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A single death is a tragedy; a million deaths is a statistic.

Joseph Stalin
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The Human Immunodeficiency Virus (HIV) pandemic still remains a major public

health concern worldwide. The World Health Organization (WHO) estimates that

approximately over 70% of people living with HIV in the world are in sub-Saharan

region. Malawi is one of the worst affected countries in sub-Saharan Africa with

prevalence reaching up to 16% in some areas. Recent study reports, largely in

Africa, comparing outcomes for HIV patients with Kaposi’s sarcoma (HIV/KS)

and HIV patients without KS indicate poor prognosis and poor health outcomes

amongst HIV patients with KS. While efforts are being made to improve the

management and care for the HIV/KS patient group, there is also need for contin-

ued efforts to better understand the survival patterns in this patients. The work

presented in this thesis attempts to investigate the survival patterns in different

patient subgroups in HIV cohorts in Malawi by using advanced and novel statist-

ical techniques with an ultimate aim of informing targeted patient treatment and

management practices.

In this thesis, we aim to address the following four objectives; (1) to identify

risk factors for mortality among HIV patients diagnosed with Kaposi’s sarcoma

during routine initiation of ART, (2) to model the survival pattern among HIV

patients diagnosed with KS, (3) to model local geographical variations in survival

among HIV patients on ART, (4) to quantify transition dynamics in HIV and TB

co-infection using multi-state modelling.
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For the first two objectives, we considered extended Cox models and parametric

models. We also used a novel approach of accounting for high attrition in cohorts in

which we used a ’gold-standard’ data to compare survival in our cohort. Sensitivity

analyses indicated consistencies in our approach providing an insight into how

model results change when using this comparison approach. Overall We noted

an early mortality with most patients dying in the first five months after starting

HIV treatment. Patients with TB and the patients who started in the early era

of ART were significantly at risk of dying. The model diagnostics indicated that

(i) a random effects Cox/Log-Gaussian frailty model and (ii) a flexible parametric

proportional hazards model, describe the risk of mortality in the HIV/KS patients

well.

For the third objective, spatial survival models were considered. The study showed

existence of possible residual spatial variation in survival after adjusting for age,

sex, KS status, TB status and unobserved individual frailties. To further aid our

understanding, we used the choropleth maps to indicate areas with substantially

high probability of mortality risk at different cut-off values. These results highlight

the local geographical variations in survival in HIV populations, an element more

often ignored in most studies on HIV data.

For the last objective, we considered the homogeneous continuous time multistate

Markov models. In this study we found that patients in TB free status had a

relatively higher probability of transitioning to being diagnosed with TB compared

to dying while in TB free status. However, the cumulative transition hazards for

the ’TB free → death’ transitions compared to the "TB free → TB infection"

transitions were only higher during the early days of HIV treatment. This result

emphasize how early periods after starting HIV treatment is crucial to ensure

better prognosis. We also noted significant gender differences in the ’TB-free →

death’ transitions.

It is anticipated that the findings in this thesis will help to inform treatment and

management practices of HIV patients. The findings provide clear outcome path-

ways taken by HIV/TB patients before experiencing a terminal outcome. More
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importantly, the findings could help inform policies aimed at improving overall

survival in HIV cohorts by establishing targeted patient management and treat-

ment strategies and also formulating a more efficient triage system for care and

treatment of particular group of patients.
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Chapter 1

Thesis Introduction

The work in this thesis was motivated by the growing challenges and burden of the

HIV pandemic, especially in the resource-limited settings. Though HIV and AIDS

is a global disease, but recent program progress reports by The Joint United Na-

tions AIDS Program (UNAIDS) indicate disproportional burden of morbidity and

AIDS-related deaths, with the sub-Saharan Africa region being worst affected. In

the light of this, our work seeks to contribute to the overall understanding of sur-

vival and mortality in HIV patients with application to data from Zomba, Malawi.

Furthermore, we also study and quantify the impact of co-infection from other dis-

ease such as Kaposi’s sarcoma (KS) and Tuberculosis (TB) on HIV patients that

are initiated on a life-long HIV treatment (the antiretroviral therapy, ART).

Our work in this thesis is divided into three main parts; Part I - the introduct-

ory chapters (research proposal, epidemiological and statistical methods reviews),

Part II comprising of three epidemiological studies on survival and mortality in

2



HIV patients routinely enrolled in HIV treatment program in Zomba, Malawi and

Part III which comprises of a summary discussion and conclusions.

In Part I, there are three chapters, this thesis introduction and outline being

the first chapter. In Chapter 2, we describe the overall objectives, provide a

detailed description of all the datasets used in this thesis including definitions of

variables. The introductory part also comprises of detailed literature review on

the epidemiology of diseases studied in this work; HIV/AIDS, KS, and TB. In

Chapter 4, we end this first part by providing a concise introduction to the all

statistical methods used in this thesis. The focus in this review is on the methods

used in the analyses in this work and references are provided for further details on

mathematical proofs and computation procedures.

In Part II, we present three (3) separate epidemiological studies based on our HIV

data and the summary of discussions and conclusions from these three analyses.

In Chapter 5, the objective is to quantify the mortality risk among HIV patients

on ART using the patient covariates available in our the dataset. To do this,

we use standard survival methods to study mortality in a subgroup population

of ART patients, focusing on HIV patients that are also diagnosed with KS at

the time of starting the HIV treatment. In Chapter 6, we extend the non-spatial

frailty models fitted in Chapter 5 by replacing the patient-level frailties with the

spatial frailties. The aim in this chapter is to study how survival can vary geo-

graphically and to highlight the use of spatial statistics in understanding disease

epidemiology. We use spatial survival methods for point pattern data to study the

hazards of death in the general HIV cohort in our study region (regardless of KS

3



and TB). This analysis could potentially help health planners and policy-makers

in identifying areas with high risk of death as well as identifying areas requiring

extra resources to improve access to health services. Lastly in Chapter 7, the

focus is on quantifying the transition probabilities between two pairs of TB states

among patients diagnosed with TB in addition to the HIV/AIDS. The data in this

analysis are commonly categorised as multistate, and we take advantage of recent

analysis tools for analysing these data (especially those available as open-source

R-Software packages).

In Part III, we provide a general summary of discussions and conclusions of results

presented from Chapter 5 to Chapter 7. Based on our results and experience in this

work, we also suggest potential areas of further research that could be considered:

both methodological and epidemiology research.

In conclusion, through out this thesis, we have made efforts to address the items lis-

ted in the main reporting guidelines for epidemiological studies, with emphasis on

cohort studies. We solely used STROBE guidelines and our efforts are documented

in the appendix by making reference to the page numbers where a STROBE item

was addressed or reported. A STROBE checklist for each chapter is available in

the appendix.

4



Chapter 2

Research proposal and Data

description

Summary

This chapter contains the research proposal and a comprehensive review of the

literature on HIV and HIV-related diseases with emphasis on cancer and tuber-

culosis (TB). We also summarize main methods used to address each objective

although these methods are separately reviewed and discussed in detail later in

chapter 4 and subsequent chapters.
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2.1 Motivation Statement

The acquired immunodeficiency syndrome (AIDS) which is a progressive Human

Immunodeficiency Virus (HIV), is one of the main leading causes of mortality

globally (UNAIDS, 2016). Africa has the highest proportion of HIV-infected pop-

ulations with over 70% of the global HIV population living in the sub-Saharan

region. The Joint United AIDS programme estimates about 1.1 millions AIDs-

related deaths globally in 2015 alone, of which 74% were in Africa (UNAIDS,

2016).

Due to the compromised immunity, patients with HIV become vulnerable to many

opportunistic illnesses (CDC, 2016). Some of the most common opportunistic ill-

nesses in HIV patients are TB and cancer. With a rapidly growing era of provision

of a lifelong HIV treatment the highly active antiretroviral therapy (ART), recent

studies have shown that provision of this treatment has a preventive effect on op-

portunistic diseases (Velásquez et al., 2015; Johansson, Robberstad and Norheim,

2010). As such, it is recommended that all patients suffering from these opportun-

istic illnesses are tested for HIV and started on HIV treatment for the remainder

of their lives.

However, while on treatment there are many factors that may influence prognosis

in HIV patients and consequently increase their mortality risk. These factors

include patient behavioural and biological characteristics, multiple co-infections,

treatment-seeking and adherence to medication prescription, among others. For
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example, studies by Takarinda et al., (2015), Vijay et al., (2011), Chu, Mahlan-

geni et al., (2010) and Mwinjiwa et al., (2013) and Makombe, Harries and al,

(2008) highlight the disproportional co-morbidity burden and poor patient out-

comes among HIV patients with KS.

In the light of the above, there is a substantial interest in conducting research

in HIV programmes in order to constantly evaluate treatment and care practices.

The work in this thesis was motivated on this basis: to make a contribution to

scientific understanding of these opportunistic diseases in ART cohorts. Our data

focuses on the data from the sub-Saharan African country of Malawi.

2.2 Research Questions and Objectives

In this project, we aim to make use of advanced statistical analysis methodologies

to help better understand Kaposi’s sarcoma (KS) and Tuberculosis (TB) epidemi-

ology in HIV-infected patients. The main research questions to be investigated

are;

1. What are the risk factors for mortality amongst HIV/KS patients?

2. Can spatial statistical methods add to our understanding of the epidemiology

of KS among HIV patients by characterising the geographical distribution?

Do geographical determinants unexplained part of the observed variation in

risk?
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3. Which state transition paths are common in patients that are diagnosed with

TB in addition to HIV?

Specifically, we will address the following objectives in three separate chapters;

1. Understand the relationship between individual risk factors for mortality

amongst HIV/KS patients. Also, we will provide an approximate lower

bound on the proportion of patients recorded as lost to follow-up that are

really deaths.

2. Adjusting for individual-level covariate data, investigate the geographic vari-

ation in survival prognoses in the Zomba district.

3. Using multistate survival models, investigate the different infection pathways

for individuals with both TB and HIV.

2.3 Study Design

This is a retrospective cohort study. We used the HIV patient data that was

routinely captured at an ART clinic in Zomba Malawi from 2004 to 2014. We

only considered patients that started ART from 2004 to 2011 but followed them

up to end 2014. Additionally, a spatial design (point pattern) for survival outcomes

was also considered.
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2.4 Study Outcomes

In order to answer the research questions above, the models to be fitted will use

the following as response variables (outcomes);

• Survival (dead or alive) amongst HIV patients with KS.

• Time to death amongst HIV patients with KS (<5yrs, >=5yrs after HIV

treatment initiation).

2.5 Study setting and population

In 2008, our the study area Zomba district was estimated to be home to a pop-

ulation of approximately 700,000 with over 90% of people living in rural areas

(Malawi NSO, 2008). The district has one of the highest adult HIV prevalence

(around 16%) in Malawi. Since 2004, the Malawi Ministry of Health has scaled

up ART provision and decentralization of most HIV services such as HIV testing,

prevention of transmission of HIV virus from pregnant and breastfeeding mother

to a child. This has resulted into increase increased early HIV testing and uptake

of ART services (Malawi Ministry of Health, 2011).

By the end of 2011, over 18, 000 HIV positive patients were cumulatively enrolled

in HIV care in the district from 2004, of which approximately 3% are estimated to

either have already, or later develop cancer (with KS being common) (Mwinjiwa

et al., 2013; Malawi Ministry of Health, 2011). In this study, we used data from
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all adult HIV patients diagnosed with KS enrolled in HIV care between 2004 and

September 2011 under routine programme of HIV treatment provision. By the

end of 2011, the adult prevalence of tuberculosis (HIV-TB co-infection) in this

ART cohort was at around 15% (calculated from the our data). Figure 2.1 shows

the map of study district, Zomba district and its location on the map of Malawi.

Figure 2.1: The Map of Zomba district. On the bottom right corner is the
Map of Malawi, with Zomba district in yellow colour [Source: Zomba District
Socio-Economic Profile Report(2009-2002)].

2.6 Data Description and management

There are two types of datasets used in this work. The main data was sourced

from Dignitas International (an international non-government organisation) in col-

laboration with the Malawi Ministry of Health, Zomba district office.

The cohort data from Zomba Malawi was routinely collected in an HIV programme

from 2004 to 2014. This is the data of all HIV patients that were initiated on ART
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after testing positive to HIV. By end of 2011, the main cohort data comprised 18,

275 HIV positive patients (cumulatively) that were enrolled in the HIV clinic

care in Zomba from during this period. Three percent (615) of these patients

were diagnosed with Kaposi’s Sarcoma (skin tumour) during the screening process

to determine ART eligibility (Malawi Ministry of Health, 2011). The following

variable were available;

• Recruitment Date. This is the date at which HIV patients were initiated

on a lifelong ART. This variable was categorised in two periods: 2004-2007

and 2008-2011. This is because most ART scale-up activities started after

late 2007 and we wanted to compare patient outcomes before and after scale-

up of ART in the district.

• Age. This is defined as recruitment or baseline age, i.e age (in years) at

which patients started HIV ART. With the aging effect, the age of a patients

is an important factor and has been used in many studies to adjust any

confounding effect on the outcome of interest (Chu, Misinde et al., 2010;

Chu, Mahlangeni et al., 2010)

• Sex. Sex of patients as declared at recruitment time. Two sexes were recor-

ded as either male or female. Some studies have reported gender differences

in survival in patients taking ART (Takarinda et al., 2015).

• Name of village/traditional authority (TA). The name of a village

where patients were residing at the time of ART initiation. For confidential-

ity issues, geo-coordinates for special features near their residences were used
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such as home of village head person within each village, churches, market

places, schools, dams, hospitals, military and police stations. The data on

the geo-coordinates were obtained from the National Statistical Association

of Malawi and were matched to each patient’s address as indicated on their

clinic form.

• Distance. Using the village coordinates, we calculated the euclidean dis-

tance from the village point to Zomba HIV clinic. This variable is interesting

in two perspectives; the issue of accessibility to the clinic as a predictor of

survival, and spatial variation in survival outcomes.

• Occupation status. The type of occupation at ART initiation time. This

had the following categories; student, self-employed (includes farmers and

business persons), employed (teachers, health care workers, security person-

nel etc) and other (occupation not specified at baseline). We hypothesised

that different occupation status have different exposure to risk of HIV pro-

gression and we wanted to quantify this risk in our cohort.

• TB status. This information was updated at every HIV clinic visit. The

possible status categories recorded were; TB-free/ no TB, with TB and on

TB treatment, TB treatment completed but awaiting ascertainment of TB

status and also death. The patients that are categorised as "‘TB completed"’

are those patients whose the TB test results after completing TB treatment

was inconclusive. We considered all forms of TB whether pulmonary TB

(PTB), Extra pulmonary TB (EPTB), or multi-drug resistant (MDR) TB.

Data on TB diagnosis tool (whether smear or X-ray etc) was not captured

12



in data collection tools which were used in HIV clinics but this information

was available in TB clinics. The challenge was that it was impossible to link

and merge data from TB and HIV clinics as they were collected separately.

There is documented evidence on the link between TB and HIV/AIDS and

this was included in the models as a confounder (Fenner et al., 2013; Collins

et al., 2010).

• ART outcome. This information was updated at each HIV clinic at the end

of every three months. The possible outcomes recorded were; alive (active

follow-up), dead and lost to follow-up.

• Time. This was defined as time from the recruitment date to the date of

ART outcome in chapter 5 and chapter 6. This definition was changed in

chapter 7 as time to the different TB status as considered.

2.6.1 Ethics Clearance and Study Oversight

We obtained ethics clearance to use patient data from the the Faculty of Health

and Medicine Research Ethics Committee (FHMREC) at Lancaster University

and also from the National Health Sciences Research Committee (NHSRC - 1278),

Lilongwe Malawi. The data were stored in password protected folders and access

was restricted to the researcher only.

As Principal Investigator, the research student had primary responsibilities for

the study with support from three academic supervisors in the department of

13



Lancaster Medical School at Lancaster University: Dr Benjamin Taylor, Professor

Peter Diggle and Dr Thomas Keegan.
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Chapter 3

Literature review of HIV, KS and

TB Epidemiology

Summary

In this chapter, we present a comprehensive review of the epidemiology of HIV,

KS and TB. The relationship between these diseases are also explained with the

use of available literature. The review is focussed on studies and program reports

from Africa especially the sub-Saharan region because our data is from this region.
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3.1 HIV Epidemiology

The HIV and AIDS pandemic still remains a major public health problem world-

wide. Global HIV prevalence has remained at the current rate of at 0.8 % [0.7 -

0.9] for the past five years. There are large regional variations in HIV prevalence

(WHO, 2014b). Figure 3.1 shows disproportional burden of HIV with African

being worst hit by the epidemic. Other continents with high burden of HIV are

America and Europe.

Figure 3.1: Regional variations of adult HIV prevalence[Source: http://www.
who.int/gho/hiv/epidemic_status/prevalence/en/, accessed March 2014]

The World Health Organization (WHO) estimates that approximately over 70%

of people living with HIV in the world are in the sub-Saharan (SSA) region (World

Health Organisation, 2016). Within the SSA region, HIV prevalence is highest in
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females in Swaziland and Lesotho up to 37% and 31% respectively . With heavy

disease burden and limited resources, most countries in SSA region have weak

and fragile health systems. However, in the last decade the region has benefited

from the increased funding in HIV programmes targeting low and middle-income

countries, currently estimated at over $19 billion (UNAIDS, 2016). Thanks to

this huge funding, free HIV treatment ART is now provided in many developing

countries but treatment coverage is still below the 2020 treatment goals of 90-90-

90 set by the Joint United Nation AIDS Programme in 2015; 90% of HIV positive

people tested, 90% of HIV positive people started on ART, 90% of HIV patients

on HIV treatment having suppressed viral load (UNAIDS, 2014).

Malawi is one of the countries in southern Africa with high HIV prevalence. In

2008, the Malawi national adult HIV prevalence was estimated at 12% and as high

as 23% in rural areas (Malawi NSO, 2008). However, current research by the Joint

United Nation AIDS Programme estimates the prevalence in adults 15-49 years to

be at 9.1% [8.4% - 9.9%] (UNAIDS, 2015). The most common ways in which the

HIV is transmitted in Malawi is through sexual intercourse and through vertical

transmission from the mother to a child. Approximately 10% of HIV population

in the Malawi are children (Malawi Ministry of Health, 2011).

The provision of free highly active ART in Malawi dates back to 2004, when ter-

tiary government hospitals started offering free treatment the HIV positive patients

(Malawi Ministry of Health, 2008). Following the provision of HIV treatment, most

HIV related services including HIV testing and counselling, prevention of vertical
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transmission of HIV from mothers to babies (pregnant and breast feeding), tuber-

culosis prevention and treatment, were greatly expanded. The aim of expansion

and decentralisation of HIV services was to ensure that HIV infected patients had

timely access to treatment and care. A standardised treatment screening tool is

used in order to establish patients that are eligible to start ART. For example

between 2004 and 2011, HIV patients were started on ART if their CD4 count

was less than 250 cells/µL, or if they had TB or one of a list of stage 4 clinical

conditions as defined by WHO HIV clinical Staging (Malawi Ministry of Health,

2011; World Health Organisation, 2016).

HIV treatment provides protection against opportunistic illnesses and also boosts

patients’ immunity. For instance, Makombe, Harries, Yu et al., (2007) reported

improved treatment outcomes for HIV patients co-infected with TB. Johansson,

Robberstad and Norheim, (2010) reported significant differences in terms of sur-

vival between patients that started ART immediately and those that ART was

delayed, with patients that started early having an expected net benefit of 14.5

life years per patient. The national HIV programme in Malawi reports a declines

in HIV/AIDS-related deaths since the introduction of free ART in 2004. Fig-

ure 3.2 shows the gradual decline of all-cause deaths in HIV population in Malawi.

However, population level age-specific AIDS mortality rates are not available in

Malawi.

21



Figure 3.2: National death trends in patients on HIV treatment[Source:
(Malawi Minstry of Health, 2014a)]

3.2 Epidemiology of HIV-related Cancer

Cancer is one of the leading causes of death globally, with 13% of deaths attributed

to cancer and 63% of these deaths occurring in developing countries. In addition,

56% of global new cases are registered in developing nations (World Health Organ-

ization, 2011b). The World Health Organization projects that by 2030, new cases

of cancer will increase by 69% from 12.7 million in 2011 to 21.4 million in 2030.

In addition, the number of deaths will increase by 72% from 7.6 million to 13.2

million deaths. Despite these overwhelming figures, cancer diseases have received

low priority from health care services in Sub-Saharan Africa (Sitas, Parkin et al.,

2006). One of the reasons is undoubtedly the overwhelming burden of infectious

diseases such as HIV and Malaria which have received undivided attention by

governments and NGOs. The continued implementation of expanded HIV/AIDS

programs in the SSA has resulted in a considerable drop in HIV/AIDS related

deaths (World Health Organization, 2008). With decreases in HIV/AIDS related

deaths, there is a steady shift of burden in the SSA region from infectious diseases
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to non-communicable diseases such as cardiovascular disease and cancer. This de-

crease could be due to demographic transition, as there access to health and social

services is improved over time. Amongst the common cancer types in Africa are;

Kaposi’s sarcoma (KS), cervical cancer, lymphomas, oesophageal cancer, liver can-

cer, breast cancer, lung cancer, and prostate cancer, (Kendiga et al., 2013; Wabing

et al., 2000; Chokunonga et al., 1999; Sitas, Bezwoda et al., 1997). The patterns

of these cancers vary greatly in different regions within Africa. However due to

limited finances and resources, very few African governments have made efforts

to curb these diseases as the majority do not have national cancer programs and

population-based cancer data . As a result many people die or are diagnosed late

when the disease has already progressed (World Health Organization, 2011a).

At the time of this study, population-based cancer data were not available in

Malawi which could be used to ascertain national prevalence for different cancer

types. Also in a recent nationwide cross-sectional health facility-based survey by

Msyamboza et al., (2012) in Malawi, approximately 18, 946 new cancer cases were

recorded between 2007 and 2010. Of 18, 946 cases, it was found that the top five

common cancers in Malawi were KS (34%), cancer of cervix (25%), oesophagus

(12%), non-Hodgkin lymphoma (6%), and urinary bladder (3%). Approximately

half (52%) of all cancer cases identified were from southern region, 34% from cent-

ral region and 13% from northern region (regional population of 45%, 42% and

13% respectively). These reported regional statistics correspond to HIV prevalence

figures in these three regions, which are 18%, 10% and 8% in northern, central

and southern regions respectively (since majority of cancer types in Malawi are
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HIV-related) (Malawi NSO, 2008). Kaposi’s sarcoma and cervical cancer were

found to be more prevalent in HIV infected populations, consistent with the lit-

erature that indicate that with the rise of HIV/AIDS in Africa, KS has become

the most frequently reported cancer in many sub-Saharan countries (Rohner et

al., 2014). By 2010, there were a total of 84 facilities (including public, research

and non-governmental facilities) providing either cancer laboratory diagnosis, or

treatment, palliative care, or referral services. Surgery, where undertaken was com-

pleted in all referral public hospitals which are: Queen Elizabeth Central Hospital

and Zomba Central Hospital in the southern region, Kamuzu Central Hospital in

central region, and Mzuzu Central Hospital in the northern region (Msyamboza

et al., 2012). Until recently, the majority of cancer treatment in Malawi has been

palliative (chemotherapy) and poor patient outcomes for cancer have been repor-

ted in sub-Saharan Africa (Kendiga et al., 2013; Sankaranarayanan et al., 2010).

For the rest of this section, we review literature on KS epidemiology with a focus

on its occurrence in HIV populations.

Kaposi’s sarcoma (KS) is a tumour caused by Human Herpes virus 8 (KSHHV)

(Minhas and Wood, 2014). The virus is common amongst the people whose im-

mune system have been severely weakened, for example people infected with HIV.

Studies have shown that highly active antiretroviral therapy (HAART), a treat-

ment given to HIV positive patients, has preventive effects on KS and it is recom-

mended being the first line treatment for patients (David, 2014). The most com-

mon transmission modes for Kaposi’s sarcoma Human Herpes-virus (KSHHV) are

sexual contract, blood transfusion, and saliva contact (Minhas and Wood, 2014).
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The epidemiology of KSHHV varies greatly geographically with more endemic re-

gions being sub-Saharan Africa, the Mediterranean, and north-west China. How-

ever, the United States of America and Western Europe have a low prevalence

(Minhas and Wood, 2014; Sankaranarayanan et al., 2010; Wu et al., 2014). In the

regions where KSHHV is not endemic, the virus is more prevalent among men who

have sex with men (MSM). This being the case, there are no comparable studies

from this area looking at the KS in the general HIV population because MSM

is largely unrecognisable in endemic KS areas. A systematic review proposed by

Rohner et al., (2014) is one of the studies reporting the global trend of KSHHV.

Since the introduction of HAART, the incidence of KS has been declining in the

general HIV populations and fewer people with advanced conditions are start-

ing HIV treatment; this trend is also observed elsewhere in HIV populations on

HAART (Gbabe et al., 2014). The most common treatment for KS in Africa

is chemotherapy as opposed to radiotherapy which is more often available in de-

veloped countries (Dedicoat, Vaithilingum and Newton, 2003). In their systematic

review of African studies, Gbabe et al., (2014) reaffirms the role of HAART and

chemotherapy in delaying disease progression in HIV patients with KS. Figure 3.3

shows the decline in the percentages of deaths in patients who are staged in WHO

HIV clinical stage 4 in Malawi. Kaposi’s sarcoma is one of the conditions in this

stage 4. From this figure, we also note a significant declining trend of proportion

of patients starting treatment in advanced stage from about 23% in 2004 to 5% in

2014.
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Figure 3.3: Trends in all-cause mortality amongst patients starting HIV treat-
ment in advanced HIV stage (WHO Stage 4)[Source: (Malawi Minstry of Health,
2014a)]

Table 3.1 shows some of the risk factors of mortality in HIV populations with KS.

These factors are discussed in detail in studies by Chu, Misinde et al., (2010), Chu,

Mahlangeni et al., (2010) and Ziegler et al., (2003). Other factors such as sex and

occupation have not been found to be significant although the number of deaths is

disproportional in these subgroups (Makombe, Harries and al, 2008; Chu, Misinde

et al., 2010).
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Table 3.1: Examples of risk factors for mortality in HIV patients with KS.

Risk factors Description

AIDS HIV patients with KS progress to AIDS increasing

their risk of death (Chu, Mahlangeni et al., 2010)

Advanced KS stage the risk of mortality is increased with KS stage

(Chu, Misinde et al., 2010)

Poor adherence patients with irregular uptake of treatment (HAART

and chemotherapy) have increased risk of mortality

(Ngarina et al., 2013)

Low CD4 counts high mortality in patients with low CD4 counts

(Johansson, Robberstad and Norheim, 2010)

Age older patients tend to have higher mortality risk

(Belayneh, Giday and Lemma, 2015)

3.3 HIV and TB Epidemiology

Tuberculosis is common in people with impaired immunity such as HIV positive

persons, diabetic, malnourished and tobacco smokers and is one of very the in-

fectious bacterial diseases. The disease is spread through air when an infected

person coughs, speaks or sings. It is one of the most common opportunistic infec-

tions in persons living with HIV. The recent TB fact sheet by the World Health

Organisation indicates that people who are HIV positive are 20 to 30 times more
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likely to develop active TB (World Health Organization, 2016). For HIV positive

patients, being diagnosed with TB is a sign of progression to AIDS (CDC, 2016).

The World Health Organisation reports that TB is a leading killer of HIV patients,

with one in every three deaths among HIV patients was due to TB (World Health

Organization, 2016).

The global TB treatment success rates range from 30 to 83% but it is much lower

in HIV cohorts. HIV positive positive persons receiving ART have reduced risk

of developing TB as several studies have reported the protective effective of ART

on opportunistic illness, with a reduction in risk of death ranging from 70 - 90

% (Belayneh, Giday and Lemma, 2015; Vijay et al., 2011; Collins et al., 2010;

Johansson, Robberstad and Norheim, 2010).

In an effort to combat TB occurrence, several campaigns have been initiated all

aiming at eliminating the TB disease. These campaigns include adoption of uni-

versal ART provision, WHO End TB strategy which targets 35% reduction in

TB cases by 2020 and the UN zero campaigns targeting TB, AIDS, Malaria and

poverty among others. In Malawi the TB treatment success rate is estimated at

89% which is higher than the WHO target of 85%. The main reason is for this suc-

cess is due to the increase in funding the country has received from international

grants such as the Global Fund (WHO, 2014a).
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3.4 Loss to follow-up in HIV cohorts

Like in other cohort studies, loss to follow-up (LTFU) is still a challenge in HIV

studies(Freeman, Semeere and Wenger, 2016). Being lost to follow-up is defined

as failing to attend scheduled clinic visits after a defined period of time. This

definition varies by country, but in Malawi patients are deemed lost to follow-up

if they do not show up after 120 days from a scheduled clinic visit date (Malawi

Ministry of Health, 2008; Chi et al., 2011). As a result, there is a growing interest

in addressing the impact of loss to follow-up data in estimation of survival in

HIV studies. Up to now the methods proposed to address the impact of loss to

follow-up (LTFU) on survival estimates have largely depended on the proportion

of deaths based on a sample of LTFU patients.

Without a clear picture of mortality in the LTFU patients, analyses ignoring this

phenomenon may underestimate survival and mortality rates in such cohorts be-

cause the deaths in LTFU patients are not included in the analysis. In absence

of active patient tracing, different approaches have been used to improve estim-

ation of mortality in HIV cohorts. These methods include; tracing a random

sample of LTFU patients (tracing method) and meta method (Yiannoutsos, An

et al., 2008; Egger et al., 2011; Henriques et al., 2012; Kiragga et al., 2013).

These proposed methods are have been largely developed by a South African re-

search initiative on International Epidemiological Databases to Evaluate AIDS

(IeDEA) (http://www.iedea-sa.org/). For the tracing approach, a random

sample of LTFU patients is usually selected and traced to ascertain their true
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outcomes and the final data for analysis is adjusted to reflect an estimate pro-

portion of deaths among LFTU patients. For the meta method, a meta-analysis

of LTFU studies is conducted and the resulting estimates of mortality in LTFU

patients is used in a developed formula to estimate mortality (see the formula at

http://www.iedea-sa.org/index.php?id=2785, accessed; 2016-02-20)

We compiled some of the studies that have been conducted using active tracing

of patients and the reported proportions of mortality among LTFU patients in

HIV cohorts varied across studies (see Table 3.2 below). It can be noted that

studies that traced between 13 and 45 % of LTFU patients reported proportion of

deaths ranging between 20% and 60% among traced LTFU patients. On the other

hand, studies that had traced at least 50% of lost patients, reported proportion

of deaths in this group ranging between 20 - 87%. These statistics point to the

fact that in some HIV cohorts, mortality is higher than others thereby limiting the

generalization of the tracing and meta method. We will use these figure later in

Chapter 5 to inform our approach of addressing this issue of LTFU in our analysis.

In Malawi despite a decline in HIV deaths, the national LTFU rates have consist-

ently remained around 2% since the start of ART programme in 2004, as shown

in Figure 3.4 (here, the LTFU rate is labelled as "‘Default rate"’).
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Table 3.2: Proportion of deaths among LTFU HIV patients

Figure 3.4: Quarterly rates of attrition from ART cohort as composed from
those who stop taking ART, patients loss to follow-up and those who die while
on ART treatment. This includes funding for different types of TB [Source:
(Malawi Minstry of Health, 2016)]
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Chapter 4

General statistical review of survival

analysis methods

Summary

In this chapter, we provide a general review of statistical methods for analysing

time-to-event data. The main focus in this chapter is on methods for analysing

right censored time to event data in which not all individuals experience the event

of interest by the end of the study. We also review and discuss some of the

extensions of standard survival models such as; flexible parametric survival models,

competing risks model and multistate models and spatial methods for survival

data and their application to disease epidemiology. Inferential approaches are also

discussed for each model and efforts are made to link these methods to future

studies in the next three chapters.
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4.1 Introduction to survival analysis

Survival analysis techniques are used to analyse time to event data. These methods

have been extensively used in many application fields such as engineering sciences,

social science, medicine and epidemiology. For example, in medicine, survival

methods are used in clinical trials and epidemiological studies. For instance, sur-

vival analysis is used for analysing time to death, time to cancer remission and

length of stay in hospital (Kleinbaum and Klein, 2012; Diva, Banerjee and Dey,

2007).

In many studies not all individuals necessarily experience the event of interest by

the end of study. In cohort studies, individuals may also be lost to follow-up during

the course of a study. For individuals that did not experience the event of interest

by the end of study, their observed times are referred to as right censored times.

An analysis based on the complete event times only (by omitting the incomplete

times) will more often over estimate the parameters of interest (see Figure 5.2 on

page 104). Any analysis tool to be applied to such types of data ought therefore

to account the fact that complete time was not observed for some individuals.

Regression models that take into account this problem are popularly known as

survival or duration models.

In analysing survival data, interest often focusses on modelling the instantaneous

risk of experiencing the event or the estimated time before an individual experi-

ences the event of interest. As a result, the main functions used in survival models

are the hazard function and survival function. These functions are formally defined
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and discussed in detail in subsection 4.1.3 and subsection 4.1.4 below. A detailed

tutorial on survival analysis can be found in many textbooks such as Ibrahim,

Chen and Sinha, (2010), Kleinbaum and Klein, (2012), Kalbfleisch and Prentice,

(2002) and Hosmer and Lemeshow, (1999), and Cox, (1972).

4.1.1 Right Censoring

In studies in which not all individuals experience the event of interest, the invest-

igators only have knowledge about the survival time up to a certain point but

not the complete true observed time. In many cases, incomplete time is observed

when either

• the individual does not experience the event by the end the study or

• the individual is lost to follow-up or

• the individual voluntarily withdraws from the study (the reason could be on

health ground).

When the event time for an individual in the study has not been observed, then

such times are referred to as censored times. In this thesis, we consider random cen-

soring which is a common assumption in many application fields such as medicine

and epidemiology. Random censoring means that survival times are independent

of the underlying censoring mechanism (Kleinbaum and Klein, 2012). There are

three types of censoring; right-censoring, left-censoring and interval censoring.
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Observed times are said to be left-censored if the event of interest has already

occurred before date of enrolment. Interval censoring is when the event time is

known only to have happened in an interval.

However, in practice most survival data are right-censored (Kleinbaum and Klein,

2012, p. 7). Data are right-censored when an individual has not been observed to

experience an event of interest by the end of study. This means that the event of

interest in known to have happened after some time t but the exact time is not

known. Henceforth, we will assume that the data of interest are right-censored.

In most studies, the study period is determined in advance (fixed or Type I censor-

ing ), and in this case the number of events is random. In some studies, however,

the number of events is determined in advance (random or Type II censoring)

meaning the study period is random, with the study ending when the required

number events has been observed.

Table 4.1 shows the general design of data for a simple right-censored survival

analysis. As we will notice from section 4.3, this design may change depending on

the complexity of the problem under study.

Table 4.1: Data preparation for a simple right-censored survival analysis

ID# age sex times status
1 18 F 119 1 ← event
2 40 F 75 0 ← censored
3 22 M 30 1
4 38 F 19 0
5 30 M 101 1
6 20 F 80 1
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4.1.2 Density and Distribution Functions

The probability density function f(t) for a random variable T , denoting survival

time, is defined as;

f(t) = lim
∆t→0

P (t < T ≤ t+ ∆t)

∆t
(4.1)

where ∆t represents a small change in t and t ≥ 0. And the cumulative distribution

function of T is

F (T ) = P (T < t) =

∫ t

0

f(u)du (4.2)

where f(t) is given as above. The distribution F (t) gives the probability that the

survival time does not exceed some given value t (Collett, 2014, pp. 11).

4.1.3 Survival function

The survival function, denoted as S(t) is related to the distribution function of t

as follows;

S(t) = P (T > t) = 1− F (t) (4.3)

The S(t) function gives the probability of an individual surviving beyond time t

(Cox, 1972).

The survival function can be estimated by both non-parametric and paramet-

ric methods. Some parametric methods are described in detail under subsec-

tion 4.2.2. For non-parametric estimators, the two most popular methods used

are the Kaplan-Meier (K-M) and the life table estimators. The only difference
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between these two non-parametric estimators is that the life table method is a

grouped analogue of K-M method and is usually used for larger samples of data

or population-level data. Again these methods are well described in main text

books on survival analysis (Ibrahim, Chen and Sinha, 2010; Kleinbaum and Klein,

2012; Kalbfleisch and Prentice, 2002; Hosmer and Lemeshow, 1999; Cox, 1972).

However, in this thesis we concentrate on the use of Kaplan-Meier estimator of the

survival function developed by Kaplan and Meier, (1958) because it is the most

popular estimator. The K-M estimator is given by

Ŝ(t) =
k∏
j=1

nj − dj
nj

(4.4)

where nj and dj are the number of individuals at risk and the number of deaths

respectively in the time interval (tk, tk+1), with k = 1, 2, 3, . . . r events occurring

at times t1 ≤ t < t2 ≤ · · · tr. Survival curves based on the K-M estimator in

Equation 4.4 are popularly referred to as Kaplan-Meier (K-M) curves, named

after the authors. The K-M estimator has the following assumptions (Kaplan and

Meier, 1958);

• that censoring is not related to the prognosis of patients.

• the survival probability is the same for patients recruited early and late in

the study.

• that events actually occurred at the reported event times.

44



In survival studies, we are often interested in measuring the effect of covariates on

the time of occurrence of an event. In this case, the use of the K-M estimator is

limited only to inclusion of one categorical covariate or factor in the model. To

compare the K-M curves amongst different groups we can use the log-rank test.

The log-rank test can be approximated by Chi-Square statistic;

UL =
r∑
j=1

dij − eij (4.5)

where dij is the number of deaths in group i at time j, and eij = nijdj/nj is the

expected number of individuals who die at time tj in groug i (Collett, 2014).

The statistic for comparing survival between two groups is

WL = UL/
√
VL, with VL =

n1jn2jdj(nj − dj)
n2
j(nj − 1)

(4.6)

where VL is the variance and WL ∼ χ2
1.

4.1.4 Hazard Function

The hazard function denoted as h(t) is a function that measures the probability of

failure in an infinitesimally small time period (t, t+ ∆t), given that the individual

has survived up to time t (Cox, 1972). Mathematically, this is defined as

h(t) = lim
∆t→0

{
P (t < T ≤ t+ ∆t|T > t)

∆t

}
, t ≥ 0 (4.7)
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where T is as defined above. The hazard, survival and the density functions are

mutually related. The density function f(t) is just the product of the hazard

function and the survival function i.e. f(t) = h(t) × S(t). From the relationship

of f(t) and S(t) in Equation 4.3, this means that the hazard function can also be

expressed as;

h(t) = f(t)/S(t) = − ∂

∂t
logS(t) (4.8)

4.2 Models for Survival Data

In many cases especially in medical and epidemiological studies, there is interest

in adjusting for the effects of covariates on the risk under study. In order to do

this, regression models are used. These models fall under two main frameworks:

proportional hazards (PH) models and accelerated failure time (AFT) models. We

review these two modelling frameworks in the sequel. However, our review here

is limited to time-constant covariates, but extensions for handling time-varying

covariates are available in standard survival textbooks and software.

For the rest of this review we will use the following notation for simplicity. Let n

be the number of individuals and p be the number of covariates for each individual.

Also, let X be a n× p design matrix and β be a p× 1 vector of covariate effects to

be estimated from the data.
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4.2.1 Proportional Hazards Model

Proportional Hazards (PH) models are regression models in which the hazards are

modelled using the covariates and possibly random effects. The main assumption

of PH models is that the hazard ratios between individuals in two different groups

are proportional over time. In addition, they also assume that the covariates

included in the model have a multiplicative effect on the hazard ratios (Kleinbaum

and Klein, 2012). If the hazard ratio is greater than one, the exposure effect lowers

the survival rate (increases risk of an event occurring) and vice versa.

A proportional hazards model can either be semi-parametric or parametric. We

discuss these different types of models in turn under subsubsection 4.2.1.1 and in

subsubsection 4.2.1.2.

4.2.1.1 Semi-Parametric PH Models

A semi-parametric model is a model that has both parametric and non-parametric

components. An example of a semi-parametric model is the widely applied Cox

PH regression model. The Cox PH model is a semi-parametric model because the

distribution of the baseline hazard function is left unspecified. The Cox PH model

is defined as

h(t) = h0(t) exp (Xβ) (4.9)
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where h0(t) is the baseline hazard (distribution-free). The cumulative baseline

hazard function H0(t) is defined as

H0(t) =

∫ t

0

h0(u)du (4.10)

The hazard function is related to the survival function in the way that

S(t) = exp

{
−
∫ t

0

h(u)du

}
= exp {−H(t)} , (4.11)

where H(t) is called the cumulative hazard function. This relation makes easy

to generate one function from the other. For instance, if the survival function is

available, one can obtain the cumulative hazard function by taking the natural

logarithm of the survival function i.e. H(t) = − logS(t) from which h(t) follows

(Collett, 2014).

The parameters β can be estimated from the data (ti, δi, X) (time, censoring in-

dicator, covariate) for i = 1, 2, . . . , n individuals by maximizing the logarithm of

the partial likelihood(PL) function introduced by Cox, (1972) as follows;

PL(β) =
n∏
i=1

{
exp (Xβ)∑

l∈R(ti)
exp (Xlβ)

}δi

(4.12)

where δi is an indicator of whether ti is a right-censored time or not, R(ti) is the

set of individuals at risk of experiencing the event at time ti and Xi is the vector

of covariates for individual i. This likelihood assumes that there are no ties in

event times. However, if ties exist in the data, then the modified partial likelihood
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introduced by Breslow, (1975) or by Efron, (1977) can be used to estimate the

parameters in the likelihood. Breslow’s estimator is;

PL(β) =
n∏
i=1

exp (siβ){∑
l∈R(ti)

exp (Xlβ)
}di (4.13)

where si =
∑

k∈Di Xk, at distinct time i and di is the number of deaths at time t.

The Efron’s estimator is;

PL(β) =
D∏
i=1

exp(siβ)∏di
j=1

{∑
k∈R(ti)

exp (Xkβ)− j−1
di

∑
k∈Di exp (Xkβ)

} (4.14)

where Di is a set of individuals that died at time i and all other terms as defined

above.

4.2.1.2 Parametric PH Models

As noted above, a functional form for the baseline hazard h0(t) is not specified in

the Cox PH model. However, it is also possible to specify a form for h0(t). When

the form of the hazard function is specified and depends on some parameters, the

resultant models are called parametric.

Parametric modelling has some advantages over the Cox PH modelling. Among

others, parametric models have better prediction and extrapolation, better per-

formance in modelling time-dependent effects and often produce reliable and con-

sistent estimates under asymptotic results (Nardi and Schemper, 2003; Efron,
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1977). The main caveat with parametric models is that they put strong assump-

tions on the distribution of the baseline hazard function. Due to uncertainty of

misspecification of the baseline hazard distribution, many analysts opt for Cox

PH over parametric model because the distribution of baseline hazards is left un-

specified. However, the use of cubic splines in flexible parametric modelling of

log of the cumulative hazard function provide similar estimates to the Cox PH

and is increasingly being applied in medicine (see page 53 on discussion of flexible

modelling).

In this section we limit our discussion to the case when the form of the baseline

hazard function is derived either from the Exponential , Weibull, or Gompertz

distribution. We also consider:

i) Exponential PH model

The Exponential distribution is a one parameter (rate) distribution that assumes

that the rate is constant over time. So the hazard function is written as;

h0(t) = λ

where λ is the rate parameter. The resultant Exponential PH model is

h(t) = λ exp(Xβ) (4.15)

Also the survival function in this case is S(t) = exp {− exp(Xβ)λt} (see Equa-

tion 4.11), and the density function of T becomes f(t) = λ exp(Xβ) exp {− exp(Xβ)λt}.
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The likelihood function is expressed as

L(β, λ) =
n∏
i=1

{λ exp (Xβ)}δi exp {− exp(Xβ)λt} (4.16)

ii) Weibull PH model

The Weibull distribution yields a more flexible baseline hazard than the Expo-

nential in the sense that it has two parameters, a scale and shape parameter and

includes the Exponential as a special case. The shape parameter controls the shape

of the hazard function allowing it to either decrease or increase monotonically over

time. The baseline hazard function h0(t) and the Weibull PH model respectively

are ;

h0(t) = λαtα−1

h(t) = λαtα−1 exp (Xβ) (4.17)

where λ is the scale parameter and α is the shape parameter, both λ,α > 0.

If α = 1, then Equation 4.17 becomes an Exponential model (special case of

Weibull model) and λ is interpreted as a rate parameter. If α > 1, then the

hazards increase over time and if α < 1, the hazards decrease over time. The

Weibull survival function is S(t) = exp {− exp(Xβ)λtα}) and the density function

for T is f(t) = λαtα−1 exp (Xβ) exp {− exp(Xβ)λtα}). The likelihood function is

expressed as

L(β, α, λ) =
n∏
i=1

{
λαtα−1 exp (Xβ)

}δi exp {− exp(Xβ)λtα} (4.18)
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iii) Gompertz PH model

The Gompertz model is also a two-parameter model with the hazard and survival

functions defined as follows;

h0(t) = λ exp(γt)

S(t) = exp
{
−λγ−1(exp (γt)

}

where λ and γ are unknown parameters to be estimated from the data. The

Gompertz PH model is

h(t) = λ exp(γt) exp (Xβ) (4.19)

A positive value of γ means increasing hazard rates with time, a negative value

means a decreasing hazard rate and if γ is zero, then the model reduces to an

exponential model. The β are obtained by maximising the log-likelihood;

L(β, γ, λ) =
n∏
i=1

{λ exp(γt) exp(Xβ)}δi exp
{
− exp(Xβ)λγ−1 exp(γt)

}
(4.20)

iv) Flexible PH Model

This is one of the flexible parametric models proposed by Royston and Parmar,

(2002). Royston and Parmar, (2002) proposed a flexible method for estimating

the baseline hazard function h0(t). They proposed to model the log of cumulative

hazard function using a natural cubic spline constrained to be linear beyond the

maximum survival time. Cubic splines are basically piecewise polynomials passing

through a set of control points, also known as knots. The flexible PH model is
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formulated as follows;

logH(t) = s(log(t); γ) +Xβ (4.21)

where H(t) is the cumulative hazard function, s(.) is natural cubic spline with γ

as spline coefficients and s(.) is defined as

s(x; γ) = γ0 + γ1x+ γ2v1(x) + . . .+ γm+1vm(x), with

vj(x) = (x− kj)3
+ − λj(x− kmin)3

+ − (1− λj)(x− kmax)3
+

where vj(x) is the jth basis function, k1 < . . . km being the internal knots, and λj

is a jth location parameter defined as λj = (kmax − kj)/(kmax − kmin)

It is usually optimal to choose the internal knots around more dense regions to

minimise variance. As such, knots around the median or quantiles are preferred,

suffice to say that the placement of knots does not critically affect the goodness

of fit of the model (Hinchliffe and Lambert, 2013).

iv) Flexible Proportional Odds Model

Similar to Equation 4.21, the flexible parametric proportional odds model is for-

mulated as

log(S(t)−1 − 1) = s(log(t); γ) +Xβ (4.22)

where S(t) is the survival function, s(.) is natural cubic spline with γ as spline coef-

ficients, all other parameters defined as in Equation 4.21. A detailed description

of these flexible models can be found in Royston and Parmar, (2002).
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4.2.2 Accelerated Failure Time Models

The AFT models describes the direct relationship between failure time and co-

variates. While in Cox PH model the key assumption is that the hazards are

proportional, in AFT models the key assumption is the accelerated failure time.

An acceleration factor is a measure of association in AFT models just as hazards

ratio in Cox PH models. This factor describes the stretching out or contraction of

survival functions when comparing one group to another for any fixed value of the

S(t). An acceleration factor of greater than one indicate that the covariate effect

is beneficial (or stretches out survival time) and vice versa. The frequently used

distribution families in AFT modelling are; Exponential, Weibull, Log-logistic,

Log-normal and Gamma distribution(Kleinbaum and Klein, 2012). The Expo-

nential and Weibull models are special cases of parametric survival models that

satisfy both PH and AFT assumptions. The advantage of parametric PH models

over Cox PH models is that they are consistent with theoretical survival function

S(t) (Kleinbaum and Klein, 2012).

The AFT models put individuals with different covariates on different time scales.

Also, the AFT models assume that the log of failure time T, log T , is in a linear

relationship with a mean µ, the covariates (and their parameters) and an error

term W , where W takes a particular distribution. In other words, AFT models

are additive on log scale but multiplicative with respect to T.

log T = µ+Xβ + σW
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where σ is a scaling parameter. The type of model to be fitted depend on the

choice of the distribution for the errors W . As already mentioned in preced-

ing paragraphs, the available distribution for survival models in analysis software

are Exponential, Weibull, Gompertz, generalized Gamma, Log-normal and Log-

logistic.

In practice, AFT models are rarely used in application analyses, with PH models

more popular in medicine and epidemiology. However, AFT models offer a good

alternative to PH models in that they can be used when the PH assumption is

violated. The PH assumption may be violated in the instances when the treatment

under study tends to delay the onset of the event as opposed to increasing or

reducing occurrence of the event (Patel, Kay and Rowel, 2006).

In the next sections, we briefly summarize the behaviour of the hazard and survival

functions for each of these distributions.

In AFT framework and using Section 4.2.2, the parametric models have the sur-

vival function in the form of S(t) = S0 {t/ exp(Xβ)}, where S0 is the baseline sur-

vivor function defined as, S0(t) = P {exp(µ+ σW ≥ t)} (Collett, 2014, pp. 207).

4.2.2.1 Weibull Model

The AFT form of the Weibull model is parametrised in terms of survival time

(Kleinbaum and Klein, 2012, pp. 208). We have discussed that the Weibull PH
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model is

h(t) = λαtα−1 exp(Xβ) (4.23)

S(t) = exp {−λtα exp(Xβ)} (4.24)

The parameters are obtained by maximising the log-likelihood function;

L(β, α, λ) =
∏

[λαtα−1 exp(Xβ)]δi exp {− exp(Xβ)λtα} (4.25)

The limitation of the Weibull model is that it is a monotonic function of time, can

either increase or decrease.

4.2.2.2 Log-logistic Model

The survival function for the log-logistic model is

S(t) =

{
1 + exp

(
log t− µ−Xβ

σ

)}
(4.26)

where µ and σ are as defined in subsection 4.2.2 and are estimated from the data.

The model can be used in situations where the hazard is thought to increase for

a short time and decrease overtime, such as in studies on risk of death in patients

after a heart transplant. If the proportional odds assumption holds for the data,

then the Log-logistic model can also be fitted as a survival odds model; S(t)
1−S(t)

(Kleinbaum and Klein, 2012).
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4.2.2.3 Log normal Model

The log normal and log logistic models tend to be similar since the logistic and

normal distribution are similar. These models are parametrised only as AFT.

In both models, the natural logarithm follows a normal and logistic distribution

respectively. These models are usually suitable for scenarios where the hazard rates

are non monotonic, specifically increasing in the first instance and then decreasing.

The survival function for the log normal model is

S(t) = 1− Φ

{
log(t)− µ−Xβ

σ

}
(4.27)

where Φ(z) is a normal cumulative distribution function, µ and σ are estimated

from the data (Collett, 2014)

4.2.2.4 Generalized Gamma Model

Finally, we consider a generalized gamma model which is also parametrised as an

AFT model only and offers more flexibility in modelling hazard functions. The

survival function is given by

S(t) = 1− Γ(µt)θ(ρ)

where Γ(µt)θ(ρ)0 = 1
Γ(ρ)

∫ (λt)θ
µρ−1 exp(−µ)du. The flexibility of the hazard func-

tion of the generalized gamma distribution is that it has the Gamma, Weibull,

Exponential and Log normal models as special cases. If both ρ and θ are equal to
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1, then it becomes exponential model, if ρ = 1 it becomes Weibull, and reduces to

log normal if ρ→∞ (Collett, 2014).

4.3 Extensions to Standard Survival Models

The modelling techniques discussed so far can be considered as standard. How-

ever, extensions to these models are available which are aimed at modelling more

complex datasets. Here, we present and discuss frailty models, spatial models and

multistate models (which include the competing risk models).

4.3.1 Frailty Models

In survival modelling, sometimes interest lies in modelling heterogeneity at the

individual or at a group level not captured by the available covariates. To accom-

plish this, all of the survival models discussed in the preceding paragraphs can

be extended to incorporate a term that specifically measures heterogeneity, pop-

ularly referred to as a frailty term (Collett, 2014; Therneau and Grambsch, 2000;

Wienke, 2011). For example, the Equation 4.9 can be extended to incorporate a

frailty term Z to become

h(t) = Zh0(t) exp(Xβ) (4.28)

Here, Z has a known distribution form and is a surrogate for unobservable het-

erogeneity, say, amongst individual patients or clusters: Z can be thought of as a
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multiplicative random effect. Mathematically, Z is defined as Z iid∼ f(.;σ) where f

is a positive-valued probability density function of given form (e.g log-normal or

gamma). The likelihood function for the parameters conditional on Z1, Z2, . . . , Zn

is given by

L(β, σ|z) =
n∏
i=1

{zih0(t) exp(Xβ)}δi exp {−ziH0(ti) exp(Xβ)} (4.29)

where δi is the censoring indicator, β and σ are parameter estimates for covariate

effect and the heterogeneity component respectively, and H0(ti) is the cumulative

baseline hazard function. Larger values of this variance indicate greater hetero-

geneity among the sample units. The Gamma and the Log-normal distributions

are the popular choices for the distribution of Z.

For a gamma-distributed Z, its density is given as

f(z) =
1

Γ(k)
λkzk−1 exp(−λz) (4.30)

where its variance σ is indirectly calculated as V ar(z) = λ2k. The interest is in

the value of this variance

The density for a log-normal distributed Z is given by

f(z) =
1√

2πσz
exp

(
−(ln(z))2

2σ2

)
(4.31)

where σ is the variance, and again this is reported in the fitted models.
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4.3.2 Spatial Survival Modelling

Spatial survival models are another extension of the standard survival models.

These models are an extension of frailty models in which the frailties are allowed

to be spatially correlated and this correlation depends on the distance apart in

space or depends on the spatial neighbourhood effect. In these models, the assump-

tion of independence in the residuals is relaxed. In the context of epidemiology,

spatial methods have extensively been used to study disease pattern and identify-

ing the source of a particular problem (Adebayo and Fahrmeir, 2005; Henderson,

Shimakura and Gorst, 2002; Li and Ryan, 2002; Banerjee and Dey, 2005). Spatial

methods have a particular appeal in epidemiology as they can help understand

underlying environmental factors influencing disease occurrence or progression.

Fitting such models can help in planning and allocation of resources to tackle the

disease. With survival analysis being popular in epidemiology and health research,

spatial survival analysis have become popular with the growing methodological

work (including computation methods) in this area in the past two decades.

One of the main reasons to conduct a spatial survival analysis is to identify regions

in space in which the risk of experiencing the event is unusually large. Other

factors being equal, we might expect individuals closer in space to have similar

environmental exposures compared with individuals far apart.

In subsection 4.3.1, we discussed frailty models as an extension of the Cox PH

model. A similar approach is used in spatial survival models to include the spatial

frailties. These spatial frailties describe the spatial variation in survival or hazards
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of death. The general formulation of the proportional hazards spatial frailty model

denoted by re-writing Equation 4.28 as,

h(t;x) = h0(t) exp {Xβ + S(x)} , x ∈ R2 (4.32)

where βs as defined above, S(x) is the value of a continuous stationary Gaussian

process (SGP) at x in space. Values of S(x) are more correlated between points

that come close compared to those that are far away. Different choices of S(x) are

available. For example, Henderson, Shimakura and Gorst, (2002) used a slightly

different parameterisation and a gamma random field. It is also possible to have

assume models that assume discrete spatial variation:

h(t, s) = h0(t) exp {Xβ + Si} (4.33)

where Si are defined on discrete regions and possibly have a conditional autore-

gressive correlation structure.

Our focus in this thesis is on spatial proportion hazards (PH) models defined in

Equation 4.32 and these models have been discussed by Henderson, Shimakura and

Gorst, (2002), Li and Ryan, (2002), and Banerjee and Carlin, (2003). Methodology

work on other modelling frameworks is also available in the literature: Banerjee

and Carlin, (2004) on spatial proportional odds models; Zhang and Lawson, (2011)

on spatial AFT models; Banerjee, Wall and Carlin, (2003). Also, some work

has been done on spatial multistate modelling by Nathoo and Dean, (2008) and

Brezger, Kneib and Lang, (2005).
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Due to complexity of spatial survival models, the Bayesian approaches to modelling

are common than the Frequentist approach. Taylor and Rowlingson, (2014) is an

example of recent methodological work aimed at improving the computation time

of spatial PH models and the authors provide a concise review of other available

computation approaches. In Chapter 6, we employ the computation approaches

as proposed by Taylor and Rowlingson, (2014). Their methods are implemented

an R-package spatsurv.

4.3.2.1 Covariance Functions

The list of available covariance functions used for this purpose among others in-

clude; Gaussian, Spherical, Wave, Power law and the Matern family and details

about these functions can be found in textbooks such as Diggle and Ribeiro, (2007,

p. 54-56) and Banerjee, Carlin and Alan E, (2004, pp. 32-35).

However, in many applications due to its flexibility, the Matern family functions

are favoured in model selection process (Banerjee, Carlin and Alan E, 2004; Hende-

rson, Shimakura and Gorst, 2002). The Matern family has an Exponential as a

special case.

Here, we present a summary of some of popularly used correlation functions due

to Matern, (1986, p. 18) and Diggle, Tawn and Moyeed, (1998) and are given as

follows;
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1. Exponential function:

ρ(µ) = exp(−µ/φ), φ > 0 (4.34)

where µ = ‖x− x′‖ is the distance between two arbitrary points x, x′ ∈ R2,

and φ is the spatial decay parameter with dimensions of distance.

2. Powered exponential (Diggle, Tawn and Moyeed, 1998):

ρ(µ) = exp[−(µ/φ)κ], φ > 0 (4.35)

where κ (also called the order) is a shape parameter determining how smooth

the underlying S(x) is, and φ is as defined above.

3. Matern function (Matern, 1986):

ρ(µ) = [2κ−1Γ(κ)]−1(µ/φ)κKκ(µ/φ), κ, φ > 0 (4.36)

in which κ and φ are as defined above, andKκ(.) is a modified Bessel function

of order κ. The Exponential function is a special case of the Matern function,

with κ = 0.5.

The correct choice for the underlying spatial correlation function is important

because it informs extent to and manner in which the correlation decays in space

for the disease. Misspecification of this function may lead to incorrectly specifying

how spread disease is in space and the closeness of the spatial units.
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4.3.3 Competing risk and Multi-state Modelling

The methods presented so far assumed standard time-to-event data in which only

one event (all-cause death) is of interest and all other events are censored. However,

in medical research there are situations in which we may wish to model failure from

a number of possible causes. We call these causes competing risks. For example, if

our interest is to study time until death due to breast cancer, then if some women

die from stroke, this will impede the occurrence of death due to breast cancer. In

this case, we regard stroke as a competing cause of death.

It should be noted that all competing events have the same initial state (being

alive and free of breast-cancer as in our example). Sometimes, interest is in estim-

ating transitions into intermediate states/events, for instance from being diseased

to disease-free (healing/recovery) or to relapse. In this case, we can use multistate

models which are a generalization of the competing risks models. In these mod-

els, subjects are usually assumed to belong to one of a finite number of states,

including death or censored. The rest of this section is devoted to reviewing the

mathematical theory and their assumptions of the competing risk and multistate

models.

We hasten to mention to the reader that although there are extensions of multistate

models to include individual frailties and spatial frailties are available, we restrict

our review in this section to the non-spatial multistate and competing risk models.

For models with frailties, see some of the methodological work by Alvaro-Meca et

al., (2012) and Nathoo and Dean, (2008) and Brezger, Kneib and Lang, (2005).
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4.3.3.1 Competing Risk Modelling

The data set up in competing risk framework is different from the standard time-

to-event data with one cause of death. In competing risk data, in addition to

censored times (0) and cause of interest(1), other competing causes are assigned

values 2, 3 · · · instead of being censored to indicate they are also outcomes of

interest. Table 4.2 shows how data are commonly set up before analysing them.

In this example, individuals with IDs 1 and 5 had the same event 1, the individuals

3 experienced the event 2 while individuals 2 and 4 did not experience any event

by the end of the study and were censored (0).

Table 4.2: Data preparation for competing risk modelling

ID# age sex times status
1 18 F 119 1
2 40 F 75 0
3 22 M 30 2
4 38 F 19 0
5 30 M 101 1

R1 R2 Rn
. . .

Event

Figure 4.1: Competing risks Ri. The direction of arrows denotes "‘competing
to"’ the Event of interest.

The all-cause hazard rate was defined in Equation 4.7. Under the competing risk

framework, the instantaneous risks of dying from cause j (cause-specific hazard),
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for j = 1, 2, . . . . . .m is expressed as;

hj(t) = lim
∆t→0

{
P (t ≤ T ≤ t+ ∆t, C = j|T ≥ t)

∆t

}
(4.37)

with t and ∆t as defined above (Andersen, Per Kragh and Keiding, 2006; Collett,

2014, pp. 405-21).

The overall survival function is defined as the probability of an individual surviving

all types of failures to time t. This is defined as;

S(t) =
m∏
j=1

exp

{
−
∫ t

0

hj(u)du

}

=
m∏
j=1

Sj(t) (4.38)

The survival function Sj(t) = exp {−Hj(t)}, with Hj(t) as the cumulative hazard

for cause j does not have the same interpretation as S(t) in Equation 4.38 as

m > 1.

The assumption for Sj(t) is that an individual will survive one cause only. But in

practice, Sj(t) is not observable since survival is defined as surviving all causes,

not just one cause (Collett, 2014). Because of its awkward interpretation, Sj(t) is

rarely reported in the survival analyses.

Under the assumption of independent censoring, the density and partial likelihood

functions for a specific cause j follow from Equation 4.8 and Equation 4.12, and

are expressed as;

fj(t) = hj(t)S(t) (4.39)
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L =
n∏
i=1

m∏
j=1

{
exp(Xβj)∑

l∈R(ti)
exp(Xlβj)

}δij

(4.40)

In order to fit the regression models for competing risk data, separate cause-

specific models are fitted by treating all other causes as censored. For instance, a

Cox regression for the cause-specific hazard model is a modification of Equation 4.9

and is written as;

hj(t) = h0j(t) exp(Xβj) (4.41)

where the baseline hazard is now cause-specific baseline hazard and the covariate

coefficients βj are for a cause j. These models can be used to determine association

between covariates and the specific cause j.

4.3.3.2 Cumulative incidence function

The survivor function is a useful summary for the standard survival data with

no competing risks. However, in the presence of the competing risks, the cause-

specific cumulative incidence function (also called the subdistribution function)

is used as a summary tool for these types of data (Beyersmann, Allignol and

Schumacher, 2012; Collett, 2014, pp. 405-21). A cumulative incidence function is

the probability of an individual dying before time t from cause j in the presence

of all other competing risks. It is expressed as;

Fj(t) = P(T < t,C = j), for j = 1, 2 . . . . . .m (4.42)
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Following the expression of fj(t) in Equation 4.39, the cause-specific cumulative

incidence Fj(t) is just the integrated function and can be estimated as a product

of two estimates as follows;

F̂j(t) =
∑
i:ti≤t

(
δij
ni

)Ŝ(ti−1) (4.43)

where δij
ni

is the Nelson-Aalen estimator of the hazard function for the jth cause, δij

is an event indicator for cause j, ni is the number of individuals just before time

t that are alive and uncensored and Ŝ is the K-M estimate of the overall survival

function ignoring different competing causes. This is because Equation 4.43 uses

information on death times for all causes. Suffice to say that in time-to-event

data where m = 1, it is possible to obtain the cumulative incidence function from

the hazard function (pp. 247-66 Kalbfleisch and Prentice, 2002; Collett, 2014,

pp. 405-21).

4.3.3.3 Fine and Gray Model

In order to obtain an interpretable cause-specific cumulative incidence function,

Fine and Gray, (1999) proposed a modified cause-specific hazard (Equation 4.37)

to include individuals that died from a cause other than cause j (as still event-

free). The modified cause-specific is called the subdistribution function and is the

probability of failure due to cause j at a moment time. It is defined as;

λij(t) = lim
δt↓0

{
P (t ≤ T ≤ t+ δt, C = j|T ≥ t or {T ≤ tand C 6= j})

δt

}
(4.44)
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Using this hazard function, it is now possible to obtain an interpretable corres-

ponding cause-specific cumulative incidence function. This can be modelled either

using a Cox regression or parametric models. In a Cox regression, the partial

likelihood function for the jth cause is expressed as follows;

L∗ =

rj∏
h=1

{
exp(Xhβj)∑

l∈R(t(h))
whl exp(Xlβj)

}
(4.45)

in which the product is taken over rj individuals who died from cause j at ordered

times t(1), t(2), . . . . . . , t(rj), Xh is a vector of covariates for individuals who died

at time t(h), h = 1, 2, . . . . . . , tj and βj is as defined above. The risk set R(t(h))

contains individuals who have not yet died by time t(h).

The formulation of the Fine and Gray hazard model is similar to Equation 4.41 but

the main differences are in the calculation of the risk set and how the product in the

likelihood function is calculated (Collett, 2014, pp. 405-21). Also, the cumulative

incidence function can be estimated as

F̂ij(t) = 1− exp
{
−Ĥij(t)

}
(4.46)

where Ĥij(t) is an estimate of the cumulative subdistribution hazard function

estimated as

λij(t;Xi) = λ0j(t) exp(Xiβj)

Researchers are often faced with a decision to choose between the use of Cox PH

for a cause-specific hazard and a Fine & Gray model. There three main issues
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that ought to be considered. First, The estimates from cause-specific hazard func-

tion do not have an informative interpretation because they rely heavily on the

assumption that censoring is independent from competing events (Fine and Gray,

1999). Secondly, because of the issue of possible dependent censoring, the use of

cause-specific K-M estimate would be difficult to interpret as it ignores the issue of

dependent censoring among competing events, which is very difficult to verify. As

such, by assuming the overall function (see Equation (4.43), the CIF bypasses this

dilemma. Lastly, although the cause-specific hazard ratios and subdistribution

hazard ratios provide an informative summary of covariate effects, the proportion-

ality assumption cannot be satisfied at the same time for both models (Fine and

Gray, 1999).

The subdistribution function is analogous to Cox PH model. However, in subdis-

tribution function, the CIF is used as the hazard function and its interpretation

can be tricky to non-statisticians. Due to awkwardness in interpretation of the

subdistribution function, cause-specific cumulative incidence function (CIF) are

rather popular in analysis of competing risks data (Zhang and Fine, 2008).

4.3.3.4 Multistate Modelling

In the competing risk modelling framework, times of occurrence to competing

events from the initial state is the main concern. However, sometimes the times of

occurrence between non-fatal states other than initial state or death are of interest

and competing risk models cannot be used in this case. This is where multistate

models come in.
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Multistate models are used to analyse event history data collected over a period

of time and all events occurring for the individuals are recorded. Before analysing

data using the multistate models, it ought to be prepared in the right format.

The format of the data depends on whether the sequence or the order in which

the occurrence of states matter. For example, if the order of visits to the states

matters, then the data is put in a counting process format. Table 4.3 is an example

of data in the counting process format.

Table 4.3: Data preparation for Multistate modelling

ID# baseAge sex timein timeout state
1 23 F 0 200 0
1 23 F 200 247 0
1 23 F 247 283 2
2 34 M 0 121 0
3 30 M 0 197 1
3 30 M 197 233 0
4 17 F 0 75 0
4 17 F 75 177 0
4 17 F 177 190 0

Healthy (0) Sick (1)

Dead (2)

Figure 4.2: The illness-death model

For example, the individual with ID number 1 died after 283 days in state 2 and

the individual 4 remained in the initial state 0 by the end of the study.

Figure 4.2 is a popular illness-death model in multistate modelling. The individual

starts in initial state of being healthy and can move (transition) to other states
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either being sick or die. Depending on the type of the disease, it is also possible

to move back from being sick to being healthy again (recovery). But once an

individual is in ′dead′state , no further transitions are possible. States ′healthy′

and ′sick′ are called as transient states whereas state dead is called an absorbing

state.

A comprehensive review of methods for multistate models can be found in text-

books such as Collett, (2014), Klein et al., (2013) and Beyersmann, Allignol and

Schumacher, (2012), and Cox and Miller, (1965). In this overview, only Mark-

vov processes are discussed. We start by giving some definitions and introducing

notation to be used in the sequel.

A stochastic process (SP)X is a collection of random variables (rvs) {X(t) : t ∈ T }

with T being some index set 0, 1, 2, 3, . . .. Let S be the state space (the set of

possible values ) of a stochastic process of X(t), with S = {1, . . . , p}. Let πk(0) =

Prob(X(0) = k) k ∈ S be the initial distribution.

A stochastic process is a Markov process if P [X(t) = j|H−] = P [X(t) = j|X(t1) =

i1], for t > t1 > t2 > . . . and H− = {X(t1) = i1, X(t2) = i2, . . .} is the history of

the process. This means that the current state does not depend on the whole

history H− of the the process but just on the immediate previous state X(ti−1).

This assumption is often criticised as too simplistic especially in medical research

in which patient’s medical history play an important role in predicting patient’s

prognosis. Nevertheless, all the transition functions in this thesis will assume the

Markov property. Details of statistical methods for non-Markovian processes and
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hidden-Markovian processes can be found in the referenced textbooks.

The derivation of functions in multistate models is similar to the way the hazard

and the survival function are derived except that in the multistate modelling the

emphasis is on obtaining the dynamics of transitions from one state to another.

The transition probability of state j to k (j → k) is

Pjk(s, t) = Prob(X(t) = k|X(s) = j), j, k ∈ S (4.47)

The transition probabilities can be summarized in a matrix called transition prob-

ability matrix. In our example, the probability matrix at time t is

P (0, t) =


p11 p12 p13

p21 p22 p23

0 0 1


where p11 and p22 are probabilities of remaining in state 1 and 2 respectively,

p12 is the probability of moving from state 1 to state 2, p13 is the probability of

moving from state 1 to state 3, p21 is the probability of moving from state 2 back

to state 1, p23 is the probability of moving from state 2 to state 3. State 3 is an

absorbing state so transitions out of this state are not possible, therefore there is

100% chance (p33 = 1) of remaining in this state at any time t. Also note that the

sum of each row must equal to 1 (law of total probability).

The transition intensity is the transition rate describing the rate at which a Markov

chain moves between states i.e. from state j to state k, and is mathematically
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defined as

qjk(t) = lim
δt→0

{
Pjk(t, t+ δt)

δt

}
(4.48)

The transition intensity kernel (matrix) for the multistate models contains non-

zero elements for all possible transitions, and zero otherwise. As in the transition

probability matrix, the transitions are read from left to right. For example, in

illness-death example with three states, the transition matrix is

Q =


q11 q12 q13

q21 q22 q23

0 0 0


where q11 and q22 is intensities of remaining in healthy state and in sickness state

respectively, q12 is the transition health → sick, q13 is the transition health →

death state, q21 is the recovery process sick → health, q23 is the transition sick

→ death. The last row of Q has all entries zeros because transitions out of this

state are not possible once an individual has entered the death state (absorbing

state). The row sum of the entries in the matrix Q are zero and the diagonal

entries are defined as the negative sum of off-diagonal entries in the same row, i.e.

q11 = −(q12 + q13) and q22 = −(q21 + q23).

The likelihood is formulated as follows. Let T ijk be the ith individual’s time of

transition from state j to state k and let Njk(t) =
∑n

i N
i
jk(t) be counting process

of the occurrences of the transition of interest among all the individuals. Also,

let Yj(t) =
∑n

i Y
i
jk(t) be the number of individuals at risk in state j at time t−,

j, k ∈ S. Then the likelihood function is (pp. 181-82 Hougaard, 2000; Aalen,
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Borgan and Gjessing, 2008, p. 210)

L =
n∏
i

∏
j 6=k

N i
jk(τi)∏
h=1

qijk(T
ih
jk ) exp

(
−
∫ τi

0

qijk(t)Y
i
j (t)dt

)
(4.49)

where covariates information is contained in qijk(.) and qijk(.) may well depend on

whole history Hi
t of the process.

Table 4.4 provide a summary of other common functions of interest in multistate

modelling.

Table 4.4: Common expressions in Multistate modelling

Name Expression

State Probability πj(t) = Prob(X(t) = k)
=
∑

j∈S πj(0)Pjk(0, t), j, k ∈ S

Total number of observed Njk(t) =
∑n

i N
i
jk(t), j 6= k

direct j → k transitions where N i
jk(t) = #direct transitions

in interval [0,t] j → k in [0,t] for i

Total length of length Lk =
∫ t2
t1
Pjk(t)dt

in state k

4.4 Model Diagnostics and Selection

In this section we provide a summary review of general methods for assessing fit-

ness of the survival model to the data at hand. For proportional hazard models,

we discuss how the assumption of proportionality is assessed. Several other model

diagnostics methods including graphical diagnostic plots based on deviance and

martingale residuals and a statistical test using Schoenfeld residuals are well doc-

umented in survival textbooks such as Collett, (2014), Therneau and Grambsch,
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(2000) and Hosmer and Lemeshow, (1999), and Kleinbaum and Klein, (2012). We

also look at available methods for comparing and choosing a best model from a

set of competitive models.

4.4.1 Testing the PH Assumption

It is important to check the proportionality assumption in PH models. The as-

sumption is checked for every variable included in the model. To check this as-

sumption, usually graphical plots and Schoenfeld residual test are used.

The model-based graphical plots used for this purpose are; plots of complementary

log-log survival curves against survival time, and plot of the observed K-M estim-

ates Ŝ(t) and the expected survival estimates S(t; θ̂) with a covariate included.

The scaled Schoenfeld residuals are calculated for each covariate in the model. This

is different from other types of residuals which are just a single value (Therneau

and Grambsch, 2000). The assumptions for this test is that Schoenfeld residuals

for each covariate are independent of each other. The test assesses if the residuals

are correlated to some function of time g(t). Different forms of g(t) are available

such as K-M estimator, ranks and log(t) (Therneau and Grambsch, 2000, pp. 127-

152).

The Schoenfeld residuals are defined as;

r∗i = r var(β̂) rji (4.50)
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where r is number of events, var(β̂) is the variance-covariance matrix of the

parameter estimates in the fitted Cox PH model, and rji = δi {xji − aji}, and

âji =
∑
l xjl exp(β

′
xl)∑

l exp(β′xl)
, xji is the value for jth covariate for ith individual in the study,

and l is number of individual at risk at time ti.

If the PH assumption is violated by a model (or indeed for a particular covariate

in the model), then some of the options available are to consider fitting a stratified

Cox PH model or a parametric model.

4.4.2 Residual Analysis

As mentioned in preceding paragraphs, the parametric models assigns a distribu-

tion for the survival function (and consequently the hazard function). In analyzing

whether this assumed distribution best describes the data at hand, we opt to use

two residuals; the modified Cox-Snell and Deviance residuals. Firstly, we define

the general Cox-Snell residuals (Collett, 2014) as;

ri = − log[Ŝ(ti)] (4.51)

where Ŝ(ti) is the survivor function of the ith individual at time ti , i=1,.....,n

individuals. The modified Cox-Snell residuals

rcsi =


ri if T ≤ C

ri + 0.693 if T > C
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where T is the survival time, C is the censoring time, i ranges from 1 to n indi-

viduals.

The modified Cox-Snell residuals (rcs) have a property that if the model fits the

data well, then these residuals follow the standard exponential distribution with

mean one (Collett, 2014, p. 233). However, for T > C, the median(rather than the

mean) is chosen for the unit exponential survival function for the excess survival

time: t(50) = log 2 = 0.693 (Collett, 2014, p. 233) as defined in equation for rcsi

above. The plot of rcsi against the cumulative hazard of the residuals should

closely follow the x = y line if the model fits the data well.

Secondly, Deviance residuals are defined as;

Di = sign[Mi]
{
−2[Mi + δi ln(δi −Mi)]

1/2
}

(4.52)

whereMi = δi−ri are Martingale residuals, δi ∈ (0, 1) and ri = Ĥ0(ti) exp(
∑
Xβ),

i = 1, ......, n and Ĥ0 is a Breslow estimator of the baseline hazard. Using both

residuals, if the assumed distribution fits the data well, then the plot should show

a linear trend with intercept zero (i.e a line of y=x).

4.4.3 Model Selection

The estimation of parameters in survival analysis is accomplished by maximizing

either the partial likelihood, the profile likelihood, marginal likelihood or the full

likelihood functions or through Bayesian estimation. The proportional hazards
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model developed by Cox, (1972) and its variants described earlier on make use

of the partial likelihood function. The process of selecting a parsimonious model

makes use of these likelihood quantities.

There are several ways of choosing the best fit model. Informally, the likelihood

values can be compared and the best model is chosen as the one that maximizes

the likelihood. Semi-parametric and parametric models can not be compared to

each other using the likelihood statistic because these two models use different

forms of likelihood functions in estimating the model parameters. However, the

more formal ways of comparing models are through the use of (i) likelihood ra-

tio test (LRT) for nested models, (ii) Alkaike Information Criterion (AIC), (iii)

Bayesian Information Criterion (BIC), and (iv) Deviance Information Criterion

(DIC). The goal of these measures is to find the parsimonious model from a set

of possible models by penalizing any additional parameters added to the model.

These methods are described in many standard survival texts such as Hosmer and

Lemeshow, (1999) and Ando, (2010) and in a recent review by Gelman, Hwang

and Vehtari, (2014). Here, we only present their definition and we will mainly use

LRT, AIC and DIC (for Bayesian models) for model selection because they are

widely.

The LRT is a measure of how the log-likelihood values for two models being com-

pared deviate from each other. It is calculated as;

LRT = −2(logLS − logLC) (4.53)
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where logLS is the log-likelihood value of the simpler model and logLC is the log-

likelihood value for the complex model(model with additional parameters). The

LRT can also be thought as a difference of deviances from two models (deviance

= −2(logL). In our study we will use partial log-likelihood instead of full likelihood

because models to compared are semi-parametric. The test of difference between

the simper model and complex model is approximated by assuming that the LRT

is a Chi-Square statistic;

LRT ∼ χ2
dfC−dfS

where dfC and dfS is the number of degrees of freedom from the complex and the

simpler model respectively.

The AIC values are calculated as follows ;

AIC = −2 log(L) + 2(p) (4.54)

where L is the likelihood and p is the number of parameters estimated in the

model. The best model for the data tend to minimize the AIC value (Gelman,

Hwang and Vehtari, 2014).

The BIC is similar to AIC only that BIC more heavily penalizes additional para-

meters in the model by log(n), n is the sample size of the data. Its formula is

BIC = −2 log(L) + p log(n) (4.55)
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where n is the number of uncensored observations (events). The model with a

lower BIC values is the one that is chosen a best fit model.

Both AIC and BIC have an advantage that they can be easy computed and are

widely understood in the conventional literature. However, the disadvantage for

these criteria is that they work better in linear models and survival data with large

sample sizes but not for censored data with small sample size (Hurvich and Tsai,

1986). To address this problem in censored data, some methodological work has

been done including the work of Hurvich and Tsai, (1986), Faraggi and Simon,

(1998) and Volinsky and Raftery, (2000) and Liang and Zou, (2008).

The DIC value from which a generalization of hierarchical modelling of the AIC

is calculated as (Gelman, Carlin et al., 2010, p. 182);

DIC = D(θ̄) + 2pD (4.56)

where D(θ̂) = −2 log(p(y|θ̂))+C is the deviance, (C is a constant that cancels out

when comparing the models), pD = D̄−D(θ̄) is the effective number of parameters,

θ̄ = E[θ] is the posterior mean and D̄ = E[D(θ)] is the posterior mean deviance.

Again, like AIC and BIC, the model with the lowest DIC value is selected among

a set competitive models.

A relatively new widely applicable information criterion (WAIC) was proposed by

Watanabe, (2010). The WAIC is defined as;

WAIC = −2(lppd + pWAIC) (4.57)
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where lppd =
∑n

i=1 E log ppost(ȳi) is the expected point-wise predictive density and

pWAIC is the effective number of parameters calculated same as pD.
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Part II

Modelling survival in HIV cohorts
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Chapter 5

Quantifying mortality risk and

survival in HIV patients diagnosed

with KS during treatment initiation

Summary

In this analysis, we look at estimating survival in our HIV cohort. The main focus

is on a subgroup of patients who are clinically diagnosed with Kaposi’s sarcoma

(HIV/KS) at the time of starting a lifelong HIV treatment (ART). With com-

promised immunity, this group of HIV patients is reported to have poor diagnosis

compared to the general HIV population. However, within-group differences in

prognosis are rarely reported for this ART group. Our aim is to understand more

about the survival in this group and how it differs with patient covariates. To do
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this, we consider both semi-parametric and parametric models. We conclude with

assessing how the problem of loss to follow-up (LTFU) could affect the estimation

of survival by conducting the sensitivity analysis on the approximate bound for the

proportion of deaths among LTFU patients. Using this approximate bound, our

model diagnostics and selection indicate that (i) a random effects Cox Model with

Log-Gaussian frailties and (ii) a flexible parametric proportional hazards model,

describe the risk of mortality in the HIV/KS patients well. This subgroup ana-

lysis can be used to inform targeted patient management treatment strategies,

rather than the ’blanket-method’ of treating all patients in the same way, and

thus can provide the basis for formulating a more efficient triage system for care

and treatment of patients.
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5.1 Introduction

Malawi, like many other sub-Saharan countries, is one of the developing nations

with a poorly resourced public health system. The country is characterized by high

infant mortality and high mortality in 15-49 age group (Malawi NSO, 2008). It also

has a heavy disease burden ranging from Human Immunodeficiency Virus (HIV),

malaria, tuberculosis (TB) and an increasing trend of non-communicable disease

cases such as cancer, cardiovascular diseases, respiratory disease and diabetes.

(World Health Organization, 2008). A 2014 Country Report by the World Health

Organization estimates that there are up to 55,000 new HIV infections per year

in Malawi, with high national HIV prevalence among women (13%) than men

(8%). Non-communicable disease co-morbidities such as cancer are common in

HIV population, particularly Kaposi’s sarcoma, breast cancer and cervical cancer

(Gbabe et al., 2014; Msyamboza et al., 2012; Makombe, Harries and al, 2008).

In 2004, in the face of a growing HIV epidemic, the Malawi Ministry of Health

with the help of development partners, introduced free HIV treatment and care ser-

vices to all individuals diagnosed with the HIV virus (Malawi Ministry of Health,

2003). Consequently, HIV care and treatment services were expanded to include

HIV testing and counselling services, services aimed at prevention of HIV trans-

mission from mother to child during pregnancy and breastfeeding, provision of

tuberculosis (TB) and antiretroviral therapy (ART) treatment. The purpose of

HIV treatment is to help boost the immunity system of HIV-positive patients, and

92



if taken correctly, it can prolong one’s time to death due to Acquired Immunodefi-

ciency Syndrome (AIDS). This has resulted in a significant decrease in the number

of deaths in general HIV population (Malawi Minstry of Health, 2014b).

In Malawi, previous studies by Mwinjiwa et al., (2013), Msyamboza et al., (2012)

and Makombe, Harries and al, (2008) have reported on the incidence of Kaposi’s

sarcoma (KS) and on the differences in treatment outcomes among patients with

KS. However, studies highlighting the survival prognosis from sub-group analysis

of HIV patients such as patients with both HIV and KS (HIV/KS) are lacking. In

this chapter, we attempt to fill this gap by studying the within-group differences

in survival of HIV/KS patients in Zomba, Malawi. We argue that such analyses

are necessary to help clinicians and public health specialist in their efforts to triage

patients based on their prognosis. The Zomba district has one of the highest HIV

prevalences in Malawi, estimated at 16% in 2010 (Malawi NSO, 2008). As of

2008, the life expectancy in the district was higher in women (51 years) compared

to males (47 years). This life expectancy is lower than what was reported in

Europe and Asia around same period of time (Adetunji and Bos, 2006). High

HIV mortality and high disease morbidity are the main factors for such low life

expectancy in SSA region.

Also, we address the issue of loss to follow-up (LTFU). Recently, there has been a

growing interest in addressing the impact of loss to follow-up data in the estimation

of survival in HIV cohorts (Freeman, Semeere, Wenger et al., 2015; Kiragga et al.,

2013; Henriques et al., 2012). The methods proposed to address the impact of

LTFU on survival estimates have largely depended on the number of deaths in
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a sample of LTFU patients (Yiannoutsos, Johnson et al., 2012; Yiannoutsos, An

et al., 2008). Others have proposed treating LTFU as a competing event to the

occurrence of death (Graham et al., 2013). In the current analysis, we consider the

use of a sensitivity analysis by comparing the overall survival to cohort data that is

treated as an approximate upper bound of the survival curve. With this approach,

it is also possible to get an approximate lower bound for the proportion of LTFU

patients that are actually deaths. We apply this novel approach by retrospectively

analysing routinely collected HIV data. In the presence of high loss to follow-up,

our aim is to improve the estimation of survival in KS patients and further improve

our understanding of KS epidemiology in HIV population.

5.2 Objectives

In this chapter, we address the first two objectives of this thesis work as listed in

section 2.2. The two objectives are;

1. Understand the relationship between individual risk factors for mortality

amongst HIV/KS patients.

2. Provide an approximate lower bound on the proportion of patients recorded

as lost to follow-up that are really deaths.
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5.3 Data Description

We consider cohort data from HIV patients that were additionally diagnosed with

Kaposi’s sarcoma at the time of treatment initiation. The data are taken from

an HIV clinic at Zomba Central Hospital (ZCH), in the eastern region of Malawi.

The main outcome was all-cause death. However, we also fitted models with being

lost to follow-up as a competing outcome to the occurrence of death.

During the study period (2004 -2011), all persons in the district who tested HIV

positive at HIV testing centres were referred for an ART initiation eligibility assess-

ment either to the HIV clinic at Zomba Central Hospital or referred to other peri-

pheral HIV clinics. The ART eligibility assessment was based the World Health

Organisation (WHO) HIV clinical staging and using CD4 count measurements

(Malawi Ministry of Health, 2003). HIV positive persons were started on ART

immediately if they were categorized to be in WHO stage 4 or they were in Stage

3 with TB episodes. Also, if CD4 count was used as an assessment criterion,

then patients were started on ART if their CD4 count was less than 250 cells/µL

(Malawi Ministry of Health, 2003). The CD4 threshold changed over time: from

2004-2006: 200; 2006-2011: 250; 2011-2014: 350; from 2014 onwards: 500. Over-

all, the majority of patients in this cohort were started on ART largely based on

WHO clinical staging criteria. The reason for this is being that the laboratory dia-

gnostic services were not generally available during this period (Malawi Ministry

of Health, 2003).
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HIV CLINIC-TREATMENT SCREENING

HIV/KS CLINIC HIV CLINIC

A:

Diagnosed

With KS

(HIV/KS)

B:

No KS

(HIV)

Developed KS after starting ART

ART refills

Figure 5.1: Treatment initiation and follow up for HIV and HIV/KS patients
at Zomba HIV Clinic. The starting point is after patients are deemed eligible
for treatment.

In addition to their HIV treatment, HIV patients diagnosed with Kaposi’s sar-

coma (HIV/KS) were also given chemotherapy to treat KS unless the extent,

location, and symptomatology were not severe. Figure 5.1 is a flowchart showing

how patients were enrolled at HIV and HIV/KS clinic for follow-up and clinical

management.

The data comprise approximately 14, 884 adult HIV-positive patients that were

enrolled in HIV clinic care in Zomba from 2004 to 2011. Three percent (615)

of these adult HIV patients were diagnosed with Kaposi’s Sarcoma (skin tumour)

during ART eligibility screening stage (Malawi Ministry of Health, 2011). Baseline

and follow-up demographic and clinical information including the following were

collected using a standardized national ART clinic form; age, sex, address (village

name and traditional authority), treatment start date, occupation, TB history,

KS status, outcome, outcome date. We also obtained geo-coordinates data from

Malawi National Statistical Office and matched the coordinates to the patients’
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address by matching the names of the locations in both data sets. We calculated

the Euclidean distance (the straight-line distance) from each patients’ village or

reported residency location to the HIV clinic at ZCH. The locations of patients

were represented at the village level.

||(x, y)− (ai, bi)|| =
√

(x− ai)2 + (y − bi)2 (5.1)

where ||.|| denotes distance, (x, y) are the coordinates of the clinic and (ai, bi)

are coordinates associated with patient i, with i from 1 to n individuals. Geo-

coordinates for special features in a village were used. These features included

church, market place, school, dam, hospital, military, and police.

The issue of accessibility to the HIV clinic makes the Euclidean distance interesting

as a predictor of survival. However, the disadvantage is that this is measured as a

straight-line distance which in many cases is not reflective of how patients travel

to the clinic, hence underestimating the travel distance by patients. Distance was

categorised into two groups: ≤ 8 km and >8 km, with the category based on

radius of the catchment area for the clinic (based on the unpublished interviews

with the clinicians in Zomba).

Table 5.1 is a summary of definitions for all the covariates considered in the study.

In order to come up with a lower bound of proportion of deaths in LTFU as

proposed in Section 5.6, a reference dataset with complete outcome data was

needed. Unfortunately, such complete datasets are rare in Africa as the issue

of LTFU is a one of major challenges in cohort studies, mainly due to lack of
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Table 5.1: List of Covariates as defined in section 2.6

Variable Categories

Age (yrs) Continuous
Sex 1= Male, 2= Female
ART period 1= 2004-2007, 2= 2008-2011
TB status 1= TB(current/past), 0= No TB
Occupation 1= Employed (includes teachers & health care workers),

2= Self-employed(includes business persons & farmers),
3= Student, 4= Other(occupation not specified)

Distance (Km) 1= ≤8 Km, 2= >8 Km
KS status 1= With KS, 0= NO KS
Outcome 1= dead, 2= active follow-up, 3= lost to follow up
Times Continuous

national vital registration systems. As such, we obtained permission to extract

KS data from the SEER database of the National Cancer Institute, United States,

was obtained from http://seer.cancer.gov/. These data date back from 1973

to 2010. We restricted the period and age to time between 2004 and 2010 and

maximum age of 68 years respectively in order to match the age range of the

Malawi data. The following variables were selected;

• Age at diagnosis. It is recorded as AGE_DX in the database.

• Status. In the database, it is STAT_REC and the categories were 1 for "Alive"

and 4 for "Dead".

• Time. This is the time of follow-up in months and is recorded as SRV_TIME_MON

in the SEER database.

The total number of patients included in the SEER data were 2,019 and the ages

ranged from 19 to 68. The median follow-up time was 28 months and maximum

follow-up time was curtailed at 80 months in order to match with our data.
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5.3.1 Inclusion and Exclusion Criteria

We included data for all adult HIV/KS patients and data for non-KS HIV patients

for comparison. We excluded patients aged below 14 years because KS in children

is not a big problem and its diagnosis is not well developed as in adults (Bruin

and Stefan, 2013). We also excluded patients referred from neighbouring districts

because our study is limited to Zomba district. In addition, patients with missing

date of initiation or sex were excluded. Consequently, we excluded 9% (n=56) and

leaving 559 HIV/KS patients in the final analysis.

5.4 Survival Modelling

This section contains details of the analysis methods and models fitted the right-

censored data used in this analysis. We first present the semi-parametric models;

the standard Cox PH model and the two Cox frailty models. The last subsection

describes the AFT models considered in this analysis.

5.4.1 Semi-parametric Models

We started by conducting a descriptive analysis of covariates included in the ana-

lysis. We also plotted K-M curves based on Equation 4.4 and used the log-rank

test (see Equation 4.5) to compare survival amongst different groups of patients.

In order to assess risk factors of mortality, we fitted different proportional hazards

regression models with the aim of choosing the best-fit model.
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The following are the variants of the semi-parametric proportional hazards (PH)

models used in this analysis (see Equation 4.9 and Equation 4.28 for definitions);

• Standard Cox PH as in Equation 4.9

• Cox/Gamma frailty model, where Z in Equation 4.28 has a gamma distri-

bution (see Equation 4.30)

• Cox/Log-Gaussian frailty model, where Z takes a log-Gaussian distribution

(see Equation 4.31)

We compared results from these three semi-parametric PH models and the best-

fit model was selected based on the model with the minimum value of the partial

likelihood value (PLik) since these models do not use a full likelihood function.

5.4.2 Parametric models

In addition, we fitted and compared results of six parametric models; four acceler-

ated failure time (AFT) models and a flexible proportion hazards model (FPH) and

a flexible proportion odds model (FPO). The two latter models were based on Roy-

ston & Parmar spline model (Royston and Parmar, 2002). The AFT models take

the form as defined in subsection 4.2.2 and we considered: Weibull, Log-Normal

(LogN), Log-logistic (LogLog) and the Gamma models. The flexible models for-

mulated as defined in Equation 4.21 and Equation 4.22. The best fit model from

a set of parametric models fitted was selected using Alkaike Information Criteria
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(AIC) as defined in chapter 4 in Equation 4.54. The best model for the data

minimizes the AIC value.

All the analyses were conducted in R-Software using the survival and flexsurv

packages. We reported the corresponding 95% confidence intervals (95% CI) for

each estimated β̂.

5.5 Descriptive Analysis

In this section, we provide a detailed descriptive analysis of the data by presenting

the overall survival among patients and a detailed description of each covariate to

be included in the survival modelling.

5.5.1 Overall Survival

A total of 105 all-cause deaths were recorded among 559 HIV/KS patients rep-

resenting a seven-year death rate of 19% (Table 5.2). The death rate among HIV

patients without KS at baseline was 7.8%. The majority of all patients were aged

between 30 and 45 years and 48% of all recorded deaths were also seen in this

age group. For all patients, the age ranged from 15 to 68 years, with on average

male patients being older than females (Male: 36.3, Female: 32.7, not shown in

Table 5.2).
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Table 5.2: Baseline demographic, clinical characteristics and outcomes of HIV/KS patients.

Covariate Total Patients Patients alive LTFU Patients No. of Deaths Median Event time†

n(%total) n(%total) n(%total) n(%total) (25%,75% quantiles)

Total 559 (100) 231(41.3a) 223(39.9b) 105(18.8c) 5.1(2.0, 11.8)
Age (yrs) 34*(28, 42)
15-29 178(31.8) 63(27.3) 81(36.3) 34(32.4) 3.8(1.8, 10.05)
30-44 303(54.2) 137(59.3) 116(52.0) 50(47.6) 5.9(2.4, 10.8)
45+ 78(14.0) 31(13.4) 26(11.7) 21(20.0) 6.4(1.9, 15.4)
Sex
Female 252(45.1) 111(48.1) 92(41.3) 49(46.7) 4.9(1.7, 12.9)
Male 307(54.9) 120(51.9) 131(58.7) 56(53.3) 5.8(2.3, 10.6)
ART Period
2004-2007 259(46.3) 80(34.6) 110(49.3) 69(65.7) 6.2(2.3, 14.8)
2008-2011 300(53.7) 151(65.4) 113(50.7) 36(34.3) 4.2(1.9, 6.8)
Distance 7.4*(3.7, 14.6)
≤8 kms 288(51.5) 125(54.1) 114(51.1) 49(46.7) 5.5(2.9, 10.3)
>8 kms 271(48.5) 106(45.9) 109(48.9) 56(53.3) 5.0(1.9, 13.3)
TB Status
No TB 528(94.5) 219(94.8) 213(95.5) 96(91.4) 5.3(1.9, 12.9)
With TB 31(5.5) 12(5.2) 10(4.5) 9(8.6) 4.4(1.9, 6.7)
Occupation
Student 10 (1.8) 5(2.2) 3(1.3) 2(1.9) 9.4(6.6, 12.3)
Employed 38 (6.8) 12(5.2) 17(7.6) 9(8.6) 5.1(3.9, 7.2)
Self-Employed 371(66.4) 157(68.0) 149(66.8) 65(61.9)
Other 140(25.0) 57(24.7) 54(24.2) 29(27.6) 4.4(1.9, 10.9)
*median age and distance, †Time in months
a, b, c these are row percentages
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Half of the 105 deaths occurred within five months after starting ART. Younger

patients (age < 30 years) had shorter crude median time to death (3.8 months)

compared to other age groups. A total of 223 (39.9%) patients were categorised

as a loss to follow-up (Table 5.2). A larger proportion of these LTFU patients was

recorded among patients who were either middle-aged (30-44), had no TB or were

self-employed.

In Table 5.2, we also note that nearly half of the patients (46%) in our cohort

entered into treatment programme between 2004 and 2007. The percentage of

deaths was higher in patients who started treatment in the earlier period – 65%

of deaths were in those entering treatment 2004-2007. Contrastingly, the crude

median time to death was greater (but not significantly so) among patients who

entered into treatment 2004-2007.

We also compared two different empirical cumulative distributions (ECDF) and

survival functions (see Equation 4.1) between the HIV/KS patients and the 14,325

non-KS HIV patients. At a glance, it can be seen in Figure 5.2 (a) that HIV/KS

tend to have a lower ECDF than HIV patients when we consider event times only.

However, if we include the censored times, the difference is no longer obvious as

shown in Figure 5.2 (b), although arguably HIV/KS still have relatively lower

ECDF. However, these graphs highlight how the use of the ECDF may not be

the proper distribution to explain the differences in survival because it does not

account for censoring. In section 5.4, we have outlined appropriate analysis meth-

ods that handle the influence of censored times including the use of survival and

hazard functions.
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Figure 5.2: Comparison of empirical distribution for HIV/KS (blue) and non-
KS patients (black). Plot (a) is a plot for event times only while plot (b) includes
both event times and censored times.

Using the K-M estimator given in Equation 4.4, we compared the estimated the

crude K-M survival curves between HIV and HIV/KS patients. The survival

curves are presented in Figure 5.3. Among the non-KS patients, the survival is

higher compared to HIV/KS patients. There seems to be a rapid deterioration of

prognosis amongst HIV/KS patients compared with non-KS patients. However,

the overall survival probability in both groups remained high, approximately above

70% although the uncertainty (95% CI) in the survival increased with increasing

follow-up time.
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Figure 5.3: Survival curves (95% CI - dotted lines) based on K-M estimates.
Higher survival can be noticed in HIV group than in HIV/KS patients.

5.5.2 Prevalence of KS at ART initiation

Overall, the percentage of patients starting ART with KS decreased over time

as shown in Figure 5.4. The highest prevalence was recorded in 2005 when 70

(11% out of 615) patients had KS at the time of starting ART. It can be noted

that thereafter the annual prevalence fell steadily to about 2% by 2011. This

decline could be due to the expansion of HIV treatment services in the district

since Kaposi’s sarcoma is associated with advanced disease progression in HIV

populations.
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Figure 5.4: Prevalence of Kaposi’s sarcoma during initiation of a lifelong HIV
treatment (ART) over a 7 –year period. The dotted lines are the 95% CI, with
the significant decrease in prevalence diminishing by year 2008.

5.5.3 Age

The ages for the HIV/KS patients ranged from 15 to 68 years, with a median

age of approximately 35 years. Amongst the 105 deaths, half of the patients

were aged 34 years or below. The plot in Figure 5.5 highlights the fact that the

difference in median age between patients that died and patients with censored

times is coincidental as the confidence intervals for mean age overlap for these two

outcomes. Table 5.2 shows that three-quarters (75%) of patients that died were

aged below 45 years. This is the same age group 15-49 that is considered to be

sexually active and the majority of patients in HIV care are from this age group,

as shown in the density plot on the left panel of Figure 5.6. Age is an important
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Figure 5.5: Mean age (with 95% confidence interval) of patients that experi-
enced the event (labelled 1 on x-axis) and those with censored times (labelled 0
on x-axis). Note the overlapping confidence intervals.

factor in predicting survival because of the ageing effects, that is, the older one

becomes, the more frail they become.

5.5.4 Sex

There was a total of 252 females and 308 male HIV/KS patients. Among the 252

(45%) females, 49 (19% of all females) died and their crude median event time was

4.9 months with 25% and 75% quantile range of approximately 2 and 13 months

respectively Table 5.2. On the other hand, males tended to have longer crude

median event time compared to females (5.8 vs 4.9). In addition, 60(20%) of 308
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Figure 5.6: The plot on the left shows age distribution of HIV/KS patients and
the plot on the right is a comparison of mean age of male and female HIV/KS
patients. On averege, male patient seems to be older than females.

males died and half of them died within 5.8 months after starting HIV treatment.

On average, male patients were older than females, as shown in the right panel of

Figure 5.6 and the left panel of Figure 5.7.

To compare the number of observed and expected deaths in males and females,

we used the log-rank statistic, which is approximately a Chi-Square statistic with

one degree of freedom using the following;

UL =
r∑
j=1

dij − eij (5.2)

where dij is the number of deaths in group i at time j, and eij = nijdj/nj is

the expected number of individuals who die at time tj in groug i (Collett, 2014,

p. 233).
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The statistic for comparing survival between two groups is

WL = UL/
√
VL, with VL =

n1jn2jdj(nj − dj)
n2
j(nj − 1)

(5.3)

where VL is the variance and WL ∼ χ2
1. Table 5.3 provides summary results from

the log-rank tests for different covariates. At 5% significance level, the results for

comparing number of deaths among male and female patients indicate that non-

significant differences in observed and expected number of deaths in both males

and females (p = 0.949), although more deaths were observed in male patients

than expected. This observation is emphasized by visual output using Figure 5.8

which is a plot of survival curves male and female patients. We also note there is

a steep decline in survival probability in both sexes during the early days of ART

treatment.

Table 5.3: Using Log-rank test to compare the observed and expected number
of deaths by sex, Treatment Period, TB history and Occupation.

Covariate #patients #observed deaths #Expected deaths p-value

Sex
Females 252 49 49.3 0.949
Males 307 56 55.7

Period
2004-2007 259 69 54.2 0.003
2008-2011 300 36 50.8

TB Status
No TB 528 96 100.4 0.0547
TB 31 9 4.86

Occupation
Employed 38 9 7.62 0.76
Self-Employed 371 65 70.07
Student 10 2 1.52
Other 140 29 25.79
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Figure 5.7: Density distribu-
tion of age grouped by sex

Figure 5.8: Survival curves
for males and females

5.5.5 Period of starting HIV Treatment

In 2008, the Ministry of Health in Malawi revised the HIV treatment guidelines

to improve the way patients were managed (Malawi Ministry of Health, 2008).

Following the provision and expansion of HIV services, one of the questions of

interest for clinicians and public health specialists, would be to find out if patients’

prognosis has improved as treatment and routine clinical management and care

of the HIV infected patients continues to improve over time. In this regard, we

were interested in comparing the statistics and survival between the periods 2004

- 2007 and 2008 - 2011.

From Table 5.2, over half of HIV/KS patients started treatment between 2008

and 2011. Among the 105 patients that died, over 60% had started treatment

between 2004 and 2007, of which half of them died during the first six months on

treatment. Interestingly, among the 36 patients that died during the 2008 - 2011
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period, half of them died during the first four months after starting HIV treatment,

two months faster compared to those who started treatment before 2008. As seen

from Table 5.3, log-rank tests results indicate a significant increase in the number

of expected deaths amongst those that started treatment before 2008 (p-value

=0.003). This difference in survival was more pronounced just after one year, as

shown in Figure 5.9. Table 5.3 provides summary results from the log-rank tests

for different covariates. At 5% significance level, the results for comparing the

number of deaths among male and female patients indicate that non-significant

differences in observed and expected number of deaths in both males and females

(p = 0.949), although more deaths were observed in male patients than expected.

This observation is emphasized by visual output using Figure 5.8 which is a plot of

survival curves male and female patients. The curves cross each other suggesting

a non-significant difference in survival. We also note there is a steep decline in

survival probability in both sexes during the early days of ART treatment.

5.5.6 Distance to HIV clinic

At the time of this study, the HIV clinic at Zomba Hospital was the only clinic in

the district that provided clinical care to patients diagnosed with both HIV and

KS. As a result, all HIV/KS patients were required to seek and access treatment

services at Zomba HIV clinic.

We computed the Euclidean distance from patient’s village-level point to Zomba

HIV clinic using Equation 5.1. Most urban settlements around the Zomba town

111



Figure 5.9: Survival curves for patients that started in 2004 - 2007 period and
2008 - 2011 period. Higher survival is noticed amongst those that started in
latter period.

lie within an 8 kilometre-radius. Hence, we categorized the distance into two

groups; within 8 km and over 8 km. Our main interest was to assess whether this

covariate relates to patient outcomes considering that in most low-income countries

patients travel long distances to access health services. However, using PubMed

and Google Scholar engines, we did not find any literature relating distance to

clinic and survival outcomes. Nevertheless, we hypothesized that distance could

influence attendance to clinical appointments, with more patients living far from

the clinic being prone to missing appointments. This could lead to poor treatment

adherence and increase the risk of death.

The distances travelled by patients to the clinic ranged from <1 km to 31.4 km. In

Table 5.2, it is seen that approximately 53% of patients that died were coming from
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Figure 5.10: Survival curves for HIV/KS patients by distance to the clinic.
The plots cross each at least at three separate occasions.

a distance of 8 km or more. The overall median distance for all HIV/KS patients

was 7.4 km. Despite the differences seen in the survival curves in Figure 5.10, the

log-rank test provided a non-significant p-value of 0.38, indicating no difference

between the observed and expected number of deaths both distance categories.

Like other factor variables, at this point we did worry about the proportion of

deaths amongst LTFUs by distance and just treated all LTFUs as censored.

5.5.7 TB Status

Among the HIV/KS patients, there were only 31 (9%) patients with TB, of which 9

(29%) died during the study period. Mortality was lower amongst patients without

TB, about 18%. Furthermore, patients with TB had a shorter crude median time
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Figure 5.11: Survival curves for patients with and without TB. Having TB is
associated with a lower survival.

to death, shorter by one month compared to the non-TB patients as shown in

Table 5.2.

A log-rank test in Table 5.3 also indicated that the number of observed deaths

amongst the TB group was marginally insignificant at 5% level (p-value = 0.0547).

Figure 5.11 shows the K-M survival plots by TB history, and higher survival is

observed in TB free patient group.

5.5.8 Occupation

The majority (66%) of HIV/KS patients were self-employed, of which 65 (18%)

died. Half of self-employed patients died within the first 6 months of starting
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treatment. There were 38 teachers and health care workers (categorized as em-

ployed) with HIV and KS and approximately 24% died during the study period.

More deaths than expected were observed among patients that were either em-

ployed, were students or those categorised as "Other" (Table 5.3). Despite this

observation, the differences were not statistically significant at 5% (p-value= 0.76).

Figure 5.12: Proportion of times the Zomba curve was below California curve.
The blue dotted lines are the 95% lower and upper bounds of the proportion
satisfying Ŝ(80in Malawi) ≤ Ŝ(80in US).
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5.6 Accounting for loss to follow-up and determin-

ing a lower bound for the proportion of LTFUs

that are deaths

In the Zomba KS dataset, 223 (39.9%) patients were lost to follow up meaning

that their vital status was not ascertained during the study period. Since some of

the LTFUs may be deaths, we used a novel way of understanding and accounting

for potential deaths among the patients who were lost to follow-up. Other stud-

ies in sub-Saharan Africa have also reported high loss to follow-up and many of

these studies have reported that in fact many of these LTFUs may be deaths (see

Section 3.4).

We began by assuming that all LTFUs were censored observations. However, when

we compared the resulting survival curve to that of US population (described in

Section 2.6), we found that the Malawi cohort was doing much better. This

was surprising since we would expect survival in the Malawi cohort to be worse

compared to the US cohort, so we consider the US data as providing a sort of the

"‘upper bound"’ for the survival curve. However, we do not know the proportion

of LTFUs that are really deaths in our cohort.

Suppose we have a candidate proportion (c_p) of deaths among LTFUs. For

any c_p, we can randomly change the 223 × c_p patient’s status to death and

the remainder be censored. Using this modified data, we would get estimates of

β̂1 from the model. Repeating this process with a different 223 × c_p patient’s
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statuses modified, we would get another β̂2. Repeating this, say k times, we get;

β̂1, β̂2, . . . , . . . , β̂k

and we can combine these to get an overall β̂ for this given c_p.

For each c_p and simulated dataset, we compared the 80 month survival to that

from the US cohort. The time point of 80 months was chosen as an example

based on the maximum time point when the K-M estimate become constant in

the Malawi cohort. We found an approximate lower bound for c_p as the minimum

value of c_p such that the 80 month survival in all simulated datasets was below

that of the US cohort.

In summary, our Comparison approach of identifying an approximate lower bound

for mortality rate among LTFUs was conducted in 6 main steps;

Step 1: We created a list of candidate proportions (c_ps) of deaths amongst LTFU

patients from 0 to 1 increasing by 0.01 units. As a result 101 c_ps were

used.

Step 2: For each selected c_p, we generated 100 different datasets in which 223×

c_p of the LTFUs follow-up times were changed to event-time otherwise

they were censored. This means the number of deaths increased gradually

with increasing proportion (c_p).

Step 3: A Cox model was fit using this updated dataset.
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Step 4: We also created a 100 x 101 matrix whose entries took the value of 1 if the

survival probability Ŝ(80) based on the K-M curve at 80 months (S(t=80))

for Zomba cohort was less than the survival probability for California

cohort i.e. the matrix entries were defined by an indicator function as;

I(SZA(t = 80) < SCAL(t = 80)) =


1, if TRUE

0, Otherwise

Step 5: We computed the proportion of times the K-M estimate (at month 80) for

Zomba patients was less than California patients.

Step 6: We plotted the candidate proportion against the proportion calculated in

Step 5. The cut-off value of c_p is the value of c_p corresponding to the

point when the mean acceptance first records a 100% acceptance. This is

our lower bound for c_p.

Using this selected value, we conducted sensitivity analyses for the two final selec-

ted models (semi-parametric and parametric). We sampled 1000 times with c_p%

of patients assigned as ’deaths’ during each sampling. This is equivalent to fitting

1000 models and saving the estimated β for each covariate in a matrix, with cov-

ariates as rows and estimates as columns (p × 1000). The final β̂ were estimated

as E(β̂) = E[E(β̂|Y )] and the variance of β̂ using the law of total variance defined

as

Var(β̂) = Var {E(β|Y )}︸ ︷︷ ︸
Var(β)

+EY {Var(β|Y )}︸ ︷︷ ︸
mean{Var(β)}

(5.4)
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where Y denotes the random sample data. Using E(β̂) and V ar(β̂) we were able

to construct the confidence intervals.

We compared the crude survival estimates of our HIV/KS cohort data to the KS

cohort from USA, California described in Section 2.6. We followed the steps as

described above. The USA dataset was used because it had complete and updated

patient outcomes, of which it difficult to find datasets of such quality in Africa

which have high rates of loss to follow-up (Freeman, Semeere, Wenger et al., 2015).

The main limitation of using these USA data is that these come from two different

healthy setting with the USA data expected have more healthier population than

the Malawi data. However, using these data gives us an approximate upper bound

on survival on which we can compare with our data.

Figure 5.12 shows the value of the candidate proportion (c_p) against the pro-

portion of datasets for which the simulated Ŝ(80in Malawi) ≤ Ŝ(80in US). In

order to help make the survival curves from the USA data and the Malawi data

comparable, we ensured that the following were the same: same age range of 15 -

68; same study period, 2004 - 2010; and same maximum follow-up time of months.

We truncated the follow-up period at 80 months and also restricted age to less

than 69 years to ensure comparable Ŝ from the two cohort data.

The comparison results showed that a minimum of 34% of deaths should be as-

sumed among LTFU patients (Figure 5.12). Any proportion > 34% resulted in the

Zomba curve to be consistently below the California curve as measured at month

80.
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Figure 5.13: Top Left panel : Comparing survival plots of Malawi and US
data based on the initial data. Top Right panel : The Malawi curve has been
adjusted after accounting for 34% mortality in the loss to follow-up patients
using California data as an upper bound for the survival curve. Bottom plot :
Comparing survival plots of Malawi and US data assuming a worst case scenario
(all LTFUs as deaths) in Malawi data.

Figure 5.13 (right panel) shows the "‘best scenario"’ K - M survival plot assuming

34% of deaths in LTFU patients. The estimated survival probability dropped to

0.47 (0.38 - 0.59) by 80 months of follow-up compared to 0.73 (0.68 - 0.78) in
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the unadjusted estimates (left panel). With c_p = 34%, the median survival was

estimated at 73.9 months (approximately 5 years).

5.7 Results from Semi-parametric and Parametric

Models

In this section we present results from all competitive models. We also include

results of correcting for LTFU using 34% as a minimum proportion of deaths

among patients that were lost to follow-up. We end by presenting adjusted model

results and the sensitivity analysis plots for the semi-parametric model.

5.7.1 Risk factors of loss to follow-up

After adjusting for TB status, treatment period, distance to the clinic and occupa-

tion, we found that male patients (HR: 1.39, 95%CI: 1.04 - 1.86) were significantly

associated with being lost but older patients were less likely to be lost from the

cohort (see Table 5.4). This analysis could have been done using a multivariate

logistic model as well since in this case we are not concerned with censoring. How-

ever, we opted for a time-to-vent analysis approach so that we make the results

comparable to the results from the risks of mortality from the survival models.

Moreover, when we fitted the logistic model for the censored data, we noted that

the direction of interpretation of estimates did not differ from the ones we obtained

from the Cox models reported here.
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5.7.2 Risk factors of mortality and survival

Table 5.5 provides a summary of results from different Cox models. The age

was fitted as a continuous variable because the scatter plot smoothing of K-M

estimates against patient age did not suggesting groups or clusters. The standard

Cox model and extended Cox model with Gamma frailties gave similar estimates

of the hazard ratios. All the models indicate that time of starting treatment and

TB history are statistically significant factors for quantifying risk of death in these

data. In particularly, patients starting HIV treatment between 2008 and 2011 had

almost 50% lower risk than those starting before 2008 (HR 0.53, CI: 0.35 - 0.81).

In addition, high mortality risk was observed in patients who had TB or had TB

episode in last two years prior to starting HIV, treatment. They were twice more

likely to die than patients without TB (HR: 2.21, CI: 1.05 - 4.25). The 95% CI

also suggest that the patients with TB could be four times higher in risk compared

to their counterparts.

Baseline age, distance to the clinic, sex and occupation were not significant in

the model. However, older patients tended to have increased risk, 1% higher than

younger patients. Men also seemed to have a lower risk of dying than females (HR:

0.95). Furthermore, patients living near the HIV/KS Clinic tended to be 8% lower

in risk of dying than those living more than 8 km away from the clinic. Lastly, the

self - employed patients tended to have lower mortality risk than the employed,

but students tended to have a higher risk (5.8% higher) than the employed.

The Weibull, Log-Normal, Log-logistic and generalised Gamma models were fitted
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in AFT parametrization. This means that, instead of getting estimates of HR, or

OR, we get time ratios (TR). Time ratios are also called accelerated factor. In this

scale, we interpret the results in terms of survival. A value more than one indicates

that survival rate is prolonged (accumulated), and vice-versa. The flexible PH

estimates the cumulative HR, whereas flexible PO estimates cumulative OR of

survival. Results from all AFT models lead to the same conclusion as Cox models.

For instance, patients, starting treatment in 2008 - 2011 period had survival times

twice longer than those that started in the 2004-2007 period (as shown in Table 5.6.

Likewise, survival times for patients with TB in this cohort were shortened by a

factor of 0.30, compared to those without TB.

Table 5.7 shows that the two models have similar estimates. The only difference

is in the interpretation. For the flexible PH, the estimates are cumulative hazard

ratios while for the flexible PO the estimates are interpreted as odds of survival.

The results are quite similar to those reported in Table 5.5.

5.7.3 Describing patient heterogeneity

We also included two more complex models as an extension of the standard Cox

PH model to model patient-level heterogeneity. The advantage of these two models

is that they capture some information on unobserved individual-level heterogen-

eity that is otherwise not capture by the Cox model. Having this result informs

the analyst the amount of variation in heterogeneity (frailty) among patients that

is not explained by variables included in the model. Table 5.5 shows that the
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extended Cox PH model with log-Gaussian frailties explains the data well. The

inclusion of frailties to measure individual-level heterogeneity in the model sig-

nificantly improved the model fit (partial likelihood ratio test: p-value < 0.001).

The variance of the frailty value of 0.34 indicates the presence of heterogeneity not

explained by the model with all covariates. We conducted a sensitivity analysis

Table 5.4: Hazard ratios for loss to follow-up using a Cox/log-Gaussian frailty
model based on c_p = 34%

Variable Adjusted HR (95%CI) p-value

Age (years)
15-29 Reference
30-44 0.62(0.43 - 0.89) 0.010
45+ 0.62(0.36 - 1.07) NS
Sex
Female Reference
Male 1.38(0.96 - 1.97) NS
Initiation period
2004-2007 Reference
2008-2011 1.69(1.19 - 2.41) 0.004
TB status
No TB Reference
With TB 1.05(0.51 - 2.16) NS
Distance
>8 km Reference
Within 8 km 0.79( 0.56 - 1.10) NS
Occupation
Employed Reference
Student 0.44(0.05 - 3.48) NS
Self-Employed 1.09(0.57 - 2.07) NS
Other 0.88(0.45 - 1.77) NS

on the choice of knots k for both flexible models reported in Table 5.7. In a flexible

PH model, we varied the knots from 3 to 5 using the flexsurv package in R. For

instance, with k = 5 and df = 15, the HR for TB was 2.11 (1.05 - 4.24) which

is similar to the result when k = 3 (df = 13) as reported in Table 5.7. All other

covariate effects were similar to 2 decimal places in both PH and PO model. The
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Table 5.5: Hazard ratios (95% CI) for death from Cox PH Models with all
LTFUs treated as censored

Covariate Cox Cox/Gausian Cox/Gamma

Age 1.01(0.976-1.03) 1.01(0.99-1.03) 1.01(0.976-1.03)
Sex
Females Reference
Males 0.95(0.63-1.45) 0.96(0.62-1.47) 0.95(0.63-1.45)
ART Period
2004-2007 Reference
2008-2011 0.53(0.35-0.81) 0.53(0.34-0.81) 0.53(0.35-0.81)
TB Status
No TB Reference
With TB 2.12(1.06-4.26) 2.21(1.05-4.65) 2.12(1.06-4.26)
Distance
> 8 km Reference
≤8 km 0.92(0.62-1.37) 0.92(0.61-1.39) 0.92(0.62-1.37)
Occupation
Employed Reference
Self-employed 0.88(0.43-1.80) 0.88(0.41-1.86) 0.88(0.43-1.80)
Student 1.55(0.32-7.60) 1.48(0.28-7.81) 1.55(0.32-7.60)
Other 1.01(0.47-2.14) 1.01(0.46-2.22) 1.01(0.47-2.14)
Frailty term(p-value) 0.34(0.37) 5e-05(0.75)

choice of the number of knots does not significantly change the size of estimates

and direction of interpretation (Hinchliffe and Lambert, 2013).

5.7.4 Adjusting for Loss to follow-up and Results from Sens-

itivity Analysis

In this section, we look at how the mean HRs vary with changing datasets using

the selected c_p = 34%. The value of 34% was identified as an approximate lower

bound for the mortality among LTFUs but other studies on mortality in LTFUs

reported mortality rates ranging from 20 - 83 % (see Table 3.2). We only report
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Table 5.6: Time ratios (95% CI) for Parametric Models with all LTFUs treated
as censored

Covariate Weibull LogN LogLog Gamma

Age 0.98(0.95-1.02) 0.99(0.95-1.03) 0.98 1.01(0.98-1.03)
Sex
Females Reference
Males 1.11(0.54-2.26) 1.08(0.53-2.21) 1.07 1.11(0.66-1.88)
ART Period
2004-2007 Reference
2008-2011 2.13(1.01-4.49) 2.19(1.07-4.48) 2.31 1.58(0.91-2.76)
Distance
> 8 kms Reference
≤8 kms 1.13(0.58-2.21) 1.12(0.56-2.22) 1.12 1.13(0.65-2.00)
TB History
No TB Reference
With TB 0.30(0.09-1.01 0.31(0.08-1.18 3.91 0.89(0.28-2.81)
Occupation
Employed Reference
Self-employed 1.02(0.35-4.13) 1.08(0.29-3.96) 1.19 0.50(0.21-1.67)
Student 0.33(0.21-5.04) 0.61(0.03-11.08 0.45 2.61(0.32-21.68)
Other 0.94(0.29-3.43) 0.90(0.23-3.57) 0.95 0.63(0.21-1.92)

results for the selected Cox/log-Gaussian model. A similar methodology can be

used for parametric models.

In Table 5.8, we note that estimates of covariate effects are similar for model 2 and

Model 2 in the majority of covariates. when comparing all the three models, the

direction of interpretation was different in three covariates; male gender, student

and "‘other"’ occupations.

Figure 5.14 shows mean HRs plotted against the proportion of deaths in LTFU

for each covariate in the Cox/log-Gaussian model. The mean HRs are based on

the 1000 times re-sampled data without replacement for each proportion of deaths

(0-100%) in LTFU patients. Again, we note that ART period and TB status are

significant for certain ranges of the number of deaths in LTFU patients. Also,
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Table 5.7: Estimates from Flexible Parametric Proportion Hazards (Hazards
Ratio) and Proportional Odds (Odds Ratio) Model with all LTFUs treated as
censored

Covariate Hazards Ratio(95% CI) Odds Ratio(95%CI)

Age 1.01(0.98-1.03) 1.01(0.98-1.03)
Sex
Females Reference
Males 0.96(0.60-1.53) 0.96(0.68-1.53)
ART Period
2004-2007 Reference
2008-2011 0.53(0.35-0.80) 0.50(0.31-0.79)
Distance
> 8 kms Reference
≤8 kms 0.92(0.62-1.37) 0.92(0.59-1.44)
TB History
No TB Reference
With TB 2.12(1.06-4.25) 2.44(1.06-5.64)
Occupation
Employed Reference
Self-employed 0.88(0.43-1.81) 0.88(0.39-2.02)
Student 1.54(0.31-7.54) 1.35(0.23-8.06)
Other 1.01(0.47-2.14) 1.01(0.43-2.42)

the ranges of HRs and their 95% CIs are not very much different from the ones

reported in the model results.
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Table 5.8: Adjusted HR estimates from the Cox/Log-Gaussian Model after
accounting for 34% of mortality among LTFU patients.

Covariate Model 1 Model 2 Model 3

Age (years) 1.01(0.99, 1.03) 1.01(0.98, 1.03) 1.00(0.99, 1.02)
Sex
Female Reference
Male 1.02(0.69, 1.50) 0.97(0.63, 1.49) 0.99(0.70, 1.39)
ART Period
2004-2007 Reference
2008-2011 0.54(0.36, 0.82) 0.52(0.34, 0.81) 0.70(0.50, 0.99)
TB status
No TB Reference Reference
With TB 1.97(0.95, 3.92) 2.19(1.04, 4.60) 1.45(0.73, 1.38)
Distance to ZCH
>8 km Reference
Within 8 km 0.84(0.57, 1.25) 0.93(0.62, 1.42) 0.99(0.72, 1 .38)
Occupation
Employed Reference
Student 1.08(0.22, 5.23) 1.45(0.28, 7.66) 0.92(0.18, 1.52)
Self-Employed 0.78(0.38, 1.61) 0.88(0.41, 1.87) 0.94(0.51, 1.72)
Other 0.96(0.44, 2.07) 1.02(0.46, 2.26) 1.03(0.55, 1.95)
Frailty variance 0.34(p<0.001) 0.37(p <0.001)

Model 1 = Each covariate fitted separately in the model
Model 2 = Results based on the model with all covariates included and 0%
deaths assumed among LTFUs
Model 3 = Results from a model with c_p = 34%
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Figure 5.14: Sensitivity analysis plots for exponentiated mean β based on 1000 permutations of the data.

129



5.8 Model Diagnostics and Selection

It is good practice to select models that fit the data well amongst a set of com-

petitive models. In this section, we present results from assessing PH assump-

tions, model selection and residual diagnostics. For comparison purposes, models

were fitted on the data with no deaths assumed among LTFUs. However, the

c_p = 34% was applied to the selected Cox model (semi-parametric) and para-

metric model.

5.8.1 Checking the Proportional Hazards Assumption

The results from the Schoenfeld residual test for both individual covariates and

the global test indicate non-violation of the PH assumption. Therefore, our data

support the use of the proportional hazard assumption. Table 5.9 gives a summary

of the PH test. If ρ > 0, then the linear trend is increasing, decreasing otherwise.

5.8.2 Comparing Cox Models

In Table 5.10, we have reported both the partial log-likelihood values and p-value

from likelihood ratio test (LRT). The LRT shows a significant improvement in

model fit from Cox PH model to Cox/log-Gaussian frailty model (p < 0.001),

hence the Cox/log-Gaussian frailty model is the one that maximises the partial log-

likelihood function (-PlogLik = 1155.43). This suggests the presence of unobserved

individual heterogeneity among the patients.
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Figure 5.15 shows three diagnostic plots based on Cox-Snell residuals against cu-

mulative hazard estimates. As expected, the plot for Cox and Cox/Gamma are

quite similar. However, residuals plot from a Cox/Log-Gaussian model indicates

relatively higher residuals suggesting great variability in survival estimates. The

great variability in the residuals is due to the presence of frailties which were found

to be significant in Cox/log-Gaussian model.

Table 5.9: Test statistics for linear trend using the Schoenfeld residuals in a
standard Cox PH model.

Covariate rho chisq p

Age 0.14 2.34 0.13
Sex -Male 0.06 0.39 0.53
ART period-2008-2011 -0.09 0.77 0.38
TB -with TB -0.01 0.01 0.92
Distance -0.01 0.02 0.89
Occupat-Other 0.04 0.18 0.67
Occupat-Self-Employed 0.03 0.07 0.79
Occupat-Student 0.14 2.02 0.16
GLOBAL 5.29 0.73

Table 5.10: Comparing Cox models using the partial likelihood (LogLik) val-
ues.

Model -2LogLik partial LRT test

Standard Cox 1220.76 -
Cox/Gamma 1220.75 0.92
Cox/Log-Gaussian 1155.43 1.30×1−11
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Figure 5.15: Diagnostic plots from Cox models using the Cox-Snell residuals.

5.8.3 Comparing Parametric Models

Table 5.11 presents AIC and BIC values based on Equation 4.54 and Equation 4.55.

The AIC selects the Flexible Proportional Hazard (FPH) model and the BIC se-

lects the generalised Gamma model. Figure 5.17 and Figure 5.16 show cumulative

hazard function and survival function estimated from the Cox/Log-Gaussian and

the parametric models. Both the FPH and the FPO follow the Cox/Gaussian func-

tion more closely than other models. This is one of the reasons flexible models

have found their place in survival analysis literature and are increasingly becom-

ing popular because of their ability to flexibility model the hazard and survival

function.
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Table 5.11: Selecting a best fit model using AIC and BIC values

Statistic Weibull LogN LogLog Gamma FPH FPO

AIC 1886.47 1868.35 1879.91 1845.99 1839.57 1840.16
BIC 1925.41 1907.23 1918.84 1889.25 1891.49 1892.07

Figure 5.16: Survival functions from parametric model and a K-M plot from
Cox/Log-Gaussian model.

5.9 Discussion and Conclusions

This is the first (at least to our knowledge) subgroup analysis of focusing on

quantifying survival HIV patients diagnosed with KS at a time of starting HIV

treatment. This is because other studies on KS patients such as Ziegler et al.,

(2003), Makombe, Harries and al, (2008), and Chu, Mahlangeni et al., (2010), only

compared the risk in KS and no-KS patients. In addition, studies conducted by Wu

et al., (2014) and Nelson et al., (2013) looked at incidences of KS in HIV population

and also treatment options and outcomes available for HIV/KS patients. None

of the studies extended the analysis to HIV/KS patients only. In general, the
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Figure 5.17: Cumulative Hazards functions from parametric models and
Cox/Log-Gaussian model.

survival in this patient group was high, though lower than HIV patients without

KS. There were 105 (18%) deaths, 219 (39%) patients were either lost to follow-up

or transferred to another clinic and 235 (42%) were still alive by the end of the

study. In a cross-sectional (retrospective) studies by Mwinjiwa et al., (2013) and

Makombe, Harries and al, (2008) it was also reported that higher proportion of

patients at the time of the end of the study were still in the cohort and close to 20%

were either transferred or lost to follow -up. These statistics are also similar to

the ones routinely reported in national HIV progress reports (Malawi Ministry of

Health, 2011). These results continue to highlight the importance of establishing

social services in HIV programmes to deal with this high defaulter rates.

Adjusting for other covariates in the model, the results showed that patients’

age was not statistically significant in influencing the survival in this patients’

group. However, the estimate of the hazard ratio suggests a slightly higher risk
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of death in older patients. Other researchers such as Chu, Misinde et al., (2010)

and Chu, Mahlangeni et al., (2010) fitted age as a categorical variable and none

of the age groups were reported to be statistically significant, although the risk

of death tended to increase across age groups. However, these results should keep

reminding policymakers to be prepared for the ageing HIV population. Moreover,

in the general population, older people are at more risk of dying since they tend

to have a weaker immunity.

The period in which patients started treatment was found to be a significant factor

influencing mortality. Adjusting for age, sex, TB history, occupation and distance,

there was a significant reduction in the risk of dying for patients that started

HAART between 2008 - 2011 period. (HR:0.53, CI:0.35 - 0.81). With the progress

of provision of HAART, there has been increased awareness of starting HIV treat-

ment in good time. The Ministry of Health (MOH) decreased and decentralised

HIV services to rural health centres, making HIV programs easier. Furthermore,

the MOH revised the HIV treatment guidelines for three times between 2004 -

2011 (Malawi Ministry of Health, 2008; Malawi Ministry of Health, 2011). These

revisions are a sign of commitment by MOH to improve management of HIV pa-

tients including those with KS. No wonder, patients who started HIV treatment

had a better prognosis, as they were likely to have started treatment early. Jo-

hansson, Robberstad and Norheim, (2010) reports early starting of HIV treatment

associated with high survival.

Another covariate found to be significant is TB history, as shown in Table 5.7.

Patients who had TB or had suffered from TB in the past two years had risk of
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dying twice higher than the patients TB history. The results from the retrospective

review by Makombe, Harries, Yu et al., (2007) showed high mortality in HIV-TB

co-infected groups. With an addition of KS burden/patients with HIV,TB and

KS are likely to be more at risk of death. Changes have been made in treatment

guidelines to immediately initiate HAART for HIV patients with TB co-infection

(Malawi Ministry of Health, 2011). HIV patients in these data had also access

to a dedicated TB/HIV clinic within the Zomba hospital. These results support

the need to continue increase TB prevention treatment and care in the general

population. Normally, people with a compromised immune system have a higher

risk of TB.

The results for the relationship of sex and survival showed that sex is not a sig-

nificant factor of mortality. However, male patients appeared to have a greater

risk of dying than females (though not significant ). In the general HIV and KS

population, the number of males with KS is always higher than males (Mosam,

Carol and al, 2008; Mwinjiwa et al., 2013). This could be explained by the poor

health-seeking behaviour amongst the general male population.

The baseline occupation status for HIV/KS patients was also not associated with

mortality. However, the risk of dying was elevated in students, 48% higher than

the employed, group, which included the teachers, security staff, and health care

workers. The self-employed patients tended to have a reduced risk 12% lower

than the employed. Our results mirror those in a case-control study by Ziegler

et al., (2003) in Uganda in which they evaluated the association of having KS

and occupation categorized as farmers and others . No significant differences were
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noted in both case and controls. Despite the challenges, many organisations are

introducing HIV workplace Policies to help their employees have early access to

HAART and combat stigma and discrimination (Soko, Umar and Lakudzala, 2012;

Bakuwa, 2010).

The calculation of the Euclidean distance to the Zomba hospital is one of the

strengths of this study. However, it is unclear to what extent the Euclidean dis-

tance correlates with travel time and costs for travel to the hospital. Distance to

the HIV/KS clinic was not associated with KS mortality in our study. We did

not find other literature from the region on the relationship of distance to the

clinic and KS mortality. The lack of association with survival may thus simply

reflect a poor correlation between Euclidean distance and the difficulties patients

experience travelling to the hospital (Rachlis et al., 2013).

The results from model selection showed that the Cox/Log-Gaussian frailty model

and flexible Proportional Hazards models are adequate for explaining the risk

in HIV/KS patients (refer to Table 5.5 and Table 5.7. Moreover, the Cox/Log-

Gaussian model suggests the presence of unobserved heterogeneity in this patient

group, looking at the value of variance for the frailty term in the model. As

such, models fitted to these data ought to account for this heterogeneity. In

particular, the flexible parametric proportional hazards model provide a very stable

and flexible functional form for the cumulative hazards (Figure 5.17). As shown in

Figure 5.17 and Table 5.7 the hazard functions and the HR estimates are similar

for these two models.
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From the sensitivity analysis, we can only estimate a lower bound of the propor-

tion of deaths amongst LTFU. These results highlight the need for ascertaining

the vital status (either through active tracing or other means) of all patients in

survival analysis in order to obtain reliable estimates of survival and covariate ef-

fects. However, where ascertainment of vital status was not possible, our method

provides a better alternative way of identifying mortality bounds amongst loss to

follow-up. The majority of countries in the sub-Saharan country do not have a ro-

bust vital registration system to record vital statistics (such as deaths, births) for

their citizens (Singogo et al., 2013). For countries with vital registration systems,

the systems are weak and data on vital statistics are not easily accessible.

The issue of correcting estimates for loss to follow-up (LTFU) in HIV cohorts has

been discussed and explored by colleagues from the International epidemiological

Databases to Evaluate AIDS (IeDEA) network and elsewhere (Freeman, Semeere,

Wenger et al., 2015; Kiragga et al., 2013; Henriques et al., 2012). However, the

methods proposed for analysing these data are limited to HIV programmes with

capacity for (some sort of) active tracing of LTFU patients which we did not

have. However, these proposed methods assume high mortality as a reason for

the loss to follow-up. As is in this study, where there is high survival rate in

HIV cohort, it is relatively reasonable to assume low mortality as well in LTFU

group as demonstrated by our comparison method and the sensitivity analyses.

The results from our simulation methods were not very much different from the

standard model in which vital status was not ascertained in LTFU patients. The

only notable difference in the estimates was the smaller standard errors in the
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model with c_p = 34% deaths among LTFUs (not reported here).

This study has some limitations. One of the limitations is that we used routinely-

collected information from clinic registers, master cards and an electronic monit-

oring system. This may have affected data quality to some degree, but the data

generated from the national standardized monitoring and evaluation tools in the

Malawi HIV programme have been found to be of good standard. This is because

these data are audited every quarter by program experts from Ministry of Health

headquarters. Any data quality issues are resolved on-site (Malawi Minstry of

Health, 2014b). Secondly, we used data from 2004 to 2011 and the results may

not reflect the current prognosis in the cohort.

In conclusion, it is important to identify potential factors that may influence pa-

tient’s survival. In this study, we have seen that the subgroup analysis can be

used to inform targeted patient management and treatment strategies. This can

be achieved by formulating a more efficient triage system for care within a partic-

ular group of patients. For example, despite the fact that HIV/KS patients would

likely be prioritized compared to non-KS HIV patients, there is still need to triage

patients within the HIV/KS patients during ART initiation. This sub-triaging can

also help monitor the high-risk patients over time. For instance, our results show

HIV/KS patients with additional TB burden have poor prognosis compare to those

without TB. In addition, patients with longer follow-up time, in particular, would

need attention during care. There is also a need to strengthen tracing efforts for

LTFU patients and bring them back to care. Future operational studies are needed

to study geographical differences in KS epidemiology and treatment outcomes and
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to describe the impacts of the ever-changing HIV treatment guidelines in line with

one of the 2030 sustainable development goals of eliminating HIV/AIDS by 2030.
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Chapter 6

Estimating spatial variation in

survival in HIV patients.

Summary

In this analysis, we examine geographical variations in survival in a sample of 1,931

HIV patients enrolled in ART program in Zomba district. Our motivation for this

analysis comes from the fact that in resource-limited settings such as our study

setting, there are enormous challenges in providing and accessing essential health

services. With only a few specialised HIV clinics available, most patients are forced

to travel long distances to access HIV treatment. Therefore, we are interested in

studying how the risk of death varies in space. We use spatial survival models

which are just extensions of the proportional hazards model to include the spatial

frailties. Our model selection criteria indicate that a Weibull spatial survival model

147



with an exponential spatial covariance structure adequately describe the variation

in survival in our data. More importantly, we produce risk maps highlight the

areas with lower and high risk. We note that there is noticeable local geographical

variation in terms of hazards of death, with the risk of death being elevated in

the northern and southern parts of the district. Highlighting the areas that are

likely to have poor survival outcomes and mapping the risk of mortality can help

policymakers identifying priority areas during resource allocation process.

148



6.1 Introduction

Despite recent progress in reducing HIV/AIDS morbidity and mortality as a res-

ult of expansions of HIV-related activities in Africa, over 70% global AIDS-related

deaths occur in Africa especially sub-Saharan Africa (World Health Organisation,

2016). Reports from Africa have also highlighted the in-country required variab-

ility in the HIV morbidity and mortality.

To study geographical variations of a particular disease, spatial methods are in-

creasingly being applied. The spatial analysis methods have a long history in

studying disease epidemiology and geographical variations. The spatial epidemi-

ology has been extensively used in the modelling and prediction of the incidences

of diseases such as HIV/AIDS, malaria, cancer, and Schistosomiasis, especially

in sub-Saharan Africa region. For example, in Malawi, spatial analysis tools have

been used in the modelling prevalences and incidences of pneumonia, malnutrition,

malaria, and perinatal mortality (Kazembe and Kamndaya, 2016; Banda et al.,

2016; Cuadros and Abu-Raddad, 2014; Kazembe, Muula et al., 2007; Kazembe,

Kleinschmidt et al., 2006). All these studies highlighted the vital roles which the

spatial epidemiology plays in increasing our understanding of the diseases as well

as in the planning of resources to tackle these diseases.

Although considerable spatial epidemiology studies have been largely devoted to

study HIV incidence and prevalence, rather less attention has been paid to study

spatial variations in survival in HIV populations. Considering that HIV patients

have compromised immunity, their survival is severely reduced especially if not on
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ART treatment. Hence, studying geographical patterns in survival would help to

plan and allocate resources to areas with likely to have poor treatment outcomes.

Though HIV prevalence is high in urban areas, but the survival in this area is

expected to be better compared to the rural areas because the urban areas usually

have better access to health and social services. Therefore, we apply the spatial

survival analysis methods to examine geographical variations in survival among

ART patients in a rural district in Malawi, Africa.

6.2 Objectives

In this study, we address the third objective as listed in section 2.2; Adjusting

for individual-level covariate data, investigate the geographic variation in survival

prognoses in the Zomba district. In particular, are geographical determinants part

of the unexplained observed variation in the hazards of death?

Our overall anticipation is that this study will add to our understanding of the

epidemiology of Kaposi’s sarcoma among HIV patients in Zomba, Malawi and

whether the survival outcomes are characterized by the geographical distribution.

6.3 Data description

The data used in this study is from 1,931 HIV patients who started routine HIV

treatment between 2004 and 2011 in Zomba district, Malawi. We randomly se-

lected 1,500 patients (controls) from a cohort of 14,300 adult HIV patients from
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Zomba HIV clinic. This cohort was selected using database IDs and efforts were

made to have complete data for these patients. As such, a filed visit to Malawi

was organised during summer in 2015 and recruited two research assistants to help

in this exercise. These data were added to 559 HIV patients with KS (cases) at

baseline. Although the total number of patients was 2059, 128 patients did not

have complete data on sex, age and date of starting ART, all of which were re-

quired for in this analysis. Therefore, the final dataset that was used had 1931

patients. In both datasets, baseline data were used in the analysis.

During the period under consideration, all Kaposi’s sarcoma (KS) patients in the

district were centrally clinically managed at Zomba Central Hospital (ZCH), one

of the two referral tertiary hospitals in the southern region of Malawi. Other HIV

patients without KS were clinically managed either at this central hospital or at

decentralized HIV clinics in the district. More complicated cases from decentral-

ized clinics were referred to Zomba HIV clinic.

The following patient covariate information was available: age, date of registration,

sex, tuberculosis history (TB within past two years), KS status and follow-up time.

To get the geographical coordinates, we matched the names of the villages where

patients came from to the names of landmark locations identified by the National

Statistics office (NSO), Malawi. These locations included residences for traditional

leaders, markets, hospitals, military camps, schools, churches, and mosques. We

used the coordinates assigned to these landmark locations as a proxy for patients’

point locations.
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6.4 Methods

The model fitted in this chapter is of the form as in Equation (4.32) defined on

page 61. We use the model that has the baseline hazard function from Weibull

distribution. Other complex model exists but are more computation intensive and

the Weibull distribution also offers a flexible distribution (increase or decrease)

and is popularly used in medical studies.

Our aim is to model possible residual spatial variation in survival after account-

ing for patient-specific prognostic factors and unobserved individual frailties. For

convenience sake, we repeat this model here;

h(t; ξ, x) = h0(t) exp {Xβ + S(x)} , x ∈ R2 (6.1)

where ξ = (β, α, λ, τ 2, σ2, φ) is a vector of the model parameters, α and λ are shape

and scale parameters for the baseline hazard function from the Weibull distribu-

tion, β andX as defined above, and S(x) is a value of spatial continuous stationary

Gaussian latent field measured at location of survival time i with σ2 and φ being

the marginal variance of the Gaussian field and spatial decay parameter the cov-

ariance functions. In this study, we consider the Exponential covariance function

and Matern function as defined in Section 4.3.2.1 on page 62 and a baseline hazard

from Weibull distribution. The choice of this baseline hazard function was largely

based on the limited availability of other options in the R package spatsurv that

we used for spatial survival data. At the time of this time, only Exponential and

Weibull were available options for the baseline hazard but we opted for the Weibull
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distribution because it is more flexible compared to the Exponential function.

Fixing the baseline hazard function (Weibull distribution), we fitted eight (8)

variants of Equation (6.1) and selected the model that fits the data well. Here is

a list of all the models considered;

Model 1: Exponential model with spatial frailties only. The parameters estimated

in this model are; β, α, λ, φ, σ2. Using an exponential covariance func-

tion, this model estimates spatial variance (σ2) in survival estimates.

It also estimates covariate effects (β), the spatial decay parameter and

parameters from the baseline hazard function (α, λ). This model is same

as Matern with k = 0.5.

Model 2: Exponential model with both Individual-level and spatial frailties. The

parameters estimated in this model are; β, α, λ, τ 2, σ2, φ. In addition

to parameter estimates in Model 1, this model provides one additional

estimates: the variance τ 2 which describes the heterogeneity in patients.

Model 3: Matern (κ = 1) model with spatial frailties only. The parameters estim-

ated in this model are; β, α, λ, φ, σ2. This model is similar to Model 1,

with the only difference being the covariance function.

Model 4: Matern (κ = 1) model with Individual-level and spatial frailties. The

parameters estimated in this model are; β, α, λ, τ 2, σ2, φ. This model is

similar to Model 2, with the only difference being the covariance func-

tion.
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Model 5: Matern (κ = 1.5) model with spatial frailties only. The parameters

estimated in this model are; β, α, λ, φ, σ2. This model is similar to Model

3, with the only difference being an increase in smoothing parameter

k = 1.5 specified in the covariance function.

Model 6: Matern (κ = 1.5) model with Individual-level and spatial frailties. The

parameters estimated in this model are; β, α, λ, τ 2, σ2, φ. This model is

similar to Model 4, with the only difference being an increase in smooth-

ing parameter k = 1.5 specified in the covariance function.

Model 7: Matern (κ = 2) model with spatial frailties only. The parameters estim-

ated in this model are; β, α, λ, φ, σ2. This model is similar to Model 3

and Model 5, with the only difference being an increase in smoothing

parameter k = 2 specified in the covariance function.

Model 8: Matern (κ = 2) model with Individual-level and spatial frailties. The

parameters estimated in this model are; β, α, λ, τ 2, σ2, φ. This model

is similar to Model 4 and Model 6, with the only difference being an

increase in smoothing parameter k = 2 specified in the covariance func-

tion.

The resulting integrals from the likelihood functions of these models are very

complex, necessitating the use of Bayesian approaches. To complete the Bayesian

framework, we specify the independent Gaussian (IG) priors for the parameters

to be estimated in the model. Since the parameters in the baseline function and

those in the correlation function are always positive, the specified priors are given
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on the natural logarithm scale. The priors for the parameters are specified as

follows;

� βi ∼ N(µ = 0, sd = 10)

� log(αi) ∼ N(µ = 0, sd = 10)

� log(λi) ∼ N(µ = 0, sd = 10)

� log(σi) ∼ N(µ = 0, sd = 0.5)

� log(τi) ∼ N(µ = 0, sd = 0.5)

� log(φi) ∼ N(µ = 8, sd = 0.25).

The prior for the spatial decay parameter was not vague in order to reduce the

computation time. When we used vague priors for this parameter, it took long

twice as much time as when it was not vague. Specifying a prior close to the true

value of φ (used variogram) significantly decreased computation time by almost

half when using high end computing (HEC) and by four fold when using a 64

bit/4GB RAM laptop. On HEC, each model took an average of 2 days to complete

the run and about 6 days on a laptop (using non-vague parameters).

Ideally in a Bayesian analysis we would select model priors to be diffuse, and we

have attempted to do this here, with the exception of the parameter φ, which is

typically poorly identified by the data in spatial applications, our prior for log(φ)

lends support to spatial dependence between values of φ 1 and 7 kilometres. For

diffuse priors; log(σi) and log(τi) has a support between 0 and 7; for βi, log(αi)

and log(λi) the support is between 0 and 8e+15.
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6.4.1 Model Diagnostics and Comparison

All the analyses were done in R software using spatsurv package(Taylor, Davies

et al., 2015). The autocorrelation plots and log-posterior plots were used to check

evidence of reasonable mixing of chains and convergence of chains respectively.

These diagnostics plots were done using mcmcplots package in R.

The DIC is frequently reported in Bayesian models. However, the review of dif-

ferent criteria of comparing competitive Bayesian models by Gelman, Hwang and

Vehtari, (2014) recommended the use of WAIC in selecting a best fit model. The

WAIC is preferred to DIC because it is based on the posterior density unlike the

DIC which is based on the posterior point estimate such as mean or median.

6.5 Descriptive Analysis

A total of 1931 HIV patients comprising of 560 patients diagnosed with Kaposi’s

sarcoma during treatment initiation and 1371 HIV patients without KS. There

were a total of 238 deaths recorded, 105 among KS patients and 133 in HIV

patients without KS.

Figure 6.1 shows parts of the district with low and higher number of patients who

attended the HIV clinic. We created quadrant over the map and counted the

number of patients falling inside each quadrant. This gives a rough estimate of

how patients are distributed in the district. In our data, we observe that many

patients attending the clinic tend to be those living in the centre of the town near
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where the clinic is. This could be explained by the high population density around

this area as the clinic is inside Zomba city.

Figure 6.1: Quadrant counts showing areas with high number of HIV patients
in Zomba. The counts were calculated by counting the number of patients in
each quadrant created over the map.

However, the lake on the right side of the district has so many small islands

and most can not be seen with the current map resolution. As such, subsequent

(probability) maps in this chapter must be interpreted with caution especially for

areas seen to be on the lake. Figure 6.2 shows a google maps snapshot of the

islands on the northern part of the lake.

6.5.1 Mapping deaths, active follow-up and lost to follow-up

In total, there were 238 deaths and 605 patients in active follow-up at the end

of the study. About 64% of patients with censored times were patients that were

categorised as lost to follow-up. One possible reason for this high attrition rate

could be due to poor documentation especially in cases where patients have been

transferred to other HIV clinics.
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Figure 6.2: Map of Lake Chilwa showing different small islands, with the
majority of larger islands in the northern end. Also, some tiny islands also exist
in the southern end of the lake

One of the interesting descriptive result would be to visualise how the patients that

experienced the event (death) and LTFUs are distributed on the map. To do this,

we used the smoothed Kernel intensity estimates to compare the patient counts

for those who died versus those who were lost to follow-up, and the deaths versus

those who were still in active clinic follow-up at the end of the study. We are inter-

ested in the exceedance probabilities Prob {intensitydeath − intensitya > 0} where

a ∈(active follow-up:alive, LTFU ). We plotted these probabilities to identify areas

with high probabilities of finding more deaths.

The plot on the left panel in Figure 6.3 (Death vs Alive) is an exceedance probabil-

ity map showing how events (deaths) and active follow-up patients are distributed

in Zomba. We plotted the difference in their the kernel estimate of point process

intensities ( deaths - alive), so that the colour corresponding to high probability

values on the scale bar indicate the areas likely to have more counts of deaths

(more yellow-red), and low probability values indicating areas likely have similar
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intensity estimates for the two events being compared (more blue). From this

map, it can be seen that more deaths were likely to be observed around Lake

Chirwa (refer to Figure 2.1), the eastern direction of the map. Similarly on the

right panel of Figure 6.3 (Death vs LTFU), the exceedance probability map is for

the differences between the process intensity estimates for death events and loss

to follow-up. Compared to observed LTFUs, we also note that in addition to the

eastern region of the district, more deaths were also likely to be observed on the

south- west and northern part of the district. These latter two areas coincide with

the locations of two of the earliest HIV clinics in the Zomba district. On both

maps, we see some areas in the lake with high probability of having more counts

of deaths. This is because there some islands in the middle of the lake. Since

we used smoothed mapping, even other points on the lake had an estimate but

had zero probability of having death counts. This is one of the limitations for

these maps because we did not have polygons for these islands so that they can

be isolated.
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Figure 6.3: Left panel : The Zomba map showing areas with high probability
of having more number of deaths compared to those in active clinic follow-up:
using the difference in the kernel estimate of point process intensities for death
events and alive patients. The colour corresponding to high probability values
on the scale bar show areas with larger intensity estimates for the death. Right
panel : The map on the right density differences of death events vs lost to follow-
up (LTFU). Likewise, the colour corresponding to high probability values on
the scale bar correspond to the areas with more deaths events compared to the
LTFU.

The issue of LTFU is considered for reference when fitting the models in Sec-

tion 6.6.3 and the maps for these are included in Figure 6.9. We used two propor-

tions of deaths among LTFU: 34% and 60%.

6.5.2 Distribution of patients by ART period

In the study in Chapter 5, we found that the date of starting ART was significantly

associated with the risk of death as well as being lost to follow-up, with patients

who started in the later period having significantly lower hazards of deaths. We

would like to explore if the distribution of patients between the two ART periods

differ.
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A total of 644 (33.4%) started HIV treatment (ART) between 2004 and 2007, and

1287 between 2008 and 2011. We used the kernel estimation to estimate point

process intensities in order to compare the distribution of patients in these two

ART periods. We also used exceedance probabilities as described above, but the

difference in intensities was between estimates for patients who started ART in

2004-2007 period and those in 2008-2011 period. We were interested in areas of

the district with this difference > 0, to indicate more patients who started in

2004-2007 observed.

Figure 6.4: Map showing exceedance probabilities, with colours corresponding
to higher values of probabilities showing areas that are likely to have more
patients who started ART in the 2004-2007 period, otherwise no difference (more
blue).

Figure 6.4 is an exceedance probability map and the colour corresponding to higher

values of probabilities show areas likely to have more observed patients who started

ART in the 2004-2007 period. The parts of the district with more blue colour (i.e.

lower probabilities) indicates the point process intensities for the two periods are

likely to be similar. From this map, it is suggested that the western, south-

west, north-west and north-eastern parts (more red colour) of the map were likely
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to have earlier ART initiations (2004-2007) compared to initiations in the later

period (2008-2011). Again, some areas in islands on the lake did also have higher

probability having earlier initiations.

6.5.3 Mapping TB Episodes and KS Diagnosis

In the analysis in the Chapter 5, we also found that TB status was an important

predictor or mortality. Therefore, we wanted to identify areas that observed more

TB episodes. In addition, we also plotted the KS cases on the map.

A total of 301 (15.6% of 1931 patients) were either diagnosed with TB or were on

TB treatment at the recruitment time. The plot on the left panel of Figure 6.5

is an exceedance probability map obtained by calculating the probabilities that

the difference between intensity estimates of having TB and no TB (TB vs no

TB). Similarly, the colour corresponding to the greater probability values on the

scale bar represent areas on the map likely to have more TB episodes observed

compared to TB-free episodes. It can be seen that there were more TB episodes

on the eastern and north-eastern parts of the district.

Among the 1931 patients, a total of 560 were diagnosed with Kaposi’s sarcoma

during routine initiation of ART in Zomba during the study period. We also

used the differences in the intensity estimates to check areas with more KS cases

compared to non-KS cases. Similar to other maps, the KS cases seemed to be likely

to be observed in the western, north-western and eastern parts of the district as

shown in the right panel of Figure 6.5.
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Figure 6.5: Left panel : The map of Zomba showing exceedance probabilities of
the difference in intensity estimates between patients with TB and those without
TB episodes (TB - no TB) being greater than zero. The greater probability
values on the scale bar correspond to the areas with more TB episodes (more
red colour). Right panel : An exceedance probability map showing areas where
more KS cases were recorded: more red colour corresponding to areas likely to
have more KS cases.

6.6 Spatial Survival Model Results

This section contains results from different competitive models considered in this

analysis. We start by presenting model comparison results based on the WAIC

and DIC values. Then we present the results from the MCMC diagnostics for the

chosen model. Lastly, we end the current section by presenting the exceedance

probability maps in order to provide an intuitive interpretation of the areas with

high hazard rates by using example cut-off points.

6.6.1 Model Comparison

We compared eight (8) competitive spatial survival models, all with a Weibull

baseline hazard function. We chose the best fitting model to the data using the
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WAIC value as presented in the Table 6.1 below. The final model was chosen

using WAIC values. We preferred WAIC to DIC because the WAIC uses the whole

posterior density while the DIC uses a point estimate of the posterior distribution.

The limitation of using the point estimates is that sometimes they do not provide

a good summary of the distribution. In our case, the newly introduced WAIC

addresses this limitation.

Table 6.1: Comparing Weibull spatial survival models with different covariance
functions.

Model PD DIC WAIC

Model 1 Exponential: Spatial* -25.22 4500.82 4564.38

Model 2 Exponential: Individual-level + Spatial† -8 4512.11 4580.78

Model 3 Matern (κ = 1): Spatial -26.55 4498.59 4564.66

Model 4 Matern (κ = 1): Individual-level + Spatial -10.94 4516.58 4583.24

Model 5 Matern (κ = 1.5): Spatial -19.82 4511.71 4583.58

Model 6 Matern (κ = 1.5): Individual-level + spatial -8.97 4525.15 4583.53

Model 7 Matern (κ = 2): Spatial -25.89 4518.98 4584.41

Model 8 Matern (κ = 2): Individual-level + spatial -8.03 4521.17 4582.63

*Spatial= Spatial frailties

†Individual-level + Spatial = Individual-level + Spatial frailties

After comparing the WAIC values, a Weibull spatial model with an exponential

correlation function was found to fit these data well. However, a Weibull spatial

model with a Matern κ = 1 had a similar WAIC value to the exponential model

(4564.66 vs 4564.38). To our understanding, this difference in the WAIC values
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is very minimal such that these two models should give comparable parameter

estimates. Lastly, we note that in all the models, the inclusion of the Individual-

level frailties was not beneficial to the overall model fitness using both DIC and

WAIC values.

6.6.2 MCMC Diagnostics

We give details of the MCMC diagnostics for the Weibull Spatial frailty model

with the exponential covariance function. We run 2,000,000 iterations with burn-

in of 100,000 and thinning every 1000th sample. The computation time varied

on personal computers and high end computing (HEC). On a desktop it took an

average of five days to complete a model while on HEC it took an average of two

days for the same models.

We conducted diagnostic checks for reasonable mixing and convergence of the

chains. In Figure 6.6, a lag-1 autocorrelation plot (first plot from left) of posterior

MCMC samples shows independence of in the samples drawn (autocorrelation

clustered around zero). The log-posterior density plot in Figure 6.6 (second plot

from left) indicates the chain has found a mode and remained around it for the

duration of the run. This is evidence that the chain has left the transitory stage.

The last two plots in Figure 6.6 are the density plots for the prior and posterior

distributions for the parameters of the correlation function. When we fit a Bayesian

model, we input a prior density for our parameters of interest and the data modify

the prior through the likelihood to arrive at the posterior. We can therefore
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compare plots of the prior and posterior to get an idea of the information content

in the data. When the data are well able to identify a parameter in our model,

we expect the prior and the posterior to look very different, however if the prior

and posterior look similar, then the data do not provide much information on the

parameter. These plots indicate that there is some information added from the

data to the prior for the spatial variance parameter (σ) but not in the case of the

distance parameter, φ, a common phenomenon in spatial analyses. For the spatial

variance parameter σ, there is a small shift to the right in the posterior density.

All trace plots for fixed and random effects parameter indicate reasonable mixing in

the chains as shown in Figure 6.7 and also shown in Figure 6.8. The MCMC chains

for the parameters of the baseline hazard function (Weibull, α, λ) and spatial

correlation function (φ, σ2) are shown in Figure 6.7 while chains for fixed effects

are shown in Figure 6.8.

The diagnostic plots for the other models considered in this analysis looked similar.

Figure 6.6: The first two plots on the left are plots for convergence,indicating
close-to-zero correlation between samples. The last two plots are overlay plots
of posterior density over prior density show how information from data improve
the prior knowledge
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Figure 6.7: Trace and autocorrelation plots for the chains of parameters for
the baseline hazard and for the spatial correlation function.

Figure 6.8: Trace and autocorrelation plots of the chain for the fixed effects βs
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6.6.3 Estimates of model parameters

Table 6.2 shows summary posterior estimates of the fixed and random effects from

the Weibull spatial survival model with an exponential correlation function. From

this table, only sex, ART period and (not) diagnosed of KS were significantly as-

sociated with risk of death. Male HIV patients were 50% more at greater risk of

dying than female patients (HR: 1.509, 95% HPD: 1.149 - 1.961). Low mortal-

ity risk was observed in patients who started HIV treatment from 2008 onwards

(HR: 0.558, 95% HPD: 0.421 - 0.740). Low mortality was also observed in HIV

patients who were not diagnosed with KS, with approximately 60% reduction in

risk (HR: 0.398, 95%HPD: 0.306 - 0.527). No statistically significant associations

were observed among patients with different ages and whether patients had TB or

not.

The estimate of the spatial variance indicate evidence of unobserved spatial het-

erogeneity in the survival in the district (see Figure 6.9).

Table 6.2: Posterior summaries of fixed and random Effects from Weibull
spatial model.

Covariate 50% 2.5% 97.5%

Age β1 1.000 0.984 1.015
Sex Ref:Females
Males β2 1.509 1.149 1.961
ART Period Ref: 2004 - 2007
2008-2011 β3 0.558 0.421 0.740
TB Diagnosis Ref: No TB
With TB β4 1.218 0.851 1.737
KS status Ref: With KS
No KS β5 0.398 0.306 0.527
Spatial variance σ2 0.428 0.226 0.689
Correlatio scale φ 2858.184 1784.839 4517.591
Weibull shape α 0.52310 0.46623 0.5836
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6.6.4 Exceedance Probability Maps

Probability maps are maps that are generated by plotting the probability of a

certain phenomenon happening. In our case, we are interested in generating maps

that can be used to show areas with high probability of having low survival es-

timates (or high hazards for deaths). For this purpose, exceedance probabilities

are commonly used. An exceedance probability is defined as probability that the

hazard rates ( as in our case) exceed a certain threshold value. The choice of

a threshold value is largely based on the expert advice or clinical relevance of

the cut-off value. Arguably, the use of the probability maps in spatial epidemi-

ology provides an intuitive interpretation of how the risk is spatially distributed.

Secondly, when calculating the exceedance probabilities, the mean prediction and

standard errors are taken into account, thereby simplifying the burden of compar-

ing two different maps: one for mean prediction and another for standard error.

The quantity exp(S) which is the hazard rates (HR) is a post-estimate of Equa-

tion (6.1). However, we plotted the exceedance probabilities P[exp(S) > c] for a

particular spatial location, with c taking the following values; 1.3 and 1.5. In our

case, the choice of reference value was arbitrary but clinically interpretable. We

also tried other cut-off values such as 2 (twice the hazard rates) and 2.5 but the

maps for these values were very faint.

To account for the issue of lost to follow-up (LTFU) in cohort studies, fitted three

different variants of the final spatial model: i) the model assuming 0% mortality

rate among LTFU patients, ii) a model assuming 34% mortality among LTFU
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patients, and iii) a model assuming 60% mortality among LTFU patients. Due to

the complexity of spatial models and the associated high computation cost, we did

not perform sensitivity analysis for the assumed choices of 34% and 60% mortality

rates. As such, we did not report covariate effects from the spatial model for these

models but instead produced exceedance probability maps based on these model

results.

We plotted three different maps, each having a different representation of propor-

tion of mortality among the LTFU patients. In Figure 6.9, the maps in the first

row were produced with all LTFU patients censored (0% deaths among LTFU pa-

tients). The middle row of Figure 6.9 were produced after assuming 60% mortality

among LTFU patients. The last row was produced using the minimum value 34%

mortality among LTFU, the value which was identified in the comparison method

for identifying an acceptable lower bound of death rate among LTFU patients as

reported in Chapter 5 under Section 5.6. Unlike in Chapter 5, we did not conduct

sensitivity analysis of spatial model because of the high computation cost involved

in fitting these models.

In Figure 6.9, the first two rows of the plots show similar areas where probability is

likely to exceed 1.3 and 1.5 (with a lake on the eastern side). These plots indicate

the northern and southern parts of the district having a higher probability of the

hazard rates exceeding 1.3 and 1.5. However, the choropleth maps on the bottom

row highlight different areas to the other plots on the first and second rows. The

plots on the bottom row indicate that the areas around the city centre of the

district are the ones that likely to have the highest probabilities of exceeding the
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reference HR values. A possible explanation for this difference could be due to

sampling bias in deaths among LTFU since this area is densely populated.
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Figure 6.9: Maps showing probability of hazard ratios of death using two cut-
off values; 1.3 and 1.5. Top row: P0[exp(Y ) > 1.3] (left) and P0[exp(Y ) > 1.5]
(right) indicate the areas on the map with the probability of HR exceeding the
two cut-off values when mortality amongst the LTFU patients is ignored. Middle
row: P34[exp(Y ) > 1.3] (left) and P34[exp(Y ) > 1.5] (right) indicate the areas
on the map with the probability of HR exceeding the two cut-off values when the
proportion of deaths amongst the LTFU patients is assumed to be 34%. Bottom
row: P60[exp(Y ) > 1.3] (left) and P60[exp(Y ) > 1.5] (right) indicate the areas
on the map with the probability of HR exceeding the two cut-off values when
the proportion of deaths amongst the LTFU patients is assumed to be 60%.
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6.7 Discussion

Overall, we noted that the majority of patients on the HIV treatment were living

around Zomba Central Hospital (see Figure 6.1). When comparing the distribu-

tion of patients by ART outcomes (deaths, active follow-up and lost to follow-up

(LTFU)), we noted that more deaths than the number of patients in active clinic

follow-up were observed around the eastern part of the district. Comparing the

number of observed deaths to the number of LTFU patients, we noted again that

there were more deaths observed in the northern outskirts and eastern parts of the

district. In the northern part of the district, there is an HIV clinic that started

providing ART in 2004 and this could explain the observed mortality due to age-

ing cohort. In eastern part, there is a lake and many fishing and other economic

activities happen in the area and that could increase the risk of HIV/AIDS and

mortality in this area.

When mapping TB episodes and KS using intensity maps, we noted that the

majority of TB episodes observed in the district were likely to be observed in

the western, eastern and north-eastern part of the district. We did not have

an immediate explanation for this observation but around these areas of the map,

there are two important features: the lake where many economic activities happen;

and on the western part of the district, there is an HIV clinic which is one of the

earliest clinics in the district.

In calculating the exceedance probabilities in Section 6.5.1, Section 6.5.2, and

Section 6.5.3, we made an assumption that the standard errors for "‘cases"’ and
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"‘controls"’ are independent. This is an assumption of convenience and will not

be always true in practise, and so these exceedance probabilities are likely to be

conservative.

When comparing results in Chapter 5, the effect of TB status and age at recruit-

ment on mortality changed in a spatial survival model. The ART initiation age

tended to be associated with mortality while TB was not significant. This change

could be due to the addition of the spatial dimension to the model.

Model comparison showed that models with spatial frailties were out-performing

model that included both patient-level frailties and spatial frailties. The use of

grids was to reduce the computation time of fitting the models and does not

affect model choice. Two competitive models were found: an Exponential model

and Matern 1 (kappa=1) model both with spatial frailties only. The final model

results and hazards prediction was based on Exponential model. Similar results

can be obtained using a Matern 1 model. There was good mixing of chains and a

reasonable convergence was reached.

Adjusting for age, TB status and spatial location, the following variables were

significant in the model; sex, ART period and KS status. Male patients were

at a greater risk of dying. The hazards of death were so higher in males than

in females. These result in consistent with common knowledge about low health

seeking behaviour in men compared to females. A multinational study in resource

limited setting also found that female had low risk of death compared to males

across all age groups (O’Brien et al., 2016).
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Patients who started ART from 2008 to 2011 had significant reduction in hazards

of death. This result can be explained by better service provision and better scale-

up of HIV treatment programs over time. With the new efforts to start all HIV

patients on treatment immediately, it will be interesting to see how results will

compare spatially.

The exceedance probability maps show that HIV patients living in the north-

ern and southern ends of the district tend to have lower survival. This result is

also consistent with (sensitivity analysis) results obtained after adjusting for 60%

deaths among loss to follow-up patients. However, after accounting for deaths

amongst LTFU patients, the exceedance probability increased considerably from a

maximum of 0.6 to 0.8 and 0.4 to 0.6 for HR >1.3 and HR > 1.5 respectively (20%

increase in both cases). Patients living closer to the town have better prognosis

than those leaving far away. We are not able to explain the poor survival observed

in areas far north and south of the district because there are two relatively big

HIV clinics around those areas. However, possible explanations could be that early

ART initiations were from these regions and also the type of quality of care and

treatment services provided in these regions. These geographical variations should

not be ignored but should inform routine HIV programme and form a basis for

further operational research to better understand these differences.

One of the limitations of this study is that there was high loss to follow-up which

can impair estimation of survival in this cohort. However, our sensitivity analysis

results support the general finding of existence geographical variations in survival

in Zomba district. Also, we used data that is routinely collected as part of program
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activities and quality of data has been a great issue in such study settings but the

data were generated from the nationally standardized monitoring and evaluation

tools used in the Malawi HIV programme and have been found to be of good

standard.

In conclusion, this study highlights the geographical variations in survival in KS

epidemiology and HIV treatment outcomes often not reported in most sub-Saharan

Africa HIV programmes. We found significant geographical variation in survival

among different sexes, ART period and KS status. The relative hazards of death

increase in males, almost halved in patients who started ART during 2008 -2011

period, and a three-fold decrease in relative hazards in patients not diagnosed with

KS. Overall variation in survival in the district should not be ignored in routine

HIV programming. Similar analyses at regional and nation-level to study KS

epidemiology and other types of cancer in HIV programmes could inform current

efforts to improve HIV programming in resource-limited settings.
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Chapter 7

Multistate Markov modelling in TB

Epidemiology

Abstract

Multistate models in survival analysis are used for analysing data in which patients

experience different intermediate states (events) before experiencing the event of

interest. In this final case study, we consider the time to different states in which

TB patients in HIV cohorts go through (TB free, TB infection, cured, relapse

and death). A time-homogeneous Markov model is applied to a sample of 1483

patients randomly selected from an HIV cohort of approximately 20,000 patients.

The total follow-up period was 120 months (10 years) and approximately 12.6% of

total patients had at least one TB episode during the follow-up period. Mortality

in these patients was around 9%, with most of patients that died being patients

179



that were diagnosed with TB after they had already started ART. The main

transitions observed in this cohort were; remaining TB free, no-TB directly to

death, TB infection to cured, no-TB then TB then cured, no-TB then TB then

died, in that order. Patients that had finished TB treatment and were not cleared

of TB at the end of TB treatment were more likely to restart TB treatment again

(not cured). Mortality was three times higher in patients who got TB after starting

ART than in patients who started ART while on TB treatment. Among patients

with no TB at baseline, male patients were at significantly greater risk of dying

than female patients. Also, patients that started ART from 2008 had significantly

lower risk of TB infection if they did not have TB at the time of starting ART.

Our study presents different transition quantities between the states of interest

that can be easily be understood by clinicians and public health specialists. More

importantly, the results provide clear pathways taken by HIV patients as they

move from one TB state to another, an aspect mostly often not reported in TB

analyses. More importantly, the clinical implications of these findings suggest

that patients that had a non-conclusive TB treatment result could be restarted

on TB treatment rather than wait for further confirmation results. Also, from

public health interest, these findings suggest the protective effect of ART on TB

episodes with patients that start TB after scale-up of ART having less likelihood

of experiencing a TB episode.
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7.1 Introduction

In Chapter 5 and Chapter 6, we modelled the time to an event happening, namely

death. In addition, in Chapter 5 we considered; i) death as an outcome, ii) death

as a competing risk to occurrence of lost to follow-up event i.e. dying before being

lost to follow-up and lost to follow-up before death being recorded or observed. In

both cases, one of the assumptions was that all patients had the same origin status

(also called initial state). In Chapter 6, only the death outcome was considered

but an extension was made to study how the hazard of death varied geographically.

However in some diseases, patients go through multiple states before experiencing

a terminal state (such as death). To get a better understanding of the disease

progression, it is therefore important to model this process.

In this chapter, we consider an example of epidemiological study in which patients

visit four (4) states; TB free, TB infected/Receiving TB treatment, TB treatment

completed and death. These states are based on nationally standardised definition

of TB treatment outcomes in Malawi. In particular, unlike having a single unique

transition record per patient (alive → dead or to another competing event), we

consider all transitions between states. The methods used to analyse these kinds

of data are generally mathematical modelling of infectious diseases and 2) the

multistate models, also known as event history modelling.

In general mathematical modelling of infectious diseases uses a set of differential

equations. For these equations the following must be established or specified: the

number of individuals who are susceptible to the disease; the number of individuals
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exposed to the disease; the number of individuals infected by the disease and

; the number of individuals that recovered or died from the disease. All the

parameters that govern the infection process ought to be specified too. Such

parameters include; the infection rate, recovery rate, and the basic reproduction

number of the disease. The modelling process becomes complex when modelling

co-infections such as HIV and TB co-infection. Available literature on modelling

the dynamics of HIV/TB co-infections have been done at cellular level, hence

requiring immunological measurements such as T cells, CD4 cell count, CD8+ cell

counts and viral load (Dodd et al., 2014; Shah and Gupta, 2014; Wang, Yang

and Zhang, 2013; Castillo-Chavez and Song, 2004; Blower et al., 1995). These

measurements indicate the level of compromise of an individual’s immunity with

TB and HIV co-infection. Since we did not have all these measurements, we did

not consider mathematical modelling, and this is one of the limitations of these

data.

In our our literature review, we did not find any studies on TB treatment outcome

that used multistate models. This lack of literature in public domain is echoed

in an overview by Beyersmann, Wolkewitz et al., (2011). However, multistate

models have been used to study disease progression and efficacy of TB diagnostics

and treatment regimen with studies from Malawi, South Africa, Zambia and Kenya

(Keiser et al., 2011; Bwayo et al., 1995; Heymann, 1993). In other studies, Markov

multistate models were used in economic evaluations of preventive therapy regimes

of TB aimed at preventing the spread of tuberculosis (Mandalakas et al., 2013;

Bell, Rose and Sacks, 1999; Bachmann, 2006).
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7.2 Objective

We use these multistate models to study the epidemiology of TB in HIV cohorts.

Specifically, the purpose of this chapter is to address the last objective: Using

multistate survival models, investigate the different infection pathways for indi-

viduals with both TB and HIV as listed under section 2.2 on page 7. In particular,

the goals of this analysis are to; i) model the probability of transitioning between

each pair of states and ii) assess the effects of covariate on these transition prob-

abilities. The overall motivation of this analysis is that a better understanding of

the complex epidemiology of HIV and TB co-infection could be vital in provid-

ing insights into care and treatment practices in HIV programmes. A detailed

description of methods used in multistate modelling have been described under

subsection 4.3.3 from page 64.

7.3 Recap: HIV and TB co-infection

Tuberculosis is one of the most common opportunistic infections in persons liv-

ing with HIV. The disease takes advantage of the compromised immunity the

HIV patients have and being diagnosed with TB is a sign of progression to AIDS

(CDC, 2016). TB examination is either through sputum smear examination (very

common) or chest X-ray examination. Once diagnosed with TB, in addition to

HIV treatment drugs (ART) patients are started on first line TB drugs for a min-

imum of six months. The most common drugs are isoniazid (INH) and rifampicin

(RMP). Sometimes HIV patients develop a more complex form of TB known as
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Multi-drug-resistant tuberculosis (MDR-TB). MDR-TB patients are treated for a

longer period of time- usually a minimum of eight months (Malawi Ministry of

Health, 2011). The possible outcomes of the TB treatments are cured, relapse,

complete (TB outcome not yet confirmed), death or loss to follow-up. In low-

income countries with high burden of HIV disease, research in TB epidemiology is

becoming increasingly useful in informing the integration of HIV and TB services

especially in sub-Saharan Africa. Some of the studies reporting efforts on the HIV

and TB integration services include studies by Sculier, Getahun and Lienhardt,

(2011), Zachariah et al., (2011) and Howard and El-Sadr, (2010) and Churchyard

et al., (2007).

7.4 Data Description

The data used in this analysis were collected from 1, 500 HIV patients randomly

selected (without replacement) from an HIV cohort with approximately 20, 000

patients on HIV treatment in Zomba district in Malawi. The selection of the

random sample was restricted to only patients who started the lifelong HIV treat-

ment antiretroviral therapy (ART) between 2004 and September 2011. The size

of the sample was constrained by resources and time. After obtaining permission

from the hospital officials, we organised and collected patients records for patients

that started ART during the study period. With the help of five research assist-

ants, we retrospectively reviewed paper records containing clinic visits for all 1,

500 selected patients and entered the data in an electronic database. Here, TB
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is defined in general as having a TB diagnosis regardless whether it is a simple

TB or MDR-TB. This is because the MDR-TB testing was not available for the

majority of the study period. In addition, all the data from sputum smear and

chest X-ray examinations are included. After data cleaning, only 1483 patients

were eventually used in the final analysis, because the other 17 patients did not

have complete information on important variables (sex, date of birth and date of

starting HIV treatment). In total, there were more than 35, 000 clinic visits made

by the 1483 sampled patients in the study period.

7.5 Multistate modelling

We identified four possible TB states (status) through which HIV patients go

through. These states are;

� TB free. This is a state when patients do not have TB or have been cured

after TB diagnosis and have successfully completed TB treatment as per

national treatment guidelines. Patients in this state could be misdiagnosed

as TB free and this in turn would overestimate the number of patients of

cured of TB.

� Receiving TB treatment. This is a state for all patients diagnosed with TB

and are receiving TB treatment in addition to their routine ART treatment.

There are two scenarios for an HIV patient to be on TB treatment; Firstly,

all HIV patients screened for TB at baseline and subsequent follow-up clinic

visits. If diagnosed and confirmed with TB, they are started on TB treatment
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in additional of their usual ART drugs. Secondly, the other entry point is

the TB clinic. All patients in TB clinic are routinely offered HIV testing

and counselling services as part their continuum care package. Therefore, at

the time of starting HIV ART (HIV treatment) some patients might already

have started TB treatment.

� TB treatment completed. The patients in this is state are patients that

have completed TB treatment but their TB status or outcome is not yet

confirmed. For some patients, this was taking up to three months to have

TB status results. The possible final outcomes from this state are; 1) patients

confirmed cured of TB (go to state 1 ) , 2) patients not cured are restarted

on TB treatment (go to state 2 ), and 3) other patients die while awaiting

ascertainment of TB status results (go to state 4 ).

� Death. The state for patients that died while on TB treatment or after

successful TB treatment or died without any TB episode. The limitation of

this categorisation is that such deaths are not attributed to TB/HIV as a

cause, its treated as all-cause mortality even though TB/HIV could be the

highly probable cause of death.

All possible transitions between these states are summarised in the flow diagram

in Figure 7.1.

The recruitment (baseline) time was defined as the time since starting the lifelong

antiretroviral therapy. We used a Counting Process (CP) format for our data. This

means that the time to a particular state is calculated from the recruitment time
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as opposed to resetting the clock to zero every time the patient leaves a particular

state (see an example given in Table 4.3). The reason for adopting this type of

time scale is because the order in which the states (events) occur is important in

our data. For example, while you can die without having any TB episode (1 →

4), it is impossible to be cured unless you first had TB and were on TB treatment.

So TB infection starts first before being cured of TB.

TB-FREE (1) ON TB TREATMENT(2)

TB TREATMENT COMPLETED(3)DEATH (4)

Figure 7.1: A model for TB events following initiation of HIV treatment(ART)

7.6 Model formulation and Parameter Estimation

Different approaches can be used to analyse multistate data in the counting process

approach. In the book by Beyersmann, Allignol and Schumacher, (2012), the

authors use a stratified Cox model to model transition hazards and probabilities.

However in the present analysis, a Markov model was used to model different

transition quantities of interest because the order in which events occurred is

important in our data. This order of occurrence of events is not captured by a

stratified Cox model. For instance, for patients to be in state 3, the must have

been on TB treatment first and also one can be cured of TB if they were first
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diagnosed of TB and put on treatment. The order of these possible transitions

is very important especially in estimating the probability of transition to a next

state i but not j.

In this study, we used a time-homogeneous Markov model. This assumption is

important as it simplifies the interpretation of different transition quantities. How-

ever, this is a strong assumption especially in TB epidemiology where the hazards

of TB infection could change over time and exposure due to change in public health

systems. Nevertheless, the motivation and availability of software for analysing

such data played a big role in choosing this model. This limitation is also reflected

through out in the discussion of results from these models.

To complete the formulation of a Markov model, a transition matrix specifying

all possible transitions must be defined. The diagonal elements are set to zero as

they denoted staying in the same state. In this study, the transition matrix Q was

defined as follow;

Q =



0 q12 0 q14

q21 0 q23 q24

q31 q32 0 q34

0 0 0 0


One of the goals of this analysis is to assess the effects of covariates on transition

quantities. To do this, we introduce a model for the hazard of transition between

each pair of states. We included covariates in our model in order to estimate the

effect on transitions between states. Equation 7.1 to Equation 7.7 give the series
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of all models for the transition hazards fitted in this study.

q12(t, x) = q12
0 (t) exp(Xβ12) (7.1)

q14(t, x) = q14
0 (t) exp(Xβ14) (7.2)

q21(t, x) = q21
0 (t) exp(Xβ21) (7.3)

q23(t, x) = q23
0 (t) exp(Xβ23) (7.4)

q24(t, x) = q24
0 (t) exp(Xβ24) (7.5)

q32(t, x) = q32
0 (t) exp(Xβ32) (7.6)

q34(t, x) = q34
0 (t) exp(Xβ34) (7.7)

where q0(t) is the baseline transition hazard at time t and x is an individual

covariate value.

The estimation of the parameters β12, β14, β21, β23, β24, β32 and β34 is through max-

imum likelihood estimation using the likelihood function defined in Equation 4.49.

Detailed description of these methods is given under subsection 4.3.3.

The msm was the man package used in model fitting. The other two packages

developed by Beyersmann, Allignol and Schumacher, (2012) were also used in this

analysis as follows; mvna-multivariate Nelson-Aalen estimator of the cumulative

transition hazards for plotting cumulative transition hazards, and etm-Empirical

Transition Matrix, also called Aalen-Johansen estimator for plotting transition

probabilities.
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7.7 Descriptive Analysis

The total follow-up period was 11.23 years with a total of 35, 263 patient visits.

Among the 1, 483 HIV patients, a total of 130 (8.7%) patients died and a total

of 187 (12.6%) patients had at least one TB episode (generally called HIV/TB

co-infection). A total of 1194 patients did not have any TB episode during the

follow-up period (Table 7.2).

Among 130 patients that died, 102 (78.5%) did not experience any TB episode

during the follow-up period and a total of 28 (21.5%) of 130 patients that died

had at least one TB episode. This represents approximately 14.9% deaths among

the HIV/TB patients.

A total of 102 of 187 (54.5%) TB patients had TB at baseline, of which 8 (7.8%)

died. The remaining 85 of the 187 TB patients were diagnosed with TB after

starting ART, of which 20 (23.5%) died. Table 7.1 is a summary of all transitions

that happened in this sample.

The fewer numbers in state 3 is good from programme point of view since this

means more patients get post-treatment results in good time, no need to be in

state 3 awaiting their final TB result. However, in modelling this may lead to

great uncertainty due to large standard errors, hence wide confidence intervals.

From Table 7.1, there are no transitions from death (4) since it is an absorbing

state. Since patients cannot transition from state 4 (death), this is the only column

that has unique number of patients and the column total is therefore equal to the
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number of patients that died.

Table 7.1: Summary of state transitions. Transition numbers are as defined in
Figure 7.1

To

1 2 3 4

1 1325 87 0 104

From 2 139 0 33 22

3 7 5 0 4

There were a total of 20 unique transitions that patients passed through as sum-

marised in Table 7.2. For instance, among the 130 patients that died, 102 moved

directly from state 1 to state 4 (died without any TB episode during follow-up); 18

patients made the transition 1→ 2→ 4 (no TB at baseline and got TB and died

while on TB treatment); 4 patients made the transition 2→ 4 (had TB at baseline

and died while on TB treatment); 2 patients made the transition 2→ 3→ 4 (had

TB at baseline and died while awaiting ascertainment of TB status after TB treat-

ment), 2 patients made the transition 1 → 2 → 3 → 4 (no TB at baseline then

got TB and died while awaiting ascertainment of TB status after TB treatment);

and 2 patients made transitions 2 → 1 → 4 (had TB at baseline and got cured of

TB but later died).

A large number of patients had either one or two transitions only (Table 7.2).

Seven (7) patients experienced a relapse of TB, with 4 out 7 of them being cured;

the status of the other half was not ascertained by the time the study ended.
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Table 7.2: A list of transitions and number of patients in each combination of
transitions (1= TB free, 2= TB diagnosis and on TB treatment, 3=TB treatment
Completed/Awaiting confirmation of TB Status, 4=Dead)

Serial # Transitions Number of patients
1 1→ 1 1194
2 1 → 4 102
3 2 → 1 78
4 1 → 2 → 1 49
5 1 → 2 → 4 18
6 2 → 3 9
7 1 → 2 → 3 6
8 2 → 3 → 1 5
9 1 → 2→ 1 4
10 2 → 4 4
11 2 → 3 → 4 2
12 1 → 2 → 3 → 2 → 1 2
13 1 → 2 → 3 → 4 2
14 2 → 1 → 4 2
15 1 → 2→ 1→ 2→ 1 1
16 1 → 2 → 1 → 2 → 3 1
17 1 → 2 → 3 → 2 → 3 1
18 1 → 2 → 3 1
19 2 → 3 → 2 → 1 1
20 2 → 3 → 2 → 3 → 1 1

For patients with no TB at baseline, the median time to TB diagnosis was 10.5

months (95% CI: 6.7, 14.3). There was no noticeable difference in mean ages

between patients that had TB episodes and those without TB episode (Figure 7.2).

However, there was noticeable differences in mean age between female and male

patients, with male patients being older than females on average (Figure 7.3).

For patients that did not have TB at baseline, the probability of surviving a TB

diagnosis in the first five years (P {surviving TB in t≤ 5 yrs|no TB at baseline})

was estimated at 93% [95% CI: 91 - 95]. The time variable in this case is defined

as the time to TB diagnosis.
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Figure 7.2: Left: Density plot for patients with and without TB episode during
follow-up, with dotted lines representing the mean age in each group. Right:
Probability of surviving TB diagnosis for patients who started HIV treatment
without TB diagnosis at baseline.

Figure 7.3: Left: Density plot for patients’ age and sex (male/female). The
dotted lines are the mean ages at initiation of ART for each sex category.
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7.8 Model results and Prediction

We report the transition intensities, transition probabilities and transition hazards

(see pages 73 and 74 for definitions). These estimates were obtained using meth-

ods implement in msm R package. Comparable results for transition probabilities

and cumulative transition hazards1 were obtained using etm and mvna packages

respectively. All transition plots were done using etm and mvna. We discuss in

turn each of these quantities in the next three subsections.

7.8.1 Transition Intensities

The transition intensities describe the rates of transitions from one state i at time

t1 into another state j (possibly j = i) at time t2, t2 ≥ t1. The row transition

intensities in a transition matrix sum up to zero since the intensities of remaining

in the same state are defined as a negative summation of transition intensities

from this particular state to other states, qii = −
∑

j 6=i qij. Table 7.3 provides

a summary of the crude (no covariates included) and baseline covariate-adjusted

transition intensities with their corresponding 95% confidence intervals based on

the normal distribution. These baseline adjusted transition rates are obtained with

covariates set at their means. For intensity matrix that depends on a covariate,

see Table 7.6 on page 204. The transition rates are calculated per 120 months (10

years), the length of the follow-up.
1Cumulative transition hazards: the cumulative hazards of transitioning from one state to

another adjusting for patients’ covariates.
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Table 7.3: 10-Year Transition rates TR (95% CI) using a time-homogeneous
Markov Model(Adjusted for: initiation age, sex and ART period)

Transition Crude TR 95% CI Adjusted TR 95% CI

1 → 1 -0.00350 (-0.00405,-0.00303) -0.00318 (-0.00373,-0.00272)

1 → 2 0.001893 (0.00153,0.00234) 0.00172 (0.00137,0.00217)

1 → 4 0.001611 (0.00132,0.00197) 0.00146 (0.00117,0.00182)

2 → 1 0.192888 (0.16309,0.22813) 0.19622 (0.16515,0.23313)

2 → 2 -0.26647 (-0.30743,-0.23097) -0.25759 (-0.29996,-0.22120)

2 → 3 0.04547 (0.03194,0.06474) 0.03909 (0.02533,0.06034)

2 → 4 0.02811 (0.01772,0.04460) 0.02228 (0.01198,0.04142)

3 → 2 0.08772 (0.03679,0.20914) 0.07883 (0.02203,0.28213)

3 → 3 -0.15329 (-0.29306,-0.08018) -0.14840 (-0.37588,-0.05859)

3 → 4 0.06557 (0.02446,0.17578) 0.06957 (0.01813,0.26695)

The transition rate describes the rate of moving from one state to another. For

instance, there were 2 per 1000 HIV patients per 10 years who were infected of

TB and were put on TB treatment i.e they move from state 1 to state 2.

As seen in Table 7.3, there are no big differences in estimates obtained from un-

adjusted and adjusted model (adjusted for covariates).

The interest is on how transition from one state to another compare as well as

how different combination of transitions compare. From Table 7.3, it can be seen

that patients with no TB were 1.18 (95%CI: 0.85 - 1.64) times more likely to be

diagnosed with TB (q12) than die (q14).
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If patients were on TB treatment, the rates of moving to "cured state" were higher

than dying while on TB treatment or having the ascertainment of their TB status

prolonged after completing TB treatment. Patients were 5 (95% CI: 3 - 8) times

likely to be declared cured of TB (q21) than to remain without ascertainment of

their TB status (q23). Also if on TB treatment, patients were 9 (95% CI: 5 - 17)

times more likely to complete TB treatment and be cured of TB (q21) than die

while on TB treatment (q24). Once on TB treatment, patients were 69% more

likely to complete the treatment (q23) than die while on treatment (q24).

Patients who completed TB treatment and were awaiting ascertainment of their

TB status were 1.13 (95% CI: 0.17 - 7.17) more likely to restart TB treatment

(not cured, q32) than die (q34).

7.8.2 Transition Probability

The transition probability is the probability of occupying a given state j at time

t2 conditional on occupying state i at time t1, t2 ≥ t1. When the new state

occupied is an absorbing state, then the transition probability is equivalent to

an event probability. This is also analogous to cumulative incidence functions

discussed in the competing risk modelling (see subsubsection 4.3.3.1 for details on

the cumulative incidence function).

Since probabilities are defined for periods, the use of landmark time points to aid

interpretation of results is common practice in medical statistics. A landmark time

point is a time s that is chosen to mark a milestone of interest and can be used to
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check the progress of an outcome at different times. The landmark time approach

was first proposed by Anderson, Cain and Gelber, (1983). When calculating the

probability at a particular landmark time point, individuals are removed from the

data if they experience the transition of interest before this time (Anderson, Cain

and Gelber, 1983; Beyersmann, Allignol and Schumacher, 2012, p. 187). Two

comparisons between transitioning to TB diagnosis and to death are considered as

follows; P12(s, t) vs P14(s, t) and P14(s, t) vs P24(s, t) in Figure 7.4 and Figure 7.5

respectively. The estimated transition probabilities are based on Equation 4.47

on page 73. Let Y be a stochastic process for the TB states indexed by time on

ART with T= c(tmin, t1, . . . , tmax), for ti < ti+1. These transition probabilities are

defined as;

P12(s, t) = P (Yt = 2|Ys = 1)

P14(s, t) = P (Yt = 4|Ys = 1)

P24(s, t) = P (Yt = 4|Ys = 2)

In this analysis, three landmark time points were chosen at 6, 12, 18 and 24 months

after starting HIV treatment which are regarded as crucial time points for HIV

patients. The points were chosen based on the ART survival milestones reported

by the national HIV programme in Malawi (Malawi Minstry of Health, 2011).

In Figure 7.4, it can be noted that for each fixed s, we have P̂12(s, t) ≤ P̂14(s, t).

This difference is more pronounced with increasing period on ART for any fixed

landmark time point s. In general, P̂12(s, t) is decreasing over time while P̂14(s, t)
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is increasing. Since TB diagnosis and on treatment (state 2) is a transient state,

some patients leave the state explaining the fluctuating behaviour of the prob-

abilities over time t for a fixed landmark time point s. Unlike patients on TB

treatment (state 2), patients who die (state 4 ) do not leave the state (absorbing)

hence the probabilities are bound to increase or be constant as time t increases for

a fixed landmark time point s. The width of the confidence bounds (dotted lines)

for P̂14(s, t) is increasing indicate growing uncertainty in the estimated probabilit-

ies. If patients were in TB free (state 1 ) after a long time on ART, the likelihood

of being diagnosed with TB decreases substantially although there are two spikes

between t=80 and t=100 with very wide confidence bounds. A possible explana-

tion for this observation could be due to the small number of TB cases during this

period causing wide and unstable confidence bounds.

Overall in Figure 7.5, the probability of dying while TB free (includes those cured

of TB) is consistently lower than dying while on TB treatment i.e. for each fixed

s, P̂14(s, t) ≤ P̂24(s, t). This difference is much smaller if patients did not have

TB in the first six months on ART but widens with increasing landmark time

point. Also note the increasing uncertainty of P̂24(s, t) with increasing values of

s. However, overall these results indicate if patients with longer follow-up time

are diagnosed with TB it is an indicator of worsening prognosis(as evidenced in

increasing probability of dying). Patients with longer follow-up time given that

they were TB free at s=18 and s=24 had a lower risk of death compared to the

risk in early follow-up time.

Table 7.4 shows the estimated 10-year transition probabilities for remaining in the
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same state and also transitioning to other states. The transition probabilities from

the same state sum up to 1. The crude probabilities are obtained from a model

without covariates and transition probabilities adjusted for age, sex and period of

starting ART are presented under the "Adjusted" column. The estimates from

both models lead to the same conclusions although 7 out of 12 times the adjusted

probabilities were slightly lower than the crude estimates.

From Table 7.4, we note a very high probability of remaining in state 1 using both

crude and adjusted results (Probability:0.9967, 95%CI: 0.9820-0.9971). Some of

the reasons for this high probability could be due to: fewer TB infections amongst

patients who started HIV treatment while TB free at baseline; low number of

TB relapses in patients that have successfully completed TB treatment and are

cured; and also it could be due to the long period used (10 years) could be long.

However, comparing transitions to other states, we note patients in state 1 (TB

free or cured of TB) had higher probability of being TB infected and put on TB

treatment than dying (Table 7.4).

Once on TB treatment (state 2), patients were more likely to complete the treat-

ment and be cured than dying while on TB treatment (0.169; 0.146-0.197). We

also note that patients on TB treatment had the lower probability of transitioning

to a death state was 3%, while transitioning to a state where they had to wait for

their final TB treatment result was 4%.

For patients awaiting ascertainment of TB status after completing TB treatment

(state 3 ), the probabilities of restarting TB treatment (not cured, going back to
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state 2 ) and probability of dying were both higher than being declared TB free

(cured, going to state 1 ). There was a 6% chance of dying if patients were in state

3. This result suggest restarting these patients on TB treatment would be a safer

option from a public health perspective.

Table 7.4: Estimates of 10-Year Transition Probabilities* (95% CI) using a
time-homogeneous Markov Model

Transition Crude Adjusted

1 → 1 0.99667(0.99620, 0.99710) 0.99698(0.99642, 0.99740)
1 → 2 0.00166(0.00133, 0.00203) 0.00152(0.00121, 0.00194)
1 → 3 0.00004(0.00003, 0.00006) 0.00003(0.00002, 0.00005)
1 → 4 0.00163(0.00133, 0.00201) 0.00147(0.00120, 0.00187)
2 → 1 0.16914(0.14550, 0.19650) 0.17279(0.14754, 0.20140)
2 → 2 0.76782(0.73700, 0.79210) 0.77429(0.74294, 0.80210)
2 → 3 0.03691(0.02571, 0.05230) 0.03195(0.02060, 0.04774)
2 → 4 0.02613(0.01752,0.04129) 0.02097(0.01255, 0.03705)
3 → 1 0.00736(0.00313, 0.01609) 0.00676(0.00187, 0.02002)
3 → 2 0.07120(0.02984, 0.15420) 0.06442(0.01769, 0.18320)
3 → 3 0.85953(0.72980, 0.92110) 0.86336(0.66850, 0.93750)
3 → 4 0.06191(0.02590, 0.16430) 0.06546(0.01894, 0.21780)
*P(0, t) for each pair of states, with t being the longest follow-up time.

Table 7.5 provides probabilities of the state being the immediate state to be visited,

−qij/qii state j to be visited immediately from state i. These probabilities are only

from all possible transitions from state i. For example, only two transitions are

possible from TB free status (state 1 ); transition to state 2 (TB infection/TB

treatment); transition to state 4 (dying while TB free). So we that TB infection

was likely to be the first state compared to death, with a ten-point difference in

probability (54% vs 46%). However, patients on TB treatment had a very higher

chance of being cured first before going to other states (72% vs 17% & 11%). Also,
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Figure 7.4: Probability of TB diagnosis (P12(s, t)) compared to transitioning
to a death state from a TB free state (P14(s, t)). Probabilities are plotted at
different landmark time points s since starting HIV treatment; 6 months (top
left), 12 months (top right), 18 months (bottom left), 24 months (bottom right)

we note that patients in state 3 were likely to transition to state 2 first (restarting

TB treatment) compared to moving to state 4 (death).
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Figure 7.5: Comparing transition probabilities of death without TB (P14(s, t))
versus death while on TB treatment (P24(s, t)). Probabilities are plotted at
different landmark time points s since starting HIV treatment; 6 months (top
left), 12 months (top right), 18 months (bottom left), 24 months (bottom right)

Table 7.5: 10-Year Probability of being the next immediate outcome to be
experienced

No TB TB TB Complete Death

No TB 0 0.54(0.47,0.61) 0 0.46(0.39,0.53)

TB 0.72(0.65,0.78) 0 0.17(0.12,0.23) 0.11(0.07,0.16)

TB Complete 0 0.57(0.28,0.83) 0 0.43(0.17,0.72)
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7.8.3 Transition Hazards Ratios

One of the important goals in survival analysis is to assess the effects of covariates

on the time to an event occurring. Like in the standard proportional hazards mod-

els, the transition hazards defined in Equation 7.1 to Equation 7.7 are assumed

to be proportional transition hazards models. This assumption eases the inter-

pretation of the estimated transition hazards. The likelihood function for these

models is defined as in Equation 4.49 with the transition intensity function defined

in terms of the corresponding transition probability.

Table 7.6 shows the estimated transition hazards ratios (THR) for age, sex and the

era in which the patients started ART (ART period). The hazards of remaining

in the same state are used as reference values (THR = 1). There were signific-

ant differences in the transition hazards of TB infection given they were TB free

(1→ 2), with patients who started ART after 2007 having a significantly reduced

risk of TB infection (THR: 0.524, 95% CI : 0.339, 0.810). Compared to female

patients, male patients had significantly higher hazards of death given they were

TB free 1→ 4 (THR: 2.274, 95% CI: 1.508, 3.428). For patients on TB treatment

(in state 2 ), there were no significant differences noted although a unit increased

in age and being a female patient had lowering effects on the hazards of being

cured of TB (2→ 1).
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Table 7.6: Estimates of 10-Year Transition Hazards Ratios (95% CI) using a
time-homogeneous Markov Model(Reference values: Female for Sex and 2004-
2007 for ART period)

Transition Initiation Age Sex: Male ART Period:2008-2011

1 → 2 1.014(0.992, 1.036) 1.303(0.825, 2.057) 0.524(0.339, 0.810)

1 → 4 0.981(0.960, 1.003) 2.274(1.508, 3.428) 0.692(0.459, 1.046)

2 → 1 0.998(0.982, 1.013) 0.858(0.599, 1.230) 1.248(0.853, 1.826)

2 → 3 1.009(0.975, 1.045) 1.677(0.774, 3.632) 0.866(0.379, 1.978)

2 → 4 1.037(0.994, 1.082) 1.600(0.580, 4.409) 0.461(0.171, 1.240)

3 → 2 1.016(0.949, 1.087) 0.967(0.150, 6.237) 1.126(0.109, 11.644)

3 → 4 0.975(0.888, 1.070) 0.297(0.038, 2.375) 0.163(0.016, 1.650)

In Figure 7.6, a comparison of cumulative hazards of death and TB diagnosis is

made for patients that are in the TB-free state. It can be noted that cumulative

transition hazards for death are higher (steep slope) than TB diagnosis in early

days on ART treatment but the opposite is true for later periods.
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Figure 7.6: Cumulative transition hazards of death without TB diagnosis (1→
4) compared to the hazards of TB diagnosis (1→ 2)

7.9 Model Assessment

It is important to assess if the fitted model suits the data well. In multistate mod-

els, two approaches are used: plotting the number of observed and expected counts

in each state and Pearson-type goodness of fit (which is analogous to Pearson χ2

test).

Suppose all patients start in state j and have a common initial time t. Then

the expected number of patients in state k at time t is n(t)P (t)j,k. Using this

definition, we compare and plot at one-year intervals the expected and observed

number of patients using the R-function prevalence.msm (Jackson, 2011). Here,

prevalence is defined as percentages of individuals in each state at a set of times.
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From Figure 7.7, it can be noted that the prevalence for the observed and expected

are similar for "‘TB Complete"’ and "‘ On TB treatment"’ states. However under

this model, the observed and expected are not predicted well for the "‘TB free"’

and "‘Dead"’ states. Less individual were observed than expected in the "‘TB

Free"’ state and more individuals were observed than expected in the "‘Death"’

state. This means that the model does not describe well these irregularly-observed

transition processes. From about 50 months (4 years), the model tend to overes-

timate the predicted number of patients who die. Also at around the same time,

the model tend to underestimate the number of patients who are TB free.

The possible reasons for this poor fit could be due to the following reasons. Firstly,

this could mean failure of the Markov assumption, meaning the transition intens-

ities may well depend on the time spent in previous states, the process history. To

address this, (Jackson, 2011) suggest the use of a Semi-Markov process model as

a possible solution but it is often difficult to account for the process history as the

process is only observed through series of snapshots. The other reason for poor

fit could be that the non-homogeneous time model is ideal for these data. To go

around this problem, one way is to consider modelling the transition intensities as

a piecewise-constant function of age.

The observed and expected number of patients in Pearson-type test are calculated

by (Jackson, 2011; Titman, 2009; Aguirre-Hernández and Farewell, 2002):

Ohlhrscg =
∑

I {S(ti,j+1) = s, S(tij) = r}
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Figure 7.7: Comparing the observed and expected number of individuals in
each state

ehlhrscg =
∑

P {S(ti,j+1) = s|S(tij) = r}

where r is the starting state, s is the finishing state, h is time between the start of

the process and the first observed pair, lh is the time interval between observations,

g is for diagnosing lack of fit and c is the impact of covariates summarised by qrr.

Here I(E) is the indicator function for an event E, the summation is over all

individuals and over the set of transitions in the groups defined by h, lh, c, g. The
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test statistic T is then;

T =
∑
hlhrscg

Ohlhrscg − ehlhrscg
ehlhrscg

The results in Table 7.7 from the Pearson test (using pearson.msm in R, see

Jackson, (2011)) suggest there is a problem in the computation of the test. We

get;

Table 7.7: Model diagnostics using Pearson-type test

stat df.lower p.lower df.upper p.upper

468 NA NA 147 0

This means that the observed sample in some transition paths is not possible under

the null hypothesis. This is noted in Table 7.2 that there are very few individuals

in some transition paths (note: On TB treatment and TB complete are transient

states). In this case, this test may not useful, as a result we use the plots above

as a diagnostic tool.

7.10 Discussion and Conclusion

In medical and epidemiological studies, the odds ratios, relative risks and hazard

ratios are the quantities often reported and well understood by wider readership

in health field. However, in this study different quantities are modelled and their

relationship explained. The quantities reported in this analysis are the transition

intensities, transition probabilities and the transition hazard ratios. The overall
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aim was to provide an alternative interpretation of model results in order to aid a

better understanding of the epidemiology of diseases. In particular, in this study,

these methods were used to explain and better understand the TB epidemiology

in HIV cohorts.

We considered a multistate model as opposed to modelling as transition separately

because this accounts for the fact that patients can also visit other competitive

states. The results from the model better explains the transitions and their de-

pendencies as patients move from one state to another. Moreover, the probabilities

obtained from the models describe the random movements of patients providing

possible competitive pathways patients are likely to take.

There were three assumptions made for this analysis. Firstly, it was assumed that

the transitions we observed were unrelated to ART regimen and the latter was

unobserved. Secondly, it was assumed that TB treatment type was not responsible

for the transitions observed between the states. Lastly, our analysis focusses on

all-cause mortality because data on cause-specific were not captured in this HIV

cohort.

A larger proportion of TB patients were already on TB treatment at the time of

starting HIV treatment. This could be that these patients were already infected

with HIV and were just tested late for HIV since TB is an opportunistic illness

that takes advantage of worsening body immunity. The main clinical implication

of this result is to consider close monitoring of patients with HIV/TB co-infections.

The main transitions observed in this cohort were; remaining TB free, no TB to
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death, TB infection to cure, no TB then TB then cure, no TB then TB then died

in that order (Table 7.2). Mortality was three times higher in patients who got

TB after starting ART than in patients who started ART while on TB treatment.

Overall, mortality was low among TB patients (15%) compared to the rates repor-

ted from other studies in the tropics (Loveday et al., 2015; Velásquez et al., 2015;

Diendéré et al., 2015; Vijay et al., 2011; Collins et al., 2010; Makombe, Harries, Yu

et al., 2007). This result is consistent with current efforts that are being to made

in intensifying TB screening in HIV cohorts. Form public health perspective, HIV

programs should consider integrating more TB service in HIV cohorts rather than

HIV patients accessing TB services in standalone TB clinics.

Both unadjusted and adjusted models lead to same conclusions though inclusion

of patient covariates in adjusted models lowered the parameter estimates in the

majority of the cases (transition intensities, probabilities and transition hazards).

Patients in TB free status had a relatively higher probability of being diagnosed

with TB than dying TB free. However, the cumulative transition hazards were

higher for "TB free → death" transitions compared to the "TB free → TB infec-

tion" transitions during the early days on HIV treatment. Thereafter, the cumu-

lative hazards are similar and tend to level-off with time. Clinically, this implies

that the early period on ART is crucial and better practices for management HIV

patients during this period have been advocated elsewhere (Rabie et al., 2015;

Mosam, Uldrick et al., 2011; Vijay et al., 2011; Collins et al., 2010).

Once patients were on TB treatment, they were more likely to complete the treat-

ment than to die while on TB treatment. There was an eight fold chance of
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completing the TB treatment and be cured compared to patients dying while on

the TB treatment. This also observed in high treatment TB treatment success

rate of 76.5%. From clinical and public health perspective, this finding would

be pleasing to clinicians and public health specialists because the use of ART is

supposed to boost the immunity of HIV patients hence should have a spilling-

over protective effect on opportunistic illnesses such tuberculosis. Several studies

have reported the protective and beneficial effective of ART on opportunistic ill-

ness (Belayneh, Giday and Lemma, 2015; Vijay et al., 2011; Collins et al., 2010;

Johansson, Robberstad and Norheim, 2010).

The majority of TB patients who completed treatment had their TB status ascer-

tained soon after finishing TB treatment. However there were nine TB patients

who, despite finishing their TB treatment, their ascertainment results about TB

status after took longer than usual. For these patients, they were more likely to

restart TB treatment compared to declared cured or dying while waiting confirm-

ation results. The stock out of TB diagnostic test kits could be the main cause

of the delay of after-treatment confirmation tests. While there are continued ef-

forts in improving logistics in HIV and TB programming, countries in sub-Saharan

countries face so many logistics due to demands from disease burdens such as mal-

aria and cancer. These challenges if not addressed could erode the gains already

made in controlling TB in the general population.

There were only two transitions in which significant differences in patient covariates

were observed; transitions from TB free state to TB infection state and TB free

state to death (Table 7.6). Patients who were TB free and had started HIV
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treatment between 2008 and 2011 had significantly lower hazards of transitioning

to TB infection status compared to the hazards of directly transitioning to the

death state. Also TB free male patients were twice at risk of dying compared

to TB free women. In all other transitions, no significant differences were noted

neither by age, sex nor period of starting treatment. Gender differences in TB

outcomes as well ART outcomes have been reported in other studies in Africa

(Takarinda et al., 2015; Jarrin, Gestus and al, 2008).

The model assessment indicated that the homogeneous continuous time multistate

Markov model did not consistently fit the data well. The poor prediction seen in

t state 1 (TB free) and state 4 (death) could suggest a failure of the Markov

assumption or indeed the time homogeneous assumption used. To address this

prediction, one could consider modelling the transition intensities as a piecewise-

constant function of age. Also, one could consider relaxing the Markov assumption

and model the whole process history. Also, the Pearson-type test failed to be com-

puted because of the small number of observations in some transitions especially

transitions into "‘TB treatment complete"’ state. The limitation of this test was

also highlighted by Aguirre-Hernández and Farewell, (2002).

The issue of lost follow-up (LTFU) has been discussed in all previous chapters.

Unlike the first and second chapters, in this chapter the main focus was on the

diagnosis of TB. The data on TB patients used in this analysis was collected and

periodically updated at a district-level and was mostly complete with all outcomes

ascertained in the majority of patients. Nationally, the TB treatment default rate

(missing treatment) has fallen from 5% in 2006 to 2% in 2009 to 2010 period
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(Malawi Ministry of Health, 2011). In this sampled data, a low proportion of

loss to follow-up of approximately 10% was observed. We anticipate that even

after accounting for deaths in the 10% LTFU group the reported results will not

be drastically different from the ones reported in this study. Nevertheless, loss

to follow-up in TB patient cohorts is still a big concern in many sub-Saharan

countries. More importantly TB patients who default on their treatment pose a

great danger of infecting other people in their communities. Poor adherence to

TB treatment can lead to developing resistance to standard first line drugs. Many

TB programs in Africa are doing commendable efforts to address this issue, with

a more recent concerns for TB patients detained in prisons (Mburu et al., 2016;

Puchalski Ritchie et al., 2015; Loveday et al., 2015; Feasey et al., 2013).

The limitations of this study are mainly failure to account for the impact of dia-

gnostic tool (sputum smear versus X-ray) and type of TB (PTB, EPTB, MDR-

TB). Including these variables would help to measure they impact transition quant-

ities reported here. Also being a retrospective study, we were limited in terms of

socio-demographics and clinical variables to include in the models. Being an air-

borne disease, TB prevalence varies by social factors such as being in crowded

prisons and tobacco smoking. Inclusion of such social could provide an extra layer

of understanding TB in HIV populations. Another limitation of this analysis is

that the infection rate reported in this analysis could be lower than the rate in

the general population. This is because we only used TB cases in HIV clinic and

might have missed some TB cases in the general HIV population. Complete cap-

turing of TB cases in many settings like Malawi with poor surveillance systems
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is challenging. Lastly, the issue of loss to follow-up could also have an impact on

the true outcomes of patients who did not die. Although the majority (>90%) of

patients were alive and were in active follow-up, the other 10% of patients’ statues

were based on their last known clinic visit (a lag of 3 months). This could po-

tentially underestimate the number of deaths not Tb infections due to its public

health importance. Despite these limitations, the results of this analysis are con-

sistent with results reported in other studies in the region. In additional, by using

multistate models we have demonstrated how presenting different transitions in

TB can improve our understanding of TB epidemiology in HIV cohorts. In our

literature review, we noted that multistate models are widely applied in oncology

and pharmacology (Svensson and Simonsson, 2016; Andersen and Keiding, 2002;

Anderson, Cain and Gelber, 1983).

Further areas of research extending this work can be considered in the following

areas. Firstly, it will be interesting to investigate if the introduction of the uni-

versal provision of ART to all HIV patients regardless of their CD4 levels will

have an impact on incidences of TB episodes in HIV populations. As part of as-

sessing the impact of this universal ART treatment policy, it will be of interest

to see how transitions in TB states will be affected in the long run. Secondly, a

possible methodology work is to extend the present work to include spatial effects

(spatial multistate models). This could help to understand regional effects on the

transition probabilities: geography is increasingly becoming an important element

in the planning process of health programmes. With increasing development of

computational tools and software, these more complicated models can be fitted
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although this is not straight-forward.

In conclusion, the results in this analysis provide clear pathways taken by patients

as they move from one state to another. It is noted that the following pathways

were common; remaining TB free, no TB to death, TB infection to cure, no TB

then TB then cure, no TB then TB then died. Cumulatively, we noted that there

was a high probability that TB-free patients would die than TB infection as their

immediate state. Also significant gender differences were noted in TB-free to death

transitions and being diagnosed with TB significantly varied with the period of

starting a lifelong HIV treatment. Although mortality among TB patients was

low compared to other cohort studies in the region, continued efforts for early TB

diagnosis and treatment initiation are crucial for public health reasons. In HIV

cohorts, patients with long follow-up time should be given the necessary attention

as they tend have a higher risk of TB infection. The methods presented in this

chapter are a complementary way of interpreting results from comparable models.

Apart from reporting the traditional hazards and time ratios in survival analysis,

transition probabilities and intensities are also reported here. As argued, this could

potentially increase in the way in which the public health readership community

can understand the epidemiology of a particular disease. Continued operations

research and best practices research in TB epidemiology is vital to inform the

overall public health interventions for controlling TB, especially in this rapidly

changing era of the lifelong antiretroviral therapy.
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Part III

General Discussion and Further

Research
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The work in this thesis has addressed some of the most important research ques-

tions in HIV epidemiology: survival, geographical variation in risk and TB co-

infection. As such, the purpose of this Part III is to summarise the discussion

and conclusion points from presented in the three (3) results chapters: Chapter 5,

Chapter 6 and Chapter 7.

In Chapter 5, we have reported risk factors associated with mortality in ART

cohorts. In addition, we have provided a novel way of identifying the lower bound

for the proportion of loss to follow-up (LTFU) patients that are really deaths. In

summary, we found that the time of starting ART was associated with reduced

hazards of death, while patients diagnosed with TB were twice at greater risk

of death compared to those without TB. These results were also echoed in some

results from sensitivity analysis of our approach of addressing LTFU. Our approach

of addressing LTFU in HIV cohorts is one of the major contributions of this thesis

as a whole. However, we hasten that to caution the reader that our approach is not

the ideal method for correcting parameter estimates in the model using data with

high LTFU. The methods for that purpose are available: see Kiragga et al., (2013)

and Henriques et al., (2012) and also a dedicated HIV research group in South

Africa, see http://www.iedea-sa.org/ for details. The key public health message

in this chapter concerns advocating for continued funding for HIV programs to

better trace individuals who are lost from HIV/AIDS care.

In Chapter 6, we extended the analysis in Chapter 5 by addressing the aspect

of geographical epidemiology. With the use of exceedance probability maps, we

noted that the northern and southern parts of Zomba district had unusually high
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probability of having greater hazards for death. The key contribution of this study

to the general HIV epidemiology is the intuitive way of interpretive the risk in

space. Identifying areas with poor survival outcomes becomes easy and this could

facilitate knowledge sharing among policymakers and health practitioners. Such

information could be used in the planning and distribution of resources targeting

areas with high disease burden. By highlighting geographical variation in risk,

this could also inform the global HIV/AIDS campaigns such as the 90-90-90 HIV

treatment goals aimed at eradicating AIDS by 2030 (UNAIDS, 2014).

In Chapter 7, we have addressed another important opportunistic disease in HIV

and AIDS cohorts. Due to compromised immunity, HIV patients are often vul-

nerable to attacks from several opportunistic illnesses including from TB infection

(CDC, 2016; Chu, Mahlangeni et al., 2010). In this analysis, we noted that (all-

cause) mortality was three times higher in HIV patients that contracted TB after

they had started ART compared to those that were already on TB treatment. This

result is indicative of worsening prognosis in patients that were diagnosed with TB

after recruitment. Few relapses (7) were observed among the TB patients that suc-

cessfully completed TB treatment at some time point. This low number of relapses

is encouraging finding highlighting the effect of ART (by boosting immunity) and

similar findings have been reported from studies in sub-Saharan Africa (Belayneh,

Giday and Lemma, 2015; Johansson, Robberstad and Norheim, 2010). Also, we

noted that once patients were on TB treatment, they were more likely to complete

the treatment than to die while on TB treatment. This is good because to gives

hope to the fight against TB. Lastly, we observed gender differences in mortality
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risk, with men having high risk of death: should continue to worry clinicians and

public health specialists. This undermines the continued efforts to eradicate TB

and gender mainstreaming in TB treatment programmes could provide vital. We

anticipate that the findings in this study will help to inform the current global

campaigns to end TB by 2030: WHO End TB Strategy, with a target of 35%

reduction in TB cases by 2020; Towards Zero campaigns by 2030- TB, AIDS,

Malaria, Poverty etc (WHO, 2016)

A number of future research studies could be considered for both epidemiology and

methodology purposes. For epidemiology research, future operational studies are

needed to study geographical differences in KS epidemiology and treatment out-

comes. Similar analyses at regional and nation-level to study KS epidemiology and

other types of cancer in HIV programmes could inform current efforts to improve

HIV programming in resource-limited settings. Also, there is need to find better

metrics for distance from Zomba Clinic to the patient’s location. Operational and

best practices research should be encouraged in HIV and TB epidemiology in order

to inform the overall public health interventions for controlling TB, especially in

this rapidly changing era of HIV treatment. For methodology, a possible meth-

odology work is to extend the present multistate models to include spatial effects

(spatial multistate models) and their computation to supplement current work

by Nathoo and Dean, (2008) and Brezger, Kneib and Lang, (2005). This could

help to understand regional effects on the transition probabilities as geography is

increasingly becoming an important element in epidemiology as a whole.
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Appendix: Addressing the STROBE Statement in Chapter 4, 5 and 6

Item
No Recommendation Sections where
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(b) Provide in the abstract an informative and balanced summary of what was done
and what was found Page 90, 147,179

Introduction
Background/rationale 2 Explain the scientific background and rationale for the investigation being reported Page 92, 149,181
Objectives 3 State specific objectives, including any prespecified hypotheses Page 94, 150,183
Methods
Study design 4 Present key elements of study design early in the paper Page 95, 150,184
Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment,

exposure, follow-up, and data collection Page 95, 150,184
Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of

participants. Describe methods of follow-up Page 99, 150,184
(b) For matched studies, give matching criteria and number of exposed and unexposed

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect
modifiers. Give diagnostic criteria, if applicable Page 99, 152,185

Data sources 8* For each variable of interest, give sources of data and details of methods of
measurement assessment (measurement). Describe comparability of assessment methods if there is

more than one group Page 10, 98 for all
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Bias 9 Describe any efforts to address potential sources of bias Page 116, 169,208
Study size 10 Explain how the study size was arrived at Page 95, 150,184
Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable,

describe which groupings were chosen and why Page 10, 98 for all
Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding Page 99, 152,185

(b) Describe any methods used to examine subgroups and interactions Page 99, 152,185
(c) Explain how missing data were addressed Page 99, 152,185
(d) If applicable, explain how loss to follow-up was addressed Page 116, 169,208
(e) Describe any sensitivity analyses Page 116, 169,208

Results
Participants 13 (a) Report numbers of individuals at each stage of study—eg numbers potentially

eligible, examined for eligibility, confirmed eligible, included in the study,
completing follow-up, and analysed Page 101, 156,190
(b) Give reasons for non-participation at each stage - -
(c) Consider use of a flow diagram Page 101, 156,190

Descriptive data 14 (a) Give characteristics of study participants (eg demographic, clinical, social) and
information on exposures and potential confounders Page 101, 156,190
(b) Indicate number of participants with missing data for each variable of interest Page -
(c) Summarise follow-up time (eg, average and total amount) Page 101, 156,190

Outcome data 15 Report numbers of outcome events or summary measures over time Page 101, 156,190
Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and

their precision (eg, 95% confidence interval). Make clear which confounders were
adjusted for and why they were included Page 121, 163,194
(b) Report category boundaries when continuous variables were categorized Page 121, 163,194
(c) If relevant, consider translating estimates of relative risk into absolute risk for a
meaningful time period -
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Discussion
Key results 18 Summarise key results with reference to study objectives Page 133, 173,208
Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or

imprecision. Discuss both direction and magnitude of any potential bias Page 133, 173,208
Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations,

multiplicity of analyses, results from similar studies, and other relevant evidence Page 133, 173,208
Generalisability 21 Discuss the generalisability (external validity) of the study results Page 133, 173,208
Other information
Funding 22 Give the source of funding and the role of the funders for the present study and, if

applicable, for the original study on which the present article is based Page vi

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published
examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on
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Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

249

http://www.plosmedicine.org/
http://www.annals.org/
http://www.epidem.com/
 http://www.strobe-statement.org

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Planned Papers
	Dedicatory
	I Introduction, Study Setting and Literature Review
	1 Thesis Introduction
	2 Research proposal and Data description
	2.1 Motivation Statement
	2.2 Research Questions and Objectives
	2.3 Study Design
	2.4 Study Outcomes
	2.5 Study setting and population
	2.6 Data Description and management
	2.6.1 Ethics Clearance and Study Oversight


	References I/2
	3 Literature review of HIV, KS and TB Epidemiology 
	3.1 HIV Epidemiology
	3.2 Epidemiology of HIV-related Cancer
	3.3 HIV and TB Epidemiology
	3.4 Loss to follow-up in HIV cohorts

	References I/3
	4 General statistical review of survival analysis methods
	4.1 Introduction to survival analysis
	4.1.1 Right Censoring
	4.1.2 Density and Distribution Functions
	4.1.3 Survival function
	4.1.4 Hazard Function

	4.2 Models for Survival Data
	4.2.1 Proportional Hazards Model
	4.2.1.1 Semi-Parametric PH Models
	4.2.1.2 Parametric PH Models

	4.2.2 Accelerated Failure Time Models
	4.2.2.1 Weibull Model
	4.2.2.2 Log-logistic Model
	4.2.2.3 Log normal Model
	4.2.2.4 Generalized Gamma Model


	4.3 Extensions to Standard Survival Models
	4.3.1 Frailty Models
	4.3.2 Spatial Survival Modelling
	4.3.2.1 Covariance Functions

	4.3.3 Competing risk and Multi-state Modelling
	4.3.3.1 Competing Risk Modelling
	4.3.3.2 Cumulative incidence function
	4.3.3.3 Fine and Gray Model
	4.3.3.4 Multistate Modelling


	4.4 Model Diagnostics and Selection
	4.4.1 Testing the PH Assumption
	4.4.2 Residual Analysis
	4.4.3 Model Selection


	References I/4

	II Modelling survival in HIV cohorts
	5 Estimating survival in HIV cohorts
	5.1 Introduction
	5.2 Objectives
	5.3 Data Description
	5.3.1 Inclusion and Exclusion Criteria

	5.4 Survival Modelling
	5.4.1 Semi-parametric Models 
	5.4.2 Parametric models

	5.5 Descriptive Analysis
	5.5.1 Overall Survival
	5.5.2 Prevalence of KS at ART initiation
	5.5.3 Age
	5.5.4 Sex
	5.5.5 Period of starting HIV Treatment
	5.5.6 Distance to HIV clinic
	5.5.7 TB Status
	5.5.8 Occupation

	5.6 Accounting for loss to follow-up
	5.7 Results from Semi-parametric and Parametric Models
	5.7.1 Risk factors of loss to follow-up
	5.7.2 Risk factors of mortality and survival
	5.7.3 Describing patient heterogeneity
	5.7.4 Sensitivity Results

	5.8 Model Diagnostics and Selection
	5.8.1 Checking the Proportional Hazards Assumption
	5.8.2 Comparing Cox Models
	5.8.3 Comparing Parametric Models

	5.9 Discussion and Conclusions

	References II/5
	6 Spatial variation in Survival
	6.1 Introduction
	6.2 Objectives
	6.3 Data description
	6.4 Methods
	6.4.1 Model Diagnostics and Comparison

	6.5 Descriptive Analysis
	6.5.1 Mapping deaths, active follow-up and lost to follow-up
	6.5.2 Distribution of patients by ART period
	6.5.3 Mapping TB Episodes and KS Diagnosis

	6.6 Spatial Survival Model Results
	6.6.1 Model Comparison
	6.6.2 MCMC Diagnostics
	6.6.3 Estimates of model parameters
	6.6.4 Exceedance Probability Maps

	6.7 Discussion

	References II/6
	7 Multistate Models for TB
	7.1 Introduction
	7.2 Objective
	7.3 Recap: HIV and TB co-infection
	7.4 Data Description
	7.5 Multistate modelling
	7.6 Model formulation and Parameter Estimation
	7.7 Descriptive Analysis
	7.8 Model results and Prediction
	7.8.1 Transition Intensities
	7.8.2 Transition Probability
	7.8.3 Transition Hazards Ratios

	7.9 Model Assessment
	7.10 Discussion and Conclusion

	References II/7

	III General Discussion and Further Research
	Complete Bibliography


