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Abstract 11 

The use of Constant Elasticity of Substitution (CES) functions in General Equilibrium Integrated Assessment Models (GE-IAMs) to forecast the 12 

long-term energy system evolution under emissions constraints introduces unjustified biases. Applying CES, an economic modeling method, for 13 

the substitution of technical factor inputs where an entire factor (fossil fuels) should be substituted fails to match historically observed transition 14 

patterns and is very sensitive to the structure of CES implementation (nesting) and parameter choice. The resulting methodology-related artefacts 15 

include: (i) the extension of the status quo technology shares for future energy supply relying on fossil fuels with carbon capture, biomass and 16 

nuclear, (ii) monotonically increasing marginal abatement costs of carbon, and (iii) substitution of energy with non-physical inputs (e.g. 17 

knowledge and capital) without conclusive evidence that this is possible to the extent modeled. We demonstrate these issues using simple 18 

examples and analyze how they are relevant in the case of three major CES-based GE-IAMs. To address this, we propose alternative 19 

formulations either by opting for perfect substitution for alternative energy options or by introducing dynamically variable elasticity of 20 

substitution as a potential intermediate solution. Nevertheless, complementing the economic analysis with physical modeling accounting for 21 

storage and resource availability at a high resolution spatially and temporally would be preferable.  22 
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1 Introduction 1 

A sustainable energy transition that eliminates atmospheric carbon emissions within a few decades is a critical 2 

component of climate change mitigation strategies. Identifying the optimal mix of energy resources to reach the carbon 3 

mitigation targets is one of the aims of Integrated Assessment Models (IAMs), models that combine climate and 4 

economic considerations. This paper discusses how IAMs that use constant elasticity of substitution (CES) functions – 5 

also referred to as general equilibrium IAMs (GE-IAMs) – and their variants for modeling the energy system may 6 

generate results that are inconsistent with empirically observed dynamics of previous energy transitions. GE-IAMs 7 

thus tend to preserve the share of conventional resources into the future, consequently underestimating the share of 8 

non-fossil energy resources that currently have a small share, and tend to forecast an exponentially increasing carbon 9 

price. We show that these outcomes are driven by the use of CES functions rather than from an assessment of the 10 

relative characteristics of the resources and their technical substitution potential. 11 

IAMs study the co-evolution of the climate and economic systems several decades into the future. By comparing 12 

the costs of climate change against the costs of preventative actions, they intend to inform climate and energy policy.  13 

In order to fulfill their stated objective, IAMs should (Pindyck 2013):  14 

(i) Represent the economic system over long periods.  15 

(ii) Relate economic activity into corresponding greenhouse-gas (GHG) emissions.  16 

(iii) Estimate the impact of GHG emissions on the climate usually summarized in the degrees of change of 17 

average temperature from the pre-industrial baseline. 18 

(iv) Calculate how climate change impacts economic activity. These impacts can be summarized as the social 19 

cost of carbon (SCC) – i.e. the net present value of the impacts of GHG allocated per unit of emissions.  20 

(v) Estimate the costs incurred by reducing or substituting GHG emitting activities in order to comply with a 21 

desired level of GHG atmospheric concentration. The technical costs of emissions mitigation are 22 

represented by the marginal abatement cost (MAC) of GHG for meeting a given level of atmospheric 23 
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GHG concentration. In an efficient, universal trading system, the carbon price (e.g. price of emission 1 

permits)  should be equal to the MAC (Kuik et al. 2009).  2 

The estimation of the SCC is effectively exogenous to the IAM and dependent on three fundamental assumptions 3 

that can lead to widely variable results: the choice of discount rate, the formulation of the climate damage function, 4 

and the assessment of the probability of catastrophic events (Pindyck 2013). The upper bounds of climate sensitivity 5 

are difficult to deduce from historical data. In particular, a fat-tail climate response, where the likelihood of high 6 

temperature changes remains substantial even for moderate GHG concentrations, cannot be excluded (Allen and Frame 7 

2007). This leads Weitzman (2009) to consider as misleading climate damage functions that disregard the fat-tail 8 

distribution properties of catastrophic climate change. 9 

While the issues related to IAMs’ SCC estimations have been critically assessed, relatively less attention has been 10 

paid to their energy modeling aspects. Barreto and Kemp (2008) confirm that energy models fail to take into account 11 

the empirically-solid observations of S-curve innovation and technology diffusion patterns but they did not identify 12 

specifically the inconsistencies arising from this omission. Pearce and Weyant (2008) point out the great sensitivity of 13 

IAMs’ cost estimates on “structural characteristics and assumptions embedded in the model” even when the key 14 

assumptions are the same. Truong (2009) notes a potential flaw that can lead to overestimation of the MAC indicating 15 

that “the CES production function […] can have unclear biophysical implications […] imply[ing] a pattern of the 16 

output elasticity […] which can be inaccurate and unrealistic from a biophysical or technological viewpoint”. He also 17 

points to the need to separate technical from economic efficiency in monetary models as their confusion may lead to 18 

physically impossible results. Frei et al. (2003) notes that “structural change, i.e. the ‘natural’ emerging and phasing 19 

out of technologies, is incompatible with the neoclassical concept of smooth (i.e. differentiable) substitution” that is 20 

assumed in a CES. Recently, Pietzcker et al. (2017) attempted to address identified deficiencies in the representation of 21 

variable renewable sources in IAMs and noted that CES “create[s] a preference for base-year calibration shares 22 

[…that] can lead to physically implausible aggregation.” Finally, Rosen and Guenther (2015) highlight that the 23 

complexity and uncertainty surrounding economic and technological evolution makes it difficult to defend simplistic 24 
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conclusions of economic costs drawn by IAMs as their assumptions do not capture the synergistic benefits of 1 

technology development, climate mitigation, and increased reliance on renewable sources.  2 

Building on these critiques, we investigate the structural issues in GE-IAMs, arising from a CES that can bias (i) 3 

the estimation and shape of the MAC, and (ii) the technological composition of future energy scenarios. The second 4 

case includes the exaggeration of the energy efficiency potential and the longevity of the fossil fuel status quo with 5 

only minor variation in the technology shares of future energy supplies. We show that while the MAC is highly 6 

sensitive to the parameter values (elasticity of substitution, initial shares, and assumptions on economic costs), the 7 

technology composition is also strongly dependent on the model structure per se. A common factor to both issues is 8 

that they are endogenous outcomes of the modeling formulation, preventing the reproduction of the empirical behavior 9 

of energy technology transitions.  10 

Section 2 presents the MAC and technology share biases by analyzing two CES function examples, one 11 

retrospective and one prospective. Section 3 discusses how CESs are implemented in several state-of the art GE-IAMs 12 

through a nesting methodology and structurally explains the results of these IAMs regarding the MAC and the 13 

technology shares pointing out the issues. Section 4 suggests alternative formulations based on empirical research on 14 

energy transitions, including a modified application of CES.  15 

2 The CES function and its introduced artefacts when applied in long-term technical transitions 16 

CES functions were introduced as a general production function form for capital and labor substitution (Arrow et 17 

al. 1961) that could provide flexibility increasing the options between a Leontief function (where the elasticity of 18 

substitution is zero i.e. the two factors cannot be substitutes) and a Cobb-Douglas function (where the elasticity of 19 

substitution is unitary). In this setting, neither labor nor capital would be reasonably expected to dominate and the 20 

range of possible substitution between them would be limited. Bounded this way, the use of CES was justifiable and 21 

representative. Nevertheless, convenience and ubiquitous use in general and partial equilibrium models of what 22 

became a conventional approach have led to extending the use of CES functions to model processes with technical 23 

factor inputs. As we discuss below, this extension is not supported empirically because technical processes can fully 24 
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substitute each other and in fact the substitution tends to become easier as the penetration of an alternative technology 1 

increases, thus changing the elasticity of the substitution. This section demonstrates in detail how CES operates and 2 

explains why some policy-critical results are artefacts of the equation without a corresponding physical justification 3 

and are highly sensitive to the following parameters: initial shares, choice of the elasticity of substitution, technology 4 

cost improvement.  5 

2.1 The CES function and physical input shares 6 

In the form shown in Eq. 1, (α) is the share of factor of production (F) and ρ defines the elasticity of substitution 7 

(σ) as 𝜎 = 1/(1 + 𝜌). While the two-input form can be expanded into multi-parameter general forms, there are 8 

limitations in solving these, especially if the elasticities are not equal, so in practice computable general equilibrium 9 

(CGE) models use nested CES functions to model multiple factors of production with different elasticities of 10 

substitution. This is discussed in Section 3.1.  11 

𝑌 = [𝛼 ∙ 𝐹ିఘ + (1 − 𝛼) ∙ 𝑅ିఘ]ିଵ ఘ⁄        (1)  12 

A CES function describes the amount of change required in one input in response to a certain amount of change in 13 

other input(s) to maintain a given utility level. CES functions are limited by the original structure of the inputs of the 14 

production function. If an input is not initially utilized and therefore not designed-in, then it will not be used by the 15 

model in its future projections. Importantly, in a CES function the marginal rate of technical substitution (MRTS) of 16 

one factor with respect to another (i.e. ΔR/ΔF) depends on the factor proportional value (R/F) as shown in Eq.2 17 

(derivation in SM).  18 

MRTSR, F = −
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      (2)  19 

A fundamental underlying assumption is that the two inputs are not perfect substitutes. Initially in order to substitute 20 

one unit of the larger factor requires a comparatively small amount of the substitute input, for a large initial share (α) 21 

and a positive ρ this can be significantly less than one. By its mathematical definition though, CES subsequently 22 

requires exponentially increasing amounts from the alternate factor presenting an exponentially increasing obstacle to 23 

the substitution process. In other words, CES functions tend, by design, towards factor share-preservation. As the 24 
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original share (αi) of a factor i increases, other factors need to be utilized exponentially more to replace a marginal 1 

reduction of i while maintaining the output (Y) constant as the substitution progresses.  2 

In order to demonstrate the problematic nature of this formulation for large-scale energy transitions, we apply 3 

it retrospectively to the coal/oil factor substitution in the US and global economy that occurred between 1880 and 4 

1980. We take the position of a modeler in 1900 assuming perfect foreknowledge of the shape and timing of the 5 

relative share (logistics curve) of coal as well as the growth rate in total energy demand. Fig. 1 shows a CES 6 

formulation that replicates a coal-oil substitution nest as used in the IAMs of Section 3.  7 

 8 

Figure 1 Retrospective CES model of substitution for coal by liquids for the US starting in 1900 showing the physical trajectory versus the 9 

modeled one (Left) and in terms of relative shares of the total output (Right), using different values for coal’s initial share of the energy 10 

supply (α) and the elasticity of substitution (σ).  11 

The absolute factor input values are an important and tangible indicator that can be used to examine how aligned 12 

model forecasts are with historical experience. In this example, the CES formulation forecast contradicts any 13 

reasonably expected technical substitution behavior as it only matches the historical trajectory for less than a decade, 14 

thereafter vastly overestimating the growth in liquid energy supply necessary to compensate for the decrease in coal 15 

energy. In the modeled case, the oil curve is estimated with coal at an initial share α=92% (solid orange line in Fig. 1L) 16 

and σ=2. The ratio of the liquids and coal modeled values to the modeled total energy output (the black solid line in 17 
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Fig. 1L) for different initial share assumptions is shown in Fig. 1R. For initial coal share (α) to drop from 92% to 80% 1 

of the output, the CES model requires liquids to grow from 8% to 100% of the output (Fig. 1R, blue solid line). As the 2 

substitution progresses, the required energetic output from liquids exceeds the total demand since they are considered 3 

an imperfect substitute to coal. This assumption eventually leads to radical differences between the modeled and 4 

observed values (compare the orange solid line with the orange dots in Fig. 1L). This occurs progressively as for every 5 

unit of coal that is substituted, it requires exponentially more liquids due to a decreasing marginal rate of technical 6 

substitution. Such a result is contrived, estimated with no reference to the technical capabilities and specifications of 7 

the two resources it inevitably fails empirical validation.  8 

In practice, the unrealistic physical substitution requirements the CES generates in high-share transitions are 9 

circumvented in three ways: (i) assuming substitution by a non-energy factor of production which is theoretically 10 

unbounded – e.g. capital, labor, or knowledge, (ii) applying a back-stop technology that is activated once substitution 11 

costs cross a threshold, and (iii) using nested CES that can increase the number of factor inputs. Effectively the nested 12 

models “optimize” between the shares without letting the physical “substitutes” become too expensive as the 13 

substitution costs also increase. We discuss this behavior of nested CES models in Section 3.1, but it is useful to also 14 

illustrate how the cost dynamics of the technologies are handled and how the MAC curve is generated in the case of a 15 

single CES function. 16 

2.2 The CES function and mitigation costs: inferring the MAC 17 

We calculate Eq. 1 values for the substitution of a portfolio of fossil sources (F) by a portfolio of renewable 18 

energy (R) sources generating output (Y) aiming to reduce system emissions. We initialize and solve the CES function 19 

assuming the market cost of the fossil resources (cF) as constant unit of comparison. The initial cost of RE (pR) is 20 

calculated by the initial conditions through Eq. 3 and subsequently may decrease at rate (ζ). The amount of R needed 21 

to substitute F at any point corresponds to a price of fossil resources (pF) necessary for forcing the transition (Eq. 3). A 22 

result of the Lagrangian function solution of the CES with the assumption of a perfectly competitive two-goods market 23 

for energy and unrestricted income is derived in the Supplementary Information (SI) in line with Gohin and Hertel 24 
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(2003). The MAC is the difference between the calculated fossil fuel price (pF) that is required to effect the substitution 1 

and their market cost (cF) shown in Eq. 4.  2 
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Fig. 2 graphs the values of the input resources and resulting MAC for different initial shares (α) and elasticity of 5 

substitution (σ) values in line with the range of values used in IAMs assuming a constant growth rate for the output 6 

(for a constant output see Fig. S1). As we have seen in Section 2.1, (i) the substitution curve F-R shows an 7 

exponentially increasing relationship, and (ii) the substitution rate reaches different levels depending on the initial 8 

share (1-α) but remains far from a complete substitution. The MAC pattern is a typical exponential curve (see Fig. 2-9 

right) that is very sensitive to the initial share, the choice of the elasticity of substitution parameter, to the initial share 10 

(α) and to the cost reduction rate (ζ). The sensitivity of MAC is mapped in Fig. S2 where a seemingly small variation 11 

in the choice of σ can lead to differences of up to four orders of magnitude in the final MAC value and up to seven if 12 

we include the variation of α. 13 
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 1 

 2 

Figure 2 Substitution quantities of fossil (F) and renewable (R) energy in energy units (left) and corresponding marginal abatement cost 3 

levels in monetary units needed to “force” the modeled using a CES function (right) for energy output increasing at rate (γ)=3% with variable 4 

initial shares (α), elasticities of substitution (σ), and rates of RE cost decrease (ζ). 5 

We note that using prices instead of physical inputs in Eq. 3 veils the behavior of the physical quantities. The 6 

MAC trajectory shows that it becomes exponentially harder to switch from fossils to renewables without even reaching 7 

complete substitution, with MAC levels that are one thousand times the cost of the fossil energy resource. 8 

Nevertheless, the resultant MAC is also extremely sensitive to the rate of RE cost reduction (ζ), which can reduce its 9 

value significantly. Yet a high assumed rate of RE cost reduction (ζ) changes neither the assumed technical share nor 10 

the exponential MAC behavior.  11 

These stylized CES examples demonstrate the fundamental characteristics and sensitivity of CES and how the 12 

resulting share preservation and exponentially increasing carbon price dynamics are artefacts not based on the 13 

characteristics and dynamics of technological substitutions. We examine such instances in current GE-IAMs in the 14 

next section.  15 
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3 CES –based artefacts and their implications 1 

Table S1 presents an indicative collection of GE-IAMs and the method for energy economy modeling. While 2 

there is a large proliferation of models there are fundamental similarities in how the models approach technology 3 

substitution as can be seen by the similarities in the handling of wind and solar, the most scalable renewable energy 4 

(RE) options. While the broad similarities of the CES-based results lead us to believe that the underlying mechanisms 5 

described in Section 2 apply, we do not extend our analysis to all permutations of CES-based IAMs. We focus on four 6 

current, state-of-the-art CES-based models: World Induced Technical Change Hybrid Model WITCH (Bosetti et al. 7 

2006), Emissions Predictions and Policy Analysis (EPPA) (Paltsev et al. 2005), the Global Trade and Environment 8 

Model GTEM-C (Cai et al. 2015) and the Regional Model of Investments and Development REMIND model (XXX) 9 

in order to illustrate how the structural choices of the models replicate the artefacts discussed in Section 2 in their 10 

results.  11 

3.1 Propagating the Status-quo: Structure and implications of CES nests 12 

The nested CES structure of the WITCH model is reproduced in Fig. S3, indicating both the type and the 13 

elasticity of substitution of each nest. In Fig. S8, we have also included the original structure of REMIND from 14 

(XXX). For the case of WITCH, Energy (EN) is a CES nest with input factors electricity (EL) and non-electricity 15 

(NEL) which are imperfect substitutes (σ=0.5). The NEL nest by construction can only be supplied by biomass/biofuel 16 

or fossil fuels (with/without CCS). As a result, this formulation forces (i) the use of significant NEL indefinitely and 17 

(ii) reliance on biomass as the only way to economically provide the NEL fraction in the event of a fossil fuel phase-18 

out, effectively making options like widespread electrification of transport or a hydrogen-based economy de facto 19 

impossible. This is directly visible in the RE shares for the RCP2.6 results shown in Fig. S4; even for the power sector, 20 

RE does not reach 20% (Bosetti et al. 2015). Moving to the EL nest, while hydro can perfectly substitute all sources of 21 

electricity, nuclear, RE (as ELW&S) and fossil fuels (ELFF) are imperfect substitutes (σ = 2). In other words, again 22 

simply by the structure of the model, for the share of RE to grow it would soon require very large amounts of resources 23 

and even if it costs very little, it could never fully substitute neither FF nor nuclear. As a final observation, energy 24 

services (ES) has as a factor input a representation of knowledge/efficiency (HE) along with EN, and in turn is a factor 25 
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input along with economic factors (K, L) for the total output. This structure and the presence of non-physical 1 

substitutes (HE, K, L) imply that if the EN costs become too high, the model will choose to introduce additional 2 

knowledge or additional capital/labor (neither of which have a physical limitation in the model universe) allowing the 3 

energy intensity of the economy to improve without examining if such a feat is technically feasible.  4 

REMIND has a similar nested CES structure to that of WITCH and it also raises energy to the level of 5 

substitutability (albeit relatively hard) with capital and labor. It segregates energy into practically unsubstitutable (σ = 6 

0.3) stationary and energy for transport categories. It does allow for electrification of transport, but only for the case of 7 

light-duty vehicles. Stationary energy is split by electric and non-electric energy use, making electric power relatively 8 

inelastic (σ = 1.3) compared to non-electric stationary energy. Final energy demand is then calculated through a linear 9 

resource distribution model using region-specific fossil fuel extraction curves and renewable energy resource 10 

potentials, through techno-economic cost assumptions. This raises further problems from the CES nested structure as it 11 

has exogenous GDP growth and interest rates, as well as exogenous technology advancement rates – all three of which 12 

have been notoriously hard to estimate accurately over decadal timescales (XXX). 13 

However, a very recent model inter-comparison study (XXX) that included detailed analyses using modifications 14 

of both WITCH (XXX) and REMIND (XXX) to include curtailment and storage effects of variable renewables, 15 

presented renewables shares of 37–75% of electricity supply by 2050, and 53–89% by 2100 (Fig. S5). This has been 16 

enabled by XXX. 17 

EPPA is another complex, multi-regional CGE IAM model that incorporates global economy interactions, trade 18 

and GHGs abatement dynamics. It is constructed using the CES function and variants for all type of production output, 19 

including energy, and final consumption in the characteristic nested structure but also includes perfect substitution for 20 

the (Figure S6upper). While some technologies are represented as perfect substitutes, EPPA treats RE “as imperfect 21 

substitutes represent[ing] the unique aspects of these renewable technologies. While they can be well-suited to some 22 

remote locations, they also suffer from intermittency that can add to their cost if they were to provide a large share of 23 

electricity production” (Paltsev et al. 2005). The same biases are present in the household use of energy in which fossil 24 

electricity is an imperfect substitute for fossil fuels, which are the only possible input for transport (Figure S6lower). It 25 
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is therefore unsurprising that its results also essentially perpetuate the current situation, simply choosing the 1 

“efficiency” pathway in the same mechanism as described for WITCH and shown in Fig. S7. 2 

The elasticity of substitution chosen in EPPA permits gradual but limited adoption of renewable energy only as 3 

prices of other technologies rise. Recognizing this EPPA limitation, Cheng (2005) developed an approach for 4 

integrating intermittent sources in CGE modeling with counterintuitive but edifying results. Assuming that all 5 

intermittent sources require fossil back-up, i.e. ignoring non-fossil storage options, ends up eliminating all RE sources 6 

in a high carbon price low emissions scenario.  7 

GTEM-C is a hybrid CGE model designed to combine the top-down (CGE) model with the bottom-up 8 

engineering details of energy production and consumption based on an earlier version of the Global Trade and 9 

Environment Model (GTEM). They use a technology bundle approach in addition to the classical CES and a back-stop 10 

technology. For electricity generation, the bundle includes nuclear, hydro, wind, solar, biomass, waste, and other 11 

renewables in addition to fossil fuels. GTEM-C uses different variants of the CES function in several calculation 12 

stages, including switching between production factors for the total economic output but also between different 13 

technologies for energy generation. As reproduced in Figure S8, GTEM-C utilizes a combination of Leontief 14 

functions, constant return of elasticities homothetic (CRESH) functions (Hanoch 1971), and typical CES to create a 15 

nested structure for industrial output. The technology bundle approach allows the power sector to largely transition to 16 

“clean” sources although without specifying in the results the relative shares of the technologies. Nevertheless the 17 

upper nests’ structural requirements prevent any effective transition in the rest of the energy sectors, effectively 18 

decarbonizing less than 20% of the energy system. 19 

Other CES-based models also tend to propagate the status-quo in energy shares, finding that CCS and biomass 20 

with CCS (i.e. negative emissions) is a significant part of any viable technology mix for achieving a low concentration 21 

pathway, c.f. Fig. S10 RCP2.6 in van Vuuren et al. (2011). In a comparative study of three IAMs (GCAM, MERGE 22 

and EPPA) the carbon price was exogenously determined either as a quadratic increase in carbon tax or a carbon shock 23 

(Wilkerson et al. 2015). Since GCAM is based on logit functions for estimating market share, is not within the scope 24 

of this paper. MERGE and EPPA under the tested assumptions forecast that fossil fuels remain the primary energy 25 
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input in the future, albeit with CCS. Notably, this study showed extreme rate changes of nuclear and biomass without 1 

recognizing the practical constraints of the task and timeframes described. GCAM estimates a quadrupling of nuclear 2 

energy within 5 years, while MERGE which is CES-based deals with the shock by increasing biomass with CCS ten-3 

fold within a decade (see Fig. S11 from Wilkerson et al. (2015)).  4 

Kriegler et al. (2015) compared a larger number of models with similar relevant results. Using the metric of 5 

transformation index (with 0 no change and 2 total change) the final energy mix scores values from 0.3 to 1.1 and 6 

primary energy mix from 0.9 to 1.6. In other words even when renewables include biomass, they still do not effect a 7 

complete transition by 2100 even under high carbon prices. That biomass is conventionally considered as an easier 8 

substitute for fossil fuels than RE is reinforced in a recent model survey (Luderer et al. 2013). 9 

When it comes to MAC implications, in section 3 of the SI, we postulate an explanation for the exponentially 10 

rising marginal abatement costs, rising from the structural presentation of the models given in Section 2.2 and 11 

presented Fig. 2. 12 

3.2 Policy implications of the RE modeling under CES 13 

As we saw, the use of CES for the energy system can lead to a systematic expectation of exponentially increasing 14 

costs imposed by a transition to a zero-carbon energy system that translates into an exponentially increasing carbon 15 

price and the reliance on perceived as known substitutes: biomass, fossil fuels with CCS, and nuclear without a 16 

physical consideration of their ability to scale. These results may elicit three responses in policy-makers: price 17 

diversion, sticker shock, and technological myopia.  18 

Price diversion refers to focusing climate policy on setting a price for GHG. It supports an expectation that known 19 

technologies can scale fast in response to carbon price introduction and changes as in (Wilkerson et al. 2015). At the 20 

same time, an exponentially rising MAC in conjunction with optimistic assumptions of a growing economy and the 21 

comparably low cost estimates from climate change allows limited action to become an optimal policy as in (Nordhaus 22 

1992). Using the MAC to guide policy decisions in a very dynamic technological transition environment where new 23 

technology costs drop faster than any prior technology forecast and commodity prices fluctuate seems 24 

counterproductive.  25 
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Sticker shock is a reaction to exponentially increasing carbon prices and the implied “costs” of mitigations. Policy 1 

makers are likely to perceive setting a carbon price measure in the thousands of dollars as politically futile when it is 2 

barely possible to pass legislation that raises it to the low tens. This attitude would be different if the need for a carbon 3 

price was shown to be temporary and with an eventually declining slope. In fact alternative economic models do find 4 

much lower carbon prices with non-exponential shape as sufficient to induce successful transitions, e.g. Mercure et al. 5 

(2014). Additionally, a high carbon price creates the unfounded perception that building alternatives is an endeavor 6 

that creates costs to the economy that are additional to business-as-usual. This is not necessarily true in absolute terms 7 

as we discuss in Section 4 because it fails to capture the implications of the complexity of the economic system (Rosen 8 

and Guenther 2015) and the dual dividend of efficiency and innovation that has been observed to arise when pollution 9 

externalities are radically constrained (Porter and Van der Linde 1995).  10 

Finally, technology myopia is manifest in the belief that the technologies favored by the model can in fact expand 11 

at the forecasted rate while other alternatives that are perceived as imperfect substitutes become too expensive and 12 

unable to cover all energy needs. It also implies that non-physical inputs of knowledge and capital can somehow 13 

substitute for energy thus reducing the economic energy intensity. Reinforced by the structure of the CES nests, the 14 

costs of incorporating new technologies soon become prohibitive reverting to perceived as perfect substitute 15 

technologies: fossil CCS, nuclear, or biomass. In the models we have studied, we do not find explicit supporting 16 

evidence of these substitutes’ technical ability to scale or their resource availability (especially for biomass) nor of the 17 

substitution potential by non-technical factors (e.g. knowledge and capital).  18 

4 Alternatives for technical substitution: towards a physical basis 19 

One would assume that a review of empirical findings should be a critical first step when modeling transitions. 20 

Yet, (Rosen and Guenther 2015) found “no literature comparing investment decisions for energy-consuming 21 

equipment implicit in IAMs with real-world trends in the past”, a test the CES approach fails in Section 2.1. A recent 22 

ex-post analysis of cost-optimization models for the UK found significant deviations of the actual system from the 23 

cost-optimal or near-cost-optimal estimates (Trutnevyte 2016). Looking forward, the reliance on traditional 24 
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technologies plus CCS which is the consensus from CES-based GE-IAMs in Section 3 is contrasts with both current 1 

deployment trends (Breyer et al. 2017) and the literature that uses bottom-up, physically constrained analysis to model 2 

a 100% carbon free economy and that considers solar and wind RE as the scalable workhorse technologies with some 3 

reliance on biomass depending on the location but with no nuclear or CCS e.g. (Lund and Mathiesen 2009) for 4 

Denmark, (Ben Elliston et al. 2013) for Australia, and (Singer 2010; Jacobson and Delucchi 2011; Sgouridis et al. 5 

2016) for global transitions. These studies recognize the physical and political scale limitations of nuclear, biomass, 6 

and CCS, and the strong learning curve in scalable RE technologies, solar (Görig and Breyer 2016), wind and storage, 7 

which allow them to present a complete energy system alternative. The RE deployment deficit in IAMs is recognized 8 

by Pietzcker et al. (2017). They investigate how changes to IAM model specifications allows for greater penetration of 9 

RE primarily through the use of residual load curves in combination with multinomial logit models (Ueckerdt et al. 10 

2015). This offers a welcome change but is still limited by looking only at the electricity system, assuming that the 11 

load curve is unresponsive and power-to-liquids (if included) only used for storage rather than providing economic 12 

uses outside the electricity system.  13 

Generally, physical models conform better with historical observations that, as the technology substitution 14 

progresses, the transition accelerates before slowing down near saturation. This S-curve shape of technological 15 

transitions, well established across economic sectors (Schumpeter 1943; Christensen 1997) but also in energy system 16 

transitions as shown in Figures S12, S13 (Ayres et al. 2003), (Fouquet 2010), (Grubler et al. 1999), implies that the 17 

elasticity of substitution is not constant. In the widest documented sampling of technology deployment trajectories, the 18 

pattern of exponential deployment rate and exponential cost reduction in technology diffusion was consistently 19 

observed (Nagy et al. 2013). Substitution dynamics were explored early on by economists using the logistic function 20 

(Mansfield 1961) and historical energy transitions on a technological/social basis (Marchetti and Nakićenović 1979) 21 

but also on a physical depletion basis with the well-known Hubbert curve (Maggio and Cacciola 2009). Differential 22 

equation-based models like the Bass Diffusion model (Norton and Bass 1987), were also utilized. 23 

Since an S-curve transition cannot be modeled with a CES function because it fundamentally presents a 24 

relationship with a dynamically evolving elasticity that should eventually end with a complete substitution. Taking this 25 
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as a starting point, we suggest the use of either perfect substitution with modeled storage or using a dynamic elasticity 1 

of substitution (DES) with σ increasing over time. This approach also allows for a complete substitution and 2 

ameliorates the issue of very high increases in the modeled quantities of substitutes even from very small initial shares 3 

thus offering a viable compromise that can be retrofit to existing formulations (see Fig. S14 for the input shares). It 4 

also has the additional advantages of providing an inflection point in the curve of the MAC and drastically reduced 5 

estimates of MAC values as shown in Fig. 4. 6 

 7 

Figure 3 Using a Dynamic Elasticity Energy Model with linear and exponential decrease of the parameter (ρ) for increasing output 8 

The MAC peak observed by using a dynamic elasticity of substitution may be counterintuitive to neoclassical 9 

thinking, but in practice, stems from the dynamics of technical diffusion. Economies of scale, scope, learning, and the 10 

initial adopters’ pull of followers define technology diffusion. In the worst case, the carbon price would be capped by 11 

the cost of the back-stop technology (e.g. CSP with thermal storage, PV with chemical or mechanical storage) with no 12 

reason to increase exponentially beyond. Empirically, we note that RE generation capacity is expanding at a significant 13 

rate in markets that do not have a carbon price (e.g. in China and India) and are fully cost competitive at utility scale 14 
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with other power system options. This does not mean that RE will expand automatically – it still requires support, 1 

primarily in the form of leveling the playing field but also for establishing a similar momentum in large-scale energy 2 

storage and power-to-liquids (P2L). 3 

In key sectors like transportation, changes like a modal shift from air travel to high-speed rail provide important 4 

avenues to utilize the renewable energy supply (Sgouridis et al. 2010) competing directly and even entirely dominating 5 

in certain markets. For automobiles and residential energy storage, battery technologies are well on their way to 6 

become directly competitive (Nykvist and Nilsson 2015). On the supply side, the levelized cost of energy (LCOE) 7 

trajectories for wind and especially for solar photovoltaic have been consistently declining, reaching grid-parity 8 

compared to both residential and wholesale electricity prices in several regions. While it is correctly pointed out that 9 

LCOE of RE does not account for the full cost of renewables integration (Joskow 2011), it is possible to operate such 10 

systems with no fossil input as the combined LCOE of RE plus short and long-term storage, including power to liquids 11 

that can fuel any non-electrifiable application, fully represent the system costs and there are no further “integration” 12 

costs. Studies that take this into consideration confirm the existence of manageable upper bounds at global (Pleßmann 13 

et al. 2014), or country level analyses e.g. Germany (Ueckerdt et al. 2015) and Japan (Komiyama and Fujii 2015). 14 

Notably, while Pleßmann et al. disadvantaged renewables by not considering long-distance transmission options and 15 

also disregarded the use of hydro resources, the costs of 100% RE-based electricity do not exceed double the current 16 

retail cost of electricity for the majority of the world population.  17 

5 Conclusions 18 

While complex IAMs have been developed that represent multiple economic sectors and geographical regions, 19 

those that rely on CES functions (GE-IAMs, nested or not) for modeling the energy system introduce mathematical 20 

artefacts that are inconsistent with long-term energy transitions. These models produce exponential increases in MAC 21 

as the transition continues and rely on what the modeler perceives as perfect substitutes to the current fossil fuel 22 

paradigm (fossil with CCS, nuclear, and biomass) ignoring historical observations and current technological trends. As 23 

such, these mathematical artefacts should be carefully scrutinized before basing policy decisions on. We suggest that 24 
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using different formulations to recognize perfect substitution for renewable energy with storage or at least introduce a 1 

dynamic elasticity function offer two plausible options. Dynamic elasticity allows for a peaking MAC at reasonable 2 

values preventing the exponential MAC growth resulting from CES. Eschewing CES and adopting concepts like the 3 

residual load-curve and multinomial logit is useful but still the electricity system focus should be expanded to include 4 

all economic energy uses. This is in line with the empirical evolution of past transitions and is in accordance with the 5 

downward sloping costs of the renewable energy supply and storage technologies. In the longer term, energy-based 6 

models should be reconciled with economics-based GE-IAM results. 7 

 8 
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