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Abstract—To establish the general statistical mechanical prop-
erties of highly conductive but selective nano-filters we develop
an equilibrium statistical-mechanical theory of the KcsA filter,
find the probabilities for the filter to bind ions from the mixed
intra- and extra-cellular solutions, and evaluate the conductivity
of the filter in its linear response regime. The results provide first
principles analytical resolution of the long-standing paradox —
how can narrow filter conduct potassium ions at nearly the rate
of free diffusion while strongly selecting them over sodium ions
— and are applicable to a wide range of biological and artificial
channels.

I. INTRODUCTION

Ion channels are located within the membrane of most cells
and can conduct ions at very high rate with input of metabolic
energy. Their malfunction may have disastrous consequences
for the organism. Recent studies of ion channels have unrav-
elled many secrets of their structure-function relationship, but
their ability to conduct larger ions at almost the free diffusion
rate, while discriminating strongly against smaller ions of
the same valence remains at the centre of a “many-voiced
debate” [1], [2], [3] over decades [2], [3], [4], [5], [6], [7],
(81, [9], [10], [11], [12], [13].

Let us consider e.g. the potassium channel’s ability [6],
[8], [9] to conduct up to ~ 10® KT ions per second, while
discriminating strongly against the smaller Na™ ion. A widely-
accepted explanation of this extraordinary phenomenon is
based on the idea of a “snug fit” [4], [6] and an iso-energetic
pathway [6], [8], [2] for KT, whereas a Na™ ion is confronted
by a large free energy barrier. The latter is defined through
the Eisenman [5] relation

AAfg Na = (B — Ba) — (A% — %), (1

where we use Afi? = ji? — [i$ to define the change in excess
chemical potential during the transition of an ion of the i-th
type from the bulk (b) to the channel (c).

However, this picture reflects neither the observed high-
affinity of K™ binding sites, nor multi-ion nature of the
transition mechanism [9], [14], nor the reality of flexible
channel walls [15], [3]. It was also argued [3] that this picture
can be self-contradictory because, if an ion binds to the
channel too tightly, it cannot move rapidly through it. The

assumption was that the solution of the problem might require
the development of a multi-particle non-equilibrium theory [3],
[16] to encompass possible conformational changes and the
“knock-on” mechanism of conduction [9], [14], [10], [17].

Theoretical analysis of this problem has benefited from a
number of important contributions including e.g. statistical
theory of selective ion channels [18], [19], [20], theory of
transport in one-dimensional Coulomb gases [21], [22], theory
of single-file multi-particle diffusion in narrow pores [23],
[24], theory of ion selectivity and permeation [25], [26],
[27], [28], theory of ion conductivity in trans-membrane
channels [29], non-equilibrium thermodynamics of ion chan-
nels [30], and Coulomb blockade [31], [32], [33], [34] and
dehydration theory [35] of channels to mention a few.

Despite all this progress the relationship between selectivity
and conductivity in these channels remains elusive[2], [3].

Here we present an equilibrium statistical theory that de-
scribes key properties of the KcsA selectivity filter including
its conductivity, the “snug fit” and “knock-on” conditions, and
the Eisenman selectivity relations. A first-principles resolution
of the above mentioned long-standing paradox is obtained by
deriving an effective grand canonical ensemble of the filter that
leads to an analytical expression for its conductivity and by
showing that the Eisenman-type selectivity relation for ions of
equal valence follows from the condition of diffusion-limited
conductivity.

We consider the KcsA filter to be a narrow tunnel of length
12 A lined with 20 oxygen atoms providing four binding
sites, numbered S;-S, from the extracellular to intracellular
side [7], [8], [9], [2], [10], [11], [12], [13], [3], [14], [15],
[16], [20], (inset of Fig. 1). Under physiological conditions,
this filter contains two resident K™ ions separated by a water
molecule. We consider conduction through the K selectivity
filter immersed in bath solutions containing a mixture of
different ions. Conduction occurs when a third ion enters,
knocking-on [14], [10], [17], [23] the ion on the opposite side.

II. THEORY

To derive conditions for the latter conduction mechanism
we write the current density of the filter j; as [36], [37], [38]



ji= _%v (KTIn (ci/co) + i + q9) , &

Here q is the unit charge, c¢; are the number densities, cg
is the normalization constant, 7' is the temperature, ¢ is
the electrostatic potential, and k7'In (¢;/co) + ji; + q¢ is the
electrochemical potential y; of the ions in the filter.

We show [39] that conductivity o; of narrow filters for
coordinated single-file motion of ions is given by generalized
Einstein relation [40]

o; = q2D1-80i/877io< — T(@QQ/anf)Ty, 3)

here D; is the chemical diffusion coefficient and 7); is the
chemical potential of the ions. To find the grand potential 2
we derive [39] the free energy of the system’s state in the form

G ({n;},ny)= —k:TZ nilnm? — Z niA/jéq_ 4)

kTZlnniH—s ({n;}.nyg).

Here, 2 and n; are the mole fraction numbers of ions of the
i-th type in the bulk and in the filter, Aji? = A’ + gA¢® is
the difference in excess chemical and electrostatic potentials
between ions in the bulk and in the channel, e({n;},ny) is the
correlation corrections [21], [22], [33], [41] to the energy of
the state due to ion-ion and ion-wall-charge interactions, and
ny is determined by the total fixed charge on the filter’s wall,
Qf = qzgn ;. Here we defined [39] the state of the system by
the set of numbers of ions of each type present in the filter
{n;} ={ni,ne,...,num}.

The grand canonical ensemble of the filter can now be written
as [39]

N N e
P({n;ynp) = 271 (] 5 ) >
i=1

exp (,jT (Z ni(AFE) — e <{nj},nf>>> ,

The effective grand partition function Z is defined by the nor-
malization condition for P({n;},ny) and the grand potential
is: 2 = —kTInZ. The analytic forms of the probabilities
P({n;},ny) and the effective grand partition function can be
related [39] to those obtained [18], [19], [20] in the form of
configuration integrals.

®)

The theory that we introduce relates o; to key parameters
of the system such as the mole fraction of conducting ions in
the bulk solutions, the difference in excess chemical potential
between the bulk and the filter, the fixed charge on the filter’s
wall, the filter’s geometry, and the energy of the multi-particle
interactions in the filter. This in turn allows us to establish
explicit analytical relationships between filter’s conductivity
and selectivity.
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Fig. 1. Levels of free energy as a function of Q for K™ (blue lines), Nat
(orange dotted lines) and mixed (green dashed lines) conduction as given by
Eq. (4) for the following parameters: Afix = 2kT'; and Afip, = —4.3kT
U. =~ 18.TkT. Black dots show positions of the energy level minima; the
ground state is indicated by the bold black-dashed line; and open circles
show locations of the resonant conduction. The labels at the origin of each
parabola indicate the number of ions of each type in the filter. The inset shows
schematic representation of the selectivity filter coupled to bath solutions. The
binding sites S1 — S4 for cations are indicated by black squares.

To calculate the conductivity (3) we use <An22> =
—kT0Q/On;, the mean number of particles and their variance
in the form [42]

(ni) =Y _niP(ni,nyg), (n?)y=Y_ niP(n;ny),
{n:}

{ni} (6)
<An3> = <n3> — <n1>2 ,
IIT. APPLICATION TO KCSA CHANNEL

To find the free energy in each state of the KcsA filter
we consider only K™ and Na™ ions as conducting species
and limit the maximum total number of ions in the filter to
three. The free energy (4) of the resultant nine system states
containing non-zero numbers of ions is shown in Fig. 1. Here
the correlation corrections (n g, nyq, N f) were approximated
by the filter’s dielectric barrier energy [22], [39], [43]

e(nK,nNa,nf) ZUC(TLK—FTLNG—I—anf)Q. @)

The energy minimum of each parabola corresponds to the
most probable combination of ions in the filter, given by the
condition

ng +nyg = —zfny = 1,2, or 3.

The lowest levels, shown by solid blue lines, correspond
to the filter being filled with one, two, or three K ions,
respectively. The highest energy levels (orange dotted lines)
correspond to system states with Na™, 2Na™, and 3Na™. The
mixed states of the filter filled with KT and Na™ ions are of
intermediate energy as shown by green dashed lines. The shift
of the energy levels for each type of ions is controlled by Ag;.

The condition for barrier-less diffusion-limited conduction
is given by [39] (cf [41], [32], [44], [23])

Gng+1lny) = G(nkg,nys)~0 (8)



For the total charge on the filter’s wall )y ~ —2.5¢ and
Al = 2kT the barrier-less “knock-on” mechanism of pure
KT conduction (2K* ¢+ 3K™) corresponds to the minimum
energy in the system.

Fig. 2 presents the filter’s conductivity/selectivity relations
for potassium and sodium ions as a function of the key filter
parameters Aug and Q. It can be seen in the figure that for
small absolute values of Apg < 0.5 (left-hand side of figure)
the filter is non-selective and both conductivities ox and oy
are relatively large for any value of the wall charge Q) ;. With
Apg increasing above 1 the free energy for sodium to enter
the channel becomes AGy, > b5kT (Afin, = —4.3kT),
the filter’s conductivity becomes strongly selective for K+
ions. The increasing affinity of K* ions results in a strong
attenuation of the o as was conjectured earlier [3]. However,
narrow bands of high conductivity remain, similar to those
observed for divalent ions in Brownian dynamics modeling of
calcium channel [41], [32]. The width of these conductivity
bands is ~ 1/U,. Therefore, simultaneous strong selectivity
and high conductivity of the channel can be achieved only at
the locations of the peaks of ok .

To derive an exact conductivity/selectivity relationship we
write the potential barrier for a K™ ion to enter the chan-
nel when occupied by two potassium ions in the form
AGk = G(3K,0,ny) — G(2K,0,ny); and compare it with
the barrier for a sodium ion to enter the channel AGy, =
G(QK, Na, nf) - G(QK, 0, nf).

Solving [39] the Egs. (8) with respect to optimal values of
ny = (zgns)* and Apjy. we have

1 C
nh=— <nK + 2) + — (kTin(ng +1) — Apj)
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Fig. 2. Conductivity of Kt (top sheet) and NaT (bottom sheet, shifted down
by 0.05) as a function of the system parameters Ap g and Q p. When Ap e ~
0 KT the conductivities are nearly same. With increasing Ap g, however,
conductivity becomes increasingly selective: sharp ridges corresponding to
conductivity bands for o as a function of Q ; are clearly evident, and o, ~
0 for all Q. Appng =~ —4.3kT for this figure.

With the resultant optimal values of n} = (zyny)* and
Apy given by Egs. (9), the filter allows for the unimpeded
(diffusion-limited) barrier-less AAG g = 0 passage of potas-
sium ions, while selectively blocking the entry of Na™ ions.
The barrier AAG y, for sodium ions can now be immediately
derived leading to the well-known Eisenman result

AAGNa = (B — ilva) — (A% — %)+

KTIn-5" — AAJig no + kTIn—5—.
CNa ’ 3CNa

(10)

To derive conductivity of potassium ions we use eqgs. (3)-(6)
and obtain [39]

2
- q2DKe’AGK/’“T/VCkT<1+e’AGK/kT) .

where V_ is the volume of the filter.

IV. CONCLUSIONS

We conclude, that Egs. (10) and (11) resolve the selectivity
vs. conductivity paradox. It can be seen from this expres-
sion [39] that the conductivity of the filter has a very sharp
peak at the resonant transition point 2K <+ 3K*, where
AG g =0, approaching the diffusion limit as illustrated in Fig.
2. The proposed approach allows one to obtain analytically the
key properties of the KcsA filter including its conductivity, the
Eisenman selectivity relations, and the snug fit and knock-
on conditions. It also provides independent first-principles
estimates of the values of the filter parameters Apuyng, Apk,
and of @, as functions of channel structure required for
potassium filter to function in accordance with experimental
observations.

Estimates based on Eqgs. (9)-(11) and realistic filter param-
eters [39], [45] show that the value of the fixed charge on
the filter wall is @ ~ —2.5¢, the partial valence of the
oxygen atoms is zy = 0.125, the excess chemical potentials are
frx = 2kT; and Afiy, = —4.3kT, and a flow rate through
the filter is of the order ~ 10% ions per second for a potential
difference of 50 mV, while filter is discriminating 1:1000
against the (smaller) Na©™ ion. These values are consistent
with the experimental observations reported by MacKinnon
and other authors.

Finally, we comment that the results obtained are applicable
far beyond the KcsA channel, and may be expected to describe
conduction in a wide class of narrow, ion-selective, biological
and artificial nano-filters [34], [46].
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