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Cross-view Retrieval via Probability-based
Semantics-Preserving Hashing

Zijia Lin, Student Member, IEEE;uiguang DingMember, IEEE Jungong Han, Jianmin Wang

Abstract—For efficiently retrieving nearest neighbours from handling such data. Generally, for hashing methods, byrgene
large-scale multi-view data, recently hashing methods arevidely  ating ak-bit binary (.e. 0 or 1) hash code for each instance,
investigated, which can substantially improve query spees! In\ye can store the data compactly in hardware bits. Meanwhile,

this paper, we propose an effective probability-based Semdics- . . .
Preserving Hashing method to tackle the problem of cross-ew to perform ANN retrieval, the Hamming distances between

retrieval, termed SePH. Considering the semantic consistey the query hash code and those in the retrieval set can be
between views, SePH generates one unified hash code for alefficiently calculated using fast bit-wise XOR and bit-coun
observed views of any instance. For training, SePH firstly operations' with a sub-linear time complexity. And with all
transforms the given semantic affinities of training data irto Hamming distances calculated, generally only the smalkone

a probability distribution, and aims to approximate it with . -
another one in Hamming space, via minimizing their Kullback &€ kept and then ranked in an ascending order to select

Leibler divergence. Specifically, the latter probability distribution ~ instances with smallest Hamming distances as the appréaima
is derived from all pair-wise Hamming distances between to- nearest neighbours. Therefore, if the binary hash codes can
be-learnt hash codes of the training data. Then with leamnt ell preserve the affinities between instances, hashinpodst
hash codes, any kind of predictive models like linear ridge can herform ANN retrieval with much lower storage costs and

regression, logistic regression or kernel logistic regreson, can . . . ;
be learnt as hash functions in each view for projecting the higher query speedd§], while the quality loss of the retrieved

corresponding view-specific features into hash codes. Asrfout-  Neighbours would be acceptable.

of-sample extension, given any unseen instance, the learhash Generally speaking, we can roughly classify existing hash-
functions in its observed views can predict view-specific s ing methods into single-view hashind][ [2], [7]-[19] and
codes. Then by deriving or estimating the corresponding oytut multi-view hashing 20-[39]. The former focuses on data with

probabilities w.r.t the predicted view-specific hash codes, a novel . . ) . .
probabilistic approach is further proposed to utilize them for & Single view, while the latter focuses on that with multiple

determining a unified hash code. To evaluate the proposed SelP  views, like an object with pictures from different cameras o

we conduct extensive experiments on diverse benchmark dagets, a news report with texts and images. Our work in this paper

and the experimental results demonstrate that SePH is reasable s about cross-view retrieval for multi-view data. Spedilig,

and effective. cross-view retrieval can utilize just one view of a query to
Index Terms—Semantics-Preserving Hashing, SePH, Cross- retrieval its nearest neighbours in other different vielike

view retrieval, Approximate nearest neighbour retrieval using a query picture from one camera to retrieve relevant
ones from other cameras, or using a textual query to retrieve
. INTRODUCTION semantically relevant images. Since cross-view retriezalbe

OR numerous algorithms in the fields of cyberneticé‘,t”ized in many applications, it is becoming more and more

computer vision and machine learninetc, retrieving POPUlar, as also revealed i8g. _
nearest neighbours for an instance plays a fundamental role/" recent years, researchers have proposed many effective
as also revealed irl] and [2]. However, with the explosion of hashing methods for cross-view retrieval, ranging from un-
data in recent years, efficient nearest neighbour retriegai  Supervised ones2p-[29 to supervised one2f|-[39]. The
large-scale and rapidly-increasing databases becomes gffirmer ones generally utilize only the features of training
challenging. For tackling that, various tree-based inogxi data in different views to exploit intra-view and inter-wie
methods $]-[6] and hashing methodsl], [2], [7]-[39] are correlations for learning hash functions, which projecittees
proposed to perform exact or approximate nearest neighb8tip Pinary hash codes. Meanwhile, the latter ones candurth
(ANN) retrieval with much higher speeds. As tree-basc@ikploit other available supervised information like setitan
indexing methods can suffer from the so-called “curse @iffinities of_ training data, to better learn the p.rojectitmsj
dimensionality” for high-dimensional data, recently hagh Yield superior performance. Actually, for supervised gl

methods are becoming preferred and widely researched RsgServing the semantic affinities between instances ikéhe
to reducing the quality loss of retrieved nearest neighkour
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Technology, Tsinghua University, Beijing 100084, China -n{ail: . o .

li nzi j i a07@ si nghua. or g. cn). In thl_s paper, we propose a probabl_l|ty-ba$dnant|cs-
Guiguang Ding and Jianmin Wang are with School of Softward?reservingHashing method for cross-view retrieval, termed
Tsinghua ~ University, Beijing 100084, China (e-mail{dinggg, ~ SePH. The proposed SePH belongs to supervised hashing.
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probably make the objective function quite complex and even
unable to be optimized. The reasonableness and effectisene
of SePH is well demonstrated by comprehensive experiments
on diverse benchmark datasets.

We summarize the contributions of this paper as follows.

o We propose a probability-baseS8emanticsPreserving

Hashing method for cross-view retrieval, which approx-
imates a probability distribution derived from given se-

0z 0z

Og 03 Og

05 Oy 05 Oy
() Previous Work (b) Proposed SePH mantic affinities of training data with another one derived
from the to-be-learnt hash codes in Hamming space via
Fig. 1. lllustration of the differences between previousrkv(eft) and the minimizing their KL-divergence.

proposed SePH (right). Herg (i = 1,2, ...,6) are to-be-learnt hash codes, iliati ;
blue solid edges between them denote their pairwise dissa(gimilarities), « We propose a novel prObab"IStIC approach to determine a

and red dotted lines between edges denote the correlatem@én distances pnified haSh dee for any given unseen inStanlcer utilizing
(similarities). Note that for clarity, some edges/lines amitted. its predicted view-specific hash codes from different ob-

served views and the corresponding derived or estimated

. ) . output probabilities.
Moreover, considering the semantic consistency between ob

served views, SePH generates one unified hash code for all obl NS Paper is based on our previous work presented0j [
served views of any instance, like3 and [24]. For training, Pul it substantially extends that work. Specifically, afieom
SePH firstly transforms the given semantic affinities oftigg  "ON-linéar kernel logistic regression, here we also @tiliaear
instances into a probability distributidh and aims to approx- "1dg€ regression and logistic regression as hash functems
imate it in Hamming space. Specifically, SePH transforms &p © show that the learning of hash functions in SePH can be

pairwise Hamming distances between to-be-learnt hashscodB€n for different predictive models. Actually, the expeents
of the training instances into another probability disttion With linear ridge regression and logistic regression alsil w

Q, and then minimizes its Kullback-Leibler divergence (KL_dem(_)nstraFe th_e effecFiveness of S_ePH. Particularly, &shh
divergence) fromP. In previous work 27], [34], [35], the functions like linear ridge regression that cannot natyral
supervised informatiori,e. the semantic affinities of training Provide output probabilities with the predicted view-sifiec
instances, is generally utilized fadependentlyweight each nash codes, here we further propose an effective and general
pairwise distance (similarity) between hash codes. Dsfiey, method to estimate the output probabilities, which areirequ

SePH standardizes all pairwise Hamming distances into'® d&termining unified hash codes. Moreover, experimerets a
global probability distribution by transforming each in&o conducted on all benchmark datasets to validate the eféecti

ness of the proposed probabilistic approach for determinin
the unified hash code of an unseen instance. We also analyse
M’@r convergence of the optimization process for SePH with

probability and thus makes thedependenbn each others. In
that way, apart from weighting pair-wise distances (sintila
ties) between hash codes as previous work, SePH can fur X ; ) o ]
incorporate the correlations between distances (sittida)i €XPeriments, and report its off-line training costs andioe-
to force the to-be-learnt hash codes of training instanoes rtaSh"_]g costs on all da_ltasets. Additionally, more detdithe
better preserve the semantic affinities, as illustrated i Fexperlmentgl resultls, I,'ke standard errors, are also pt.ede.
1, which shows the differences between previous work a re. Detailed derivations for tht_a gra<_j|ent of the objectiv
SePH in a vivid way. After learning the hash codes of traininfnction of SePH are also provided in the supplementary
instances, SePH further learns hash functions indepeiydefifaterial due to the limited space. _

in each view for projecting the corresponding features into W& organize the remainder of this paper as follows. Section
binary hash codes, which can be open for any kind of effectile 9IV€S an overview of previous researches on cross-view

predictive models. Specifically, in this paper, we respetyi hashing. Sect.iomll pr_esents_ fprmula detai[s of the _proposed
utilize linear ridge regression, logistic regression amtnkl S€PH, including off-line training and on-line hashing. Mhe

logistic regression as hash functions. As for out-of-sampf*Periments are described in Sectith, including settings,
extension, given an unseen instance, the learnt hash mﬂctiresul_ts and analyses. And finally we come to conclusions in
in each of its observed views can predict view-specific hastfctionV.

codes. Then by deriving or estimating the corresponding out

put probabilitiesw.r.t the predicted view-specific hash codes, Il. RELATED WORK

a novel probabilistic approach is further proposed to zili

them for determining a unified hash code. Similar3p pere As mentioned previously, researchers have proposed many
SePH employs a two-step hashing framework. The reaseffective unsupervised and supervised cross-view hashing
why SePH adopts a two-step framework is two-fold. Firgnethods in recent years.

and most important, utilizing a two-step framework can make Unsupervised cross-view hashing metho@6]f[25 gen-
SePH more flexible and enable it to use any kind of effectiarally utilize only the features of training data in diffate
predictive models as hash functions. Second, utilizing @ twviews to exploit intra-view and inter-view correlationsrfo
step framework can simplify the optimization process, sindearning hash functions to project features into binaryhhas
directly learning hash functions in a one-step manner candes. Songt al. [21] proposed inter-media hashing (IMH),
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which learns linear hash functions with intra-view and inte  After reviewing the previous cross-view hashing methods,
view consistencies to map view-specific features into a comspecially the supervised ones, we realize that well pvesgr
mon Hamming space. Zheat al. [22] proposed Spectral the semantic affinities between instances is the key to reguc
Multimodal Hashing (SMH) based on spectral analysis of thhe quality loss of retrieved neighbours and achievingebett
correlation matrix of different views and developed an &ffit  performance. Generally, in supervised cases, given sémant
algorithm to learn parameters from the data distribution sdfinities of training data, previous methods lika7], [34],

as to obtain binary hash codes. Dieg al. [23] proposed [35 utilize them to independently weight each pairwise dis-
Collective Matrix Factorization Hashing (CMFH) that pertance (similarity) between to-be-learnt hash codes. Bxfidy,
forms collective matrix factorization in different viewsittv in this paper the proposed SePH further incorporates the
latent factor model to learn unified hash codes for trainirgprrelations between pairwise Hamming distances to force
instances. Zhowt al. [24] proposed Latent Semantic Spars¢he to-be-learnt hash codes to better preserve the semantic
Hashing (LSSH), which respectively utilizes sparse codarg affinities. As will be demonstrated by our experiments, SePH
images and matrix factorization for texts to learn theietdt is reasonable and yields superior performance.

semantic features and eventually maps the learnt featares t

a joint abstraction space to generate unified hash codes. Xie I1l. PROPOSEDSEPH

et al. [29] proposed Online Cross-modal Hashing (OCMH)’. Fig. 2 illustrates the framework of the proposed SePH. Like

th'Ch perfor(rjnsl eff|C|e|nt.upda:ct|ng ofl_has[]\ cct):.jes ?)ndlanaly% and [24], considering the semantic consistency between
Oh cro;T—Tota (cj:orre ations for online hashing by learni ews, SePH generates one unified hash code for each instance
shared fatent codes. rather than respectively generate one different hash code f

35 iffere?tlyh super\l/is_ed crlosbsl-view ha'_shigg_ Tethoﬁ_é]—[rk each observed view as other previous researc@és [27],
[39) can further exploit available supervised informatioreli [34], [39. That also allows SePH to store data with less

;emfant;]c IabeI? or Semam'c affinities of trBalnlng c:r?t? fazxng space costs. As shown in Fi@, for hash learning SePH
Ing further periormance |mprovement_s. _ronste al. [26] requires the view-specific features of training instanoessich
proposed CMSSH that models the projections from features\),éw and an affinity matrix indicating their semantic affied.

eac_h_ V'eWt(;) hash .COdeS as Ilalnary zlas?ﬂcatg)n pro b Img@peciﬁcally, SePH firstly transforms the given affinity npatr
positive and negative examples, and utilizes boosting into a probability distributior® in semantic space, and learns

o efflc!elr1t(ljy learn t_hemﬁ Kﬁ_mar ang Lédup&?[dpcr:(zlpﬁse?]_ tl!i'e semantics-preserving hash codes of training instances
a principled cross-view hashing method terme » Wi utilizing their Hamming distances for deriving another

is an extension of the single-view spectral hashifg i probability distributionQ in Hamming space to approximate

multi-view cases. Specifically, CVH learns hash functionﬁ (red dotted rectangle). Then with learnt hash codes and

to map semantically similar instances to similar hash COd@i%w-specific features of training instances, SePH leaashh

across different views, via minimizing the similarity-wgéited functions in each view independently for projecting featur

pairyvise Hamming distances between the hash codes C.)f "4t hash codes (green dotted rectangle). As for out-ofpdam

N9 m_stances. Zhen and Yeungg pro_posed CO'Regqla”Zedextension, given any unseen instance, learnt hash fursction
Hashing (CRH) to learn hash_ fur_mtlons for multi-view datﬁ1 observed views firstly predict view-specific hash codes.
basepl on a boosted _co-regulanzatlonframework.In CRH haﬁhen by deriving or estimating the corresponding output
functlt_)ns for each bit of the hgsh codes are Ieamt by SOlv'rf:SSiJobabilitieSN.r.tthe predicted view-specific hash codes, SePH
DC (difference of convex functions) programs, while thaiea utilizes a novel probabilistic approach to merge them and

ing for multiple bits is performed via a boosting prOCEdur(?jetermine a unified hash code (blue dotted rectangle). Fer ea
Yu et al. [32] proposed Discriminative Coupled Dictionary

. . _ f presentation, here we firstly describe SePH in the cade wit
Hashing (DCDH). Specifically, DCDH firstly learns a C()Uple(gnly two views, and then extend it to cases with more views.
dictionary for each view with side information like categor '

labels to represent data from different views as the sparse _

codes in a shared dictionary space, and then learns uniffedProblem Formulation

hash functions for mapping them into binary hash codes.Suppose that the training data is made upnofraining
Zhou et al. [34] proposed a spectral-based hashing methaustances, denoted & = {01, 02, ..., 0,} with o, being the
termed KSH-CV, which removes the orthogonality constsainith one, and we can observe two views, X and ), of the
on hash code bits and learns kernel hash functions und®ining instances. Moreover, SePH requires the viewifipec
an Adaboost framework to preserve inter-view similaritieseature matrices € R"*% andY € R"*% of the training
Zhang and Li B5 proposed SCM to take semantic labelslata, which are respectively built with thé.-dimensional
into consideration for the hash learning procedure fordargfeature vectors it and thed,-dimensional feature vectors
scale datasets via maximizing semantic correlations. S&W dn ) row by row. Specifically, theith row of X, denoted
learn orthogonal hash functions via eigenvalue decomipasitas X;. € R, is the feature vector ob; in the view X,
(SCM-Orth) or non-orthogonal ones via sequential learnirand likewise theith row in Y, denoted a¥; . € R, is the
(SCM-Seq). Moreover, Jiang and LB8T] integrated feature feature vector ob; in the view). The affinity matrix of the
learning and hash-code learning into an end-to-end legrnitmaining data, denoted a$ € R™*", is also required by SePH
framework with deep neural networks (one for each view) fdo provide supervised information. Herk is supposed to be
cross-view hashing. symmetricj.e.V1 <i,j <n,A;; = A,;, where4, ; € [0, 1]
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Training of SePH: 1) Learning semantics-preserving hash codes of the training data (red dotted rectangle), via Out-of-sample Extension: 1) Predicting hash codes from observed views, 2)

approximating the probability distribution in semantic space ( P ) with that in Hamming space ( Q) , 2) Learning ~ Determining the unified hash code with a proposed probabilistic approach
hash functions for each view (green dotted rectangle)

Fig. 2. Framework of the proposed SePH, illustrated with-tew toy data. For training, SePH firstly learns semangieserving hash codes of the training
data and then learns hash functions for each view. For es&wiple extension, SePH firstly predicts view-specific hamfes and derive or estimate their
corresponding output probabilities, and then merges themad unified one.

TABLE | also be similar, and vice versa. As mentioned before, unlike
IMPORTANT SYMBOLS IN SEPH. previous related researches that utilize the given semanti
— The number of Taming Tns@nces affln!tle_s for independentlyweighting each pairwise _dlstance
Py fhe sth training instance (similarity) between hash codes, SePH can further incatpor
X, Y view-specific feature matrices of training instances the correlations between distances (similarities) to milee
dy, dy view-specific feature dimensions __ semantic affinities of training instances be better presiby
A the given semantic afflmty matrix of training instances th ) t b | t h h d S f ” ” d’ .
H to-be-learnt binary hash code matrix of training instances e_lr 0-be- eam_ ash co es_' pep_l _|ca Ys as_ illustrarerig.
I relaxed H, real-valued hash code matrix 2, in SePH the given semantic affinities are firstly transfatme
d. hash code Tength - into a probability distributior?, and then another probability
Pisj probability of observing the similarity between and  gstribution Q is derived from all the pairwise Hamming
o; In semantic space d t b tw t b | t h h d t [ﬁl t
qi; probability of observing the similarity betweesy and ) 1S ances_ etween to-be-learnt hash co es_ 0 approx h a_e
0; in Hamming space in Hamming space. In that way, by transforming each pairwise
Xi,.. Y., | theith row of each matrix, corresponding & Hamming distance into a probability, SePH standardizesithe
Hi,;" Hi, : : and makes themdependentn each other, and thus correlations
h(*) the kth column of H, corresponding to théth bit bet H ing dist . ted
X,y view-specific feature vectors of an unseen instance e Ween_ amming ais ances ar_e mcorpora ed. .
¥, Y predicted view-specific hash codes of an unseen instance 10 derive the probability distributiof? in semantic space,
c unified hash code of an unseen instance we definep; ; as the probability of observing the semantic sim-

ilarity betweeno; ando; among all pairs of training instances.
Assuming thap; ; is proportional to4; ;, i.e. the correspond-
ing semantic affinity, we can derivg; ; as the following

indicates the semantic affinity betweenando;. Generally, .
Y " ¢ Y formula, which guarantees that", >-7_, ;. pi; = 1.

we can deriveA from manual scoring, or estimate it from

correlations between semantic labels of the training nsis, Aij

like cosine similarities. WithA, semantics-preserving hash Pij = m n o @)
N ' . Zi:l Zj:l,j;éi Aij

codes of the training instances can be learnt by SePH, whic

form a hash code matri¥/ € {—1,1}"* row by row.

Specifically, theith row in H, denoted asd, . € {—1,1}4,

is the d.-bit hash code ob;. Note that for model simplicity,

here we utilize{—1,1} to represent binary hash codes, an

they can be directly mapped inf®, 1}. Tablel summarizes

the important symbols in this paper, which will be frequentl

hl'o derive the probability distributio®@ in Hamming space,

we defineg; ; as the probability of observing the similarity

betweeno; and o; in Hamming space. Following t-SNE
1], a Student t-distribution with one degree of freedom is

utilized for transforming each pairwise Hamming distante i

a probability, as formulated as follows.

used in the later description of SePH. G = (14 h(H;.,H;.))™? @
DY anzl,m;ek(l + h(Hg,., Hp )
B. Semantics-Preserving Hashing whereh(-, -) denotes the Hamming distance between two hash

For preserving semantic affinities, #, and o; are se- codes. Considering thatl <i <n,H,. € {-1, 1}, for any
mantically similar, their corresponding hash codes shoutdo binary hash codes we can derive their Hamming distance
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from their corresponding squared Euclidean distance,@srsh optimizing Z, various effective gradient descent methods can

in formula @). be utilized. Specifically, for théth row of A, i.e. H; ., we can
1 ) derive its corresponding gradient as follows.
h(H;. Hy.) = gl Hi — Hy ® L, o 1
—— = > (piy— @) A+ S| Hi — H |3) " (Hs — Hj,.)
By substituting formulag) into formula @), we can rewrite 90H:. 4=, ’ 477 ’ ' ’
qi,; as follows to make it more tractable for optimization. 20 - - .
: + G -1T) 0 o(f,)
_ (1 + gl Hi — H; |I3) " (®)
dij = (4)

Skt Zometmek (1 + 11 Heo = H 13) 71 where1 is a d.-dimensional column vector with each entry
being 1, denotes entry-wise multiplication between vectors,

_As mentioned previously, SePH aims to_ learn an optlmghd U(ﬁi,.) is a d,-dimensional row vector made up of the
binary H that can enabl&d to well approximateP, so as o, |

to preserve the semantic affinities modelled By Here we signs of entrlgs ;... Actuglly, he.reo(Hiy.) = om,
take the Kullback-Leibler divergence to measure the difiee and the gradientsv.r.t non-differentiable zero entries are

betweenQ and P, as defined as follows. simply set ag). For de_tailed derivations, one can refer to the
. . supplementary material.
. : ow << . .
Drr(P|Q) = Z Z pijlog sz ) By calculating A, for all 1 < i <mn, effectlve grac?llAent
i=1 j=1,j#i i descent methods can be applied to derive an optifal

Then by minimizingD 1, (P||Q), SePH can learn the optimal NN by getting the signs of entries i, we can derive an

binary hash code matrix/ of the training data. And thus the()pt'm.IzeOI binary hash.cod.eAmatrH, e I = Slg".(H)' with
objective function of SePH is formulated as follows. the signs of zero entries I set as 1. For gradient descent

methods, the time complexity of deriving is O(Tn?d.),
"oz o whereT is the number of needed iterations.
\I/O = Inin Z Z pi,j 10g pZJ
He{-11ynxde i 4= i j

wherep; ; is defined as formulalf andg; ; as formulad).  \yith the learnt hash codes of training instances, H,

The objective function above, however, is NP-hard for diyec gepiy il independently learn hash functions for each view
derlv_mg the optimal blnary{. To make it more tractable, I|k§ to perform out-of-sample extension. Actually, for SePHy an
previous work, herd is relaxed to be a real-valued matriXufe tive predictive models can be utilized as hash funetio
H. Moreover, as shown n the _followmg formula, t_o make thgyence Jinear ridge regression, support vector machine (VM
IearntH_ near to the optlmal bmar;_H, we furthgr introduce or its variants like bagging-based SVMZ, logistic regres-
a quantization loss term in the objective function to leael thsion, kernel logistic regression, and many other modelsbean
entries of H to be near to-1 or 1. utilized.
) " n A In this paper, we respectively utilize linear ridge regi@ss
U= FeRmxde Z Z pijlog I;” + 5H|H| -1J3 logistic regression and kernel logistic regression, torighe
=ly=Lizi A"j projections from features to hash codes for each view. kinea
(1+ i||Hl-_,. —H; |13~ ridge regression is widely-used in many previous researche
DOAND DN (S LAy, — H, |2)1 on hashing, while for logistic regression and kernel lagist
(7) regression, they are _gr_nployed becagse both can naturally
provide output probabilities.r.t the predicted hashing results,
wherel is a matrix with each entry being 1, afiid| — I||2  which, as will be explained later, are required for deteingn
measures the quantization loss from real-valittdo binary the unified hash code of an unseen instance. Note that here
H. Additionally, o is a model parameter for weighting thehash functions are learnt independently in different vietwsd
quantization loss term, and = n x d.. is a normalizing factor thus for ease of presentation, in the following, only thehhas
to make the parameter tuning farless affected by the hashfunction learning process in the view is described, which
code length and the training set size. can be directly extended to other views.

Like [26] and [23], here we learn hash functions bit by bit.
Actually, considering that bits in the hash codes may not be
o ) . ~independent of each other in cases, more sophisticatedrigar

The objective function¥ of SePH is an unconstrainedmethods that incorporate the correlations between bitsisan
non-convex optimization problem. Actually, its non-corg e investigated to obtain performance improvements, which
comes from both the KL-divergence term and the quantizatiQfeft 1o our future work. Denote the column corresponding
loss term. And thus for optimizingl, we can only derive g the kth bit in the learnt hash code matrid as h®) <
a locally optimal /. Compared to other hashing method$_; 11n e thekth column ofH. For linear ridge regression,

that utilize a convex objective function, it may seem to be jg objective function to project featureise. X, into h(®), is
weakness of the proposed SePH. However, as our experim%ﬁ%n as follows.

will demonstrate, the performance of SePH is fortunately no * . *) *)2 *2
sensitive to the local optimality of its objective functiofor F¥ =min [h" — Xu™ |7 + pflu'™ |3 9)

u(k)

(6)

D. Learning Hash Functions

s.t. qi,j =

C. Solution and Implementation Issues
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whereu®) ¢ R is the to-be-learnt weighting vector, and.e. w*) = ®7v(*)_ And formula (1) can be rewritten as
1 is a weighting parameter for the regularizer. By settinfpllows.

97" _ 0, the optimalu® can be directly derived as n )

6&()) . 1 ) (k) _ . - ] 1 _hgk)(d)(xiv)q)T)‘;(k)

u®) = (XTX + uE) "' XTh®), whereE € Ri-*d: is an HY =miny og( +e ) w2
identity matrix. Here the time complexity for deriving® is =1

O(2nd2 + d3). Then by learningi® for all 1 < k < d,., we + ATV ®3

- d. i i : - N -
can derive{u™};- , as the hash function set based on linegp this case, for kernel logistic regression, its costs faining
ridge regression for the view. Here SePH with linear ridge gpq predicting will be proportional to the sampling size

regression as hash functions is denoted as GgRHH rather than the training set size Then its training can become
Regarding logistic regression, its objective functionas-f more scalable and its predicting can be more efficient. Here
mulated as follows. #H*) can also be optimized with gradient descent methods, and

the corresponding time complexity will b@ (K + Ték)ns),
whereTQ(k) is the number of needed iterations afAdis the
costs of calculatingp®? and 7. By optimizing #*) for
all 1 < k < d., we can derive{®, v(D) v yde)}
*) ) _ k) (k) . s the _non-Iinear hgsh function set base.d on kernel logistic
whereh;”" € {—1,1} is theith entry inh'™, w'™) € R%™  raqression for the viewk. It should be noticed that here all
is the to-be-learnt weighting vector, angdis a parameter {,(k)(l < k < d.) share an identicad, which can further
for weighting the regularizer. Herg™® can be optimized yeqyce the training and predicting costs for dll kernel
with gradient descent g;ethods, and kthe corresponding tigjistic regressions. For example, the total training sdet
complexity will b_e(’)(Tl( nd, ) with (7;1)( " being the number thed,. kernel logistic regressions will b@(K +3¢< | 74" ns)
of needed iterations. By optimizing'”) for all 1 < k£ < d., ({ather thanO (K d, + ZZ;I TQ(k)nS). Here SePH with kernel

' ()vde i i o : . i
the depvgd{w }k.:1 will work as the hash funct|oln set t?age ogistic regression as hash functions is denoted as ePH
on logistic regression for the view. Here SePH with logistic

regression as hash functions is denoted as gePH .

Furthermore, we introduce kernel logistic regression ahha Generating Hash Codes
functions, expecting to utilize kernel tricks to better Hen  With learnt hash functions, the view-specific hash codes of
non-linear projections from features to hash codes. Here @way unseen instanee, can be predicted. Taking the view
map each feature vectoK;. to the Reproducing Kernel as an example, assume that the feature vector, a¢ x, and
Hilbert Space (RKHS) a®(X;.), and utilize them to build its predicted view-specific hash code is denoted:&s with
a kernel feature matri® row by row. In RKHS, for kernel the kth bit denoted as:;*. Then we can derive that} =
featuress(X;.) andé(X;.), we can efficiently calculate their sign(xu®)) for linear ridge regressiorg;’ = sign (xw*))
inner producté(X;. )¢ (X;.) as k(Xi., X;.) with kernel for logistic regression, and¥ = sign ((¢(x)®7)v*) ) for
tricks, wherex(-, -) denotes a kernel function. Then similarlyyene| |ogistic regression, witkign(-) denoting the sign of an
with ker_nel features, tr_\e objective functlon of kernel kigi expression. By predicting,f for 1 < k < d,, we can get the
regression corresponding to tiéh bit can be formulated as preqicted view-specific hash cod&. The time complexity for
follows. linear ridge regression, logistic regression and kerngista

N regression to prediot® are respectivelyO(d.d.), O(d.d..)
Hk) — minZlog (1 T e—hg")(z;(xi,,)w(k)) +Alw®2 and Q(_I(’ + sd.), w_he_reK’ denptes the costs of calculating
wk) ¢(x)® in kernel logistic regression.

(11) Given an unseen instaneg, if only one view is observed,
where) is a parameter for weighting the regularizer. Followings predicted view-specific hash code can be directly etilias
kernel CCA R3], here w(¥) is required to be in the spanits unified hash code. Meanwhile, if both views are observed,
of the training kernel features,e. w*) = @®7v(¥) where we need to determine its unified hash code by merging
v(®) is the to-be-learnt spanning weights. ThefX; .)w(®)  predicted view-specific hash codes from both views, esfigcia
in formula (L) is rewritten as(¢(X;.)®")v(*), where we in cases where the predicted view-specific hash codes donflic
can calculatep(X;.)®7 as x(X;., X). It can be observed as illustrated in Fig2. To tackle that, we propose a novel
that, for kernel logistic regression, its costs for tragniand probabilistic approach in this paper for determining theuga
predicting will be proportional ta, i.e. the training set size, of each bit in the unified hash code of,. As mentioned
which is unsuitable for large training sets. As pointed oyt bpreviously, the proposed combining approach requires the
Hu et al. [44], generally the training kernel features wouldutput probabilitiesv.r.t each bit of the predicted view-specific
be redundant for spanning*). And thus here we proposehash codes,e. p(cZ = b|z) whereZ € {X,V}, 1 < k < d,,
to sample kernel features from via random sampling or b € {—1,1} andz € {x,y}.
other alternative methods like k-means to build a much small Taking the viewX as an example, here we introduce an
one for spanningv(®), which is denoted a®. Suppose that effective method to estimatg(c? = b|Z) for hash functions,
the sampling size is(s < n). Then we need to learn & especially for linear ridge regression and similar meththes
dimensional weighting vector®) for spanningw*) with &, cannot naturally provide output probabilities with predit

" ) x.
G = min Y log (14 ¢ M%) plw® - (10)

i=1
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results. Inspired by Gaussian Mixture Model (GMMJ5], wherep(c, = blz) = p(ci = blz) with b € {-1,1},z €

for linear ridge regression and similar methods, to esémafx,y}, Z € {X, Y}, and all these probabilities can be derived
p(c¥ = —1|x) and p(c¥ = 1|x), we assume that the corre-with formula (3) / (14) / (15) or using other more sophisti-
sponding original predicted resultg. xu®) for linear ridge cated estimation methods. Hepéc, = —1) andp(c, = 1)
regression) comes from either of two Gaussian distribstioare the priori probabilities for théth bit being—1 or 1. In

that respectively correspond tel and1. The two Gaussian our previous work 40|, both priori probabilities are simply
distributions are modelled as follows. During trainingyegi set to be equali,.e. p(cy, = 1) = p(cx, = —1). However, the

h*) ¢ {—1,1}", the training instances are separated inssumption about the balance betweehand1 in [40] can

two sets, one consisting of training instances with ie bit sometimes be unreasonable, especially in some imbalanced
of their corresponding hash codes beird and the other datasets. Therefore, here we propose tiat, = —1) and
consisting of those with thé&th bit being 1. Suppose that p(c, = 1) should be dataset-dependent, and statistics-based
features of training instances in the first set forms a featuor learning-based methods are expected to be utilized for
matrix X,,, and those in the second set forms another featwstimating them. Specifically, in this papefc, = —1) and
matrix X,. With the learnt weighting vecton®), we can p(c, = 1) are respectively estimated as the relative frequencies
derive ).("u(k) and X,u®, and both are assumed to b&f —1 and1 in h(®), i.e. plcy = —1) = iz Cond(h{¥=-1)
respectively sampled from the two to-be-modelled Gaussian B Y Cond(h™=1) " .
distributions corresponding te-1 and 1. Then we take the and p(cy = 1) = ==———— where Cond() is a
mean valuey, and the standard deviatian, of X, u(®) to cond|t|(_)n function returningl _|f the condition holds and)
model the Gaussian distribution corresponding-to, and otherwise. Actually, our experiments show that such a é#tas

similarly take the mean valye, and the standard deviatiar dependent estimation method can help SePH o obtain fur-
of Xpu(’“) to model the Gaussian distribution correspondinEEIer performance improvements, compared to simply setting

to 1. Similar to GMM, with both Gaussian distributions, the’(¢k = 1) = p(cx = —1). We will further investigate other
output probabilities(ct = —1|x) andp(c¥ = 1[x) for any more sophisticated estimation methods in our future work.
k k

x can be estimated as follows. For t_he unseen m_stanaﬁ“ W|t_h aII_(_:k(l < k < d.)
e determined, SePH will generate its unified hash ceddote

_ 1 (xu'™ —pn) . . o .
In = 55 CXP |\ — 202 that alternatively one can utilize multi-view learning ineds

o1 e (= u® gy like [46], [47] to learn hash functions for each combination of
9p opV2m p 202 (13) H H i H
(e = Cljx) = —t views and then directly generate unified hash codes without
p C’;{ - x)= gnton combining, but that can probably lead to much higher leaynin
pley = 1|x) = gn+top costs due to the “exponential explosion” of view combinasio

As for logistic regression and kernel logistic regressibe,
required output probabilities are naturally provided, aadh
be respectively derived as the following formulas, withe

F. Extensions

{~1,1}. Actually, for cases with more than two views, we can per-
’ e (D form training for SePH in nearly the same way, except that we
(cf =blx) = (1+e ™V (14) . ; :
pC need to learn hash functions for more views. Meanwhile, for
¥ ()BT Vo) L out-of-s_ample extension, afte_r pred!ctmg w_ew-spemfasﬂn
p(cy =blx) = (1 te (¢69%7) ) (15) codes in the same manner, it is slightly different to merge

With output probabilities derived or estimated, the pregtic them into a unified one. Specifically, we extend formulg)(
view-specific hash codes can be merged into a unified o8, follows for cases of more views with similar derivations.

Suppose that for an unseen instangg its feature vectors or — sign (H:i1p(ck = 1|z Hl’ilp(% = —1|z)

(p(ex = 1)) (p(cr, = —1))"!
19)

wherem > 1 indicates how many views are observed, and

z' denotes the feature vector in thid view. Here all needed

cp = sz‘gn(p(c;C =1|x,y) — p(ck = —1|x,y)) (16) probabilities can be derived or estimated in the same way as
those in formula 18).

in X and ) are respectively denoted asandy, andc €
{—1,1}4 is its to-be-determined unified hash code, with the
kth bit denoted ag;. Then bit by bit,c; is determined as the
following formula.

Assuming thatt and)’ are conditionally independent an,

we can derive the following formula with Bayes’ theorem.
IV. EXPERIMENTS

k= Sign(p(x|ck = Dp(yler = Dp(ex = 1) (17) A Experimental Settings

—p(xler = —Dp(yler = —1)p(er = _1)> In this paper, we conduct experiments on three benchmark
Moreover, with the Bayes’ theorem, we can further transforfiatasets to evaluate the proposed SePH. Specifically, the
the formula above into the following one. benchmark datasets include Wikdg], MIRFlickr [49 and

NUS-WIDE [50], and they are all with an image view and a
text view. Tablell gives some statistics of them.

Wiki is made up of 2,866 instances collected from
Wikipedia. For each instance, a 128-D Bag-of-Visual-Words

pler = 1x)p(cr = 1|y)
pler =1)
) (18)
pler = —1)

Ccp = sign (
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TABLE I bit_count counts the number of in the binary XOR result.
STATISTICS OF THREE BENCHMARK DATASETS Then we rank all instances in the retrieval set based on their
| Wiki | MIRFlickr | NUS-WIDE corresponding Hamming distances in an ascending order and
Dataset Size | 2,866 16,738 186,577 take the top ones as the ANNs for the query instance.
Retrieval Set | 2,173 15,902 184,711 In our experiments, the annotated semantic labels of any
gjg:'yn%jet 2’91373 2’30600 i:ggg training instance are represented as a binary labellingprec
Nr. of Labels | 10 24 10 Then we derive the affinity matrix of each datadet, A in

formula (1), as the cosine similarities between labelling vectors
of training instances. The only model parameterin the

, ) o ) objective function of SePH.g. formula (7)) is empirically set
SIFT feature vector is provided to describe its image vied ans( o1 for all datasets. As for the learning of hash functions

a 10-D topic vector is given to describe its text view. Eachy agch view, ;2 in formula @) for linear ridge regression
instance is mannually annotated with one semantic labet frq, SePHinear, 1 in formula (L0) for logistic regression in
10 candidates. Following?], [24], we take 25% of Wiki 0 gepy and A in formula (L2) for kernel logistic regression
form the query set, and the rest works as the retrieval set.j, gepy,, . are automatically set via 5-fold cross-validation on
MIRFlickr originally contains 25,000 instances collecte¢he corresponding features and learnt hash codes of tggiimin
from Flickr. Each instance consists of an image and ifances. Particularly, for kernel logistic regression @PB,,,,
associated textual tags, and is manually annotated with Q&BF kernel is utilized, with its paramete? set as the mean
or more of 24 provided semantic labels. To avoid noisesquared Euclidean distance between feature vectors nirtegi
here we remove textual tags that appear less than 20 tin@gances. Additionally, on all datasets the sampling &ize
in the dataset, and then delete instances without textgal t& in formula (12) is empirically set as 500. We perform both
or semantic labels. After pretreatment, we get 16,7388 random sampling and k-means sampling for SgPHwvhich
left. For each instance, a 150-D edge histogram is provideddre denoted as SeRH, ,na and SePH, 1., respectively. To
describe its image view, while its text view is represented @ncourage further developments, the codes of SePH will be
a 500-D feature vector derived from PCA]] on its binary published in a near future.
tagging vectow.r.t the remaining textual tags. We take 5% \we employ the supervised CMSSHE, CVH [27], KSH-
of MIRFlickr to form the query set, and the rest works as they [34], SCM-Orth and SCM-SeBH], and the unsupervised
retrieval set. IMH [21], LSSH [24], CMFH [23] as baselines to compare
NUS-WIDE is a large dataset originally containing 269,648ith the proposed SePH. Note that for IMH, we calculate its
instances. Like MIRFlickr, each instance in NUS-WIDE conrequired affinity matrices with the provided semantic |ahef
sists of an image and its associated textual tags, andtrigining instances, and thus it is actually supervised.HEve
manually annotated with one or more semantic labels from 8lake fair comparisons, we carefully perform parametemigini
candidates. FollowingZ3], [24], here we only keep the top 10for baselines, and report their best performance in thigpap
most frequent labels and the corresponding 186,577 instangVe perform 10 runs for SePH and any compared baseline with
annotated with them. For each instance, a 500-D Bag-ef-non-convex objective function with different initial vais,
Visual-Words SIFT feature vector is provided to descrilse iand report the average performance.
image view, while its text view is represented as a binary Following previous researches, we utilimaean average
tagging vectomw.r.t the top 1,000 most frequent tags. We alsprecision(mAP) to measure the retrieval performance of all
take 1% of NUS-WIDE to form the query set, and the resfross-view hashing methods. A higherAP value means

works as the retrieval set. better retrieval performance. Here the definitionmoA P is
Considering the small size of Wiki, we follov2g] and take given as follows.
its retrieval set as the training set. As for the large MIRKli 18] s
. 1 T
and NUS—WIDE_, to S|rr_1ulate real-world cases where onl_y MmAP — — Z 2 Zprecision(Rm) (20)
the supervised information of a small fraction of the data is Q| = mi o

provided, for either dataset we just sample 5,000 instances . e : _
from the corresponding retrieval set to form the training SéNhereC% 1S tbne, query sgt with its size be|ﬂ|@|, and for th.elt.h

It should be noticed that, the leamnt hash codes of trainifiy€Y i 2oj—1 Precision(R;,;) denotes itaverage precision
instances in the training process of SePH will be discard P), m; denotes the number of its ground-truth relevant

after hash functions are learnt, and then SePH generaths HASt@nces in the retrieval sekt; ; is a subset of its ranked

codes for all instances in the dataset with the learnt ha'équr'eval result consisting of instances from the top onéne

functions. Moreover, although each bit in the hash coddd! ground-truth relevant one, anttecision(R;,;) measures

generated by SePH is if-1, 1}, in our experiments we map the precision value inR; ;. Like [23], [24], an instance is
them into {0,1} and compactly store them bit by bit. I_ikeground—.truth relevant to a query if they share at least one
most previous hashing methods, to perform ANN retrieval fGemantic label.

any query hash codéf,, its Hamming distance to anith .

hash codeH; in the retrieval set, denoted agH,, H,), is B- Experimental Results

calculated ash(Hg, H;) = bit_count(H, & H;), where & The cross-view retrieval performance of the proposed SePH
denotes XOR operation between the bitsfof and H;, and and the compared baselines on all datasets is reported in
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TABLE Il
CROSSVIEW RETRIEVAL PERFORMANCE OF THE PROPOSEBEPH (i.e. SEPH;;cqr, SEPH;,., SEPHL 4 g AND SEPHg 4 1m) AND COMPARED
BASELINES ON ALL BENCHMARK DATASETS WITH DIFFERENT HASH COE LENGTHS, IN TERMS OFmAP. FOR SEPH, THE STANDARD ERRORS OFnAP
OVER 10 RUNS ARE ALSO REPORTED

| Wiki | MIRFlickr | NUS-WIDE

| I6bits | 32hits | 64 bits | 128 bits [ 16 bits [ 32 bits | 64 bits | 128 bits [ 16 bits | 32 bits | 64 bits | 128 bits
CMSSH P6] 0.1877 | 0.1771 | 0.1646 | 0.1552 | 0.5728 | 0.5743 [ 05706 | 0.5706 | 0.4063 | 0.3927 | 0.3939 | 0.3739
CVH [27] 0.1257 | 0.1212 | 0.1215 | 0.1171 | 0.6067 | 0.6177 | 0.6157 | 0.6074 | 0.3687 | 0.4182 | 0.4602 | 0.4466
IMH [21] 0.1573 | 0.1575 | 0.1568 | 0.1651 | 0.6016 | 0.6120 | 0.6070 | 0.5982 | 0.4187 | 0.3975 | 0.3778 | 0.3668
LSSH [24] 0.2141 | 0.2216 | 0.2218 | 0.2211 | 0.5784 | 0.5804 | 05797 | 0.5816 | 0.3900 | 0.3924 | 0.3962 | 0.3966
CMFH [23] 0.2132 | 0.2259 | 0.2362 | 0.2419 | 0.5861 | 0.5835 | 05844 | 0.5849 | 0.4267 | 0.4229 | 0.4207 | 0.4182

Image KSH-CV [34] 0.1965 0.1839 0.1701 0.1662 0.5793 0.5767 0.5732 0.5744 0.4229 0.4162 0.4026 0.3877
Query SCM-Orth B5] 0.1598 0.1460 0.1383 0.1131 0.5854 0.5751 0.5704 0.5649 0.3787 0.3668 0.3593 0.3520
Vs SCM-Seq B5] 0.2210 0.2337 0.2442 0.2596 0.6237 0.6343 0.6448 0.6489 0.4842 0.4941 0.4947 0.4965
TeX.t ’ SePH; 0.2479 0.2589 0.2788 0.2833 0.6672 0.6724 0.6757 0.6782 0.5465 0.5603 0.5660 0.5694
Database rmear 40.0023 | +0.0027 | +0.0017 | +0.0016 | +0.0009 | +0.0005 | +0.0006 | +0.0003 | 4+0.0023 | +0.0009 | +0.0007 | +0.0005
0.2375 0.2531 0.2619 0.2686 0.6640 0.6699 0.6736 0.6757 0.5393 0.5503 0.5562 0.5601

40.0030 | 4+0.0024 | +0.0016 | +0.0013 | +0.0011 | +0.0004 | +0.0003 | +0.0004 | 4+0.0013 | +0.0016 | +0.0006 | +0.0005
SePH, 0.2835 0.3003 0.3099 0.3204 0.6727 0.6792 0.6833 0.6860 0.5450 0.5532 0.5605 0.5650
Irtrnd $0.0028 | +0.0022 | +0.0024 | £0.0014 | +£0.0007 | £0.0005 | £0.0007 | +0.0006 | 4+0.0011 | +0.0012 | +0.0006 | +0.0008
SePH, 0.2838 0.3009 0.3074 0.3207 0.6733 0.6793 0.6829 0.6864 0.5477 0.5568 0.5640 0.5666
slr+km $0.0026 | +0.0023 | +0.0019 | £0.0015 | +0.0008 | £0.0007 | £0.0005 | +0.0005| +0.0014 | +0.0010| +0.0008 | +0.0009

SePH,.

CMSSH 6] 0.1630 0.1617 0.1539 0.1517 0.5715 0.5732 0.5699 0.5697 0.3874 0.3849 0.3704 0.3699
CVH [27] 0.1185 0.1034 0.1024 0.0990 0.6026 0.6041 0.6017 0.5972 0.3646 0.4024 0.4339 0.4255
IMH [21] 0.1463 0.1311 0.1290 0.1301 0.5895 0.6031 0.6010 0.5930 0.4053 0.3892 0.3758 0.3627
LSSH [24] 0.5031 0.5224 0.5293 0.5346 0.5898 0.5927 0.5932 0.5932 0.4286 0.4248 0.4248 0.4175
CMFH [23 0.4884 0.5132 0.5269 0.5375 0.5937 0.5919 0.5931 0.5919 0.4627 0.4556 0.4518 0.4478

Text KSH-CV [34] 0.1710 0.1665 0.1696 0.1576 0.5786 0.5763 0.5728 0.5715 0.4088 0.3906 0.3869 0.3834
Query SCM-Orth 5] 0.1553 0.1389 0.1262 0.1096 0.5857 0.5747 0.5672 0.5604 0.3756 0.3641 0.3565 0.3523
Vs SCM-Seq B9 0.2134 0.2366 0.2479 0.2573 0.6133 0.6209 0.6295 0.6340 0.4536 0.4620 0.4630 0.4644
Ima.g(.a SePH 0.5431 0.5619 0.5809 0.5872 0.7188 0.7285 0.7356 0.7385 0.6375 0.6532 0.6633 0.6674
Database wmear 40.0042 | +0.0017 | +0.0015 | +0.0014 | +0.0013 | +£0.0006 | +0.0004 | +0.0003 | 4+0.0022 | +0.0012 | +0.0005 | +0.0004
0.5531 0.5724 0.5888 0.5966 0.7176 0.7283 0.7347 0.7385 0.6291 0.6455 0.6545 0.6597
$0.0050 | +0.0025 | +0.0016 | £0.0008 | +£0.0009 | £0.0006 | £0.0004 | +0.0004 | £+0.0013 | +0.0007 | +0.0006 | +0.0004
SePH,,. . 0.6310 0.6512 0.6633 0.6692 0.7216 0.7296 0.7372 0.7408 0.6283 0.6415 0.6530 0.6584
trtrnd $0.0031 | +0.0015 | +0.0015 | +0.0015| +0.0005 | +£0.0007 | £0.0006 | +0.0006 | +0.0013 | +0.0015| +0.0008 | +0.0005
SePH, 0.6310 0.6516 0.6652 0.6701 0.7247 0.7328 0.7410 0.7437 0.6378 0.6513 0.6612 0.6674
slr+km +0.0024 | +0.0018 | +0.0018 | +0.0013 | +0.0011 | +0.0011 | +0.0010 | +0.0008 | +0.0011 | +0.0012 | 4+0.0007 | +0.0011

SePH,.

Table Ill, including both the performance of retrieving textodes learnt by singular value decomposition or eigenvalue
with image (.e. “Image Queryv.s. Text Database”) and that decomposition. 3) The standard erravs.t the performance
of retrieving image with textife. “Text Query v.s. Image of SePH,,cqr, SePH,., SePH 1.nq and SePky,. 1, are
Database”). For the former task, the image view of instancegsite small on all datasets (less th2{d of the corresponding
in the query set is utilized to generate their correspondimgAP value), meaning that the performance of SePH is not
query hash codes, while for the latter one, the text view &nsitive to the local optimality of its objective functiof)
utilized. As for any instance in the retrieval set, like CMFHGenerally, SePH,...- and SePlj are inferior to SePk, 1 ,n4
and LSSH, SePH generates one unified hash code for bb8ePH,, .., While on the large MIRFlickr and NUS-WIDE,
views. Moreover, considering that the objective functidn dhe performance of SeRH.... and that of SePH are quite
SePH is non-convex, here we also report the standard errcosnparable to that of SeRH.,nq / SePH -1k - That, on
w.rt the performance of SeRH..., SePH,, SePH, +.»4 one hand, shows the superiority of kernel logistic regoessi
and SePH,. .« over the ten runs on each dataset, so as ito modelling the non-linear projections from features te bi
investigate how different initial values off can affect the nary hash codes, and on the other hand, also reflects the
performance of SePH effectiveness of utilizing linear ridge regression or i
From Tablelll, we can get the following observations. 1yegression as hash functions. 5) On all datasets, it can be
Even with varying hash code lengths, the proposed SePs¢en that SePii. .., is generally superior to SeRH, pa,
including SePhl,,cqr, SEPH,, SePHy, 1 rna and SePh, .., Ut the superiority is insignificant (less thafi). Therefore,
significantly outperforms all compared baselines on all tibe performance of SeRk is not sensitive to the sampling
three benchmark datasets, which well demonstrates its-effgtrategy for the learning of kernel logistic regression.
tiveness. The superiority of SePH is attributed to both its Furthermore, we performpaired-sample t-teqi52] for eval-
capability of better preserving semantic affinities in Haimgn uating the significance of the improvements achieved by the
space and the effectiveness of the learnt hash functior@n2) proposed SePH over the compared baselines in both cross-
all datasets, the performance of SePH keeps increasingeasview retrieval tasks on all datasets with different hashecod
hash code length increases, meaning that it can well utililngths. For each algorithm, we take the correspondirg
longer hash codes for better preserving the semantic &fnit (average precisionvalues of the query set as samples from
Meanwhile, as also observed i23, [34], [35], the perfor- its AP distribution, and compare them between algorithms
mance of CMSSH, KSH-CV and SCM-Orth decreases, whidbr significance tests. The significance level is set as a&pi
may be caused by the imbalance between bits in the hasgtiue 0.01 here. And we find that the maximd-valuein
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Image Query v.s. Text Database
on the Training Set of NUS-WIDE
Quality of Learnt Hash Codes

of the Training Set

=)
~

Hash Code Length Iterations
®

1 T T

S ig\'fff" [} Fig. 4. Variances of the objective function value and theesponding quality
gy od -7~ IMH I of learnt hash codes of training instances in SePH as the ewafhbterations
g£s ooy increases, on NUS-WIDE with the hash code length fixed as &6 bi
2008 —+—KSH-CV |
R -8-SCM-Orth
2507t —6—SCM-Seq {
fi &~ SePH instances is significantly better than that of the hash codes
2E O‘BH/ % generated by learnt hash functions. We attribute this tahé)
Syos 4%‘ view-specific features of the three datasets are somewtlzdt we
£5 and may not well describe the instance in the corresponding

.

view, 2) the employed predictive modelse. linear ridge
16 bits 32 L’iﬂi < Codo Longl: bits 128 bits regression, logistic regress and kernel logistic regoessnay
not be capable enough. Therefore, stronger features angl mor

Fia 3 C _ ieval perf ¢ all aldorithorsthe traini . powerful predictive models need to be further investigated
1g. o. ross-view retrieval performance ot all algorithorstne training se . R .
of NUS-WIDE with different hash code lengths, which reflettte quality of In our experiments, we utilize the method of gradient

the hash codes learnt by each algorithm for a training set. descent with a momentum @f£.5 to optimize the objective
function V¥ (i.e.formula (7)) of SePH. Here we further conduct
experiments to analyse the convergence of the optimization

all significance tests between variants of SePH and compaR§@cess and see how the quality of the learnt hash codes of
baselines is arount)~7, which is far less than the significancelr@ining instances varies with iterations. Specifically figing

level 0.01, meaning that the improvements gained by SePiie hash code length as 16 bits, we perfarfo iterations
over the compared baselines are statistically significant. ~ 0f gradient descent on Wiki, MIRFlickr and NUS-WIDE to

To get more inside details about the superiority of Seplqptimizeklf. Then for each iteration, we calculate the va]ue of
we further analyse the quality of the learnt hash codes % Meanwhile, we tak(_a Fhe porrespondlng valugbfo degve
training instances. Specifically, on the training set ofhead’@sh COde_S of th? tralr_nng instances, and analyse the_m)qual
dataset, we utilize the corresponding learnt hash Codesb%_measurlng their retnev_al performance on the corre_gpnmd
perform cross-view retrieval, repeatedly using one as é[yquéramlng set. Note_ t_hat since SePH Iear_ns one unified hash
to retrieve nearest neighbours from the rest, and then measgPde for each training instance, the retrieval performasice
the correspondingr: AP value. Since we utilize the semanticle""r_nt hgsh codes n ‘I‘mage Quews. Text Database },N'"
labels of instances to define their ground-truth relevamce foe |de_nt_|cal to that in “Text Query.s. Image Database_ on
calculatingm AP, the derivedn AP values can quantitatively the training set, and thus we just re_:p(_)rt Oone. Th_e e’fpe“‘”“e”t
reflect how well the learnt hash codes can preserve the giJ&iUIts on the largest NUS-WIDE s illustrated in F4g.and
semantic affinities of training instances. FRyillustrates the those on Wiki, MIRFlickr are provided in the supplementary

performance of learnt hash codes by SePH in the two cro§iaterial due to the limited space. Then we can obtain the
view retrieval tasks on the training set of the largest Nugollowing observations. 1) The optimization process foPBe

WIDE, with the hash code length varying from 16 to 12gcan generally converge in aroundo iterations, and for Wiki

Fig. 3 also presents the performance of baselines for coff?d MIRFlickr it can even converge faster. 2) As the number
iterations increases, the quality of the learnt hash sade

parison. We can observe that SePH significantly outperforﬁfs, e ; i
the baselines, with the correspondingi P being above).9. training instances quickly increases and then converges.
Actually, similar results can also be observed on Wiki and ) o o
MIRFlickr, with the corresponding AP value of SePH being C- Experimental Vallld{:mons _qf the Proposed Probabilistic
1.0 on Wiki and aboved.9 on MIRFlickr. For more details, APProach for Determining Unified Hash Codes

one can refer to the supplementary material. Thereforgnt ¢ To validate the proposed probabilistic approach for de-
be seen that the hash codes learnt by SePH can well preséevmining the unified hash code of an unseen instanee,

the semantic affinities of training instances. Additiopay formula (18) and (19), we further conduct experiments on all
comparing Fig.3 and Tablelll, one can observe that thedatasets to see whether it can help to improve the cross-view
retrieval performance of the learnt hash codes of trainimgtrieval performance. As all datasets contain only twavgie
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TABLE IV
COMPARISONS BETWEEN THE PROPOSED PROBABILISTIC APPROAGHe. SEPH;ieqr: SEPH;, SEPHyiy 4 rna AND SEPHg 4 k) AND OTHER
STRATEGIES FOR DETERMINING THE UNIFIED HASH CODES OF UNSEEINSTANCES.

| Wiki | MIRFlickr | NUS-WIDE
| 16 bits | 32 bits | 64 bits | 128 bits | 16 bits | 32 bits | 64 bits | 128 bits | 16 bits | 32 bits | 64 bits | 128 bits
SePH;nearIMg] 0.1443 | 0.1503 | 0.1557 | 0.1574 | 0.6128 | 0.6153 | 0.6169 | 0.6184 | 0.4608 | 0.4674 | 0.4707 | 0.4743
SePHipcar[TX1] 0.2281 | 0.2334 | 0.2491 | 0.2518 | 0.6585 | 0.6637 | 0.6668 | 0.6688 | 0.5211 | 0.5309 | 0.5354 | 0.5408
SePHipcar[Rand] | 0.1901 | 0.2054 | 0.2255 | 0.2336 | 0.6528 | 0.6602 | 0.6647 | 0.6679 | 0.5226 | 0.5389 | 0.5479 | 0.5552
SePH;ncar[Equall | 0.2407 | 0.2477 | 0.2677 | 0.2710 | 0.6673 | 0.6724 | 0.6756 | 0.6779 | 0.5431 | 0.5554 | 0.5608 | 0.5660
SePHincar 0.2479 | 0.2589 | 0.2788 | 0.2833 | 0.6672 | 0.6724 | 0.6757 | 0.6782 | 0.5465 | 0.5603 | 0.5660 | 0.5694
SePH, [Img] 0.1463 | 0.1527 | 0.1574 | 0.1596 | 0.6110 | 0.6143 | 0.6163 | 0.6172 | 0.4612 | 0.4668 | 0.4707 | 0.4725
SePH, [Txt] 0.2333 | 0.2480 | 0.2556 | 0.2618 | 0.6550 | 0.6611 | 0.6649 | 0.6671 | 0.5226 | 0.5329 | 0.5384 | 0.5428
image | SePH-[Rand] 0.1959 | 0.2163 | 0.2320 | 0.2422 | 0.6484 | 0.6569 | 0.6619 | 0.6652 | 0.5254 | 0.5403 | 0.5494 | 0.5558
Que‘-" SePH,.[Equal] 0.2311 | 0.2454 | 0.2545 | 0.2608 | 0.6633 | 0.6693 | 0.6729 | 0.6750 | 0.5366 | 0.5463 | 0.5516 | 0.5558
e | SePH, 0.2375 | 0.2531| 0.2619 | 0.2686 | 0.6640 | 0.6699 | 0.6736 | 0.6757 | 0.5393 | 0.5503 | 0.5562 | 0.5601
Text SePH, 1 mallmg] | 0.1882 | 0.2018 | 0.2099 | 0.2163 | 0.6263 | 0.6311 | 0.6332 | 0.6352 | 0.4640 | 0.4705 | 0.4756 | 0.4784
Databasel SEPH:tr+rnalTX1 0.2689 | 0.2815 | 0.2900 | 0.2994 | 0.6624 | 0.6686 | 0.6725 | 0.6752 | 0.5222 | 0.5310 | 0.5375 | 0.5417
SePH., 4, malRand] | 0.2415 | 0.2644 | 0.2815 | 0.2953 | 0.6597 | 0.6691 | 0.6745 | 0.6782 | 0.5256 | 0.5399 | 0.5496 | 0.5560
SePH.j, 4 rnglEqual] | 0.2801 | 0.2954 | 0.3052 | 0.3161 | 0.6723 | 0.6787 | 0.6829 | 0.6856 | 0.5428 | 0.5509 | 0.5581 | 0.5626
SePH.ir 4 rnd 0.2835 | 0.3003 | 0.3099 | 0.3204 | 0.6727 | 0.6792 | 0.6833 | 0.6860 | 0.5450 | 0.5532 | 0.5605 | 0.5650
SePH.;, 4 ,m[IMg] | 0.1867 | 0.1989 | 0.2070 | 0.2149 | 0.6257 | 0.6298 | 0.6323 | 0.6346 | 0.4653 | 0.4726 | 0.4780 | 0.4795
SePH.iy 4 m [TX1] 0.2698 | 0.2825 | 0.2871 | 0.2992 | 0.6630 | 0.6689 | 0.6721 | 0.6755 | 0.5267 | 0.5364 | 0.5432 | 0.5464
SePH.i, 4 xm[Rand] | 0.2406 | 0.2640 | 0.2785 | 0.2950 | 0.6600 | 0.6685 | 0.6737 | 0.6783 | 0.5287 | 0.5443 | 0.5541 | 0.5585
SePH.j, 4 ,m[Equal] | 0.2805 | 0.2956 | 0.3027 | 0.3160 | 0.6729 | 0.6788 | 0.6824 | 0.6859 | 0.5455 | 0.5547 | 0.5620 | 0.5644
SePH.ir 4 kem 0.2838 | 0.3009 | 0.3074 | 0.3207 | 0.6733 | 0.6793 | 0.6829 | 0.6864 | 0.5477 | 0.5568 | 0.5640 | 0.5666
SePH,ear M) 0.2158 | 0.2350 | 0.2481 | 0.2568 | 0.6335 | 0.6387 | 0.6415 | 0.6435 | 0.4999 | 0.5116 | 0.5169 | 0.5199
SePHincar[T1] 0.5320 | 0.5489 | 0.5615 | 0.5667 | 0.7121| 0.7213 | 0.7279 | 0.7304 | 0.6170 | 0.6301 | 0.6393 | 0.6457
SePH,ncqr[Rand] | 0.4561 | 0.5078 | 0.5377 | 0.5553 | 0.6961 | 0.7088 | 0.7173 | 0.7216 | 0.6065 | 0.6297 | 0.6448 | 0.6531
SePHipcar[Equal] | 0.5419 | 0.5595 | 0.5768 | 0.5828 | 0.7198 | 0.7293 | 0.7361 | 0.7390 | 0.6371 | 0.6511 | 0.6611 | 0.6669
SePHincar 0.5431 | 0.5619 | 0.5809 | 0.5872 | 0.7188 | 0.7285 | 0.7356 | 0.7385 | 0.6375 | 0.6532 | 0.6633 | 0.6674
SePH, [Img] 0.2251 | 0.2444 | 0.2572 | 0.2645 | 0.6316 | 0.6368 | 0.6401 | 0.6421 | 0.4987 | 0.5085 | 0.5141 | 05173
SePH, [Txt] 0.5415 | 0.5573 | 0.5742 | 0.5808 | 0.7075 | 0.7184 | 0.7250 | 0.7286 | 0.6111 | 0.6282 | 0.6371 | 0.6426
Text SePH,.[Rand] 0.4604 | 0.5131 | 0.5475| 0.5643 | 0.6907 | 0.7044 | 0.7130 | 0.7184 | 0.6034 | 0.6269 | 0.6415 | 0.6494
Que SePH,.[Equal] 0.5553 | 0.5731 | 0.5916 | 0.5996 | 0.7173 | 0.7282 | 0.7345 | 0.7384 | 0.6287 | 0.6452 | 0.6543 | 0.6597
o | SePH, 0.5531 | 0.5724 | 0.5888 | 0.5966 | 0.7176 | 0.7283 | 0.7347 | 0.7385 | 0.6291 | 0.6455 | 0.6545 | 0.6597
imace | SEPHirfrmallmgl | 0.3916 [ 04325 | 0.4520 [ 0.4625 | 0.6521 | 0.6582 | 0.6621 | 0.6648 | 04966 | 0.5066 | 05134 | 05169
g el SePHIy rnalTX] 0.5761 | 0.5884 | 0.5989 | 0.6035 | 0.7089 | 0.7167 | 0.7237 | 0.7271 | 0.6019 | 0.6159 | 0.6260 | 0.6303
SePH.j, 4 rna[Rand] | 0.5675 | 0.6129 | 0.6397 | 0.6505 | 0.7021 | 0.7141 | 0.7231 | 0.7281 | 0.5960 | 0.6176 | 0.6324 | 0.6404
SePH., 4 nalEqual] | 0.6302 | 0.6514 | 0.6643 | 0.6702 | 0.7215 | 0.7294 | 0.7371 | 0.7405 | 0.6267 | 0.6398 | 0.6522 | 0.6575
SePH.tr 4 rnd 0.6310 | 0.6512 | 0.6633 | 0.6692 | 0.7216 | 0.7296 | 0.7372 | 0.7408 | 0.6283 | 0.6415 | 0.6530 | 0.6584
SePH., 4 ,m[IMg] | 0.3813 | 0.4194 | 0.4422 | 0.4522 | 0.6528 | 0.6583 | 0.6633 | 0.6655 | 0.5018 | 0.5118 | 0.5178 | 0.5216
SePH.ir 4 km [TX1] 0.5762 | 0.5882 | 0.5991 | 0.6036 | 0.7118 | 0.7199 | 0.7273 | 0.7301 | 0.6148 | 0.6287 | 0.6377 | 0.6440
SePH., 4 ,m[Rand] | 0.5637 | 0.6107 | 0.6381 | 0.6485 | 0.7044 | 0.7162 | 0.7260 | 0.7304 | 0.6060 | 0.6282 | 0.6420 | 0.6508
SePH.i, 4 km[Equal] | 0.6304 | 0.6510 | 0.6653 | 0.6709 | 0.7246 | 0.7326 | 0.7408 | 0.7435 | 0.6359 | 0.6494 | 0.6601 | 0.6661
SePH.trt kem 0.6310 | 0.6516 | 0.6652 | 0.6701 | 0.7247 | 0.7328 | 0.7410 | 0.7437 | 0.6378 | 0.6513 | 0.6612 | 0.6674
i.e.image and text, for comparison, we introduce the following TABLE V
basellnes Wlth Other Strateglesl 1) SeBMg] USIng the OFF-LINE TRAINING COSTS AND ON-LINE HASHING COSTS FOR
. . ) ope MPARED HASHING METHODS THAT USE LINEAR RIDGE REGRESSIONS\
predicted hash code from the image view as the unified one, HASH FUNCTIONS, IN TERMS OF SECOND
SePH[Txt]: using the predicted hash code from the text view
as the unified one, 3) SeRfRand]: randomly taking-1 or 1 | Wiki | MIRFlickr | NUS-WIDE |
for a bit when predicted values from different views conflict g{\/"js[;nm 3879-226 1%156‘234 2(1);‘%237
4) SePH[Equal]: using the proposed approach but setting offi IMH [21] 8.564 92149 95 987
p(ck = 1) = p(c, = —1) for all bits in formula (8) and (19), Tra'ir']ri‘r?g LSSH 4] 387.848| 878.047 | 889.888
which is used in our previous world{]. Here SePH stands  cCosts | SMFH [23 3510 | 35115 26,956
SCM-Orth B5] | 0.015 0.078 1.264
for SePHincar, S€PH,, SEPH ;yrna OF S€PH; 1 k. And SCM-Seq 85| | 3.588 9.500 187.824
different combining strategies will result in differentified SePHinear 47.066 | 198.511 202.801
hash codes for instances in the retrieval sets. The expeténe CMSSH Pl 0.015 0.109 2.262
results are shown in Table/. And we can observe that on CVH [27] 0.015 0.140 2.278
) . ) . IMH [21] 0.031 0.251 3.869
all datasets with different hash code lengths, 1) Selhd (H3n-|ll’]l’_le LSSH 4] 18.627 112.367 1252.604
asnin
SePH[Equal] generally outperform SeRHmg], SePH[Txt] Costs 9| cMFH [23 0.031 0.203 4.478
and SePK[Rand], which well demonstrates the superiority ggm:ggg%ﬂ 8.812 8&421% 3%??
of the proposed probabilistic approach for determining the SePHincar 0.031 0.265 3.432

unified hash codes of unseen instances, and 2) Sefed-
erally outperforms SePHEqual], which demonstrates the
reasonableness of makinglc; = 1) and p(c, = -1)
dataset-dependent and the effectiveness of estimating the. Comparison of Training and Hashing Costs
with relative frequencies of-1 and 1 in the corresponding

bit of the learnt hash codes of training instances. Apart from theoretical analyses, here we also conduct ex-

periments to compare the off-line training costs and thédirm-
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Fig. 5. Analyses on affecting factors. Sub-figillustrates the effects of the only model parameteon the quality of the learnt hash codes of the training
set in each dataset. Sub-figusb and 5c respectively illustrate the effects of the training seesin the performance of SePH and the effects of the sampling
size for learning kernel logistic regressiare(hash functions) on the performance of SepH Both are conducted on the largest NUS-WIDE with the hash
code length fixed as 16 bits.

hashing costs of the proposed SePH with those of baselinlesrn the hash codes of the corresponding training set.detr e
Considering that most baselines utilize linear ridge regjon  setting of«, the quality of learnt hash codes is measured with
as hash functions, here we only take SgRH,., CMSSH their cross-view retrieval performance on the training ke
[26], CVH [27], IMH [21], LSSH [24], CMFH [23], SCM- the experiments of converge analyses, considering that the
Orth and SCM-Seq35] for comparison. Specifically, by fixing retrieval performance of learnt hash codes on a trainingnset
the hash code length as 128 bhits to make the comparistims two cross-view retrieval tasks would be equal, here vige on
more significant, we perform each compared hashing meth@gort one, as illustrated in Fi§a It can be observed that as
on Wiki, MIRFlickr and NUS-WIDE, and then measure itsy increases frond to 1, the quality of the learnt hash codes of
time costs for training and generating hash codes for d#fie training sets in MIRFlickr and NUS-WIDE firstly increase
instances in each dataset. The experiments are conducted and then decreases, while thatt Wiki keeps unchanged with
server with 2 Intel Xeon E5645 CPUs and 48GB RAM, witlan optimalmAP value of 1.0. The reasonable experimental
all compared methods run on Matlab 2014a. For simplicityesults show that an appropriate positivean make the learnt
here we perform 100 iterations for optimizing the objectiveeal-valued hash code matri{ close to the optimal binary
function of SePH on each dataset, which can well guaranteee H via reducing the quantization loss, while a largean
convergence. Experimental results are reported in T&ble lead the KL-divergence term to be less optimized and thus
Note that for SePH,..., the training costs include thosedisable the learnt hash codes to well preserve the semantic
of learning the hash codes of training instances and thasféinities. It should also be noticed that the empirical ealu
of learning view-specific hash functions. It can be seen thaD1 is near to the optimal settings far on all datasets and
for off-line training, SePkl,...,, generally costs more time it consistently yields superior performance thag-= 0.
than most baselines, but still costs significantly less tthen
boosting based CMSSH and the sparse coding based LS]S_H
As for on-line hashing, SeRH.., costs slightly more time "*
than most baselines, as it needs extra time to estimate thd0 analyse how the training set size affects the performance
output probabilities. Meanwhile, its on-line hashing soate of SePH, by fixing the hash code length as 16 bits, we increase
still much lower than those of LSSH, which generally needbe training set size of each dataset frdf0 to 20,000
to perform sparse coding for view-specific features. Adyyal (2,000 for Wiki and 14, 000 for MIRFlickr), and measure the
on average SePH... costs less than 0.1 millisecond forcorresponding cross-view retrieval performance of SePH on
generating the hash code of an instance, which would géyerdhe query set for each size. The experimental results on the
be acceptable in real-world applications. largest NUS-WIDE are illustrated in Fidib. It can be seen
that as the training set size increases, the performanceRi S
i.e. SePH;near, SEPH,, SEPH 1+ rng and SePHy, 1 k., keeps
E. Effects of Model Parameters increasing and finally tends to converge. Actually, on NUS-
In previous experiments, for training SePH, the only mod&/IDE, when the training set size increases to arognao,
parametera in its objective function i(e. formula (7)) is the performance of SePH begins to converge. Considering tha
empirically set a$.01. Here we further conduct experiments training set size 03000 is less thar2% of the retrieval set
to analyse its effects. Actually, the effectsiobn SePH come size, the experimental results well demonstrate that SesPH i
from its effects on the quality of the learnt hash codes of ttimpable of exploiting the limited supervised informatidnao
training set. And thus in our experiments, by fixing the hagfataset. And thus it can be applicable for large-scale dt#as
code length as 16 bits on each dataset and using identisisce SePH can be well trained with only the supervised
initial values for H, we varya in {0,1074,1073,...,1} to information of a small fraction. Similar experimental résu

Effects of Training Set Size
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can also be observed on Wiki and MIRFlickr, as provided in

the supplementary material.

G. Effects of Sampling Size for Kernel Logistic Regression [

In previous experimente.r.t SePH,,., we empirically uti-

lize a sampling size 0300 to learn kernel logistic regressions 3
on all datasets. Here we further conduct experiments to in-
vestigate its effects. Similarly, we fix the hash code length
as 16 bits. And for each dataset, with learnt hash codes 541]

training instances, we increase the sampling size fid

to 5,000 (2,000 for Wiki), and respectively utilize random [3]
sampling and k-means sampling for each size to learn the
corresponding kernel logistic regressions as hash fumgtio [6]
Moreover, for each sampling size, we measure the cross-view
retrieval performance on the query set with the hash cod

generated by the corresponding learnt hash functions.5eig.

shows the experimental results on the largest NUS-WIDE, and

we can see that the performance of SgRH.e. SePH,;tnd

and SePH; 1 rm, firstly increases and then converges quicklyg
as the sampling size increases. Actually, on NUS-WIDE, when
the sampling size increases to around00, the performance

of SePH,;,- begins to converge. Moreover, the empirical settinﬂo]
of sampling size in our experimentse; 500) achieves more
than98% of the performance achieved by the largest sampli
size {.e. 5,000), while its training and predicting costs, a
theoretically analysed before, would be much lower. Andsthu

it is reasonable to perform sampling for learning kerneidtig

regression in SePhl.. Additionally, we can observe that at
small sampling size®(g.100), k-means sampling shows morgz13]
significant superiority over random sampling. It is because
that in those cases the sampled kernel feature vectors are
not sufficient enough for spanning the to-be-learnt werghti [14]
vector and k-means sampling can probably select better. ones

V. CONCLUSIONS

In this paper, we propose a supervised cross-view hashing
method termed SePH. For training, given the semantic affifté!
ties of training data, SePH firstly transforms them into apro
ability distribution and aims to approximate it with anathe[17]
one derived from to-be-learnt binary hash codes of training
instances in Hamming space. Then with the hash codes lea T
any kind of effective predictive models can be learnt as hash
functions in each view to project the corresponding feature
into binary hash codes, such as linear ridge regressioistiog
regression and kernel logistic regressiett. To perform out-
of-sample extension, given an unseen instance, the leasht h{20]
functions firstly predict view-specific hash codes and deriv
or estimate the corresponding output probabilities in eafch [21)
its observed views, and then a novel probabilistic approach
is utilized to determine a unified hash code. Experiments on
three benchmark datasets show that SePH yields state-of-ihy)

art performance for cross-view retrieval.
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