
Citation: Lin, Zijia, Ding, Guiguang, Han, Jungong and Wang, Jianmin (2016) Cross-view
Retrieval via Probability-based Semantics-Preserving Hashing. IEEE Transactions on
Cybernetics. ISSN 2168-2267 (In Press)

Published by: IEEE

URL: http://dx.doi.org/10.1109/TCYB.2016.2608906
<http://dx.doi.org/10.1109/TCYB.2016.2608906>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/28089/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to
access the University’s research output. Copyright © and moral rights for items on NRL are
retained by the individual author(s) and/or other copyright owners. Single copies of full items
can be reproduced, displayed or performed, and given to third parties in any format or
medium for personal research or study, educational, or not-for-profit purposes without prior
permission or charge, provided the authors, title and full bibliographic details are given, as
well as a hyperlink and/or URL to the original metadata page. The content must not be
changed in any way. Full items must not be sold commercially in any format or medium
without formal permission of the copyright holder. The full policy is available online:
http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription may be
required.)

http://nrl.northumbria.ac.uk/policies.html

IEEE TRANSACTIONS ON CYBERNETICS 1

Cross-view Retrieval via Probability-based
Semantics-Preserving Hashing

Zijia Lin, Student Member, IEEE,Guiguang Ding,Member, IEEE,Jungong Han, Jianmin Wang

Abstract—For efficiently retrieving nearest neighbours from
large-scale multi-view data, recently hashing methods arewidely
investigated, which can substantially improve query speeds. In
this paper, we propose an effective probability-based Semantics-
Preserving Hashing method to tackle the problem of cross-view
retrieval, termed SePH. Considering the semantic consistency
between views, SePH generates one unified hash code for all
observed views of any instance. For training, SePH firstly
transforms the given semantic affinities of training data into
a probability distribution, and aims to approximate it with
another one in Hamming space, via minimizing their Kullback-
Leibler divergence. Specifically, the latter probability distribution
is derived from all pair-wise Hamming distances between to-
be-learnt hash codes of the training data. Then with learnt
hash codes, any kind of predictive models like linear ridge
regression, logistic regression or kernel logistic regression, can
be learnt as hash functions in each view for projecting the
corresponding view-specific features into hash codes. As for out-
of-sample extension, given any unseen instance, the learnthash
functions in its observed views can predict view-specific hash
codes. Then by deriving or estimating the corresponding output
probabilities w.r.t the predicted view-specific hash codes, a novel
probabilistic approach is further proposed to utilize them for
determining a unified hash code. To evaluate the proposed SePH,
we conduct extensive experiments on diverse benchmark datasets,
and the experimental results demonstrate that SePH is reasonable
and effective.

Index Terms—Semantics-Preserving Hashing, SePH, Cross-
view retrieval, Approximate nearest neighbour retrieval

I. I NTRODUCTION

FOR numerous algorithms in the fields of cybernetics,
computer vision and machine learning,etc., retrieving

nearest neighbours for an instance plays a fundamental role,
as also revealed in [1] and [2]. However, with the explosion of
data in recent years, efficient nearest neighbour retrievalfrom
large-scale and rapidly-increasing databases becomes quite
challenging. For tackling that, various tree-based indexing
methods [3]–[6] and hashing methods [1], [2], [7]–[39] are
proposed to perform exact or approximate nearest neighbour
(ANN) retrieval with much higher speeds. As tree-based
indexing methods can suffer from the so-called “curse of
dimensionality” for high-dimensional data, recently hashing
methods are becoming preferred and widely researched for

Zijia Lin is with Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China (e-mail:
linzijia07@tsinghua.org.cn).

Guiguang Ding and Jianmin Wang are with School of Software,
Tsinghua University, Beijing 100084, China (e-mail:{dinggg,
jimwang}@tsinghua.edu.cn). Guiguang Ding is the corresponding
author.

Jungong Han is with Civolution Technology, Eindhoven 5656AE, The
Netherlands (e-mail:jungonghan77@gmail.com).

handling such data. Generally, for hashing methods, by gener-
ating ak-bit binary (i.e. 0 or 1) hash code for each instance,
we can store the data compactly in hardware bits. Meanwhile,
to perform ANN retrieval, the Hamming distances between
the query hash code and those in the retrieval set can be
efficiently calculated using fast bit-wise XOR and bit-count
operations1 with a sub-linear time complexity. And with all
Hamming distances calculated, generally only the small ones
are kept and then ranked in an ascending order to select
instances with smallest Hamming distances as the approximate
nearest neighbours. Therefore, if the binary hash codes can
well preserve the affinities between instances, hashing methods
can perform ANN retrieval with much lower storage costs and
higher query speeds [18], while the quality loss of the retrieved
neighbours would be acceptable.

Generally speaking, we can roughly classify existing hash-
ing methods into single-view hashing [1], [2], [7]–[19] and
multi-view hashing [20]–[39]. The former focuses on data with
a single view, while the latter focuses on that with multiple
views, like an object with pictures from different cameras or
a news report with texts and images. Our work in this paper
is about cross-view retrieval for multi-view data. Specifically,
cross-view retrieval can utilize just one view of a query to
retrieval its nearest neighbours in other different views,like
using a query picture from one camera to retrieve relevant
ones from other cameras, or using a textual query to retrieve
semantically relevant images. Since cross-view retrievalcan be
utilized in many applications, it is becoming more and more
popular, as also revealed in [35].

In recent years, researchers have proposed many effective
hashing methods for cross-view retrieval, ranging from un-
supervised ones [20]–[25] to supervised ones [26]–[39]. The
former ones generally utilize only the features of training
data in different views to exploit intra-view and inter-view
correlations for learning hash functions, which project features
into binary hash codes. Meanwhile, the latter ones can further
exploit other available supervised information like semantic
affinities of training data, to better learn the projectionsand
yield superior performance. Actually, for supervised ones, well
preserving the semantic affinities between instances is thekey
to reducing the quality loss of retrieved nearest neighbours,
which is also the focus of our research.

In this paper, we propose a probability-basedSemantics-
PreservingHashing method for cross-view retrieval, termed
SePH. The proposed SePH belongs to supervised hashing.

1Both bit-wise XOR and bit-count operations are generally supported or
implemented by hardware.

IEEE TRANSACTIONS ON CYBERNETICS 2

(a) Previous Work (b) Proposed SePH

Fig. 1. Illustration of the differences between previous work (left) and the
proposed SePH (right). Hereoi(i = 1, 2, . . . , 6) are to-be-learnt hash codes,
blue solid edges between them denote their pairwise distances (similarities),
and red dotted lines between edges denote the correlations between distances
(similarities). Note that for clarity, some edges/lines are omitted.

Moreover, considering the semantic consistency between ob-
served views, SePH generates one unified hash code for all ob-
served views of any instance, like [23] and [24]. For training,
SePH firstly transforms the given semantic affinities of training
instances into a probability distributionP and aims to approx-
imate it in Hamming space. Specifically, SePH transforms all
pairwise Hamming distances between to-be-learnt hash codes
of the training instances into another probability distribution
Q, and then minimizes its Kullback-Leibler divergence (KL-
divergence) fromP . In previous work [27], [34], [35], the
supervised information,i.e. the semantic affinities of training
instances, is generally utilized toindependentlyweight each
pairwise distance (similarity) between hash codes. Differently,
SePH standardizes all pairwise Hamming distances into a
global probability distribution by transforming each intoa
probability and thus makes themdependenton each others. In
that way, apart from weighting pair-wise distances (similari-
ties) between hash codes as previous work, SePH can further
incorporate the correlations between distances (similarities)
to force the to-be-learnt hash codes of training instances to
better preserve the semantic affinities, as illustrated in Fig.
1, which shows the differences between previous work and
SePH in a vivid way. After learning the hash codes of training
instances, SePH further learns hash functions independently
in each view for projecting the corresponding features into
binary hash codes, which can be open for any kind of effective
predictive models. Specifically, in this paper, we respectively
utilize linear ridge regression, logistic regression and kernel
logistic regression as hash functions. As for out-of-sample
extension, given an unseen instance, the learnt hash functions
in each of its observed views can predict view-specific hash
codes. Then by deriving or estimating the corresponding out-
put probabilitiesw.r.t the predicted view-specific hash codes,
a novel probabilistic approach is further proposed to utilize
them for determining a unified hash code. Similar to [9], here
SePH employs a two-step hashing framework. The reason
why SePH adopts a two-step framework is two-fold. First
and most important, utilizing a two-step framework can make
SePH more flexible and enable it to use any kind of effective
predictive models as hash functions. Second, utilizing a two-
step framework can simplify the optimization process, since
directly learning hash functions in a one-step manner can

probably make the objective function quite complex and even
unable to be optimized. The reasonableness and effectiveness
of SePH is well demonstrated by comprehensive experiments
on diverse benchmark datasets.

We summarize the contributions of this paper as follows.

• We propose a probability-basedSemantics-Preserving
Hashing method for cross-view retrieval, which approx-
imates a probability distribution derived from given se-
mantic affinities of training data with another one derived
from the to-be-learnt hash codes in Hamming space via
minimizing their KL-divergence.

• We propose a novel probabilistic approach to determine a
unified hash code for any given unseen instance, utilizing
its predicted view-specific hash codes from different ob-
served views and the corresponding derived or estimated
output probabilities.

This paper is based on our previous work presented in [40],
but it substantially extends that work. Specifically, apartfrom
non-linear kernel logistic regression, here we also utilize linear
ridge regression and logistic regression as hash functions, so
as to show that the learning of hash functions in SePH can be
open for different predictive models. Actually, the experiments
with linear ridge regression and logistic regression also well
demonstrate the effectiveness of SePH. Particularly, for hash
functions like linear ridge regression that cannot naturally
provide output probabilities with the predicted view-specific
hash codes, here we further propose an effective and general
method to estimate the output probabilities, which are required
for determining unified hash codes. Moreover, experiments are
conducted on all benchmark datasets to validate the effective-
ness of the proposed probabilistic approach for determining
the unified hash code of an unseen instance. We also analyse
the convergence of the optimization process for SePH with
experiments, and report its off-line training costs and on-line
hashing costs on all datasets. Additionally, more details of the
experimental results, like standard errors, are also presented
here. Detailed derivations for the gradient of the objective
function of SePH are also provided in the supplementary
material due to the limited space.

We organize the remainder of this paper as follows. Section
II gives an overview of previous researches on cross-view
hashing. SectionIII presents formula details of the proposed
SePH, including off-line training and on-line hashing. Then
experiments are described in SectionIV, including settings,
results and analyses. And finally we come to conclusions in
SectionV.

II. RELATED WORK

As mentioned previously, researchers have proposed many
effective unsupervised and supervised cross-view hashing
methods in recent years.

Unsupervised cross-view hashing methods [20]–[25] gen-
erally utilize only the features of training data in different
views to exploit intra-view and inter-view correlations for
learning hash functions to project features into binary hash
codes. Songet al. [21] proposed inter-media hashing (IMH),

IEEE TRANSACTIONS ON CYBERNETICS 3

which learns linear hash functions with intra-view and inter-
view consistencies to map view-specific features into a com-
mon Hamming space. Zhenet al. [22] proposed Spectral
Multimodal Hashing (SMH) based on spectral analysis of the
correlation matrix of different views and developed an efficient
algorithm to learn parameters from the data distribution so
as to obtain binary hash codes. Dinget al. [23] proposed
Collective Matrix Factorization Hashing (CMFH) that per-
forms collective matrix factorization in different views with
latent factor model to learn unified hash codes for training
instances. Zhouet al. [24] proposed Latent Semantic Sparse
Hashing (LSSH), which respectively utilizes sparse codingfor
images and matrix factorization for texts to learn their latent
semantic features and eventually maps the learnt features to
a joint abstraction space to generate unified hash codes. Xie
et al. [25] proposed Online Cross-modal Hashing (OCMH),
which performs efficient updating of hash codes and analysis
of cross-modal correlations for online hashing by learning
shared latent codes.

Differently, supervised cross-view hashing methods [26]–
[39] can further exploit available supervised information like
semantic labels or semantic affinities of training data for gain-
ing further performance improvements. Bronsteinet al. [26]
proposed CMSSH that models the projections from features in
each view to hash codes as binary classification problems with
positive and negative examples, and utilizes boosting methods
to efficiently learn them. Kumar and Udupa [27] proposed
a principled cross-view hashing method termed CVH, which
is an extension of the single-view spectral hashing [8] in
multi-view cases. Specifically, CVH learns hash functions
to map semantically similar instances to similar hash codes
across different views, via minimizing the similarity-weighted
pairwise Hamming distances between the hash codes of train-
ing instances. Zhen and Yeung [28] proposed Co-Regularized
Hashing (CRH) to learn hash functions for multi-view data
based on a boosted co-regularization framework. In CRH, hash
functions for each bit of the hash codes are learnt by solving
DC (difference of convex functions) programs, while the learn-
ing for multiple bits is performed via a boosting procedure.
Yu et al. [32] proposed Discriminative Coupled Dictionary
Hashing (DCDH). Specifically, DCDH firstly learns a coupled
dictionary for each view with side information like category
labels to represent data from different views as the sparse
codes in a shared dictionary space, and then learns unified
hash functions for mapping them into binary hash codes.
Zhou et al. [34] proposed a spectral-based hashing method
termed KSH-CV, which removes the orthogonality constraints
on hash code bits and learns kernel hash functions under
an Adaboost framework to preserve inter-view similarities.
Zhang and Li [35] proposed SCM to take semantic labels
into consideration for the hash learning procedure for large-
scale datasets via maximizing semantic correlations. SCM can
learn orthogonal hash functions via eigenvalue decomposition
(SCM-Orth) or non-orthogonal ones via sequential learning
(SCM-Seq). Moreover, Jiang and Li [37] integrated feature
learning and hash-code learning into an end-to-end learning
framework with deep neural networks (one for each view) for
cross-view hashing.

After reviewing the previous cross-view hashing methods,
especially the supervised ones, we realize that well preserving
the semantic affinities between instances is the key to reducing
the quality loss of retrieved neighbours and achieving better
performance. Generally, in supervised cases, given semantic
affinities of training data, previous methods like [27], [34],
[35] utilize them to independently weight each pairwise dis-
tance (similarity) between to-be-learnt hash codes. Differently,
in this paper the proposed SePH further incorporates the
correlations between pairwise Hamming distances to force
the to-be-learnt hash codes to better preserve the semantic
affinities. As will be demonstrated by our experiments, SePH
is reasonable and yields superior performance.

III. PROPOSEDSEPH

Fig. 2 illustrates the framework of the proposed SePH. Like
[23] and [24], considering the semantic consistency between
views, SePH generates one unified hash code for each instance,
rather than respectively generate one different hash code for
each observed view as other previous researches [26], [27],
[34], [35]. That also allows SePH to store data with less
space costs. As shown in Fig.2, for hash learning SePH
requires the view-specific features of training instances in each
view and an affinity matrix indicating their semantic affinities.
Specifically, SePH firstly transforms the given affinity matrix
into a probability distributionP in semantic space, and learns
the semantics-preserving hash codes of training instances
via utilizing their Hamming distances for deriving another
probability distributionQ in Hamming space to approximate
P (red dotted rectangle). Then with learnt hash codes and
view-specific features of training instances, SePH learns hash
functions in each view independently for projecting features
into hash codes (green dotted rectangle). As for out-of-sample
extension, given any unseen instance, learnt hash functions
in observed views firstly predict view-specific hash codes.
Then by deriving or estimating the corresponding output
probabilitiesw.r.t the predicted view-specific hash codes, SePH
utilizes a novel probabilistic approach to merge them and
determine a unified hash code (blue dotted rectangle). For ease
of presentation, here we firstly describe SePH in the case with
only two views, and then extend it to cases with more views.

A. Problem Formulation

Suppose that the training data is made up ofn training
instances, denoted asO = {o1, o2, . . . , on} with oi being the
ith one, and we can observe two views,i.e. X andY, of the
training instances. Moreover, SePH requires the view-specific
feature matricesX ∈ R

n×dx andY ∈ R
n×dy of the training

data, which are respectively built with thedx-dimensional
feature vectors inX and thedy-dimensional feature vectors
in Y row by row. Specifically, theith row of X , denoted
as Xi,· ∈ R

dx , is the feature vector ofoi in the view X ,
and likewise theith row in Y , denoted asYi,· ∈ R

dy , is the
feature vector ofoi in the viewY. The affinity matrix of the
training data, denoted asA ∈ R

n×n, is also required by SePH
to provide supervised information. HereA is supposed to be
symmetric,i.e. ∀1 ≤ i, j ≤ n,Ai,j = Aj,i, whereAi,j ∈ [0, 1]

IEEE TRANSACTIONS ON CYBERNETICS 4

F(X) à H

Hash Functions for X

G(Y) à H

Hash Functions for Y

 FunctionsHa X

Predicted Hash Code with

Output Probabilities from X

1 0 1

0.6 0.51 0.76

1 1 1

0.71 0.82 0.58

Predicted Hash Code with

Output Probabilities from X

1 0 1

0.6 0.51 0.76

1 1 1

0.71 0.82 0.58

Predicted Hash Code with

Output Probabilities from Y

Training of SePH: 1) Learning semantics-preserving hash codes of the training data (red dotted rectangle), via

approximating the probability distribution in semantic space (P) with that in Hamming space (Q) , 2) Learning

hash functions for each view (green dotted rectangle)

Out-of-sample Extension: 1) Predicting hash codes from observed views, 2)

Determining the unified hash code with a proposed probabilistic approach

1 0.75 0.65 0.98 0.1 0.61

0.75

0.65

0.98

0.10

0.61

1 0.28 0.72 0.35 0.31

0.28 1 0.7 0.34 0.29

0.72 0.7 1 0.07 0.78

0.35 0.34 0.07 1 0.26

0.31 0.29 0.78 0.26 1

Provided Affinity Matrix of

Training Data

1 0 1

1

0

1

0

1

0 0

0 1

0 1

1 0

1 1

Learnt Semantics-Preserving Hash

Codes of Training Data (H)
1 1 1

Unified Hash Code

Merging Predicted View-

specific Hash Codes

Un

View X of Training Data

View Y of Training Data

 Y

Unseen Instance

d Affinity M

raining Da
antics-Pres

Training D

Probability Distribution in

Semantic Space (P)

Probability Distribution in

Hamming Space (Q)

Fig. 2. Framework of the proposed SePH, illustrated with two-view toy data. For training, SePH firstly learns semantics-preserving hash codes of the training
data and then learns hash functions for each view. For out-of-sample extension, SePH firstly predicts view-specific hashcodes and derive or estimate their
corresponding output probabilities, and then merges them into a unified one.

TABLE I
IMPORTANT SYMBOLS IN SEPH.

n the number of training instances
oi the ith training instance
X, Y view-specific feature matrices of training instances
dx, dy view-specific feature dimensions
A the given semantic affinity matrix of training instances
H to-be-learnt binary hash code matrix of training instances
Ĥ relaxedH, real-valued hash code matrix
dc hash code length
pi,j probability of observing the similarity betweenoi and

oj in semantic space
qi,j probability of observing the similarity betweenoi and

oj in Hamming space
Xi,·, Yi,·,
Hi,·, Ĥi,·

the ith row of each matrix, corresponding tooi

h(k) the kth column ofH, corresponding to thekth bit
x, y view-specific feature vectors of an unseen instance
cX , cY predicted view-specific hash codes of an unseen instance
c unified hash code of an unseen instance

indicates the semantic affinity betweenoi and oj . Generally,
we can deriveA from manual scoring, or estimate it from
correlations between semantic labels of the training instances,
like cosine similarities. WithA, semantics-preserving hash
codes of the training instances can be learnt by SePH, which
form a hash code matrixH ∈ {−1, 1}n×dc row by row.
Specifically, theith row in H , denoted asHi,· ∈ {−1, 1}dc,
is thedc-bit hash code ofoi. Note that for model simplicity,
here we utilize{−1, 1} to represent binary hash codes, and
they can be directly mapped into{0, 1}. Table I summarizes
the important symbols in this paper, which will be frequently
used in the later description of SePH.

B. Semantics-Preserving Hashing

For preserving semantic affinities, ifoi and oj are se-
mantically similar, their corresponding hash codes should

also be similar, and vice versa. As mentioned before, unlike
previous related researches that utilize the given semantic
affinities for independentlyweighting each pairwise distance
(similarity) between hash codes, SePH can further incorporate
the correlations between distances (similarities) to makethe
semantic affinities of training instances be better preserved by
their to-be-learnt hash codes. Specifically, as illustrated in Fig.
2, in SePH the given semantic affinities are firstly transformed
into a probability distributionP , and then another probability
distribution Q is derived from all the pairwise Hamming
distances between to-be-learnt hash codes to approximateP
in Hamming space. In that way, by transforming each pairwise
Hamming distance into a probability, SePH standardizes them
and makes themdependenton each other, and thus correlations
between Hamming distances are incorporated.

To derive the probability distributionP in semantic space,
we definepi,j as the probability of observing the semantic sim-
ilarity betweenoi andoj among all pairs of training instances.
Assuming thatpi,j is proportional toAi,j , i.e. the correspond-
ing semantic affinity, we can derivepi,j as the following
formula, which guarantees that

∑n
i=1

∑n
j=1,j 6=i pi,j = 1.

pi,j =
Ai,j

∑n
i=1

∑n
j=1,j 6=i Ai,j

(1)

To derive the probability distributionQ in Hamming space,
we defineqi,j as the probability of observing the similarity
between oi and oj in Hamming space. Following t-SNE
[41], a Student t-distribution with one degree of freedom is
utilized for transforming each pairwise Hamming distance into
a probability, as formulated as follows.

qi,j =
(1 + h(Hi,·, Hj,·))−1

∑n
k=1

∑n
m=1,m 6=k(1 + h(Hk,·, Hm,·))−1

(2)

whereh(·, ·) denotes the Hamming distance between two hash
codes. Considering that∀1 ≤ i ≤ n,Hi,· ∈ {−1, 1}dc, for any
two binary hash codes we can derive their Hamming distance

IEEE TRANSACTIONS ON CYBERNETICS 5

from their corresponding squared Euclidean distance, as shown
in formula (3).

h(Hi,·, Hj,·) =
1

4
‖Hi,· −Hj,·‖

2
2 (3)

By substituting formula (3) into formula (2), we can rewrite
qi,j as follows to make it more tractable for optimization.

qi,j =
(1 + 1

4‖Hi,· −Hj,·‖22)
−1

∑n
k=1

∑n
m=1,m 6=k(1 +

1
4‖Hk,· −Hm,·‖22)

−1
(4)

As mentioned previously, SePH aims to learn an optimal
binary H that can enableQ to well approximateP , so as
to preserve the semantic affinities modelled byP . Here we
take the Kullback-Leibler divergence to measure the difference
betweenQ andP , as defined as follows.

DKL(P‖Q) =

n
∑

i=1

n
∑

j=1,j 6=i

pi,j log
pi,j

qi,j
(5)

Then by minimizingDKL(P‖Q), SePH can learn the optimal
binary hash code matrixH of the training data. And thus the
objective function of SePH is formulated as follows.

Ψ0 = min
H∈{−1,1}n×dc

n
∑

i=1

n
∑

j=1,j 6=i

pi,j log
pi,j

qi,j
(6)

wherepi,j is defined as formula (1) and qi,j as formula (4).
The objective function above, however, is NP-hard for directly
deriving the optimal binaryH . To make it more tractable, like
previous work, hereH is relaxed to be a real-valued matrix
Ĥ . Moreover, as shown in the following formula, to make the
learnt Ĥ near to the optimal binaryH , we further introduce
a quantization loss term in the objective function to lead the
entries ofĤ to be near to−1 or 1.

Ψ = min
Ĥ∈Rn×dc

n
∑

i=1

n
∑

j=1,j 6=i

pi,j log
pi,j

qi,j
+

α

C
‖|Ĥ| − I‖22

s.t. qi,j =
(1 + 1

4‖Ĥi,· − Ĥj,·‖22)
−1

∑n
k=1

∑n
m=1,m 6=k(1 +

1
4‖Ĥk,· − Ĥm,·‖22)

−1

(7)

whereI is a matrix with each entry being 1, and‖|Ĥ | − I‖22
measures the quantization loss from real-valuedĤ to binary
H . Additionally, α is a model parameter for weighting the
quantization loss term, andC = n×dc is a normalizing factor
to make the parameter tuning forα less affected by the hash
code length and the training set size.

C. Solution and Implementation Issues

The objective functionΨ of SePH is an unconstrained
non-convex optimization problem. Actually, its non-convexity
comes from both the KL-divergence term and the quantization
loss term. And thus for optimizingΨ, we can only derive
a locally optimal Ĥ . Compared to other hashing methods
that utilize a convex objective function, it may seem to be a
weakness of the proposed SePH. However, as our experiments
will demonstrate, the performance of SePH is fortunately not
sensitive to the local optimality of its objective function. For

optimizing Ĥ , various effective gradient descent methods can
be utilized. Specifically, for theith row of Ĥ , i.e. Ĥi,·, we can
derive its corresponding gradient as follows.

∂Ψ

∂Ĥi,·

=

n
∑

j=1,j 6=i

(pi,j − qi,j)(1 +
1

4
‖Ĥi,· − Ĥj,·‖

2
2)

−1(Ĥi,· − Ĥj,·)

+
2α

C
(|Ĥi,·| − 1

T)⊙ σ(Ĥi,·)

(8)
where1 is a dc-dimensional column vector with each entry
being 1,⊙ denotes entry-wise multiplication between vectors,
and σ(Ĥi,·) is a dc-dimensional row vector made up of the

signs of entries inĤi,·. Actually, hereσ(Ĥi,·) =
∂|Ĥi,·|
∂Ĥi,·

,
and the gradientsw.r.t non-differentiable zero entries are
simply set as0. For detailed derivations, one can refer to the
supplementary material.

By calculating ∂Ψ
∂Ĥi,·

for all 1 ≤ i ≤ n, effective gradient

descent methods can be applied to derive an optimalĤ .
Then by getting the signs of entries in̂H , we can derive an
optimized binary hash code matrixH , i.e.H = sign(Ĥ), with
the signs of zero entries in̂H set as 1. For gradient descent
methods, the time complexity of derivingH is O(Tn2dc),
whereT is the number of needed iterations.

D. Learning Hash Functions

With the learnt hash codes of training instances,i.e. H ,
SePH will independently learn hash functions for each view
to perform out-of-sample extension. Actually, for SePH, any
effective predictive models can be utilized as hash functions.
Hence linear ridge regression, support vector machine (SVM)
or its variants like bagging-based SVM [42], logistic regres-
sion, kernel logistic regression, and many other models canbe
utilized.

In this paper, we respectively utilize linear ridge regression,
logistic regression and kernel logistic regression, to learn the
projections from features to hash codes for each view. Linear
ridge regression is widely-used in many previous researches
on hashing, while for logistic regression and kernel logistic
regression, they are employed because both can naturally
provide output probabilitiesw.r.t the predicted hashing results,
which, as will be explained later, are required for determining
the unified hash code of an unseen instance. Note that here
hash functions are learnt independently in different views. And
thus for ease of presentation, in the following, only the hash
function learning process in the viewX is described, which
can be directly extended to other views.

Like [26] and [23], here we learn hash functions bit by bit.
Actually, considering that bits in the hash codes may not be
independent of each other in cases, more sophisticated learning
methods that incorporate the correlations between bits canalso
be investigated to obtain performance improvements, which
is left to our future work. Denote the column corresponding
to the kth bit in the learnt hash code matrixH as h(k) ∈
{−1, 1}n, i.e. thekth column ofH . For linear ridge regression,
its objective function to project features,i.e. X , into h(k), is
given as follows.

F (k) = min
u(k)

‖h(k) −Xu(k)‖22 + µ‖u(k)‖22 (9)

IEEE TRANSACTIONS ON CYBERNETICS 6

whereu(k) ∈ R
dx is the to-be-learnt weighting vector, and

µ is a weighting parameter for the regularizer. By setting
∂F(k)

∂u(k) = 0, the optimalu(k) can be directly derived as

u(k) =
(

XTX + µE
)−1

XTh(k), whereE ∈ R
dx×dx is an

identity matrix. Here the time complexity for derivingu(k) is
O(2nd2x + d3x). Then by learningu(k) for all 1 ≤ k ≤ dc, we
can derive{u(k)}dc

k=1 as the hash function set based on linear
ridge regression for the viewX . Here SePH with linear ridge
regression as hash functions is denoted as SePHlinear .

Regarding logistic regression, its objective function is for-
mulated as follows.

G(k) = min
w(k)

n
∑

i=1

log
(

1 + e−h
(k)
i

Xi,·w
(k)
)

+ η‖w(k)‖22 (10)

whereh(k)
i ∈ {−1, 1} is the ith entry in h(k), w(k) ∈ R

dx

is the to-be-learnt weighting vector, andη is a parameter
for weighting the regularizer. HereG(k) can be optimized
with gradient descent methods, and the corresponding time
complexity will beO(T

(k)
1 ndx) with T

(k)
1 being the number

of needed iterations. By optimizingG(k) for all 1 ≤ k ≤ dc,
the derived{w(k)}dc

k=1 will work as the hash function set based
on logistic regression for the viewX . Here SePH with logistic
regression as hash functions is denoted as SePHlr.

Furthermore, we introduce kernel logistic regression as hash
functions, expecting to utilize kernel tricks to better handle
non-linear projections from features to hash codes. Here we
map each feature vectorXi,· to the Reproducing Kernel
Hilbert Space (RKHS) asφ(Xi,·), and utilize them to build
a kernel feature matrixΦ row by row. In RKHS, for kernel
featuresφ(Xi,·) andφ(Xj,·), we can efficiently calculate their
inner productφ(Xi,·)φT (Xj,·) as κ(Xi,·, Xj,·) with kernel
tricks, whereκ(·, ·) denotes a kernel function. Then similarly,
with kernel features, the objective function of kernel logistic
regression corresponding to thekth bit can be formulated as
follows.

H(k) = min
w(k)

n
∑

i=1

log
(

1 + e−h
(k)
i φ(Xi,·)w

(k)
)

+ λ‖w(k)‖22

(11)
whereλ is a parameter for weighting the regularizer. Following
kernel CCA [43], here w(k) is required to be in the span
of the training kernel features,i.e. w(k) = ΦTv(k) where
v(k) is the to-be-learnt spanning weights. Thenφ(Xi,·)w(k)

in formula (11) is rewritten as(φ(Xi,·)ΦT)v(k), where we
can calculateφ(Xi,·)ΦT as κ(Xi,·, X). It can be observed
that, for kernel logistic regression, its costs for training and
predicting will be proportional ton, i.e. the training set size,
which is unsuitable for large training sets. As pointed out by
Hu et al. [44], generally the training kernel features would
be redundant for spanningw(k). And thus here we propose
to sample kernel features fromΦ via random sampling or
other alternative methods like k-means to build a much smaller
one for spanningw(k), which is denoted aŝΦ. Suppose that
the sampling size iss(s ≪ n). Then we need to learn as-
dimensional weighting vector̂v(k) for spanningw(k) with Φ̂,

i.e. w(k) = Φ̂T v̂(k). And formula (11) can be rewritten as
follows.

H(k) = min
v̂(k)

n
∑

i=1

log
(

1 + e−h
(k)
i (φ(Xi,·)Φ̂

T)v̂(k)
)

+ λ‖Φ̂T v̂(k)‖22

(12)

In this case, for kernel logistic regression, its costs for training
and predicting will be proportional to the sampling sizes
rather than the training set sizen. Then its training can become
more scalable and its predicting can be more efficient. Here
H(k) can also be optimized with gradient descent methods, and
the corresponding time complexity will beO(K + T

(k)
2 ns),

whereT (k)
2 is the number of needed iterations andK is the

costs of calculatingΦΦ̂T and Φ̂Φ̂T . By optimizingH(k) for
all 1 ≤ k ≤ dc, we can derive{Φ̂, v̂(1), v̂(2), . . . , v̂(dc)}
as the non-linear hash function set based on kernel logistic
regression for the viewX . It should be noticed that here all
v̂(k)(1 ≤ k ≤ dc) share an identical̂Φ, which can further
reduce the training and predicting costs for alldc kernel
logistic regressions. For example, the total training costs for
thedc kernel logistic regressions will beO(K+

∑dc

k=1 T
(k)
2 ns)

rather thanO(Kdc +
∑dc

k=1 T
(k)
2 ns). Here SePH with kernel

logistic regression as hash functions is denoted as SePHklr .

E. Generating Hash Codes

With learnt hash functions, the view-specific hash codes of
any unseen instanceou can be predicted. Taking the viewX
as an example, assume that the feature vector ofou is x, and
its predicted view-specific hash code is denoted ascX , with
the kth bit denoted ascXk . Then we can derive thatcXk =
sign(xu(k)) for linear ridge regression,cXk = sign

(

xw(k)
)

for logistic regression, andcXk = sign
(

(φ(x)Φ̂T)v̂(k)
)

for

kernel logistic regression, withsign(·) denoting the sign of an
expression. By predictingcXk for 1 ≤ k ≤ dc, we can get the
predicted view-specific hash codecX . The time complexity for
linear ridge regression, logistic regression and kernel logistic
regression to predictcX are respectivelyO(dxdc), O(dxdc)
andO(K ′ + sdc), whereK ′ denotes the costs of calculating
φ(x)Φ̂ in kernel logistic regression.

Given an unseen instanceou, if only one view is observed,
its predicted view-specific hash code can be directly utilized as
its unified hash code. Meanwhile, if both views are observed,
we need to determine its unified hash code by merging
predicted view-specific hash codes from both views, especially
in cases where the predicted view-specific hash codes conflict,
as illustrated in Fig.2. To tackle that, we propose a novel
probabilistic approach in this paper for determining the value
of each bit in the unified hash code ofou. As mentioned
previously, the proposed combining approach requires the
output probabilitiesw.r.t each bit of the predicted view-specific
hash codes,i.e. p(cZk = b|z) whereZ ∈ {X ,Y}, 1 ≤ k ≤ dc,
b ∈ {−1, 1} andz ∈ {x,y}.

Taking the viewX as an example, here we introduce an
effective method to estimatep(cZk = b|Z) for hash functions,
especially for linear ridge regression and similar methodsthat
cannot naturally provide output probabilities with predicted

IEEE TRANSACTIONS ON CYBERNETICS 7

results. Inspired by Gaussian Mixture Model (GMM) [45],
for linear ridge regression and similar methods, to estimate
p(cXk = −1|x) and p(cXk = 1|x), we assume that the corre-
sponding original predicted result (i.e. xu(k) for linear ridge
regression) comes from either of two Gaussian distributions
that respectively correspond to−1 and 1. The two Gaussian
distributions are modelled as follows. During training, given
h(k) ∈ {−1, 1}n, the training instances are separated into
two sets, one consisting of training instances with thekth bit
of their corresponding hash codes being−1 and the other
consisting of those with thekth bit being 1. Suppose that
features of training instances in the first set forms a feature
matrix Xn, and those in the second set forms another feature
matrix Xp. With the learnt weighting vectoru(k), we can
derive Xnu

(k) and Xpu
(k), and both are assumed to be

respectively sampled from the two to-be-modelled Gaussian
distributions corresponding to−1 and 1. Then we take the
mean valueµn and the standard deviationσn of Xnu

(k) to
model the Gaussian distribution corresponding to−1, and
similarly take the mean valueµp and the standard deviationσp

of Xpu
(k) to model the Gaussian distribution corresponding

to 1. Similar to GMM, with both Gaussian distributions, the
output probabilitiesp(cXk = −1|x) andp(cXk = 1|x) for any
x can be estimated as follows.

gn = 1
σn

√
2π

exp
(

− (xu(k)−µn)
2

2σ2
n

)

gp = 1
σp

√
2π

exp
(

−
(xu(k)−µp)

2

2σ2
p

)

p(cXk = −1|x) = gn
gn+gp

p(cXk = 1|x) =
gp

gn+gp

(13)

As for logistic regression and kernel logistic regression,the
required output probabilities are naturally provided, andcan
be respectively derived as the following formulas, withb ∈
{−1, 1}.

p(cXk = b|x) =
(

1 + e−bxw(k)
)−1

(14)

p(cXk = b|x) =
(

1 + e−b(φ(x)Φ̂T)v̂(k)
)−1

(15)

With output probabilities derived or estimated, the predicted
view-specific hash codes can be merged into a unified one.
Suppose that for an unseen instanceou, its feature vectors
in X and Y are respectively denoted asx and y, and c ∈
{−1, 1}dc is its to-be-determined unified hash code, with the
kth bit denoted asck. Then bit by bit,ck is determined as the
following formula.

ck = sign
(

p(ck = 1|x,y)− p(ck = −1|x,y)
)

(16)

Assuming thatX andY are conditionally independent onck,
we can derive the following formula with Bayes’ theorem.

ck = sign
(

p(x|ck = 1)p(y|ck = 1)p(ck = 1)

−p(x|ck = −1)p(y|ck = −1)p(ck = −1)
) (17)

Moreover, with the Bayes’ theorem, we can further transform
the formula above into the following one.

ck = sign
(p(ck = 1|x)p(ck = 1|y)

p(ck = 1)

−
p(ck = −1|x)p(ck = −1|y)

p(ck = −1)

)

(18)

where p(ck = b|z) = p(cZk = b|z) with b ∈ {−1, 1}, z ∈
{x,y},Z ∈ {X ,Y}, and all these probabilities can be derived
with formula (13) / (14) / (15) or using other more sophisti-
cated estimation methods. Herep(ck = −1) and p(ck = 1)
are the priori probabilities for thekth bit being−1 or 1. In
our previous work [40], both priori probabilities are simply
set to be equal,i.e. p(ck = 1) = p(ck = −1). However, the
assumption about the balance between−1 and1 in [40] can
sometimes be unreasonable, especially in some imbalanced
datasets. Therefore, here we propose thatp(ck = −1) and
p(ck = 1) should be dataset-dependent, and statistics-based
or learning-based methods are expected to be utilized for
estimating them. Specifically, in this paper,p(ck = −1) and
p(ck = 1) are respectively estimated as the relative frequencies

of −1 and1 in h(k), i.e. p(ck = −1) =
∑n

i=1 Cond(h
(k)
i

=−1)

n

and p(ck = 1) =
∑n

i=1 Cond(h
(k)
i

=1)

n
where Cond(·) is a

condition function returning1 if the condition holds and0
otherwise. Actually, our experiments show that such a dataset-
dependent estimation method can help SePH to obtain fur-
ther performance improvements, compared to simply setting
p(ck = 1) = p(ck = −1). We will further investigate other
more sophisticated estimation methods in our future work.

For the unseen instanceou, with all ck(1 ≤ k ≤ dc)
determined, SePH will generate its unified hash codec. Note
that alternatively one can utilize multi-view learning methods
like [46], [47] to learn hash functions for each combination of
views and then directly generate unified hash codes without
combining, but that can probably lead to much higher learning
costs due to the “exponential explosion” of view combinations.

F. Extensions

Actually, for cases with more than two views, we can per-
form training for SePH in nearly the same way, except that we
need to learn hash functions for more views. Meanwhile, for
out-of-sample extension, after predicting view-specific hash
codes in the same manner, it is slightly different to merge
them into a unified one. Specifically, we extend formula (18)
as follows for cases of more views with similar derivations.

ck = sign

(

∏m
i=1 p(ck = 1|zi)

(p(ck = 1))
m−1 −

∏m
i=1 p(ck = −1|zi)

(p(ck = −1))
m−1

)

(19)
wherem ≥ 1 indicates how many views are observed, and
zi denotes the feature vector in theith view. Here all needed
probabilities can be derived or estimated in the same way as
those in formula (18).

IV. EXPERIMENTS

A. Experimental Settings

In this paper, we conduct experiments on three benchmark
datasets to evaluate the proposed SePH. Specifically, the
benchmark datasets include Wiki [48], MIRFlickr [49] and
NUS-WIDE [50], and they are all with an image view and a
text view. TableII gives some statistics of them.

Wiki is made up of 2,866 instances collected from
Wikipedia. For each instance, a 128-D Bag-of-Visual-Words

IEEE TRANSACTIONS ON CYBERNETICS 8

TABLE II
STATISTICS OF THREE BENCHMARK DATASETS.

Wiki MIRFlickr NUS-WIDE

Dataset Size 2,866 16,738 186,577
Retrieval Set 2,173 15,902 184,711
Training Set 2,173 5,000 5,000
Query Set 693 836 1,866
Nr. of Labels 10 24 10

SIFT feature vector is provided to describe its image view and
a 10-D topic vector is given to describe its text view. Each
instance is mannually annotated with one semantic label from
10 candidates. Following [23], [24], we take 25% of Wiki to
form the query set, and the rest works as the retrieval set.

MIRFlickr originally contains 25,000 instances collected
from Flickr. Each instance consists of an image and its
associated textual tags, and is manually annotated with one
or more of 24 provided semantic labels. To avoid noises,
here we remove textual tags that appear less than 20 times
in the dataset, and then delete instances without textual tags
or semantic labels. After pretreatment, we get 16,738 instances
left. For each instance, a 150-D edge histogram is provided to
describe its image view, while its text view is represented as
a 500-D feature vector derived from PCA [51] on its binary
tagging vectorw.r.t the remaining textual tags. We take 5%
of MIRFlickr to form the query set, and the rest works as the
retrieval set.

NUS-WIDE is a large dataset originally containing 269,648
instances. Like MIRFlickr, each instance in NUS-WIDE con-
sists of an image and its associated textual tags, and is
manually annotated with one or more semantic labels from 81
candidates. Following [23], [24], here we only keep the top 10
most frequent labels and the corresponding 186,577 instances
annotated with them. For each instance, a 500-D Bag-of-
Visual-Words SIFT feature vector is provided to describe its
image view, while its text view is represented as a binary
tagging vectorw.r.t the top 1,000 most frequent tags. We also
take 1% of NUS-WIDE to form the query set, and the rest
works as the retrieval set.

Considering the small size of Wiki, we follow [23] and take
its retrieval set as the training set. As for the large MIRFlickr
and NUS-WIDE, to simulate real-world cases where only
the supervised information of a small fraction of the data is
provided, for either dataset we just sample 5,000 instances
from the corresponding retrieval set to form the training set.
It should be noticed that, the learnt hash codes of training
instances in the training process of SePH will be discarded
after hash functions are learnt, and then SePH generates hash
codes for all instances in the dataset with the learnt hash
functions. Moreover, although each bit in the hash codes
generated by SePH is in{−1, 1}, in our experiments we map
them into {0, 1} and compactly store them bit by bit. Like
most previous hashing methods, to perform ANN retrieval for
any query hash codeHq, its Hamming distance to anyith
hash codeHi in the retrieval set, denoted ash(Hq, Hi), is
calculated ash(Hq, Hi) = bit count(Hq ⊕ Hi), where⊕
denotes XOR operation between the bits ofHq andHi, and

bit count counts the number of1 in the binary XOR result.
Then we rank all instances in the retrieval set based on their
corresponding Hamming distances in an ascending order and
take the top ones as the ANNs for the query instance.

In our experiments, the annotated semantic labels of any
training instance are represented as a binary labelling vector.
Then we derive the affinity matrix of each dataset,i.e. A in
formula (1), as the cosine similarities between labelling vectors
of training instances. The only model parameterα in the
objective function of SePH (i.e. formula (7)) is empirically set
as0.01 for all datasets. As for the learning of hash functions
in each view,µ in formula (9) for linear ridge regression
in SePHlinear , η in formula (10) for logistic regression in
SePHlr, andλ in formula (12) for kernel logistic regression
in SePHklr , are automatically set via 5-fold cross-validation on
the corresponding features and learnt hash codes of training in-
stances. Particularly, for kernel logistic regression in SePHklr ,
a RBF kernel is utilized, with its parameterσ2 set as the mean
squared Euclidean distance between feature vectors of training
instances. Additionally, on all datasets the sampling sizefor
Φ̂ in formula (12) is empirically set as 500. We perform both
random sampling and k-means sampling for SePHklr , which
are denoted as SePHklr+rnd and SePHklr+km respectively. To
encourage further developments, the codes of SePH will be
published in a near future.

We employ the supervised CMSSH [26], CVH [27], KSH-
CV [34], SCM-Orth and SCM-Seq [35], and the unsupervised
IMH [21], LSSH [24], CMFH [23] as baselines to compare
with the proposed SePH. Note that for IMH, we calculate its
required affinity matrices with the provided semantic labels of
training instances, and thus it is actually supervised here. To
make fair comparisons, we carefully perform parameter tuning
for baselines, and report their best performance in this paper.
We perform 10 runs for SePH and any compared baseline with
a non-convex objective function with different initial values,
and report the average performance.

Following previous researches, we utilizemean average
precision(mAP) to measure the retrieval performance of all
cross-view hashing methods. A highermAP value means
better retrieval performance. Here the definition ofmAP is
given as follows.

mAP =
1

|Q|

|Q|
∑

i=1

1

mi

mi
∑

j=1

precision(Ri,j) (20)

whereQ is the query set with its size being|Q|, and for theith
query, 1

mi

∑mi

j=1 precision(Ri,j) denotes itsaverage precision
(AP), mi denotes the number of its ground-truth relevant
instances in the retrieval set,Ri,j is a subset of its ranked
retrieval result consisting of instances from the top one tothe
jth ground-truth relevant one, andprecision(Ri,j) measures
the precision value inRi,j . Like [23], [24], an instance is
ground-truth relevant to a query if they share at least one
semantic label.

B. Experimental Results

The cross-view retrieval performance of the proposed SePH
and the compared baselines on all datasets is reported in

IEEE TRANSACTIONS ON CYBERNETICS 9

TABLE III
CROSS-VIEW RETRIEVAL PERFORMANCE OF THE PROPOSEDSEPH (i.e. SEPHlinear , SEPHlr, SEPHklr+rnd AND SEPHklr+km) AND COMPARED

BASELINES ON ALL BENCHMARK DATASETS WITH DIFFERENT HASH CODE LENGTHS, IN TERMS OFmAP . FOR SEPH,THE STANDARD ERRORS OFmAP
OVER 10 RUNS ARE ALSO REPORTED.

Wiki MIRFlickr NUS-WIDE
16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

Image
Query

v.s.
Text
Database

CMSSH [26] 0.1877 0.1771 0.1646 0.1552 0.5728 0.5743 0.5706 0.5706 0.4063 0.3927 0.3939 0.3739
CVH [27] 0.1257 0.1212 0.1215 0.1171 0.6067 0.6177 0.6157 0.6074 0.3687 0.4182 0.4602 0.4466
IMH [21] 0.1573 0.1575 0.1568 0.1651 0.6016 0.6120 0.6070 0.5982 0.4187 0.3975 0.3778 0.3668
LSSH [24] 0.2141 0.2216 0.2218 0.2211 0.5784 0.5804 0.5797 0.5816 0.3900 0.3924 0.3962 0.3966
CMFH [23] 0.2132 0.2259 0.2362 0.2419 0.5861 0.5835 0.5844 0.5849 0.4267 0.4229 0.4207 0.4182
KSH-CV [34] 0.1965 0.1839 0.1701 0.1662 0.5793 0.5767 0.5732 0.5744 0.4229 0.4162 0.4026 0.3877
SCM-Orth [35] 0.1598 0.1460 0.1383 0.1131 0.5854 0.5751 0.5704 0.5649 0.3787 0.3668 0.3593 0.3520
SCM-Seq [35] 0.2210 0.2337 0.2442 0.2596 0.6237 0.6343 0.6448 0.6489 0.4842 0.4941 0.4947 0.4965

SePHlinear
0.2479 0.2589 0.2788 0.2833 0.6672 0.6724 0.6757 0.6782 0.5465 0.5603 0.5660 0.5694
±0.0023 ±0.0027 ±0.0017 ±0.0016 ±0.0009 ±0.0005 ±0.0006 ±0.0003 ±0.0023 ±0.0009 ±0.0007 ±0.0005

SePHlr
0.2375 0.2531 0.2619 0.2686 0.6640 0.6699 0.6736 0.6757 0.5393 0.5503 0.5562 0.5601
±0.0030 ±0.0024 ±0.0016 ±0.0013 ±0.0011 ±0.0004 ±0.0003 ±0.0004 ±0.0013 ±0.0016 ±0.0006 ±0.0005

SePHklr+rnd
0.2835 0.3003 0.3099 0.3204 0.6727 0.6792 0.6833 0.6860 0.5450 0.5532 0.5605 0.5650
±0.0028 ±0.0022 ±0.0024 ±0.0014 ±0.0007 ±0.0005 ±0.0007 ±0.0006 ±0.0011 ±0.0012 ±0.0006 ±0.0008

SePHklr+km
0.2838 0.3009 0.3074 0.3207 0.6733 0.6793 0.6829 0.6864 0.5477 0.5568 0.5640 0.5666
±0.0026 ±0.0023 ±0.0019 ±0.0015 ±0.0008 ±0.0007 ±0.0005 ±0.0005 ±0.0014 ±0.0010 ±0.0008 ±0.0009

Text
Query

v.s.
Image
Database

CMSSH [26] 0.1630 0.1617 0.1539 0.1517 0.5715 0.5732 0.5699 0.5697 0.3874 0.3849 0.3704 0.3699
CVH [27] 0.1185 0.1034 0.1024 0.0990 0.6026 0.6041 0.6017 0.5972 0.3646 0.4024 0.4339 0.4255
IMH [21] 0.1463 0.1311 0.1290 0.1301 0.5895 0.6031 0.6010 0.5930 0.4053 0.3892 0.3758 0.3627
LSSH [24] 0.5031 0.5224 0.5293 0.5346 0.5898 0.5927 0.5932 0.5932 0.4286 0.4248 0.4248 0.4175
CMFH [23] 0.4884 0.5132 0.5269 0.5375 0.5937 0.5919 0.5931 0.5919 0.4627 0.4556 0.4518 0.4478
KSH-CV [34] 0.1710 0.1665 0.1696 0.1576 0.5786 0.5763 0.5728 0.5715 0.4088 0.3906 0.3869 0.3834
SCM-Orth [35] 0.1553 0.1389 0.1262 0.1096 0.5857 0.5747 0.5672 0.5604 0.3756 0.3641 0.3565 0.3523
SCM-Seq [35] 0.2134 0.2366 0.2479 0.2573 0.6133 0.6209 0.6295 0.6340 0.4536 0.4620 0.4630 0.4644

SePHlinear
0.5431 0.5619 0.5809 0.5872 0.7188 0.7285 0.7356 0.7385 0.6375 0.6532 0.6633 0.6674
±0.0042 ±0.0017 ±0.0015 ±0.0014 ±0.0013 ±0.0006 ±0.0004 ±0.0003 ±0.0022 ±0.0012 ±0.0005 ±0.0004

SePHlr
0.5531 0.5724 0.5888 0.5966 0.7176 0.7283 0.7347 0.7385 0.6291 0.6455 0.6545 0.6597
±0.0050 ±0.0025 ±0.0016 ±0.0008 ±0.0009 ±0.0006 ±0.0004 ±0.0004 ±0.0013 ±0.0007 ±0.0006 ±0.0004

SePHklr+rnd
0.6310 0.6512 0.6633 0.6692 0.7216 0.7296 0.7372 0.7408 0.6283 0.6415 0.6530 0.6584
±0.0031 ±0.0015 ±0.0015 ±0.0015 ±0.0005 ±0.0007 ±0.0006 ±0.0006 ±0.0013 ±0.0015 ±0.0008 ±0.0005

SePHklr+km
0.6310 0.6516 0.6652 0.6701 0.7247 0.7328 0.7410 0.7437 0.6378 0.6513 0.6612 0.6674
±0.0024 ±0.0018 ±0.0018 ±0.0013 ±0.0011 ±0.0011 ±0.0010 ±0.0008 ±0.0011 ±0.0012 ±0.0007 ±0.0011

Table III , including both the performance of retrieving text
with image (i.e. “Image Queryv.s. Text Database”) and that
of retrieving image with text (i.e. “Text Query v.s. Image
Database”). For the former task, the image view of instances
in the query set is utilized to generate their corresponding
query hash codes, while for the latter one, the text view is
utilized. As for any instance in the retrieval set, like CMFH
and LSSH, SePH generates one unified hash code for both
views. Moreover, considering that the objective function of
SePH is non-convex, here we also report the standard errors
w.r.t the performance of SePHlinear , SePHlr, SePHklr+rnd

and SePHklr+km over the ten runs on each dataset, so as to
investigate how different initial values of̂H can affect the
performance of SePH

From TableIII , we can get the following observations. 1)
Even with varying hash code lengths, the proposed SePH,
including SePHlinear , SePHlr, SePHklr+rnd and SePHklr+km,
significantly outperforms all compared baselines on all the
three benchmark datasets, which well demonstrates its effec-
tiveness. The superiority of SePH is attributed to both its
capability of better preserving semantic affinities in Hamming
space and the effectiveness of the learnt hash functions. 2)On
all datasets, the performance of SePH keeps increasing as the
hash code length increases, meaning that it can well utilize
longer hash codes for better preserving the semantic affinities.
Meanwhile, as also observed in [23], [34], [35], the perfor-
mance of CMSSH, KSH-CV and SCM-Orth decreases, which
may be caused by the imbalance between bits in the hash

codes learnt by singular value decomposition or eigenvalue
decomposition. 3) The standard errorsw.r.t the performance
of SePHlinear , SePHlr, SePHklr+rnd and SePHklr+km are
quite small on all datasets (less than2% of the corresponding
mAP value), meaning that the performance of SePH is not
sensitive to the local optimality of its objective function. 4)
Generally, SePHlinear and SePHlr are inferior to SePHklr+rnd

/ SePHklr+km, while on the large MIRFlickr and NUS-WIDE,
the performance of SePHlinear and that of SePHlr are quite
comparable to that of SePHklr+rnd / SePHklr+km. That, on
one hand, shows the superiority of kernel logistic regression
in modelling the non-linear projections from features to bi-
nary hash codes, and on the other hand, also reflects the
effectiveness of utilizing linear ridge regression or logistic
regression as hash functions. 5) On all datasets, it can be
seen that SePHklr+km is generally superior to SePHklr+rnd,
but the superiority is insignificant (less than2%). Therefore,
the performance of SePHklr is not sensitive to the sampling
strategy for the learning of kernel logistic regression.

Furthermore, we performpaired-sample t-test[52] for eval-
uating the significance of the improvements achieved by the
proposed SePH over the compared baselines in both cross-
view retrieval tasks on all datasets with different hash code
lengths. For each algorithm, we take the correspondingAP

(average precision) values of the query set as samples from
its AP distribution, and compare them between algorithms
for significance tests. The significance level is set as a typical
value 0.01 here. And we find that the maximalP-value in

IEEE TRANSACTIONS ON CYBERNETICS 10

16 bits 32 bits 64 bits 128 bits

0.4

0.5

0.6

0.7

0.8

0.9

1
(a)

Hash Code Length

Im
ag

e
Q

ue
ry

 v
.s

. T
ex

t D
at

ab
as

e
on

 th
e

T
ra

in
in

g
S

et
 o

f N
U

S
−

W
ID

E

CMSSH
CVH
IMH
LSSH
CMFH
KSH−CV
SCM−Orth
SCM−Seq
SePH

16 bits 32 bits 64 bits 128 bits

0.4

0.5

0.6

0.7

0.8

0.9

1
(b)

Hash Code Length

T
ex

t Q
ue

ry
 v

.s
. I

m
ag

e
D

at
ab

as
e

on
 th

e
T

ra
in

in
g

S
et

 o
f N

U
S

−
W

ID
E

CMSSH
CVH
IMH
LSSH
CMFH
KSH−CV
SCM−Orth
SCM−Seq
SePH

Fig. 3. Cross-view retrieval performance of all algorithmson the training set
of NUS-WIDE with different hash code lengths, which reflectsthe quality of
the hash codes learnt by each algorithm for a training set.

all significance tests between variants of SePH and compared
baselines is around10−7, which is far less than the significance
level 0.01, meaning that the improvements gained by SePH
over the compared baselines are statistically significant.

To get more inside details about the superiority of SePH,
we further analyse the quality of the learnt hash codes of
training instances. Specifically, on the training set of each
dataset, we utilize the corresponding learnt hash codes to
perform cross-view retrieval, repeatedly using one as a query
to retrieve nearest neighbours from the rest, and then measure
the correspondingmAP value. Since we utilize the semantic
labels of instances to define their ground-truth relevance for
calculatingmAP , the derivedmAP values can quantitatively
reflect how well the learnt hash codes can preserve the given
semantic affinities of training instances. Fig.3 illustrates the
performance of learnt hash codes by SePH in the two cross-
view retrieval tasks on the training set of the largest NUS-
WIDE, with the hash code length varying from 16 to 128.
Fig. 3 also presents the performance of baselines for com-
parison. We can observe that SePH significantly outperforms
the baselines, with the correspondingmAP being above0.9.
Actually, similar results can also be observed on Wiki and
MIRFlickr, with the correspondingmAP value of SePH being
1.0 on Wiki and above0.9 on MIRFlickr. For more details,
one can refer to the supplementary material. Therefore, it can
be seen that the hash codes learnt by SePH can well preserve
the semantic affinities of training instances. Additionally, by
comparing Fig.3 and TableIII , one can observe that the
retrieval performance of the learnt hash codes of training

0 50 100 150 200
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

Iterations

NUS−WIDE

0 50 100 150 200
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
ua

lit
y

of
 L

ea
rn

t H
as

h
C

od
es

of

 th
e

T
ra

in
in

g
S

et

Fig. 4. Variances of the objective function value and the corresponding quality
of learnt hash codes of training instances in SePH as the number of iterations
increases, on NUS-WIDE with the hash code length fixed as 16 bits.

instances is significantly better than that of the hash codes
generated by learnt hash functions. We attribute this to: 1)the
view-specific features of the three datasets are somewhat weak
and may not well describe the instance in the corresponding
view, 2) the employed predictive models,i.e. linear ridge
regression, logistic regress and kernel logistic regression, may
not be capable enough. Therefore, stronger features and more
powerful predictive models need to be further investigated.

In our experiments, we utilize the method of gradient
descent with a momentum of0.5 to optimize the objective
functionΨ (i.e. formula (7)) of SePH. Here we further conduct
experiments to analyse the convergence of the optimization
process and see how the quality of the learnt hash codes of
training instances varies with iterations. Specifically, by fixing
the hash code length as 16 bits, we perform200 iterations
of gradient descent on Wiki, MIRFlickr and NUS-WIDE to
optimizeΨ. Then for each iteration, we calculate the value of
Ψ. Meanwhile, we take the corresponding value ofĤ to derive
hash codes of the training instances, and analyse their quality
by measuring their retrieval performance on the corresponding
training set. Note that since SePH learns one unified hash
code for each training instance, the retrieval performanceof
learnt hash codes in “Image Queryv.s. Text Database” will
be identical to that in “Text Queryv.s. Image Database” on
the training set, and thus we just report one. The experimental
results on the largest NUS-WIDE is illustrated in Fig.4, and
those on Wiki, MIRFlickr are provided in the supplementary
material due to the limited space. Then we can obtain the
following observations. 1) The optimization process for SePH
can generally converge in around100 iterations, and for Wiki
and MIRFlickr it can even converge faster. 2) As the number
of iterations increases, the quality of the learnt hash codes of
training instances quickly increases and then converges.

C. Experimental Validations of the Proposed Probabilistic
Approach for Determining Unified Hash Codes

To validate the proposed probabilistic approach for de-
termining the unified hash code of an unseen instance,i.e.
formula (18) and (19), we further conduct experiments on all
datasets to see whether it can help to improve the cross-view
retrieval performance. As all datasets contain only two views,

IEEE TRANSACTIONS ON CYBERNETICS 11

TABLE IV
COMPARISONS BETWEEN THE PROPOSED PROBABILISTIC APPROACH(i.e. SEPHlinear , SEPHlr, SEPHklr+rnd AND SEPHklr+km) AND OTHER

STRATEGIES FOR DETERMINING THE UNIFIED HASH CODES OF UNSEENINSTANCES.

Wiki MIRFlickr NUS-WIDE
16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

Image
Query

v.s.
Text
Database

SePHlinear [Img] 0.1443 0.1503 0.1557 0.1574 0.6128 0.6153 0.6169 0.6184 0.4608 0.4674 0.4707 0.4743
SePHlinear [Txt] 0.2281 0.2334 0.2491 0.2518 0.6585 0.6637 0.6668 0.6688 0.5211 0.5309 0.5354 0.5408
SePHlinear [Rand] 0.1901 0.2054 0.2255 0.2336 0.6528 0.6602 0.6647 0.6679 0.5226 0.5389 0.5479 0.5552
SePHlinear [Equal] 0.2407 0.2477 0.2677 0.2710 0.6673 0.6724 0.6756 0.6779 0.5431 0.5554 0.5608 0.5660
SePHlinear 0.2479 0.2589 0.2788 0.2833 0.6672 0.6724 0.6757 0.6782 0.5465 0.5603 0.5660 0.5694
SePHlr [Img] 0.1463 0.1527 0.1574 0.1596 0.6110 0.6143 0.6163 0.6172 0.4612 0.4668 0.4707 0.4725
SePHlr [Txt] 0.2333 0.2480 0.2556 0.2618 0.6550 0.6611 0.6649 0.6671 0.5226 0.5329 0.5384 0.5428
SePHlr [Rand] 0.1959 0.2163 0.2320 0.2422 0.6484 0.6569 0.6619 0.6652 0.5254 0.5403 0.5494 0.5558
SePHlr [Equal] 0.2311 0.2454 0.2545 0.2608 0.6633 0.6693 0.6729 0.6750 0.5366 0.5463 0.5516 0.5558
SePHlr 0.2375 0.2531 0.2619 0.2686 0.6640 0.6699 0.6736 0.6757 0.5393 0.5503 0.5562 0.5601
SePHklr+rnd[Img] 0.1882 0.2018 0.2099 0.2163 0.6263 0.6311 0.6332 0.6352 0.4640 0.4705 0.4756 0.4784
SePHklr+rnd[Txt] 0.2689 0.2815 0.2900 0.2994 0.6624 0.6686 0.6725 0.6752 0.5222 0.5310 0.5375 0.5417
SePHklr+rnd[Rand] 0.2415 0.2644 0.2815 0.2953 0.6597 0.6691 0.6745 0.6782 0.5256 0.5399 0.5496 0.5560
SePHklr+rnd[Equal] 0.2801 0.2954 0.3052 0.3161 0.6723 0.6787 0.6829 0.6856 0.5428 0.5509 0.5581 0.5626
SePHklr+rnd 0.2835 0.3003 0.3099 0.3204 0.6727 0.6792 0.6833 0.6860 0.5450 0.5532 0.5605 0.5650
SePHklr+km[Img] 0.1867 0.1989 0.2070 0.2149 0.6257 0.6298 0.6323 0.6346 0.4653 0.4726 0.4780 0.4795
SePHklr+km[Txt] 0.2698 0.2825 0.2871 0.2992 0.6630 0.6689 0.6721 0.6755 0.5267 0.5364 0.5432 0.5464
SePHklr+km[Rand] 0.2406 0.2640 0.2785 0.2950 0.6600 0.6685 0.6737 0.6783 0.5287 0.5443 0.5541 0.5585
SePHklr+km[Equal] 0.2805 0.2956 0.3027 0.3160 0.6729 0.6788 0.6824 0.6859 0.5455 0.5547 0.5620 0.5644
SePHklr+km 0.2838 0.3009 0.3074 0.3207 0.6733 0.6793 0.6829 0.6864 0.5477 0.5568 0.5640 0.5666

Text
Query
v.s.

Image
Database

SePHlinear [Img] 0.2158 0.2350 0.2481 0.2568 0.6335 0.6387 0.6415 0.6435 0.4999 0.5116 0.5169 0.5199
SePHlinear [Txt] 0.5320 0.5489 0.5615 0.5667 0.7121 0.7213 0.7279 0.7304 0.6170 0.6301 0.6393 0.6457
SePHlinear [Rand] 0.4561 0.5078 0.5377 0.5553 0.6961 0.7088 0.7173 0.7216 0.6065 0.6297 0.6448 0.6531
SePHlinear [Equal] 0.5419 0.5595 0.5768 0.5828 0.7198 0.7293 0.7361 0.7390 0.6371 0.6511 0.6611 0.6669
SePHlinear 0.5431 0.5619 0.5809 0.5872 0.7188 0.7285 0.7356 0.7385 0.6375 0.6532 0.6633 0.6674
SePHlr [Img] 0.2251 0.2444 0.2572 0.2645 0.6316 0.6368 0.6401 0.6421 0.4987 0.5085 0.5141 0.5173
SePHlr [Txt] 0.5415 0.5573 0.5742 0.5808 0.7075 0.7184 0.7250 0.7286 0.6111 0.6282 0.6371 0.6426
SePHlr [Rand] 0.4604 0.5131 0.5475 0.5643 0.6907 0.7044 0.7130 0.7184 0.6034 0.6269 0.6415 0.6494
SePHlr [Equal] 0.5553 0.5731 0.5916 0.5996 0.7173 0.7282 0.7345 0.7384 0.6287 0.6452 0.6543 0.6597
SePHlr 0.5531 0.5724 0.5888 0.5966 0.7176 0.7283 0.7347 0.7385 0.6291 0.6455 0.6545 0.6597
SePHklr+rnd[Img] 0.3916 0.4325 0.4520 0.4625 0.6521 0.6582 0.6621 0.6648 0.4966 0.5066 0.5134 0.5169
SePHklr+rnd[Txt] 0.5761 0.5884 0.5989 0.6035 0.7089 0.7167 0.7237 0.7271 0.6019 0.6159 0.6260 0.6303
SePHklr+rnd[Rand] 0.5675 0.6129 0.6397 0.6505 0.7021 0.7141 0.7231 0.7281 0.5960 0.6176 0.6324 0.6404
SePHklr+rnd[Equal] 0.6302 0.6514 0.6643 0.6702 0.7215 0.7294 0.7371 0.7405 0.6267 0.6398 0.6522 0.6575
SePHklr+rnd 0.6310 0.6512 0.6633 0.6692 0.7216 0.7296 0.7372 0.7408 0.6283 0.6415 0.6530 0.6584
SePHklr+km[Img] 0.3813 0.4194 0.4422 0.4522 0.6528 0.6583 0.6633 0.6655 0.5018 0.5118 0.5178 0.5216
SePHklr+km[Txt] 0.5762 0.5882 0.5991 0.6036 0.7118 0.7199 0.7273 0.7301 0.6148 0.6287 0.6377 0.6440
SePHklr+km[Rand] 0.5637 0.6107 0.6381 0.6485 0.7044 0.7162 0.7260 0.7304 0.6060 0.6282 0.6420 0.6508
SePHklr+km[Equal] 0.6304 0.6510 0.6653 0.6709 0.7246 0.7326 0.7408 0.7435 0.6359 0.6494 0.6601 0.6661
SePHklr+km 0.6310 0.6516 0.6652 0.6701 0.7247 0.7328 0.7410 0.7437 0.6378 0.6513 0.6612 0.6674

i.e. image and text, for comparison, we introduce the following
baselines with other strategies. 1) SePH•[Img]: using the
predicted hash code from the image view as the unified one, 2)
SePH•[Txt]: using the predicted hash code from the text view
as the unified one, 3) SePH•[Rand]: randomly taking−1 or 1
for a bit when predicted values from different views conflict,
4) SePH•[Equal]: using the proposed approach but setting
p(ck = 1) = p(ck = −1) for all bits in formula (18) and (19),
which is used in our previous work [40]. Here SePH• stands
for SePHlinear , SePHlr , SePHklr+rnd or SePHklr+km. And
different combining strategies will result in different unified
hash codes for instances in the retrieval sets. The experimental
results are shown in TableIV. And we can observe that on
all datasets with different hash code lengths, 1) SePH• and
SePH•[Equal] generally outperform SePH•[Img], SePH•[Txt]
and SePH•[Rand], which well demonstrates the superiority
of the proposed probabilistic approach for determining the
unified hash codes of unseen instances, and 2) SePH• gen-
erally outperforms SePH•[Equal], which demonstrates the
reasonableness of makingp(ck = 1) and p(ck = −1)
dataset-dependent and the effectiveness of estimating them
with relative frequencies of−1 and 1 in the corresponding
bit of the learnt hash codes of training instances.

TABLE V
OFF-LINE TRAINING COSTS AND ON-LINE HASHING COSTS FOR

COMPARED HASHING METHODS THAT USE LINEAR RIDGE REGRESSION AS

HASH FUNCTIONS, IN TERMS OF SECOND.

Wiki MIRFlickr NUS-WIDE

Off-line
Training
Costs

CMSSH [26] 367.506 1017.434 2040.297
CVH [27] 0.982 5.366 18.657
IMH [21] 8.564 92.149 95.987
LSSH [24] 387.848 878.047 889.888
CMFH [23] 3.510 35.115 26.956
SCM-Orth [35] 0.015 0.078 1.264
SCM-Seq [35] 3.588 9.500 187.824
SePHlinear 47.066 198.511 202.801

On-line
Hashing
Costs

CMSSH [26] 0.015 0.109 2.262
CVH [27] 0.015 0.140 2.278
IMH [21] 0.031 0.251 3.869
LSSH [24] 18.627 112.367 1252.604
CMFH [23] 0.031 0.203 4.478
SCM-Orth [35] 0.016 0.141 2.168
SCM-Seq [35] 0.016 0.125 2.215
SePHlinear 0.031 0.265 3.432

D. Comparison of Training and Hashing Costs

Apart from theoretical analyses, here we also conduct ex-
periments to compare the off-line training costs and the on-line

IEEE TRANSACTIONS ON CYBERNETICS 12

0 0.0001 0.001 0.01 0.1 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

α

Q
ua

lit
y

of
 L

ea
rn

t H
as

h
C

od
es

of

 th
e

T
ra

in
in

g
S

et

Wiki
MIRFlickr
NUS−WIDE

(a) Effects of Model Parameterα

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

x 10
4

0.35

0.4

0.45

0.5

0.55

Training Set Size for NUS−WIDE

Im
ag

e
Q

ue
ry

v.

s.
 T

ex
t D

at
ab

as
e

SePH
linear

SePH
lr

SePH
klr+rnd

SePH
klr+km

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

x 10
4

0.4

0.45

0.5

0.55

0.6

0.65

Training Set Size for NUS−WIDE

T
ex

t Q
ue

ry

v.
s.

 Im
ag

e
D

at
ab

as
e

SePH
linear

SePH
lr

SePH
klr+rnd

SePH
klr+km

(b) Effects of Training Set Size

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.5

0.51

0.52

0.53

0.54

0.55

Sampling Size for NUS−WIDE

Im
ag

e
Q

ue
ry

v.

s.
 T

ex
t D

at
ab

as
e

SePH
klr+rnd

SePH
klr+km

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.54

0.56

0.58

0.6

0.62

0.64

Sampling Size for NUS−WIDE

T
ex

t Q
ue

ry

v.
s.

 Im
ag

e
D

at
ab

as
e

SePH
klr+rnd

SePH
klr+km

(c) Effects of Sampling Size

Fig. 5. Analyses on affecting factors. Sub-figure5a illustrates the effects of the only model parameterα on the quality of the learnt hash codes of the training
set in each dataset. Sub-figure5b and5c respectively illustrate the effects of the training set size on the performance of SePH and the effects of the sampling
size for learning kernel logistic regression (i.e. hash functions) on the performance of SePHklr . Both are conducted on the largest NUS-WIDE with the hash
code length fixed as 16 bits.

hashing costs of the proposed SePH with those of baselines.
Considering that most baselines utilize linear ridge regression
as hash functions, here we only take SePHlinear , CMSSH
[26], CVH [27], IMH [21], LSSH [24], CMFH [23], SCM-
Orth and SCM-Seq [35] for comparison. Specifically, by fixing
the hash code length as 128 bits to make the comparisons
more significant, we perform each compared hashing method
on Wiki, MIRFlickr and NUS-WIDE, and then measure its
time costs for training and generating hash codes for all
instances in each dataset. The experiments are conducted ona
server with 2 Intel Xeon E5645 CPUs and 48GB RAM, with
all compared methods run on Matlab 2014a. For simplicity,
here we perform 100 iterations for optimizing the objective
function of SePH on each dataset, which can well guarantee
convergence. Experimental results are reported in TableV.
Note that for SePHlinear , the training costs include those
of learning the hash codes of training instances and those
of learning view-specific hash functions. It can be seen that
for off-line training, SePHlinear generally costs more time
than most baselines, but still costs significantly less thanthe
boosting based CMSSH and the sparse coding based LSSH.
As for on-line hashing, SePHlinear costs slightly more time
than most baselines, as it needs extra time to estimate the
output probabilities. Meanwhile, its on-line hashing costs are
still much lower than those of LSSH, which generally needs
to perform sparse coding for view-specific features. Actually,
on average SePHlinear costs less than 0.1 millisecond for
generating the hash code of an instance, which would generally
be acceptable in real-world applications.

E. Effects of Model Parameters

In previous experiments, for training SePH, the only model
parameterα in its objective function (i.e. formula (7)) is
empirically set as0.01. Here we further conduct experiments
to analyse its effects. Actually, the effects ofα on SePH come
from its effects on the quality of the learnt hash codes of the
training set. And thus in our experiments, by fixing the hash
code length as 16 bits on each dataset and using identical
initial values forĤ , we varyα in {0, 10−4, 10−3, . . . , 1} to

learn the hash codes of the corresponding training set. For each
setting ofα, the quality of learnt hash codes is measured with
their cross-view retrieval performance on the training set. Like
the experiments of converge analyses, considering that the
retrieval performance of learnt hash codes on a training setin
the two cross-view retrieval tasks would be equal, here we only
report one, as illustrated in Fig.5a. It can be observed that as
α increases from0 to 1, the quality of the learnt hash codes of
the training sets in MIRFlickr and NUS-WIDE firstly increases
and then decreases, while thatw.r.t Wiki keeps unchanged with
an optimalmAP value of 1.0. The reasonable experimental
results show that an appropriate positiveα can make the learnt
real-valued hash code matrix̂H close to the optimal binary
oneH via reducing the quantization loss, while a largeα can
lead the KL-divergence term to be less optimized and thus
disable the learnt hash codes to well preserve the semantic
affinities. It should also be noticed that the empirical value
0.01 is near to the optimal settings forα on all datasets and
it consistently yields superior performance thanα = 0.

F. Effects of Training Set Size

To analyse how the training set size affects the performance
of SePH, by fixing the hash code length as 16 bits, we increase
the training set size of each dataset from100 to 20, 000
(2, 000 for Wiki and 14, 000 for MIRFlickr), and measure the
corresponding cross-view retrieval performance of SePH on
the query set for each size. The experimental results on the
largest NUS-WIDE are illustrated in Fig.5b. It can be seen
that as the training set size increases, the performance of SePH,
i.e.SePHlinear , SePHlr, SePHklr+rnd and SePHklr+km, keeps
increasing and finally tends to converge. Actually, on NUS-
WIDE, when the training set size increases to around3, 000,
the performance of SePH begins to converge. Considering that
a training set size of3000 is less than2% of the retrieval set
size, the experimental results well demonstrate that SePH is
capable of exploiting the limited supervised information of a
dataset. And thus it can be applicable for large-scale datasets,
since SePH can be well trained with only the supervised
information of a small fraction. Similar experimental results

IEEE TRANSACTIONS ON CYBERNETICS 13

can also be observed on Wiki and MIRFlickr, as provided in
the supplementary material.

G. Effects of Sampling Size for Kernel Logistic Regression

In previous experimentsw.r.t SePHklr , we empirically uti-
lize a sampling size of500 to learn kernel logistic regressions
on all datasets. Here we further conduct experiments to in-
vestigate its effects. Similarly, we fix the hash code length
as 16 bits. And for each dataset, with learnt hash codes of
training instances, we increase the sampling size from100
to 5, 000 (2, 000 for Wiki), and respectively utilize random
sampling and k-means sampling for each size to learn the
corresponding kernel logistic regressions as hash functions.
Moreover, for each sampling size, we measure the cross-view
retrieval performance on the query set with the hash codes
generated by the corresponding learnt hash functions. Fig.5c
shows the experimental results on the largest NUS-WIDE, and
we can see that the performance of SePHklr , i.e. SePHklr+rnd

and SePHklr+km, firstly increases and then converges quickly
as the sampling size increases. Actually, on NUS-WIDE, when
the sampling size increases to around1, 000, the performance
of SePHklr begins to converge. Moreover, the empirical setting
of sampling size in our experiments (i.e. 500) achieves more
than98% of the performance achieved by the largest sampling
size (i.e. 5, 000), while its training and predicting costs, as
theoretically analysed before, would be much lower. And thus
it is reasonable to perform sampling for learning kernel logistic
regression in SePHklr . Additionally, we can observe that at
small sampling sizes (e.g.100), k-means sampling shows more
significant superiority over random sampling. It is because
that in those cases the sampled kernel feature vectors are
not sufficient enough for spanning the to-be-learnt weighting
vector and k-means sampling can probably select better ones.

V. CONCLUSIONS

In this paper, we propose a supervised cross-view hashing
method termed SePH. For training, given the semantic affini-
ties of training data, SePH firstly transforms them into a prob-
ability distribution and aims to approximate it with another
one derived from to-be-learnt binary hash codes of training
instances in Hamming space. Then with the hash codes learnt,
any kind of effective predictive models can be learnt as hash
functions in each view to project the corresponding features
into binary hash codes, such as linear ridge regression, logistic
regression and kernel logistic regression,etc.To perform out-
of-sample extension, given an unseen instance, the learnt hash
functions firstly predict view-specific hash codes and derive
or estimate the corresponding output probabilities in eachof
its observed views, and then a novel probabilistic approach
is utilized to determine a unified hash code. Experiments on
three benchmark datasets show that SePH yields state-of-the-
art performance for cross-view retrieval.

ACKNOWLEDGMENT

This research was supported by the National Natural
Science Foundation of China (Grant No. 61271394 and
61571269). The authors would like to thank the anonymous
reviewers for their valuable comments.

REFERENCES

[1] Z. Jin, C. Li, Y. Lin, and D. Cai, “Density sensitive hashing,” IEEE
Transactions on Cybernetics, vol. 44, no. 8, pp. 1362–1371, 2014.1

[2] J. Song, Y. Yang, X. Li, Z. Huang, and Y. Yang, “Robust hashing with
local models for approximate similarity search,”IEEE Transactions on
Cybernetics, vol. 44, no. 7, pp. 1225–1236, 2014.1

[3] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for
finding best matches in logarithmic expected time,”ACM Transactions
on Mathematical Software, vol. 3, no. 3, pp. 209–226, Sep. 1977.1

[4] A. W. Moore, “The anchors hierarchy: Using the triangle inequality
to survive high dimensional data,” inProceedings of the Sixteenth
Conference on Uncertainty in Artificial Intelligence, 2000. 1

[5] T. Liu, A. W. Moore, K. Yang, and A. G. Gray, “An investigation
of practical approximate nearest neighbor algorithms,” inAdvances in
Neural Information Processing Systems, 2004. 1

[6] T. Liu, C. Rosenberg, and H. Rowley, “Clustering billions of images with
large scale nearest neighbor search,” inIEEE Workshop on Applications
of Computer Vision, 2007. 1

[7] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimen-
sions via hashing,” inProceedings of the 25th International Conference
on Very Large Data Bases, 1999. 1

[8] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances
in Neural Information Processing Systems, 2009. 1, 3

[9] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashingfor fast
similarity search,” inProceedings of the 33rd International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2010. 1, 2

[10] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean ap-
proach to learning binary codes,” inIEEE Conference on Computer
Vision and Pattern Recognition, 2011. 1

[11] F. Shen, C. Shen, Q. Shi, A. Hengel, and Z. Tang, “Inductive hashing
on manifolds,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2013. 1

[12] G. Irie, Z. Li, X. Wu, and S. Chang, “Locally linear hashing for
extracting non-linear manifolds,” inIEEE Conference on Computer
Vision and Pattern Recognition, 2014. 1

[13] P. Zhang, W. Zhang, W. Li, and M. Guo, “Supervised hashing with
latent factor models,” inProceedings of the 37th International ACM
SIGIR Conference on Research & Development in Information Retrieval,
2014. 1

[14] G. Lin, C. Shen, Q. Shi, A. Hengel, and D. Suter, “Fast supervised hash-
ing with decision trees for high-dimensional data,” inIEEE Conference
on Computer Vision and Pattern Recognition, 2014. 1

[15] L. Chen, D. Xu, I.-H. Tsang, and X. Li, “Spectral embedded hashing
for scalable image retrieval,”IEEE Transactions on Cybernetics, vol. 44,
no. 7, pp. 1180–1190, 2014.1

[16] Z. Jin, D. Zhang, Y. Hu, S. Lin, D. Cai, and X. He, “Fast andaccurate
hashing via iterative nearest neighbors expansion,”IEEE Transactions
on Cybernetics, vol. 44, no. 11, pp. 2167–2177, 2014.1

[17] X. Liu, Y. Mu, D. Zhang, B. Lang, and X. Li, “Large-scale unsupervised
hashing with shared structure learning,”IEEE Transactions on Cyber-
netics, vol. 45, no. 9, pp. 1811–1822, 2015.1

[18] R. Ye and X. Li, “Compact structure hashing via sparse and similarity
preserving embedding,”IEEE Transactions on Cybernetics, vol. PP,
no. 99, pp. 1–1, 2015.1

[19] W. W. Y. Ng, X. Tian, Y. Lv, D. S. Yeung, and W. Pedrycz, “Incremental
hashing for semantic image retrieval in nonstationary environments,”
IEEE Transactions on Cybernetics, vol. PP, no. 99, pp. 1–13, 2016.1

[20] X. Zhu, Z. Huang, H. Shen, and X. Zhao, “Linear cross-modal hashing
for efficient multimedia search,” inProceedings of the 21st ACM
International Conference on Multimedia, 2013. 1, 2

[21] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. Shen, “Inter-media
hashing for large-scale retrieval from heterogeneous datasources,” in
Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, 2013. 1, 2, 8, 9, 11, 12

[22] Y. Zhen, Y. Gao, D.-Y. Yeung, H. Zha, and X. Li, “Spectralmultimodal
hashing and its application to multimedia retrieval,”IEEE Transactions
on Cybernetics, vol. 46, no. 1, pp. 27–38, 2016.1, 2, 3

[23] G. Ding, Y. Guo, and J. Zhou, “Collective matrix factorization hashing
for multimodal data,” in2014 IEEE Conference on Computer Vision and
Pattern Recognition, 2014. 1, 2, 3, 5, 8, 9, 11, 12

[24] J. Zhou, G. Ding, and Y. Guo, “Latent semantic sparse hashing for cross-
modal similarity search,” inProceedings of the 37th International ACM
SIGIR Conference on Research & Development in Information Retrieval,
2014. 1, 2, 3, 8, 9, 11, 12

IEEE TRANSACTIONS ON CYBERNETICS 14

[25] L. Xie, J. Shen, and L. Zhu, “Online cross-modal hashingfor web image
retrieval,” in AAAI Conference on Artificial Intelligence, 2016. 1, 2, 3

[26] M. Bronstein, A. Bronstein, F. Michel, and N. Paragios,“Data fusion
through cross-modality metric learning using similarity-sensitive hash-
ing,” in IEEE Conference on Computer Vision and Pattern Recognition,
2010. 1, 3, 5, 8, 9, 11, 12

[27] S. Kumar and R. Udupa, “Learning hash functions for cross-view
similarity search,” inProceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence, 2011. 1, 2, 3, 8, 9, 11, 12

[28] Y. Zhen and D. Yeung, “Co-regularized hashing for multimodal data,”
in Advances in Neural Information Processing Systems, 2012. 1, 3

[29] ——, “A probabilistic model for multimodal hash function learning,”
in Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2012. 1, 3

[30] D. Zhai, H. Chang, Y. Zhen, X. Liu, X. Chen, and W. Gao, “Parametric
local multimodal hashing for cross-view similarity search,” in Proceed-
ings of the Twenty-Third International Joint Conference onArtificial
Intelligence, 2013. 1, 3

[31] J. Masci, M. Bronstein, A. Bronstein, and J. Schmidhuber, “Multimodal
similarity-preserving hashing,”IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 36, no. 4, pp. 824–830, 2014.1, 3

[32] Z. Yu, F. Wu, Y. Yang, Q. Tian, J. Luo, and Y. Zhuang, “Discriminative
coupled dictionary hashing for fast cross-media retrieval,” in Proceed-
ings of the 37th International ACM SIGIR Conference on Research &
Development in Information Retrieval, 2014. 1, 3

[33] Z. Yu, Y. Zhang, S. Tang, Y. Yang, Q. Tian, and J. Luo, “Cross-media
hashing with kernel regression,” inIEEE International Conference on
Multimedia and Expo, 2014. 1, 3

[34] J. Zhou, G. Ding, Y. Guo, Q. Liu, and X. Dong, “Kernel-based super-
vised hashing for cross-view similarity search,” inIEEE International
Conference on Multimedia and Expo, 2014. 1, 2, 3, 8, 9

[35] D. Zhang and W. Li, “Large-scale supervised multimodalhashing with
semantic correlation maximization,” inAAAI Conference on Artificial
Intelligence, 2014. 1, 2, 3, 8, 9, 11, 12

[36] B. Wu, Q. Yang, W. Zheng, Y. Wang, and J. Wang, “Quantized
correlation hashing for fast cross-modal search,” 2015.1, 3

[37] Q. Jiang and W. Li, “Deep cross-modal hashing,”CoRR, 2016.
[Online]. Available: http://arxiv.org/abs/1602.022551, 3

[38] T. Zhang and J. Wang, “Collaborative quantization for cross-modal
similarity search,” in2016 IEEE Conference on Computer Vision and
Pattern Recognition, 2016. 1, 3

[39] J. Tang, K. Wang, and L. Shao, “Supervised matrix factorization hashing
for cross-modal retrieval,”IEEE Transactions on Image Processing,
vol. 25, no. 7, pp. 3157–3166, 2016.1, 3

[40] Z. Lin, G. Ding, M. Hu, and J. Wang, “Semantics-preserving hashing
for cross-view retrieval,” in2015 IEEE Conference on Computer Vision
and Pattern Recognition, 2015. 2, 7, 11

[41] L. V. and G. Hinton, “Visualizing data using t-sne,”Journal of Machine
Learning Research, vol. 9, no. 2579-2605, p. 85, 2008.4

[42] D. Tao, X. Tang, X. Li, and X. Wu, “Asymmetric bagging andrandom
subspace for support vector machines-based relevance feedback in
image retrieval,”IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 7, pp. 1088–1099, 2006.5

[43] D. Hardoon, S. Szedmak, and J. Shawe-taylor, “Canonical correlation
analysis: An overview with application to learning methods,” Neural
Computation, vol. 16, no. 12, pp. 2639–2664, 2004.6

[44] M. Hu, Y. Chen, and J. Kwok, “Building sparse multiple-kernel svm
classifiers,”IEEE Transactions on Neural Networks, vol. 20, no. 5, pp.
827–839, 2009.6

[45] C. M. Bishop,Pattern Recognition and Machine Learning. Springer-
Verlag New York, Inc., 2006.7

[46] C. Xu, D. Tao, and C. Xu, “Large-margin multi-view information bottle-
neck,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 36, no. 8, pp. 1559–1572, 2014.7

[47] ——, “Multi-view intact space learning,”IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 37, no. 12, pp. 2531–2544, 2015.
7

[48] J. Pereira, E. Coviello, G. Doyle, N. Rasiwasia, G. Lanckriet, R. Levy,
and N. Vasconcelos, “On the role of correlation and abstraction in
cross-modal multimedia retrieval,”Transactions of Pattern Analysis and
Machine Intelligence, vol. 36, no. 3, pp. 521–535, 2014.7

[49] M. Huiskes and M. Lew, “The mir flickr retrieval evaluation,” in
Proceedings of the 2008 ACM International Conference on Multimedia
Information Retrieval, 2008. 7

[50] T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “Nus-wide: A
real-world web image database from national university of singapore,” in

Proceedings of the ACM International Conference on Image and Video
Retrieval, 2009. 7

[51] I. Jolliffe, Principal Component Analysis. Springer-Verlag New York,
1986, vol. 487.8

[52] J. McDonald,Handbook of Biological Statistics (3rd ed.). Sparky House
Publishing, 2014.9

Zijia Lin received his B.Sc. degree from School
of Software, Tsinghua University, Beijing, China in
2011, and currently is a Ph.D. candidate in Depart-
ment of Computer Science and Technology in the
same campus. His research interests include multi-
media information retrieval and machine learning.

Guiguang Ding received his Ph.D degree in elec-
tronic engineering from XiDian University. He is
currently an associate professor of School of Soft-
ware, Tsinghua University. Before joining School
of Software in 2006, he worked as a postdoctoral
researcher in Automation Department of Tsinghua
University. His current research centers on the area
of multimedia information retrieval and mining, in
particular, visual object classification, automatic se-
mantic annotation, content-based multimedia index-
ing, and personal recommendation. He has published

about 40 research papers in international conferences and journals and applied
for 18 Patent Rights in China.

Jungong Han received the Ph.D. degree in telecom-
munication and information system from XiDian
University, Xian, China, in 2004. During his Ph.D.
study, he spent one year with the Internet Media
Group of Microsoft Research Asia, Beijing, China.
From 2005 to 2010, he was with Signal Processing
Systems Group, Technical University of Eindhoven,
Eindhoven, The Netherlands. In 2010, he joined
the Multiagent and Adaptive Computation Group,
Centre for Mathematics and Computer Science, Am-
sterdam, The Netherlands. In 2012, he served as a

Senior Scientist with Civolution Technology, Eindhoven (acombining synergy
of Philips Content Identification and Thomson STS). His current research
interests include multimedia content identification, multisensor data fusion,
and computer vision. He has authored and co-authored over 70papers.

Jianmin Wang graduated from Peking University,
China, in 1990, and received the ME and Ph.D.
degrees in computer software from Tsinghua Uni-
versity, China, in 1992 and 1995, respectively. He
is a full professor in the School of Software, Ts-
inghua University. His research interests include
unstructured big data management, workflow and
BPM technology, and large-scale data analytics.
He has published 100 papers in major journals
and conferences, including TKDE, DMKD, WWWJ,
SIGMOD, VLDB, ICDE, SIGKDD, SIGIR, AAAI,

CVPR, and ICCV. He led to develop a product data/lifecycle management
system, which has been implemented in hundreds of enterprises in China. He
leads to develop an unstructured big data management system, LaUDMS.

http://arxiv.org/abs/1602.02255

	I Introduction
	II Related Work
	III Proposed SePH
	III-A Problem Formulation
	III-B Semantics-Preserving Hashing
	III-C Solution and Implementation Issues
	III-D Learning Hash Functions
	III-E Generating Hash Codes
	III-F Extensions

	IV Experiments
	IV-A Experimental Settings
	IV-B Experimental Results
	IV-C Experimental Validations of the Proposed Probabilistic Approach for Determining Unified Hash Codes
	IV-D Comparison of Training and Hashing Costs
	IV-E Effects of Model Parameters
	IV-F Effects of Training Set Size
	IV-G Effects of Sampling Size for Kernel Logistic Regression

	V Conclusions
	References
	Biographies
	Zijia Lin
	Guiguang Ding
	Jungong Han
	Jianmin Wang

