
PHYSICAL REVIEW B 95, 235311 (2017)

Interaction-induced insulating states in multilayer graphenes

Mikito Koshino,1 Kyoka Sugisawa,2 and Edward McCann3

1Department of Physics, Osaka University, Toyonaka 560-0043, Japan
2Department of Physics, Tohoku University, Sendai 980-8578, Japan

3Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
(Received 10 May 2017; published 30 June 2017)

We explore the electronic ground states of Bernal-stacked multilayer graphenes using the Hartree-Fock mean-
field approximation and the full-parameter band model. We find that the electron-electron interaction tends to
open a band gap in multilayer graphenes from bilayer to eight-layer, while the nature of the insulating ground
state sensitively depends on the band parameter γ2, which is responsible for the semimetallic nature of graphite.
In four-layer graphene, particularly, the ground state assumes an odd-spatial-parity staggered phase at γ2 = 0,
while an increasing, finite value of γ2 stabilizes a different state with even parity, where the electrons are attracted
to the top layer and the bottom layer. The two phases are topologically distinct insulating states with different
Chern numbers, and they can be distinguished by spin or valley Hall conductivity measurements. Multilayers with
more than five layers also exhibit similar ground states with potential minima at the outermost layers, although
the opening of a gap in the spectrum as a whole is generally more difficult than in four-layer because of a larger
number of energy bands overlapping at the Fermi energy.
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I. INTRODUCTION

Graphite is a good conductor of electricity because of its
semimetallic electronic structure, but semimetallic behavior is
not always observed as a graphitic system is thinned down
to the atomic scale. For example, in bilayer graphene, an
atomically-thin film composed of only two graphene layers [1–
4], the electron and hole bands with quadratic dispersions stick
together at the Fermi energy within the noninteracting model,
where the band touching point is protected by spatial-inversion
symmetry and time-reversal symmetry. In experiments at
low temperatures, however, the electron-electron interaction
spontaneously opens an energy gap and the system turns into
an insulator [1,5–8]. Electrons with different spins tend to
accumulate in different layers under the attractive exchange
force, breaking the inversion symmetry to open a gap [9–16].

The question naturally arises as to whether there is
an interaction-induced energy gap in thicker multilayer
graphenes. A recent experiment showed that an insulating
state occurs at the charge neutral point of Bernal-stacked four-
layer graphene [17], and it was followed by the observation
of similar insulating behaviors in six-layer and eight-layer
graphenes [18]. However, an insulating gap has not been
found in Bernal-stacked odd layers (three-layer, five-layer,
etc.) so far. The low-energy band structure of a Bernal-stacked
multilayer graphene consists of a number of electron and
hole subbands sticking near the charge neutral point: 2M

layer graphene is composed of M sets of bilayerlike electron
and hole subbands with quadratic dispersion, and 2M + 1
layer graphene has an extra monolayerlike linear band, as
well as M sets of bilayerlike quadratic subbands [4,19–22].
Theoretically, it can be shown that all the bilayerlike subbands
can be gapped out by a staggered layer potential V =
(−1)i+1� (where i = 1,2,3, . . . is a layer index and � is the
order parameter), while only the monolayerlike band remains
ungapped in odd-layer graphene [17]. Based on this fact, it
was conjectured that the insulating ground state of even-layer
graphenes would be a staggered phase in which the spin-up

electrons and the spin-down electrons alternately dominate
layer by layer [17]. Subsequently, the staggered phase was
found to be the actual ground state in mean-field calculations
within the minimal band model [23].

In three-dimensional graphite, however, it is known that the
band touching points of the different subbands are not perfectly
aligned but disperse along the energy axis as illustrated in
Fig. 1 [22]. This is actually the origin of the semimetallic
property of graphite, where an electron pocket and a hole
pocket coexist at the Fermi energy [24]. The relative energy
shift of the band touching point is characterized by the γ2

parameter which is not captured in the minimal band model
and has a magnitude estimated to be about 20 meV for graphite
[24]. If γ2 in few-layer graphenes is of a similar magnitude as
γ2 in graphite, we naively expect that the gap formation would
be simply obstructed, since the energy gaps in the individual
subbands are masked by the relative shift of the band center.
Otherwise, there would have to be some special mechanism
that enables the spectral gap to overcome the semimetallic
band overlapping.

In this paper, we explore the electronic ground states of
Bernal-stacked multilayer graphenes from bilayer to eight-
layer, using the Hartree-Fock mean-field approximation and
the full-parameter band model. We find that a small γ2 of
about 10 meV completely changes the nature of the insulating
ground state, where the system takes a different strategy to
have a spectral gap under the band overlapping. In four-layer
graphene, specifically, the ground state takes a staggered phase
(odd parity) at γ2 = 0, while introducing a finite γ2 stabilizes
a different state with even parity, where the electrons are
attracted to the top layer and the bottom layer, and the energy
gap opens at the crossing point of overlapping electron and
hole subbands. The even phase and odd staggered phase are
topologically distinct insulating states with different Chern
numbers. Multilayers with more than five layers in the presence
of γ2 also exhibit similar ground states with the potential
minima at the outermost layers, although the gap opening
for the whole spectrum is generally harder than in four-layer
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FIG. 1. Schematic band structure of graphite, where in-plane
band dispersions at various values of out-of-plane momenta kz

are displayed with horizontal offsets. The dashed curve represents
the dispersion of the band touching point, γ2 cos kzc0, where c0 is the
lattice constant in the out-of-plane direction (it is twice the interlayer
spacing) and γ2 is a next-nearest-layer band parameter.

because of a larger number of energy bands overlapping at the
Fermi energy. In odd-layer graphenes, the presence of minor
band parameters (such as γ2) assists in band-gap opening
for the monolayerlike linear band, which tends to blur the
even-odd effect predicted in the minimal model.

The paper is organized as follows. We introduce the
effective mass band model and the mean field treatment in
Secs. II and III, respectively. In Sec. IV, we show the calculated
results for the minimal band model neglecting all the extra
band parameters including γ2, where the staggered phase is the
ground state in any layers. In Sec. V, we present the calculated
results of the full parameter model and discuss the γ2-stabilized
even parity phase.

II. EFFECTIVE MASS MODEL

We describe the electronic properties of Bernal-stacked
multilayer graphene using a Slonczewski-Weiss-McClure
model of graphite [24]. The low energy spectrum is given
by states in the vicinity of the Kξ point in the Brillouin zone,
where ξ = ±1 is the valley index. We define |Aj 〉 and |Bj 〉 as
Bloch functions at the Kξ point, corresponding to the A and B

sublattices of layer j , respectively, where j = 1, . . . ,N . In the
basis of |A1〉,|B1〉; |A2〉,|B2〉; · · · ; |AN 〉,|BN 〉, the one-body
Hamiltonian of multilayer graphene [19–21,25] in the vicinity
of the Kξ valley is

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H0 V W

V † H ′
0 V † W ′

W V H0 V W

W ′ V † H ′
0 V † W ′

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

with

H0 =
(

0 vπ †

vπ �′

)
, H ′

0 =
(

�′ vπ †

vπ 0

)
, (2)

V =
(

−v4π
† v3π

γ1 −v4π
†

)
, (3)

W =
(

γ2/2 0

0 γ5/2

)
, W ′ =

(
γ5/2 0

0 γ2/2

)
. (4)

Here π = h̄(ξkx + iky) and k = −i∇. The diagonal blocks
H0 and H ′

0 are intralayer Hamiltonians for odd layer and
even layers, respectively. Also, v = √

3aγ0/2h̄ is the band
velocity of monolayer graphene where γ0 is the nearest-
neighbor intralayer hopping and a is the lattice constant.
The off-diagonal matrix V describes the nearest-neighbor
interlayer interaction, where γ1 is the vertical hopping between
the dimer sites (those which lie directly above or below a
site in an adjacent layer), and the velocity parameters v3

and v4 are related to the oblique hopping parameters γ3

and γ4 by vi = √
3aγi/2h̄. Matrices W and W ′ describe

coupling between next-nearest neighboring layers, and they
only exist for N � 3. Parameters γ2 and γ5 couple a pair
of nondimer sites and a pair of dimer sites, respectively.
Parameter �′ represents the energy difference between dimer
sites and nondimer sites. It is related to the graphite band
parameters as �′ = � − γ2 + γ5. In the following, we adopt
parameter values [24] γ0 = 3 eV, γ2 = −0.02 eV, γ3 = 0.3 eV,
γ4 = 0.04 eV, γ5 = 0.04 eV, and �′ = 0.05 eV.

For comparison, we also perform the same analysis using
the minimal model, where only two parameters γ0(∝v) and γ1

are retained in the band Hamiltonian above. The Hamiltonian
matrix is then given by

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H0 V

V † H0 V †

V H0 V

V † H0 V †

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

with

H0 =
(

0 vπ †

vπ 0

)
, V =

(
0 0

γ1 0

)
. (6)

III. MEAN-FIELD THEORY

We include the electron-electron interaction in the mean-
field approximation. The total Hamiltonian is written as Ĥtot =
Ĥ + V̂MF with

Ĥ =
∑

kσXX′
Hk;XX′c

†
kσX′ckσX, (7)

V̂MF =
∑

kσXX′

[
U

(H)
X δXX′ − W

(ex)
kσ ;XX′

]
c
†
kσX′ckσX, (8)

where k = (kx,ky) is the Bloch wave number measured from
K± points, X = A1,B1,A2,B2, . . . represents the sublattice
degree of freedom, σ is the combined pseudospin index for
spin (↑,↓) and valley (K+,K−), and c

†
kσX′ and ckσX are the

electron creation and annihilation operators, respectively. Ĥ

is the noninteracting band Hamiltonian where Hk;XX′ is the
matrix element of Eq. (1). V̂MF is the interaction part, where
the first term U (H) and second term W (ex) are the Hartree and
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exchange potentials, respectively. They are defined as

U
(H)
X = lim

q→0

∑
X′

v(q ; zX − zX′)nX′ , (9)

nX = 1

L2

∑
kσ

〈c†kσXckσX〉 − n0, (10)

W
(ex)
kσ ;XX′ = 1

L2

∑
kσ

v(k − k′ ; zX − zX′) 〈c†k′σXck′σX′ 〉 . (11)

Here L2 is the system area, zX is the out-of-plane position of
sublattice X, and

v(q ; z) =
∫

dxdyV (x,y,z)e−i(qxx+qyy) = 2πe2

εrq
e−q|z| (12)

is the two-dimensional Fourier transform of the Coulomb
potential V (x,y,z) = (e2/εr )(x2 + y2 + z2)−1/2 with q =
(qx,qy). Here εr is the dielectric constant in the interlayer
spaces without the screening effect of π -band electrons, which
depends on the environment (e.g., substrate). The summation
in k is taken within the cutoff circle k < kc. Here we take
h̄vkc = 1eV, which is large enough to achieve convergence for
moderate electron-electron interaction as considered below. In
Eq. (10), n0 represents the density of the positive background
charge in the system. In the following, we consider the charge
neutral case so that n0 is determined by

∑
X nX = 0. Then

Eq. (9) is reduced to

U
(H)
X = −2πe2

εr

∑
X′

nX′ |zX − zX′ |. (13)

The pseudospin label σ takes four different configurations
(K+,↑),(K+,↓),(K−,↑),(K−,↓). Here we neglect the ex-
change interaction between K±, which corresponds to v(q ; z)
with large momentum q = K+ − K−, and then the four
pseudospins are completely equivalent, and σ can be treated
just as a label σ = 1,2,3,4.

The strength of the electron-electron interaction is charac-
terized by the effective fine structure constant for graphene,

αg = e2

εr h̄v
. (14)

As a typical value, for example, εr = 2 gives αg ∼ 1. In the
simulation, however, αg should be effectively smaller than the
bare value, considering that the Hartree-Fock approximation
generally overestimates the exchange interaction. For bilayer
graphene, αg is supposed to be of the order of 0.1 for a
quantitative agreement with experiment [15]. In the present
study, we treat αg as a parameter in the range of 0 < αg < 0.5.

We obtain the ground state by numerically solving the
above equations. We start with an initial state with some
particular configurations for the Hartree potential U (H) and
exchange potential W (ex) and obtain the band structure and
eigenfunctions by diagonalizing the Hamiltonian matrix. Then
we calculate the next generation of U (H) and W (ex) using
Eqs. (9)–(11) with the expectation values estimated using the
obtained eigenfunctions. Using new potential terms, we again
calculate new eigenfunctions and iterate the process until the
potential terms converge. We confirm that the final state at
convergence does not depend on the choice of the initial state.

It sometimes branches into different solutions depending on
the initial states, and then we determine the real ground state
by comparing the total energy of the electronic system.

IV. MINIMAL MODEL

Figure 2 shows the band structures for the minimal band
model from two-layer to eight-layer graphenes with αg =
0.2. The bottom panels plot the Hartree potential U

(H)
X and

the diagonal terms of the exchange potential at the valley
center, W

(ex)
k=0 σ ;XX, at nondimer sites on successive layers X =

A1,B2,A3,B4, . . .. For W (ex), the constant term is subtracted
so that its mean value is zero. The solid and dotted lines
in W (ex) represent different pseudospins, say, σ = 1,2 and
σ = 3,4, respectively. In all the multilayers studied here, we
observe that the ground state takes a staggered arrangement as
previously predicted [17,23], where W (ex) alternates its sign
layer by layer. W (ex) in σ = 1,2 and W (ex) in σ = 3,4 are the
positive and negative reversals of each other, and therefore
the charge modulation exactly cancels in total, resulting in no
cost for the Hartree potential. In even-layer graphenes, W (ex)

of a single species has an odd parity in space inversion, and
it is a natural extension of the bilayer’s ground state breaking
inversion symmetry.

The assignment of spins and valleys to the four pseudospins
is arbitrary in the present approximation. For example, if we
assign (↑,K±) for σ = 1,2 and (↓,K±) for σ = 3,4, then it is
the layer antifferomagnetic state, in which the adjacent layers
are polarized to opposite spins [1,10–16]. Different assign-
ments describe different phases such as quantum anomalous
Hall state and quantum spin Hall state [1,13–15]. They are
all energetically equivalent in the current framework, while
inclusion of v(q ; z) with large momentum should resolve the
small energy difference among these states [15].

The low-energy spectrum of multilayer graphene is com-
posed of pairs of electron and hole bands of the various
band masses, and the monolayerlike linear (i.e., zero mass)
band appears only in odd-layer graphenes [19–21,25]. In the
minimal model, all the subbands are aligned on the energy
axis, i.e., the conduction and valence bands exactly touch at
zero energy in the absence of the electron-electron interaction.
For αg = 0.2, we observe that a noticeable energy gap opens in
even-layer graphene, while it is nearly vanishing in odd-layer
graphene due to only a tiny gap in the linear band. We see
a general tendency that the gap width becomes greater in a
subband with a heavier mass and it is the smallest in the linear
(zero mass) band. Figure 3(a) plots the band gap in the total
spectrum as a function of αg . In the even-layer graphenes, the
gap increases approximately ∝α2

g , and the gap is smaller for
thicker multilayers. The energy gaps in odd-layer graphenes
increase much more slowly than in even-layer graphenes, and
they become significant only for αg � 0.3. We can show that,
in all the multilayers, the profiles of the Hartree and exchange
potential do not depend on αg , except for the energy scale.

The staggered potential gives rise to a nontrivial topological
property of the band structure. In Fig. 2, an integer appended
near the energy gap in each panel indicates the absolute value
of the total Chern number C summed over all the valence bands
in a single pseudospin branch. The Chern number corresponds
to the quantized Hall conductivity in units of e2/h contributed
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Minimal model (αg = 0.2)
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FIG. 2. Band structure of multilayer graphenes (two-layer to eight-layer) in the minimal model with αg = 0.2. The lower panels plot the
Hartree potential U

(H)
X and the exchange potential W

(ex)
k=0 σ ;XX at nondimer sites on successive layers.

from the pseudospin. We see that N -layer graphene has |C| =
N/2 in all cases, so that the state in each pseudospin sector
is a Chern insulator. The sign of the Chern number depends
on the sign of the staggered potential W (ex) (i.e., the solid
line or dashed line in Fig. 2) and also on the chirality (K+ or
K−). Specifically, if the signs of W (ex) at A1,B2,A3,B4, . . .

take the values s,−s,s,−s, . . . (where s = ±1) for Kξ valley,
then C = sξ |C|. The total Hall conductivity is given by the
summation of C over all the spin and valley sectors. We can
have various states such as the quantum Hall state and the
quantum spin (or valley) Hall state depending on how to assign
s = ±1 to ξ = ±1 valleys [1], while they are not energetically
distinguishable in the present calculation, as argued above.

V. FULL-PARAMETER MODEL

The nature of the ground state changes drastically when
additional band parameters are included. Figure 4 presents the
band structures for the full parameter models of two-layer to
seven-layer with αg = 0,0.2 and 0.4. The panel of eight-layer
is shown in Fig. 5. In bilayer, the tendency is almost unchanged
from the minimal model. In four-layer, however, the ground
state takes an inversion-symmetric configuration with even
parity, in a striking contrast to the staggered phase observed in
the minimal model. Also it takes the identical configuration
regardless of the pseudospins. We observe similar ground
states in other multilayers for N � 3, where W (ex) takes a
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FIG. 3. Band gap against αg in multilayer graphenes (two-layer to eight-layer) in (a) the minimal model and (b) the full-parameter model.
(c) Band gap plotted against temperature for two-layer to four-layer graphenes at αg = 0.2 in the full-parameter model.

low value at the outermost layers, and its highest value at the
second outermost layers, independently of the pseudospin.

The appearance of a different type of ground state originates
from the presence of the next-nearest layer hopping parameter
γ2 which only exists for N � 3. In the full-parameter model,
the band edge of electron and hole bands are not aligned in
energy in the absence of the electron-electron interaction (i.e.,
the conduction and valence bands do not touch exactly at zero
energy) unlike in the minimal model. This is due to the γ2

parameter, which is responsible for the semimetallic nature of
graphite where the electron Fermi surface and the hole Fermi
surface coexist [24]. Therefore, opening a small gap at the band
touching point of each electron-hole pair does not result in a
gap opening of the total spectrum, so that the system needs to
adopt a different strategy in order to open a gap. Actually, we
can show that the outermost attractive potential observed here
partially cancels the effect of γ2 and aligns the band centers
(see Appendix). This assists the opening of an energy gap by
reducing the band overlapping at the Fermi energy.

In Fig. 6(a), we present the band structure and the mean-
field potential in the full-parameter model for four-layer
graphene with αg = 0.4, in which the γ2 parameter is reduced
from its value in graphite (−20 meV) down to zero with all
other parameters unchanged. We see that the ground state
gradually changes from the even-parity phase to the odd-parity
staggered phase as γ2 decreases. An interesting observation is
that the total Chern number below the gap C is zero in the
even phase while it is 2 in the staggered phase, so there is a
topological phase transition at some stage as γ2 decreases. C

vanishes in the even phase, because the surviving inversion
symmetry and time-reversal symmetry requires a vanishing
Berry phase everywhere except at the band-degeneracy point
[26,27]. Experimentally, the nonzero Hall conductivity in a
single pseudospin sector causes a valley or spin Hall effect
[1], so that the even and odd phases can be distinguished
by measuring it. In Fig. 6(b), we show similar plots of the
mean-field potential for weaker interaction, αg = 0.2. We
observe that the even phase survives down to smaller γ2

compared to αg = 0.4, suggesting that the γ2-stabilized even
phase is more stable for weaker interactions.

Generally, the band touching points of the intrinsic even-
layer graphene are protected by spatial inversion symmetry
and time-reversal symmetry [27,28]. More specifically, the
coexistence of the two symmetries requires the vanishing of
the Berry curvature at any nondegenerate band states, and
this immediately concludes that a band touching point with
nontrivial Berry phase cannot be split, because otherwise
nonzero Berry curvature arises where the degeneracy is lifted.
In four-layer graphene, the band gap opening in the even-parity
state may appear to contradict with this fact, but there band
touching actually remains between the first and the second
bands and also between the third and the fourth bands (out
of the four low-energy bands) so a band gap can open at the
center without breaking these degenerate points. In bilayer
graphene, on the other hand, there are only two bands at the
charge neutral point, so that inversion-symmetry breaking is
the only way to open a gap, as actually observed in Fig. 4.
The six-layer graphene has a similar situation to bilayer where
the six low-lying bands touch in pairs of (1,2), (3,4), and
(5,6) under the inversion symmetry, and the middle pair (3,4)
prevents a gap opening at the charge neutral point. In the
numerical calculation shown in Fig. 4, we actually see that
the gapped state at αg = 0.4 slightly breaks the inversion
symmetry (of W (ex) in each single species) on top of the
even-parity feature. The above argument for band touching
does not apply to odd-layer graphenes where the inversion
symmetry is intrinsically absent.

The energy gap width as a function of αg is shown in
Fig. 3(b). For αg � 0.2, which is supposed to match the
real experimental situation, the energy gap is the largest in
four-layer, in which it is even bigger than in bilayer. Thicker
graphenes (N � 5) require a large interaction αg > 0.3 to have
a gap because of the severely overlapping energy bands (in
the absence of interactions). However, three-layer graphene is
atypical because its gap is much more significant for αg > 0.15
than in the minimal model. In the full parameter model at
αg = 0, the additional band parameters γ2, γ5, and � cause
the monolayer and bilayerlike bands in three-layer to overlap
each other (hence there is no overall band gap), but, when
viewed separately, the monolayer bands are gapped and the
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FIG. 5. Plot similar to Fig. 4 for eight-layer graphene.

bilayerlike bands are gapped too. This then assists the gap
opening of the whole spectrum for αg �= 0.

Figure 3(c) shows the temperature dependence of the energy
gap of two- and four-layer graphenes at αg = 0.2. It shows that
the gap in four-layer remains up to much higher temperature
than in bilayer, even though at zero temperature they are of

a similar order. The critical temperature for the gap closing
is determined by the characteristic energy scale of the band
structure contributing to the total energy minimization. In the
bilayer, the change of the energy band due to the electron-
electron interaction only takes place near the gap within the
energy scale about a few meV at αg = 0.2 as seen in Fig. 4.
In four-layer, on the other hand, the band structure near k = 0
already has some complex structure in the energy range about
20 meV, and they all contribute to the charge transfer and
the total energy reduction. To smear out the gap, we need a
temperature to match this energy scale, and it becomes much
greater than in bilayer.

VI. CONCLUSION

We studied the electronic band structure in Bernal-stacked
multilayer graphenes under the electron-electron interaction,
using the mean-field theory and the band model fully including
band parameters. We demonstrated that the ground state
is governed by the semimetallic parameter γ2, where the
previously-conjectured staggered state yields to an even-parity
state in the presence of γ2, where the outermost layers have
the lowest potential energy. We also found that the staggered
phase and the even-parity phase have different Chern numbers
and they can be distinguished by valley/spin Hall conductivity
measurements.
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In the ground state calculation, we treat γ2 and the
interaction strength αg as variable parameters and quantita-
tively estimate the energy gap width in changing parameters.
Experimentally, the insulating gap was observed not only in
Bernal-stacked bilayer [1,5–8], but also in four-layer [17],
six-layer, and eight-layer graphenes [18]. According to Fig. 3,
the opening of a gap for six and eight layers within the
full-parameter model requires a fairly high interaction αg �
0.4, but such a high interaction would result in the bilayer’s
gap being more than 30 meV, which is inconsistent with
experiment. This suggests that the value of γ2 in few-layer
graphenes may be actually lower than in graphite, and the
reality could be somewhere between Figs. 3(a) and 3(b). While
the reason for suppression of γ2 is unclear, it is possible, for
example, that the optimum lattice structure of a few-layer
device takes a different interlayer spacing from graphite’s,
and that modifies γ2 [18]. The γ2 is a small band parameter
corresponding to the next-nearest neighbor interlayer hopping,
and it should be sensitive to the interlayer spacing. Unknown
values of band parameters including γ2 should be clarified by
detailed spectroscopic measurements for few-layer graphenes.
It is also conceivable that other factors, such as the effect of
disorder or of interactions beyond mean-field theory, would
be significant for further quantitative arguments. The study of
these issues is left as an open question.
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APPENDIX: EFFECT OF THE SURFACE-LAYER
POTENTIAL

In this section, we show that the attractive potential on the
outermost layers of multilayer graphene partially cancels the
effect of γ2 and aligns the subband centers. The energy bands in

a multilayer graphene can be decomposed into monolayerlike
subband and bilayerlike subbands, which are labeled by the
wave number kz in the perpendicular direction [4,19–22]. In
N -layer graphene, it is discretized as

kz = nπ

(N + 1)d
, n = 1,2, . . . ,

[
N + 1

2

]
, (A1)

where d is the interlayer spacing and [x] is the highest integer
not exceeding x. In the presence of γ2, the center of the subband
disperses as [22]

E(kz) = N cos(2kzd) + 1

N + 1
γ2, (A2)

which gives electron and hole pockets in the Fermi surface.
Now we introduce an electrostatic potential only effective on
the outermost layers,

U (j ) =
{
U0 (j = 1 or N ),

0 (otherwise),
(A3)

where j = 1,2, . . . ,N is the layer index. Since the wave
amplitude can be written as ψkz

(j ) = √
2/(N + 1) sin(kzdj ),

the shift of the band energy is

〈ψkz
|U |ψkz

〉 = − 2U0

N + 1
cos(2kzd) + const. (A4)

Now we notice that Eq. (A4) can cancel the dispersion of
the band center, Eq. (A2), by choosing U0 = Nγ2/2. Since
γ2 < 0, this is an attractive potential. Therefore, the outermost
attractive potential aligns the centers of different subbands.
It should be noted that the off-diagonal matrix elements of
γ2 connecting different subbands cannot be canceled by the
external potential.
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