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Abstract 21 

 22 

Global-scale nitrogen (N) budgets developed to quantify anthropogenic impacts on the nitrogen 23 

cycle do not explicitly consider nitrate stored in the vadose zone.  Here we show that the vadose 24 

zone is an important store of nitrate which should be considered in future budgets for effective 25 

policymaking.  Using estimates of groundwater depth and nitrate leaching for 1900-2000, we 26 

quantify the peak global storage of nitrate in the vadose zone as 605 - 1814 Teragrams (Tg).  27 

Estimates of nitrate storage are validated using basin and national scale estimates and observed 28 

groundwater nitrate data.  Nitrate storage per unit area is greatest in North America, China and 29 

Europe where there are thick vadose zones and extensive historical agriculture.  In these areas long 30 

travel times in the vadose zone may delay the impact of changes in agricultural practices on 31 

groundwater quality. We argue that in these areas use of conventional nitrogen budget approaches 32 

is inappropriate.  33 

Introduction 34 

 35 

It is estimated that inputs of reactive nitrogen into the terrestrial biosphere are currently more than 36 

double pre-industrial levels due to modern agricultural practices and application of N fertilisers1.    37 

Reactive nitrogen cascades through the environment and has resulted in deterioration in quality of 38 

groundwater and surface water used for public supply2 and ecological degradation of freshwater and 39 

marine systems3.  In order to manage the impacts of additional reactive nitrogen, N budgets have been 40 

developed at a wide range of scales to quantify man’s impact on the N cycle1,4,5.  These budgets 41 

typically assume a steady state over a 1 year timescale, with no net accumulation of N.  However, 42 

recent work at both national and catchment scales has shown this to be inappropriate, as there can 43 

be substantial (and increasing) storage of nitrate in soils, the vadose zone and groundwater6-9.  The 44 
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slow travel time for solutes through the vadose zone means that significant amounts of dissolved 45 

reactive N may be stored.  This also results in a significant lag between any changes in agricultural 46 

practices to reduce nitrogen loadings and subsequent impacts on groundwater and surface water 47 

quality10.  Whilst the problems associated with time lag and storage of nitrate in the vadose zone have 48 

been identified at local11-18, regional19-21 and national scales9,10,22-24, the global significance of these 49 

processes has not yet been quantified.  In this study we hypothesised that long travel times in the 50 

vadose zone make it an important store of nitrate not considered at a global scale to date. 51 

 52 

We quantified the nitrate stored in the vadose zone globally by linking numerical models and 53 

published datasets of nitrate leaching25, depth to groundwater26, recharge rate and porosity27 (see 54 

Methods section).   We considered the sensitivity of model outputs to changes in model inputs by 55 

varying nitrate leaching inputs, vadose zone effective saturation and travel time. Results are 56 

aggregated by lithology and basins and analysed using k-means cluster analysis28.  The model was 57 

validated by comparing the model storage against previous national and catchment scale vadose zone 58 

storage estimates6,9 and by comparing model nitrate concentrations in recharge at the water table 59 

with observed concentrations in Europe29 and the USA30.  It is shown that the vadose zone is an 60 

important store of nitrate at the global scale, with significant storage in areas with extensive historical 61 

agricultural development and large depths to groundwater.  Use of conventional N budgets in these 62 

areas is likely to be highly limited and policymakers should consider vadose zone nitrate storage when 63 

planning pollution mitigation measures. 64 

 65 

 66 

 67 
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Results 68 
 69 

Global spatiotemporal distribution of vadose zone nitrate 70 

 71 
Our modelling shows a substantial continuous increase in the amount of nitrate stored in the vadose 72 

zone (Figure 1). This implies the steady state assumption adopted by conventional nutrient budgets is 73 

not appropriate at relatively short timescales (<50 years).    Based on the sensitivity analysis, for the 74 

year 2000 we estimate the total global storage to be between 605 and 1814 Tg N (Figure 1).   The 75 

range of values of nitrate storage associated with uncertainty in nitrate leaching inputs (605 and 1814 76 

Tg N) is significantly greater than that for uncertainty in unsaturated zone travel time (1007 – 1496 Tg 77 

N) or vadose zone saturation (778 – 1227 Tg N).  Modelled estimates of nitrate stored in carbonate 78 

vadose zones are estimated to be 9.6% (58 – 174 Tg) of total N storage. In these areas rapid transport 79 

may occur and observed storage may be limited due to low matrix porosity, and consequently model 80 

estimates are likely to be overestimates. Total vadose zone N storage is small (<3%) in comparison to 81 

estimates of total soil nitrogen (68,00031 – 280,00032 Tg N), but potentially significant (7 – 200%) in 82 

comparison to estimates of more labile soil inorganic nitrogen (NO3
- + NH4

+, 94031 – 25,00032 Tg).  The 83 

modelled spatio-temporal distribution of nitrate stored in the vadose zone (Figure 2) shows 84 

substantial increases between 1950 and 2000 associated with increased global use of N fertilizers and 85 

subsequent leaching.  Basins in North America, China and Central and Eastern Europe have developed 86 

large amounts of nitrate stored in the vadose zone due to thick vadose zones, slow travel times and 87 

high nitrate loadings.   88 

 89 

Comparisons between estimates of nitrate storage made in this study with previous works go some 90 

way to validating the modelling undertaken.  Previous studies have derived the amount of nitrate 91 

stored in the vadose zone for the Thames Basin6,9 England and for the countries of England and Wales 92 

and the USA9. The calculated peak store of 0.059 Tg N for the Thames catchment in this study agrees 93 
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broadly with the range of peak nitrate storage values reported in previous work in this area (0.016 – 94 

0.24 Tg N).  For England and Wales, we calculated a peak store of 1.7 Tg N which agrees with previous 95 

calculations estimating the store to be 0.8 – 1.75 Tg N.  For the USA, a first estimate of 29 Tg N was 96 

previously made9 and our modelling suggests a store of 191 Tg N.  This large discrepancy can be 97 

accounted for by the modelling approach of the previous study which only considered land areas 98 

where agriculture was greater than 40% of the overall landuse. 99 

 100 

The distributions of observed groundwater nitrate concentrations and modelled concentrations in 101 

groundwater recharge show reasonably good agreement for both European Union and United States 102 

(Figure 3).  It should be noted that comparison between observed groundwater concentrations and 103 

concentrations in recharge do not take into account dilution of recharge by low-nitrate groundwater.  104 

Consequently, comparison between these datasets should be considered to be a sense-check, but 105 

nonetheless useful, validation.  The distributions of nitrate concentrations in the USA appear to be 106 

closer which reflects the much larger observational dataset for the USA than for Europe (see 107 

Methods). 108 

 109 

Coherent basin scale nitrate storage trends 110 
 111 

k-means cluster analysis revealed 3 spatially coherent responses in basin nitrate storage (Figure 4 a 112 

and b) reflecting differences in vadose zone travel time (c) and nitrate leaching inputs (d).  In all the 113 

clusters, the time taken for the impact of stopping N leaching inputs from the base of the soil zone 114 

(i.e. Nleach = 0, see Methods) to reach groundwater (Nout = 0) will equal the vadose zone travel time.  115 

The majority of basins fall within clusters 1 and 2.  These clusters show a continuous increase in the 116 

nitrate stored in the vadose zone. The vadose zones in basins in these clusters accumulate nitrate with 117 

no loss to groundwater as the travel time through the vadose zone is long (Figure 4 c) due to deep 118 
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water tables and low recharge rates.  In these catchments some legacy nitrate may not have reached 119 

the water table yet and anticipated improvements in groundwater and surface water quality due to 120 

catchment management may be significantly delayed.  It should also be noted that there may also be 121 

significant lags in the saturated zone between recharge at the water table and discharge at receptors 122 

such as public water supply wells and streams where there are long groundwater flow paths.  123 

Additionally, in some areas where groundwater recharge is estimated to be very low, modelled 124 

estimates of vadose zone nitrate are likely to represent storage in both the soil and vadose zone.  125 

 126 

Cluster 3 shows a substantially different nitrate storage response to the other clusters.  This is a result 127 

of shorter vadose zone travel times. In these basins, storage rapidly increases initially until the travel 128 

time is reached and nitrate is present across the full depth of the vadose zone.  After this point the 129 

basin moves to a quasi-steady state where any input of nitrate from the base of the soil zone is 130 

accompanied by an equivalent loss from the base of the vadose zone to groundwater.  This dynamic 131 

balance results in minimal increases in nitrate storage and a relatively rapid response to changes in N 132 

loadings in comparison to other clusters.  In these catchments, nitrate loss at the base of the soil zone 133 

> 10 years ago is likely to now be present in groundwater.  134 

 135 

The nitrate leaching time series for each cluster (Figure 4 d) show distinct differences associated with 136 

the extent of historical agricultural and population development.  Cluster 1 shows a continuous 137 

increase in nitrate leaching inputs through time associated with increased development and 138 

intensification of agricultural to maximise crop yields.  Basins in cluster 1 form a spatially coherent 139 

pattern, covering large parts of the developing world including Africa, Southeast Asia and South 140 

America.  Cluster 2 shows an increase in nitrate leaching to c. 1985, followed by decreases to 2000.  141 

Such an input can be characterised by historical agricultural development followed by implementation 142 
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of catchment measures to reduce nitrate losses in the last decade.  Spatially this cluster reflects large 143 

parts of the developed world including the USA and Europe.  The nitrate leaching time series for cluster 144 

3 shows significant variability associated with the small number of catchments averaged but generally 145 

shows an increase to 2000. Recent studies have shown evidence that nitrogen losses from agriculture 146 

follow an Environmental Kutznets Curve (EKC), with a number of developed countries having reduced 147 

nitrogen losses since the 1980s associated with increased GDP33.  The spatiotemporal patterns of 148 

nitrate leaching inputs between the different clusters (Figure 4 d) corroborate this.   149 

 150 

Discussion 151 
 152 

 153 

There is a well-established discourse on the balance between increasing agricultural productivity to 154 

improve human health and feed growing populations and the negative impact of nitrogen leaching on 155 

aquatic ecosystems5.  A central tenet of future nitrogen management is that agricultural productivity 156 

can be increased in a cost effective manner with limited environmental impacts through increased 157 

nitrogen use efficiency (NUE) and reduced soil nitrogen surplus (Nsur)33,34.  Several recent studies have 158 

continued to assume that Nsur is directly analogous to nitrate pollution33,35,36 and recently developed 159 

models that do consider groundwater explicitly still ignore the vadose zone25.  Given the substantial 160 

lags present in the transport of nitrate from the soil zone to groundwater and surface water, we argue 161 

that use of Nsur alone as a metric to quantify impacts of agriculture on the aquatic environment is 162 

inappropriate.  Our modelling shows that the vadose zone is a globally significant store of nitrate which 163 

needs to be considered in future N budgets for more effective long-term nutrient management.  N 164 

storage in the vadose zone is most significant in areas where agricultural development and 165 

intensification occurred first and where there is a large depth to groundwater.  Storage of nitrate in 166 

the vadose zone is one of a number of temporary catchment retention processes such as storage in 167 
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soil organic matter8, subsoils, land not in agricultural production7, the riparian zone and in rivers6,37.  168 

These possible nitrogen stores and how they change through time (e.g N release through 169 

mineralisation of soil organic matter) should also be compared with storage in the vadose zone to 170 

determine whether they are significant enough to be incorporated into future nutrient budgets.  In 171 

combination, these processes will result in substantial delays in the impacts of changes in agricultural 172 

management practices on groundwater and surface water quality. 173 

 174 

 175 

Nitrate storage in the vadose zone has significant implications for environmental policy.  The need for 176 

internationally cooperative policy responses to nitrogen pollution to avoid shifting of pollution sources 177 

to areas with less stringent environmental controls has been established38.  However, development of 178 

such policies is in its infancy36.  Moreover, established policies in the developed world have been 179 

shown to be difficult to implement in areas where vadose zone lags are present.  For example, it is 180 

now widely acknowledged22,39 that original environmental targets set under the European Water 181 

Framework Directive40 and Nitrates Directive41 may not be met due to storage of nitrate in the vadose 182 

zone.  As a result, many river basin managers have been forced to consider new planning timescales 183 

accounting for these lags22.   184 

 185 

Recent work37 has called for the development of integrated pollution management policies which 186 

consider both pollution sources and temporary (e.g. vadose zone lags) and permanent (e.g. 187 

denitrification) retention processes at the basin scale.  Our work presented here provides a critical 188 

contribution to the literature in that we make the first global scale quantification of one of these 189 

temporary processes.  The spatial distribution of vadose zone N storage in 2000 (Figure 2) can give a 190 

first global indication to policymakers and decision-makers of where N legacy issues may be significant 191 

and delay improvements in groundwater and surface water quality.  In these areas, an understanding 192 
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of nitrate storage in the vadose zone can help managers in planning mitigation measures and the 193 

timescales and expectations for improvements in water quality.  With this quantification of vadose 194 

zone N storage and further research to quantify other retention processes at the global scale, 195 

development of integrated pollution management strategies at an international level should be 196 

possible.  Such an approach is critical for a realistic assessment of environmental impacts of global 197 

nitrogen flows associated with economic development and international trade36. 198 

   199 

The spatial coherence of the nitrate storage clusters (Figure 4) highlights the need for different 200 

management strategies to tackle nitrate pollution across developing and developed countries. In the 201 

developed world, a number of countries are already on a trajectory of declining soil N losses associated 202 

with sustainable intensification of agriculture33.  In the developing world, soil N losses are increasing 203 

associated with rapid early development of fertilized agriculture33. However, in both cases, catchment 204 

retention processes such as vadose zone storage must be considered.  Without consideration of these 205 

lags, which is often the case, nitrate pollution control policy may appear not to be working.  This may 206 

lead to more stringent but unnecessary measures that may adversely impact agricultural production 207 

and/or lead to disproportionate costs. 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 
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Methods  217 

 218 

Estimates of Vadose Zone Travel Time 219 

Travel time in the vadose zone was derived by estimating the depth to groundwater and nitrate 220 

velocity.   Depth to groundwater mapping at 0.5 degree scale was derived from previously published 221 

global groundwater model forced by modern climate, terrain and sea level26.  Velocity of nitrate (VNO3, 222 

m year-1) in the vadose zone was calculated as follows: 223 

୒ܸ୓ଷ =
ܴ
∅

 (1) 224 

Where R is the recharge rate (m year-1) and ∅ is effective porosity (dimensionless).  Global 225 

groundwater recharge mapping was derived from the PCR-GLOBWB model42 which has been used 226 

extensively in global scale hydrological modelling43-45.  PCR-GLOBWB calculates vertical water fluxes 227 

between 2 soil layers and groundwater based on unsaturated hydraulic conductivity estimates for 228 

each layer46.   Unsaturated hydraulic conductivity was calculated using the degree of saturation of 229 

each layer.  This was calculated based on average, saturated and residual soil moisture content, in 230 

turn derived by depth of water storage in each layer and the layer thickness.  Global soil mapping47 231 

and soil moisture characteristic curves48 were used to derive soil physical relationships for each layer, 232 

tabulated moisture retention, matric potential and unsaturated hydraulic conductivity values.   233 

 234 

Whilst recharge estimates derived using PCR-GLOBWB account for increased hydraulic conductivity 235 

with increased saturation, vadose zone velocities can also decrease with increased saturation 236 

associated with an increased cross-sectional area of flow49.  Based on previous catchment and regional 237 

scale approaches22,49-51, we accounted for this process separately from recharge in the calculation of 238 

deep vadose zone travel times.   Estimates of travel time through the deep vadose zone calculated 239 
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using equation 1 assumes a fully saturated matrix.  This is supported by work which shows that vadose 240 

zone velocities calculated using this method agree well with observed velocities derived from vadose 241 

zone porewater profiles in limestone and sandstone aquifers10.  However, in partially saturated media, 242 

assuming 100% effective saturation will result in unsaturated zone velocities being underestimated 243 

and hence vadose zone storage being overestimated.  N storage in vadose zones of strongly karstified 244 

aquifers with limited matrix porosity will also be overestimated using this method.  Global geological 245 

maps do not differentiate between karst and non-karst sedimentary carbonate rocks52, so we explored 246 

the impact of these assumptions on model results through sensitivity analysis (see below).   247 

 248 

Estimates of Nitrate Leaching from the base of the soil zone 249 

Nitrate leaching (Nleach, kg N 0.5 degree grid cell-1 year-1, same units for all N budget terms) at the base 250 

of the soil zone was derived from the global nutrient model IMAGE25 for 1900 to 2000.  IMAGE has 251 

been detailed extensively elsewhere4,25,53 and the key soil zone N inputs, outputs and processes are 252 

described here for clarity and illustrated in Supplementary Fig. 1.  IMAGE uses the concept of an annual 253 

steady state soil N budget surplus, defined as the balance between soil N inputs and outputs for a unit 254 

land area. Storage and release of N associated with changes in soil organic matter through time are 255 

not considered.  Historic land cover data54 at the 0.5 degree scale which distinguishes between 9 256 

agricultural land use types and 17 different natural ecosystems was used as a basis to derive 5 broad 257 

land use groups for the soil N budget estimation (Supplementary Fig. 1).  The soil N budget (Nbudget) is 258 

calculated as follows: 259 

ୠܰ୳ୢ୥ୣ୲ =  ୤ܰ୧୶ + ୢܰୣ୮  + ୤ܰୣ୰୲  + ܰ୫ୟ୬ − ܰ୵୧୲୦ୢ୰  − ୴ܰ୭୪ (2) 260 

Where Nfix is biological nitrogen fixation, Ndep is atmospheric N deposition, Nfert is application of N 261 

fertilizer, Nman is addition of manure and Nwithdr and Nvol are loss terms for N withdrawal from 262 

harvesting and ammonia volatilisation respectively. 263 
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Biological nitrogen fixation in leguminous (pulses and soybeans) crops and natural ecosystems was 264 

estimated by crop production data and N content4,55.  It was assumed that total biomass of leguminous 265 

crops was twice that of the harvested product, and that N is also released to the soil during the 266 

growing season53. Fixed N is available for harvesting, or volatilisation and leaching if released to the 267 

soil.  Total N fixation during the growing season was therefore derived by multiplying the N in 268 

harvested product by 3 to account for this additional unharvested biomass and the plant-soil N flux53.    269 

Atmospheric N deposition for the year 2000 was estimated from an ensemble of global atmospheric 270 

chemistry models56 and estimated for 1900 to 2000 by scaling the N deposition field with historic 271 

emissions inventories4. Country level N fertilizer application rates divided by land use for 1900 to 2000 272 

were derived from global databases55,57 and data on fixed N use in 191358.  Country animal population 273 

data in conjunction with N excretion rate estimates59 were used to estimate addition of N in manure 274 

form.   Animal populations back to 1900 were derived from statistical compilations by Mitchell60-62 and 275 

scaling of human population data63 for poultry and camels where data was limited.  N loss through 276 

ammonia volatilisation was estimated using a empirical model of c. 1700 field measurements across 277 

a range of different crop types, fertilizer types and applications and environmental conditions64. 278 

Removal of N through harvesting was estimated from country crop production data, crop dry matter 279 

and N content estimates65.  N budget inputs and outputs derived from crop type and production data 280 

(Nfix, Nman, Nwithdr, Nvol) were estimated back to 1900 by scaling 1960 crop production data with 281 

population numbers and land use data in the HYDE database66.   282 

 283 

It is assumed that all reduced N compounds are nitrified to nitrate such that Nbudget  = soil nitrate53. 284 

When Nbudget is positive, leaching, surface runoff and denitrification can occur.  N leaching (Nleach) at 285 

the base of the soil zone is a fraction of the soil N budget excluding N loss via surface runoff (Nsro): 286 

୪ܰୣୟୡ୦ =  ୪݂ୣୟୡ୦൫ ୠܰ୳ୢ୥ୣ୲  − ୱܰ୰୭൯ (3) 287 
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Where the soil leaching fraction, fleach, is complementary to the fraction of soil N lost by denitrification 288 

(fden): 289 

݂ୢ ୣ୬ = 1 − ୪݂ୣୟୡ୦ (4) 290 

fleach is estimated empirically using 5 denitrification factors , each with a range from 0 to 1, with a 291 

maximum value of 1: 292 

୪݂ୣୟୡ୦ = ൣ1 − )ሾܰܫܯ ୡ݂୪୧୫ୟ୲ୣ + ୲݂ୣ୶୲ + ݂ୢ ୰ୟ୧୬ + ୱ݂୭ୡ), 1ሿ൧ ୪݂ୟ୬ୢ୳ୱୣ (5) 293 

Where fclimate, ftext, fdrain, fsoc and flanduse are factors representing climate, soil texture, aeration, soil 294 

organic carbon content and landuse respectively25. fclimate uses the Arrhenius equation and estimates 295 

of soil water capacity and potential recharge to estimate the effects of temperature and residence 296 

time on root zone denitrification25.  ftext, fdrain, fsoc were estimated using global scale mapping of soil 297 

texture, drainage and organic carbon content53,67.  flanduse was set to 1 for arable land areas, with 298 

grassland and natural vegetation having a value of 0.3668.  For further detail on soil N budget inputs, 299 

outputs and processes the reader is referred to previous modelling studies4,53. 300 

 301 

Calculation of Nitrate Storage in the Vadose Zone 302 

Nitrate storage in the vadose zone was calculated using a simple summation approach.  It was 303 

assumed that nitrate undertakes conservative transport in the vadose zone.  This is supported by 304 

numerous studies69 which showed that the evidence for vadose zone denitrification is very limited, 305 

with just 1-2% of the nitrate leached from the soil zone removed70.  In some specific local 306 

hydrogeological environments (e.g. where anaerobic conditions and organic carbon are present69) 307 

vadose zone denitrification may occur, and in these areas the model may overestimate nitrate storage.  308 

However, at the global scale this was considered negligible.  For a year t (years), the nitrate stored in 309 
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vadose zone, NVZ (Tg N) for a grid cell with a vadose travel time, TTVZ (year) and a time-variant nitrate 310 

leaching input, Nleach (kg N), can be calculated as:  311 

୚ܰ୞ =
∑ ୪ܰୣୟୡ୦

௧
௜ୀ௧ି் ౒ౖ

10ଽ (6) 312 

Global maps of the model input datasets and the derived vadose zone storage for the year 2000 are 313 

shown in Supplementary Fig. 2.  We derive changes in nitrate storage in the vadose zone through time 314 

using a simple mass balance approach; 315 

୪ܰୣୟୡ୦౪
− ୭ܰ୳୲୲ =  ∆ ୚ܰ୞ (7) 316 

Where Nout (kg N) is the nitrate flux from the unsaturated zone to the saturated zone and ∆ ୚ܰ୞ (kg N) 317 

is the change in nitrate storage in the vadose zone.    318 

 319 

Sensitivity and Cluster Analysis 320 

We undertook a heuristic sensitivity analysis by running the model using different inputs.  We 321 

separately varied the vadose zone travel time and nitrate leaching input by +/-50%.  We also varied 322 

vadose zone effective saturations (0.25, 0.5, 0.75 and 1) to account for variable cross-sectional area 323 

of flow in partially saturated media. 324 

 325 

We aggregated vadose zone N storage data by lithology and catchments.  We separated areas 326 

underlain by sedimentary carbonate rocks27 to account for rapid vadose zone transport in karstic 327 

aquifers with limited matrix porosity, and hence limited N storage.  We normalised the catchment 328 

nitrate storage responses for 1900 – 2000 and used k-means clustering28 to identify spatial patterns 329 

of N storage responses.  2, 3 and 4 clusters were tested and 3 gave the most coherent spatial pattern.  330 
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For each of the clusters we calculated the mean annual nitrate leaching input for 1900 – 2000 and the 331 

kernel density distribution of travel times for the catchments within the cluster. 332 

 333 

Model Validation 334 

We undertook a 2 step model validation: (1) Comparison against previously published national and 335 

catchment scale estimates of nitrate storage and (2) Comparison against nitrate concentrations in 336 

groundwater.  Recent work has given estimates of nitrate storage for the United Kingdom and the 337 

USA9 and for the Thames catchment6, England.  We estimated nitrate concentrations in recharge at 338 

the water table as follows: 339 

ܿ݊݋ܥ = ୭ܰ୳୲

ܴ݁ܿℎܽ݁݃ݎ
(8) 340 

Modelled estimates of nitrate concentrations in recharge were compared against observed 341 

groundwater nitrate data for Europe29 and America30.  It should be noted that this comparison does 342 

not directly validate estimates of nitrate storage.  Comparison against observed nitrate concentrations 343 

in groundwater provides a sense-check that the nitrate inputs and vadose zone travel time estimates 344 

are reasonable.  345 

 346 
Data Availability  347 
 348 

Global input datasets (depth to groundwater table, recharge rate, porosity and nitrate leaching) and 349 

model validation data (groundwater nitrate concentrations) are publically available from the 350 

references cited in the Methods section.  Vadose zone nitrate storage data generated during the 351 

current study are available from the corresponding author on request. 352 
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Figure 1: Modelled global increase in nitrate (Tg N) stored in the vadose zone for 1900-2000 under the baseline model 568 
run (black) and from sensitivity analyses (red and blue for +/- 50% travel time and nitrate leaching respectively) 569 
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Figure 2: Spatial distribution of nitrate stored in the vadose zone in kg N ha-1 for 1925 (a), 1950 (b), 1975 (c) and 2000 (d) 572 
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 574 

Figure 3: Distributions of observed (blue) nitrate concentrations in groundwater and modelled (red) nitrate concentrations 575 
in recharge at the water table for the European Union29 ((a) and (b)) and the United States30 ((c) and (d)).  Purple colour in 576 
the histogram indicates where the model and observed concentration distributions overlap. 577 

 578 

 579 

Figure 4: Spatial distribution of the nitrate storage clusters (a), nitrate storage cluster centroids (b), distribution of vadose 580 
zone travel times (c) and mean annual nitrate leaching input time series (d) for each cluster. 581 
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Supplementary Information 586 
 587 

 588 

Supplementary Fig. 1: Scheme used to calculate N leaching at the base of the soil zone53 589 

 590 

 591 

Supplementary Fig. 2: Global depth to water26 (a), groundwater recharge42 (b), porosity27 (c) input datasets and derived 592 
vadose zone (VZ) travel times (d), nitrate leaching (Nleach) for 198825 (e), and vadose zone nitrate-N storage (Nvz) in 2000 593 
(f) 594 


