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Gorges Reservoir (TGR). The aims are (1) to find the most important 
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model that can estimate the AGB throughout the growing season with 

multiple structural variables. We conducted six times of valid field 

sampling on the C. dactylon communities (from May to September in 2016) 

to develop AGB models. The models were developed based on the following 

five candidate canopy structural variables: canopy height (H), canopy 

cover (CC), leaf area index (LAI), the volume related variables VLAI (H × 

LAI) and VCC (H × CC), and one seasonal growth effect variable (SV). We 

conducted univariate linear regression analysis to reveal the most 

important estimator of AGB and the best subsets regression analysis to 

identify the best models for the estimation of AGB. Canopy structural 

characteristics of stand are key factors to determine the change of the 

most important estimators throughout the growth season. Cover was found 

to be the most important predictor during the early growing season, and 

VLAI was the most important one for mid and end of the growing season. 

The developed best models can explain an additional 11% in AGB variance 

on average throughout seasonal change and compared with those developed 

with the selected most important estimators. SV was found to be useful to 

develop a general model to estimate the seasonal AGB throughout the 

entire growing season. Since the studied structural variables could be 

obtained over large extent, it is recommended that the models for 

different growing stages are extend to regional scale. Such an extending 

application will be useful to provide both emprical and theoretical 
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Reviewer #3: The authors have improved the manuscript. However, the expression of study aims 

haven't been changed, and the statistic methods should be improved by adding place as a random 

factor to exclude the impact of place. 

 

Response: Thanks. We have responded your comments point-by-point. Details are given below. 

 

1. You have well explained your aims in the response letter, but you didn't change the expression 

in the manuscript. For my understanding, you used the univariate linear regression model to find 

the most important factor that impacts on AGB, while use multiple regression model to estimate 

AGB. Therefore, it is better to say "The aims are (1) to find the most important factor that impacts 

on AGB in different season, and (2) to develop a best model that can estimate the AGB throughout 

the growing season with multiple structural variables. Please correct it in the rest part of your 

manuscript. 

 

Response: Thanks for your kindly suggestion. The relevant text in the manuscript have been 

revised in the light of your suggestion. 

 

2. Since you collected samples from three places, you should use mixed-effects regression model, 

and include place as a random effect to check whether place has impact on results. If there is no 

difference between mixed effects regression results and regression results without random effect, 

you can use your present model.  

 

Response: Thanks for your suggestion. We’ve tried to figure out how to respond this comment. 
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samples not from three quadrats but more than 14 quadrats in a sampling date (Table 1). Moreover, 

we think the effects of sampling location have been considered. Because those effects can be 

represented by the different growth time and could be captured by the seasonal growth-effects 

variable (i.e., SV, L222-228) which has been involved in the modeling processing; (2) do you 

mean the “three places” are “three gorges”? If so, we are sorry for the confusion because the three 

gorges is a place name, not three different “places”; (3) or do you mean the “places” are sampling 

sites? If so, we collected samples from five sites (from A to E) as shown in Fig. 1. Follow your 

suggestion, for each sampling date, we considered the place (i.e., sites) as a random effect and 

developed a new linear mixed effects model by lme4 package in R, based on the selected variables 

in Table 2 and Table 3, respectively. We also developed a corresponding model without 

considering place as random effect. The difference between the two models was then tested by 

ANOVA analysis. The results are given here (Table R1). From Table R1, we can generally draw a 

conclusion that the selected sites did not have significant effects on the models we presented in the 

study. We added this information in the text, “The places of those sites have been tested (the 

results were not shown) having no significant effect on the modeling we conducted in the Section 

2.3.” (L183-185). Anyway, we would like very much to discuss with the reviewer, which can 

definitely help us in improving the manuscript. Thanks! 

Response to Reviewers



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

Table R1. Statistical test results of the difference between two linear models with and without 

considering place as random effect in model. 

Sampling dates 
Based on the selected variable in Table 2 Based on the selected variables in Table 3 

Chi-Square value p-value Chi-Square value p-value 

May 30-31 0 1 0 1 

Jun. 12-13 0.7371 0.3906 6.5239 0.01064 

Jun. 21-22 0 1 0 1 

Jul. 1-2 1.3209 0.2504 0.5946 0.4407 

Jul. 10-11 0 1 0.0494 0.8241 

Sep. 22-23 3.7916 0.05151 0.1526 0.6961 

 

3. I also concern whether Cynodon dactylon community is mono-species community or 

multiple-species community. Please state this in the site description. For my understanding it is a 

mono-species community, but it is better to use "a riparian pioneer plant community" in the title. If 

it is not pure community, there is impact of other species on biomass as you listed in the 

introduction line 123-124. 

 

Response: You are right. According to our field survey, the Cynodon dactylon community is mono 

community (see Appendices Fig. A.2) distributing at lowland of elevations roughly below 165 m. 

We have stated this in L175-176 “In the lowland area, the C. dactylon communities are almost 

mono-species communities which were targeted in the study.” The title also revised according to 

your suggestion “Estimating aboveground biomass seasonal dynamics of a riparian pioneer 

plant community: an exploratory analysis by canopy structural data”. 



 Seasonal AGB of C. dactylon communities in riparian zone of the TGR were estimated 

 Variations of canopy structural variables in estimating seasonal AGB were explored 

 Canopy cover was detected as the best estimator of AGB in early growing season 

 LAI-derived volume variable was found as the best indicator in late growing season 

 Seasonal growth effect was useful for estimating AGB for the entire growing season 
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Abstract: The aboveground biomass (AGB) of vegetation is of central importance in providing 40 

ecosystem productivity. Models have already been developed to estimate AGB via canopy 41 

structural variables in both fundamental and applied ecological studies. However, the capabilities 42 

of canopy structural variables in indicating AGB dynamics throughout the growing season are still 43 

unclear. This study focuses on the AGB of the dominant pioneer species Cynodon dactylon (L.) 44 

Pers. (Bermuda grass) during early succession in newly formed riparian habitat of China’s Three 45 

Gorges Reservoir (TGR). The aims are (1) to find the most important factor that impacts on AGB 46 

in different season, and (2) to develop a best model that can estimate the AGB throughout the 47 

growing season with multiple structural variables. We conducted six times of valid field sampling 48 

on the C. dactylon communities (from May to September in 2016) to develop AGB models. The 49 

models were developed based on the following five candidate canopy structural variables: canopy 50 

height (H), canopy cover (CC), leaf area index (LAI), the volume related variables VLAI (H × LAI) 51 

and VCC (H × CC), and one seasonal growth effect variable (SV). We conducted univariate linear 52 

regression analysis to reveal the most important estimator of AGB and the best subsets regression 53 

analysis to identify the best models for the estimation of AGB. Canopy structural characteristics of 54 

stand are key factors to determine the change of the most important estimators throughout the 55 

growth season. Cover was found to be the most important predictor during the early growing 56 

season, and VLAI was the most important one for mid and end of the growing season. The 57 

developed best models can explain an additional 11% in AGB variance on average throughout 58 

seasonal change and compared with those developed with the selected most important estimators. 59 

SV was found to be useful to develop a general model to estimate the seasonal AGB throughout 60 

the entire growing season. Since the studied structural variables could be obtained over large 61 

extent, it is recommended that the models for different growing stages are extend to regional scale. 62 

Such an extending application will be useful to provide both emprical and theoretical explanations 63 

for riparian ecosystem functions against water level fluctuated disturbance. 64 

 65 

Keywords: Three Gorges Reservoir, non-destructive method, Cynodon dactylon, gap fraction, 66 

seasonal change, general model 67 
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1. Introduction 79 

The riparian zone served as an ecotone between terrestrial and aquatic ecosystems and has 80 

often been suggested to play a central role in determining the vulnerability of natural and human 81 

systems to environmental changes (Capon et al., 2013; Nilsson et al., 1997). During the past 82 

decades, ecosystem functions of vegetation coverage in a riparian zone have been recognized, 83 

such as forming wildlife habitats and corridors, providing food for aquatic and riparian biota, 84 

stabilizing riverbanks, and improving water quality (Husson et al., 2014). As the main energy 85 

source of the riparian ecosystem, the aboveground biomass (AGB) of plant species is fundamental 86 

to other relevant resources (e.g., soil nutrients) and thus, can determine whether ecological 87 

processes are functioning appropriately (Raab et al., 2014). 88 

In many ecosystematic studies, the most widely used biomass data is the seasonal maximum 89 

AGB, because it can partly indicate the productivity of an ecosystem (Raab et al., 2014; Sala and 90 

Austin, 2000; Thursby et al., 2002). It has been proposed that the seasonal maximum AGB is 91 

inadequate for the description of the dynamics of an ecosystem (Fernandez-Alaez et al., 2002). A 92 

collection of AGB dynamics throughout a growth season has been considered increasingly 93 

important for managing  ecosystems (Fernandez-Alaez et al., 2002; Paillisson and Marion, 2006), 94 

modelling ecosystem processes (Hidy et al., 2012; Scurlock et al., 2002), monitoring 95 

plant-ecosystem functioning (Hooper et al., 2005), and evaluating vegetation life strategies against 96 

evironmental changes (Castelan-Estrada et al., 2002; Jagodzinski et al., 2016). Therefore, 97 

estimating the seasonal dynamics of AGB is of importance to enhance our knowledge of 98 

ecological functions and management for the restoration and protection of riparian zones. 99 

So far, the most accurate estimation of AGB can be achieved with the direct destructive 100 

method (Marshall and Thenkabail, 2015; Redjadj et al., 2012). However, this method has two 101 

inherent drawbacks: (1) it is time consuming and labor intensive (Byrne et al., 2011), but most 102 

important, (2) it cannot be repeated in the same spatial location, which does not allow exact 103 

seasonal monitoring of growth trajectories. Thus, an array of alternative non-destructive methods 104 

has been developed over the past few decades (Redjadj et al., 2012). For example, indirectly 105 

estimating the AGB by modeling the relationships between biomass and some of the biometrics 106 

that are relevant to plant canopy structure (Martin et al., 2005; Pottier and Jabot, 2017). These 107 

biometrics including canopy height (Martin et al., 2005; Schmer et al., 2010), canopy cover 108 

(Flombaum and Sala, 2007; Zhang et al., 2016), leaf area index (LAI) (Liira et al., 2002; Rutten et 109 

al., 2015), and some canopy volume related indices such as the product of height and cover 110 

(Redjadj et al., 2012; Penderis and Kirkman, 2014; Pottier and Jabot, 2017). 111 

Most of these studies for AGB estimation that utilize canopy structural variables focused on a 112 

specific growing stage (e.g., after reaching peak biomass) during a growing season. However, so 113 

far, the capabilities of those variables for estimating AGB in different growing stages along one 114 

growing season have not been fully explored. This poses two questions: (1) how will the 115 

performances of the corresponding AGB estimation models change along a growing season for a 116 

specific variable? Furthermore, (2) which of the variable(s) could be the most important 117 
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estimator(s) for AGB throughout the growing season for a specific type of model (e.g., linear 118 

regression model)? For the first question, researchers have reported that the performance of 119 

models often depends on sampling dates (Ferraro et al., 2012; Virkajarvi, 1999). Martin et al. 120 

(2005) compared allometric equations relating canopy height to individual biomass using data that 121 

was collected on ten sampling dates in two distinct pastures and found that the estimating 122 

parameter varied with sampling occasions. The authors attributed this to seasonal changes in the 123 

species composition and structural characteristics of the stand (Martin et al., 2005). Using linear 124 

regression for AGB estimation via rising-plate meter measurements of canopy height, Nakagami 125 

and Itano (2014) found that the AGB slope against height decreased during the early season and 126 

then increased towards the end of the season. They furthermore developed a novel general model 127 

by incorporating sampling date variations. To the best of our knowledge however, little efforts 128 

have yet been undertaken to compare the capabilities among a group of variables for AGB 129 

estimation throughout an entire growing season. The question this raises is: which variable(s) are 130 

the most important estimator(s) of AGB throughout a growing season? The answer to this question 131 

will be helpful in guiding efficient sampling and modeling works in future. 132 

The Three Gorges Reservoir (TGR) of China is a human-disturbed reservoir ecosystem. It was 133 

shaped by the Three Gorges Dam, which is one of the largest hydropower projects in the world to 134 

date (Fu et al., 2010). Since its first impound in 2003, the TGR has greatly altered the surrounding 135 

terrestrial environment with the largest range of annual water level fluctuations between 145 m to 136 

175 m (after 2010), finally forming more than 300 km
2
 of riparian zone (Zhang, 2008). Unlike 137 

other natural riparian ecosystems in the same climatic zone, the riparian zone that surrounds the 138 

TGR experiences low-water-level in summer but high-water-level in winter because of the 139 

artificial water level regulation. This type of dry-wet cycle causes heavy stress on the riparian 140 

ecosystem, resulting in severe habitat degradation (Su et al., 2013; Chen et al., 2015). For example, 141 

the vegetation (predominantly herbaceous plants) grown in summer will be submerged and died 142 

out in winter. 143 

Cynodon dactylon (L.) Pers. (i.e., Bermuda grass) is an endemic grass within the riparian zone 144 

of the TGR that forms both aboveground stolons and belowground rhizomes (Dong and Kroon, 145 

1994). Since the species has a strong capability to adapt to the dry-wet cycle disturbance of the 146 

degraded riparian habitat, it quickly bacame a pioneer and the most dominant plant species in the 147 

riparian ecosystem of the TGR (Chen et al., 2015; Liu et al., 2011). Consequently, C. dactylon 148 

plays a crucial role for ecosystem services by providing productivity, habitat, soil conservation, 149 

and riparian reinforcement, as well as protecting the water quality (Liu et al., 2011). Estimating 150 

the seasonal dynamic AGB of C. dactylon communities is thus, key for understanding riparian 151 

community succession, for monitoring riparian zone restoration processes, and for managing the 152 

reservoir ecosystems of the TGR (Byrne et al., 2011; Sala and Austin, 2000). Moreover, the 153 

evaluating of various canopy structural variables’ capabilities in estimating seasonal AGB is also 154 

an urgent need as stated before. Therefore, this study targed on the C. dactylon communities and 155 

aimed to: (1) to find the most important factor that impacts on AGB in different season, and (2) to 156 
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develop a best model that can estimate the AGB throughout the growing season with multiple 157 

structural variables. Results are expected to be helpful in conducting efficient seasonal AGB 158 

sampling and modeling works in the future for different research conditions and objects. 159 

 160 

2. Methods 161 

2.1 Study area 162 

The study area is located in the upper-mid section of a primary tributary (named Pengxi River) 163 

of the Yangtze River, China (Fig. 1). The area has a humid subtropical monsoon climate, 164 

characterized by warm winters and hot summers. The mean annual temperature is 18.6 °C and the 165 

mean annual precipitation is 1300 mm. The slope in the area is low and the main soil type is 166 

purple soil. Prior to the formation of the TGR, it had a long history of agricultural reclamation 167 

with major land use types of paddy fields and dry farmland. After 2003, lands were abandoned and 168 

riparian zones formed due to the sharp water-level fluctuations of the TGR. Since then, the 169 

riparian zone entered a succession process. This area is suggested as a typical region that reflects 170 

the impact of the TGR, and various studies have covered the region related to different topics 171 

about the riparian zone in the TGR (Chen et al., 2012; Wang et al., 2014). Dominant plant species 172 

in the riparian zone are Cynodon dactylon, Echinochloa colonum, Xanthium sibirium, and Setaria 173 

viridis. Among these, C. dactylon and E. colonum are largely distributed throughout lowland area 174 

(147 – 165 m), and the rest are predominantly distributed throughout highland area (165 – 175 m) 175 

(Chen et al., 2012; Wang et al., 2014) (Fig .1). In the lowland area, the C. dactylon communities 176 

are almost mono-species communities which were targeted in the study.  177 

 178 

#### Fig. 1 is about here #### 179 

2.2 Field sampling methods and data processing 180 

2.2.1 Field sampling 181 

Based on earlier field investigations of species distribution and practical accessibility of 182 

sampling sites, five sampling sites (A-E in Fig. 1c) were selected. The places of those sites have 183 

been tested (the results were not shown) having no significant effect on the modeling we 184 

conducted in the Section 2.3. A maximum of four quadrats (1 × 1 m) per site were sampled for the 185 

C. dactylon community, while the number could be reduced to two in one site according to 186 

different field conditions and workloads during sampling time. During the growing season of C. 187 

dactylon (May to September) in 2016, we conducted nine field samplings on May 30-31, Jun. 188 

12-13, Jun. 21-22, Jul. 1-2, Jul. 10-11, Jul. 20, Aug. 16-17, Sep. 6-7, and Sep. 22-23, respectively 189 

(Fig. 1d and Fig. 2). The locations of the quadrats at the different sampling dates were almost 190 

spatially identical, i.e., a quadrat collected on one sampling date was placed very close to that of 191 

the previously sampled within a distance less than10 m. 192 

At each quadrat three sampling steps were conducted: Firstly, canopy heights at four corners 193 

were measured via meter stick and their mean value was recorded as the canopy height. Secondly, 194 

the ACCUPAR LP-80
®
 ceptometer was utilized to measure the canopy gap fraction (a variable 195 



6 

used to further calculate canopy cover) and LAI (Fig. 2c and 2d). The setting parameters of the 196 

instrument for each measurement were identical to maintain the consistency. In one measurement, 197 

the canopy gap fraction and LAI are automatically calculated by the instrument after measuring 198 

photosynthetically active radiation at both above and below (near ground) canopy in a same 199 

direction (Decagon, 2010). This measurement was repeated 2-4 times in different directions to 200 

reduce the directional uncertainties. For a specific quadrat, the mean values of recorded gap 201 

fraction and LAI were used in our study. Thirdly, one fourth of aboveground plants in a quadrat 202 

(0.5 × 0.5 m) were clipped and weighted. Thereafter, a part of the clipped plants (generally less 203 

than 300 g) were randomly chosen, weighted, and contained in a cloth bag for later drying. In lab, 204 

all collected plant samples were dried at 80 ºC for 48 hours, weighted, and the dry AGBs were 205 

retrieved in a unit of g/m
2
. 206 

 207 

2.2.2 Data processing 208 

According to the field sampling as mentioned above, five canopy structural variables and a 209 

seasonal growth effect variable were used as candidate estimators to estimate AGB. The variables 210 

and their corresponding explanations are presented below: 211 

 Canopy height (H), a canopy structural variable with values > 0. 212 

 Canopy cover (CC), a canopy structural variable with a value ranging between 0 and 1. This 213 

could indicate the horizontal distribution of foliage in a canopy. It was calculated via one 214 

minus the gap fraction, which was directly measured with an ACCUPAR LP-80
®
 ceptometer 215 

(see above). This was done because the gap fraction was often considered as a variant of the 216 

canopy cover and equal to the one minus vertically measured cover (Liu and Pattey, 2010). 217 

 LAI, a canopy structural variable with a value > 0. This could indicate the inner distribution 218 

density of foliage in a canopy (Liira et al., 2002; Rutten et al., 2015). 219 

 VCC, a canopy related variable derived from the equation: VCC = H×CC. 220 

 VLAI, a further canopy volume related variable derived from the equation: VLAI = H×LAI. 221 

 SV, a seasonal growth-effects variable. This was involved in this study to explore the 222 

seasonal growth effects on AGB estimation. SV of a quadrat is defined as the log-transformation 223 

(base 2) of growing days (i.e., the days after the first date on which a quadrat was exposed to the 224 

air due to declining water level (Fig. 1d)). The log-transformation process adopted here is mainly 225 

based on the understanding that C. dactylon could grow fast during the early growing season, 226 

while then slowing down during the mid and end of the growing season (see Appendices Fig. 227 

A.1). 228 

The response variables of the developed models were the log-transformation (base 2) of the 229 

raw AGB. This is because the raw AGB have often been suggested as inherently non-linear and 230 

could thus be log-transformed to facilitate linear model construction (Thursby et al. 2002, Elzein 231 

et al. 2011, Marshall and Thenkabail 2015). We tested numerous different base values for 232 

log-transformation and found base 2 to be more suitable for our study. In addition, we also 233 

calculated the bulk density for each sample quadrat to explore the reasons of changing the most 234 
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important variables in predicting the AGB. Similar to the definition by Zhang et al. (2016), the 235 

bulk density in this study is the ratio of log2(AGB) to volume related indexes (either VCC or VLAI). 236 

#### Fig. 2 is about here #### 237 

2.3 Modeling process 238 

To simplify analysis, this study considered linear regression modeling only. The modeling 239 

was conducted for individual sampling dates using their own respective collected samples and the 240 

whole growing season using all collected samples combined. According to the study objects, we 241 

conducted univariate linear regression modeling to explore the most important estimator of AGB 242 

for different sampling dates throughout one growing season of C. dactylon communities. This 243 

modeling means that only one variable was adopted in a linear regression. Therefore, for each 244 

sampling date, there were six established univariate linear regression models. However, only the 245 

variable that established the model with the maximum coefficient of determination (R
2
) or the 246 

lowest mean squared error (MSE), was considered as the most important estimator (Zhang et al., 247 

2016). It is worth to note that the selected most important estimator cannot guarantee that the 248 

corresponding univariate model is the optimal one (i.e., with the highest accuracy and robustness) 249 

for estimating the AGB, since joint effects of different variables were not taken into account in the 250 

modeling. Therefore, a best subsets regression method was adopted to select the best models to 251 

estimate AGB in different sampling dates throughout the growing season of C. dactylon 252 

communities. This method can automatically choose the “best subset” model from all the (linear 253 

regression) possible models, which contain a specific number of explanatory variables via criteria 254 

of Akaike Information Criterion (AIC) (Akaike, 1974). In our study, the number of variables 255 

ranges from one to five. Therefore, there were five output “best subset” models for a specific 256 

sampling date. The selected finial best model among all five candidate models was then manually 257 

selected by comparing both their ΔAIC and coefficients’ variance inflation factor (VIF, identify 258 

collinearity among explanatory variables (Kutne et al., 2004) values. The smaller the ΔAIC 259 

(normally < 4) and VIF (normally < 5), the better the model (Burnham and Anderson, 2004). The 260 

goodness of fit in regression models was expressed as R
2
, which can be interpreted as an explained 261 

variation. Moreover, leave-one-out cross validation was performed on these selected models to 262 

evaluate robustness of the models with regards to their prediction error (i.e., mean square error, 263 

MSECV) (Elzein et al., 2011). Plots and Pearson’s linear correlations of observed and predicted 264 

AGB values further illustrate the accuracy of predictions. All regression analyses were conducted 265 

via linear regression function, using the XLStat add-in statistical software (Version 2014.5.03) for 266 

Microsoft Excel. 267 

 268 

3. Results 269 

3.1 Descriptive analysis of samples 270 

Due to relatively small sample size or invalid measurements, three of nine sampling times 271 

during the growing season were eliminated in the regression analysis (i.e., on Jun. 20, Aug. 16-17, 272 

and Sep. 6-7) (Table 1). For the whole sampling season (MS in Table 1), the average AGB > 1000 273 
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g/m
2
 and CC > 0.9 associated with a LAI around 4.45, indicated that C. dactylon communities 274 

within the study area were in high-density cover (Table 1). Generally, the AGB during the 275 

growing season followed an increasing trend from the lowest on May 30-31 (737 ± 429 g/m
2
), up 276 

to half of the highest on Sep. 22-23 (1404 ± 481 g/m
2
). The result means that the AGB of C. 277 

dactylon communities were accumulated throughout the entire growing season. A fast increase in 278 

AGB appeared before Jul. 10-11, indicating that the monthly net primary productivity during this 279 

period is the highest during the entire growing season. Apart from AGB, H, LAI, and CC 280 

generally followed increasing tendencies. All these measurements suggest that the cover of C. 281 

dactylon communities was getting increasingly higher (or thicker) from May to September in 282 

2016. 283 

 284 

#### Table 1 is about here #### 285 

 286 

3.2 The most important estimators for AGB estimation throughout the growing season 287 

Table 2 shows regression coefficients of models for estimating AGB (log-transformed) and 288 

using six explanatory variables. For a specific variable, different fitted parameters for different 289 

sampling dates were found. Taking slope (a in Table 2) as an example, the values for one variable 290 

varied considerably throughout the growing season. The slopes of most of the variables generally 291 

followed an increasing (or decreasing, depending on variable type) trend at the beginning (before 292 

Jun. 12-13 and Jun. 21-22), followed by a turnover. Furthermore, no variable was detected as the 293 

most important estimator of AGB for all sampling dates throughout the growing season. CC and 294 

VLAI were selected as the most important estimators for more sampling dates compared to others. 295 

CC was considered as the most important estimator for May 30-31 and Jun. 12-13, because the 296 

models that were established with it have the highest R
2
 and the lowest MSECV compared to all 297 

other variables for the same sampling date (R
2
 = 0.83, MSECV = 0.24, and r = 0.91 for May 30-31; 298 

and R
2
 = 0.63, MSECV = 0.34, r = 0.79 for Jun. 12-13, Table 2 and Fig. 3). During the mid and end 299 

of growing season (Jul. 10-11 and Sep. 22-23) however, VLAI was detected as the most important 300 

estimator of AGB. The resulting models can provide the highest R
2
 and lowest MSECV (R

2
 = 0.78, 301 

MSECV = 0.06, and r = 0.81 for Jul. 10-11; and R
2
 = 0.66, MSECV = 0.13, and r = 0.78 for Sep. 302 

22-23, Table 2). On Jun. 21-22, VCC was found the most important estimator of AGB. The 303 

performance of its established model was acceptable with R
2
 = 0.58 and MSECV = 0.25. On Jul. 304 

1-2, CC was also found as the most important estimator of AGB among all six studied variables; 305 

however, the regression model is at insignificance level (p-value = 0.14, not shown in Table 2) and 306 

its explanation power is low (R
2
 = 0.17, Table 2). This indicated that the univariate linear 307 

regression is insufficient at such growing dates and more analysis might be required to improve 308 

AGB estimation. 309 

 310 

#### Table 2 is about here #### 311 

 312 
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#### Fig. 3 is about here ### 313 

 314 

3.3 Best model selection throughout the growing season 315 

 316 

#### Table 3 is about here #### 317 

 318 

#### Fig. 4 is about here #### 319 

 320 

Table 3 lists the results of the best subsets regression analysis. As expected, the selected best 321 

models incorporated more variables and achieved higher accuracies and robustness compared to 322 

the corresponding selected univariate models for most of the growing season of C. dactylon 323 

communities (Tables 2 and 3; Figs. 3 and 4). During the early growing season, the models relied 324 

on the linear combination of CC and other variables for May 30-31 (LAI) and June 12-13 (H) have 325 

improved the capabilities in the AGB estimation, in contrast to the models where only CC was 326 

invovled (Table 2). These improvements can be measured in terms of improved R
2
 (0.05 for May 327 

30-31 and 0.10 for June 12-13) and reduced MSEcv (0.04 for May 30-31 and 0.07 for June 12-13). 328 

On Jun. 21-22, the selected best model was identical to using the single variable modeling. It 329 

means that variables other than VCC added little value for the estimation of AGB for this sampling 330 

date. On July 1-2, although the selected best model had a great improvement compared to the 331 

corresponding univariate model, its R
2
 still remained low (0.49). During the mid- and late growing 332 

season (July 10-11 and Sept. 22-23), the selected best models both incoroperated H and LAI 333 

(Table 3).  334 

In addition, the selected best general model for the entire growing season (MS) had a much 335 

higher R
2
 (0.72) and lower MSECV (0.21) than the corresponding single variable model (with R

2
 = 336 

0.61 and MSECV = 0.28, see Tables 2 and 3). Unlike the individual growing dates (except for July 337 

10-11), the seasonal variable (SV) was selected by this general model (Table 3). 338 

 339 

4. Discussion 340 

4.1. Plant biomass and canopy structures: the most important estimator 341 

Canopy structure is a key element for estimating plant AGB. For the entire sampling season, 342 

CC was found to be the most important estimator of AGB and the developed model had an 343 

acceptable performance (R
2
 = 0.61 and MSECV = 0.28, Table 2). However, no variable was found 344 

to be the most important estimator in estimating AGB for all sampling dates. During the early 345 

growing season (from May 30-31 to June 11-12), CC was suggested as the most important 346 

estimator of AGB and enabled reliable estimating performance. During this period, the riparian 347 

grassland has a relatively low cover compared to the latter growing season (Table 1). This finding 348 

is consistent with previous studies (Axmanová et al., 2012; Flombaum and Sala, 2007; Zhang et 349 

al., 2016). For example, Axmanová et al. (2012) reported relatively tight correlations between 350 

cover and biomass when the cover is low in sparse vegetation communities; however, the authors 351 
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reported poor correlations when vegetation cover was in high density. During the mid and late 352 

growing season (July 10-11 and Sep. 22-23), the VLAI became the most important estimator of 353 

AGB (Table 2). Two of the key questions related to the above findings are: (1) why is CC rather 354 

than related variables the most important estimator of AGB during the early growing season of C. 355 

dactylon communities, as the volume related variables are always considered to contain more 356 

structural information of plant communities; and (2) why is the VLAI rather than VCC the most 357 

important estimator of AGB towards the end of the growing season, as both of them are volume 358 

related variables. 359 

Theoretically, a volume related variable correlates linearly with AGB when the 360 

corresponding bulk density is constant (Zhang et al., 2016). In this study, however, the bulk 361 

density of the sampling quadrats variation largely during the early growing season, and decreased 362 

after that (Fig. 5). This may due to the large variation of community canopy structure in the early 363 

growing season, which decreased after that (Fig. 6 and Fig. 2). This suggests that in the early 364 

growing season, the large variation of bulk density resulted in less predictabilities of volume 365 

variables (both VLAI and VCC) in estimating AGB. Similar to the findings reported by other authors 366 

(e.g., Axmanová et al., 2012; Ni-Meister et al., 2010), the CC could be more suitable to estimate 367 

AGB during the early growing season since mean plant densities were relatively low (Fig. 2 and 368 

Table 1). Thus, this suggests that in data sets that are collected during the early growing season in 369 

a riparian environment, CC presents reasonably reliable estimates of biomass that are easy to 370 

obtain. At the end of the growing season in C. dactylon communities, the variation of bulk 371 

densities is relatively small, suggesting that a volume variable (VLAI or VCC) could correlate highly 372 

with AGB and be more suitable to be used for estimating AGB. Although two volume related 373 

variables exist (VCC and VLAI), our analysis suggests that VLAI could be more suitable than VCC for 374 

the AGB estimation. This may be due to the general understanding that LAI contains more inner 375 

structural information (such as layer density) than CC at the end of the growing season of C. 376 

dactylon communities, when the communities had become very dense (see Appendices Fig. A.2). 377 

As demonstrated in previous studies, C. dactylon is a stoloniferous and rhizomatous grass species 378 

with high growth rates when resources are available (Dong and Kroon, 1994). Its stolons extend to 379 

seek more radiance under the dense canopy cover (De Abelleyra et al., 2008). As a consequence, 380 

towards the end of the growing season, the canopy structure of C. dactylon communities often 381 

contains two distinct layers: a highly overlapping stolon layer on the ground surface and erect 382 

branches above the stolon layer (see Appendices Fig. A.2) (Ecoport, 2012). Since CC of a canopy 383 

has a fixed upper limit (i.e., 1), it moves toward saturation, while the community cover is getting 384 

higher during the growing season in September (Table 1). In this case, this could lead to 385 

misinterpretation in density and structurally diverse plant populations, and thus provide less useful 386 

information about canopy structural changes (Axmanová et al., 2012). However, the LAI is 387 

essentially a variable with no upper limit value, and thus can indicate more information of 388 

structural changes at the same condition (Fig. 6). 389 

#### Fig. 5 is about here #### 390 
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 391 

#### Fig. 6 is about here #### 392 

All this suggests that the canopy structural characteristics of a stand are important factors that 393 

determine the change of the most important AGB estimator (Martin et al., 2005). It is impractical 394 

to find a universal predictor that can be applied to all growing season of plants, given that the 395 

canopy structures constantly change like for the investigated C. dactylon in this study. Although 396 

the CC has been suggested as the universal most important estimator of AGB for the whole 397 

growing season in this study, the model on which this is based is not reliable enough to put it into 398 

practice due to its relatively low R
2
 (0.61). Therefore, when other AGB estimation models are 399 

applied in practice, more attention needs to be paid on the sampling dates and plant structure 400 

characteristics on which these models were based (Martin et al., 2005; Zhang et al., 2016). 401 

 402 

4.2. Optimal biomass estimated models along the growing season: the joint effects 403 

Although most of the models that were established on selected the most important estimators 404 

can obtain reliable accuracies for estimating AGB (Table 2), they may not be optimal models 405 

since joint effects of the studied variables were not considered. After conducting best subsets 406 

regression, the overall performance of the newly built best models significantly improved, 407 

compared to the univariate models. For instance, the selected best models explained an additional 408 

11% in AGB variance on average (Table 3). Consequently, the best-selected models in 409 

consideration of the joint effects of variables (except for June 21-22) could provide accurate 410 

estimations of AGB dynamics for different growing dates. Generally, higher accuracy could be 411 

achievable by incorporating more variables (but with less multicollinearity) to the univariate 412 

models (Fleming et al., 2014). Recently, many studies have found that some canopy properties 413 

such as the green index and the red edge reflectance could be easily measured via remote sensing 414 

techniques and can provide useful information for the estimation of grassland AGB (Byrne et al., 415 

2011; Chen et al., 2009; Marshall and Thenkabail, 2015). Thus, these types of variables could be 416 

incorporated to develop non-destructive methods in estimating the AGB of grassland communities 417 

of riparian zones in the future. Moreover, the best model related variables could also be obtained 418 

via new generation remote sensing technology (Ni-Meister et al., 2010; Pueschel et al., 2014; 419 

Richter et al., 2012). Thus, the selected best model could be further developed and generalized 420 

into larger scale applications in the riparian zones of the TGR and for similar areas. 421 

The selected best general model for an entire growing season provides a relatively good 422 

performance in estimating the AGB (R
2
 = 0.72 and MSECV = 0.21, Table 3). It would be very 423 

useful to estimating AGB via model interpolation during some other sampling dates, in which 424 

samples were not collected or in which the established individual models lacked reliability, such 425 

as for June 21-22 and July 1-2 in this study. In the model, CC, H, and SV were selected. These 426 

variables represent the horizontial canopy structure (CC), the vertical canopy structre (H), and 427 

seasonal growth effects (SV) of C. dactylon communities. In many previous studies, canopy 428 

structural variables were often considered to be important estimators of AGB; however, the 429 
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seasonal growth effects were considered less in these models (Hidy et al., 2012; Martin et al., 430 

2005; Redjadj et al., 2012). In this study, the SV was found to be helpful in improving AGB 431 

estimation. This result is in accordance with the work conducted by Nakagami and Itano (2014), in 432 

which they suggested that a general model considering the sampling date effect in an appropriate 433 

way could be useful to improve the performance of an AGB estimation model. Although our 434 

developed general models are specific for one dominant species in a riparian environment, the 435 

methods we developed for the general model should be applicable to herbaceous species in other 436 

environments, where plant growth follows distinct canopy structures throughout the growing 437 

season. 438 

 Both the univariate and the multivariate models for July 1-2 have rather low R
2
 compared to 439 

models for other growing season (R
2
 = 0.17 and 0.49, respectively, Tables 2 and 3). Two possible 440 

reasons could explain this result: Firstly, the difference of sampling condition, in terms of the 441 

distinction of water and soil attached to plants, between quadrats was distinct. Heavy rain 442 

preceded the field sampling of July 1
st
. It resulted in considerable amounts of mud attached to the 443 

plants (when clipping), thus causing some uncertainties in measuring AGB, CC, and LAI for the 444 

quadrats on that day, given that the ACCUPAR LP-80 equipment is easily affected by the water 445 

content (Decagon, 2010). On July 2, however, some water on plants and ground had dried due to 446 

sunny weather. Secondly, the values of collected samples on June 1-2 were convergent as their 447 

standard deviations were relatively low, e.g., AGB of 273 g/m
2
, H of 8 cm, LAI of 0.39, and CC 448 

of 0.04 (Table 1). Those concentrated sampling data can undermine the predictability of the 449 

regression model. This might be caused by a new sampler (a postgraduate student with less 450 

training) on that sampling date, who tended to select quadrats with high density cover and omitted 451 

to take the gradient effects into account during sampling. 452 

 453 

4.3. Limitations 454 

The C. dactylon communities investigated in the riparian zone of the TGR were focused. They 455 

are mainly distributed in lowland with elevations roughly below 165 m (Chen et al., 2012). 456 

However, other communities (e.g., Xanthium sibiricum Patr, and Setaria viridis (L.) Beauv) were 457 

mainly found between 165 m to 175 m and were not considered here due to their relative low 458 

eveness along the TGR drawdown zone and the limited number of sampling quardrants (not 459 

shown in this study). More field work is required to estimate the AGB of those communites by 460 

obtaining a sufficient number of samples over the next few years. Moreover, although an 461 

aproximate 10-day interval field samping was tried to be conducted throughout the growing 462 

season, they were still unable to be guaranteed after July 20 due to some unforeseen factors such 463 

as rising water level and intolerable hot weather during August (see Fig. 1d). Nevertheless, the 464 

valid sampling dates still covered the early (May and June), middle (July), and end (September) of 465 

the growing season of C. dactylon communities. Therefore, the findings of this study are also 466 

expected to be helpful for sampling work, aimed at understanding seasonal AGB dynamics in 467 

future. 468 
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 469 

 470 

5. Conclusion 471 

Seasonal AGB dynamics of pioneer plant species during early succession is a key indicator 472 

for both planning and monitoring of ecosystem restorations. This study focused on one dominant 473 

plant pioneer species in the TGR riparian zone: C. dactylon. We explored the capabilities of five 474 

canopy structure variables and one seasonal growth effects variable to estimate the AGB of the 475 

species along different dates throughout the growing season. Our results indicate that the studied 476 

canopy structural variables can be applied for estimating the AGB with reasonable accuracy and 477 

robustness. However, the seasonal change of canopy structure indicates that there is no variable 478 

that can be the most important AGB estimator throughout the entire growing season. CC was 479 

found as the best estimator during the early growing season, and VLAI became the most important 480 

for the middle and the end of the growing season. The joint effects of multiple structural variables 481 

were also demonstrated to be helpful in improving AGB estimation of different sampling dates. A 482 

reliable general model for estimating AGB during the entire growing season was also developed 483 

with the contribution of SV. The selected most important estimators and models of AGB 484 

estimating can be used as indicators for monitoring ecosystem productivity, succession, and 485 

restoration processes of riparian ecosystems. Given that the structural variables can be obtained 486 

via current remote sensing techniques, it is recommended that the developed models can also be 487 

applied for the rapid estimation of biomass in riparian zones, using remotely sensed data and that 488 

they can be extended to regional scales. Furthermore, the models developed at different growing 489 

dates enable time-series analysis of biomass dynamics, which is essential for assessing the 490 

temporal response patterns of seasonal changes, and might provide both emperical and therotical 491 

explanations of riparian zone ecosystem functions in response to water level fluctuations in the 492 

TGR. Finally, we suggest that the development of estimating models via our approach could 493 

expand upon, rather than replace, the other modeling methods. 494 
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Fig. 1. Location of study area (a-b), (c) satellite image of the study area with the distribution of 

sampling sites, and (d) daily water level fluctuations at the Wanzhou hydrological station near the 

study area (data from http://www.cxfww.cn/), daily average temperatures, and sampling dates. 

 

 

Fig. 2. Images depicting our sampling methods: (a) an overview of the sampling sites A and B 

(See Fig.1), (b) representative picture for a C. dactylon community with high density cover, (c) 

and (d) measuring photosynthetically active radiation both above (c) and below the canopy (d) via 

ACCUPAR LP-80 ceptometer. 

Figures with captions

http://www.cxfww.cn/


 

 

 

Fig. 3. Correlation coefficients (r) between the measured log2(AGB) and the estimated values via 

the selected best variable (i.e., the labeled variable) for different sampling dates. The dashed line 

marks a 1:1 ratio. MS = May 30 to Sep. 23 in 2016. 

 

 

 

 

 

Fig. 4. Correlation coefficients (r) between the measured log2(AGB) and the estimated values via 

the selected best model (the involved variables were labeled) for different sampling dates. The 

dashed line marks a 1:1 ratio. MS = May 30 to Sep. 23 in 2016. 

 

 

 

 

 



 

 

 

 

Fig. 5. Statistical distributions of the bulk densities of samples at different sampling dates. (a) 

Bulk density calculated from VC and (b) from VLAI. The small circle (○) is the mean value. 

 

 

 

 

Fig. 6. Statistical distributions of the canopy cover of samples (a) and the LAI (b) at different 

sampling dates. The small circle (○) is the mean value. 



Table 1. Basic statistics of C. dactylon community samples at different sampling dates in 2016. 

Sample values are shown as mean ± standard deviation. SPD: sampling dates, NS = number of 

samples, AGB = aboveground biomass, H = height, LAI = leaf area index, CC = canopy cover, 

VLAI is a canopy volume-like variable calculated via H × LAI, and VCC is a further volume-like 

variable calculated via H × CC. MS = May to Sep. (i.e., all samples collected during valid 

sampling dates). Light gray shaded data were not applied in the regression modeling due to the 

relatively small number of samples or invalidity of measurements. 

SPD NS AGB (g/m
2
) H (cm) LAI CC VLAI VCC 

May 30-31 20 737±429 44±15 3.60±1.79 0.86±0.18 176±130 39±18 

Jun. 12-13 19 979±544 40±12 4.06±1.32 0.89±0.11 171±94 36±13 

Jun. 21-22 16 1144±428 43±12 3.99±0.98 0.92±0.05 172±70 39±12 

Jul. 1-2 14 1171±273 46±8 3.40±0.39 0.91±0.04 156±36 41±8 

Jul. 10-11 16 1314±427 48±8 3.72±0.90 0.92±0.05 176±56 44±9 

Jul. 20 4 874±240 37±5 4.31±1.00 0.87±0.07 157±36 32±5 

Aug. 16-17 19 1347±408 45±11 invalid invalid invalid invalid 

Sep. 6-7 20 1352±676 45±14 invalid invalid invalid invalid 

Sep. 22-23 19 1404±481 47±12 5.39±2.32 0.95±0.07 267±145 45±13 

MS 104 1189±497 46±12 4.45±1.72 0.92±0.10 213±122 42±14 
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Table 2. Regression coefficients of models that estimate dry aboveground biomass (Y), using 

variables (X) of canopy height (H), canopy cover (CC), leaf area index (LAI), VCC, VLAI, and 

seasonal growth effects variable (SV) via the univariate linear model of log2(Y) = aX+b. For each 

sampling date, the numbers in bold depict the highest R
2
 or the lowest MSECV among all six 

variables. Light grayed values indicate that the corresponding fitted model is insignificant with 

p-values > 0.05. MS = May 30 to Sep. 23 in 2016. 

Variables Models 
Sampling dates 

May 30-31 Jun. 12-13 Jun. 21-22 Jul. 1-2 Jul. 10-11 Sep. 22-23 MS 

H 

a 0.039 0.051 0.040 0.008 0.033 0.032 0.040 

b 7.500 7.640 8.320 9.790 8.720 8.850 8.150 

R
2
 0.288 0.461 0.561 0.035 0.372 0.512 0.331 

MSECV 0.902 0.487 0.254 0.155 0.153 0.178 0.467 

p-value 0.015 0.001 0.001 0.523  0.012 0.001 <0.001 

CC 

a 5.390 6.510 6.000 3.880 5.550 5.000 6.170 

b 4.580 3.890 4.500 6.620 5.250 5.600 4.330 

R
2
 0.831 0.630 0.187 0.175 0.394 0.517 0.606 

MSECV 0.238 0.340 0.471 0.167 0.151 0.221 0.275 

p-value <0.001 <0.001 0.094  0.137  0.009 0.001 <0.001 

LAI 

a 0.532 0.456 0.214 -0.314 0.395 0.186 0.325 

b 7.310 7.840 9.180 11.200 8.820 9.360 8.610 

R
2
 0.804 0.457 0.100 0.117 0.596 0.613 0.396 

MSECV 0.271 0.512 0.473 0.129 0.100 0.143 0.428 

p-value <0.001 <0.001 0.232  0.232  <0.001 <0.001 <0.001 

VCC 

a 0.046 0.053 0.043 0.014 0.035 0.032 0.045 

b 7.430 7.800 8.360 9.580 8.730 8.950 8.110 

R
2
 0.583 0.603 0.581 0.087 0.467 0.590 0.497 

MSECV 0.570 0.357 0.248 0.134 0.129 0.149 0.357 

p-value <0.001 <0.001 0.001 0.305 0.004 <0.001 <0.001 

VLAI 

a 0.006 0.007 0.007 0.007 0.007 0.003 0.005 

b 8.100 8.550 8.910 10.200 8.990 9.540 8.960 

R
2
 0.607 0.503 0.479 0.001 0.776 0.658 0.426 

MSECV 0.532 0.477 0.297 0.168 0.058 0.127 0.407 

p-value <0.001 0.001 0.003 0.924  <0.001 <0.001 <0.001 

SV 

a 0.457 0.074 0.868 -0.135 -0.312 -1.410 0.398 

b 7.240 9.310 5.380 10.900 12.200 20.400 7.700 

R
2
 0.301 0.003 0.273 0.015 0.058 0.062 0.286 

MSECV 0.967 0.950 0.399 0.163 0.242 0.338 0.509 

p-value 0.012 0.819 0.038 0.682  0.368 0.304 <0.001 

 

 

 

 

 



Table 3. Output of the best subsets regression. The finial selected best model for an individual 

sampling date is marked in bold. SPD = sampling dates and NV = number of variables. MSECV = 

mean MSE value from the leave-one-out cross validation. “-” = no data.  

SPD NV Selected variables (corresponding VIF value) MSECV MSE R2 AIC ΔAIC p-value 

May 

30-31 

1 CC(-) 0.238 0.201 0.831 -30.161 4.842 <0.001 

2 LAI(3.92); CC(3.92) 0.199 0.153 0.879 -34.777 0.226 <0.001 

3 H(6.08); CC(2.44); VLAI(9.16) 0.167 0.146 0.891 -35.003 0.000 <0.001 

4 H(57.11); LAI(8.61); CC(13.20); VCC(108.95) 0.263 0.153 0.893 -33.288 1.715 <0.001 

5 H(57.12); LAI(8.68); CC(13.74); VCC(109.05); SV(1.61) 0.278 0.163 0.893 -31.393 3.61 <0.001 

Jun. 

12-13 

1 CC(-) 0.340 0.310 0.630 -20.343 3.952 <0.001 

2 H(1.36); CC(1.36) 0.269 0.241 0.729 -24.295 0.000 <0.001 

3 LAI(7.29); VLAI(21.09); VCC(8.40) 0.287 0.245 0.742 -23.189 1.106 <0.001 

4 H(80.44); LAI(26.05); VLAI(39.38); VCC(69.07) 0.338 0.259 0.746 -21.480 2.815 <0.001 

5 
H(366.60); LAI(109.22); CC(92.97); 

VLAI(221.93);VCC(918.45) 
0.445 0.273 0.751 -19.856 4.439 0.001 

Jun. 

21-22 

1 VCC(-) 0.248 0.198 0.581 -24.084 0.000 0.001 

2 VCC(1.27); SV(1.27) 0.245 0.194 0.619 -23.590 0.494 0.002 

3 H(1.26); CC(1.21); SV(1.34) 0.254 0.202 0.634 -22.228 1.856 0.006 

4 H(320.27); CC(9.28); VCC(360.45); SV(1.34) 0.297 0.207 0.655 -21.195 2.889 0.013 

5 
H(529.62); LAI(53.98); CC(21.08); 

VLAI(140.55);VCC(888.40) 
0.372 0.177 0.732 -23.260 0.824 0.011 

Jul. 

1-2 

1 CC(-) 0.167 0.115 0.175 -28.481 5.515 0.137 

2 LAI(1.20); CC(1.20) 0.081 0.077 0.493 -33.310 0.686 0.024 

3 H(16.64);VLAI(4.40);VCC(18.98) 0.096 0.070 0.582 -33.996 0.000 0.028 

4 H(21.28); LAI(1.18); VCC(22.00); SV(1.15) 0.110 0.076 0.590 -32.280 1.716 0.066 

5 
H(195.11); LAI(55.35); VLAI(206.24);VCC(23.93); 

SV(1.55) 
0.152 0.085 0.590 -30.286 3.71 0.141 

Jul. 

10-11 

1 VLAI(-) 0.058 0.051 0.776 -45.792 4.677 <0.001 

2 VLAI(1.27); SV(1.27) 0.053 0.046 0.811 -46.562 3.907 <0.001 

3 H(1.26); LAI(1.17); SV(1.38) 0.050 0.041 0.847 -47.898 2.571 <0.001 

4 H(50.99); LAI(114.55); VLAI(189.98); SV(1.99) 0.052 0.033 0.885 -50.469 0.000 <0.001 

5 H(76.41); LAI(176.34); CC(2.93); VLAI(270.58); SV(2.09) 0.060 0.034 0.892 -49.561 0.908 <0.001 

Sep. 

22-23 

1 VLAI(-) 0.127 0.110 0.658 -39.976 4.885 <0.001 

2 H(1.37); LAI(1.37) 0.105 0.088 0.743 -43.386 1.475 <0.001 

3 H(6.44); LAI(21.48); VLAI(36.71) 0.087 0.078 0.786 -44.861 0.000 <0.001 

4 H(6.50); LAI(24.56); VLAI(39.61); SV(1.28) 0.091 0.077 0.803 -44.446 0.415 <0.001 

5 H(8.59); LAI(38.98); CC(4.13); VLAI(48.79); SV(1.32) 0.105 0.083 0.804 -42.562 2.299 <0.001 

MS 

1 CC(-) 0.275 0.270 0.606 -134.060 32.126 <0.001 

2 H(1.24); CC(1.24) 0.238 0.227 0.673 -151.430 14.756 <0.001 

3 H(1.24); CC(1.45); SV(1.22) 0.205 0.195 0.722 -166.186 0.000 <0.001 

4 CC(2.06); VLAI(3.73);VCC(3.71); SV(1.23) 0.207 0.197 0.722 -164.211 1.975 <0.001 

5 H(33.94); LAI(23.58); VLAI(36.68);VCC(29.62); SV(1.23) 0.209 0.194 0.728 -164.598 1.588 <0.001 

 



 

Figure A.1. Scatter plot of AGB against growing days (i.e., days after first date emerging from 

water in 2016) for all collected samples of C. dactylon communities in the growing seasons (see 

Table 1). It shows that the AGB was accumulated fast in the early growing seasons and then 

slowed down in the mid- and end- growing season. This nonlinear growing process was thus could 

be characterized by a logarithmic function (the red solid line). Based on this observation, the 

seasonal growing effect variable was defined as log-transformed (base 2) of growing days to 

facilitate linear AGB estimation model in this study. 
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Figure A.2. (a)-(g): Growing statue dynamics of C. dactylon community sampling quadrats in 

different growing seasons (from May to September). The spatial locations of these quadrats were 

close to each other within distance less than 10 m. (h) A cross-section view of two distinct layers 

of C. dactylon community in the end of growing season.  
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