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Abstract 29 

The aim of this study was to investigate the biodegradation of phenanthrene in five Antarctic 30 

soils over 150 days at various temperatures and under slurry conditions. The development of 31 

catabolic activity was measured over time (1, 30, 60, 150 days) by the addition of 14C-32 

phenanthrene and measuring changes in the lag phases, rates and extents of 14C-phenanthrene 33 

degradation. As the temperature increased (4 oC, 12 oC, 22 oC, 22 oC slurry), the highest 34 

extents of 14C-phenanthrene mineralisation increased significantly (0.46%, 12.21%, 24.82%, 35 

60.81%), respectively. This was due to changes in the water availability and 14C-36 

phenanthrene dissolution in aqueous phase, thus enhancing bioaccessibility of the 37 

contaminant to indigenous microorganisms within the soil. High catabolic activities can 38 

develop in Antarctic soils where appropriate conditions are ensured. However, further studies 39 

are however needed to explore the changes in microbial community structure that occur at 40 

different incubation temperatures. 41 

 42 
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1. Introduction 47 

Polycyclic aromatic hydrocarbons (PAHs) are an important class of environmental pollutants 48 

(Doick et al., 2003). Their potential for long range atmospheric transport (Prevedouros et al., 49 

2004), ubiquitous presence in the atmosphere (Garrido et al., 2014), marine (Latimer and 50 

Zheng, 2003) and soil environments (Wilcke, 2007), low aqueous solubility, high octanol 51 

water coefficient (log Kow) and adverse health effects (Kim et al., 2013) has fuelled research 52 

interest into their sources and fate in varying environments. The fate of PAHs in the soil 53 

environment is critical to the amount of PAHs present in the total environment. This is 54 

because about 90% of the global environmental PAHs are stored in soils (Wild and Jones, 55 

1995; Agarwal et al., 2009). Despite this, soils can serve as a disturbing source of PAHs to 56 

the atmosphere (Cousins and Jones, 1998; Wang et al., 2010). As a result, PAH 57 

concentrations in soils have been found to correspond to concentrations in the atmospheric 58 

environment (Zhao et al., 2015). 59 

PAHs are removed from soil primarily through microbial activity as these aromatics represent 60 

sources of carbon and energy for microbial metabolism (Semple et al., 2006; Couling et al., 61 

2010; Guo et al., 2010). As a result, PAH-degrading microorganisms have been isolated from 62 

many different soils, including tropical (Obayori et al., 2008; Obayori et al., 2009; Guo et al., 63 

2010; Isaac et al., 2013), temperate (Johnsen et al., 2006; Ogbonnaya et al., 2014a) and 64 

extreme temperature environments, such as cold (Baraniecki et al., 2002) and hot deserts 65 

(Abed et al., 2015a; 2015b). In order for microbial degradation of PAHs to occur, the 66 

presence of microorganisms with the appropriate genetic potential is essential (Peng et al., 67 

2008). The microorganisms must be in the same environment as the PAH and the PAH must 68 

be able to be physically transferred to the site of metabolism in the microorganism (Macleod 69 

et al., 2001). Bioavailability is also important and depends on the physicochemical properties 70 

and concentration of the PAHs (Guo et al., 2010; Sayara et al., 2010), the properties of the 71 
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soil (mainly organic matter content, moisture content/water activity and temperature), 72 

microorganisms present (Semple et al., 2007; Ogbonnaya et al., 2014a; 2016), length PAH-73 

soil contact time (Leonardi et al., 2007; Rhodes et al. 2010; Ogbonnaya et al., 2014a) and 74 

presence of co-substrate (Sayara et al., 2011).    75 

So, how do microorganisms develop the ability to degrade PAHs? Prior exposure of soil 76 

microorganisms to PAHs or similar chemicals from either natural or anthropogenic sources is 77 

believed to be important to the development of PAH degradation ability in microorganisms 78 

(Johnsen and Karlson, 2005; Couling et al., 2010). Microbial development or adaptation is 79 

controlled by the amount of the PAH in contact with the microorganism and the length of 80 

time of the contact (Bosma et al., 1996; Macleod, et al., 2001; Couling et al., 2010). Where 81 

no prior exposure to a PAH has occurred, the microorganisms would require genetic 82 

alterations (Semple et al., 2003), which may result in new metabolic capabilities enabling the 83 

microorganisms to degrade PAHs (van der Meer et al., 1992). 84 

The Antarctic environment is still considered one of the Earth’s last pristine environments 85 

(Anderson et al., 2006). Although increased human activities in the form of tourism and the 86 

establishment of scientific bases in the region has led to hydrocarbon contamination of some 87 

soils (Coulon et al., 2005), PAHs are either undetectable (Aislabie et al., 1999), at pre-88 

industrial (Wilcke, 2000) or background levels (Johnsen and Karlson, 2005). Antarctic soils 89 

have been described as cold desert soils (Bockheim, 1997) and are characterised by extremely 90 

low temperatures, low biological activity, low presence of nutrients, poor moisture and low 91 

organic matter contents (Campbell and Claridge, 2009). The unique and extreme properties of 92 

Antarctic soils, in addition to their “pristine” nature make the question of the development of 93 

PAH catabolic activity in Antarctic soils an interesting one (Okere et al., 2012a). To the best 94 

of the authors’ knowledge, little or no work has focused on the effect(s) of pre-exposure and 95 

increasing contact time of indigenous Antarctic soil microflora to PAHs and the 96 
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biodegradation of PAHs. Therefore, the aim of this study was to investigate the effect(s) of 97 

exposing five Antarctic soils to 12C-phenanthrene over 150 days at different temperature 98 

conditions on the development of 14C-phenanthrene catabolism in the soils.  99 

 100 

2. Materials and methods 101 

2.1 Materials 102 

Phenanthrene (>99.6%), and [9-14C] phenanthrene (specific activity = 50 mCi mmol-1, 103 

radiochemical purity >95%) standards were obtained from Sigma Aldrich, UK. Chemicals for 104 

the minimal basal salts (MBS) solution were obtained from BDH Laboratory Supplies and 105 

Fisher Chemicals. The liquid scintillation cocktail (Ultima Gold) and 7 ml glass scintillation 106 

vials were obtained from Canberra Packard, UK. Sodium hydroxide was obtained from 107 

Sigma Aldrich, UK. Dichloromethane, hexane and methanol were supplied by Merck, 108 

Darmstad, Germany. Agar and plate count agar were obtained from Oxoid Ltd, UK. 109 

 110 

2.2 Soils sampling and bulk characterization 111 

Composite topsoil (0-5 cm) samples (5) were collected using a stainless-steel corer from 112 

different locations of Livingstone Island, Antarctica and labelled A – E. According to sample 113 

transportation standards, the samples were frozen (-20 oC) in sterile glass jars and then 114 

transported to Lancaster Environment Centre. The soils were allowed to defrost and further 115 

air-dried and passed through a 2 mm sieve to remove stones and fibrous material. Then the 116 

soils were subject to physical and chemical analysis to determine their properties (Table 1). 117 

Soil redox, soil pH and soil moisture content were measured by standard methods according 118 

to Cabrerizo et al. (2011). Particle size analysis and calculations were determined according 119 

to the method by Gee and Bauder (1979) and Gee and Bauder (1986), respectively. Total 120 
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carbon and nitrogen were determined by using a Carlo Erba CHNS-OEA 1108 CN-Elemental 121 

analyser after oven drying (105 oC) 4 mg of and sieved (2 mm) soil samples. Total organic 122 

carbon (TOC) was determined after heating soils to 430 oC removing all organic carbon, 123 

measuring the ash containing inorganic carbon alone and the TOC determined by mass 124 

balance (Rhodes et al., 2007) .  125 

 126 

2.3 PAH concentrations in soil  127 

For extraction and quantification, 30 g of soil samples were homogenized, dried using 128 

anhydrous sodium sulfate and ground using a mortar and a pestle. The samples were 129 

transferred into a soxhlet cellulose thimble (Whatman) and extracted in soxhlet apparatus 130 

over 24 h, using dichloromethane:methanol (2:1 v/v). Samples were spiked with per-131 

deuterated PAHs standards (anthracene-d10, crysene-d12 and perylene-d12) prior extraction. 132 

Extracts were further reduced in a rotary evaporator to 1 ml and then solvent-exchanged into 133 

isooctane. Samples were then fractionated on a 3 % deactivated alumina column (3 g) with a 134 

top layer of anhydrous sodium sulfate, where each column was eluted with 12 ml of 135 

dichloromethane:hexane (2:1 v/v). PAH fractions were further concentrated in a rotary 136 

evaporator and solvent-exchanged to isooctane under a gentle stream of nitrogen. All the 137 

samples were analysed by GC-MS using a Thermo Electron (San Jose, CA, USA; model 138 

Trace 2000 operating in selected ion monitoring (SIM) mode (Okere et al., 2012a). Details of 139 

temperature programs and monitored ions are given elsewhere (Cabrerizo et al., 2009; 140 

Cabrerizo, et al., 2011).  141 

 142 

2.4 Quality Assurance/Control  143 
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Strict quality assurance and control measures were implemented during sampling, 144 

transportation and analysis. During analysis, field and laboratory blanks were introduced after 145 

every three (3) soil samples. Field blanks as they were prepared at the sampling sites to 146 

determine the potential for contamination of the samples by PAHs not associated with the soil 147 

samples, phenanthrene, fluoranthene and pyrene concentrations accounted for less than 3% of 148 

the total PAH content in the sample. Samples therefore were not blank corrected. The 149 

surrogate percent recoveries from the soil samples reported here were (mean ± SD): 70% ± 150 

11; 105% ± 17 and 90% ± 13 for phenanthrene-d10, chrysene-d12 and perylene-d12, 151 

respectively. 152 

 153 

2.5 Soil spiking and exposure to 12C-phenanthrene 154 

To expose soils to 12C-phenanthrene, soils were spiked with 12C-phenanthrene following the 155 

method recommended by Doick et al. (2003). 12C-Phenanthrene standards were prepared in 156 

toluene (7.5 ml per 250 g soil) to deliver a concentration of 50 mg kg-1, where an initial 50 g 157 

of the soil was spiked in the mixing vessel (stainless-steel spoon) and blended for a minute 158 

and the remainder 200 g soil was added in 100 g aliquots and blended for 5 minutes. Toluene 159 

was allowed to volatilise after mixing with the initial 50 g to prevent damage to microbial 160 

cells in soils. Blank soils which were not not spiked with 12C-phenanthrene were also 161 

prepared to account for background 14C-associated activity. All the soils were then contained 162 

in sealed amber glass jars and left incubated in the dark at 4 oC , 12 oC  and 22 oC for 1, 30, 163 

60 and 150 days. 164 

 165 

2.6 Catabolism of 14C-phenanthrene in soil 166 

The catabolic activity of 14C-phenanthrene by indigenous microflora in the soils was 167 

determined in 250 ml screw-cap Erlenmeyer flasks (respirometers) (Reid et al., 2001) after 1, 168 
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30, 60 and 150 days contact times. Pre-exposed soils (10 g) rehydrated to 40-60% water 169 

holding capacity were placed in a respirometer and spiked with 12C- (>99.6%) and 14C-170 

phenanthrene (80 Bq 14C-phenanthrene g-1 soil) using toluene as a carrier solvent. A 7 ml 171 

scintillation vial containing 1 M NaOH was attached to the screw cap to serve as a CO2 trap. 172 

The respirometers were stored in the dark at the respective temperatures which the soils were 173 

exposed (4 oC, 12 oC, 22 oC). A slurry system was also set up containing 30 ml mineral basal 174 

salts (MBS) medium as Ogbonnaya et al. (2014b) and placed on a SANYO® Gallenkamp 175 

orbital incubator set at 100 rpm and 22 ºC to agitate and ensure adequate mixing over the 176 

period of the incubation. NaOH traps were replaced every 24 h, after which 6 ml of Ultima 177 

Gold scintillation cocktail was added to each spent trap and the contents analysed on a 178 

Packard Canberra Tri-Carb 2250CA liquid scintillation counter. The incubation lasted for 21 179 

days. Lag phases were measured as the time (days) before 14C-phenanthrene mineralisation 180 

reached 5%. Analytical blanks containing no 14C-phenanthrene were used for the 181 

determination of levels of background radioactivity. 182 

 183 

2.7 Statistical analysis 184 

Respirometric assays were analysed in triplicate and error bars presents standard error mean 185 

for n=3. SIGMA STAT version 2.03 software package was used for the analysis of the data. 186 

The significance of 14C-phenanthrene degradation between soils and temperatures were 187 

assessed by implementing ANOVA and Tukey’s tests. 188 

 189 

3.0 Results 190 

3.1 Soil physico-chemical properties 191 
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The physico-chemical properties of the five selected soils from Livingstone Island were 192 

similar. They were found to be consistent with properties of Antarctic soils published 193 

elsewhere (Campbell and Claridge, 2009; Okere et al., 2012b). All the soils were dominantly 194 

sandy (> 88%) in nature, with little or no silt content (0-4%). All the soils were slightly 195 

alkaline and characterised by very low TOC (< 0.5%), moisture (< 1.5%) and N contents (< 196 

0.26%) (Table 1). However, all soils exhibited neutral and slightly alkaline pH (6.7 – 7.9) 197 

conditions favourable for microbial growth. Similarly, the PAH levels were shown to be very 198 

low with highest total PAH concentration in soil E (0.85 mg kg-1) and lowest concentration in 199 

soil C (0.28 mg kg-1). Low molecular weight PAHs such as phenanthrene, fluoranthene, 200 

anthracene and pyrene were found in all soils, whilst benzo (a) pyrene was found in only soils 201 

A and D (Table 1). 202 

 203 

3.2 Catabolism of 14C-phenanthrene in pre-exposed soils at different temperature regimes 204 

The mineralisation of 14C-phenanthrene was measured in soils at different temperatures and 205 

conditions (4 oC, 12 oC, 22 oC and slurry) with increasing soil-phenanthrene contact time (1, 206 

30, 60, 150 days). The effects of temperature, biodegradation condition and contact time on 207 

lag phase, fastest rate (per day) and extent of 14C-phenanthrene mineralisation were observed.  208 

When assays were incubated at 4 oC, there was no observed lag phase across all contact times 209 

and the maximum rate of 14C-phenanthrene mineralisation did not exceed 0.06% d-1 which 210 

was often observed during first day of respirometry assay and observed in the 1 day contact 211 

time (Table 2). There was statistically insignificant difference (P > 0.05) in the maximum 212 

rates of 14C-phenanthrene mineralised in all five soils at all contact times (Table 3). The 213 

highest extent of 14C-phenanthrene mineralised was 0.46% (soil B) and the lowest was 0.23% 214 

(soil E) during 1 day contact time (Figure 5). Increasing the contact time to 30, 60 and 150 215 
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days did not result in any significant change (P > 0.05) in the extent of 14C-phenanthrene 216 

mineralisation (Table 4). 217 

At a higher temperature (12 oC), the lag phase was not observed until after 60 days contact 218 

time in soils C (14.87 days) and D (4.76 days), where the lag phase of soil D was statistically 219 

the shortest (P < 0.001) compared to other soils under 12 oC assay condition (Table 2). 220 

However, as the contact time increased to 150 days, the lag phase in soil D statistically 221 

increased (P < 0.001) following further exposure to 12.91 days which was statistically similar 222 

to other soil C (Table 2). Similar to 4 oC soil assay, the maximum rate of 14C-phenanthrene in 223 

12 oC soil did not exceed 0.07% d-1 following 1 and 30 days contact times, but after pre-224 

exposure at 60 days, maximum rate of mineralisation significantly increased to 0.74%, 1.76% 225 

and 0.20% d-1 in soils C, D and E, respectively (Table 3). Further increase in contact time did 226 

not sustain the rates of mineralisation, rather led to decreased rates, except for soil C (Table 227 

3). The extents of 14C-Phenanthrene mineralisation after 1 d contact time were similar in all 228 

five soils (Figures 1-5, Table 2). After 30 days contact time, the extents of 14C-phenanthrene 229 

mineralisation in all the soils decreased, but increasing contact time to 60 days resulted in 230 

significant increases (P < 0.05) in 14C-phenanthrene mineralisation in soils C (5.3%) and D 231 

(12.2%) alone. This was maintained after the 150 days pre-exposure in soils C and D (Table 232 

4).  233 

At 22 oC, lag phases were observed and they increased in soils D and E as contact time 234 

increased but there was statistical increase (P < 0.05) only at 150 days contact time compared 235 

to other time points in both soils. Lag phase insignificantly decreased (P = 0.49) in soil C as 236 

contact time increased from 60 to 150 days (Table 2). Maximum rates of 14C-phenanthrene 237 

mineralisation increased (P < 0.05) with contact time in soils C, D and E compared to the 238 

shorter contact times (1 and 30 days) (Table 3). Microbial catabolic activity in soil D 239 

exhibited the highest maximum rate of 14C-phenanthrene mineralisation (10.6%) compared to 240 
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all other soils and contact times. The highest extent of 14C-phenanthrene mineralisation in all 241 

the soils after 1 d contact time was in soil B (2.17%) (Table 4). Exposing the soils to 12C-242 

phenanthrene for additional 30 days led to no significant changes (P > 0.05) even though 243 

there were decreases in extents of mineralisation in soils A, B and C. However, after 60 days 244 

contact time, 14C-phenanthrene mineralisation in soils C, D and E increased significantly (P < 245 

0.05) to 6.7%, 16.8% and 19.0%, respectively. A further significant increase was observed in 246 

soil D (24.8%) but significantly decreased in soil E (8.3%) after 150 days contact time (Table 247 

2).  248 

Under the 22 oC slurry conditions, lag phase, maximum rates and extent of 14C-phenanthrene 249 

mineralisation were much more obvious. For instance, it was only under the slurry condition 250 

that all contact time points recorded lag phases, which differed in time and soil type. At 1 day 251 

contact time, soil A recorded the shortest (5.6 days) lag phase (P < 0.05) compared to other 252 

soils but as contact time increased to 30 days, soil A had the longest lag phase, whilst soil E 253 

had the shortest (2.3 d) lag phase (P < 0.001) (Table 2) (Figure 5; Table 2). Concerning 254 

maximum rates, microorganisms in soil E consistently showed highest rates of 14C-255 

phenanthrene mineralisation (P < 0.001) compared to all other soils and across all contact 256 

times, except 60 days contact time where soil C had fastest rate (25.7% d-1). As the contact 257 

time increased, maximum rates of mineralisation in soil E increased to 27.3% d-1 and then 258 

was stable at 19.9% d-1 and 21.0% d-1 at 30, 60 and 150 days contact times, respectively 259 

(Table 3) which were significantly higher (P < 0.05) compared to other soils. Unsurprising, 260 

the highest extent of 14C-phenanthrene mineralisation was also in soil E (60.8%) at 1 day 261 

contact time, which was significantly higher (P < 0.001) than extents of mineralisation 262 

amongst other soils (A, B, C, D).  Soil E consistently had highest extent of mineralisation 263 

across all contact times, except at 150 days contact time where soil D had 38.8%, which was 264 

significantly (P = 0.009) higher than soil E. Soils A-C had insignificant change in extents of 265 
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mineralisation until 150 days contact time, where there were significant reductions (P < 0.05) 266 

(Table 4).  267 

 268 

4.0 Discussion 269 

4.1 Soil physico-chemical properties 270 

As in previous studies, soils collected from Livingstone Island of Antarctica Island, distant 271 

from persistent human activities were characterised by extremely low nutrient, organic 272 

carbon and moisture conditions (Campbell and Claridge, 1987; Okere et al., 2012b). Losses 273 

of these components are common with coarse sandy soils, clays are minor in such soils due to 274 

the dominance of physical weathering processes over chemical weathering (Egli et al., 2008; 275 

Spinola et al., 2017). Apparently, vegetative cover and biological presence were found to be 276 

limited within the studied region, which further contributed to the low level organic carbon 277 

content, but does not rule out microbial presence (Okere et al., 2012b). The soil organisms 278 

encounter extremely low water and nutrient content, very low temperatures with ice 279 

formations, freeze–thaw cycles, prolonged darkness in winter and short summer spells (Cary 280 

et al., 2010). Despite the harsh environmental conditions, the alkaline pH condition is 281 

favourable for bacterial growth and activities (Aislabie et al., 2001; Baraniecki et al., 2002; 282 

Okere et al., 2012b). PAHs were found in all the five soils at levels (very low) similar to 283 

those reported in uncontaminated/pristine soils (Johnsen and Karlson, 2005; Cabrerizo et al., 284 

2012; Okere et al., 2012b).  285 

 286 

4.2 Effects of soil properties on bioaccessibility 287 
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Firstly, due to the nature of Antarctic soils (sandy, low TOC, nutrients, moisture content and 288 

PAH concentrations) (Table 1), the bioavailability and bioaccessibility of the 12C-289 

phenanthrene spiked into the soils was not expected to be reduced by adsorption to either soil 290 

organic matter (SOM) or soil mineral components as soil-12C-phenanthrene contact time 291 

increased. In low organic matter sandy soils with < 4% moisture content, the retention of 292 

hydrophobic organic contaminants (HOCs), like PAHs, is controlled by their adsorption onto 293 

mineral surfaces rather than onto soil organic matter (Qu et al., 2008; Zhang et al., 2011). 294 

Indeed, strong interactions between the low SOM fractions and mineral surfaces occur to 295 

create condensed domains that can support PAH adsorption (Wang and Xing, 2005; Wang et 296 

al., 2005). Theoretically, this means reduced bioaccessibility of the 12C-phenanthrene due to 297 

sequestration to either soil organic matter or soil mineral components, but they were not the 298 

only limiting factors to the adaptation of the indigenous microbes to 14C-phenanthrene 299 

mineralisation in these Antarctic soils. The other factors that must have contributed to low 300 

bioaccessibility of phenanthrene were low moisture conditions and temperature for microbial 301 

catabolic activities in all soils.  302 

 303 

4.3 Catabolism of 14C-phenanthrene in pre-exposed soils under different temperature 304 

regimes 305 

The effects of exposing the indigenous microbes to 12C-phenanthrene on their ability to 306 

mineralise 14C-phenanthrene were increased as exposure and incubation temperatures 307 

increased (Figure 1).  Exposure and incubation at 4 oC had no significant effect on either the 308 

rates or extents of 14C-phenanthrene mineralisation in all five soils studied. Less than 1% of 309 

the 14C-phenanthrene was mineralised (no lag phase) throughout the 150 day exposure period 310 

and the rates of 14C-phenanthrene mineralisation remained less than 0.06 % d-1 over the same 311 
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period (Table 3). Research by Ogbonnaya et al. (2014a) and Oyelami et al. (2015) showed 312 

that it would require high concentrations of biochar and activated carbon (super sorbents), 313 

respectively after prolonged soil-PAH contact time (>100 days) to drastically lower 314 

phenanthrene mineralisation below 10%.  In this study, phenanthrene mineralisation at 4 oC 315 

did not exceed 1%, which was contrary to the levels of phenanthrene mineralisation in soils 316 

sourced from Antarctica having different soil properties but under similar conditions in 317 

Coulon et al. (2005). This study thus reiterates the important role of temperature on microbial 318 

biodegradation of PAHs in soils. Temperature is important because it influences the rates and 319 

extents of PAH degradation in soils in a number of ways. Firstly, microbial activity obeys the 320 

Arrhenius relationship because it increases with increasing temperature (Leahy and Colwell, 321 

1990), which usually doubles for each 10 oC rise in temperature (Bossert and Bartha, 1984; 322 

Coulon, et al., 2005). Microbial activities by psychrophiles and psychrotrophs are expected in 323 

Arctic and Antarctic environments but the catabolic activities were not observed in 324 

phenanthrene mineralisation despite pre-exposure probably due to temperature-dependent 325 

biochemical activities of phenanthrene degraders in the soils (D’Amico et al., 2006). 326 

Secondly, microorganisms are only able to degrade chemicals that have been dissolved in the 327 

aqueous phase (Semple, et al., 2003). At 4 oC, PAHs are more viscous, less volatile and less 328 

soluble, therefore impeding bioaccessibility and diffusion rates to microorganisms, hence, 329 

only minute fractions of PAHs if any will be in the aqueous state (Margesin and Schinner, 330 

2001). Also, any moisture present in the soil pore spaces will be frozen at 4 oC (low liquid 331 

water availability), making it difficult for the 12C-phenanthrene to be accessed by the 332 

microbes for adaptation.  333 

As the exposure time and incubation temperature was increased from 4 oC and 22 oC, there 334 

were noticeable changes in the catabolic activity of the indigenous microorganisms in some 335 

of the soils (Tables, 2, 3, 4). More precisely, there were increases in the extents of 14C-336 
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phenanthrene mineralisation as the temperature increased to 22 oC, due to increased water 337 

availability and phenanthrene dissolution in aqueous phase, thus enhancing bioaccessibility 338 

of the contaminants to indigenous microorganisms (ten Hulscher and Cornelissen, 1996; 339 

Coulon et al., 2005). In respect to catabolic activities, lag phases were observed in soils C and 340 

D at 12 oC after 60 to 150 days contact times and under the 22 oC (soils C, D, E) incubation 341 

conditions. This accurately coincided with extents of 14C-phenanthrene mineralisation in the 342 

said soils, where rates of mineralisation exceeded 1% d-1, extents of mineralisation exceeded 343 

5%. Despite all the soils in this study being collected under the same climatic conditions 344 

(Antarctica) and exhibited similar physico-chemical properties (N, TOC, pH, texture, 345 

moisture content) which were invariably low, catabolic activities varied with contact time and 346 

temperature. Although not investigated, this suggests that the different soils contained 347 

different spectra and density of psychrophilic and psychrotrophic microorganisms capable of 348 

degrading phenanthrene (Eriksson et al., 2003; Antizar-Ladislao et al., 2008).  349 

 350 

Catabolic activities were mainly pronounced under slurry conditions at 22 oC. The lag phases 351 

in each soil showed a decreasing trend as the incubation time increased until 60 days contact 352 

time indicating an adaptation of the indigenous microorganisms to the presence of 353 

phenanthrene (Couling et al., 2010; Ogbonnaya et al., 2014b; Oyelami et al., 2015). 354 

Microbial adaptation would have been through increase in microbial population (growth of 355 

mesophiles), catabolic enzyme induction and transgenic manipulations degrading populations 356 

(Top and Springael, 2003; Ogbonnaya 2014b). Microbial adaptations followed a sigmoidal 357 

pattern and the period took much longer time (60 days) to be below 5 days compared to 358 

adaptation period of phenanthrene mineralisation in UK soils (Couling et al., 2010; Rhodes et 359 

al., 2010; Ogbonnaya et al., 2014b) despite having lower organic carbon content and being 360 

under similar conditions (slurry). Microbial diversity, activities and transgenic manipulations 361 
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may be much higher in UK soils compared to pristine soils of Antarctica owing to initial 362 

environmental stressors within the sample sites such as temperatures, freeze-thaw cycles, low 363 

organic carbon and unavailability of moisture (Pointing et al., 2009; Rao et al., 2012; Cowan 364 

et al., 2014). It also happens that the catabolic activity amongst the Antarctica soils differed, 365 

where soil E exhibited the highest rate and extent of 14C-phenanthrene mineralisation, as well 366 

as the shortest lag phases compared to other soils after 1-60 days contact time. Soil E already 367 

had catabolic potential via constitutive or actively induced enzymes right from the onset. 368 

Also, soil E had higher bioaccessibility due to non-detectable organic carbon and the highest 369 

concentration of PAHs (Table 1) and much higher phenanthrene (0.32 mg kg-1) prior spiking 370 

(Couling et al., 2010; Rhodes et al., 2010; Ogbonnaya et al., 2014a). When compared with 371 

previous studies, the catabolic activity recorded in the Antarctic soil E was higher than that 372 

observed in Couling et al. (2010), where less than 60% of 75 mg kg-1 14C-phenanthrene 373 

spiked was mineralised by indigenous microorganisms in a 2.7% TOC soil from the UK at 1 374 

day contact time. Also, Rhodes et al. (2010) observed over 60% of 10 mg kg-1 14C-375 

phenanthrene mineralisation in a 1.7% TOC control soil in UK at 1 day contact time. 376 

Although, soil E had a non-detected TOC, it showed that such ‘pristine’ soils inhibit catabolic 377 

potentials and when supported, mineralisation by indigenous microorganisms can be 378 

enhanced.  379 

 380 

This study further supports Coulon et al. (2005) in that high catabolic potential can be 381 

observed in Antarctic soils when right conditions are appropriate. Slurrying the system 382 

ensured there was more 14C-phenanthrene in solution and agitation ensured maximum contact 383 

between the microorganisms and the substrate. Doick and Semple (2003) practically showed 384 

that soil slurrying enhances soil surface area, thus facilitating partitioning of phenanthrene 385 

into the aqueous mixture where microbial mobility would have remarkably increased. A 386 
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general trend marked by a static extent of 14C-phenanthrene mineralisation soils with 387 

increasing exposure time to 12C-phenanthrene was observed from day 1 to day 60. 388 

 389 

 390 

5.0 Conclusion  391 

Antarctic soils are peculiar because of their unique soil characteristics and “pristine” nature. 392 

This study investigated the effect of exposing five Antarctic soils to 12C-phenanthrene at 393 

different temperatures and assay conditions on the rates and extents of indigenous 394 

biodegradation of 14C-phenanthrene. Our findings suggest that exposure and incubation 395 

temperature are important limiting factors for the adaptation of indigenous Antarctic soil 396 

microorganisms to 14C-phenanthrene biodegradation. Further studies with other Antarctic 397 

soils and PAHs are needed to verify this claim as well as also identify what specific changes 398 

are occurring in the soil microbial communities as exposure time to PAHs increase. 399 

 400 

 401 
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Table 1 Physical and chemical properties of five soils from Livingstone Island, Antarctica. 

(ND - Not Detected) 

PAH (ng g-1dry wt soil) Soil A Soil B Soil C Soil D Soil E 

Methylphenanthrene                             

Dibenzothiophene 

Dimethylphenanthrene 

Phenanthrene 

Anthracene 

Fluoranthene 

Pyrene 

Benzo (a) anthracene 

Chrysene 

Indeno (1,2,3-cd) pyrene 

Benzo (b&k) fluoranthene 

Benzo (a) pyrene 

Dibenzo (ah) anthracene 

Benzo (ghi) perylene 

pH 

% Nitrogen 

% Total Organic Carbon 

% Moisture 

ND 

0.14 

ND 

0.04 

0.001 

0.03 

0.03 

0.01 

ND 

0.02 

0.01 

0.02 

ND 

ND 

6.7 

0.26 

0.04 

1.05 

0.05 

ND 

0.03 

0.09 

0.004 

0.04 

0.04 

ND 

0.03 

ND 

ND 

ND 

ND 

ND 

7.4 

0.21 

0.45 

1.40 

0.05 

ND 

0.03 

0.05 

0.004 

0.04 

0.06 

0.02 

0.03 

ND 

ND 

ND 

ND 

ND 

7.0 

0.13 

0.35 

0.89 

ND 

ND 

ND 

0.10 

0.01 

0.05 

0.07 

0.02 

0.03 

0.03 

0.01 

0.02 

ND 

0.08 

7.6 

0.01 

0.03 

1.15 

0.08 

0.07 

0.03 

0.32 

0.01 

0.08 

0.06 

0.04 

0.12 

ND 

0.04 

ND 

ND 

ND 

7.9 

0.23 

ND 

0.65 

 

 

 



Table 2 Lag phase of 14C-phenanthrene mineralisation (days) in five Antarctic soils (A, B, C, 

D, E) at 4 oC, 12 oC, 22 oC and 22 oC slurry conditions. Errors represent standard error of 

mean (SEM) of triplicate samples (n = 3) 

 

Soil-PAH 

contact (d) 

Soil 4 oC (days) 12 oC (days) 22 oC (days) Slurry (days) 

1 A n/a n/a n/a   5.63 ± 0.0aB 

 B n/a n/a n/a 10.86 ± 0.0bD 

 C n/a n/a n/a 11.38 ± 0.0cC 

 D n/a n/a n/a 12.47 ± 1.1cC 

 E n/a n/a n/a   8.81 ± 0.1bD 

30 A n/a n/a n/a   8.45 ± 0.0cD 

 B n/a n/a n/a   7.53 ± 0.0cC     

 C n/a n/a n/a   5.92 ± 0.1bB 

 D n/a n/a n/a   6.94 ± 0.6bB 

 E n/a n/a n/a   2.34 ± 0.0aB 

60 A n/a n/a n/a   3.73 ± 0.3cA 

 B n/a n/a n/a   4.44 ± 0.0dA    

 C n/a 14.87 ± 0.6bA 15.43 ± 2.1bA   1.89 ± 0.1bA 

 D n/a   4.76 ± 2.0aA        7.28 ± 0.6aA   2.28 ± 0.0bA 

 E n/a n/a   7.87 ± 1.8aA      0.34 ± 0.0aA 

150 A n/a n/a n/a   7.47 ± 0.1cC 

 B n/a n/a n/a   6.71 ± 0.0bB     

 C n/a 12.82 ± 0.7aA    11.32 ± 0.3aA       6.38 ± 0.3bB 

 D n/a 12.91 ± 0.1aB       9.39 ± 0.2aB   5.22 ± 0.1aB 

 E n/a n/a 11.97 ± 2.1aB       7.12 ± 0.0cC 

      

a: No statistical significant difference (p > 0.05) amongst soils within contact times; A: No statistical significant 

difference (p > 0.05) amongst same soils in different contact times; b, c or d: Statistical significant difference (p < 

0.05) amongst soils within contact times; B, C or D: Statistical significant difference (p < 0.05) amongst same soils 

in different contact times. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3 Maximum rates of 14C-phenanthrene (% d-1) mineralisation in five Antarctic soils (A, 

B, C, D, E) at 4 oC, 12 oC, 22 oC and 22 oC slurry conditions. Errors represent standard error 

of mean (SEM) of triplicate samples (n = 3) 

 

Soil-PAH 

contact (d) 

Soil 4 oC (% d-1) 12 oC (% d-1) 22 oC (% d-1) Slurry (% d-1) 

1 A    0.04 ± 0.0aA        0.07 ± 0.0aA       0.28 ± 0.0aA     14.06 ± 0.0bC     

 B 0.06 ± 0.0aA     0.06 ± 0.0aA     0.86 ± 0.0aB      9.97 ± 0.1aC     

 C 0.03 ± 0.0aA    0.06 ± 0.0aA     0.16 ± 0.0aA       9.91 ± 0.9aA 

 D 0.03 ± 0.0aA 0.05 ± 0.0aA 0.07 ± 0.0aA   9.05 ± 0.6aA 

 E 0.04 ± 0.0aA 0.06 ± 0.0aA 0.10 ± 0.0aA 24.29 ± 0.8cB 

30 A 0.02 ± 0.0aA 0.03 ± 0.0aA 0.07 ± 0.0aA 20.52 ± 0.4dD 

 B 0.02 ± 0.0aA 0.03 ± 0.0aA 0.08 ± 0.0aA 13.95 ± 0.4bD 

 C 0.02 ± 0.0aA 0.03 ± 0.0aA 0.10 ± 0.0aA 11.74 ± 0.5aA 

 D 0.02 ± 0.0aA 0.03 ± 0.0aA 0.45 ± 0.1bA 17.79 ± 0.2cB 

 E 0.02 ± 0.0aA 0.05 ± 0.0aA 0.16 ± 0.1aA 27.33 ± 0.0eB 

60 A 0.02 ± 0.0aA 0.03 ± 0.0aA 0.05 ± 0.0aA 12.49 ± 0.2cB 

 B 0.02 ± 0.0aA 0.06 ± 0.0aA 0.24 ± 0.2bA   8.49 ± 0.2aB 

 C 0.02 ± 0.0aA 0.74 ± 0.1cB 1.47 ± 0.7cA 25.69 ± 0.4eB 

 D 0.02 ± 0.0aA 1.76 ± 0.0dC      1.52 ± 0.7cA 10.96 ± 0.2bA 

 E 0.02 ± 0.0aA 0.20 ± 0.0bB 3.20 ± 0.0dC     19.94 ± 0.3dA 

150 A 0.02 ± 0.0aA 0.03 ± 0.0aA 0.09 ± 0.0aA   3.24 ± 0.0aA       

 B 0.02 ± 0.0aA 0.05 ± 0.0aA 0.13 ± 0.0aB   5.01 ± 0.3aA 

 C 0.03 ± 0.0aA 1.33 ± 0.7cC    2.32 ± 0.0bA       9.50 ± 0.3bA 

 D 0.02 ± 0.0aA 0.66 ± 0.1bB     10.60 ± 0.7cB 10.29 ± 0.3bA 

 E 0.03 ± 0.0aA 2.16 ± 0.0dC   2.16 ± 0.0bB     21.00 ± 1.0cA 

      

a: No statistical significant difference (p > 0.05) amongst soils within contact times; A: No statistical significant 

difference (p > 0.05) amongst same soils in different contact times; b, c or d: Statistical significant difference (p < 

0.05) amongst soils within contact times; B, C or D: Statistical significant difference (p < 0.05) amongst same soils 

in different contact times. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 Extents of 14C-phenanthrene (%) mineralisation in five Antarctic soils (A, B, C, D, E) 

at 4 oC, 12 oC, 22 oC and 22 oC slurry conditions. Errors represent standard error of mean 

(SEM) of triplicate samples (n = 3) 

 

Soil-PAH 

contact (d) 

Soil 4 oC   (%) 12 oC (%) 22 oC (%) Slurry (%) 

1 A   0.37 ± 0.1aC   0.62 ± 0.0aC   1.07 ± 0.1aB 40.71 ± 1.8bB 

 B   0.46 ± 0.1aA   0.87 ± 0.1bA   2.17 ± 0.0cA 28.01 ± 0.6aB 

 C   0.31 ± 0.0aA   0.64 ± 0.0aA   1.45 ± 0.2bA 36.06 ± 5.2bA 

 D   0.36 ± 0.0aA   0.59 ± 0.0aA   0.94 ± 0.1aA 29.77 ± 2.1aA 

 E   0.23 ± 0.0aA   0.52 ± 0.0aA   0.75 ± 0.1aA 60.82 ± 1.1cC 

30 A   0.26 ± 0.0aB   0.46 ± 0.0aA   1.03 ± 0.0aB 39.77 ± 0.8bB 

 B   0.32 ± 0.0aA   0.51 ± 0.1aA   1.26 ± 0.0aA 30.43 ± 0.6aB     

 C        0.24 ± 0.0aA   0.41 ± 0.0aA   1.23 ± 0.2aA 37.45 ± 3.9bA 

 D        0.21 ± 0.0aA   0.30 ± 0.0aA   1.35 ± 0.2aA 44.12 ± 2.1bB 

 E        0.23 ± 0.0aA   0.37 ± 0.0aA   1.09 ± 0.4aA 54.56 ± 2.3cB 

60 A        0.14 ± 0.0aA   0.30 ± 0.0aA   0.56 ± 0.1aA 40.58 ± 1.1bB 

 B        0.20 ± 0.0aA   0.71 ± 0.2aA   2.02 ± 1.8aA 31.77 ± 0.8aB     

 C        0.23 ± 0.0aA   5.27 ± 0.7bB   6.72 ± 0.6bB 41.49 ± 0.4bA 

 D        0.14 ± 0.1aA 12.21 ± 1.4cB          16.83 ± 2.4cB 43.32 ± 0.3bB 

 E        0.16 ± 0.0aA   0.44 ± 0.0aA  19.04 ± 0.5cC    59.59 ± 1.7cC 

150 A        0.20 ± 0.0aA   0.53 ± 0.1aB   1.00 ± 0.1aB 14.48 ± 0.1aA 

 B        0.29 ± 0.0aA   0.95 ± 0.0aA   1.32 ± 0.0aA 14.08 ± 0.7aA   

 C        0.15 ± 0.0aA   6.97 ± 0.1bC      8.00 ± 0.3bB     29.77 ± 1.1bA 

 D        0.27 ± 0.0aA   8.57 ± 1.1bB    24.82 ± 1.2cB 38.82 ± 1.3bB 

 E        0.10 ± 0.0aA   3.05 ± 0.2aB   8.27 ± 0.3bB   33.49 ± 0.6bA 

      

a: No statistical significant difference (p > 0.05) amongst soils within contact times; A: No statistical significant 

difference (p > 0.05) amongst same soils in different contact times; b, c or d: Statistical significant difference (p < 

0.05) amongst soils within contact times; B, C or D: Statistical significant difference (p < 0.05) amongst same soils 

in different contact times. 
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Figure 4 Mineralisation of 14C-phenanthrene in soil D under different temperature regimes 

(4oC, 12oC, 22oC, 22oC slurry) after 1 (○), 30 ( ), 60 (□) and 150 (◊) days contact times. 

Error bars represent standard error of mineralisation (SEM) (n = 3). 
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Figure legends 

 

Figure 1 Mineralisation of 14C-phenanthrene in soil A under different temperature regimes (4oC, 

12oC, 22oC, 22oC slurry) after 1 (○), 30 ( ), 60 (□) and 150 (◊) days contact times. Error bars 

represent standard error of mineralisation (SEM) (n = 3). 

 

 

Figure 2 Mineralisation of 14C-phenanthrene in soil B under different temperature regimes (4oC, 

12oC, 22oC, 22oC slurry) after 1 (○), 30 ( ), 60 (□) and 150 (◊) days contact times. Error bars 

represent standard error of mineralisation (SEM) (n = 3). 

 

 

Figure 3 Mineralisation of 14C-phenanthrene in soil C under different temperature regimes (4oC, 

12oC, 22oC, 22oC slurry) after 1 (○), 30 ( ), 60 (□) and 150 (◊) days contact times. Error bars 

represent standard error of mineralisation (SEM) (n = 3). 

 

 

Figure 4 Mineralisation of 14C-phenanthrene in soil D under different temperature regimes (4oC, 

12oC, 22oC, 22oC slurry) after 1 (○), 30 ( ), 60 (□) and 150 (◊) days contact times. Error bars 

represent standard error of mineralisation (SEM) (n = 3). 

 

 

Figure 5 Mineralisation of 14C-phenanthrene in soil E under different temperature regimes (4oC, 

12oC, 22oC, 22oC slurry) after 1 (○), 30 ( ), 60 (□) and 150 (◊) days contact times. Error bars represent 

standard error of mineralisation (SEM) (n = 3). 
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