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Abstract

Sales data often only represents a part of the demand for a service product owing to

constraints such as capacity or booking limits. Unconstraining methods are concerned

with estimating the true demand from such constrained sales data. This paper addresses

the frequently encountered situation of observing only a few sales events at the individual

product level and proposes variants of small demand forecasting methods to be used for

unconstraining. The usual procedure is to aggregate data; however, in that case we lose

information on when restrictions were imposed or lifted within a given booking profile.

Our proposed methods exploit this information and are able to approximate convex, con-

cave or homogeneous booking curves. Furthermore, they are numerically robust due to

our proposed group-based parameter optimization. Empirical results on accuracy and

revenue performance based on data from a major car rental company indicate revenue

improvements over a best practice benchmark by statistically significant 0.5%–1.4% in

typical scenarios.

Keywords: demand unconstraining, forecasting, small demand, revenue management

1. Introduction

Revenue management (RM) systems manage demand for services over an advance

booking period by controlling the availability of certain offerings at an operational level,

e.g. by using booking limits. They can be found in many industries such as airlines, hotels,

car rentals, trains, cruise shipping and many more. Imposing these controls however

means that no more sales can be observed once an offering has become unavailable, so
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the sales volume may significantly underestimate the actual market demand. A significant

proportion of booking data is constrained in that way: booking restrictions were in place

for 30 per cent of the time (on average) in car rental data available to us. Due to the

seminal work of Cooper et al. (2006) it is well-known that using such constrained sales

data as input to forecasting can lead to the so-called spiral-down effect: a negative self-

reinforcing cycle resulting in decreasing revenue performance of the RM system.

Many methods have been proposed to unconstrain sales data (see Guo et al., 2012, for

a review). The need for unconstraining arises in RM regardless of whether only a single

resource (e.g., a flight leg) or a whole network is being managed. However, when managing

revenue on a network of resources, small sales data is more commonly encountered at the

level that constraints are being implemented. In this case, the widely used Expectation

Maximization (EM) approach has been shown to perform poorly (Queenan et al., 2007).

We likewise focus on this case, and therefore present our approach in the context of

network RM, even though the proposed methods work in either situation.

To explain why small data more frequently arises in network RM, we first need to

clarify the terminology of resources and products in network RM. For example, a resource

in car rental RM corresponds to the inventory of a specific car type available on a specific

day at a specific station. The same logic applies to hotels, trains, airlines, equipment hire

and other industry sectors using network RM. The term “network” RM stems from having

to manage resources simultaneously since products are defined on a network of resources.

A product in the example of car rental could refer to the combination of a pick-up date,

length-of-rental (LoR), station, car type and booking channel. Each product defined in

that way uses resources corresponding to the days that the car is rented out. Typically,

network RM applications feature a large number of products defined in this way, especially

when the number of resources is large. It is common that many of these products have

only a few (less than 10) sales events recorded over the entire booking horizon, which

makes the small sales case important for practice. We cannot aggregate these sales figures

without losing information on when restrictions came into place; information that can be

exploited to improve unconstraining.

We draw on the substantial body of literature on small and intermittent demand

forecasting to investigate whether more recent developments on algorithms and param-

eter optimization are able to improve over the exponential smoothing approaches used

2



by Queenan et al. (2007) for small demand. We propose three key improvements: (i) a

generalization of trended exponential smoothing that captures better non-homogeneous

booking curves, regardless of whether they are concave, convex or linear; (ii) a novel

way to optimize model parameters that improves the performance of both proposed and

benchmark methods; and (iii) optimize the smoothing parameters over groups of con-

strained booking curves so as to improve robustness without losing information on the

individual restriction start times, particularly when the sample is very limited.

Their performance is empirically tested against best practice benchmarks. We conduct

a simulation study based on actual sales data from a major UK-based car rental company.

To gauge revenue impact, we build a slightly simplified version of their in-house developed

RM system. We find statistically significant revenue improvements over the best practice

benchmarks (Croston and Holt’s methods as proposed by Queenan et al., 2007) by 0.5%–

1.4%. Revenue improvements on this order are significant because for many relevant

industry sectors they translate directly into additional profits due to low marginal costs.

The ease of implementation of the proposed methods further adds to their appeal.

The paper is structured as follows: In §2 we review the literature, in §3 we propose

and discuss the unconstraining methods, in §4 we present our numerical results regarding

accuracy and revenue performance of the proposed methods, and we draw conclusions in

§5.

2. Literature Review

Azadeh et al. (2014) present a taxonomy of demand unconstraining methods with

four categories, namely basic, statistical, choice and optimization based. Our proposed

methods use exponential smoothing and require parameter optimization and hence belong

to the last category, along with expectation maximization, projection detruncation (PD)

and non-linear programming. They describe expectation maximization as one of the most

popular unconstraining methods, however Queenan et al. (2007) report that EM did not

perform well on small sample sizes, which we focus on here.

In an earlier review of unconstraining methods, Guo et al. (2012) distinguish essen-

tially three categories, namely single- and multi-product methods for a single resource,

and multi-resource / multi-product methods. Our proposed models form part of the

single resource, single product literature which represents the majority of papers. The
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work of Weatherford and Pölt (2002), which belongs to the same category, identifies PD,

EM and an averaging method as the best techniques. We use the latter method as a

benchmark and refer to it as Averaging ; details on that method are given in the online

supplement. We do not consider PD and EM due to the aforementioned issues on small

data samples.

Our work has been motivated by Queenan et al. (2007) who propose to use Holt’s

exponential smoothing method (named double-exponential smoothing therein) and Cros-

ton’s method for unconstraining. They show that these methods perform well against

PD, EM and Averaging. Although EM is a strong contender on larger data sets, they find

that exponential smoothing is better when little historical data is available or all demand

sets are constrained. They use the observed sales over unconstrained time periods to

estimate smoothing parameters by minimizing the sum of the squared errors in-sample

for each booking curve individually. Demand over constrained time periods is estimated

by extrapolating linearly using the most recent trend estimate (Holt) or demand arrival

rate (Croston). That way, their approach takes into account when restrictions were im-

posed (or lifted) as opposed to other methods that ignore this time aspect. We use their

proposed Holt’s and Croston’s methods as benchmarks.

For non-homogeneous booking curves (e.g. concave ones as encountered in resorts

where customers book long in advance, or convex ones as in urban car rental stations

where people book shortly prior to pick up), the use of a linear forecast is counter-intuitive.

Therefore, we suggest a modification of the damped trend exponential smoothing method

(Gardner and McKenzie, 1985), since this allows one common framework for all shapes

of booking curves (convex, concave or homogeneous). For an overview of exponential

smoothing methods, see Gardner (2006).

As we are especially interested in unconstraining small data sets, we consult the litera-

ture on small and intermittent demand forecasting for further improvements. Exponential

smoothing methods and variants are widely used due to their simplicity and effectiveness

in the face of small data samples (for examples, see: Willemain et al., 1994; Babai et al.,

2012; Bacchetti and Saccani, 2012). Croston’s method, which itself is based on exponen-

tial smoothing, is widely regarded as more appropriate for this type of data (Syntetos and

Boylan, 2005). Croston’s method is biased, as discussed by Syntetos and Boylan (2001),

and the Syntetos Boylan Approximation (SBA) by Syntetos and Boylan (2005) addresses
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this issue. However Kourentzes (2014) provides evidence that any difference between the

original Croston’s and SBA are minimal when appropriately optimized, as the bias is

very strong only for relatively large parameters. Teunter et al. (2011) criticize Croston’s

method for updating its estimates only after a positive demand event, ignoring the in-

between periods with clear implications for obsolescence. To address that they model

the demand probability instead of the demand interval, as in Croston’s method, which

can be updated every period, resulting in the Teunter-Syntetos-Babai (TSB) method.

We include TSB as another benchmark. Single exponential smoothing (SES) has also

been applied to intermittent time series with some success (Wallström and Segerstedt,

2010) and we include this benchmark as well. Note that although Croston’s method

and its variants are often expected to do better, there are combinations of demand and

interval variability where SES performs satisfactory, in particular when the observed in-

termittency is low (Syntetos et al., 2005; Petropoulos and Kourentzes, 2014). Kourentzes

(2014) discusses the impact of different cost functions on the parameter optimization of

Croston’s method and its variants and proposes two alternatives based on the notion of

demand rate that perform better than conventional mean squared (or absolute) error.

We exploit his results in the definition of our proposed cost functions.

In the literature other approaches to deal with this problem have been investigated:

Zhu (2006) looks specifically at unconstraining for car rentals by exploiting turndown

information. The approach requires the ability to identify customers so as to determine

duplicates or re-books, which one often does not have. Other RM literature on car rentals

discusses optimization approaches. Schmidt (2009) formulates the car rental booking

control problem into a Markov decision process and proposes a few linear programming

approximations to develop booking limit policies. Haensel et al. (2012) address a similar

problem with stochastic programming (SP). Moreover, Steinhardt and Gönsch (2012)

use dynamic programming to plan upgrades, while Su et al. (2012) consider downgrading

decisions in a scenario of a firm providing two-class services where the low-class service

can be used to accommodate high-class customers in exchange for a discount. Li and

Pang (2017) propose a decomposition approach to address fleet movement between rental

stations. In our simulation of a RM system, we use a probabilistic non-linear program

motivated by the actual optimization module implemented at our industrial partner.
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3. Unconstraining Methods

In this section we discuss our proposed methods for unconstraining demand along with

benchmarks. We separate them into two major classes, those that are modelled on data

presented in the form of: (i) Booking Curves ; and (ii) Booking Arrivals. Both represent

the same data. Booking curves show the cumulative sold units whilst booking arrivals

show the arrivals of individual sales events (see Figure 1). The different representations

are important in as far as different forecasting methods are used to unconstrain demand

for each.
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Figure 1: Illustration of Booking Arrivals (BA) and Booking Curve (BC) for a car rental product. In

period T a booking restriction is introduced h periods prior to pick-up.

Observe in Figure 1 that a part of the demand is occurring after the booking restriction

is imposed. If this is not considered then the true demand will not be accounted during

decision making, leading to suboptimal results. Unconstraining methods are tasked to

meet this unseen demand. We are particularly interested in unconstraining data with

infrequent booking events. The rate of arrivals over time determines the shape of the

booking curve; typically it is either (i) homogeneous, when the rate of increase is con-

stant; (ii) concave, when the rate of increase is decreasing; or (iii) convex, when the

rate of increase is increasing (Liu et al., 2002). Convex curves are typical for short-haul

flights, business hotels or urban car rental stations. Concave ones are often found for e.g.

at resort hotels where customers book long in advance. Of course, the notion of convex-

ity/concavity in this context is not to be understood in the strict mathematical sense.

The classic intermittent demand case as found in the forecasting literature corresponds

only to homogeneous booking curves. This raises a question as to the applicability of
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conventional intermittent demand methods, which we discuss in the following sections.

Hereafter, unconstraining methods are classified into two categories, those fitted on

booking curves (BC methods for short) and those fitted on booking arrivals (BA meth-

ods). For the sake of simplicity, we assume that for any product at most one restriction

is imposed at some time period T (on a uniform time grid) and that it remains in force

until the end of the booking horizon. We denote the number of remaining time periods

at the time of restriction until the end of the booking horizon by h ≥ 0. We index time

forwards, i.e. the booking horizon begins in time period t = 1. If a booking horizon is

not constrained, then T denotes the end of the horizon and h = 0. The generalization to

multiple time intervals of imposing and lifting restrictions, in our context, is straightfor-

ward. First, the unconstraining method is used to predict the demand for the duration

of a restriction, subsequently this prediction is added to the restricted booking curve for

the duration of the restriction and the process is repeated, until all restriction periods

are unconstrained.

3.1. Unconstraining Booking Curves

Holt’s method was investigated and found to perform very well by Queenan et al.

(2007). Building on this, we propose to use the Damped Trend model, a refinement of

Holt’s method. We compare the two approaches with benchmark methods specified in

the online supplement, namely the Averaging method proposed by Weatherford and Pölt

(2002) and the random walk, also sometimes called the naive forecast.

Let us briefly recap Holt’s method as proposed by Queenan et al. (2007). The ad-

vantage of this linear trend exponential smoothing approach is that it takes into account

when a product was constrained over the booking horizon. The idea behind this is to

consider the booking curve as a trending time series. Any observations before the restric-

tion are used to fit the Holt’s method that models the series as a pair of dynamic level

and trend components. Based on these, a forecast is produced, extrapolating linearly the

estimated trend in the booking curve to produce a projected unconstrained cumulative

demand figure. Although Holt’s method can only produce linear trend forecasts, it can

capture stochastic trends (i.e. trends whose rate of change can evolve over time, see bt

in (1)) thus being a good candidate to model a wide variety of booking curves. Hynd-

man et al. (2002) embedded Holt’s method within the ETS (ExponenTial Smoothing)

state space model, providing the statistical rationale behind it and deriving the likelihood
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function that permits identifying optimal parameters. The formulation of the model is:

FT+h = lT + hbT ,

lt = lt−1 + bt−1 + αet−1, (1)

bt = bt−1 + βet−1.

The model separates the observed actuals At, the value of the booking curve at period t,

into a level lt and trend component bt, which are updated in each period by et = At−Ft,

factored by the smoothing parameters α and β. These smoothing parameters can take

values between 0 and 1 and can be interpreted as the percentage that each component

is updated based on the last prediction error. Higher parameters result in more reactive

model fit, which on the other hand may not filter adequately the noise in the observed

data. Both smoothing parameters and the initial values l0 and b0 can be estimated by

maximum likelihood. Because this model assumes additive errors this is equivalent to

minimizing the in-sample Mean Squared Error (MSE):

MSE = T−1

T∑
t=1

e2t , (2)

where T is the number of observations in-sample, i.e. the periods up to the booking

restriction.

Although linear trend ETS has been shown to perform very well empirically for uncon-

straining demand (Queenan et al., 2007), it is appropriate only for homogeneous booking

curves, as concave or convex curves are not satisfied by its linear trend extrapolation.

This limitation can be overcome by extending the model to nonlinear trends, as we pro-

pose below. Naturally, over short time intervals a linear trend could be a reasonable

approximation of nonlinear ones. However, the model misspecification will influence the

quality of parameter estimation and in turn the quality of the forecasted trend.

Within the ETS family of models the Damped Trend ETS permits to model and

forecast time series that match concave booking curves. This model is an extension of

the linear trend one, where a new parameter φ is introduced to control for the amount

of dampening that is applied on the linear trend, thus transforming it into a nonlinear
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trend:

FT+h = lT + bT

h∑
i=1

φi,

lt = lt−1 + φbt−1 + αet−1, (3)

bt = φbt−1 + βet−1.

If φ < 1 the linear trend is damped, making it appropriate for concave booking curves.

Note that if φ = 1 then the damped trend model becomes equivalent to the linear

trend ETS, thus being able to model homogeneous booking curves. Allowing φ > 1

is appropriate to model convex booking curves; this is in contrast to the forecasting

literature that considers only φ ≤ 1 as meaningful: see e.g. Gardner and McKenzie

(2011). Therefore, the Damped Trend model is theoretically appropriate to model all

concave, homogeneous and convex booking curves. We anticipate that this refinement

of Holt’s method should exhibit better performance due to its increased flexibility. Its

parameters and initial values can be estimated in the same way as was described for the

Holt’s method.

3.2. Unconstraining Booking Arrivals

We investigate the use of Croston’s method with a new way of optimizing its param-

eters. As benchmarks, we use the Teunter-Syntetos-Boylan method (TSB) and Single

Exponential Smoothing. Both benchmarks are defined in detail in the online supplement.

All these methods have been identified as appropriate to model intermittent data in

the forecasting literature, which corresponds to small demand in our context; hence we

investigate their usability for the task of unconstraining demand.

Queenan et al. (2007) claimed that if the observed demand is small and intermittent,

Croston’s method (Croston, 1972) is more appropriate to use than other methods, as

alternative methods will not be able to capture the observed booking curve dynamics

accurately due to the intermittency of the data. This echoes the discussion in the fore-

casting literature between fast and slow moving items, where the intermittent demand

of the latter requires special forecasting models, with Croston’s method being the most

widely used (Syntetos and Boylan, 2005).

The principal idea behind Croston’s method is the following: since intermittent time

series have variability both in the demand size and timing, we address each one separately.
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This is done by separating any intermittent demand time series into two components, a

vector of non-zero demand observations z, and a vector of inter-demand intervals x. Each

is then modelled independently, and the final prediction of Croston’s method is the arrival

rate expressed by the ratio of their predicted values:

fT+h =
ẑJ
x̂J
, (4)

where fT+h is the forecasted value of the booking arrivals series and J denotes the last

observed arrival event. To use that to unconstrain a booking curve we need to consider

the cumulative prediction:

FT+h = AT +
h∑
i=1

ẑJ
x̂J

= AT + h
ẑJ
x̂J
. (5)

Therefore, Croston’s method assumes a linear trend and thus can be expected to generally

not work well on non-homogeneous booking curves.

Each of the two components in Croston’s method zJ and xJ are modelled using simple

exponential smoothing:

ẑj = αzDj + (1− αz)zj−1, (6)

x̂j = αxIj + (1− αx)xj−1,

where Dj and Ij are the observed non-zero demand and inter-demand interval at the

jth arrival event, while αz and αx are their respective smoothing parameters. Snyder

(2002) discuss the advantages of not assuming equal αz and αx and Kourentzes (2014)

provides evidence that this results in better performance, in contrast to the standard

implementation of using a single parameter (as for instance in Queenan et al., 2007).

Note that we use j index instead of time t as any periods with zero demand are not

considered, a limitation that TSB overcomes.

We now introduce a new cost function for the parameter estimation of the methods

defined on booking arrival data. Queenan et al. (2007) suggested to use the mean squared

error (MSE) as a cost function, however Kourentzes (2014) demonstrated in an inventory

setting that conventional errors, such as MSE, are not ideal for estimating intermittent

demand method parameters.

Motivated by that work, we propose to use the Curve Mean Squared Error (CMSE)

as cost function:

CMSE = T−1

T∑
t=1

(
At −

t∑
k=1

fk

)2

, (7)
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where At represents the actual cumulative demand up to and including the tth time period,

and fk is the booking rate at time period k defined by the most recent rate update at ar-

rival event j, that means fk := fj = ẑj/x̂j. Therefore, these errors are calculated between

the cumulative booking arrivals, i.e. the booking curve, and the cumulative forecasts.

This way we avoid comparing a ‘booking rate’ forecast as resulting from equation (4)

to the observed booking arrivals; these are not comparable. The difference between the

proposed CMSE and the cost functions by Kourentzes (2014) is that the former optimizes

the data on a higher level of cumulation.

3.3. Group Parameter Estimation

For cases where very limited booking events are recorded, the number of these events

in comparison to the number of parameters to be estimated becomes important. With

very few points the estimated parameters will potentially produce very inaccurate demand

unconstraining.

In this situation we propose to estimate the parameters across multiple booking curves

of the same product simultaneously, so as to increase the available sample. By “the same

product”, we mean products that are the same in every aspect except the service delivery

date; for example: all historic booking curves for rental of a particular car type, station,

length-of-rental, for pick up on a specific weekday. We assume that the corresponding

booking curves follow similar dynamics. We construct cost functions on the pooled errors

across multiple series, thus having a large number of booking events. The MSE and

CMSE cost functions described before can be reformulated as Group MSE and Group

CMSE as follows:

GMSE =
M∑
m=1

MSEm =
M∑
m=1

(
T−1
m

Tm∑
t=1

e2m,t

)
, (8)

GCMSE =
M∑
m=1

CMSEm =
M∑
m=1

T−1
m

Tm∑
t=1

(
Am,t −

t∑
k=1

fm,k

)2
, (9)

whereM is the total number of booking curves grouped together, Tm the time period when

the restriction is imposed on the mth curve (or otherwise the end of the time horizon),

em,t, Am,t and fm,t the errors, the cumulative booking arrivals actuals and forecasts for

each booking curve and period respectively. To calculate em,t the actual and predicted

values for the mth booking curve at time t are used, in analogy to (2).
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4. Numerical Experiments

We evaluate the performance of the various methods in terms of accurately predicting

unconstrained demand and in terms of the resulting improvement in revenue. To that

end, we teamed up with a major car rental company in the United Kingdom to evaluate

our methods and generated demand trajectories using distribution parameters estimated

from actual car rental data. We build a somewhat simplified version of a full RM system

that mirrors the functions of the system in place at our partner company. Using this

system we are able to demonstrate revenue impact of the improved demand estimates.

As mentioned earlier, car rental is an interesting application for small demand uncon-

straining methods because they typically observe few bookings per product even at larger

stations. Booking restrictions are implemented on the product level so that we cannot

easily merge booking histories without loosing the information on when restrictions came

into effect.

4.1. Description of Industry Data

The data was collected for their station at Heathrow Airport in London and corre-

sponds to their busiest station in the country. It encompasses all bookings for pick-up

dates in 2011, in total around 130,000 booking requests and features information on

booking timestamps, pick-up and drop-off stations and timestamps, and car group. An-

other data set contains information on restrictions at the Heathrow station for the same

time horizon, including timestamps of restriction start and end for what product (i.e. car

group, pick-up date, length-of-rental).

We now outline the characteristics of the data that motivated the simulation design

for the numerical experiments.

• Advance booking pattern: Customers may make their bookings as early as one year

in advance, but most bookings arrive shortly prior to pick-up, namely 16% within

1 day to pick-up, 47% within 7 days, 83% within 30 days, and 95% within 90 days,

hence the booking curves are typically convex. We use a 90 day horizon in the

accuracy study.

• Independent demand : We assume products (i.e. the combination of station, car

group, pick up date, length-of-rental) to be independent of each other. The com-

pany believes this to be a reasonable assumption since most customers are not loyal
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and they easily switch to another supplier if their desired car group is not avail-

able, especially for the Heathrow airport station where all major competitors are

represented. Therefore, we do not consider demand spill and recapture. We limit

the simulations to a single car group.

• Demand size: Total demand per product varies depending on car group, length-of-

rental, pick-up date, etc. Typically, it falls in the range between 6 and 18 for the

most popular car groups.

• Restrictions : The company uses product-level booking limit control and recorded

when restrictions were imposed. Most of them came into effect shortly prior to pick-

up, e.g. 12% one day in advance, 57% during the last 7 days prior to pick-up and

about 90% within 30 days. Once in place, restrictions usually remained until the

end of the booking horizon. Accordingly, we generate only at most one restriction

per booking history lasting throughout the remaining time horizon. Unconstrained

actual demand is not known when a restriction was in place.

• Cancellations : We assume in our simulation that no bookings are cancelled so as

to simplify the analysis.

Figure 2 shows a few historical booking curves at London Heathrow Airport. It is

obvious that they were all convex and their demand size was small. Most of the bookings

arrived within 30 days prior to pick-up. In particular, booking curve 1 was unconstrained

and thus bookings were observed until the pick-up date, while booking curve 2 and 3

were constrained 7 and 3 days prior to pick-up, respectively. We describe the generation

of simulated booking curves and restriction times based on the actual car rental data in

the online supplement.

In the following section, we present the numerical results on accuracy of various un-

constraining methods. We summarize those methods in Table 1 for reference, in which

our proposed methods are highlighted.

4.2. Results on Accuracy

As we generate true booking curves over the entire time horizon and then add restric-

tions so as to truncate the data retrospectively, this enables us to measure the accuracy

of each unconstraining method. We generate an estimate of unconstrained demand and
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Figure 2: Sample booking curves at London Heathrow Airport

Table 1: A summary of unconstraining methods

Category Method Definition

BA methods Croston-MSE Croston’s method as in (6) with MSE cost function (2)

Croston-CMSE Proposed variant of Croston’s method as in (6) with CMSE cost function (7)

TSB Teunter-Syntetos-Babai approach as defined by (A.2) in the online supplement

SES Single ETS model as defined in the online supplement

BC methods Holt Holt’s ETS model as defined by (1) with MSE cost function (2)

Damped Proposed Damped trend ETS model (3) with cost function MSE (2)

Naive As defined by (A.1) in the online supplement

Averaging As defined in the online supplement
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compare it to the true total demand by measuring the Absolute Percentage Error between

the real unconstrained demand and the predicted unconstrained demand, at the pick-up

period for each booking curve:

APEm = 100
|Am − Fm|

Am
. (10)

These are then summarized across all booking curves to form the Mean Absolute Percent-

age Error (MAPE) and the Median Absolute Percentage Error (MdAPE). The reported

figures in this section are the average MAPE and MdAPE across all 100 simulations

(with 100 booking curves each). Due to space restrictions we report only the results for

convex booking curves which are most prevalent in our car rental booking data. The

results for concave curves are similar, while for homogeneous ones the performance of

Croston-CMSE and Holt improves and becomes comparable to Damped, as the linear

trend assumption holds in this case.

We measure the accuracy of unconstraining for booking curves with more than 4

booking events separately from those with less than that. We refer to the first group as

booking curves with normal sample size, in the context of our application, and the latter

group as booking curves with limited sample size, for which parametrization becomes very

challenging. For the second case we provide only results for the grouped optimization.

We first compare the impact of the new cost function on unconstraining accuracy for

methods modelled on booking arrival data, then compare the accuracy of the various

approaches (modelled either on booking arrivals or booking curves), test for statistical

significance of the observed differences and finally investigate the impact of different levels

of available unconstrained observations on the methods’ accuracy.

Comparison of cost functions: We provide results for the performance of the

proposed CMSE cost function against the benchmark MSE for the methods modelled on

booking arrival data. Table 2 presents the MAPE and MdAPE for the three relevant

methods, as well as the percentage improvements of CMSE over MSE.

For all BA methods the proposed CMSE cost function consistently performs better.

Hereafter all results reported for the BA methods will be based on CMSE and its GCMSE

counterpart.

Assessment of accuracy : We compare the accuracy of all methods and present

the results in Table 3. These are organized as follows: first, they are separated depending

on the number of booking events before the booking restriction is enforced; second they
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Table 2: Unconstraining accuracy for BA methods, with MSE and CMSE cost functions

Cost Function
MAPE (in %) MdAPE (in %)

Croston TSB SES Croston TSB SES

MSE 38.2 38.3 43.2 37.4 38.3 43.5

CMSE 28.4 32.8 33.3 25.0 27.8 28.2

Improvement +25.7% +14.4% +23.0% +33.1% +27.4% +35.2%

are separated between methods optimized on individual booking curves (Ind.) or at a

group level (Group); third MAPE and MdAPE are reported. Each column represents one

combination of the above categories and the best performing method is highlighted in

boldface. The results are visualized to facilitate comparisons in Figure 3. The horizontal

dashed lines represent the performance of the Naive, which represents a minimum perfor-

mance threshold for any method to be considered acceptable, given additional complexity

over the Naive.

Table 3: Unconstraining accuracy

Method

Normal sample size Limited sample size

MAPE (in %) MdAPE (in %) MAPE (in %) MdAPE (in %)

Ind. Group Ind. Group Group Group

Croston-CMSE 28.4 32.0 25.0 30.6 63.4 64.1

TSB 32.8 33.6 27.8 28.4 89.9 85.2

SES 33.3 34.0 28.2 28.7 90.3 85.6

Holt 28.0 26.9 25.0 24.2 73.3 75.2

Damped 26.4 21.0 21.4 18.0 44.8 44.3

Naive 37.0 37.0 35.8 35.8 84.2 85.2

Averaging 28.8 28.8 27.2 27.2 70.5 72.2

Focusing on the booking curves with ‘normal’ sample size, overall MAPE and MdAPE

exhibit similar behavior. The conclusion by Queenan et al. (2007) that Holt, optimized

by MSE, is a good performer is validated in our results, outperforming both Naive and

Averaging benchmarks. Croston-CMSE performs closely to Holt and better than other
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Figure 3: Unconstraining accuracy for booking curves with normal and limited sample size.

alternative methods fitted on the booking arrivals data.

Let us focus on the results obtained when the optimization of the methods is done on

individual time series. Holt is marginally better than Croston-CMSE, while the opposite

is true when looking at MdAPE. This can be explained by the presence of outliers in the

distribution of the errors. Nonetheless, the differences in both cases are marginal. Under

both measures Damped performs best, which is in-line with the expected improvements

over Holt given its flexibility to model convex booking curves. Therefore, Damped not

only models a wider range of cases theoretically, but we also find empirical evidence that

it is more accurate in unconstraining the demand for the non-homogeneous case where

the linearity assumption is violated.

When looking at the performance of the methods optimized across a group of multiple

booking curves, BC methods improve further, while BA methods perform on average

marginally worse, effectively being always outperformed by Averaging. It is interesting to

observe that the performance of Holt improves further, making it now substantially more

accurate than Croston-CMSE in this case (note that Croston-CMSE is optimized in this

case using GCMSE). Damped still performs best and the GMSE results are better than

those based on individual optimization (MSE), exhibiting the overall best performance

across all setups. Therefore, the results support the use of the proposed cost function to

optimize the methods.

Turning our attention to time series with very limited number of booking events,

results are provided only for the group optimization cost functions. Croston-CMSE is
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a good performing method and a good alternative to Holt, as reported by Queenan

et al. (2007). Damped still performs best, in fact substantially better than the other

benchmarks.

Statistical significance : Furthermore we explore whether the observed differences

are significant or not, especially in the cases where the accuracy differences are small. To

do this we use the nonparametric Friedman and post-hoc Nemenyi tests that do not im-

pose any distributional assumptions (Demšar, 2006). Three comparisons are conducted:

(i) booking curves with ‘normal’ sample size and methods optimized on each curve in-

dividually; or (ii) using group cost functions; and (iii) for booking curves with ‘limited’

sample size and optimized using group cost functions. In all scenarios Damped is found

to perform significantly better than the rest of the methods.

Degree of constraints on the data : Finally, we investigate how the methods

compare when applied to data that is highly constrained as opposed to data that is

only slightly constrained. Figure 4 presents the results. When methods are optimized

on individual booking curves the errors increase for higher percentages of constrained

periods, as expected. It is also apparent that Croston-CMSE, Holt and Averaging do

not differ substantially echoing the results of the Nemenyi test. However, when methods

are optimized using the group cost functions a different behavior emerges, with Holt now

performing substantially better than Averaging. Note that there is no difference in the

results for Averaging under individual or group optimization, as there are no parameters

to estimate. The best performing method remains to be Damped, which under this

scenario is substantially better than all other alternatives and better in comparison to

individually optimized Damped results. Looking at the results for booking curves with

‘limited’ sample the observed errors are higher, as expected. Damped still performs

best and although its performance deteriorates rapidly as the percentage of constrained

periods increases, in all cases it is 20-60% better than Croston-CMSE, the second most

accurate method.

In conclusion, our empirical evaluation suggests that Damped, optimized on GMSE,

performs best in all cases. The improvements observed are significant over benchmark

methods from the literature and refinements proposed here, such as Holt that is found

to improve when the proposed GMSE is used to identify optimal parameters.
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Figure 4: Accuracy for best performing methods (optimized on groups) for different restriction scenarios.

4.3. Results on Revenue Impact

The ultimate aim of unconstraining is of course to improve the revenue performance

of a RM system. Better unconstraining methods can lead to revenue gains, e.g. 0.5-1%

improvements were quoted by Weatherford and Pölt (2002). We are interested in the

extent to which our proposed methods lead to improved revenue over the benchmark

methods. To that end, we replicate a somewhat simplified version of the RM system

found at our car rental partner.

The framework of the simulation is depicted in Figure 5. The true demand booking

trajectories for all products are generated a priori. They are then fed to a booking system

which determines whether to accept or reject a particular customer booking, based on

booking limits produced by the optimization module and on inventory availability. If

accepted, the booking system registers the revenue and reduces the inventory level by

one for the corresponding rental days. Rejected sales are lost. The output of the booking

system is a history of observed sales records, as well as a history of when restrictions were

in place, if any. The sales records are used to forecast future demand if no unconstraining

is carried out.

Otherwise, they are passed to the demand unconstraining module to estimate the

true market demand to be used in the forecasting module. We include in the simula-

tion’s unconstraining module those strong performing methods in the accuracy evalua-

tion: Croston’s method with MSE-based cost function (Croston-MSE), Croston’s method
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Figure 5: Rental car revenue management simulation framework. See the online supplement for detailed

description.

with CMSE-based cost function (Croston-CMSE), Holt’s method (Holt), and damped

Holt’s method (Damped). Note that the parameters in all these methods are optimized

at group level. We also include two benchmarks, i.e., first come first served (FCFS), and

no unconstraining (i.e. using constrained demand in the forecast (Constr)).

The optimization module determines the booking limits given the forecast of demand-

to-come and the remaining inventory levels. The booking limit control is then used by

the booking system. The forecasting and optimization modules run once a day so as to

update the booking limits according to observed sales.

We make the same assumptions on the demand generation process as discussed in Sec-

tion 4.1, and shortened the advanced booking horizon to 30 days which seemed reasonable

given that 83% of actual bookings in the data were received within this time horizon.

Moreover, each booking day is split into three time periods, which allows a more granular

description of the booking curves. Such a treatment also allows restrictions to be imple-

mented within a day, which is not uncommon in practice. In the revenue simulations, we

consider products for a fixed car group with length-of-rental of at most 7 days because we

observed nearly 80% of bookings are for 7 day rentals or less. Customers for such short

rentals usually book relatively shortly prior to pick-up, while those for long rentals will

book long in advance to secure their cars. This emphasizes the need for unconstraining

methods to be able to deal with both convex and concave booking curves. We account

for seasonality effects since car rental demand has a distinct weekly pattern. For airport
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stations, more demand is seen in weekdays and less in weekends due to business trav-

ellers, especially on Mondays. A more detailed description of the simulated RM system

and data generation can be found in the online supplement.

We conduct 100 simulation runs for each unconstraining method. In each simulation

run, the total revenue obtained over the considered time horizon (excluding a warmup

period) is compared to the perfect information benchmark in which the true demand is

known in advance. All revenue results are presented as the percentage loss to this perfect

information scenario. We consider between 180 and 360 pick-up dates depending on the

length of the simulation’s time horizon. The rental rates are typical retail prices for the

considered car group in the case company. For simplicity we assume the rental rates only

dependent upon the length-of-rental. Following the actual pricing practice, the longer

the length-of-rental, the lower the daily rate.

In the following, we first discuss the results of revenue impact of unconstraining over

time for a fixed fleet size and, secondly, consider revenue impact of unconstraining over

fleet sizes for a fixed simulation time horizon.

Revenue impact of unconstraining over time : The percentage revenue losses

are reported in Table 4 and plotted in Figure 6, which also includes the unconstraining

error as measured using MAPE. The fleet size is fixed at 140. The spiral-down effect can

be observed in the performance of Constr, namely that using constrained demand leads

to declining revenues over time. It is interesting to observe that using no RM system at

all (i.e. using FCFS) is much better than to use constrained demand in the considered

RM system.

Table 4: Mean percentage revenue loss over different time horizon, with fixed fleet 140.

Horizon 180 210 240 270 300 330 360

Constr 12.8 13.0 13.7 14.4 15.2 15.8 16.4

FCFS 12.1 11.1 11.0 10.9 10.8 10.7 10.7

Holt 8.7 7.8 7.4 7.1 6.9 6.8 6.7

Croston-MSE 8.4 7.6 7.1 6.8 6.4 6.3 6.0

Damped 7.3 6.7 6.4 6.2 6.0 5.9 5.8

Croston-CMSE 7.3 6.7 6.3 6.0 5.8 5.7 5.5
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Figure 6: MAPE and mean percentage revenue loss over time, with fixed fleet 140.

All unconstraining algorithms’ revenue performance improves over time. Our pro-

posed methods Croston-CMSE and Damped are consistently producing the best revenue

results with improvements over Constr in the range of 5.5% to 10.9%. They also improve

by 0.5%–1.1% over Croston-MSE and by 1.1%–1.4% over Holt, respectively. The two

proposed methods produce overall similar revenue results.

To understand whether the revenue improvements are statistically significant, we cal-

culated the 95% confidence intervals around the observed mean revenue for each of the

four unconstraining algorithms. In all scenarios there is no overlapping of the confidence

intervals between our proposed methods and the benchmarks, and thus the revenue im-

provement is significant.

In terms of the unconstraining accuracy, our results in Figure 6 show that Croston-

CMSE is the best alternative for all simulation time horizons. This is in contrast to

our accuracy analysis that found Damped to be the best, which was only outperformed

by Croston-CMSE for small sample sizes and highly constrained scenarios. To further

understand this we calculated MAPE by LoR for all methods. The results for selected

simulation horizons are plotted in Figure 7. We find that all algorithms’ performances

deteriorate with LoR, which is not surprising as the demand size for longer rentals is

much smaller than their shorter counterparts. For every simulation horizon the best

unconstraining algorithm is Damped for shorter LoRs while for longer rentals Croston-

CMSE becomes the one. We have found that the restriction level is particularly high
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especially for longer LoR cases, where usually there is not enough data to identify clear

nonlinear booking patterns. Therefore Damped’s performance is expected to deteriorate.

Even though the performance of the other three algorithms also reduces with LoR, their

reduction rates are slower.
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Figure 7: MAPE versus length of rentals for selected simulation horizons, with fleet size 140.

For shorter rentals the accuracy of Holt and Damped improved with time. However,

their performance degrades for longer rentals due to limited sample sizes. In contrast,

even though both Croston’s methods also experience reduced performance over time for

longer LoRs, the drop is much more moderate. This explains why Figure 6 shows that

the accuracy of Holt and Damped reduces while that of both Croston’s methods improves

with time.

In Figure 6, it is shown that even though the unconstraining accuracy reduces with the

simulation horizon for Damped and Holt, their revenue performance still improves. This

perhaps somewhat surprising result is actually due to the unbalanced demand volume

across LoRs, with higher demand for shorter ones. Therefore, the revenue contribution

is dominated by shorter rentals whose accuracy improves over time for both algorithms.

Revenue impact of unconstraining depending on fleet size : Capacity tight-

ness, i.e. the ratio of average daily true demand over daily capacity, is an important factor

to consider when evaluating revenue performance in simulations. Intuitively, if capacity

by far exceeds demand, then the optimal policy is to accept all demand (FCFS). The

23



other way around, if demand by far exceeds capacity, one should only accept one day

rentals because the per-day rate is highest for them. A RM system will be most effective

in the scenarios where the capacity is not enough to accommodate all demand, and it is

essential to trade-off between multiple demands which usually arrive in different times.

We consider fleet sizes from 110 up to 200, increasing by 10. Figure 8 shows MAPE

and the percentage revenue loss relative to perfect information scenario for different fleet

sizes over a time horizon of 300 days. As expected, FCFS produces similar results like all

unconstraining methods for large fleet sizes. It is not surprising that the performances

of all unconstraining methods improve with the fleet size. Moreover, the differences

between algorithms reduce as well with the fleet size. For the more interesting cases of

tighter capacity as often found in practice, the average revenue differences between the

best-performing method Croston-CMSE and the least-performing Holt are as large as

2.2%.
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Figure 8: MAPE and mean percentage revenue loss for different fleet sizes over 300 days time horizon.

The unconstraining accuracy (MAPE) results are similar to those in the previous

study: Croston-CMSE is the best alternative in most scenarios. However, its advantage

over Damped diminishes over increased fleet size. This is easy to explain as larger fleet

sizes allow Damped to capture the nonlinear trend better due to the increased number of

booking curves that are used with the group cost function, even though each individual

curve has limited sample size. For larger fleet sizes, the capacity is less tight and thus

the booking curves less constrained. This also helps Damped to perform stronger. In
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all scenarios, our proposed methods statistically significantly improve the benchmarks at

the 95% level.

5. Conclusion and Future Work

We propose to apply results from small and intermittent demand forecasting to un-

constraining problems commonly encountered in revenue management. Specifically, we

find that damped trend exponential smoothing and Croston’s method with a special cost

function can not only substantially reduce the estimation error with respect to true de-

mand as compared to existing techniques, but also improve expected revenues by more

than 1% over Holt’s method. Revenue improvements on this magnitude are significant in

revenue management applications because they translate directly into profits given that

marginal costs are often close to zero. The simplicity and robustness of the proposed

techniques is very appealing for industrial implementation.

The key take-away for modellers is that Croston-CMSE produces stronger results than

Damped for sales data that is characterized by limited sample sizes and being highly

constrained, and vice versa. Both methods produce better results than the benchmarks

that we considered. It is common in RM practice that some products have lower demand

volumes and/or are more constrained than the others, and thus a single method might

not be able to accommodate all scenarios. If a product’s sales data typically exhibits

the same characteristics, the modeller could routinely use Croston-CMSE or Damped

to unconstrain. If demand characteristics vary, we expect that an automated approach

that switches between the two methods depending on some observable signal (such as the

length of rental) will produce good results; we leave this to future research.

All of our discussed methods assume independence of demand, i.e. unavailability of a

product is assumed to have no effect on the demand for other products. This assumption

is the main limitations of our work since in various network RM applications this does

not hold and may lead to double-counting of demand. However, it can be justified for

applications where product alternatives are well fenced off, or where alternatives from

competitors are readily available. Specific examples of the latter include car rental or

casinos. If demand is dependent on availability of other alternatives, then substitution

effects need to be taken into account.
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A. Benchmark Unconstraining Methods

Averaging

Weatherford and Pölt (2002) propose a simple averaging method to unconstrain data

that can be applied to small and intermittent demand as well. For a given historical

booking curve, we divide the time horizon into 10 equal-sized periods and classify each as

open if no restriction existed throughout the entire period, or otherwise as constrained.

We calculate the average demand received over the open periods. For each closed period,

we define estimated demand as the maximum of the observed demand in that period

(which may happen if it was only partially constrained) and the average demand over

the open periods. The resulting unconstrained total is the sum over all 10 estimations.

Random Walk

Both exponential smoothing methods above are based on the assumption that the

observed booking curve, up to the period that the restriction is enforced, contains useful

time dynamics that can be modelled. The random walk model, also known as the Naive,

would operate on the assumption that all the information is contained in the very last

period, i.e. when the restriction is imposed and hence the unconstrained demand is:

FT+h = AT . (A.1)

The random walk model has the advantage that it has no parameters to estimate and

hence can be used in any circumstances, irrespective of data availability or how many

bookings have occurred prior to the restriction period. As such, it can be used as a

powerful benchmark for any more complex unconstraining demand methods. We argue

that any more complex methods should outperform the naive.

Teunter-Synthetos-Babai Method

Teunter et al. (2011) recognized that a limitation of Croston’s method is that it

reacts very slowly to information, only when a demand is observed, and therefore does
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not update its estimate when there are long periods of zero demand. Motivated by

an inventory setting, Teunter et al. (2011) argued that for items with long periods of

inactivity modelling obsolescence is important and proposed a new Croston-type method

for intermittent data. The Teunter-Synthetos-Babai (TSB) method separates the time

series into two components, the non-zero demand (zt) and the probability of a demand

event (pt). The non-zero demand is modelled in the same way as for Croston’s method.

The probability of a demand event is a vector that is equal to 0 when no demand was

observed and equal to one otherwise. This vector is then modelled with single exponential

smoothing, resulting in a predicted probability of demand for the future periods. Note

that the the demand size estimate updates only when a demand is observed, while the

probability of demand updates every period. The final forecast is:

fT+h = ẑT p̂T . (A.2)

When there are long periods of zero demand p̂t becomes lower, reflecting the higher

probability of obsolescence.

Single Exponential Smoothing

Furthermore, SES is a simpler model compared to other demand prediction methods,

having half as many parameters. Hence, it requires less data to optimize which is desirable

when dealing with sparse booking arrivals. In this context SES is used to model the

booking arrivals series and an expected rate of booking arrivals is produced. This is then

cumulated in the same way as it was described for Croston’s method to unconstrain the

demand of the booking curve.

B. Data Generation for Accuracy Study

Generation of Booking Curves

We consider 90 days per booking curve with daily Poisson arrival rates shown in

Table B1. The rates are defined in a way such that overall total expected demand equals

the mean demand figure in the first row. The percentage split of demand over the four

time windows is the same in every demand scenario, namely 17%, 36%, 31% and 16%,

starting with window 90-30 and ending with period 1-0, respectively. This percentage

split has been derived from the car rental data set.
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Table B1: Poisson arrival rates for a fixed car group/length-of-rental.

Mean demand

Days to

pick-up

6 10 14 18

90-30 0.02 0.03 0.04 0.05

30-7 0.09 0.16 0.22 0.28

7-1 0.31 0.52 0.72 0.93

1-0 0.96 1.60 2.24 2.88

We generate a collection of 100 booking curves from this non-homogeneous Poisson

distribution for a given mean demand scenario, representing the collection of all available

booking histories for the same car group/station/length-of-rental of the same pick-up

weekday, say, Monday, during the same season (assuming that there is seasonality over

the year).

Generation of Restrictions

To investigate the impact of different degrees of available unconstrained observations,

we use the following approach proposed by Queenan et al. (2007): first, we assume

that the true final demand is Poisson distributed with means as shown above, namely

µ := 6, 10, 14 or 18. Next, for each mean demand scenario, we determine a cutoff value

that represents the demand level above that the cumulative Poisson probability sums up

to 20%, 40%, 60%, 80% or 100%, respectively. For example, the cutoff value for a 20%

restriction level for Poisson-distributed final demand with mean µ = 6 would be 8, i.e.

the inverse cumulative Poisson distribution evaluated at 0.8. For each generated booking

curve whose final demand exceeds or equals the cutoff value, we subsequently sample

a restriction start time from the empirical distribution of restriction start times in the

actual data.

We assume that the restriction remains in place until the end of the booking horizon.

This assumption is not a particularly strong one since most restrictions in the actual data

indeed satisfied that assumption; this is not surprising given that restrictions typically

were imposed only shortly prior to the pick-up date.
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C. Specification of the Simulated RM System

The setup of our RM system aims to replicate the key modules of the system in place

at our collaboration partner. We describe the modules that comprise the RM system as

shown in Fig 5 in the following.

Demand Generation

We consider demand for a single car group only. Each product represents a combi-

nation of pick-up date and length-of-rental. The true booking curve for each product is

generated by an non-homogeneous Poisson process as described above. Accordingly, the

arrival rates over the entire booking horizon resemble the actual booking curves observed

in the airport rental station. Each booking day is divided into three booking segments

and thus the 30 days booking horizon is discretized into 90 time periods. The percentage

of demand arrivals in each booking period, or the booking curve, is summarised in Table

C1. Note that they are different across LoR. Compared to Table B1, we have considered

more granular booking processes in the simulation.

Table C1: Percentage of bookings in each booking period.

Time periods LoR

to pick-up 1 2 3 4 5 6 7

90-63 0.002 0.003 0.003 0.004 0.005 0.005 0.005

62-42 0.004 0.005 0.005 0.006 0.007 0.007 0.007

41-21 0.010 0.009 0.010 0.011 0.011 0.011 0.009

20-6 0.020 0.021 0.022 0.021 0.021 0.018 0.017

5-3 0.037 0.035 0.030 0.025 0.023 0.026 0.031

2-0 0.075 0.068 0.057 0.049 0.041 0.044 0.056

The weekly seasonality pattern is reflected by higher demand being generated for

weekdays and less for weekends. The mean demand per day is calculated from the

actual customer bookings for a particular car group, which are summarized in Tables C2.

The distribution of demand for different length-of-rental products reflects the empirical

distribution of the same normalized to cover up to 7 days rentals and is reported in

Table C3.
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Table C2: Mean demand by day-of-week.

DoW Sun Mon Tue Wed Thu Fri Sat

Daily Demand 71 96 79 85 86 87 64

Table C3: Demand distribution over length-of-rental.

LoR 1 2 3 4 5 6 7

Percentage 0.25 0.21 0.18 0.14 0.10 0.06 0.07

For each product, demand arrivals within each booking period are generated randomly

by a Poisson distribution with the arrival rate obtained for the specific day of week, length-

of-rental and booking period. Within one time period there could be multiple arrivals for

different products since we sample from a Poisson distribution for each product separately.

In the situation of multiple arrivals, their order is determined by random permutation.

Since we consider length-of-rentals of up to 7, we generate in total 7H booking curves in

each simulation run, where H is the simulation’s time horizon.

Unconstraining

In unconstraining a particular product, all the historical booking curves of the same

day-of-week and length-of-rental are taken into account. Therefore the unconstraining

accuracy improves with the simulation progressing as more history becomes available. An

initial horizon of 60 days, which forms part of the warm-up phase, is processed without

unconstraining so as to have sufficiently many historic booking curves.

Forecasting

Without unconstraining, the observed sales record is used for forecasting future de-

mand; otherwise, we use the unconstrained demand estimates. We have chosen the

moving average as forecasting method in the simulation study so as to eliminate further

need for parameter optimization. Only the demand histories for the same day-of-week

and length-of-rental are used in each forecast. The forecasting module simply uses the av-

erage over the corresponding demand estimates provided by the unconstraining module.

If no unconstraining is used, it averages the constrained sales records.
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Optimization

The RM system’s optimization module uses the probabilistic non-linear program

(PNLP) suggested for the car rental application by Schmidt (2009). Let rs,l denote

the rental rate (price) for the product corresponding to pick up at day s and for length-

of-rental l. The random variable Ys,l represents future demand for product (s, l) and Bs,l

is its booking limit. The fleet available at s is denoted by scalar As. The optimization

horizon is N = 30 days. The PNLP at day t can be stated as follows:

PNLP: max
t+N∑
s=t

7∑
l=1

rs,lus,l (C.1)

s.t. us,l = E [min{Bs,l, Ys,l}] , ∀ s ∈ {t, . . . , t+N}, ∀ l ∈ {1, . . . , 7}, (C.2)

s∑
τ=t

7∑
l=s−τ+1

Bτ,l ≤ As, ∀ s ∈ {t, . . . , t+N}. (C.3)

Since the demand variable Ys,l is discrete, we can calculate (C.2) by

us,l = E[min{Bs,l, Ys,l}] = Bs,l −
Bs,l−1∑
y=0

Fs,l(y), (C.4)

where Fs,l is the cdf function for Ys,l. It is obvious that us,l is an increasing and concave

function of Bs,l. In light of this property and the finite bound for Bs,l, equation (C.2) can

be approximated by a set of piecewise linear functions. Specifically, it can be replaced by

the following constraints.

us,l ≤ αis,lBs,l + βis,l, (C.5)

where αis,l, β
i
s,l are the parameters for the ith(1 ≤ i ≤ I) linear function for product (s, l).

We next present how to determine these parameters. For a comprehensive account

on this process refer to Talluri and van Ryzin (2006). For each product (s, l), sample

I + 1 booking limit values in between 0 and As, denoted by Bi
s,l. Substitute each of them

into equation (C.4) and denote the result by uis,l. Essentially we have just calculated the

expected demand to be accepted for I + 1 booking limit values. These I + 1 pairs of

(Bi
s,l, u

i
s,l) determine I linear functions whose parameters are given by,

αis,l =
ui+1
s,l − uis,l

Bi+1
s,l −Bi

s,l

, (C.6)

βis,l =
uis,lB

i+1
s,l − u

i+1
s,l B

i
s,l

Bi+1
s,l −Bi

z,l

. (C.7)
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For the perfect information scenario in which the true demand is known in advance,

PNLP reduces to a deterministic linear program. The RM system of our partner company

uses a PNLP-based optimization module.

Overall, the simulation uses a warm-up phase of 120 days so as to reduce the impact of

the initial state of the system on the revenue performance of our unconstraining techniques

since they rely on availability of sufficient historic data. Within that warm-up period the

booking system uses the FCFS policy to admit bookings until the capacity limit is

reached.
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