Yang, Guogang and Sangtarash, Sara and Liu, Zitong and Li, Xiaohui and Sadeghi, Hatef and Tan, Zhibing and Li, Ruihao and Zheng, Jueting and Dong, Xiaobiao and Liu, Junyang and Yang, Yang and Shi, Jia and Xiao, Zongyuan and Zhang, Guanxin and Lambert, Colin and Hong, Wenjing and Zhang, Deqing (2017) Protonation tuning of quantum interference in azulene-type single-molecule junctions. Chemical Science, 8 (11). pp. 7505-7509. ISSN 2041-6520
Full text not available from this repository.Abstract
The protonation of azulene derivatives with quantum interference effects is studied by the conductance measurements of single-molecule junctions. Three azulene derivatives with different connectivities are synthesized and reacted with trifluoroacetic acid to form the protonated states. It is found that the protonated azulene molecular junctions produce more than one order of magnitude higher conductance than the neutral states, while the molecules with destructive interference show more significant changes. These experimental observations are supported by our recently-developed parameter free theory of connectivity, which suggests that the largest conductance change occurs when destructive interference near the Fermi energy in the neutral state is alleviated by protonation.