk|Y) = E
[
(Xk − Ê [Xk|Y])2

]
.

Substituting in Ê(Xk|Y) from (2.3.29), the adjusted variance is:

V̂ar(Xk|Y) = Var(Xk)− Cov(Xk,Y)Var(Y)−1Cov(Y, Xk). (2.3.29)

The adjusted expectations and variances can be viewed as a primitive which quantifies

aspects of the beliefs given observations. Alternatively they can be seen as a simple tractable

approximation to a fully Bayesian analysis for complicated problems. For linear Gaussian

models, the adjusted values are equivalent to the posterior mean and covariance found using

a fully Bayesian analysis.

A common application for BL methodology is for uncertainty analysis in high dimensional

complex computer models for physical processes such as climate models (Williamson et al.,

2013), the Thermohaline circulation in the Atlantic Ocean (Goldstein and Rougier, 2009)

and galaxy formation (Vernon et al., 2010). Within these applications, the aim is to seek

out areas of simulator inputs which closely match the historical observations (termed history

matching in the oil industry). An emulator based on BL methodology can be used to make

a decision where the simulator should be run in order to eliminate areas of uncertainity

from the model. Many of the applications of BL aim to help with decision making within

the application, such as deciding where to sink further wells in off-shore oil rigs (Craig

et al., 1997) and using a decision theory based approach to experimental design (Farrow

and Goldstein, 2006).



Chapter 3

Sequential Decision Problems

3.1 Introduction

In many real-world situations, decisions are made in order to help maximise some type of

reward. The decisions are often difficult to make because of uncertainty in the system and

about the outcome of the decision and any possible future outcomes. The decisions or the

actions they generate do not only result in a reward but also result in new knowledge that

can be used to help improve future decisions. This type of problem can be modelled as a

sequential decision problem, which is a type of learning problem where the learning can be

either offline or online (Powell and Ryzhov, 2012). In offline learning problems, no rewards

are collected as the information is gathered. The decisions and feedback are sequential but

a reward is only received at the end of the simulation. Ranking and selection is an example

of an offline learning problem, where the concern is to find the best of two or more possible

processes after a number of observations. See Kim and Nelson (2006) for an introduction

to ranking and selection problems.

In online learning problems, the rewards are collected at the same time as information

is gathered. Multi-armed bandit problems are one example of an online learning problem.

They are one of the best known and most commonly used type of sequential decision problem

38
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and arise in many different disciplines including statistics, operations research, machine

learning, computing, control theory and economics. One of the original motivations for

studying the multi-armed bandit problems coming from statistics was the sequential design

of experiments (Robbins, 1952).

Sequential decision problems have been extensively studied because of the large number of

applications. Different disciplines vary in their approach to these types of problems, driven

by differing motivating applications. Machine learning has recently been very active in

the area of research for multi-armed bandits. For example, in website optimisation (Scott,

2010), where the observations are easy to observe and the outcome is almost instantaneous,

they combine the ideas of sequential learning motivation (Robbins, 1952) with ideas from

reinforcement learning; the process of learning about uncertain environments and observing

the outcomes inspired by behavioural psychology (Sutton and Barto, 1998). Many of the

applications within statistics and operations research have less instantaneous rewards and

a higher cost associated with them. For example, deciding where to drill to find oil, or

deciding which drug to give a patient in a clinical trial.

3.1.1 Markov Decision Processes

A common way to model a sequential decision problem is as a Markov Decision Process

(MDP), a discrete time stochastic process which is an extension of a Markov chain with

the addition of actions and rewards. A detailed introduction to MDP is given in Whittle

(1982) and Puterman (2014). The process moves through the states with some transition

probability, which depends on the actions of the decision maker. Hence, the transition

probability depends on the current state of the system as well as the action. Given the

current state and action, the next state is conditionally independent of all previous states

and actions. Hence, the state transitions satisfy the Markov property.

The problem in a MDP is to find a policy for the decision maker. A policy is a set of rules to

decide which action is taken in which state. The standard objective is to maximise the total

expected reward over the time horizon which can either be finite or infinite. For infinite
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time horizons, the rewards are usually discounted by a fixed factor so that the total reward

is finite. An action will not only be determined by the possible immediate reward but also

any possible future rewards. For example, an action may result in a poor immediate reward

but lead to good future rewards. Hence, evaluating the current best action results in looking

at all possible future actions.

The multi-armed bandit problem is an example of a one state MDP, where learning is added

to the problem (Vermorel and Mohri, 2005). This occurs when transition probabilities are

not fully known and can be learnt from the outcome of the actions.

3.1.2 Multi-armed Bandits

A typical example of a multi-armed bandit problem is the problem of a gambler at a row

of slot machines (sometimes called one-armed bandits). The gambler must decide which

machines to play, how many times to play them and in which order they should be played.

The objective of the gambler is to maximise the sum of their rewards over the sequence of

plays. More generally, in a classical multi-armed bandit problem, the decision maker faces

K possible actions (also known as arms). Associated with each possible action are unknown

parameters, θa ∈ Θ. At each time step, t = 1, 2, . . . an action ak ∈ {1, . . . ,K} is taken and

the action at = a corresponds to choosing actions a at time t. This results in an observed

reward yt, which is assumed to be drawn from the marginal distribution νa with parameters

θa:

Yt ∼ νa(θa). (3.1.1)

The expectation of the reward on arm a at time t is denoted µa:

E[Yt] = µa. (3.1.2)

From a Bayesian point of view, the parameter values (θ1, . . . , θK) are drawn from a prior

distribution. The objective is to define a policy which maximises the cumulative expected
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reward over the time horizon n:

E

[
n∑
i=1

Yt

]
(3.1.3)

over both the realisations and the prior information. For an infinite time horizon, the reward

is multiplied by a discount factor, γ, and the policy is chosen which maximises:

E

[ ∞∑
i=1

γtYt

]
. (3.1.4)

In the past couple of decades, many algorithms have been suggested for determining the

best policy for the multi-armed bandit problem. These problems can be seen as a type

of exploration-exploitation problem. At each stage, there is a trade-off between sampling

a reward on an arm which appears to be doing well based on the limited information of

previous rewards (exploitation) and sampling a reward on an arm which may look inferior

because of sampling variability (exploration) (Auer et al., 2002). A simple heuristic policy

is the greedy policy where at each time step, the action with the highest posterior expected

reward, µj,t, is picked:

at = argmaxj=1,...,Kµj,t. (3.1.5)

The method can be seen as a pure exploitation method. Better methods will combine both

exploration and exploitation in order to maximise the future rewards. Section 3.2 gives

details of some alternative policies.

3.2 Solutions

Making a decision in multi-armed bandit problems involves considering the outcome of all

future possible decisions which can quickly become unmanageable. An alternative is to

use stochastic dynamic programming (Bellman, 1954) approaches which break the problem

down into smaller, more manageable problems. Using dynamic programming, the optimal
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solution to the multi-armed bandit problem reduces to an index problem. An index is a

numerical value independently assigned to each of the arms and the policy is chosen by

selecting the arm with the highest index. Gittins and Jones (1979) proved that the optimal

policy for the infinite horizon multi-armed bandit problem, with discounted rewards where

the rewards are conditionally independent given the action, is an index policy. They termed

the index the dynamic allocation index but it is now commonly referred to as the Gittins

index. Easier to follow proofs have since been given to show that Gittins index is optimal for

multi-armed bandit problems (Tsitsiklis, 1994). One way the Gittins index can be derived

is by considering a smaller independent problems for each arm where the arm is pulled

and it must be decided adaptively when to stop pulling that arm. Upon stopping a fixed

retirement cost is given. The Gittins index is the arm with the largest fixed retirement cost

required to stop pulling the arm now (Frazier, 2011). The solution is reduced from solving

a k-armed bandit problem to solving the Gittins indices for k one-armed bandits. For many

problems these optimal policies are hard to compute, and for finite horizon problems Gittins

indices are no longer optimal; the proof is fragile to changes in the assumptions. As a result,

research has turned to heuristic methods which are not guaranteed to select the optimal

policy at each time step to solve multi-armed bandit problems.

An alternative way to measure how well a decision policy performs is to minimise the

cumulative regret (Robbins, 1952). If µ∗ is the maximum expected reward over the K arms

then instead of maximising the cumulative reward, the multi-armed bandit problem can be

thought of as minimising the cumulative regret:

Rn(θ) =
n∑
t=1

(µ∗ − µat). (3.2.1)

A basic objective given by Robbins (1952) is that Rn(θ)/n → 0 as n → ∞. Policies which

achieve this objective are said to be consistent (Lai and Robbins, 1985). Stronger conditions

consider the worst case of regret. Lai and Robbins (1985) show that regret must grow at least

logarithmically with time and provide a lower bound on the number of suboptimal draws

in a good strategy for a single armed bandit. These are extended to multi-armed bandits
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by Burnetas and Katehakis (1996). As well as showing that policies asymptotically reach

this lower bound, the current standard in evaluating policies is to give an upper bound

of the regret in finite time (Auer et al., 2002). The aim is to show that the regret is of

O(log(n)) but large constant multipliers mean this is quite a loose condition. Approaches to

finding policies include upper confidence bound methods, interval estimation and Thompson

sampling. In the following sections, different approaches to heuristic policies are discussed.

These policies are heuristic as they do not guarantee selecting the optimal policy at each

time step, unlike the Gittins index. However, they can be applied to a far wider range of

problems, for which no optimal policy exists, and have been shown in many cases to reach

the lower bound on the number of sub optimal draws. There are also many more general

heuristic methods which can be applied to a broader class of optimal learning algorithms

(Vermorel and Mohri, 2005; Luce, 2005).

3.2.1 Semi-uniform Methods

Multi-armed bandit problems are an exploration-exploitation problem. Methods which dis-

tinguish between exploration steps and exploitation steps are called semi-uniform methods.

The simplest and most widely used semi-uniform method is the ε-greedy policy (Watkins,

1989). The ε-greedy policy randomly chooses an arm with probability ε and otherwise makes

a greedy choice, selecting the arm with the highest expected reward:

at =

 maxj=1,...,Kµj,t with probability 1− ε

random choice with probability ε
. (3.2.2)

The choice of ε ∈ (0, 1) is left to the user; a smaller value of ε results in less exploration. The

ε-greedy policy is a sub-optimal policy because the constant factor ε prevents the strategy

from getting arbitrarily close to the optimal action (Vermorel and Mohri, 2005). Variants of

the ε-greedy policy have been developed, such as the ε-decreasing strategy which consists of

using a decreasing ε getting arbitrarily close to the optimal strategy asymptotically. Auer

et al. (2002) shows that, under certain constraints on how ε decreases, this achieves an
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O(log(T )) regret.

Semi-uniform strategies are simple heuristic methods. Methods which assign a probability

to selecting each possible arm may perform better. These methods give arms with higher

expected rewards a higher probability of being chosen but incorporate exploration by still

giving small probabilities to those arms with lower expected reward. One such method is

the Softmax algorithm (Vermorel and Mohri, 2005) which assigns a Boltzmann distribution

to the probability of selecting each arm:

eµk,tτ∑K
i=1 e

µi,tτ
(3.2.3)

where τ is the user defined tuning parameter where a larger value of τ results in more

exploration.

3.2.2 Optimistic Methods

A different approach to incorporating exploration is used in optimistic methods which take

an optimistic guess of the mean reward in the face of uncertainty. The reward with the

highest optimistic estimate is then chosen. The methods prefer actions which have a high

amount of uncertainty. For two arms with similar expected rewards, the arm which has a

higher amount of uncertainty about that expectation will have a larger optimistic reward.

If the optimistic view of the expected reward is wrong then after choosing that action a few

times, the value will quickly decrease and it will no longer be chosen. These methods are

intuitive as they are an approximation to the type of behaviour on Gittins indices which

can be seen as the mean reward plus some type of uncertainty bonus.

One optimistic approach is called Interval Estimation (Kaelbling, 1993). Associated with

each arm is a 100(1−α)% upper bound on the mean reward, where α is a parameter in the

range (0, 1). The value of α is left to the user; a smaller value of α leads to more exploration.

At each round, the action of highest upper bound is chosen. For example, if a reward on

arm a at time t is normally distributed with posterior mean, µa,t and posterior standard
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deviation σa,t. Interval estimation chooses the policy:

at = argmaxj=1,...,Kµi,t + zασi,t (3.2.4)

where zα is the is the 1− α quantile of the standard normal distribution.

Alternatively, Upper Confidence Bound (UCB) methods have become popular optimistic

heuristic methods for solving the multi-armed bandit problem. They are based on an upper

confidence bound to the mean reward on each arm and are designed to meet the regret

optimality criteria. Many of the methods do not make any assumptions on the probabilistic

model and rely only on the sample mean of rewards on the arms. For each arm, an index

is calculated based on an upper bound on the expected reward, which is a function of the

number of times the arm has been pulled up to the current time. Many different UCB

policies have been suggested and designed for specific problems (Auer et al., 2002; Garivier

and Cappé, 2011). A general Bayes-UCB policy has been proposed by Kaufmann et al.

(2012a) which is inspired by a Bayesian perspective to the standard (frequentist) UCB

policies. The Bayes-UCB policy chooses the arm which has the highest value of some user-

chosen quantile, αt, of the posterior distribution of the rewards. More specifically, denote the

quantile function associated to the distribution ν as Q(λ, ν), such that P (X ≤ Q(λ, ν)) = 1

and the posterior distribution for arm a at time t as νj,t. Bayes-UCB chooses the policy:

at = argmaxj=1,...,KQ(1− αt, νj,t) (3.2.5)

In many cases, the method can reach the lower bound on regret discussed in Section 3.2.

3.2.3 Randomised Probability Matching

A naturally Bayesian approach to defining a policy is to use randomised probability match-

ing. The algorithm works by sampling from the posterior distribution on each arms and

choosing the arm with the highest value. A sample, θ̃a, is drawn from the posterior distri-
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bution νa,t(θa | ·) on each arm and the arm selected is:

at = argmaxj=1,...,K θ̃a. (3.2.6)

Thompson sampling (Thompson, 1933) was the first example, and was proposed as a method

for solving stochastic bandits with Bernoulli rewards. Recently, the method has been shown

to be asymptotically optimal for cumulative regret minimisation (Kaufmann et al., 2012b).

Although proposed for Bernoulli bandits, the method can easily be extended to general

stochastic bandit problems (Agrawal and Goyal, 2012). An optimistic version of this has

been developed which instead takes the maximum of the mean posterior reward and the

sample (May et al., 2012):

at = argmaxj=1,...,Kmax(θ̃a, µa,t). (3.2.7)

3.3 Multi-armed Bandit Problems on Networks

Many variants of the multi-armed bandit problem have been proposed, where the variations

can be a result of a change in the reward, the available actions or the feedback. One variant

of the classic multi-armed bandit problem is when there is some underlying dependence

structure between the rewards: the arms are correlated. The assumptions behind the Gittins

index do not hold for this problem because statistical dependence among the arms means

the indices can not be decomposed between the arms. When one arm is pulled, knowledge

of other arms in the network is also gained. Methods which involve specific correlation

structures include: the Knowledge Gradient Policy (Ryzhov et al., 2012) which can handle

correlated Gaussian rewards; dependencies among bandits in the form of clusters (Pandey

et al., 2007); and linearly parameterised arms (Rusmevichientong and Tsitsiklis, 2010). The

dependent bandit problem is also related to bandit problems with side observations (Wang

et al., 2005) where there is a separate process that provides additional information about the

reward process at each time point; no such separate information about the reward process

is present in the dependent bandit.



CHAPTER 3. SEQUENTIAL DECISION PROBLEMS 47

Dependencies in the multi-armed bandit problem can also be in the form of a graph structure

to the bandits. Many multi-armed bandit problems on graphs are concerned with sequential

decision problems with limited feedback (Caron and Bhagat, 2013; Cesa-Bianchi et al., 2013).

For example, finding the most influential person in a social network to target for marketing

purposes. This type of application is becoming more common as the use of social media

plays a larger role in marketing. The methods tend to work by information on an arm being

shared with a neigbouring node in the network, resulting in local influence (Carpentier and

Valko, 2016).

Dimitrov et al. (2016) model a communication network as a MRF to help efficiently find

intelligence items relevant to a query. It is assumed that if a person is involved in a relevant

conversation with one person, they are more likely to be involved in relevant conversations

with other people too. The MRF is used to model the dependence structure between indi-

viduals, and observations are made on edges in the network. Sequential decision problems

on networks were also used for exploring an oil and gas field in the North Sea (Brown and

Smith, 2013; Martinelli et al., 2013). A natural approach for dealing with sequential decision

making in graphical models in general is given by Brown and Smith (2013), who propose

splitting the network up into several disjoint clusters and using dynamic programming on

the clusters. Approximation techniques are then used to find a policy in the full network.

The results rely heavily on bandit superprocesses, a generalisation of multi-armed bandits

and focus on computing optimal policies for the exploration-exploitation problem.



Chapter 4

Bayes Linear Methods for

Large-Scale Network Search

4.1 Introduction

There are many applications where you wish to search through a large set of items, such as

emails or documents to find a small set of them which are relevant to a query. In Chapter

1 we introduced the idea of network-based searches for finding relevant items distributed

across the edges of a network. We give a quick summary of two specific motivating examples,

which we return to later in the chapter.

The first example comes from corporate law suits. Companies are often required to hand

over large databases of emails to one another and the information within these emails may

make up part of their legal battle (Cavaliere et al., 2005). To find and judge which of

the emails are relevant to a case requires searching through a huge network of emails, the

majority of which will be irrelevant, in possibly time pressured situations, at the cost of

millions of dollars and thousands of hours (Flynn and Kahn, 2003).

The second example comes from intelligence processing. Efficient military operations and

law enforcement rely on the timely processing of intelligence (Hughbank and Githens, 2010).

48
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Overwhelming amounts of intelligence is collected daily, particularly communications intel-

ligence where the use of social media, text messaging and emails have drastically increased

(Duyvesteyn et al., 2014). A result of the overwhelming amount of intelligence collected

is that often the processor is faced with a bottle neck of intelligence items: far more are

collected than can be processed. In a time critical situation, the main challenge for the

processor is to provide the analysts with the largest set of relevant intelligence items in the

given time window.

In these examples, we have a set of emails or other communications, henceforth called items

for simplicity, and we wish to search this set of items to find those which are relevant to

the query of interest. Each of the items involves two or more participants. The participants

and the items between them induce a network where the participants form the nodes. An

edge exists between two nodes if there is at least one item between the two associated

participants. Participants can also be relevant or irrelevant to the query. Relevant items

are more likely to occur between relevant participants. In addition, it is likely that relevant

participants will cluster in groups. Thus, the network contains information that can be

exploited to help decide which items to observe. Furthermore, each of the problems is time

pressured and could involve huge amounts of possible items to search through. Hence, they

require scalable search methods in order to be able to process as many items as possible in

a short period of time and select items to observe which are likely to give as many relevant

items as possible.

The main aim of the network based search is to find the relevant items on the edges, and

hence learn on which edges you are most likely to find a relevant item. Throughout this

thesis, the algorithms focus on this aim. However, as a side product of the network based

search we also learn about the relevance of the participants in the network – which, in itself,

is useful information in the examples given above.

Two example network related to the motivating applications above are shown in Figure

4.1.1. The first is based on a possible terrorist network associated with the bombing of the

US embassy in Tanzania in 1998. The second is constructed from Enron email data. The
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(a) Tanzania network (b) Network constructed from Enron email data

Figure 4.1.1: Two example networks. Figure 4.1.1a shows a possible terrorist network
associated with the bombing of the US embassy in Tanzania in 1998. Figure 4.1.1b shows
a network constructed from Enron email data.

Enron Corpus consists of hundreds of thousands of emails from roughly 150 senior employees

at the Enron Corporation. The dataset was made public during the US government’s legal

investigation of the Enron Corporation after its collapse in 2001 and has similarities with

the datasets of corporate legal cases. The width of the edge or node corresponds to the

total number of items associated with it and the more red (less blue) an edge or node is,

the greater the number of relevant items associated with it. It can be see that the relevant

edges/nodes tend to cluster together in the network. An efficient method for network-based

search will need to utilise this clustering property.

The main contribution of this chapter is to develop an approximate inference method within

a binary MRF to allow for efficient searching. We take a sequential decision approach to the

problem, introduced by Dimitrov et al. (2016), and develop an approximate inference method

for sequential inference on binary networks. The method is based on BL methodology; we

add additional constraints to the optimisation form of the BL approximation so that it

produces results that make sense for the application under consideration. For network-based

searches we show how these constrained BL updates can be used and that they perform well,

in the context of communication networks, compared to a model where the network is not

considered.
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4.1.1 Problem Setting and Related Work

We use a class of models for the relevance of participants and items that Dimitrov et al.

(2016) introduce for intelligence processing. Under this model, each participant is either

relevant to the query or irrelevant, modelled through a set of binary but unknown random

variables, one for each participant. In addition, a random variable is associated with each

edge describing the probability of observing a relevant item between the two associated

participants. This random variable representing the probability of finding relevant items on

an edge is dependent on the involved participants’ relevance values. An item involving two

relevant participants is more likely to be relevant to the query than at item with at least

one participant who is irrelevant.

We call the person who searches through the items the user and assume the user correctly

identifies which items are relevant; there are no false positives or false negatives. The users

task is to identify as many relevant items as possible, where there are far more items than

can be observed during a limited available time period. Items are observed one at a time,

with the user gaining information that can be exploited to focus the future search more

effectively.

The problem has three related steps:

1. Constructing an appropriate joint prior distribution for the relevance of participants

and items.

2. Updating this joint distribution as items are observed.

3. Deciding which item to observe next, given the current joint distribution on the rele-

vance of items and participants.

Dimitrov et al. (2016) show that the success of the user finding relevant items can be

substantially improved by using a prior distribution for the relevance of participants which

models the fact that relevant participants cluster together. Their prior distribution is based

upon classifying each participant as either relevant to the query or irrelevant, modelled
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through a set of unobserved binary random variables, one for each participant. The joint

distribution of these binary random variables is specified as a MRF. This MRF introduces

local dependencies that encourage relevant participants to cluster together. In addition,

associated with each edge is a random variable describing the probability of observing a

relevant item between the two associated participants. These random probabilities are

dependent on the involved participants’ relevance values. An item involving two relevant

participants is more likely to be relevant to the query than one where at least one participant

is irrelevant.

The limitation of the model suggested by Dimitrov et al. (2016) is that updating the joint

distribution in step (2) can be computationally prohibitive for large networks. Using an

exact inference method such as variable elimination (Zhang and Poole, 1994), conditioning

(Shachter et al., 1994) or junction trees (Lauritzen and Spiegelhalter, 1988), the computa-

tional cost grows exponentially in the tree width of the graph. Hence, they are intractable

for many large networks (Koller and Friedman, 2009). Ellis (2013) demonstrates that the

use of exact inference can limit the size of network for which the method is computationally

tractable to a few hundred nodes. Thus while the approach of Dimitrov et al. (2016) can

be used on the Tanzania network in Figure 4.1.1a, it is not practicable for larger networks

such as that constructed from the Enron data in Figure 4.1.1b. For such larger networks,

approximate inference is required to overcome the computational intractability of exact

inference.

There are a number of standard heuristic policies for performing the third step. Impor-

tantly for our work, most of these policies depend on the posterior distribution for the

probabilities that items are relevant just through the posterior mean and covariance. This

motivates using the BL methodology (Goldstein and Wooff, 2007), which summarises the

prior and posterior distribution just through their means and covariances and gives a simple

procedure to update these given new data. Thus, the use of BL has many advantages for

this application. Firstly, it simplifies specifying the prior, as we need only specify the prior

mean and covariance. Secondly, the BL updates are computationally practical for large

networks; with their worst case computational cost scaling as the cube of the number of
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nodes in the network, compared to exponentially for the exact Bayesian updates. Finally,

whilst the BL updates are approximate, they are approximations that focus on the aspects

of the posterior, namely the mean and covariance, that are needed for the decision problem

in step (3).

Despite these advantages, the standard BL updates are inappropriate for our application,

as they ignore the fact that we have a posterior distribution on parameters that represent

binary random variables and thus the posterior mean of these parameters will lie in the

interval [0, 1]. The standard BL updates do not force the posterior expectation to lie inside

this range. We introduce an extension of the BL update that respects this constraint.

The outline of the chapter is as follows. In Section 4.2, we introduce the model of Dimitrov

et al. (2016). Section 4.3 gives an overview of the BL methodology. In Section 4.3.1 the con-

strained BL optimisation problem is introduced, where additional constraints are added to

the BL optimisation problem to ensure the BL posterior means remain in the range [0, 1] for

any probabilities. We show the constrained BL updates have an analytical solution, allow-

ing for savings in the computational cost of inference compared with using the constrained

optimisation problem directly. Section 4.4 describes how the BL updates are used for ap-

proximate inference within the network-based search method. We evaluate the accuracy

of the BL procedure both for approximating the posterior distribution of the MRF model,

and for the network-based search problem in Section 4.5. These results include analysis of

data based on a terrorist network and data taken from the Enron Corpus. In particular we

show how BL can perform network-based search for large-scale networks, and that it leads

to substantially improved performance over methods that ignore the dependence structure

implied by the network.

4.2 The Model

The model we use for intelligence collection is originally described by Nevo (2011). Let

G = (V,E) denote the graph associated with the network. The nodes in the graph, V ,
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represent the participants. The edge (u, v) ∈ E exists if and only if there is at least one

item between participants u and v.

Let there be m nodes in the graph and n edges. Associated with each node is a random

variable describing how relevant the participant is to the query. Define this random variable

as Zu for u ∈ 1, . . . ,m and the set of participants’ relevance values as Z = {Z1, . . . , Zm}.

We assume that there is dependence between the random variables. A participant is more

likely to be relevant if they share items with a relevant person and vice versa. We model

the relevance of participant u as a binary random variable where:

Zu =

 1 if participant u relevant to query

0 otherwise
.

A random variable Puv for edge (u, v) ∈ E describes the probability of observing a relevant

item on that edge. Let the set of probabilities be P = {Puv, (u, v) ∈ E}. We assume that the

distribution of each Puv will depend on Zu and Zv (the participants’ relevance values). Given

the involved participants’ relevance values, the probabilities are conditionally independent.

For conjugacy, we model these prior conditional probabilities using a beta distribution,

Puv | Zu, Zv ∼ Beta(a(Zu, Zv), b(Zu, Zv)). (4.2.1)

The joint distribution over all random variables is:

P (Z,P) = P (Z1, . . . , Zm)
∏

(u,v)∈E

P (Puv | Zu, Zv). (4.2.2)

Both the participants’ relevance values and the probabilities are latent random variables.

They are not observed directly but learned by observing items on edges. When an item is

observed, it is either relevant or irrelevant to the query. Suppose the kth item is observed

on edge (u, v), and Y k
uv denotes the observed binary relevance value of the item. That

relevance value is modelled by the Bernoulli distribution with success probability Puv. After

nuv observations on edge (u, v), the outcome of the observed items is stored through the
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sufficient statistics nuv and Yuv where,

Yuv =

nuv∑
k=1

Y k
uv, (4.2.3)

is the number of relevant items observed. The joint posterior distribution over the partic-

ipants’ relevance values and the probabilities that edges produce relevant items, given the

sufficient statistic Yuv on each edge, Y = {Yuv, (u, v) ∈ E} is:

P (Z,P | Y) = P (Z | Y)P (P | Z,Y),

= P (Z | Y)

 ∏
(u,v)∈E

P (Puv | Zu, Zv, Yuv)

 . (4.2.4)

The equality above comes from the fact that given values of Zu, Zv, the variable Puv is

independent of other Pu′v′ , Yu′v′ variables. The conditional posterior for each Puv will be

Puv | Zu, Zv, Yuv ∼ Beta(a(Zu, Zv) + Yuv, b(Zu, Zv) + nuv − Yuv).

Dimitrov et al. (2016) complete this model by specifying an MRF for Z. Such a model

introduces a local dependence structure with, for example, participants that share an edge

in the network being more likely to be of the same type: either both relevant or both

irrelevant.

Whilst a natural model, this leads to difficulties with evaluating this joint posterior distri-

bution as calculating P (Z | Y) can be computationally prohibitive. Using exact inference

algorithms the computational cost of evaluating this grows exponentially with the tree width

of the graphical model in the worst case (Koller and Friedman, 2009). See Nevo (2011) and

Ellis (2013) for more information on the exact updating process.

4.2.1 Example of Updates

To clarify the model, we present a simple example. The set of random variables for the

participants’ relevance values are given by Z = (Z0, Z1, Z2) and the prior probabilities by
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Figure 4.2.1: Network structure for simple example

Zi Zj φ(Zi, Zj)

0 0 0.3
0 1 0.2
1 0 0.2
1 1 0.3

(a) Prior Clique Factor

Zi Zj a(Zi, Zj) b(Zi, Zj)

0 0 1 4
0 1 1 2
1 0 1 2
1 1 1 1

(b) Prior Pij | Zi, Zj Parameters

Table 4.2.1: The prior distributions used for the example in Section 4.2.1 for the network
in Figure 4.2.1. Table 4.2.1a is the prior clique factor over pairs of participants in the
network which are connected by an edge and Table 4.2.1b is the conditional beta distribution
parameters.

P = (P01, P12). The corresponding network is shown in Figure 4.2.1. To specify a prior

distribution, we give a factor over pairs of nodes in the network, say Zi and Zj , displayed

in Table 4.2.1a. In other words, this factor appears twice in the joint distribution, once

for each pair of connected nodes. Using the Hammersley-Clifford Theorem (Hammersley

and Clifford, 1971), the joint distribution of Z, can be calculated from these factors. The

prior parameters for the dependant beta distributions are given in Table 4.2.1b. The data

in Table 4.2.1 completely specify the prior joint distribution through equation (4.2.2).

After an observation, the posterior distribution for Z | Y can be found using an exact

inference method. An example of the change in beliefs over the network is given in Figure

4.2.2. The area of the node is proportional to its marginal posterior expectations and the

thickness of the edges indicates the marginal posterior probabilities of observing relevant

items on each edge. In addition, we display the exact posterior expectations.
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Figure 4.2.2: The updated expectations for the participants’ relevance values and updated
probabilities on each edge given the set of observations Y = (Y 1

01 + Y 2
01, Y

1
12) = (2, 0), for

the simple line network. The prior distribution is given by the prior clique distribution in
Figure 4.2.1a and the prior conditional beta distribution in Figure 4.2.1b. The area of a node
represents the associated participants’ expected relevance value given observations E[Zi | Y]
and the expected probabilities are given by the width of the edges. As relevant items
are observed, the expected probability of observing a relevant item increases, as does the
involved nodes relevancies. This information is propagated throughout rest of the network.
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4.2.2 Sequential Decision Making

The reason we need to calculate the posterior distribution (4.2.4), is that given the current

set of observations, Y, we want to choose which item to observe next. We can define this as

a Bayesian sequential decision problem, where we wish to maximise the number of relevant

items observed over a fixed time interval, with the policy of which item to observe next

depending on which of the items to date have been relevant. Solving this decision problem

optimally is intractable, but there are many heuristic policies that have been shown to

perform well (Auer et al., 2002).

A simple policy would be to observe the item which is currently considered most likely to

be relevant. That is, we would choose an item from the edge (u, v) for which the posterior

expectation of Puv is highest. This is called the greedy policy. In practice, the greedy policy

can often perform poorly, particularly for decision problems over a long time interval. It

just exploits the current information as opposed to also trying to learn more about which

edges have the highest Puv values. As a result, there are more refined heuristic methods that

take account of not just the posterior means of the P but also the posterior variances (Lai,

1987; Kaelbling, 1993; May et al., 2012). A high posterior variance means a large amount

of uncertainty in the probability on an edge. Screening items on edges with high variances

leads to greater learning about the actual probabilities associated with each edge compared

to screening items on edges with low variances. The knowledge gained from such screenings

can then be exploited in later decisions. Hence these policies preferentially screen items on

edges with both high means and variances.

To implement one of these policies, we do not need to calculate the full posterior distribution

for the Puvs, but just the posterior mean and variance. This motivates the use of BL

methods, which are based on Bayesian modelling and updates which solely use the mean

and variance.
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4.3 Bayes Linear Methodology

BL (Goldstein and Wooff, 2007) replaces the exact Bayesian update in (4.2.4) with an

approximation. The idea of BL is to consider only the mean and covariance of the param-

eters. This simplifies the prior specification as only a mean and variance is needed, rather

than the full distribution. On observing data, these are updated to produce approxima-

tions to the posterior mean and variance. For our application, BL requires specifying the

prior expectation of the latent variables, Z = {Z1, . . . , Zm}, and the observable quantities

Y = {Y1, . . . , Yn}. The uncertainty in the expectations of the random variables and the

extent that one random variable will influence another is specified through their joint prior

covariance,

Cov(Z,Y) =

 Var(Z) Cov(Z,Y)

Cov(Y,Z) Var(Y)

 .

The BL updates can be defined in terms of finding the best estimate of each Zk by a

linear combination of the data. This best estimate is defined in terms of minimising the

mean squared error. The BL posterior mean for Zk is just the resulting estimate and

the BL posterior variance is defined as the variance of these estimators. Formally, for each

k ∈ {1, . . . ,m} we wish to find the coefficients ĥk =
(
ĥk0, ĥ

k
1, . . . , ĥ

k
n

)
that solve the following

optimisation problem:

minimise
hk

E

(Zk − hk0 − n∑
i=1

hki Yi

)2
 , k ∈ {1, . . . ,m}. (4.3.1)

Then, for observed data y = (y1, . . . , yn), we define the estimated posterior expectation as:

Ê [Zk | Y] = ĥk0 +
n∑
i=1

ĥki yi, (4.3.2)
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for k ∈ {1, . . . ,m} and the updated estimated posterior covariance between Zk and Zl as:

Ĉov (Zk, Zl | Y) = E

(Zk − ĥk0 − n∑
i=1

ĥki Yi

)Zl − ĥl0 − n∑
j=1

ĥljYj

 , (4.3.3)

for k, l ∈ {1, . . . ,m}. The expectation in equation (4.3.1) is over both the latent variables

and the observable quantities. By multiplying out the expectation, we can see that hk

depends on the prior specification of the expectation and covariance of Z and Y. The opti-

misation problems defined by (4.3.1) are standard convex quadratic optimisation problems

(Boyd and Vandenberghe, 2004) and can be solved analytically to give

ĥk1:n = Cov(Zk,Y)Var(Y)−1, (4.3.4)

and

ĥk0 = E[Zk]− (ĥk1:n)Ty. (4.3.5)

Thus the BL updated expectation is:

Ê [Zk | Y] = E [Zk] + Cov(Zk,Y)Var(Y)−1(y − E [Y]), (4.3.6)

and the BL updated covariance is:

Ĉov (Zk, Zl | Y) = Cov(Zk, Zl)− Cov(Zk,Y)Var(Y)−1Cov(Y, Zl). (4.3.7)

For a full derivation of the update equations see Goldstein and Wooff (2007).

4.3.1 Constrained Bayes Linear

For a set of binary latent variables, we have the property that the true posterior expectation

of the latent variable Zu, u ∈ {1, . . . ,m} will be in the range [0, 1]. Therefore, a desirable

property of any approximation to the posterior expectation is that this still holds. The BL
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updated expectation, (4.3.6), does not necessarily have this property.

To overcome this, we can recast the BL updates in terms of their original optimisation

problem and modify (4.3.1) to include appropriate constraints on the posterior mean. In

our case, the desirable property is that the updated expectation of the random variables

remains in the range [0, 1]. This can be achieved by adding linear inequality constraints

to the BL optimisation problem. The constrained form of BL updates, for binary random

variables, is given by:

minimise
hk

E

(Zk − hk0 − n∑
i=1

hki Yi

)2
 ,

subject to hk0 +
n∑
i=1

hki yi ≤ 1,

hk0 +
n∑
i=1

hki yi ≥ 0,

(4.3.8)

where, as above, y = (y1, . . . , yn) are the observed quantities. The values needed for the

constrained optimisation problem (4.3.8) are found by expanding the objective function

E

(Zk − hk0 − n∑
i=1

hki Yi

)2
 = E[Z2

k ]− 2hk0E[Zk]− 2
n∑
i=1

hkiE[ZkYi] + 2hk0

n∑
i=1

hkiE[Yi]

+ (hk0)2 +
n∑
i=1

n∑
j=1

hki h
k
jE[YiYj ]. (4.3.9)

To distinguish the constrained BL values for h from the unconstrained BL ones, we will

denote them as h̃. As in the case of unconstrained BL updates, the resulting optimisation

problem is convex because the coefficients of the square terms, hki h
k
j , make a positive semi-

definite matrix. Because of this, the constrained optimisation problem can be solved using

available convex optimisation software (Andersen et al., 2013). Constrained BL updates

produce fundamentally different solutions than unconstrained BL updates. For example, for

unconstrained BL updates, the ĥk do not depend on the actual value of the observations,

just their expectation and covariances. On the other hand, when one of the constraints in

(4.3.8) is binding, h̃k will depend on the observations. Once h̃k values are computed, BL



CHAPTER 4. BAYES LINEAR METHODS 62

updated expectations and covariances are found using equations (4.3.2) and (4.3.3).

Solving problem (4.3.8) using a convex optimisation solver can be slow in practice. However,

it is possible to analytically solve (4.3.8) using the following lemma.

Lemma 4.3.1. If the BL updated expectation Ê[Zk|Y] for the unconstrained problem,

(4.3.1), is between [0, 1], then h̃, the solution to the constrained problem (4.3.8), is equal

to ĥ, the solution of the unconstrained problem. Otherwise one of the constraints to prob-

lem (4.3.8) is tight: if Ê[Zk|Y] > 1, then the solution to the constrained problem satisfies

h̃k0 +
∑n

i=1 h̃
k
i yi = 1; whilst if Ê[Zk|Y] < 0, then h̃k0 +

∑n
i=1 h̃

k
i yi = 0.

The proof for Lemma 4.3.1 is given in Appendix A.1.1. This allows us to motivate the

following method for solving the constrained BL optimisation. Solving the unconstrained

BL update, through (4.3.6) and (4.3.7), allows us to identify which constraint, if any, in

(4.3.8) is tight. Once the tight constraint is identified, we can derive an analytical solution

to the corresponding equality constrained problem. The benefit in computational time comes

from the fact that solving (4.3.8) is reduced to several matrix multiplications, as opposed

to using repeated gradient descent type methods required for general convex optimisation.

More specifically, the algorithm to solve (4.3.8) for each k = 1, . . . ,m, is as follows.

1. Find the unconstrained BL updated expectation using (4.3.6).

2. If Ê [Zk | Y] is between [0, 1], the solution to problem (4.3.8) is the same as that of

the unconstrained BL update.

3. Otherwise compute the optimal solution of:

minimise
hk

E

(Zk − hk0 − n∑
i=1

hki Yi

)2
 ,

subject to hk0 +
n∑
i=1

hki yi = c,

(4.3.10)

with c = 0 if Ê [Zk | Y] < 0 and c = 1 if Ê [Zk | Y] > 1.

To solve problem (4.3.10) we can make use of the following lemma.
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Lemma 4.3.2. The analytical solution to the optimisation problem (4.3.10) is:

(h̃k1:n)T =
(
Cov(Zk,Y) + (c− E[Zk])(y − E[Y])T

) (
Var(Y) + (y − E[Y])(y − E[Y])T

)−1
,

and

h̃k0 = c− (h̃k1:n)Ty.

The proof of Lemma 4.3.2 can be found in the Appendix A.1.1. The updated expectation

and covariance can then be calculated from equations (4.3.2) and (4.3.3).

The computational cost of both the constrained BL and unconstrained BL, for a set of

n observations and a set of m latent variables, is O(m2n + n2m). This comes from the

cost of solving the system of linear equations for (hk1:n)T which takes O(n2) for each of the

k = 1, . . . ,m latent variables giving a cost of O(mn2) and calculating the updated covariance

at a cost of O(m2n).

4.4 Bayes Linear for Network-Based Searches

The computational bottleneck of exact inference for the process is updating the beliefs on

the participants’ relevance values, Z. We apply constrained BL updates to approximate the

posterior mean and covariance of these latent variables. The constrained BL method for

network-based search is given in Algorithm 6.

Algorithm 6 Bayes Linear Network-Based Search

1. Calculate approximations to quantities required for BL updates given the current set
of observations. See Section 4.4.1.

2. Find Ẽ[Z | Y] and Ṽar(Z | Y) using constrained BL updates.

3. Calculate Ẽ[P | Y] and Ṽar(P | Y). See Section 4.4.2.

4. Decide which item to observe next, using Ẽ[P | Y] and Ṽar(P | Y).
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4.4.1 Approximating BL Prior Values from E[Z], Var(Z) and P|Z

We assume the prior expectation and variance of the participants’ relevance values are given,

along with a prior conditional beta distribution for P | Z. Based on Section 4.3, performing

BL updates also requires E[Y], E[YYT ], E [ZY] and E
[
ZZT

]
. The value of E

[
ZZT

]
can

be calculated directly from the priors given to the user; the remaining quantities must be

approximated, see Section 4.4.2. Furthermore, once the updated expectation and covariance

of the Z | Y are found, this method is used to approximate the updates for P | Y.

The observable quantities, Y, are the number of relevant observations on each edge. The

prior mean and covariance depends on the number of observations on each edge and the

prior mean and covariance of the probabilities for each edge.

Lemma 4.4.1. The expectations E[Y], E[YYT ] and E [ZY] can be calculated analytically

from E[Z], Var(Z) and the prior conditional distribution for P | Z. The analytical solution

for E[Y] and E[ZY] can be calculated from:

E [Yuv] = nuvE [Puv] , (4.4.1)

and:

E [ZkYuv] = nuvE [ZkPuv] . (4.4.2)

where nuv is the number of observations on edge (u, v) to date. For E[YY], the diagonal

entries are:

E
[
Y 2
uv

]
= nuv(nuv − 1)E

[
Var(Puv | Zu, Zv) + E [Puv | Zu, Zv]2

]
+ n2uvE [Puv] , (4.4.3)

whilst the off diagonal entries are given by:

E [YuvYij ] = nuvnijE[PuvPij ]. (4.4.4)
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The proof of Lemma 4.4.1 is given in Appendix A.1.1.

4.4.2 Approximating Joint Distributions of Z

Some of the solutions in Lemma 4.4.1 require the joint distribution over several participants’

relevance values and probabilities. However, we only have a prior mean and covariance of Z

and the joint distribution for more than two binary Z values is not uniquely defined by their

expectation and covariance. For a set of latent variables, we can approximate a possible

joint distribution from the expectation and covariance matrix using BL updates. Given an

ordered set of random variables Z = (Z1, Z2, . . . , Zk), we construct a joint probability mass

function as:

p̃(z) = p̃(z1)p̃(z2 | z1) . . . p̃(zk | z1, . . . , zk−1). (4.4.5)

For binary random variables the probability of observing a 1 is equal to the mean of the

random variable. We approximate the conditional means using those obtained from the

constrained BL updates, and thus obtain:

p̃(zj |z1, . . . , zj−1) = Ẽ[Zj |z1, . . . , zj−1]zj (1− Ẽ[Zj |z1, . . . , zj−1])1−zj (4.4.6)

and Ẽ[Zj |z1, . . . , zj−1] is the updated expectation found using the constrained BL approxi-

mation. Chapter 5 looks in more detail at the method for calculating the joint probability

distribution over a set of binary random variables. Alternatively, the maximum entropy dis-

tribution, described in Appendix A.1.2 can be used to approximate the joint distribution.

From this approximated distribution and the conditional beta distributions, we can calculate

the required expectations. We describe here the calculations for E[PuvPij ], with nodes u, v,
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i and j being distinct:

E[PuvPij ] = E [E [PuvPij |Zu, Zv, Zi, Zj ]]

=
∑

zu,zv ,zi,zj∈{0,1}

p̃(zu, zv, zi, zj)E[Puv|zu, zv]E[Pij |zi, zj ],

as E [PuvPij |Zu, Zv, Zi, Zj ] = E[Puv|zu, zv]E[Pij |zi, zj ] by conditional independence and the

joint probability p̃(Zu, Zv, Zi, Zj) is calculated using 4.4.5 with the prior mean and covari-

ance of the four random variables.

Similar calculations are used for E [ZkPuv], E [Var(Puv | Zu, Zv)] and E
[
E [Puv | Zu, Zv]2

]
,

and these are given in Appendix A.1.3. These quantities need to be calculated for steps (1)

of Algorithm 6. The calculation for step (1) uses the prior distributions, and thus can be

carried out just once regardless of the number of items processed.

For step (3) we need to use the posterior BL mean and covariance for Z, Ẽ(Z | Y) and

C̃ov(Z | Y), to obtain the BL estimate of the posterior mean and variance for P. For

an ordered set of random variables Z = (Z1, Z2, . . . , Zk), given observations Y = y, we

construct an approximate joint posterior probability mass function as:

p̃(z | y) = p̃(z1 | y)p̃(z2 | z1,y) . . . p̃(zk | z1, . . . , zk−1,y). (4.4.7)

The conditional probability p̃(zj | z1, . . . , zj−1,y) is obtained from:

p̃(zj |z1, . . . , zj−1,y) = Ẽ[Zj |z1, . . . , zj−1,y]zj (1− Ẽ[Zj |z1, . . . , zj−1,y])1−zj (4.4.8)

where Ẽ[Zj |z1, . . . , zj−1,y] is calculated using constrained BL update equations, using the

constrained BL expectation and covariance of Z | y.

From this approximated distribution and the conditional posterior beta distributions, we can

approximate the full posterior joint distribution given in (4.2.4) and calculate the required

posterior estimations. For example, to calculate the posterior expectation, E[PuvPij | y],

with nodes u, v, i and j being distinct, requires calculating the posterior joint distribution
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p̃(Zu, Zv, Zi, Zj | y) using (4.4.7) and then:

E[PuvPij | y] = E [E [PuvPij |Zu, Zv, Zi, Zj ,y]]

=
∑

zu,zv ,zi,zj∈{0,1}

p̃(zu, zv, zi, zj | y)E[Puv|zu, zv,yuv]E[Pij |zi, zj ,yij].

Similar calculations are used for E [ZkPuv | y], E [Var(Puv | Zu, Zv,y)] and E
[
E [Puv | Zu, Zv,y]2

]
,

and these are given in Appendix A.1.4. The calculations in step (3) would need to be re-

peated before choosing each item.

4.5 Results

In this section, we analyse the BL model for the network-based search problem. Firstly,

for small networks we consider the errors induced using the BL model as an approximation

to the binary MRF model, and observe how this affects the performance of the decision

problem. We empirically show these errors are small and that there is little difference in the

performance for a range of sequential decision policies if we use the BL model rather than

the MRF model.

4.5.1 Bayes Linear as an Approximation to the MRF Model

To evaluate the accuracy of the BL models as an approximation to the binary MRF model,

we assume the true underlying model for the networks is a binary MRF model. We consider

a model where the joint probability of Z is proportional to the product of a set of factors,

with a factor associated with each edge in the network. We use factors of the form in Table

4.5.1a. For λ1 > 0 and λ2 > 0 the network exhibits the property of homophily: the binary

random variables on nodes that are connected by an edge are more likely to be of the same

value. The larger λ1 or λ2 are, the more likely the random variables will both be 0 or both

be 1.
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Zi Zj φ(Zi, Zj)

0 0 1 + λ1
0 1 1
1 0 1
1 1 1 + λ2

(a) Prior Clique Factor

Zi Zj a(Zi, Zj) b(Zi, Zj)

0 0 1 9
0 1 1 4
1 0 1 4
1 1 1 1

(b) Prior Conditional 1

Zi Zj a(Zi, Zj) b(Zi, Zj)

0 0 1 9
0 1 1 4
1 0 1 4
1 1 9 1

(c) Prior Conditional 2

Table 4.5.1: The prior distributions used to define the binary MRF model. Table 4.5.1a
gives form of the prior clique factor used to define the prior MRF model for the participants.
Tables 4.5.1b and 4.5.1c give the two parameters of the conditional beta distributions used
to define P|Z.

We model the conditional probability of observing a relevant item on an edge as a beta

distribution which is dependent on the involved nodes relevance values. Two conditional

prior distributions are considered. We call these prior conditional 1 (Table 4.5.1b) and prior

conditional 2 (Table 4.5.1c). Prior conditional 1 is more skewed to the belief that we are

less likely to observe relevant items between participants even when both participants are

considered relevant to the query.

The prior mean and covariance required for the BL model are set equal to those calculated

from the binary MRF model. The BL updated expectations and variances are calculated

for a sequence of observations. These updated expectations and variances are compared to

the corresponding values in the binary MRF model updated using exact inference.

Simple Line Network

Firstly, we consider a simple line network with three nodes and two edges. The edges

connect Z1 with Z2 and Z2 with Z3. The binary MRF model is defined using the prior

clique factor in Table 4.5.1a with [λ1, λ2] = [0.5, 0.5] and using prior conditional 1 (Table

4.5.1b). Figures 4.5.1 and 4.5.2 shows the updated expectations and variances for both
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Figure 4.5.1: The updated expectations and variances of the participants’ relevance values,
Z, and probabilities, P, using the MRF, unconstrained BL, and constrained BL models with
set of observations Y = (Y 1

01 = 0, Y 1
12 = 0, Y 2

12 = 1, Y 3
12 = 0, Y 2

01 = 0, Y 4
12 = 1, Y 3

01 = 1). The
prior clique factor is given in Table 4.5.1a with [λ1, λ2] = [0.5, 0.5], and prior conditional
probability distribution in Table 4.5.1b. The prior values for BL models are calculated
directly from the binary MRF prior model.

Z | Y and P | Y using the constrained BL model, unconstrained BL model and the binary

MRF model for two sets of observations. The unconstrained BL model and the constrained

BL model give the same updated values for the set of observations used in Figure 4.5.1.

These values remain close to the values from the binary MRF model apart from Var(Z|Y).

However, for binary random variables, the mean determines the variance of the variable, so

these values are somewhat redundant.

Figure 4.5.2 shows a set of observations for which the constrained updates ensure the up-
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Figure 4.5.2: he updated expectations and variances of the participants’ relevance values, Z,
and probabilities, P, using the MRF, unconstrained BL, and constrained BL models with
set of observations Y = (Y 1

01 = 1, Y 1
12 = 1, Y 2

12 = 1, Y 3
12 = 1, Y 2

01 = 1, Y 4
12 = 1, Y 3

01 = 1). The
prior clique factor is given in Table 4.5.1a with [λ1, λ2] = [0.5, 0.5], and prior conditional
probability distribution in Table 4.5.1b. The prior values for BL models are calculated
directly from the binary MRF prior model.

dated expectation of Z|Y remains in the correct range. As well as giving a more math-

ematically elegant solution, the benefit of the constrained BL model can be seen in the

updated expectation and variance of P|Y, where the constrained BL updates are closer to

the updates in the binary MRF than when the unconstrained updates are used.
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(a) Tanzania network
(b) Network: Prior Condi-
tional 1

(c) Network: Prior Condi-
tional 2

Figure 4.5.3: The Tanzania network used to test the accuracy of constrained BL updates.
Figure 4.5.3a shows a possible social network behind the terrorists responsible for the 1998
bombing of the US embassy in Tanzania. Figure 4.5.3b and 4.5.3c show the full networks
used to test the BL model. The thickness of the edge represents the probability of observing
a relevant item on that edge, sampled from prior conditional 1 and prior conditional 2 for
Figure 4.5.3b and 4.5.3c respectively. The terrorists (irrelevant participants) are represented
by red (blue) nodes and have true relevance 1 (0).

Tanzania Network

We return to the Tanzania network presented in Section 4.1. The network, shown again in

Figure 4.5.3a, is a possible terrorist network associated with the bombing of the US embassy

in Tanzania in 1998 (Nevo, 2011). The network consists of 17 terrorists involved in the plot

and is generated based on information from the Carnegie Mellon Computational Analysis of

Social and Organisational Systems Laboratory (2004). In addition to the 17 terrorists, we

also consider 17 irrelevant participants. Edges are added randomly between an irrelevant

participant’s node and other nodes in the networks. The true probability of observing a

relevant intelligence item for each edge is then sampled given the involved participants’

true relevancies. We simulate two realisations of the edge probabilities, one using prior

conditional 1 and one using prior conditional 2. The networks and probabilities are shown

in Figures 4.5.3b and 4.5.3c.

For 250 sets of 300 observations, the updated expectations and variances are sequentially

calculated in both the binary MRF model and constrained BL model (henceforth simply

called the BL model). The observations are on randomly selected edges and the relevance

of the item is sampled from the true probability of observing a relevant item on that edge.

We look at the distribution of differences in the estimated posterior means and covariances
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between the BL and MRF models. These are shown in Figure 4.5.4 after a given number of

observations on all nodes or edges in the network over all 250 sets of observations.

The binary MRF model is defined using the clique factor in Table 4.5.1a with [λ1, λ2] =

[0.5, 0.5] and using both prior conditional 1 and prior conditional 2. For both prior con-

ditional distributions, the difference between the BL model and the MRF model is small

for the expectation of Z|Y, with the majority having an absolute difference of less that 0.1

after 300 observations. The symmetry of the prior conditional distributions are reflected

in the shape of the distribution of differences for Z|Y. Prior conditional 2, which is more

symmetric also has more symmetric differences, see Figure 4.5.4b. Using prior conditional 1,

the BL model is more likely to underestimate the expectation than overestimate, see Figure

4.5.4a.

The accuracy of BL updates for P | Y is affected more by the prior conditional probability.

There are only very small differences in the binary MRF and BL model updates of P | Y,

when using prior conditional 1, compared with prior conditional 2. Prior conditional 2

is more dependent on the involved participants so a small error in the constrained BL

expectation of Z | Y will have a larger effect on the constrained BL updates of P | Y.

Hence the accuracy of the BL approximation is at least partially dependent on the model

choice for the conditional probability distribution.

Sequential Decision Problem

Our real interest is the effect of using the BL model, rather than the MRF model, on

the accuracy of decisions about which items to screen. To evaluate this for the Tanzania

networks used in Section 4.5.1, we simulate items to associate with each edge. The number

of items on each edge is drawn, independently, from a Poisson distribution with mean 30.

Each item is relevant, independently of all other items, with a probability equal to the

probability of that edge. We compare three heuristic policies for choosing with items to

screen: greedy, ε-greedy and Bayes-UCB (Kaufmann et al., 2012a). The greedy policy is a

pure exploitation method, that will choose an item at random from the edge with the highest
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(a) Prior conditional 1: Differences (b) Prior conditional 2: Differences

Figure 4.5.4: The box plots show, for a given number of observations along the x-axis, the
distribution of differences between the expectations and variances in the binary MRF model
and using the BL model for inference in the Tanzania network. Figure 4.5.4a show the
results for prior conditional 1, corresponding to the network in Figure 4.5.3b, and Figure
4.5.4b show the results for prior conditional 2, corresponding to the network in Figure 4.5.3c.
Each box plots show the median difference, and interquartile range. The whiskers show the
95% quantiles interval for the differences.

posterior mean probability. The ε-greedy policy incorporates some additional exploration.

At each iteration it uses the greedy policy with probability 1 − ε, and with probability ε

selects an item from a randomly chosen edge.

The greedy and ε-greedy heuristic policies do not consider uncertainty in the probability

of observing a relevant item on each edge. By comparison the Bayes-UCB policy uses in-

formation from the posterior variances. This policy chooses items on the edge which has

the highest value of some user-chosen quantile of the posterior distribution of the proba-

bilities associated with each edge. The Bayes-UCB policy has strong similarities to UCB

and its variants (Auer et al., 2002; Garivier and Cappé, 2011). We implement this method

by approximating the posterior distribution of each probability by a Gaussian distribution
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(a) Network: Prior Conditional 1, Prior: Prior
Conditional 1

(b) Network: Prior Conditional 2, Prior: Prior
Conditional 2

(c) Network: Prior Conditional 1, Prior: Prior
Conditional 2

(d) Network: Prior Conditional 2, Prior: Prior
Conditional 1

Figure 4.5.5: The average cumulative number of relevant items found with different heuristic
methods, using both the BL model and binary MRF model. The dotted lines are the
cumulative number of relevant items observed using binary MRF model and the solid line
is when the BL model is used. The decision policies are run with both the correct prior
model for the probabilities and the wrong model. There is very little difference between the
performance of the heuristic methods for the BL model and binary MRF model and the
choice of prior model does not seem to have a significant effect on the performance of the
decision policy.

with the BL estimate of the posterior mean and variance. At time t the upper confidence

bound of 1− αt with αt = 1/t is chosen because of its good performance in simulations by

Kaufmann et al. (2012a), for both binary rewards and Gaussian rewards. When αt is of the

order 1/t, Bayes-UCB can be shown to achieve asymptotic optimality for binary rewards.

Each heuristic method for the search process is run 50 times on the networks shown in Figure

4.5.3b and 4.5.3c. Figure 4.5.5a shows the average cumulative number of relevant items

observed over the 50 repetitions using prior conditional 1, for the different heuristic methods

using both the binary MRF model and BL model. In general, all heuristic algorithms give
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very similar results. The network structure of the model means that even through the greedy

heuristic method we learn about the probability of observing a relevant item on other edges

in a network. For small networks, this means we will quickly find the areas of the network

with relevant observations, no matter which heuristic algorithm is used.

For the greedy and ε-greedy heuristic method, using the BL model as opposed to the binary

MRF model results in roughly the same average number of relevant items observed. Whilst

the differences between expectations in the binary MRF model and BL model for prior

conditional 2 were larger for P | Y, these errors have little effect on the performance of

the greedy and ε-greedy heuristic methods, shown in Figure 4.5.5b. This suggests the BL

updates may capture enough of the updating process to perform well when using these two

search policies.

The results for the Bayes-UCB algorithm are more varied for the two models. Figure

4.5.4b shows that for a random set of observations the BL model tends to overestimate

the posterior standard deviation. This suggests the BL model will give a higher upper

confidence bound compared to the MRF model which, in this case, results in slightly fewer

relevant items being found, see Figure 4.5.5b. However, for prior conditional 1 any errors

in posterior values from using the BL model result in the Bayes-UCB model giving superior

performance when compared to using either the MRF model or the BL model together with

other search policies. Thus we see that the errors induced in the BL model are not always

detrimental to the performance of the decision algorithm.

To analyse the robustness of the decision policies to the choice of prior model, we analyse

the networks with the wrong model for the prior conditional probabilities on the edges,

see Figures 4.5.5c and 4.5.5d. We see that the choice of model for the prior conditional

probabilities on the edges does not have a significant effect of the performance of the decision

policies. The only noticeable change is that the performance of the Bayes-UCB decision

policy with the BL model is now more in line with the other decision policies.
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4.6 Robustness to the Amount of Dependence

For larger networks we cannot compare results with the binary MRF model because it is

computationally intractable. Thus to benchmark performance of our BL model we compare

to a simple model which assumes independence between each edge. We show that even

when there is little correlation in the network, the BL model is not detrimental to the

performance of the decision algorithm. When the networks are correlated, the BL model

results in a higher number of relevant items being observed.

To benchmark the performance of the BL model approach we will compare to a simpler

approach that treats each edge in the network independently. Such an approach is able

to scale computationally to very large networks, and thus is a natural competitor as we

consider analysing larger networks for which the MRF model is impracticable. Our aim

here is to see whether modelling the dependence of the nodes in the network does lead to

more accurate decisions when there is dependence, and whether there is a loss of accuracy

in using the BL model when the relevance values of the nodes are actually independent of

one another.

Our alternative model for the data, which we henceforth call the independence model, treats

all edges independently. It assumes a prior distribution for the probability associated with

an edge that is a mixture of beta distributions. The choice of mixture components is fixed

to be the distributions that are assumed in the BL model for each of the possible realisation

of nodes values. The model is then completed by specifying the weights for each of these

components. It is straightforward to analytically update this prior distribution for the

probability on an edge each time we screen an item from that edge. Under this model,

items screened on one edge will only impact the posterior distribution for the probability of

that edge – they have no effect on the posterior distributions for probability on any other

edges.

The method used to simulate the nodes’ relevance values is given in Section 4.6.1. One issue

we have to address when implementing the BL model for this case is how we choose an
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appropriate prior mean and covariance. The approach we take is described in Section 4.6.2

for the BL model. In Section 4.6.3 we describe how we choose the prior mixture weights for

the independence model so as to closely match the BL model. Finally, a comparison of the

updated method’s performance in the decision process for the simulated networks is given

in Section 4.6.4.

4.6.1 Simulating Correlated Node Relevancies

The method we use to simulate correlated random variables on the network is to “infect” a

node’s neighbours with the same relevance value with some probability ρ.

1. Pick an initial node, Zi.

2. With probability 0.5, let Zi = 1; otherwise let Zi = 0.

3. For each node j which is a neighbour of node i and has not yet been assigned a

relevance value, let

Zj =

 zi with probability ρ,

1− zi with probability 1− ρ.
(4.6.1)

4. Randomly select an infected node with neighbours to infect, and go to step 3.

A value of ρ = 0.5 will give a random allocation of node relevancies. Increasing ρ will lead

to increased correlation within the network.

For the purpose of testing the effect of correlation in the network on the different models’

performance, given the node relevancies, we set the probability of observing a relevant item

on an edge to:

Pi,j =


0.0 if zi + zj = 0

0.2 if zi + zj = 1

0.9 if zi + zj = 2

. (4.6.2)
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4.6.2 Bayes Linear Prior Expectation and Covariance

The BL model requires prior specification of the mean and covariance of Z. In Section 4.5.1

these are calculated directly from the binary MRF model prior. When this model is not

assumed to be the true underlying model, or on larger networks where calculating directly

from the binary MRF is computationally prohibitive, we need a way to choose the prior

mean and covariance.

For simplicity we assume the prior mean is the same value, µ, for all nodes. To define the

prior covariance matrix we consider the network structure (Loh et al., 2013), and relate this

to the prior precision matrix. In particular, for all pairs of nodes, i and j for example, that

are not connected by an edge, we impose the condition that the ijth entry of the precision

matrix is 0. Using a factor, which controls the strength of correlation between random

variables, δ ∈ (−1, 1), a simple specification of the covariance is then given by

Σ = BTQ−1B, (4.6.3)

where:

Qij =


1 : i = j

−δ
max(ni,nj)

: i ∈ ne(j)

0 : i /∈ ne(j)

, (4.6.4)

B =



√
(µ(1− µ))/Q−11,1 0 . . . 0

0
√

(µ(1− µ))/Q−12,2 . . . 0

...
. . .

...

0 . . . 0
√

(µ(1− µ))/Q−1m,m


, (4.6.5)

and ni is the number of neighbouring nodes of node i. This method will ensure the diag-

onal entries of Q are positive and the matrix is diagonally dominant; this gives sufficient

conditions for the matrix to be positive definite and hence ensures a positive definite co-
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variance matrix. It also ensures that the prior variance is consistent with the prior mean:

Σii = µ(1− µ), for all i.

4.6.3 Varying the Prior for the Independence Model

We also need to specify a prior for the independence model to which we compare the BL

model. For ease of comparison we try to match the priors of the two models, so they both

have the same prior expectation. However, for any value of prior expectation E[Z] = µ,

there is a continuous range of possible prior distributions for the independence model. If we

let Pij denote the prior probability of Z1 = i and Z2 = j, then we impose the restrictions of

symmetry, P01 = P10, and that the mean matches the BL model mean: P10 +P11 = µ. This

leaves one degree of freedom. In order to ensure this prior distribution is not influencing the

performance of the independence model when compared to the BL model, we can vary this

final degree of freedom and run the independence model with a range of prior distributions.

We do this by varying the value of the 2nd moment E[ZiZj ] = P11 between 0 ≤ P11 ≤ µ.

4.6.4 Results for Simulated Networks

We look at the performance of the network-based search method for a network simulated

using the relaxed caveman graph function in NetworkX (Hagberg et al., 2008). The true

relevance of nodes is defined using the method in Section 4.6.1 for a range of ρ values. For

a value of ρ, the same network is used in all iterations, see Figure 4.6.1. We would expect

the BL model to have superior performance for networks where there is larger correlation

in the nodes’ random variables, which corresponds to larger values of ρ.

For both the independence model and the BL model, we set the prior conditional probability

distribution to that of Table 4.5.1c. The prior mean for the BL model is set to either 0.25

or 0.5 and the covariance is defined using the method in Section 4.6.2 with δ = 0.8. The

independence model is run for a range of prior distributions as described in Section 4.6.3,

matching the mean of the BL model. Figure 4.6.2 shows the mean total number of relevant



CHAPTER 4. BAYES LINEAR METHODS 80

(a) ρ = 0.5 (b) ρ = 0.6 (c) ρ = 0.7

(d) ρ = 0.8 (e) ρ = 0.9

Figure 4.6.1: Relaxed caveman network and simulated relevance values of nodes, for different
values of ρ using the method in Section 4.6.1. The red (blue) nodes represent relevant
(irrelevant) participants. For higher values of ρ, the nodes’ relevance values should be more
clustered.

observations for the BL model and for the independence model, using the greedy decision

policies over 50 repetitions with with 500 observations each. We see that for all cases where

there is dependence in the latent variables associated with the nodes, that is ρ ≥ 0.6, the BL

model does noticeably better than the independence model. There is also some evidence that

the improvement from using the BL model is greater for larger values of ρ. Furthermore,

even when there is no correlation in the networks, corresponding to ρ = 0.5, use of the BL

model tends not to be detrimental.

4.7 Enron Network Data

In this section, we look at how the different models perform when applied to communication

networks simulated from the Enron Corpus. The Enron Corpus consists of hundreds of

thousands of emails from roughly 150 senior employees at the Enron Corporation. However

the total number of nodes in the full network is much larger as it includes people from outside
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(a) greedy: µ = 0.25 (b) greedy: µ = 0.5

Figure 4.6.2: The mean and ±1 standard error bars of the total number of relevant items
found over 500 observations for the greedy policy run on networks simulated using the
relaxed caveman graph function in NetworkX (Hagberg et al., 2008), shown in Figure
4.6.1. The independence models are run for a range of second moments with the mean
matching the BL model mean.

Enron who received or sent emails in the Corpus. The full Enron network contains over

28, 000 nodes. The dataset was made public during the US government’s legal investigation

of the Enron Corporation after its collapse in 2001. Our interest in this data is that it has

similarities with the datasets of corporate legal cases, such as the Oracle America, Inc. v.

Google Inc. case.

Following Ellis (2013) we classify an email as relevant if it contains the words “Money” or

“Finance”. We wish to consider networks of differing sizes. Using an approach from Ellis

(2013), subsets of the full Enron network are obtained. First an initial number of nodes with

high relevance are chosen to be in the network; Then, all edges and any nodes associated

with those edges are added to the network with some probability. There then follows

further iterations of selecting a node and adding new edges and their corresponding nodes

with some probability. This is stopped when a pre-specified maximum number of nodes

have been added. Finally, any nodes with degree one are trimmed with some probability to

give a denser network. For these types of networks exact inference methods are likely to be

slow.

Using this approach we simulated data sets corresponding to networks of differing sizes.
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For our smallest network, which only has 234 nodes, we can still run exact inference under

the MRF model. For that network we compare the number of relevant items found using

the BL model, the MRF model and the independence model; see Section 4.7.1. For larger

networks, we only compare the number of relevant items found using the BL model and the

independence model; see Section 4.7.2.

4.7.1 Small Enron Network

A small network was simulated using the method described in Section 4.7, where there

is one initial node, edges connected to the node are selected with probability 0.04 and the

maximum number of nodes is set to 300. Nodes with degree 1 were trimmed with probability

0.5. The network has 234 nodes and 275 edges and is shown in Figure 4.7.1a. There are a

total of 4958 emails in the network, of which only 260 are relevant to the query. For the

prior BL model we set E[Z] = 0.25 and use an approximate covariance with δ = 0.8. Both

the binary MRF model and the independence model are run with a range of priors for the

Z, which are found by matching the mean of the BL model and varying the second moment

of the clique factor, see Section 4.6.3.

We run 30 repetitions with 1000 observations of each repetition. For each decision policy, the

BL model finds more relevant items than the MRF model, which in turn finds more relevant

items than the independence model; see Figure 4.7.1b. Using the Bayes-UCB policy with

the BL model gives far superior performance to the other two models with this heuristic.

The independence model does particularly badly with this policy as it does not consider the

information learnt when screening observations on neighbouring edges. Figure 4.7.1c and

4.7.1d shows the mean number of relevant observations and the number of times a change

of edge is made in the algorithm for the three models using the greedy policy. The BL

model tends to remain on edges for longer than the independence model or the MRF model.

For the Enron network, where there is no true underlying model, the less computationally

intensive BL model gives better performance that the MRF model, suggesting it gives a

better approximation to the true network behaviour. The MRF model may be making
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(a) Enron Network
(b) Bargraph of mean total relevance ±1
standard error

(c) Average Cumulative Relevance: greedy
policy

(d) Number of Edge Changes: greedy policy

Figure 4.7.1: Results for the small Enron network, shown in Figure 4.7.1a. Figure 4.7.1b
shows the mean and ±1 standard error bars of the total number of relevant items found over
1000 observations for different models and heuristic policies. The mean cumulative relevance
over 1000 observations is shown in Figure 4.7.1c for the greedy policy with P11 = 0.13. Figure
4.7.1d shows the mean number of times the policy changes edges. The BL model performs
better than both the MRF and independence model for each of the decision policies.

incorrect assumptions about the network behaviour leading to the decision policies moving

off the relevant edges after then have been found and resulting in a higher number of edge

changes.

4.7.2 Larger Enron Networks

For larger networks, the binary MRF model is computationally intractable. We compare

the BL model and independence model on three networks shown in Figure 4.7.2. These

have have 448 nodes and 630 edges; 669 nodes and 1133 edges; and 1641 nodes and 1957
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edges respectively. We set the prior mean to E[Z] = 0.25 in the BL model with the prior

covariance approximated, using the method in Section 4.6.2 with δ = 0.8. The independence

model is run with a range of priors by fixing E[ZiZj ] = P11 over the range of 0 < P11 < µ

where µ = 0.25. The range of P11 values is given by P11 = [0.0, 0.04, 0.08, 0.13, 0.17, 0.21].

Results are shown in Figure 4.7.2, where 50 repetitions were run for each of the decision

policies with 2000 observations of each. For the two smaller networks we get very similar

results for the total number of relevant items screened when we use the independence model

regardless of the value of P11. The BL model gives superior performance to the independence

model.

For the largest Enron network, the independence model’s performance depends on the value

of P11. The model where P11 = 0.0 performs best; that is when we assume there is zero prob-

ability that both nodes involved are relevant to the query. Again, the BL model performs

uniformly better than the independence model.

All three decision policies give similar results. However, as the number of nodes in the

network increases, Bayes-UCB tends to do worse compared to the greedy methods. Bayes-

UCB will spend longer exploring the network as the number of edges increases, which for

the relatively short time horizon will not be advantageous. The network shown in Figure

4.7.2e has a cluster of relevant edges in one part of the network. If the greedy or epsilon

greedy policy finds an area with a high concentration of relevant edges, it will stick there,

whereas Bayes-UCB will likely move away again.

To help understand why the BL model is giving better performance than the independence

model, we look more closely at the results for the greedy heuristic for the network shown in

Figure 4.7.2c, and focus on the independence model with P11 = 0.13. Figure 4.7.3a shows

the mean cumulative number of relevant items that are screened, averaged over 50 runs, as

well as 10 realisations of the cumulative number of relevant items screened. The BL model

generally finds the relevant items faster than the independence model. The cumulative

number of times the algorithm changes edges is shown in Figure 4.7.3b for the two models.

The BL model tends to change edges less often, remaining on the same edge for longer
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periods of time. Towards the end of the runs, the independence model starts remaining on

edges more often. This corresponds to an increase in the number of relevant items found:

after a while the independence model finds edges with high relevance value.

Figure 4.7.3c and Figure 4.7.3d show the distribution of times that each algorithm selects an

edge with a true probability greater than the 95th and 90th quantile respectively. For this

network, those values correspond to probabilities of 0.5 and 0.124. Although the algorithm

with the independence model sometimes selects more edges with probabilities greater than

0.5 than the BL model, performance is more varied. Furthermore, when we look at the

edges with probability above the 90th quantile, the BL model selects a far larger number of

these edges, generally picking edges above the 90th quantile over half the time, compared

to the independence model which selects these edges less than half the time. The sharp

jumps up in Figure 4.7.3e suggest that when the BL model finds a good edge, it will stick

on the good edge for a while, before moving on and finding another edge. There are far

more smaller jumps in the independence model: even when it finds a good edge it does not

necessarily remain on it. The steep gradient of Figure 4.7.3f for the BL model suggest that

when the algorithm moves off a very good edge it is likely to move to another one which is

still good (above the 90th quantile).

Changing the Utility Function

We consider a different utility function for the decision problem to help understand the

behaviour of the model. If we are only interested in finding edges which have at least one

relevant item, the decision algorithm can be changed so that when a relevant item is found,

no more items are observed on that edge. This will give a better indication of how well the

BL model and the independence model find a relevant edge, after finding a relevant item

on another edge. The independence model and BL model are run for this utility function,

with a horizon of 500 items on the network show in Figure 4.7.2c, with the same priors

as in Section 4.7.2. The number of edges on which we observe a relevant item is shown in

Figure 4.7.4a. The BL model observes far more relevant items than the independence model
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using the greedy policy, suggesting that the BL model does a better job of finding the edges

which contain relevant items. Furthermore, Figure 4.7.4b and 4.7.4c show number of times

an item is observed on a “good” edge where “good” is taken as the top 95th quantile and

top 90th quantile respectively. The BL model better focuses on the edges where observing

relevant items is more likely. The decision algorithm pick far more good edges for the BL

model than the independence model.

4.8 Discussion

We have considered the problem of searching a network of communications to find those

items which are relevant to a query. We show that the BL methods provide a natural

approach to modelling such data. We introduce a new optimisation problem for Bernoulli

random variables, called constrained BL, which has additional constraints incorporated into

the BL optimisation problem. These additional constraints ensure the updated expectations

are in the range [0, 1]; a desirable property for Bernoulli random variables. We show the

resulting optimisation problem has an analytical solution.

We show how the constrained BL method can be applied to the network-based search

problem. For small networks, the updated values using constrained BL are close to the

values found using exact inference methods. The performance of the decision problem is

not greatly affected by which inference method is used and is robust to changes in the prior.

For both simulated data and data from the Enron corpus, the BL model gives comparable

performance to the exact inference in the binary MRF model. For networks where the binary

MRF model is infeasible, constrained BL gives superior performance to methods that ignore

the network structure.
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(a) 448 nodes and 630 edges (b) Cumulative Relevance: 448 nodes

(c) 669 nodes and 1133 edges
(d) Cumulative Relevance: 669 nodes

(e) 1641 nodes and 1957 edges
(f) Cumulative Relevance:1641 nodes

Figure 4.7.2: The mean and ±1 standard error bars for the total number of relevant items
found for the greedy, ε-greedy and Bayes-UCB policies run on subsets of the Enron Corpus
for the BL model and independence models with a range of prior clique factors, chosen to
match the mean of the BL model prior. For each network the BL model performs better
than the independence model.
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(a) Cumulative relevance for greedy policy
(b) Cumulative number of edge changes for
greedy policy

(c) Distribution of time spent on an edge in the
top 95th quantile

(d) Distribution of time spent on an edge in the
top 90th quantile

(e) Cumulative number of observations on an
edge in the top 95th quantile

(f) Cumulative number of observations on an
edge in the top 90th quantile

Figure 4.7.3: Results for the greedy policy for the network shown in Figure 4.7.2c and
focusing on the independence model with P11 = 0.13. Figure 4.7.3a shows the cumulative
number of relevant items observed. Figure 4.7.3b shows the cumulative number of times
the algorithm changed edges. Figure 4.7.3c (4.7.3d) show the number of times items are
observed on good edges; where a good edge is one whose probability is above the 95th (90th)
quantile of all edge probabilities. For this network, the 95th quantile is 0.5 and the 90th

quantile is 0.124. Figure 4.7.3e and 4.7.3f show the results for 10 repetitions of the greedy
policy. The results show that the BL model tends to find the good edges faster than the
independence model and then screens more items on these edges.
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(a) Cumulative Relevance: 669 node

(b) Distribution of times an item on an edge in
the top 95th quantile is observed

(c) Distribution of times an item on an edge in
the top 90th quantile is observed

Figure 4.7.4: Results for the greedy heuristic for the network shown in Figure 4.7.2c, with
669 nodes and focusing on the independence model with P11 = 0.13. Figure 4.7.4a shows
the mean and ±1 standard error bars for the total number of relevant items found after
500 observations for the greedy and ε-greedy policies. Figure 4.7.4b and 4.7.4c show the
number of times items are observed on good edges where a good edge is considered one above
the 95th quantile of true probabilities on edges and above the 90th respectively. For this
network, 95th quantile is a true probability of 0.5 and the 90th quantile is a true probability
of 0.124. The BL model screens far more items on the good edges than the independence
model.



Chapter 5

Sequential Monte Carlo with Bayes

Linear

5.1 Introduction

In the previous chapter, BL methodology was introduced as a method to approximate

inference in a binary MRF model. The BL updates provided an approximation to the

posterior expectation and variance for inference in network-based search. In many cases,

we showed that these approximations are close to the values found from exact inference

in the binary MRF model. However, BL methodology uses a linear approximation to the

relationship between the observations and the latent variables. The linear approximation

will give a poor representation of highly non-linear relationships, so the BL updates will give

a poor approximation. In Section 5.2, we show how the non-linearity in the relationship

affects how well the BL model approximates inference in the MRF.

In this chapter, we introduce an alternative approach to inference for sequential search on

binary networks to overcome this problem. The method involves combining SMC and BL

updates to approximate the joint distribution of the latent variables given observations.

Although this method is more computationally expensive than the BL model, it does not

90
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Z0 Z1 P (Z0, Z1)

0 0 0.3
0 1 0.2
1 0 0.2
1 1 0.3

(a) Clique factor

Z0 Z1 E(P01|Z0, Z1)

0 0 0.1
0 1 0.5
1 0 0.5
1 1 0.9

(b) Conditional 1

Z0 Z1 E(P01|Z0, Z1)

0 0 0.01
0 1 0.01
1 0 0.01
1 1 0.5

(c) Conditional 2

Z0 Z1 E(P01|Z0, Z1)

0 0 0.01
0 1 0.75
1 0 0.75
1 1 0.8

(d) Conditional 3

Table 5.2.1: Distributions used to define the MRF and BL models. Table 5.2.1a is the
clique factor used to define the binary MRF and the relationship between latent variables
and observations is set to one of the conditional probability distributions in Table 5.2.1b to
Table 5.2.1d. Conditional 1 in Table 5.2.1b has a linear relationship with the sum of the
node relevancies whereas the other two have non-linear relationships.

require a linear approximation to the relationship between the latent variables and the

observations.

5.2 Effect of Non-Linearity on the BL Approximation

The BL model relies on a linear approximation between the observations and the latent

variables in the MRF. We explore the effect non-linearity has on the BL approximation for

a network with a single edge. The true network is taken as the binary MRF model defined

using the clique factor in Table 5.2.1a and the BL model is taken as an approximation to this.

The difference in posterior expectations and variances for the two models is considered. The

relationship between the latent variables and the observations is defined through one of the

conditional probability distributions in Tables 5.2.1b to 5.2.1d. We consider fixed conditional

probabilities for the purpose of showing the effect of non-linearity on the accuracy of the BL

model. Given the value of the random variable at the nodes, the probability of a relevant

observation on the edge is fixed.

Conditional 1, in Table 5.2.1b, has a linear relationship with the sum of the node realisations
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Figure 5.2.1: The conditional probability distributions, in Tables 5.2.1b to 5.2.1d, plotted
against the sum of the node values. The relationship is non linear for Conditional 2 and
Conditional 3.

(Z0 +Z1). This conditional probability can be used to demonstrate how well the BL model

approximates the MRF model for a linear relationship between the latent variables and

observations. Conditional 2 and Conditional 3 in Tables 5.2.1c and 5.2.1d respectively have

non-linear relationships with the sum of the node realisations. Conditional 2 in Table 5.2.1c

has high probability of a relevant observation when both node random variables are 1; the

other conditional probabilities are low. Conditional 3 in Table 5.2.1d only requires one of the

node random variables to be 1 for the conditional probability to be high. The relationship

between the sum of latent variables and the probabilities is shown in Figure 5.2.1 for the

three conditional probability distributions.

For each conditional probability distribution, and for each possible combination of true

node realisations, we simulate 50 sets of 10 observations and compare the distribution of

differences between the binary MRF model and the BL model after each observation, over

all repetitions. Figure 5.2.2 shows the difference in the updated values for Conditional 1.

The BL model gives a good approximation to the linear relationship between latent variables

and observations, hence the updated values in the two models are very similar. The mean

difference remains around zero, and nearly all observations have a difference of less than

0.1.
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(a) (Z0, Z1) = (0, 0)

(b) (Z0, Z1) = (1, 0)

(c) (Z0, Z1) = (1, 1)

Figure 5.2.2: The distribution of differences over 50 sets of 10 random observations, given
the relevance of the nodes, between BL updates and exact inference in the MRF using
Conditional 1 to define the relationship between latent variables and observations. The
prior conditional distribution is linear in the sum of node relevancies (the latent variables),
and hence the BL model gives a good approximation to the MRF model.

For non-linear relationships, the errors introduced on a single edge are far more noticeable.

The distribution of differences using Conditional 2 (Table 5.2.1c), show that for true rele-

vance values (0, 0) and (0, 1), the BL model gives a good approximation to the MRF model,

see Figure 5.2.3. These two conditional probabilities dominate the linear approximation. As

a result, the BL model poorly approximates the updates when the true relevance is (1, 1)

by under estimating the updated expectations. The linear approximation using Conditional

3 (Table 5.2.1d) results in errors in all three true node realisations, see Figure 5.2.4. These

differences are more variable than for Conditional 2. For Conditional 2 and Conditional 3,

the errors in Z0 | Y are passed on to errors in P01 | Y used in the decision algorithm. The
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(a) (Z0, Z1) = (0, 0)

(b) (Z0, Z1) = (1, 0)

(c) (Z0, Z1) = (1, 1)

Figure 5.2.3: The distribution of differences over 50 sets of 10 random observations, given
the relevance of the nodes, between BL updates and exact inference in the MRF using
Conditional 2. When the true relevance of the nodes is (1, 1), the errors induced using BL
are large.

mean difference tends to be close to zero after 10 observations, suggesting the BL model

picks up enough of the distribution so that the 10 observations have provided sufficient

information to detect the true relevance of the nodes with almost certainty.

5.3 Monte Carlo Sampler for Multivariate Binary Random

Variables

The previous section shows the difficulty encountered when using BL updates if the condi-

tional distribution of the observations is highly non-linear. To overcome this, one approach
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(a) (Z0, Z1) = (0, 0)

(b) (Z0, Z1) = (1, 0)

(c) (Z0, Z1) = (1, 1)

Figure 5.2.4: The distribution of differences over 50 sets of 10 random observations, given
the relevance of the nodes, between BL updates and exact inference in the MRF using
Conditional 3. There is a lot of variability in the differences between the BL model and
MRF model.

is to use Monte Carlo methods to obtain samples from the posterior. Given the sequential

nature of our application we will focus on SMC procedures.

In order to implement such a SMC procedure we need a computationally efficient procedure

to simulate from our prior distribution for the binary latent variables. As for the BL method

of Chapter 4 we will assume that our prior is specified through a mean and covariance. Given

the success of this, we will base our simulation approach on the BL simulation method

described in Section 4.4.2.

Simulating correlated multivariate binary random variables is a common problem which

arises in many areas of statistics (George and McCulloch, 1997; Diggle et al., 2002; Rubin-
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stein, 1999). As a result, it is a widely studied area, with a variety of possible solutions.

These methods include generation from the full probability specification (Kang and Jung,

2001; Lee, 1993; Gange, 1995), which can be computationally challenging and hence is only

suitable for low dimensional problems; latent variable models which use the discretisation

of a continuous n dimensional vector to define the multivariate Bernoulli random variables

(Emrich and Piedmonte, 1991; Modarres, 2011); and conditional means models which are

discussed further in Section 5.3.1. We introduce a method based on BL methodology and

show that this is analogous to the conditional means model of Qaqish (2003).

5.3.1 Sampling using Bayes Linear Methodology

The prior for Z = (Z1, Z2, . . . , Zn) is specified by a prior mean and covariance. We now

provide a recap of the idea from Section 4.4.2 for how we can use BL to simulate the binary

random variable Z and give conditions under which these simulated realisations will have a

matching mean and covariance. The joint probability of a set of multivariate binary random

variables can be split into conditional distributions such that:

p(Z) = p(Z1)p(Z2 | Z1) . . . p(Zn | Z1:n−1). (5.3.1)

Each conditional random variable is a Bernoulli random variable with:

p(Zi | Z1:i−1) = E[Zi | Z1:i−1]
Zi(1− E[Zi | Z1:i−1])

1−Zi . (5.3.2)

We can simulate a joint realisation of the multivariate binary random variables by sequen-

tially simulating them from their conditionals, given the value of previously simulated ran-

dom variables. Suppose they are simulated in numerical order, such that the realisation of

Z1 is simulated first, followed by Z2 etc. At step i, the conditional expectation of Zi | z1:i−1

can be approximated using the BL updated expectation as:

Ê [Zi | z1:i−1] = E [Zi] + Var(Zi,Z1:i−1)Var(Z1:i−1)
−1(z1:i−1 − E [Z1:i−1]). (5.3.3)
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The realisation of Zi is sampled using this conditional expectation, so that with probability

Ê[Zi | Z1:i−1], Zi = 1. Otherwise Zi = 0. This is equivalent to approximating (5.3.2) by:

p̂(Zi | Z1:i−1) = Ê[Zi | Z1:i−1]
Zi(1− Ê[Zi | Z1:i−1])

1−Zi . (5.3.4)

The BL conditional expectation is not constrained to be in [0, 1]. If Ê[Zi | Z1:i−1] > 1 then

Z1 = 1 and if Ê[Zi | Z1:i−1] < 0 then Zi = 0. This is equivalent to using constrained BL

when we are only interested in the conditional expectation of the random variables.

Rather than working directly with the BL updated expectation, we consider the Cholesky

decomposition of the covariance matrix and use this to simulate the random variables.

Assume the mean of the random variables is µ and the covariance of Z is Σ = LLT , where

L is the Cholesky decomposition of Σ. We can introduce a set of random variables, ε, with

expectation, E[ε] = 0 and variance Var(ε) = I (the identity matrix) such that:

Z = µ + Lε, (5.3.5)

so that the random variables Z will have mean µ and covariance Σ. The lower diagonal

form of L gives a natural way of sequentially simulating ε1 to εn, and once ε1, . . . , εi have

been simulated they can be transformed to give Z1, . . . , Zi.

Writing the value of εi in terms of ε1:i−1 and Zi gives:

εi = L−1ii

Zi − µi − i−1∑
j=1

Lijεj

 . (5.3.6)

Each Zi must be either zero or one for the random variables to be Bernoulli. Hence the εi

must also be one of two values, found by substituting Zi = 0 and Zi = 1 into (5.3.6). The

probability of these two realisations is fixed so that the expectation of εi is zero regardless

of the previously simulated ε1:i−1. This is done by setting:

p = µi +
i−1∑
j=1

Lijεj . (5.3.7)
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To ensure this is a probability, if p > 1 then p is set to 1 and if p < 0 then p is set to 0.

Each εi is simulated, given previously simulated ε1:i−1 from:

εi =

 L−1ii

(
1− µi −

∑i−1
j=1 Lijεj

)
with probability p

L−1ii

(
−µi −

∑i−1
j=1 Lijεj

)
with probability 1− p

, (5.3.8)

Algorithm 7 can be used to simulate binary random variables using BL updates, from the

prior mean and the Cholesky decomposition of the covariance. Results given in Chapter 6

show that if p ∈ [0, 1], the simulated ε in Algorithm 7 will have zero mean and the identity

matrix for the covariance matrix. Even if this property does not hold, we can still use

Algorithm 7 but the mean and covariance of the simulated random variables will no longer

be the same as the prior values. When the ordering of the random variables is unknown prior

to starting the simulation, we can use the CholeskyBanachiewicz algorithm to expand the

Cholesky decomposition to accommodate for the next random variable. The computational

cost of calculating the ith row given the first i − 1 rows of the Cholesky decomposition is

O(i2).

The full Cholesky decomposition can be calculated prior to any random variables being

simulated if the order in which they are simulated is known. The computational cost of

sampling (Z1, . . . , Zn) is O(n3), as a result of calculating the Cholesky decomposition of the

random variables. For sparse networks the precision matrix of the random variables will be

sparse and the cost of calculating the Cholesky decomposition may being much smaller. See

Section 5.3.1 for more information.

Conditions on the Prior Mean and Covariance

Prior to starting the simulation, assume we know the random variables will be simulated

in numerical order. When the probability, p, in Algorithm 7 is in the range [0, 1] for all

i = 1, . . . , n and all possible realisations of Z1:i−1, the simulated random variables will have

a mean µ and variance Σ, see Chapter 6 for more details. We can place conditions on the

prior values so that the probabilities are in this range, no matter what the realisation of
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Algorithm 7 Simulating Multivariate Binary Random Variables using Bayes Linear

1. Sample Z1 = 1 with probability p = µ1 and Z1 = 0 otherwise

2. Set L11 =
√

Σ11

3. For i = 2, . . . , n:

(a) Expand the Cholesky decomposition L to include Zi using the Cholesky-
Banachiewicz algorithm.

(b) Set p = µi +
∑i−1

j=1 Lijεj .

i. If p /∈ [0, 1]:

p =

{
1 if p > 1
0 if p < 0

.

(c) Sample

εi =

 L−1ii

(
1− µi −

∑i−1
j=1 Lijεj

)
with probability p

L−1ii

(
−µi −

∑i−1
j=1 Lijεj

)
with probability 1− p

, (5.3.9)

(d) Set:

Zi = µi +
i−1∑
j=1

Lijεj + Liiεi, (5.3.10)
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the random variables is. In order to give these conditions, we rewrite the the probability in

(5.3.7) in terms of Z rather than ε in Lemma 5.3.1.

Lemma 5.3.1. For a set of Bernoulli random variables Z = (Z1, . . . , Zn) simulated in

numerical order, with mean µ and covariance Σ = LLT = (ψTψ)−1. The probability:

p = µi +
i−1∑
j=1

Lijεj (5.3.11)

used to simulate εi|ε1:i−1 can be written as

p = hi0 +

i−1∑
k=1

hikZk (5.3.12)

where:

hi0 = µi −
i−1∑
k=1

i−1∑
j=k

Lijψjkµk, (5.3.13)

and

hik =

i−1∑
j=k

Lijψjk. (5.3.14)

Proof. The relationship in (5.3.5) can be rewritten as:

ψ(Z− µ) = ε. (5.3.15)

Using (5.3.15), εj can be written as:

εj =

j∑
k=1

ψjk (Zk − µk) . (5.3.16)

Substituting this into (5.3.11):

p = µi +

i−1∑
j=1

Lij

j∑
k=1

ψjk (Zk − µk) . (5.3.17)
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Rearranging the summation:

p = µi −
i−1∑
k=1

i−1∑
j=k

Lijψjkµk +
i−1∑
k=1

i−1∑
j=k

LijψjkZk, (5.3.18)

where if hi0 = µi −
∑i−1

k=1

∑i−1
j=k Lijψjkµk and hik =

∑i−1
j=k Lijψjk we get the form of p in

(5.3.12).

If the order that the random variables are simulated in is known prior to starting to simulate

them, the conditions in Lemma 5.3.2 ensure the probabilities p in Algorithm 7 will be in

the range [0, 1], assuming the random variables are simulated in numerical order.

Lemma 5.3.2. For a set of Bernoulli random variables, Z = (Z1, . . . , Zn), simulated in

numerical order, with mean µ and prior covariance Σ = LLT = (ψTψ)−1, the probability,

p, in Lemma 5.3.1 will be in [0, 1] if the following conditions hold for k = 1 . . . n:

hi0 +
∑
hik>0

hik ≤ 1, (5.3.19)

hi0 +
∑
hik<0

hik ≥ 0. (5.3.20)

where hi0 = µi −
∑i−1

k=1

∑i−1
j=k Lijψjkµk, and hik =

∑i−1
j=k Lijψjk.

Proof. The first condition is found by considering the case where all random variables with

a positive hik, k = 1, . . . , i − 1 have a realisation of Zk = 1 and the remaining random

variables have a realisation of zero. This gives the maximum possible probability. The

second constraint is found by considering the case where all random variables with a negative

hik, k 6= i have a realisation of Zk = 1 and the remaining random variables have a realisation

of zero. This gives the minimum possible probability.

When we do not know the order in which the random variables will be simulated, guarantee-

ing that the probability p is in the range [0, 1] is equivalent to requiring that the conditions

hold for every possible permutation of realisation orderings. Lemma 5.3.3 gives the con-

ditions on the prior expectation and covariance for the simulated values to be in [0, 1] for
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every possible permutation.

Lemma 5.3.3. For a set of Bernoulli random variables, Algorithm 7 is used to simulate

realisations of (Zσ(1), . . . , Zσ(n)) with mean E[Zσ(1), . . . , Zσ(n)] = µ and the equivalent per-

mutation of the covariance matrix, V ar(Zσ(1), . . . , Zσ(n)) = Σσ = LLT = (ψTψ)−1, where

σ is a permutation of the random variables. The probability, p, in Lemma 5.3.1 will be in

[0, 1] if the following conditions hold for k = 1 . . . n and every possible permutation:

hi0 +
∑
hik>0

hik ≤ 1, (5.3.21)

hi0 +
∑
hik<0

hik ≥ 0. (5.3.22)

where hi0 = µi −
∑i−1

k=1

∑i−1
j=k Lijψjkµk, and hik =

∑i−1
j=k Lijψjk.

Proof. The proof is similar to the proof for Lemma 5.3.2, where each possible permutation

of the random variables and their Cholesky decomposition must be considered, as this is not

known prior to starting the simulation, and the Cholesky decomposition will be dependent

on this ordering.

Using the Prior Precision Matrix

Often, the prior will be specified in terms of the prior mean and inverse covariance matrix

(precision matrix), Q. The BL updates can be written in terms of these values directly.

Assume we can write the prior precision as Q = ψTψ where ψ is the Cholesky decomposition

of Q. We can sequentially simulate the Zs in terms of the Cholesky decomposition of the

precision matrix and random variables ε. The relationship in (5.3.5) can be rearranged to

write ε in terms of Z:

ψ(Z− µ) = ε. (5.3.23)
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From (5.3.23) the random variable Zi, in terms of Z1:i−1 and εi is:

Zi = µi + ψ−1ii

εi − i−1∑
j=1

ψij(Zj − µj)

 . (5.3.24)

The epsilon are simulated sequentially, so that their expectation is zero:

εi =

 ψii

(
1− µi + ψ−1ii

∑i−1
j=1 ψij(Zj − µj)

)
with probability p

ψii

(
−µi + ψ−1ii

∑i−1
j=1 ψij(Zj − µj)

)
with probability 1− p

, (5.3.25)

where p = µi − ψ−1ii
∑i−1

j=1 ψij(Zj − µj). If p > 1 then p is set to one and if p < 0 then p

is set to zero. Using the prior precision matrix as opposed to the prior covariance matrix

has a computational advantage for sparse networks. In this case, the prior precision of the

network for binary MRF will also be sparse (Loh et al., 2012) and hence calculating the

Cholesky decomposition may be much faster that O(n3). These methods cannot be fully

utilised unless the ordering is known prior to simulation and the ordering is not important,

as we cannot reorder the rows and columns of the matrix.

Link to Conditional Means Models

Whilst we have derived our joint distribution for Z from BL updates, it turns out that the

resulting model is equivalent to the conditional means model by Qaqish (2003). The tech-

nique models the conditional probability of Zi as a linear function of the other components

and they can generally be applied to high dimensional problems and is flexible enough to

allow for a range of correlation structures. For a mean µ and covariance Σ, Qaqish (2003)

considers the model:

E[Zi|z1, . . . , zi−1] = µi + bTi (z1:i−1 − µ1:i−1) = µi +

i−1∑
j=1

bij(zj − µj). (5.3.26)

For a given mean, µ, and covariance, Σ, the parameter has a closed form of:

bTi = Σi,1:i−1(Σ1:i−1,1:i−1)
−1. (5.3.27)
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Qaqish (2003) looks in detail at the range of correlation matrices for which the mean and

covariance of the simulated random variables will match the prior mean and covariance

for different models and considers the possibility of permutations in the ordering in which

the random variables are sampled to ensure that all conditional expectations are in [0, 1].

We consider how these random variables can be simulated if the order is unknown prior to

starting the simulation and show that the Cholesky decomposition of the covariance matrix

or precision matrix can be used to simulate the random variables.

5.4 Sequential Monte Carlo with Bayes Linear for Graphical

Models

We have shown that for non-linear relationships the BL model gives a poor approximation to

the relationship between the latent variables and the observations. An alternative method

is to take a Monte Carlo approximation. We introduce a SMC method that targets the

distribution of the latent variables directly involved in the observations in the graphical

model. The method no longer requires a linear approximation to the relationship between

latent variables and observations. The remaining latent variables can still approximated

using a BL approximation given the Monte Carlo samples.

A challenge with applying SMC to our application is dealing with the potentially high

dimension latent variables. Our approach utilises the conditional independence structure in

the model. In particular, this means that after processing a set of observations we will only

simulate and store realisations of the latent variables that directly affect these observations.

An observation on edge (u, v) is conditionally independent of other observations and all other

random variables, given Zu and Zv (the random variables of the nodes associated with the

edge). Let ZAt be the set of all random variables associated all nodes linked to edges involved

for which we have observations at time t. Given the set ZAt , the observations will each be

conditionally independent of the other random variables variables in the model. Assuming

that Z is tractable, we can calculate the conditional probability of the random variables not
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directly involved in observations, Z\At
, given those directly involved: p(Z\At

| ZAt). The

full posterior distribution can be written as:

p(Z | Y1:t) = p(ZAt ,Z\At
| Y1:t) = p(Z\At

| ZAt)p(ZAt | Y1:t). (5.4.1)

If the posterior distribution of ZAt is approximated by a collection of weighted particles,{
z
(i)
At
, w

(i)
t

}N
i=1

, the full conditional distribution can be approximated using the Monte Carlo

approximation to p(ZAt | Y1:t) and the conditional probability p(Z\At
| ZAt).

The posterior values are used to decide which observation to make next in the decision

problem. After observation Yt+1 = yt+1, the probability space targeted by the Monte Carlo

approximation is expanded to include any latent variables involved with the observation

that are not already in the probability space. Details of how this is done are given in

Section 5.4.1. Expanding the particle space will lead to the number of particles increasing

exponentially with the number of random variables in the Monte Carlo approximation. This

is avoided by using a resampling step, described in Section 5.4.2. Our presentation above

assumes that the distribution for Z is tractable. In particular, that it is easy to simulate

from the conditional distribution of Z\At
given ZAt . For our application we will use the BL

approximation to the distribution of Z\At
. This is described in Section 5.4.3.

5.4.1 Expanding the Monte Carlo Approximation

As the number of random variables that are directly involved in the observations grows,

the probability space of the Monte Carlo approximation must be expanded to incorporate

additional random variables. After an observation is made, there are three possible options:

ZAt remains the same, ZAt increases by one random variable or ZAt increases by two ran-

dom variables. The three options involve three different propagation steps to approximate

p(ZAt+1 |y1:t). However they all involve the same re-weighting step to then approximate

p(ZAt+1 |y1:t+1). We describe the three different propagation steps first, followed by the

common re-weighting step.
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Suppose the observation Yt+1 = yt+1 is made on edge (u, v). The sampling space of the

Monte Carlo approximation at time t+ 1 remains the same if both the random variables Zu

and Zv directly involved in the observation are already in ZAt . This means ZAt = ZAt+1

and the particles are propagated forward to time t+ 1 such that:

{
z
(i)
At+1

, w
(i)
t+1

}N
i=1

=
{
z
(i)
At
, w

(i)
t

}N
i=1

, (5.4.2)

the particle approximation to p(ZAt+1 | y1:t).

If one of the random variables Zm ∈ {Zu, Zv} is not in ZAt then the random variable is

added to the Monte Carlo approximation to give ZAt+1 = (ZAt , Zm); the dimension of the

Monte Carlo sample is expanded to include Zm. Each particle at time t corresponds to

two particles in the Monte Carlo approximation at time t + 1. The particle z
(i)
At

leads to

the particles z
(i0)
At+1

= (z
(i)
At
, 0) and z

(i1)
At+1

= (z
(i)
At
, 1). The weights associated with z

(ik)
At

, for

k = 0, 1, are:

w
(ik)
t+1 = w

(i)
t p̂(Zm = k | z(i)At

), (5.4.3)

where the conditional probability, p̂(Zm = k | z(i)At
), is approximated using BL updates in

Section 5.3.1.

If both the random variables Zu and Zv are not in ZAt , both random variables are added to

give ZAt+1 . The particle z
(i)
At

corresponds to four particles at time t + 1: z
(ikl)
At+1

= (z
(i)
At
, k, l)

where k, l ∈ {0, 1}. The weight associated with the particle z
(ikl)
At+1

is:

w
(ikl)
t+1 = w

(i)
t p(Zu = k | z(i)At+1

)p(Zv = l | z(i)At+1
, Zu = k) (5.4.4)

where the two conditional probabilities are approximated using BL. This gives a Monte

Carlo approximation
{
z
(i)
At+1

, w
(i)
t+1

}N
i=1

to p(ZAt+1 | y1:t).

After any additional random variables which are not in the Monte Carlo approximation at

time t have been added, the Monte Carlo approximation is updated to give the posterior
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including observation yt+1. The weights associated with the posterior distribution p(ZAt+1 |

y1:t+1) are:

w
(i)
t+1 = w

(i)
t+1p(yt+1 | z(i)At+1

) i = 1, . . . , N. (5.4.5)

Adding a single random variable to the Monte Carlo approximation doubles the number of

particles and adding two quadruples the number of particles. Hence, this will lead to an

exponential increase in the number of particles as observations are made. To avoid this, we

introduce a maximum number of particles, M , and use resampling to ensure that we use at

most M particles to approximate the posterior. If we have N > M particles, the particles

are resampled to remove those with low weights.

5.4.2 Resampling Step

We limit the number of particles in the Monte Carlo approximation to M particles. The

number of particles grows exponentially as the number of random variables in the particle

approximation increases. Hence, a resampling step is used in the algorithm.

For discrete random variables, duplicate particles in the Monte Carlo approximation are

irrelevant as the information contained within duplicate particles can be summarised by just

one particle. The optimal resampling scheme by Fearnhead and Clifford (2003) minimises

the expected squared error loss for approximating a discrete probability mass function of

finite support, with fewer support points. The algorithm samples particles above a certain

threshold, c, with probability one. If the weight is below the threshold value, the particle is

resampled with probability w
(i)
t /c. The value of c is set to the unique root of:

N∑
j=1

min(w
(j)
t /c, 1) = M. (5.4.6)

The resampling algorithm ensures there are no duplicate particles and is given in Algorithm

8.
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Algorithm 8 Optimal Resampling

1. For w
(i)
t , i = 1, . . . , N , and threshold, c:

(a) If w
(i)
t > c, resample particle zi and set weight w̃

(i)
t = w

(i)
t .

(b) If w
(i)
t < c, with probability w

(i)
t /c resample particle zi and set weight w̃

(i)
t = c

2. Reweight particles such that: w
(i)
t =

w̃
(i)
t∑N

j=1 w̃
(j)
t

.

5.4.3 SMC with BL Approximations

The SMC method in Section 5.4.1 assumes we can calculate and simulate from p(Z\At
|

ZAt), which is not possible for large graphical models. Instead, BL methods are used to

approximate the distributions in the SMC model. Hence, we work with posterior BL means

and variances rather than the full probability distributions.

For each random variable in the Monte Carlo approximation, Zk ∈ ZAt , we can calculate

the approximate posterior mean and variance directly from this approximation:

Ê[Zk|y1:t] =

N∑
i=1

w
(i)
t z

(i)
k , (5.4.7)

V̂ar[Zk|y1:t] =

N∑
i=1

w
(i)
t (z

(i)
k )2 − E[Zk|y1:t]

2. (5.4.8)

The posterior mean and variance for the remaining random variables is found by taking a

BL approximation to the latent variables not directly involved in observation, given those

in the Monte Carlo approximation. For Zk ∈ Z\At
, the posterior expectation is:

Ê[Zk|y1:t] =

N∑
i=1

w
(i)
t Ê[Zk|z

(i)
t ], (5.4.9)

where Ê[Zk|z
(i)
t ] is the BL updated expectation of Zk | z

(i)
t found using the prior mean and

covariance of the random variables. The approximate posterior variance V̂ar[Zk|y1:t]:

V̂ar[Zk|y1:t] = Ê[Z2
k |y1:t]− Ê[Zk|y1:t]

2, (5.4.10)
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can also be approximated using the prior BL conditional expectation and the Monte Carlo

approximation, where:

Ê[Z2
k |y1:t] =

N∑
i=1

w
(i)
t V̂ar(Zk|z

(i)
At

) +
N∑
i=1

w
(i)
t Ê[Zk|z

(i)
At

]2. (5.4.11)

The BL conditional variance does not depend on the realisations of the random variables

ZAt so:

V̂ar(Zk|z
(i)
At

) = V̂ar(Zk|ZAt) = Var(Zk)− Cov(Zk,ZAt)Var(ZAt)
−1Cov(ZAt , Zk) (5.4.12)

Using (5.4.12), the posterior squared expectation in (5.4.11) can be simplified by taking the

conditional BL variance outside of the summation:

Ê[Z2
k |y1:t] = V̂ar(Zk|zAt) +

N∑
i=1

w
(i)
t Ê[Zk|z

(i)
t ]2. (5.4.13)

Including only the random variables directly involved in the observations allows non linearity

in this relationship to be captured, whilst minimising the computational cost. The algorithm

for SMC with BL is shown in Algorithm 9.

If Lemma 5.3.3 holds, the particles in the Monte Carlo approximation will have a posterior

mean and covariance which do not depend on the ordering that the random variables are

simulated in. More information on the invariance properties of the BL simulation method

is given in Chapter 6.

5.5 Results

In this section, we analyse the SMC model for network-based search. Firstly, we illustrate

that for a small network the MRF model and SMC model give very similar posterior values

for a non-linear conditional probability distribution, whereas the BL model gives inaccurate

estimations. We show how the improved accuracy in the posterior values affects the perfor-

mance of the decision algorithms for the small network. For a network where resampling
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Algorithm 9 SMC with BL for Network-Based Search

Initialisation:

1. Observe Y1 on edge (u1, v1).

2. Let ZA1 = {Zu1 , Zv1} and
{
z
(i)
1 , w

(i)
1

}4

i=1
be the four possible realisations of the random

variables in ZA1 associated with the observation y1. The weights w
(i)
1 = p(z

(i)
1 ) are

calculated using (5.3.2).

3. Update weights given the observation, Y1 = y1. For i = 1, . . . , 4:

w
(i)
1 ∝ w

(i)
1 p(Y1 = y1 | z(i)1 ) (5.4.14)

Iterate: For t = 2, . . . , T :

1. Calculate E[Z|y1:t−1] and Var(Z|y1:t−1), see Section 5.4.3, and use these to decide
where to make the next observation.

2. Observe Yt on edge (ut, vt).

3. For Zm ∈ {Zut , Zvt} /∈ ZAt−1 , expand particle approximation to incorporate the ran-

dom variable, see Section 5.4.1, to give
{
z
(i)
At
, w

(i)
t

}N
i=1

.

4. Update weights w
(i)
t ∝ w

(i)
t p(yt|z

(i)
t ) .

5. If the number of particles is greater than the maximum sample size, M , then resample
the particles, see Section 5.4.2.
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is required, we show that the SMC model with optimal resampling gives superior estimates

of the MRF compared to more simple approximations, see Section 5.5.2. A comparison of

the computational time for the BL model, SMC model and MRF model is given in Section

5.5.3. Whilst the computational time taken to run one iteration of the decision policy only

grows polynomially for the BL and SMC model, we show the computational time for the

MRF model increases exponentially, as the number of edges in the network increases.

In Section 5.5.4 we demonstrate the effect of sample impoverishment on the approximation

for the Tanzania network by varying the maximum number of particles in the approximation.

The effect this sample impoverishment has on the decision algorithm is analysed. For larger

networks, we see that the maximum number of particles in the approximation affects the

performance of the network search. Finally, we look at the performance of the SMC model

compared with the BL model for the Enron data. In Chapter 4, the BL model performed

very well in the decision algorithm for this data. We show that the shape of the non-

linear distribution may affect how well the BL model does in the decision algorithms when

compared to the SMC model. However, for more realistic prior conditional probability

distributions, the BL model does just as well as the SMC model at lower computational

cost. Some insight on why this might be the case is provided.

5.5.1 SMC on a 10 Node Network

In this section, we show that for a small network with a non-linear prior conditional distribu-

tion, the updates in the MRF model and SMC model are very similar, whilst the BL model

gives different updates. However, in Section 5.5.1 we show that even with these differences

all three models perform very similarly in the decision process.

For networks where the number of nodes is small enough that resampling is not required,

updates using the MRF and SMC models will be very similar; all possible realisations of

the random variables can be considered in the SMC model. Any errors induced will be a

result of the limited amount of prior information assumed in the SMC model, which is used

to simulate the particles in the SMC approximation. To demonstrate this, we consider a
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(a) 10 node network (b) 25 node network (c) Tanzania network

Figure 5.5.1: Networks used to test the SMC model.

network with 10 nodes, shown in Figure 5.5.1a. The prior clique factor in Table 5.5.1a with

[λ1, λ2] = [0.5, 0.5] is used to define the prior MRF model of the latent variables; the prior

mean and covariance are calculated from the MRF model. The true nodes relevancies are

a realisation found using Algorithm 7. The red nodes have a true value of 1 and the blue

nodes a true value of 0 in Figure 5.5.1a. The outcome of each observation is sampled from

a Bernoulli distribution with a success probability defined using prior conditional A (Table

5.5.1b).

For the same 50 sets of 100 observations on randomly selected edges we run the MRF,

BL and SMC models. Figure 5.5.2 shows the difference in expected value between the

two approximate methods and the MRF model. These differences are calculated over all

repetitions and nodes or edges, after a given number of observations. The errors in the

updated values of the SMC model, Figure 5.5.2c and 5.5.2d, are virtually non-existent.

For this network and prior conditional probability, the BL model is conservative with its

estimation of the effect of an observation on the latent variables; the BL approximation

under estimates the posterior expectation when Zi = 1 and over estimates the posterior

expectation when Zi = 0, see Figure 5.5.2a.

Decision Problem for Small Network

Following the improvement in the approximation using the SMC model compared to the

BL model for the small network we would like a superior performance in the network-

based search algorithm to find relevant observations. Throughout this chapter, we consider
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(a) BL: E(Z|Y )

(b) BL: E(P |Y )

(c) SMC: E(Z|Y )

(d) SMC: E(P |Y )

Figure 5.5.2: Small network results: the distribution of differences over 50 sets of random
observations, given the relevance of the nodes, between Bayes Linear updates and exact
inference in the MRF model using prior conditional A, in Table 5.5.1b.
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Zi Zj P (Zi, Zj)

0 0 1 + λ1
0 1 1
1 0 1
1 1 1 + λ2

(a) Clique factor

Zi Zj α(Zi, Zj) β(Zi, Zj) E[Pij |Zi, Zj ]
0 0 0.1 10.0 0.01
0 1 0.1 10.0 0.01
1 0 0.1 10.0 0.01
1 1 1.0 1.0 0.5

(b) Prior conditional A

Zi Zj α(Zi, Zj) β(Zi, Zj) E[Pij |Zi, Zj ]
0 0 1.0 9.0 0.1
0 1 3.0 1.0 0.75
1 0 3.0 1.0 0.75
1 1 4.0 1.0 0.8

(c) Prior conditional B

Table 5.5.1: Prior conditional probability distributions and prior clique factor used to test
the SMC model and BL model for a non-linear relationship between observations and latent
variables.

the greedy and Bayes-UCB heuristics used in Chapter 4. The greedy policy consistently

performed well whilst Bayes-UCB considers both the posterior mean and variance in making

the decisions. We run the screening process using the two decision policies for 50 sets of

100 observations using the MRF, SMC and BL models and compare the mean cumulative

number of relevant items found in the screening process, see Figure 5.5.3a and 5.5.3b.

The mean cumulative relevance shown in Figure 5.5.3 is nearly the same for all model

and both decision policies. The better approximation of the SMC model for this network

does not affect the performance of the screening algorithm; the BL model may give a good

enough approximation to the latent variables to perform well in the decision algorithms even

for non-linear relationships. For such a small network, all methods will quickly learn the

relevance of the nodes, even in the BL model.

5.5.2 A Comparison with Simpler Approximation Methods

In this section, we justify the use of the SMC sample as an approximation to the MRF

model by comparing the updates with other simpler approximate inference methods. The

keys ideas behind the SMC method are:
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(a) Greedy (b) Bayes-UCB

Figure 5.5.3: The mean cumulative number of relevant items screened using the three models
on the small network. The true network is defined using non-linear prior conditional A (Table
5.5.1b) and the clique factor (Table 5.5.1a) with [λ1, λ2] = [0.5, 0.5]. The BL model finds
just as many relevant items as the SMC and MRF models.

1. It only takes a Monte Carlo sample of the random variables directly involved in the

observations.

2. It uses BL updates to approximate both the probability of the realisations within the

Monte Carlo sample and the latent variables not in the sample, given the realisations.

3. We have chosen the optimal resampling scheme.

The simplest approximation technique we consider is an IS method, where a Monte Carlo

sample is taken to the full set of latent variables, given the prior mean and covariance. This

allows us to evaluate the impact of only including a subset of the latent variables in the

approximation. The particles are sampled using Algorithm 7 and corresponding weights are

then calculated using BL updates. As observations are made, we then update the weights

to approximate the posterior distribution of Z | Y. Henceforth, this method is called the

BL IS sampler.

We can evaluate the impact of using BL updates to approximate the probabilities in the

Monte Carlo sample by also considering an IS sampler where the samples are re-weighted so

they approximate the true posterior distribution, hence forth called the MRF IS sampler.

The optimal resampling scheme given in Algorithm 8 is used to decide which particles to

include in the Monte Carlo approximation. A key feature of this resampling algorithm is
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that no duplicate particles are selected. These particles are chosen to minimise the squared

error loss for approximating a discrete probability mass function with a finite support. We

compare the method to the default method for resampling in particle filters, multinomial

resampling, which allows for duplicate particles in the Monte Carlo sample. Additionally,

we compare the method with max-weight resampling (Tugnait, 1982; Punskaya et al., 2002),

which ensures no duplicate particles are selected but deterministically selects the particles

with maximum weight.

Finally, we also compare the updates using the BL model described in Chapter 4. The

SMC method was developed to better cope with non-linearities in the relationship between

observations and latent variables. Hence, for the conditional distributions considered, we

would expect this to give a worse approximation to the MRF model.

We run each approximate inference method and the MRF model on 50 sets of 200 obser-

vations screened on randomly chosen edges for a network with 25 nodes, shown in Figure

5.5.1b. This network is large enough to require resampling in the SMC model. The true

node realisations are simulated using the method in Section 4.6.2, with δ = 0.8. The prior

clique factor in Table 5.5.1a with [λ1, λ2] = [0.4, 0.4] is used to define the prior MRF model

for the Zs. The values for λ1 and λ2 are chosen to ensure that the conditions in Lemma

5.3.3 are met. The prior mean and covariance used in the approximate inference methods

are calculated directly from the MRF model. The relationship between the latent variables

and observations is described using the beta distribution with parameters given by prior

conditional A in Table 5.5.1b.

The differences between the posterior expectation of the latent variables using the approxi-

mate methods and MRF model are illustrated after a given number of observations and over

all repetitions, see Figure 5.5.4. For the SMC methods and the IS methods, we consider

the maximum number of particles, M = 1000. Additionally, we run the IS methods with

M = 4000, which ensures the run time updating the Monte Carlo sample in the IS models

given an observation roughly matches the maximum run time of an iteration in the SMC

method, as the IS methods are less computationally expensive. The plots are split over the
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(a) SMC Optimal Resampling (b) SMC Multinomial Resampling

(c) SMC Max-Weight Resampling (d) BL IS, M = 1000

(e) MRF IS, M = 1000 (f) BL IS, M = 4000

(g) MRF IS, M = 4000 (h) Bayes Linear

Figure 5.5.4: 25 node network with observations on random edges. The distribution of
differences between inference in the Markov random field using prior conditional A and the
approximate inference methods over 50 sets of random observations, given the relevance of
the nodes. The Monte Carlo methods have a maximum number of particles of M = 1000.
The SMC models give the best approximation to the MRF model for this network.

true relevance of the nodes in the network.

The SMC methods with optimal and max-weight resampling schemes produce the smallest

errors compared to the MRF model. The results for optimal resampling in Figure 5.5.4a

provide a slightly better approximation compared to max weight resampling, particularly

for nodes with a true relevance of 1. SMC using multinomial resampling gives a very poor

approximation. The BL IS and MRF IS models perform poorly in comparison to the SMC

method with optimal resampling, even when we consider a larger number of particles. The



CHAPTER 5. SEQUENTIAL MONTE CARLO WITH BAYES LINEAR 118

particles in the IS methods depend only on the prior mean and covariance, whilst the

SMC also takes into consideration the observations when expanding the particle space and

possibly only contains a subset of the random variables. The BL IS model performs similarly

to the MRF IS model, suggesting that the BL method gives a good approximation to the

probabilities in the particle approximation. The BL model gives a poor approximation when

the true node relevance is one. The prior conditional probability distribution is non-linear

so this is to be expected.

The SMC model performs well when observations are on random edges compared to the other

simpler approximate methods. However, the SMC model was developed for inference within

sequential decision problems where there is likely to be less exploration within the network

than as a result of choosing random edges. We consider the set of observations from running

the greedy algorithm 50 times on the MRF model rather than random edge observations.

The greedy algorithm has far less exploration and so it is possible that observations are

made on only a small number of edges in the network. Figure 5.5.5 shows the difference in

posterior values in the MRF and the approximate inference methods. The SMC model with

optimal resampling gives the most accurate approximation to the MRF model, see Figure

5.5.5a. Max-weight resampling gives a less accurate approximation than using optimal

resampling; the diversity in the particles is lost at an earlier point in time than with the

optimal resampling. This shows the influence a good resampling scheme can have on the

accuracy of the method.

5.5.3 Comparison of Computational Time

In this section, we look at the improvement in computational time from using the ap-

proximate inference methods compared with the MRF model, which uses the junction tree

algorithm for exact inference. We show that as the size and connectivity of the network

increases, the computational time required for the BL and SMC methods are far smaller

than the MRF model. The computational cost of exact inference in the MRF model grows

exponentially with the tree with of the graph, whilst the BL and SMC methods grow poly-
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(a) SMC Optimal Resampling (b) SMC Multinomial Resampling

(c) SMC Max-Weight Resampling (d) BL IS, M = 1000

(e) MRF IS, M = 1000 (f) BL IS, M = 4000

(g) MRF IS, M = 4000 (h) Bayes Linear

Figure 5.5.5: 25 node network with observations sampled using the greedy heuristic in the
MRF model. The distribution of differences between inference in the Markov random field
using prior conditional A and the approximate inference methods over 50 sets of random
observations, given the relevance of the nodes. The SMC models give the best approximation
to the MRF model for this network.

nomially with the number of nodes in the network.

The improvement in computational time will be dependent on the type of network the

algorithms are run on. The MRF model using the junction tree algorithm will be faster for

sparse networks, where the nodes form in small clusters. These networks will have a small

tree width. Whilst for networks with no defined clusters, or dense networks, the networks

will have a large tree width. Hence, to compare the computational efficiency, we simulate

small networks using two different methods, where the number of nodes and connectivity
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(a) 15 nodes, p = 0.1 (b) 15 nodes, p = 0.25 (c) 15 nodes, p = 0.5

Figure 5.5.6: Networks with 15 nodes where each node is connected with probability p to
each other node in the network.

can be controlled.

For each combination of parameters used in the methods, 10 networks are simulated. The

true node realisations for each network are simulated using the method in Section 4.6.1, with

ρ = 0.5. The prior clique factor in Table 5.5.1a with [λ1, λ2] = [0.5, 0.5] is used to define the

prior MRF model for the Zs. The prior mean is set to 0.5 and the prior covariance used in

the BL and SMC methods is defined using the method in Section 4.6.2 with ρ = 0.8. The

prior conditional beta distribution is given in Table 5.5.1b.

On each of the networks, the greedy decision algorithm is run for 100 iterations. We compare

the average computational time taken for a single iteration of the decision algorithm (over

the 100 iterations on the 10 networks).

The first method we use to simulate the networks has two parameters: the number of

nodes, n, in the network and the probability p that one node is connected to another node.

A higher probability of being connected will result in a more dense network. Figure 5.5.6

shows example networks with n = 15 nodes and probabilities p = (0.1, 0.25, 0.5).

Figure 5.5.7 shows the log computational time in seconds for between 10 and 30 nodes and

a probability of each node being connected set to p = (0.1, 0.25, 0.5). With only 10 nodes,

the computationally time to perform an iteration of the decision algorithm in the MRF

model is less then the other two models. However, as the number of nodes increases the

two approximate inference methods become more computationally efficient than the MRF

model. For higher probabilities, p, the computational time for a single iteration of the
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Figure 5.5.7: The log computational time in seconds for a single iteration of the greedy
decision algorithm averaged over 10 networks with 100 iterations, for networks with n nodes
and probability p that a node is connected to another node.

MRF model increases exponentially as the maximum tree width will soon be similar to the

number of nodes in the network. The computational time for the BL and SMC models does

not depend on the tree width. They increase polynomially with the number of edges in the

network. The computational time of the SMC model is always slightly longer than the BL

model.

The junction tree algorithm used in the MRF model will be more computationally efficient

when the nodes in the network group together in small clusters. For networks simulated

using the first method, this property is not taken into consideration. The second method

we use to simulate networks is the relaxed caveman graph function in NetworkX (Hagberg

et al., 2008) which has 3 parameters: The number of cliques, I; the number of nodes, k,

in each clique; and the probability each node is re-wired, q. The junction tree algorithm

is more suited to networks when q is low. The model can split the network up into small

cliques. Figure 5.5.8 shows a network with 5 cliques and with 4 nodes in each clique where

the probability of rewire is 0.2 and 0.6.
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(a) I = 5, k = 4, q = 0.2 (b) I = 5, k = 4, q = 0.6

Figure 5.5.8: Networks simulated using the relaxed caveman graph function.

Figure 5.5.9 shows the log computational time in seconds to run a single iteration of the

greedy algorithm for networks simulated using the relaxed caveman graph function. Figure

5.5.9b shows the results with I = 4 nodes in each clique and Figure 5.5.9b shows the results

with I = 8 nodes in each clique. With 4 nodes in each clique, the SMC model has the

highest average computational time for nearly all values of k, apart from k = 10. In the

case where k = 10 and q = 0.3 the computational time of the MRF model has increased

above the other two models.

The BL and SMC methods do not depend on the probability that each edge is re-wired.

However, the probability of re-wire does effect the computational time of the MRF model.

With a small number of cliques, the MRF model is the most computationally efficient but as

the number of nodes increases the computational cost eventually rises above the BL model.

For higher re-wire probabilities, this increase in computational cost increases at a faster rate

as the tree width of the graph increases. For 8 nodes in each clique, the computational time

for the BL and SMC methods remains short whilst the computational time for the MRF

model quickly increases as the number of cliques increases.

5.5.4 Sample Impoverishment in Larger Networks

For larger networks, we look at how the maximum number of particles in the Monte Carlo

approximation, M , affects the accuracy of the SMC method, and how this accuracy in the
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(a) k = 4

(b) k = 8

Figure 5.5.9: The log computational time in seconds for a single iteration of the greedy
decision algorithm averaged over 10 networks with 100 iterations on each network. The
networks simulated with I cliques, k nodes in each clique and probability q that each node
is re-wired.

updates affects the decision policy. In particular, we look at the effect of only having a small

M on sample impoverishment.

The more particles there are in the Monte Carlo approximation, the more accurate the up-
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dates will be, but the more computationally intensive the method will be. For the Tanzania

network, shown in Figure 5.5.1c, the prior models are defined using the clique factor in Table

5.5.1a, with [λ1, λ2] = [0.4, 0.4] and prior conditional A. We run updates using the SMC

algorithm with a varying number of maximum particles. When M is 10, 000 or 100, 000,

the errors compared to updates in the MRF are very small, see Figure 5.5.10c and 5.5.10d.

However, when M is reduced to 1, 000, there are examples of sample impoverishment. The

difference between the MRF model and the SMC model with 1, 000 particles is sometimes

one, suggesting that at an earlier step in the resampling scheme all the particles with reali-

sation one have been removed for certain random variables. This is likely to happen more

often when the prior conditional probability has either very low or very high probabilities.

We try to minimise the amount of sample impoverishment by only sampling the random

variables directly involved with the observations and using a resampling scheme where no

duplicate realisations are allowed. Even when the SMC method gives a poor approximation

to a couple of random variables, the majority of errors are very small with 1, 000 particles.

We run the decision algorithms with the SMC models and the BL model. All provide very

similar results. The SMC model only finds a few more relevant items on average after 300

observations, see Figures 5.5.11, even when M = 1, 000. The greedy algorithm using SMC

models finds roughly the same number of items as the MRF model. Using the Bayes-UCB

heuristic, the approximate models all perform worse than the MRF model.

Caveman Networks

For larger networks, we start to see the effect of sample impoverishment in the SMC sam-

pler on the decision problem. We simulate three networks using relaxed caveman graph

function in NetworkX (Hagberg et al., 2008) and simulate the relevance of the nodes using

the method in Section 4.6.1 with ρ = 0.8. The networks are shown in Figure 5.5.12a to

5.5.12c and have between 77 and 135 nodes. Given the relevance of the nodes, the prior

conditional probability of a relevant observation is a beta distribution with parameters in

Table 5.5.1b. We can compare the performance of the decision algorithms using BL and
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(a) BL

(b) SMC, M = 1, 000

(c) SMC M = 10, 000

(d) SMC M = 100, 000

Figure 5.5.10: Tanzania network results: The distribution of differences, over 50 sets of
random observations, given the relevance of the nodes, between inference in the Markov
random field using prior conditional A and approximate updates using either the BL model
or the SMC model with a range of maximum particles M .
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SMC. Both priors are taken to be the same, and found using the method in Section 4.6.2

with µ = 0.25 and δ = 0.8. The greedy and Bayes-UCB decision algorithms are run for 50

repetitions with 200 observations.

Figure 5.5.12d shows the mean cumulative relevance over the 50 runs. For these networks,

we can see the effect of sample impoverishment. As the number of maximum particles

decreases, the number of relevant observations found also decreases. However, it is only

when the maximum number of particles is reduced to M = 100 that the SMC model finds

fewer items than the BL model. The BL model does not do much worse than the SMC

model, even with this non-linear prior distribution, suggesting the BL model and SMC

model with a small number of particles are able to capture enough of the relationship so

that the decision algorithm can make sensible choices.

5.5.5 Enron Networks

In this section, we compare the performance of the SMC model and the BL model with

non-linear prior conditional probabilities from networks simulated from the Enron Corpus.

For the networks used in this section, there is no true underlying network.

In many cases, the BL model gives a particularly good approximation when the relationship

is relatively linear between the latent variable and observations, see Section 4.7. We compare

the BL model with the SMC model and the independence model introduced in Section 4.6,

using a non-linear relationship (prior conditional A in Table 5.5.1b) for the Enron networks

in Figures 5.5.14a and 5.5.13a which are also used in Section 4.7. For both networks, we

find that after 2, 000 observations the BL model finds, on average, at least 50 more relevant

observations than the SMC model and the independence model. Furthermore, we see that

the SMC model screens roughly the same number of relevant items as the independence

model after 2, 000 observations using the greedy heuristic, see Figures 5.5.13b and 5.5.14b.

However, the SMC model does initially do better than the independence model. Considering

the network structure is advantageous, particularly early on in the screening process. After

a while, the independent model also finds the edges with the relevant items on and catches
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up with the other methods

For this non-linear prior conditional distribution (prior conditional A in Table 5.5.1b), Sec-

tion 5.5.1 suggest the BL model tends to give conservative estimates of the posterior values.

The red nodes/edges in the Figures 5.5.13a and 5.5.14a show the nodes/edges associated

with a high number of relevant items suggesting the Enron data networks only have a small

amount of dependence between nodes in the network structure. Hence, the BL model giv-

ing conservative estimates to the influence of an observation on an edge has on other edges.

The SMC model will give a better estimate of the relationship, which in this case may be

too strong for the network structure resulting in a worse performance than the simpler BL

model.

Alternative Prior Conditional Probability

For the Enron networks considered, the BL model tends to out perform the SMC model,

even when the relationship between the latent variables and observations is non-linear. We

consider an alternative probability distribution, where if at least one node is relevant, the

mean of the conditional probability distribution is high. The prior conditional distribution

(prior conditional B) is given in Table 5.5.1c. Instead of underestimating the updated values

when the node is relevant, it might be expected that the BL model for prior conditional

B poorly approximates the nodes with a relevance of 0. We run updates on the Enron

networks with 449 and 669 nodes, and compare the mean cumulative number of relevant

items for the SMC model and the BL model using the greedy and Bayes-UCB heuristics,

see Figures 5.5.15 and 5.5.16. The SMC model finds more relevant items on average than

the BL model. Both the BL model and the SMC models give good performance to begin

with. However, after 2, 000 observations the independence model has caught up with the

BL model for both networks with the greedy heuristic. There are enough observations that

the independence model has found a number of good edges and sticks with them resulting

in a rapid increase in the number of relevant item found towards the end.

The two decision policies using the SMC models are more robust to a change in the prior
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conditional distribution; both prior conditional distributions give a similar number of rel-

evant items. Whereas for the for the BL model, using prior conditional B gives far worse

results than using prior conditional A.

5.6 Discussion

For non-linear relationships between the observations and the latent variables, we show that

BL will give a poor approximation. We propose a SMC method a Monte Carlo approxima-

tion which better copes with non-linear relationships. A Monte Carlo sample is only taken

to the subset of the random variables that are directly involved in the observations. BL

methods are used to sample the binary random variables in the Monte Carlo sample, as well

as provide posterior summaries for the remaining random variables not in the Monte Carlo

approximation. We empirically show that for a small network with a non-linear relationship

between the latent variables and the observations the SMC method gives a better approxi-

mation to the posterior mean and covariance than other simpler methods. Furthermore, we

show that the BL and SMC models become are far more computationally efficient than the

MRF model as the size of the network grows. When the SMC model is run on networks

based on the Enron database, it does no better than the less computationally expensive

constrained BL model, introduced in Chapter 4. Initially, both methods find more relevant

items that the methods which ignore network structure.
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Figure 5.5.11: Tanzania Network: The mean cumulative number of relevant items screened
± 1 standard deviation using the three models.

(a) Caveman Network 1 (b) Caveman Network 2 (c) Caveman Network 3

(d) Greedy (e) Bayes-UCB

Figure 5.5.12: Caveman network results: The mean cumulative relevance ±1 standard
deviation, over 50 runs of the greedy and Bayes-UCB algorithms, using prior conditional A
and approximate updates using the BL model or the SMC model. The SMC model gives
superior performance when the number of particles is set high enough.
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(a) Enron network 448 nodes (b) Cumulative Relevance: Greedy

(c) Cumulative Relevance: Bayes-UCB (d) Cumulative Relevance: boxplot

Figure 5.5.13: The mean cumulative relevance over 50 runs of the greedy and Bayes-UCB
decision algorithms using prior conditional A on the networks shown in Figures 5.5.13a.
The SMC algorithm gives a smaller cumulative relevance than the BL model.
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(a) Enron network 667 nodes
(b) Cumulative Relevance: Greedy

(c) Cumulative Relevance: Bayes-UCB (d) Cumulative Relevance: boxplot

Figure 5.5.14: The mean cumulative relevance over 50 runs of the greedy decision algorithms
using prior conditional A on the networks shown in Figures 5.5.14a. The SMC algorithm
gives a smaller cumulative relevance than the BL model.
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(a) Cumulative Relevance: Greedy (b) Cumulative Relevance: Bayes-UCB

(c) Cumulative Relevance: boxplot

Figure 5.5.15: The mean cumulative relevance over 50 runs of the greedy and Bayes-UCB
decision algorithms using prior conditional B on the networks shown in Figures 5.5.13a. The
SMC algorithm gives a larger cumulative relevance than the BL model.

(a) Cumulative Relevance: Greedy (b) Cumulative Relevance: Bayes-UCB

(c) Cumulative Relevance: boxplot

Figure 5.5.16: The mean cumulative relevance over 50 runs of the greedy and Bayes-UCB
decision algorithms using prior conditional B on the networks shown in Figures 5.5.14a. The
SMC algorithm gives a larger cumulative relevance than the BL model.



Chapter 6

Moments for Simulated Bernoulli

Random Variables

6.1 Introduction

The Bayes Linear methods from Chapter 4 and Chapter 5 can be used to define a joint

distribution for binary random variables with a given mean and covariance. This distribution

is specified by ordering the random variables, Z1, . . . , Zn, and uses Bayes Linear updates

to calculate the distribution of Zi given Z1, . . . , Zi−1. A description of the method used to

simulate the random variables is given in Section 5.3.1. In this chapter, we look in more

detail at how the ordering of the random variables affects the resulting joint distribution.

Through a simple example with only three random variables, we see that the ordering of the

random variables will affect the resulting joint probability distribution approximated using

the BL methodology. For n = 3, if the mean and covariance of the distribution is fixed,

there is one further degree of freedom in the distribution. One way of specifying this final

degree of freedom is through the third centralised moment, or equivalently the probability

p(1, 1, 1). Knowing either of these will uniquely specify the full joint distribution. Assuming

133
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the mean and covariance of the random variables, Z = (Z1, Z2, Z3), are:

µ =


0.4

0.5

0.6

 , Σ =


0.24 0.07 0.02

0.07 0.25 0.04

0.02 0.04 0.24

 . (6.1.1)

The effect of ordering on the joint distribution can be seen by considering two possible

orderings, (Z1, Z2, Z3) and (Z3, Z2, Z1), and comparing the value for p̂(1, 1, 1). For the

ordering (Z1, Z2, Z3), the Cholesky decomposition of covariance matrix is:

L =


0.489898 0.0 0.0

0.142887 0.479149 0.0

0.040825 0.071307 0.48296

 . (6.1.2)

The approximate joint probability, found using BL with the ordering (Z1, Z2, Z3) is:

p̂(Z1, Z2, Z3) = p̂(Z1)p̂(Z2 | Z1)p̂(Z3 | Z1, Z2) (6.1.3)

where the BL approximation to the probability p̂(Zk+1 | Z1:k) is given in (5.3.4). For the

realisation (Z1 = 1, Z2 = 1, Z3 = 1), this ordering results in the BL approximation to the

probability:

p̂(Z1 = 1, Z2 = 1, Z3 = 1) = µ1
(
µ2 + L21(L11)

−1(1− µ1)
) (
µ3 +

(
L31(L11)

−1

−L32(L22)
−1L21(L11)

−1) (Z1 − µ1) + L32(L22)
−1(Z2 − µ2)

)
,

= 0.188559. (6.1.4)

Whereas, under the ordering (Z3, Z2, Z1), the Cholesky decomposition will be:

A =


0.489898 0.0 0.0

0.081650 0.49329 0.0

0.040825 0.13515 0.46911

 , (6.1.5)
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Z1 Z2 Z3 p̂(Z1, Z2, Z3) p̂(Z3, Z2, Z1) p̂(Z1, Z2, Z3)− p̂(Z3, Z2, Z1)

0 0 0 0.18144102 0.18230137 −0.00086035
1 0 0 0.05855898 0.05769863 0.00086035
0 1 0 0.07855898 0.07769863 0.00086035
1 1 0 0.08144102 0.08230137 −0.00086035
0 0 1 0.18855898 0.18769863 0.00086035
1 0 1 0.07144102 0.07230137 −0.00086035
0 1 1 0.15144102 0.15230137 −0.00086035
1 1 1 0.18855898 0.18769863 0.00086035

Table 6.1.1: Probability distributions of Z = (Z1, Z2, Z3), approximated using BL with
two different orderings but the same prior mean and covariance in (6.1.1). The probability
distribution p̂(Z1, Z2, Z3) is given by (6.1.3) whilst the probability distribution p̂(Z3, Z2, Z1)
is given by (6.1.6).

and the approximate BL probability will be:

p̂(Z3, Z2, Z1) = p̂(Z3)p̂(Z2 | Z3)p̂(Z1 | Z3, Z2). (6.1.6)

For the realisation (Z3 = 1, Z2 = 1, Z1 = 1), this ordering results in the BL approximate

probability:

p̂(Z3 = 1, Z2 = 1, Z1 = 1) = µ3
(
µ2 +A21(A11)

−1(1− µ3)
) (
µ3 +

(
A31(A11)

−1

−A32(A22)
−1A21(A11)

−1) (Z3 − µ3) +A32(A22)
−1(Z2 − µ2)

)
= 0.187699. (6.1.7)

The different orderings give different probabilities for the same realisation. Table 6.1.1

shows the full probability distribution of the three random variables, approximated using

the BL method with the two orderings and the difference between the two probabilities for

each realisation. The difference in probabilities for each realisation is the same (up to sign)

and will also equal to the difference in the third centralised moment. The third centralised

moment for the ordering (Z1, Z2, Z3) is 0.00055898 whilst for the ordering (Z3, Z2, Z1) is

−0.00030137. Hence, to look at the difference in the distributions, we focus on the effect

ordering has on the third centralised moment.

Although the BL method results in errors in the joint distribution, we show in Section 6.2
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that the mean and covariance of the resulting probability distribution will be the same as

the mean and covariance used to simulate them as long as the prior conditions given in

Section 5.3.1 hold. To investigate the aspects of the ordering which affect the distribution,

we concentrate on the third moments of the distribution. In Section 6.3 we empirically

show that the BL method will result in different third centralised moments depending on

the ordering of the random variables. We then theoretically show some of the properties of

the ordering that do/do not affect the 3rd centralised moment. In Section 6.4 we look at

how much of an effect the ordering has on the third moment.

6.2 First and Second Moments

In Section 5.3.1 we give conditions on the prior mean and covariance that ensure the proba-

bility used to simulate the random variables are in the range [0, 1]. Lemma 6.2.1 states that

the ε simulated in Algorithm 7 has a zero mean and Lemma 6.2.2 that the covariance matrix

of the ε = (ε1, . . . , εn) is the identity matrix. The proofs are given in Appendix A.2.1.

Lemma 6.2.1. For a prior mean, µ, and covariance, Σ = LLT , which satisfy the conditions

in Lemma 5.3.2, the random variable εi simulated from

εi =

 (Lii)
−1(1− µi −

∑i−1
j=1 Lijεj) with probability p

(Lii)
−1(−µi −

∑i−1
j=1 Lijεj) with probability 1− p

, (6.2.1)

where p = µi +
∑i−1

j=1 Lijεj ∈ [0, 1], will have marginal expectation E[εi] = 0.

Lemma 6.2.2. For a prior mean, µ, and covariance, Σ = LLT , which satisfy the conditions

in Lemma 5.3.2, the random variable εi simulated from

εi =

 (Lii)
−1(1− µi −

∑i−1
j=1 Lijεj) with probability p

(Lii)
−1(−µi −

∑i−1
j=1 Lijεj) with probability 1− p

, (6.2.2)

where p = µi +
∑i−1

j=1 Lijεj ∈ [0, 1], the covariance of ε = (ε1, . . . , εn) is the identity matrix.
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If the joint mean and covariance of the simulated random variables ε = (ε1, . . . , εn) are zero

and the identity matrix respectively, we can show that the realisation of Z will have the

marginal expectation:

E [Z] = E [µ+ Lε] = µ+ LE[ε] = µ, (6.2.3)

and variance:

V ar (Z) = V ar (µ+ Lε) = LV ar (ε)LT = LLT = Σ. (6.2.4)

Hence, the random variables simulated using Algorithm 7, will have the same mean and

covariance used to simulate the random variables if the conditions in Section 5.3.2 hold.

6.3 Third Moment

In order to look at the effect of ordering on the joint distribution of the random variables, we

concentrate on the third centralised moment. Firstly, we explore some of the effects ordering

has through a simple example with n = 5 random variables, Z = (Z1, Z2, Z3, Z4, Z5). The

mean and covariance used to simulate the random variables are:

µ =



0.4

0.5

0.5

0.6

0.5


, Σ =



0.24 0.02 0.01 0.05 0.05

0.02 0.25 0.03 0.04 0.02

0.01 0.03 0.25 0.01 0.02

0.05 0.04 0.01 0.24 0.02

0.05 0.02 0.02 0.02 0.25


. (6.3.1)

Table 6.3.1 gives the third centralised moment, Ê[(Z1 − µ1)(Z2 − µ2)(Z3 − µ3)], calculated

from the joint distribution approximated using BL with different orderings of the random

variables. From this table, we can see that the third centralised moment is affected by what

is simulated before the first random variable considered. This can be seen by looking at

the third centralised moments for the orderings 1, 2, 3, 4, 5 and 5, 1, 2, 3, 4 in Table 6.3.1,
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Simulation Order Third Centralised Moment

(1, 2, 3, 4, 5) 0.0001275168
(1, 2, 4, 3, 5) 0.0001275168
(1, 2, 4, 5, 3) 0.0001275168
(2, 1, 3, 4, 5) 0.0001275168
(1, 5, 2, 4, 3) 0.0001196806
(1, 5, 2, 3, 4) 0.0001196806
(5, 1, 2, 3, 4) 0.0001196806
(4, 5, 1, 2, 3) 0.0000628751

Table 6.3.1: The third centralised moment, E[(Z1−µ1)(Z2−µ2)(Z3−µ3)], for the random
variables simulated with prior mean and covariance given in (6.3.1) using different orderings
to calculate the joint probability distribution.

which are different. We can also see that the third centralised moment is affected by what

is simulated between the first and second random variables considered, which can be seen

by looking at the orderings 1, 2, 3, 4, 5 and 1, 5, 2, 3, 4 in Table 6.3.1.

From this table, we can also conjecture that after the first two random variables have

been simulated, the third centralised moment will not be affected by the position of the

third random variable in the ordering. This is demonstrated by considering the orderings

(1, 2, 3, 4, 5) and (1, 2, 4, 3, 5) and the orderings (1, 5, 2, 4, 3) and (1, 5, 2, 3, 4) which give the

same value for E[(Z1− µ1)(Z2− µ2)(Z3− µ3)]. In Section 6.3.1, we show theoretically that

this property holds.

6.3.1 Ordering of the Third Random Variable

The orderings (1, 2, 3, 4, 5) and (1, 2, 4, 3, 5) and the orderings (1, 5, 2, 4, 3) and (1, 5, 2, 3, 4)

give the same value for E[(Z1 − µ1)(Z2 − µ2)(Z3 − µ3)] in Table 6.3.1. This suggests that

if the position of the first two random variables in the ordering are unchanged, the third

centralised moment will not depend on how many random variables are simulated between

the second and third random variables under consideration. In order to theoretically show

this property holds, we firstly consider the effect of switching the final two random variables

in the ordering on the Cholesky decomposition of the covariance matrix. Assume Z1:n are

simulated in numerical order, where L is the Cholesky decomposition of the covariance
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matrix under this ordering. The covariance between Zi and Zj can be written in terms of

L as:

Σij =

j∑
k=1

LikLjk. j < i (6.3.2)

Using this, we can write the Cholesky decomposition, A, of the covariance matrix for the

ordering (Z1, . . . , Zn−2, Zn, Zn−1). The first n − 2’s rows of A will be the same as the first

n− 2 rows of L. For the n− 1th row, we get:

An−1,i = (Lii)
−1

(
i∑

k=1

LnkLik −
i−1∑
k=1

An−1,kAik

)
(6.3.3)

which gives:

An−1,i = Lni for i < n− 1. (6.3.4)

Similarly, we can solve the equations for the nth row of A to give:

An−1,i = Lni for i < n− 1. (6.3.5)

Finally, the remaining three terms of A are not equivalent to just switching the rows of the

Cholesky decomposition when the random variables are ordered numerically. Instead they

are given by:

An−1,n−1 =
√

(L2
n,n−1 + L2

nn) (6.3.6)

An,n−1 =
Ln−1,n−1Ln,n−1√

(L2
n,n−1 + L2

nn)
(6.3.7)

Ann =

√
L2
n−1,n−1 −

L2
n−1,n−1L

2
n,n−1

(L2
n,n−1 + L2

nn)
(6.3.8)

Hence, columns 1 to n−2 of A are the columns of L with the n−1th and nth row switched.

However, the n− 1th and nth columns do differ to give the Cholesky decomposition for the
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ordering (Z1, . . . , Zn−2, Zn, Zn−1):

A =



L11 0 · · · 0 0 0

L21 L22 · · · 0 0 0

...
...

. . .
...

...
...

Ln−2,1 Ln−2,2 · · · Ln−2,n−2 0 0

Ln1 Ln2 · · · Ln,n−2 An−1,n−1 0

Ln−1,1 Ln−1,2 · · · Ln−1,n−2 An,n−1 Ann


(6.3.9)

Using this property of the Cholesky decomposition, we can write the conditional expectation

of the nth random variable for the two orderings as a function of the random variables lower

down in the ordering and their conditional expectations. Lemma 6.3.1 gives the conditional

expectation of Zn | Z1:n−1 under the ordering (Z1, . . . , Zn−2, Zn−1, Zn).

Lemma 6.3.1. If L is the Cholesky decomposition of the covariance matrix for the random

variables ordered numerically, the conditional expectation of Zn | Z1:n−1 found using the BL

method is given by the recursive relationship:

E[Zn | Z1:n−1] =µn −
n−1∑
j=1

Ln,j(Ljj)
−1(E[Zj | Z1:j−1]− µj)

+

n−1∑
j=1

Lnj(Ljj)
−1(Zj − µj). (6.3.10)

Proof. The conditional expectation of Zn given Z1:n−1 is:

E[Zn | Z1:n−1] = µn +

n−1∑
j=1

Lnjεj (6.3.11)

as E[εn | ε1:n−1] = 0. Write εk in terms of ε1:k−1 and Zk:

εk = (Lkk)
−1(Zk − µk −

k−1∑
i=1

Lkiεi), (6.3.12)
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and substitute this into (6.3.11):

E[Zn | Z1:n−1] =µn +
n−1∑
j=1

Lnj(Ljj)
−1(Zj − µj −

j−1∑
i=1

Ljiεi) (6.3.13)

=µn +

n−1∑
j=1

Lnj(Ljj)
−1(Zj − µj)−

n−1∑
j=1

Lnj(Ljj)
−1

j−1∑
i=1

Ljiεi (6.3.14)

where
∑j−1

i=1 Ljiεi = E[Zj | Z1:j−1] − µj . Substituting this into (6.3.14) gives the recursive

relationship in (6.3.10).

Alternatively, when the ordering is (Z1, . . . , Zn−2, Zn, Zn−1), Lemma 6.3.2 can be used to

write the conditional expectation of Zn | Z1:n−2 in terms of the Cholesky decomposition for

the random variables in numerical order.

Lemma 6.3.2. If L is the Cholesky decomposition of the covariance matrix for the ran-

dom variables ordered numerically, the full conditional of Zn | Z1:n−2 when the simulation

ordering is (Z1, Z2, . . . , Zn−2, Zn) can be written using the recursive relationship:

E[Zn | Z1:n−2] =µn −
n−2∑
j=1

Ln,j(Ljj)
−1(E[Zj | Z1:j−1]− µj)

+
n−2∑
i=1

Ln,i(Lii)
−1(Zi − µi). (6.3.15)

Proof. Using the Cholesky decomposition in (6.3.9) for the ordering (Z1, Z2, . . . , Zn−2, Zn),

the conditional expectation of Zn given Z1:n−2 is:

E[Zn | Z1:n−2] = µn +
n−2∑
j=1

Lnjεj (6.3.16)

as E[εn−1 | ε1:n−2] = 0. Write the value of εj in terms of ε1:j−1 and Zj :

E[Zn | Z1:n−2] =µn +

n−2∑
j=1

Lnj(Ljj)
−1(Zj − µn −

j−1∑
i=1

Ljiεi) (6.3.17)

=µn +
n−2∑
j=1

Lnj(Ljj)
−1(Zj − µn)−

n−2∑
j=1

Lnj(Ljj)
−1

j−1∑
i=1

Ljiεi (6.3.18)
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where
∑j−1

i=1 Ljiεi = E[Zj | Z1:j−1] − µj . Substituting this into (6.3.18) gives the recursive

relationship in (6.3.15).

We use these forms of the BL conditional expectation for the two orderings of the random

variables to help show that the position of the third random variable in the ordering will

not effect the third centralised moment. For three random variables Zi, Zj and Zk, where

i < j < k in the ordering, Lemma 6.3.3 shows that if we know the position of the random

variable Z1:j and assume there are ordered numerically, then the position of Zk in the

ordering after this will not effect the BL approximation to E[Zk | Z1:j ].

Lemma 6.3.3. For i < j < k, where the random variables Z1:j are simulated numerically,

the position of Zk in the ordering will not affect the BL approximation to E[Zk | Z1:j ] when

the random variables are simulated using Algorithm 7.

The proof is given in Appendix A.2.2. Using this property of the conditional expectation,

we can show that the third centralised moment will also not be affected by the position of

the third random variable, Zk, in the ordering. This is given in Lemma 6.3.4.

Lemma 6.3.4. For an ordering where i < j < k, the centralised third moment E[(Zi −

µi)(Zj − µj)(Zk − µk)] is not dependent on where the random variable Zk is in the ordering

after the position of Zj.

Proof. We suppose Zk is the mth random variable in the ordering. Assume the random

variables Z1:j are ordered numerically, the third centralised moment is calculated using the

conditional expectation of E[Zk | Z1:m] and then taking the expectation over Z1:m−1:

E[(Zi − µi)(Zj − µj)(Zk − µk)] =E[(Zi − µi)(Zj − µj)E[(Zk − µk) | Z1:m]] (6.3.19)

Using Lemma 6.3.3 this conditional expectation is the same as:

E[(Zi − µi)(Zj − µj)(Zk − µk)] =E[(Zi − µi)(Zj − µj)E[(Zk − µk) | Z1:l]] (6.3.20)

where l > j. Hence the third centralised moment is the same no matter the position of the

random variable Zk if it is after Zi and Zj in the ordering.
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6.4 How Much Does the Order Matter?

In Section 6.3 we showed that several properties of the ordering will affect the third cen-

tralised moment. As well as considering the properties that affect the ordering, we also look

at how much of an effect the ordering will have on the value of the third centralised moment.

In order to do this, we simulate a joint probability distribution by sampling probabilities for

each possible realisation of the random variables from a Dirichlet distribution. The mean

and covariance of the distribution can then be used to calculate the joint probability dis-

tribution using the BL method over all possible orderings of the random variables. We can

then compare the differences in the third centralised moments for each of the orderings.

In the simplest case, where n = 3, there are six possible orderings of the random variables.

In this case we simulate 500 distributions from a Dirichlet(α) with αi = 1, i = 1, . . . , 8.

Figure 6.4.1 shows the distribution of differences in the third centralised moment for each

combination of orderings. The distribution of the differences between the third central

moment of the orderings range from −0.034 and 0.034 with the differences centred around

zero. Apart from the orderings which give the same value for the third centralised moments,

all orderings have similar distributions of differences. The difference, which is the maximum

absolute difference over all order differences, is shown in Figure 6.4.2a.

For this set of distributions, we can look at the mean and covariance which give the two

largest absolute differences between orderings. The mean and covariance:

µ =


0.2870321

0.5459338

0.4814018

 , Σ =


0.2046447 −0.11405505 −0.11288769

−0.1140551 0.24789009 0.01623224

−0.1128877 0.01623224 0.24965411

 (6.4.1)

give the largest absolute difference of 0.034 between four different combinations of orderings:

• (Z1, Z3, Z2)− (Z2, Z3, Z1)

• (Z1, Z3, Z2)− (Z3, Z2, Z1)
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Figure 6.4.1: Difference in third centralised moments from the joint distributions simulated
using BL methods under different orderings.

• (Z2, Z3, Z1)− (Z3, Z1, Z2)

• (Z3, Z1, Z2)− (Z3, Z2, Z1)

All of these orderings correspond to a change in the type of correlation between the first

two random variables. For example, Z1 and Z3 are negatively correlated whilst Z2 and

Z3 are positively correlated. The mean and covariance, which give the the second largest

absolute differences of 0.031, also have a mixture of positively and negatively correlated

random variables:

µ =


0.3629383

0.6768653

0.4182529

 , Σ =


0.23121408 0.03507737 −0.1332384

0.03507737 0.21871868 0.1234046

−0.13323841 0.12340459 0.2433174

 (6.4.2)

and the orderings which correspond to this difference are:
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(a) n = 3 (b) n = 4 (c) n = 5

Figure 6.4.2: The maximum difference between the third centralised moments, E[(Z1 −
µ1)(Z2 − µ2)(Z3 − µ3)], for two orderings of the n simulated random variables.

• (Z1, Z2, Z3)− (Z2, Z3, Z1).

• (Z1, Z2, Z3)− (Z3, Z2, Z1).

• (Z2, Z1, Z3)− (Z2, Z3, Z1).

• (Z2, Z1, Z3)− (Z3, Z2, Z1).

Once again, the orderings which give the largest differences are when the first two random

variables in one ordering are positively correlated and negatively correlated in the second

ordering.

For n = 3, the third centralised moment, along with the mean and covariance, will uniquely

define the joint distribution. For n > 3, we can still look at the differences in the third

centralised moments for the BL distributions under the different orderings. The mean and

covariance are calculated from 500 probability distributions sampled from a Dirichlet(α)

distribution with αi = 1, i = 1, . . . , 2n. Figure 6.4.2 shows a distribution of differences,

which is the maximum absolute difference for each simulated probability distributions, for

between n = 3 to n = 5 random variables. As the number of random variables increases,

the maximum differences in the third centralised moment decrease.

6.5 Discussion

The distribution found using BL methods is specified by ordering the random variables,

Z1, . . . , Zn, and uses BL updates to calculate the distribution of Zi given Z1, . . . , Zi−1. We
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have shown that the ordering of the random variables affects the resulting joint distribution.

However, under certain constraints on the mean and covariance, the random variables will

have the same mean and covariance that is used to simulate them. We investigate, both

theoretically and empirically, some of the aspects of the ordering which do/do not affect

the joint distribution by looking at the third moments. Given the position of the first two

random variables in the ordering, the position of the final random variable will not matter,

but the third moment will be affected by what is simulated before and in between the first

and second. The ordering of the random variables often results in differences which are very

small. The largest differences in the third central moment for the same distribution occur

when there is a mixture of both positive and negative correlations between the random

variables. The ordering tends to affect the third centralised moment less as the number of

random variables in the distribution increases.



Chapter 7

Conclusions

This section will summarise the contributions of this thesis, discuss what motivated the

work and outline possible future work that leads from it. The work develops sequential

inference methods which can be applied to the problem of network based search. The prob-

lem of network based sequential searches can be seen as having three related steps: Defining

an appropriate joint prior distribution for the network; updating the joint distribution as

observations are made; and deciding which items to screen next, given the current joint

distribution. This thesis focuses on approximate inference methods for updating the joint

distribution with the methodology influenced by the other steps.

Dimitrov et al. (2016) shows that using the information about the network structure, to-

gether with a modelling assumption that relevant items and participants are likely to cluster

together, can greatly increase the rate of finding relevant items. However their approach is

computationally expensive and thus limited in applicability to small networks. For a large

network, defining a joint binary distribution over all nodes in the network is in itself a dif-

ficult problem. Instead, we consider the case when there is a limited prior specification. In

Chapter 4, we develop a method based on Bayes Linear methodology which works directly

with prior means and covariances rather than the full probability distributions. Further-

more, it provides a natural approach to modelling such data as the method provides the

output posterior summaries that are most relevant to heuristic policies for choosing future

147
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items.

Bayes linear methodology makes no assumptions about the underlying distribution so the

posterior mean may not be in the range [0, 1]. We introduce a new optimisation problem for

Bernoulli random variables, called constrained Bayes Linear, in Chapter 4. The optimization

problem has additional constraints on the posterior summaries incorporated into the Bayes

Linear optimisation problem. These additional constraints ensure the updated expectations

are in the range [0, 1]; a desirable property for Bernoulli random variables. We show that,

like the unconstrained Bayes linear methodology, the resulting optimisation problem has an

analytical solution. The constrained Bayes linear method can be applied to the network

based search problem. For small networks, we show the updated values using constrained

Bayes linear are close to the values found using exact inference methods and the performance

of the decision problem is not greatly affected by the inference method. For both simulated

data and data from the Enron corpus the BL model gives comparable performance to the

methods of Dimitrov et al. (2016), and for networks where this method is infeasible Bayes

linear gives superior performance to methods that ignore the network structure.

Bayes linear methodology relies on a linear approximation between the random variables

and the observations. Chapter 5 shows that for highly non-linear relationships, this gives

a poor approximation. To overcome this problem, we propose a novel sequential Monte

Carlo method for sequential inference on the network. Rather than take a Monte Carlo

approximation to the entire network, we only include a Monte Carlo sample of a subset

of these random variables – those directly involved with observations. This deals with the

non-linear relationship whilst minimising the computational cost and problems like sample

impoverishment.

The success of the Bayes linear method in Chapter 4 provides the motivation for using Bayes

linear to sample the binary random variables from the prior mean and covariance given in

Chapter 5. Bayes linear is also used to provide posterior summaries for the remaining

random variables not in the Monte Carlo approximation. We give a method for simulating

the random variables based directly on the Cholesky decomposition of the covariance matrix.
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Constraints on the prior mean and Cholesky decomposition of the covariance matrix are

given so that the mean and covariance of the simulated random variables match those used

to simulate them.

We empirically show that for a small network with a non-linear relationship between the

latent variables and the observations the sequential Monte Carlo method gives a better

approximation to the posterior mean and covariance than other methods (including con-

strained Bayes linear and simpler Monte Carlo methods) when compared with exact infer-

ence in the binary Markov random field. For simulated networks, we show that even with

a small number of maximum particles the sequential Monte Carlo method gives similar or

better performance than the Bayes linear model in the decision problem. However, when the

sequential Monte Carlo model is run on networks based on the Enron database, the sequen-

tial Monte Carlo model does no better than the less computationally expensive constrained

Bayes linear model, introduced in Chapter 4. Therefore, even though the sequential Monte

Carlo model better approximates the relationship between the observations, the simpler ap-

proximation is good enough to help guide the decisions. Initially, both methods find more

relevant items that the methods which ignore network structure.

In Chapter 6 we explore the properties of the Bayes linear methods in Chapters 4 and

5 used to define the joint distribution of the binary random variables with a given mean

and covariance. We show that under certain constraints of the mean and covariance, the

random variables will have the same mean and covariance that is used to simulate them.

The distribution found using Bayes linear methods is specified by ordering the random

variables, Z1, . . . , Zn, and using Bayes linear updates to calculate the distribution of Zi given

Z1, . . . , Zi−1. We show in Chapter 6 that the ordering of the random variables affects the

resulting joint distribution. Furthermore we investigate, both theoretically and empirically,

some of the aspects of the ordering which do/do not affect the joint distribution by looking at

the third moments. Given the position of the first two random variables in the ordering, the

position of the final random variable will not matter, but the third moment will be effected

by what is simulated before and in between the first and second. Finally, we considered how

much of an effect the ordering of the random variables has on the BL approximation to the
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third centralised moment.

7.1 Possible Future Directions

Throughout the thesis, we have described the Bayes linear approach for one specific model

but it can easily be applied more widely. For example, it is straightforward to allow for dif-

ferences between participants’ nodes, such as those due to covariate information, by allowing

for different mean probabilities of relevance for different nodes. Similarly, we can generalise

the dependence structure assumed by the Bayes linear method, for example allowing nodes

that communicate more frequently to be more strongly linked, by altering how the prior

variance is specified. Furthermore, the Bayes linear approach could be applied to models

which assumed a different distribution for the probability of relevance of an item on an edge,

given the relevance of the participants it is between. This model could include covariate

information about the item, or be different depending on which of the participants is the

sender and which is the receiver.

Several assumptions were made about the model, including the assumption that items are

only made between two people. In order for the method to be more applicable to some of the

problems described in the introduction, such as legal precedent searches, this assumption

would need to be looked at, as many legal cases are likely to involve more than two people.

To some extent this is also true of email databases with group emails. This could be solved,

for example, by updating all nodes involved with an item on one of the edges and altering

the decision algorithm to consider the additional information, if any, gained from screening

this type of observation.

More generally, further research could look at how the multi-armed bandit problems on

networks could be used to better influence the decisions made. Differences between this

problem and a classic multi-armed bandit problem include correlations between arms (edges

in the network), a short time horizon and a varying number of items available on each arm.

Multi-armed bandit problems have been proposed for the problem of learning the most
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influential people within a social network. Many of which involve only sharing information

with neighbouring nodes in the the network. Although the methods discussed in this thesis

extend the size of networks far beyond that allowed by exact inference, the computational

cost is still limited by calculating the Cholesky decomposition of the covariance matrix. By

using local updates instead of global updates similar to those multi-armed bandit methods

on social networks, the size of network could be extended even further.



Appendix A

Appendix

A.1 Chapter 4

A.1.1 Proofs for Chapter 4

Proof (Proof of Lemma 4.3.1). Consider two optimisation problems: (4.3.8) without its

constraints, which is equivalent to the optimisation problem (4.3.1), and (4.3.8) with the

constraints. Both problems are convex minimisation problems with the same objective func-

tion, and if we assume that Var(Z) is positive definite, they are strongly convex. Suppose

(4.3.8) has an optimal solution h∗, for which none of the constraints are tight. The same

solution is the optimal for (4.3.1) because the objective function is strongly convex. That is,

you cannot move in any direction d, to a new solution for (4.3.1), h∗+ εd, and decrease the

objective. This shows the contrapositive of the statement: If (4.3.8) has an optimal solution

without tight constraints, (4.3.8) and (4.3.1) have the same optimal solution. If they do not

have the same solution, then (4.3.8) has to have a tight constraint.

152
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Proof (Proof of Lemma 4.3.2). The optimisation problem in (4.3.10),

minimise
hk

E

(Zk − hk0 − n∑
i=1

hki Yi

)2
 ,

subject to hk0 +
n∑
i=1

hki yi = c,

can be solved optimally using the method of Lagrange multipliers to give an analytical solu-

tion. Let:

Λ(hk, λ) = E

[(
Zk − hk0 − (hk1:n)TY

)2]
+ λ(hk0 + (hk1:n)Ty − c), (A.1.1)

where hk1:n = (hk1, . . . , h
k
n)T . The optimisation problem is equivalent to solving:

minimise
hk,λ

Λ(hk, λ). (A.1.2)

Differentiating A.1.1 with respect to hk0, hk1:n and λ gives:

∂Λ(hk0,h
k
1:n, λ)

∂hk0
= 2hk0 − 2E[Zk] + 2(hk1:n)TE[Y] + λ (A.1.3)

∂Λ(hk0,h
k
1:n, λ)

∂λ
= hk0 + (hk1:n)Ty − c (A.1.4)

5hk
1:n

Λ(hk0,h
k
1:n, λ) = −2E[ZkY] + 2hk0E[Y]T + 2(hk1:n)TE[YY] + λyT (A.1.5)

The optimal solution is found by the partial derivatives (A.1.3) - (A.1.5) equal to zero,

0 = 2hk0 − 2E[Zk] + (hk1:n)TE[Y] + λ, (A.1.6)

0 = hk0 + (hk1:n)Ty − c, (A.1.7)

0 = −2E[ZkY] + 2hk0E[Y]T + 2(hk1:n)TE[YY] + λyT , (A.1.8)

and solving the set of simultaneous equations. Rearranging (A.1.6) to give hk0 in terms of λ
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and hk1:n and substituting into equations (A.1.7) and (A.1.8) gives:

0 = E[Zk] + (hk1:n)T (y − E[Y])− λ

2
− c (A.1.9)

0 = −2E[ZkY] + 2

(
E[Zk]− (hk1:n)TE[Y]− λ

2

)
E[Y]T + 2(hk1:n)TE[YY] + λyT

= −2Cov(Zk,Y) + 2(hk1:n)TVar(Y) + λ(y − E[Y])T (A.1.10)

Rearranging (A.1.9), we get:

λ = 2E[Zk] + 2(hk1:n)T (y − E[Y])− 2c, (A.1.11)

and substituting into (A.1.10),

0 = −2Cov(Zk,Y) + 2(hk1:n)TVar(Y) +
(

2E[Zk] + 2(hk1:n)T (y − E[Y])− 2c
)

(y − E[Y])T

Finally, rearranging we get an expression for the optimal value of (hk1:n)T , which satisfies

(4.3.10)

(
Cov(Zk,Y) + (c− E[Zk])(y − E[Y])T

) (
Var(Y) + (y − E[Y])(y − E[Y])T

)−1
. (A.1.12)

Substituting into equation A.1.7 gives the optimal value for hk0:

hk0 = c− (hk1:n)Ty. (A.1.13)

Proof (Proof of Lemma 4.4.1). The expected value of Y can be calculated from:

E[Yuv] = E[E[Yuv | Puv]] (A.1.14)

= nuvE[Puv]. (A.1.15)

where nuv is the number of items observed on edge (u, v) to date. Similarly, the analytical
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formula for E [ZkYuv] is:

E [ZkYuv] = E [ZkE [Yuv | Puv]] ,

= nuvE [ZkPuv] . (A.1.16)

The analytical formula for E[YY] is defined in terms of diagonal and off diagonal terms of

the matrix where:

E
[
Y 2
uv

]
= E

[
E
[
Y 2
uv | Puv

]]
,

= E
[
Var(Yuv | Puv) + E [Yuv | Puv]2

]
,

= E
[
nuv(nuv − 1)P 2

uv + nuvPuv
]
,

= nuv(nuv − 1)E
[
Var(Puv | Zu, Zv) + E [Puv | Zu, Zv]2

]
+ nuvE [Puv] , (A.1.17)

and

E [YuvYij ] = E [E [YuvYij | Puv, Pij ]] ,

= E [E [Yuv | Puv]E [Yij | Pij ]] ,

= nuvnijE[PuvPij ]. (A.1.18)

A.1.2 Maximum Entropy Method for Approximating Joint Distribution

Several of the solutions in Lemma 4.4.1 require the joint distribution over several partici-

pants’ relevance values and probabilities. However, we only have a prior mean and covariance

of Z and the joint distribution for more than two binary Z values is not uniquely defined by

their expectation and covariance. An alternative method to using BL updates to calculate

this joint distribution is to calculate the maximum entropy distribution. This can be applied

in the cases where the mean and covariance of the BL method are not within the bounds

described in Chapter 5 as an alternative to using the constrained Bayes linear.
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The maximum entropy joint binary distribution for the required Z, which most closely agrees

with their expectation and covariance. The maximum entropy distribution is the probability

distribution which best represents the current state of knowledge. If X is a discrete random

variable, the maximum entropy distribution given by:

p(Xk = xk) = pk , k = 1, 2, . . . , n, (A.1.19)

is found by maximising the entropy (−
∑n

k=1 pk log pk) subject to any constraints on the

probability distribution.

For this application, the maximum entropy distribution can be used to approximate the joint

binary distribution of up to four Z values. It is found by solving the convex optimisation

problem:

maximise −
n∑
i=1

pi log pi,

subject to 0 ≤ pi ≤ 1 , i, j = 1, . . . , n

1 =
n∑
i=1

pi,

E[Zi] = pi , i, j = 1, . . . , n,

Cov(Zi, Zj) = (pi − E[Zi])(pj − E[Zj ]) , i, j = 1, . . . , n.

(A.1.20)

If the optimisation problem is over defined, a least squares approximation is used. From

this and the conditional beta distributions, we can calculate the required expectations. We

describe here the calculations for E[PuvPij ]. Similar calculations are use for E [ZkPuv],

E [Var(Puv | Zu, Zv)] and E
[
E [Puv | Zu, Zv]2

]
, and these are given in Appendix A.1.3. The

values only have to be calculated once, prior to the screening process.

To calculate E[PuvPij ], we would calculate the maximum entropy distribution of Zu, Zv, Zi, Zj

using equation A.1.20, say p̃(Zu, Zv, Zi, Zj). This can be done using standard convex op-

timisation packages. From this approximate joint distribution, the approximate value of
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E[PuvPij ] is:

E[PuvPij ] = E [E [PuvPij |Zu, Zv, Zi, Zj ]]

=
∑

zu,zv ,zi,zj∈{0,1}

p̃(zu, zv, zi, zj)E[Puv|zu, zv]E[Pij |zi, zj ]

where E [PuvPij |Zu, Zv, Zi, Zj ] = E[Puv|zu, zv]E[Pij |zi, zj ] by conditional independence.

A.1.3 Calculations for Analytical Equations Used in Lemma 4.4.1

Lemma 4.4.1 requires the values E [Var(Puv | Zu, Zv)], E
[
E [Puv | Zu, Zv]2

]
and E [ZkPuv].

In order to calculate E [Var(Puv | Zu, Zv)], we require the joint distribution over Zu, Zv.

For two random variables these can be calculated exactly from their prior expectation and

covariance, to give p(Zu, Zv), so:

E [Var(Puv | Zu, Zv)] =
∑

Zu,Zv∈{0,1}

p(zu, zv)Var(Puv|zu, zv). (A.1.21)

Similarly, calculating E
[
E [Puv | Zu, Zv]2

]
we can get p(Zu, Zv) from the prior expectation

and covariance. From this we get:

E
[
E[Puv | Zu, Zv]2

]
=

∑
Zu,Zv∈{0,1}

p(zu, zv)E[Puv|zu, zv]2. (A.1.22)

Calculating E [ZkPuv] can require calculating the joint distribution over up to three Z. This

is estimated using the maximum entropy distribution as p̃(Zk, Zu, Zv), and using this, we

get:

E [ZkPuv] =
∑

Zu,Zv ,Zk∈{0,1}

p̃(zk, zu, zv)zkE[Puv|zu, zv]. (A.1.23)
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A.1.4 Calculations for Posterior Approximations

In Section 4.4.2 we described how to calculate the the posterior value for Ẽ[PuvPij | y]. Here

we describe the similar calculations for E [Var(Puv | Zu, Zv,y)], E
[
E [Puv | Zu, Zv,y]2

]
and

E [ZkPuv | y]. In order to calculate E [Var(Puv | Zu, Zv,y)], we require the approximate

posterior joint distribution over Zu, Zv | y. The method for calculating this is given in

Section 4.4.2. From this:

E [Var(Puv | Zu, Zv,yuv)] =
∑

Zu,Zv∈{0,1}

p(zu, zv | y)Var(Puv|zu, zv,yuv). (A.1.24)

Similarly, calculating E
[
E [Puv | Zu, Zv,yuv]2

]
we can get p̃(Zu, Zv | y) from the posterior

expectation and covariance. From this we get:

E
[
E[Puv | Zu, Zv,y]2

]
=

∑
Zu,Zv∈{0,1}

p(zu, zv | y)E[Puv|zu, zv,yuv]2. (A.1.25)

Calculating E [ZkPuv | y] can require calculating the joint distribution over up to three Z

values. This is estimated using BL updates as p̃(Zk, Zu, Zv | y), and using this, we get:

E [ZkPuv | y] =
∑

Zu,Zv ,Zk∈{0,1}

p̃(zk, zu, zv | y)zkE[Puv|zu, zv,yuv]. (A.1.26)

A.2 Chapter 5

A.2.1 Proofs for Simulating Using the Cholesky Decomposition of Co-

variance Matrix

Proof (Proof of Lemma 6.2.1). Letting p = µi +
∑i−1

j=1 Lijεj , we can rewrite (6.2.1) as:

εi =

 (Lii)
−1(1− p) with probability p

−(Lii)
−1p with probability 1− p

, (A.2.1)
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and the conditional expectation E[εi|ε1, . . . , εi−1] is calculated from A.2.1 as:

E[εi|ε1, . . . , εi−1] = (Lii)
−1 ((1− p)p− p(1− p))

= 0. (A.2.2)

The marginal expectation is found by taking the expectation of E[εi|ε1, . . . , εi−1] with respect

to ε1, . . . , εi−1:

E[εi] = E [E[εi|ε1, . . . , εi−1]] = E[0] = 0. (A.2.3)

Proof (Proof for Lemma 6.2.2). The covariance between εi and εj , for j < i, is:

Cov(εi, εj) = E[εiεj ]− E[εi]E[εj ]. (A.2.4)

where E[εi] = 0 and E[εj ] = 0 and E[εi|ε1, . . . , εi−1] = 0 so:

Cov(εi, εj) = E[εiεj ]

= E[E[εi|ε1, . . . , εi−1]εj ]

= 0. (A.2.5)

The marginal variance, V ar(εi) can be found from εi | ε1, . . . , εi−1, using:

V ar(εi) = E [V ar (εi|ε1, . . . , εi−1)] + V ar (E [εi|ε1, . . . , εi−1]) ,

= E [V ar (εi|ε1, . . . , εi−1)] . (A.2.6)

The variance of εi|ε1, . . . , εi−1, where p = µi +
∑i−1

j=1 Lijεj is:

V ar(εi) = E
[
(Lii)

−2 (1− p)2 p+ (Lii)
−2p2 (1− p)

]
,

= (Lii)
−2E [p (1− p)] . (A.2.7)
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Substituting in the value of p = µi +
∑i−1

j=1 Lijεj we get:

V ar(εi) = (Lii)
−2E

µi +
i−1∑
j=1

Lijεj −

µi +
i−1∑
j=1

Lijεj

2 ,
= (Lii)

−2

µi − µ2i + (1− 2µi)
i−1∑
j=1

LijE [εj ]− E

 i−1∑
j=1

i−1∑
k=1

LijLikεjεk

 . (A.2.8)

From Lemma 6.2.1 we know E[ε] = 0 gives:

V ar(εi) = (Lii)
−2

µi (1− µi)−
i−1∑
j=1

i−1∑
k=1

LijLikCov(εj , εk)

 , (A.2.9)

where Cov(εj , εk) = 0 for j 6= k so:

V ar(εi) = (Lii)
−2

µi(1− µi)− i−1∑
j=1

L2
ijV ar(εj)

 , (A.2.10)

For ε1 we can write the variance as:

V ar(ε1) = µ1
(
L−111 (1− µ1)

)2
+ (1− µ1)

(
−L−111 µ1

)2
= L−211 µ1(1− µ1)

2 + L−211 µ
2
1(1− µ1)

= L−211 µ1(1− µ1)(1− µ1 + µ1)

= L−211 (µ1(1− µ1)) (A.2.11)

The random variable Z1 has distribution Z1 ∼ Bernoulli(µ1) so has variance Σ11 = L2
11 =

µ1(1− µ1) and (A.2.11) simplifies to:

V ar(ε1) = L−211 L
2
11 = 1. (A.2.12)

We can then show that all εi have V ar(ε1) = 1 by induction. Assume V ar(εk) = 1 for
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k = 1, . . . , i− 1, then (A.2.10) is equivalent to:

V ar(εi) = (Lii)
−2

µi (1− µi)−
i−1∑
j=1

L2
ij

 . (A.2.13)

The random variable Zi has distribution Zi ∼ Bernoulli(µi) and so has variance V ar(Zi) =

µi(1− µi) which is written in terms of the Cholesky decomposition as:

V ar(Zi) = µi(1− µi) =
i−1∑
j=1

L2
ij + L2

ii. (A.2.14)

Substituting into (A.2.13) we get:

V ar(εi) = (Lii)
−2

 i−1∑
j=1

L2
ij + L2

ii −
i−1∑
j=1

L2
ij

 ,

= (Lii)
−2L2

ii,

= 1. (A.2.15)

Hence, V ar(εi) = 1 and the proof holds by induction.

A.2.2 Third Centralised Moment Proofs

Proof (Proof of Lemma 6.3.3). Firstly, we show that the if there is a single additional

random variable between Zj and Zk in the ordering, the conditional expectation E[Zk | Z1:j ]

is not altered using the BL method. Using Lemma 6.3.1 we can write the conditional

expectation of E[Zk | Z1:j+1] where k = j + 2 as:

E[Zk | Z1:j+1] = µk −
j+1∑
n=1

Lkn(Lnn)−1(E[Zn | Z1:n−1]− µn) +

j+1∑
n=1

Lkn(Lnn)−1(Zn − µn).

(A.2.16)
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This conditional expectation can be written as a function of Zj+1 where:

E[Zk | Z1:j+1] =µk −
j+1∑
n=1

Lkn(Lnn)−1(E[Zn | Z1:n−1]− µn) +

j∑
n=1

Lkn(Lnn)−1(Zn − µn)

+ Lk,j+1(Lj+1,j+1)
−1(Zj+1 − µj+1) (A.2.17)

=a+ b(Zj+1 − µj+1). (A.2.18)

The conditional expectation E[Zk | Z1:j ] is found by taking the expectation of A.2.18 over

Zj+1. If p = E[Zj+1 | Z1:j ] this is:

E[E[Zk | Z1:j+1]] =pE[Zk | Z1:j , Zj+1 = 1] + (1− p)E[Zk | Z1:j , Zj+1 = 0] (A.2.19)

=p(a+ b(Zj+1 − µj+1)) + (1− p)(a− bµj+1) (A.2.20)

=b(p− µj+1) + a (A.2.21)

Substituting the values for a, b and p back into (A.2.21) gives:

E[E[Zk | Z1:j+1]] =Lk,j+1(Lj+1,j+1)
−1 (E[Zj+1 | Z1:j ]− µj+1)

+ µk −
j+1∑
n=1

Lkn(Lnn)−1(E[Zn | Z1:n−1]− µn)

+

j∑
n=1

Lkn(Lnn)−1(Zn − µn)

Taking the jth term out of the summation:

E[E[Zk | Z1:j+1]] =Lk,j+1(Lj+1,j+1)
−1 (E[Zj+1 | Z1:j ]− µj+1)

+ µk −
j∑

n=1

Lkn(Lnn)−1(E[Zn | Z1:n−1]− µn)

− Lk,j+1(Lj+1,j+1)
−1 (E[Zj+1 | Z1:j ]− µj+1)

+

j∑
n=1

Lkn(Lnn)−1(Zn − µn)
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which cancels to give:

=µk −
j∑

n=1

Lkn(Lnn)−1(E[Zn | Z1:n−1]− µn) +

j∑
n=1

Lkn(Lnn)−1(Zn − µn) (A.2.22)

=E[Zk | Z1:j ] (A.2.23)

using Lemma 6.3.2. Hence, the BL conditional expectation does not depend on whether a

single additional random variable is in the ordering between Zj and Zk.

Next we show that the property holds when Zk is the mth random variable or the m+ 1th

random variable. Using Lemma 6.3.1, k = m + 1, and the random variables are simulated

numerically, the BL conditional expectation is:

E[Zk | Z1:m] = µk −
m∑
n=1

Lkn(Lnn)−1(E[Zn | Z1:n−1]− µn) +

m∑
n=1

Lkn(Lnn)−1(Zn − µn).

(A.2.24)

This can be written as a function of Zm where:

E[Zk | Z1:j+1] =µk −
m∑
n=1

Lkn(Lnn)−1(E[Zn | Z1:n−1]− µn) +
m−1∑
n=1

Lkn(Lnn)−1(Zn − µn)

+ LkmL
−1
mm(Zm − µm) (A.2.25)

=a+ b(Zm − µm). (A.2.26)

The conditional expectation E[Zk | Z1:m−1] is then found by taking the expectation over

Zm. If p = E[Zm | Z1:m−1] this is:

E[E[Zk | Z1:m]] =pE[Zk | Z1:m−1, Zm = 1] + (1− p)E[Zk | Z1:m−1, Zm = 0] (A.2.27)

=b(p− µm) + a (A.2.28)
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Substituting the values for a, b and p back into (A.2.28) gives:

E[E[Zk | Z1:m]] =Lkm(Lmm)−1 (E[Zm | Z1:m−1]− µm)

+ µk −
m∑
n=1

Lkn(Lnn)−1(E[Zn | Z1:n−1]− µn) +
m−1∑
n=1

Lkn(Lnn)−1(Zn − µn)

which simplifies to:

E[E[Zk | Z1:m]] =µk −
m−1∑
n=1

Lkn(Lnn)−1(E[Zn | Z1:n−1]− µn) +
m−1∑
n=1

Lkn(Lnn)−1(Zn − µn)

(A.2.29)

=E[Zk | Z1:m−1] (A.2.30)

using Lemma 6.3.2. Hence, if the conditional expectation is the same when k is the m+ 1th

random variable and when it is the mth and it is the same when it is the j + 1th random

variable as when it is j + 2th, then we can show that:

E[Zk | Z1:m] =E[· · ·E[E[E[Zk | Z1:m]]] · · · ]

=E[· · ·E[E[Zk | Z1:m−1]] · · · ] = . . . = E[E[Zk | Z1:j+1]]

=E[Zk | Z1:j+1] (A.2.31)

Hence, the proof holds by induction.
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