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look of the recently published papers in TNNLS on this



©CoO~NOUTA,WNPE

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Page 2 of 19
1

End-to-End Feature-aware Label Space Encoding
for Multi-label Classification with Many Classes

Zijia Lin, Student Member, IEEE;uiguang DingMember, IEEE,
Jungong Han, Ling ShaoSenior Member, IEEE,

Abstract—To make the problem of multi-label classification

with many classes more tractable, in recent years academia

has seen efforts devoted to performing label space dimensio
reduction (LSDR). Specifically, LSDR encodes high-dimensnal
label vectors into low-dimensional code vectors lying in adtent
space, so as to train predictive models at much lower costs.
respect to the prediction, it performs classification for ary unseen
instance by recovering a label vector from its predicted cod
vector via a decoding process. In this paper, we propose a nelv
method, namely End-to-End Feature-aware label space Encat
(E2FE), to perform LSDR. Instead of requiring an encoding
function like most previous works, E*FE directly learns a code
matrix formed by code vectors of the training instances in arend-
to-end manner. Another distinct property of E2FE is its feature
awareness attributable to the fact that the code matrix is larnt
by jointly maximizing the recoverability of the label space and the
predictability of the latent space. Based on the learnt code matrix,
E2FE further trains predictive models to map instance features
into code vectors, and also learns a linear decoding matrixof
efficiently recovering the label vector of any unseen instate from
its predicted code vector. Theoretical analyses show thatdth
the code matrix and the linear decoding matrix in E2FE can
be efficiently learnt. Moreover, similar to previous works, E2FE
can be specified to learn an encoding function. And it can also
be extended with kernel tricks to handle non-linear correldions
between the feature space and the latent space. Comprehevesi
experiments conducted on diverse benchmark datasets withamy
classes show consistent performance gains of EE over the state-
of-the-art methods.

Index Terms—End-to-end feature-aware label space encoding,
Label space dimension reduction, Multi-label classificatbn.

I. INTRODUCTION

Junction-based
end-to-end

O

Feature Space

Q: decoding

Low-dimensional
Latent Space

Label Space

Fig. 1. lllustration of the principles behind traditionaltti-label classification
methods (red) and those with label space dimension reduftioe).

other learning approaches are also dedicated to the fiktd, li
the tree-structure based method ML-TREE [17], the muliwie
vector-valued manifold regularization method ®\R [18],
and the label inference method LI-MLC [2gtc

Recently, due to the emergence of web-based applications,
multi-label classification problems tend to be large-soaith
new challenges of numerous instances and large labelisets (
high-dimensional label spaces) coming up. For instancihan
picture sharing community Flickr, there are billions of iges
and each can be annotated with textual labels selected from
millions of candidates. In the community of neural networks
and related learning systems, to handle the challengess som
works like [22]—-[26] focus on feature dimension reductian o
model simplification, while others like LI-MLC [21] focus on
shrinking the label space. Here we follow the latter one.

As advocated by Kapoaet al. in [5], large label sets cause

S a generalized version of multi-class classification [1iany existing effective multi-label classification metsdé]—
[2], where each instance is restricted to having onfi5] to be infeasible, since generally they need to learn a

one class label, multi-label classification [3]-[20] allown

predictive model for each label independently or with inter

instance to be associated with several class labels toibdesctabel correlations, and then combine them in a certain manne
its semantic content or attributes more clearly. Multidbb for prediction. Specifically, for a multi-label classifica
classification methods are increasingly demanded by modermblem with many classes.€. a large label set, or a high-

applications, like multi-label text classification [3], sio emo-

dimensional label space), the number of needed predictive

tion categorization [4], and semantic image annotatiorj{18models would generally be large, thus making the training
[20]. In addition, many researches on neural networks agdsts, if not unaffordable, extremely high. To tackle tisisuie,
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Science an

dresearchers have recently proposed to perform label space

dimension reduction (LSDR) [5], [27]-[32], which aims to
reduce the training costs while maintaining acceptabls-cla
sification performance. Specifically, for LSDR, as illusdc

in Fig. 1, the high-dimensional label vector of any training
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latent space. Afterwards, predictive models are traineddp
instance features into low-dimensional code vectors, whos
guantity is much smaller and thus can significantly reduee th
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and

can

tractable.

From Fig. 1 it can be seen that, to perform predictiorEe
the encoding process is totally redundant, and thus a
encoding function is useless during prediction. Moreove?,
even for training, it is the encoding resulie{ code .
vectors of training instances) that will affect the leamin

of predictive models, no matter whether an encoding
function is required or not.

Defining an encoding function may limit the searching e
space of the to-be-learnt code vectors of training in-
stances. For example, given the tagging mai¥ix of
training instances, using a linear encoding functi®n
can limit the to-be-learnt code vectors in the spade,
thereby preventing them from being searched in the whole
real space that could potentially minimize the loss of
classification performance. .
In some cases, code vectors of training instances are re-
quired to have specific properties, like the orthonormality
between code dimensions in this paper. Although those
property requirements can somehow be transferred to the

training costs. As for performing prediction for any unseeto perform LSDR viaEnd-to-End Feature-aware label space
instance, a low-dimensional code vector is firstly obtaineEncoding. Specifically, BFE directly learns a code matrix
with the learnt predictive models from its features, anchthdormed by code vectors of training instances via jointly
decoded for recovering its label vector. Generally spegkitmaximizing the recoverability of the label space and the
if the learnt predictive models and the decoding process gnedictability of the latent space, with the latter considering
effective and efficient enough, LSDR usually yields acceleta the correlations between the latent space and the featace sp
classification performance with much lower costs, makingnd thus EFE is feature-aware Based on the learnt code
the multi-label classification problem with many classegenomatrix, predictive models are trained as other LSDR methods
to predict code vectors from instance features. Meanwhile,
Prior methods dedicated to LSDR mostly require an encold?FE further learns a linear decoding matrix that can recover
ing function (function-basedk.g.a linear one, to map label the predicted label vector of any unseen instance from & co
vectors of training instances into code vectors lying in theector generated by the trained predictive models.
latent space. However, due to the following observatiores, w Since the predictive models in the proposedFE are
argue that learning the code vectors of training instannesdpen for any effective ones, including neural network¥-E
an end-to-end mannere. directly learning them without any can actually be applied with existing predictive models or
encoding functions, can be feasible and even preferable. feature dimension reduction approaches in the community to
tter tackle the large-scale multi-label classificatioobfem.
rticularly for LSDR, below are three highlighted propest
E?FE, which are in line with our contributions.

We propose an effective LSDR method termedrE for
tackling (large-scale) multi-label classification prabke
with many classes. To the best of our knowledge, it is the
first to make LSDR both end-to-end and feature-aware.
We jointly maximize therecoverabilityof the label space
and thepredictability of the latent space for performing
LSDR in E’FE. The objective functiomw.r.t the to-be-
learnt code matrix can be transformed to an eigenvalue
problem, and is sufficiently flexible in the sense that
different optimization strategies can be used depending
on the applications for efficient optimization.

We show that BFE is a generic approach that covers
previous LSDR researches, and it can also be specified
to learn an encoding function. Moreover, it can be ex-
tended with kernel tricks to handle non-linear correlation
between the feature space and the latent space.

encoding function, it will inevitably make the objective Thjs paper is based on our previous work presented in [33],

function much more complex for optimization.

as a result it may not fully accomplish the goal of

LSDR. Moreover, MLC-BMaD learns the code vectors of
training instances in &ature-unawarenanner, meaning that
the correlations between the latent space and the feataoesp
are not considered. That, as advocated by Chen and Lin [30],

probably make the learnt latent space less predictalle a

thus degrade the final classification performance. Thesefor
further researches on end-to-end label space encoding are
highly expected.

In this paper, we propose a novel method termé&mE

which was termed FalE, but it substantially extends thatkwor

In fact, compared to a function-based encoding, an erf¥ €nhancing the proposed method to be more efficient and
to-end encoding requires no encoding function, and thgective. Below are the summarized extensions.
can search the whole real space for the optimal to-be-learnt We propose a more efficient optimization method for
code vectors. Moreover, for an end-to-end encoding, it doul
be direct to add property requirements for the to-be-learnt
code vectors, making the objective function less complex fo
optimization. To the best of our knowledge, MLC-BMaD [31]
is the only previous research that pioneered end-to-ersl lab
space encoding via boolean matrix decomposition. However,
as will be shown later, its training is not efficient enough

the proposed method to learn the code matrix in cases
wheren > d  +d,, with n, d,, d, respectively denoting
the number of training instances, the dimensionality of
the label space and that of the feature space. This is
helpful for practical applications, as such cases are quite
common. Specifically, the newly proposed optimization
method transforms the size of the eigenvalue problem
w.r.t the objective function of BFE from R™*" to
R(dztdy)x(dztdy) which can be solved more efficiently
and can substantially reduce space costs.

We further proposerE2FE, rLinearBFE and kernet
7E?FE, to consider the priori knowledge provided by the
eigenvalue problen.r.t the to-be-learnt code matrix for
learning an enhanced decoding matrix. Experiments com-
paring 7E2FE, wlLinearEFE, kernelrE2FE with their
corresponding counterpartse. E2FE, LinearBFE and
kernetE2FE, show that enhancing the decoding matrix



©CoO~NOUTA,WNPE

Page 4 of 19

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3
with such priori knowledge can help to gain significant TABLE |
performance improvements (OI’I avera@el% for label- CATEGORIZATION OF EXISTINGLSDRMETHODS AND E2FE
based macroFhand33.9% for example-based Accuracy
« Inthis paper, we provide a thorough discussion and exper- Cée[azt‘;]r e;fgg"[‘gg] E&tf_rgsa"[v;re
imental validation for that the orthonormality assumption function-based| " 1og) ‘MmL-CSSP [32] | CPLST [30]
for columns of the to-be-learnt code matrix ifFE is end-to-end MLC-BMaD [31] EZFE

reasonable. We also make error analyses for the proposed
E2FE, and derive its error bound. Additionally, more

theoretical analyses, like those regarding time complexifp| ST) for seeking important correlations between labels,
and parameter settings, are also presented here.  hich s essentially PCA [38] for the label space. Chen and
« To better validate the effectiveness ofFE, we utilize |, [30] further enhanced it by proposing feature-aware-con
more widely-used benchmark datasets for experimentgional principal label space transformation (CPLST),iath
We also conduct the experiments on the full datasefzya|ly integrates orthogonally constrained canonicates
instead of the sampled ones in [33], so as to demonstrglg,, analysis into the framework of PLST for considering
the applicability of EFE for handling larger datasets.ye predictability of the latent space. Both PLST and CPLST
More experimental results are also reported, like the Siggformed LSDR via linear encoding and linear decoding.
nificance tests for the improvements gained BFE over 756t 4. [29] proposed another method termed “Compressed
compared baselines, and the comparison of computatiopghe|jing (CL)", which takes the signs of the linear Gaussia
costs between the newly proposed optimization methoghqom projection results on the original label vectorshes t
here and that presented in [33]. derived code vectors and utilizes a series of Kullback-legib
The remainder of this paper is organized as follows. Sec“@ﬂ/ergence based hypothesis tests for decoding. Altewigti
Il gives an overview of related works. Section Il elabogatejicker et al. [31] proposed MLC-BMaD for LSDR via
on the proposed ¥E. Section IV shows the proposed optihgolean matrix decomposition on the binary tagging matrix,
mization methods and its corresponding theoretical aBalySfaCtoriZing it as the product of a binary code matrix and a
Section V describes details about enhancing the Iineardalecginary linear decoding matrix. Bi and Kwok [32] presented
ing matrix with priori knowledge. Then Section VI presentgp efficient randomized sampling procedure termed ML-CSSP
the extensions of #E, and analyses its relations to previougy selecting a column subset of the tagging matrix that can
works. Experimental settings, results and analyses amengiyye|| span it, which is a special case of linear encoding.
in Section VII. Finally we present discussions regardii§E Actually, the majority of existing methods perform LSDR
in Section VIII and conclude the paper in Section IX. in a function-based manner and require an encoding function
Such approaches, as analysed in section I, carry several
_ ) ) drawbacks. To avoid those, performing LSDR in an end-
With the explosion of label spaces in real-world appligy.end manner with no need for any encoding function is
cations, many remarkable effective multi-label classifica highly desired. MLC-BMaD seems to be the only existing
methods tend to be infeasible due to the high training cosiSSpr method that supports end-to-end label space encoding
To tackle such multi-label classification problems with waniz hoolean matrix factorization. However, MLC-BMaD is
classes, a lot of effective methods were proposed, like cqRature-unaware, and thus the learnt latent space could be
structing a hierarchy of multi-label classifiers [34], réfigthe o5 predictable, which can result in performance detatitn.
output of heuristic efficient classifiers [35], performirapél Therefore, in this paper we proposéRE, which performs
selection to recover the vocabulary with only a subset [86], | SDR in an end-to-end manner and is also feature-aware.
using label inference method based on the use of associatiofy sym up, Table | categorizes the remarkable existing
rules to discover label dependencies [Z&f, Recently, LSDR | sSpR methods and the proposedFE into different combi-
was also proposed and is attracting more and more attentigBtions of{function-based, end-to-eh@nd{feature-unaware,

To the best of our knowledge, He al. [27] are the first 0 faatyre-awarp, which well highlights the distinctness of EE.
propose LSDR. Specifically, Hset al. exploited the sparsity

of the label space, and proposed to linearly encode it to a low m
dimensional latent space as compressed sensing (CS) and the o
train linear regression modetgr.t the derived codes. As for A Preliminaries
performing classification for an unseen instance, a codmrvec Generally in the case of multi-label classification, the-fea
is firstly obtained with the learnt regression models from itures of an instance are represented és-dimensional feature
features and then decoded with standard recovery algasithwector x in the feature spacer, i.e. x € X C R, and
like CoSaMP [37] to derive the predicted label vector. Kapodts labels are represented asdg-dimensional binary label
et al. [5] further considered both label space compression améctor y in the label space), i.e.y € Y c {0,1}%,
predictive model learning in a single probabilistic modeid Here theith entry of the label vectoy is set asl if the
derived a Bayesian framework termed BML-CS for multi-labehstance is associated with thi¢h label and0 otherwise.
classification via jointly optimizing over both. Suppose that we are given labelled instances for training,
Apart from compressed sensing based methods, Tai and dienoted as{(x(*,y®)}7_,, with x(*) and y() being the
[28] proposed to perform principle label space transforomat feature vector and the label vector of thl training instance.

Il. RELATED WORK

. PROPOSEDAPPROACH
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Multi-label classification will utilize them to learn the ming TABLE I
2
F : X = Y from the feature spac# to the label spacg’, as IMPORTANT SYMBOLS IN THE PROPOSEDE“FE.
illustrated in Fig. 1, an_d then utiliz& for prgdicting the label —; fhe number of fraining Instances
vector of any unseen instance based on its feature vector. ~d, the dimensionality of the feature spade
As mentioned before, to derive the mappidg many _% the dimensionality of the label spagé
existing effective multi-label classification methodsaarn d- the dimensionality of the latent spacé d. < dy
9 - . o X the feature matrix of training instanceX, € R™*d=

a predictive model for each label .mdependlently or Wlth rnte v the tagging matrix of training instance¥, € {0, 1}7 %
label correlations, and then combine them in a certain mannez the code matrix of training instance®, € R"™* %=
for prediction. In that case, the number of the to-be-learntQ the linear decodigg maltrix% € R4=Xdy

. ; - = =
predictive models will be at least,, and even much larger _H notation forX (X" X)” X, H ¢ R™*"

M. ; the ith column of a matrixM

for methods using label powerset [39]. Then for a multi
label classification problem with many classégwill become
quite large and the training costs of the to-be-learnt pted
models will be extremely high and even unaffordable. T®rmed by code vectors of training instances. Generally, th
tackle such a challenge, LSDR was recently proposed andrigssification performance of LSDR methods depends on both
attracting more and more attention. With LSDR, the traininge predictive mapping and the decoding process There-
process to learn¥ is transformed into a two-step learningfore, it is crucial for code vectors to be predictable, hgvin
process. That is, firstly the label vectors of training inses Strong correlation with instance features, as revealed@j. |

are encoded into low-dimensional code vectors in a lateMieanwhile, the label vectors should also be highly recdvera
spaceZ C R’ with an encoding proces® : ) — 2, Via decoding the corresponding code vectors. Therefore, to

and then a mapping : X — Z w.t the code vectors learnz, E?FE jointly maximizes theecoverabilityof the label

is learnt. Hered, is the dimensionality of the latent spacespace and theredictability of the latent space. The former
Z, and generallyl, < d,. Moreover, as illustrated in Fig.is denoted ask;(Y,Z) and the latter asl»(X,Z), where
1, P can be performed in a function-based manneg( Y € {0,1}"*% is the tagging matrix of training instances
linear encoding function) or an end-to-end manrmeg natrix formed by their label vectors row by row aki € R™*%- is
decomposition). Similar to learning, learningg can be based the feature matrix formed by their feature vectors in theesam
on trainingd. predictive models, one for a dimension 8f Wway. Then the objective functiow.r.t Z is as follows.
As for predicting the labels of any unseen instancei.a
dimensional code vector i& will firstly be derived using the ¥ = max U (Y,Z) + a¥y(X,Z) 1)
learnt G with its feature vector, and then &,-dimensional . ) -
predicted label vector will be recovered through a decodif§’€ré« = 0 is a parameter for balancimgcoverabilityand
processQ : Z ~» Y. For LSDR methods, withl, < d,, pred_|ct_<';1t_3|||ty When a =0, Z _W|II be de_nv_ed via merely
the number of the to-be-learnt predictive models is getyeraMaximizing recoverability implying thatZ is just dependent
much smaller and thus the training costs are substantialj Y- On the contrary, whem > 0, correlations between
lowered, making the multi-label classification problem hwit instance features and code vectors will be further consttier
many classes more tractable. Meanwhile, if the mapgiagd for makingZ feature-aware and more predictable.
the decoding proces are effective enough, the classification 1) Recoverability of Label Spacdo improve therecover-
performance using LSDR is expected to be acceptable. aan_y of the label space, the dlﬁerenpe petween the tagging
It should be noticed that for LSDR, the latent spage Matrix Y and the recovered one, which is based on the to-
is supposed to be derived from the label spacerather be-learnt code matri>Z, is expected to be minimjzed. Here
than the feature spack, even thought can sometimes be W€ c_ienote the_ difference a As mentioned prewously, f_or
considered for increasing theredictability of Z. And thus efficient decoding, the proposedfE learns a linear decoding

the dimensionality of the latent spacee(d.) can either be MatrixQ € R?-*% to recover label vectors from code vectors,
higher or lower than that of the feature spage.(d,), but following PLST, CPLST, MLC-BMad and ML-CSSP. Theh

will always be lower than that of the label spadee(d,). IS formulated as follows.

Moreover, for LSDR methodg, the ma.ppiﬁg‘rom.)( to Z is £ =min|Y — ZQH?M )
open for any effective mapping algorithm aft&ris derived.

Meanwhile, the decoding proces@ generally needs to bewhere|| - ||+, iS the Frobeniusnorm of a matrix. Giveriz,
specified before derivingg, which, from the perspective of the optimalQ to minimize £ can be derived as the following
efficiency in prediction, is preferred to be linear, like seoin  closed-form expression by solvin% =0.

PLST, CPLST, MLC-BMad and ML-CSSP.
Q=(z"2)"'z2"Y (3)

B. End-to-End Feature-aware Label Space Encoding To mitigate redundant information in the latent space aed th
encode the label space more compactly, we assume that the

dimensions of the latent space are uncorrelated and thus the
columns ofZ are orthonormal, as shown in formula (4).

Before elaborating on the proposedHAE, to make it more
clear, Table Il summarizes the important symbols in thisspap

As mentioned previously, ¥E performs LSDR in an end-
to-end manner and directly learns a code ma#ix R™*%- 72772 =1 (4)
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wherel e R? > js an identity matrix. Actually, as analysedAlgorithm 1 Overview of EFE
later, although such an orthonormality assumption may sedémput: Feature matrixX,, and tagging matrixY,. of the training
to be strong, it is still reasonable and important f6FE. With inStéinlce& featture m%tr:xtts tOf the t3$t inspanch),! predefined
; i |ifi _ T model parametery, and latent space dimensiona

for(rjnur:a (A?’ thel optimalky gan ?e Slrr:p“ﬂjd a?”_ Z°Y, Output: Predicted binary tagging matri¥:s of the test instances
and then formula (2) can be reformulated as follows. Training Process:

B T TrrerT 1: derive code matriXZ,, via optimizing formula (12)
L=Tx[Y'Y-Y ZZ Y] ®) 2 jean predictive modelsy (X:r) — Zi¢r

. va i ; O — 7T
where Tr[] refers to thetrace of a matrix. With Tr[Y7Y] ¥ g(raég/iitilhnge%rrgceg:dmg MatriQ = Zi, Yr

being a constant, minimizing is identical to maximizing 4. predict code vectors of test instanc&: = G(Xt.)
Tr[YTZZ"Y], which can be seen as an expression of the: recover the predicted tagging matriX:;s = round(Z:;Q)

recoverabilityof the label space,e. ¥1(Y,Z). We can thus

derive the following formula.
B TrrerTr] P T where H = X(XTX)71XT ¢ R"*". To improve the
T (Y, g) =Tr[Y'2Z7Y] = Tx[Z YY  Z] (6) predictability of the latent space, each colunarof the code
st. Z7Z=1 matrix Z is supposed to maximizes (X, z). As maximizing
2) Predictability of Latent SpaceAs advocated in [40], to ¥ (39 Z)b?lan bfe guarar;te(fed by :”naxc|im|2|:ca6”Hz, the overall
improve thepredictability of the latent space, the code matriPredictability of Z can be formulated as follows.

Z is supposed to be strongly correlated with the instance d-
features. Here we firstly consider linear correlations, it Uy (X,Z) = Z Z' HZ.; = Tr[Z"HZ)] 1
later handle non-linear ones with kernel tricks. Consiutgi i=1 (11)
linear projectionw for the feature space and a dimensioaf st. ZTZ =1

the latent space,e. a column ofZ, the correlation between

7 hereZ. (i € {1,2,...,d,}) denotes theth col fZ.
features and, denoted as(X, z), can be defined as follows. " o o2 (i€ { }) denotes theth column o

3) Detailed Objective Function: With ¥,(Z,Y) and

(Xw)T'z Uy (X, Z) derived, the objective functiow.r.t the to-be-learnt
r(X,z) = Xw)T (Xw) V2 7 (") code matrixz, i.e. formula (1), can be detailed as follows.
Due to the orthonormality assumption f& i.e. formula (4), ¥ = max Tr(Z"YY"Z] + oTx (2" HZ]
z"z = 1 will hold for any column ofZ. Moreover, linearly =max Tr[ZT (YY" + aH)Z] (12)
rescalingw by a non-zero multiplier will not changgX, z). Z
Then maximizingr(X,z) equals the following formula. st. Z'Z=1

(Xw) Xw = 1 (8) WhereH = X(XTX)~1XT, As analysed in section IV can

be transformed to an eigenvalue problemt YY” + oH,
Given a dimensiom of the latent space, the maximglX,z) andZ is derived by concatenating the normalized eigenvectors
reflects its potential maximal correlation with the featureorresponding to the tog. largest eigenvalues column by
space, and thus the maxima(X,z) can be seen as ancolumn. With the code matriZ derived, predictive models
expression of theredictability of z. Specifically, withz fixed, can be trained for mapping instance features into code rgecto
the optimalw for formula (8), denoted as/*, can be derived  4) Deriving Linear Decoding Matrix: According to for-
as follows with the method of Lagrange multipliers. mula (2) and (3), giverZ with Z7Z = I, the optimal linear
(XTX)~1XT7 decoding matrixQ can be derived as follows.

- VZTX(XTX)1XTy, © Q=(z"2)"1'z2"Y =72"Y (13)

max (Xw)Tz s.t.

*

Note that following CPLST, here we assume= X7X to And its computational complexity i®(nd,d. ).
be invertible. Actually, this assumption usually holds whe An overview of EFE is given in Algorithm 1.
n > dg, but it will fail in cases withn < d,, as A will

not be full-rank then. To handle the latter cases, we propose Error Analysis

to ensureA to be invertible via: 1) performing dimensionality g shown in Algorithm 1, following PLST, CPLST and ML-
reduction for the feature space via PCA or alternative mi2ho-ggp the proposec?EE r(;undseach entr); of the decoding

" e
to maked,, small enough for obtaining a full-ranK” X, or oqits into its nearest and 1, so as to derive binary label
2) adding a tiny value to the entries on the diagonakdfX, aciors. Considering that, we proceed to analyse the roahme

: gt : e IROLA o anal
Le. A = X' X + el with I € R%* being an identity qq,are error (RMSE) of #E on the training instances.

. . . -6
matrix ande being a tiny valuee.g.107°. Specifically, RMSE is defined as follows.
By substitutingw* into formula (7), thepredictability of z,

denoted as/»(X, z), can be derived as follows. RMSE = %Hround (G(X)Q) — Y| fro (14)
n

Xw* )T N
V2 (X, 2) = \/(XW(*)T(X)w*)m = (Xw*)'z = Vz'Hz wheregG denotes the learnt predictive models for mapping in-
(10) stance features into code vectors, andnd(G(X)Q) denotes
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the recovered binary tagging matrix. Then we can derive tAdgorithm 2 Optimization for EFE
following lemma regarding the error bound of FEE. Input: Feature matrixX,. € R"*% and tagging matrixY,, €

nxd G ]
Lemma 1. For EXFE, its RMSE is bounded by R of training insiances, predefned model parameter

2 Output: Learnt code matri¥Z., of training instances
RMSE < 7 (\/EIIYHfMIIZ —G(X) |lfro+ Y — ZQHfro) 1: if XZX,, is NOT invertiblethen
2. Option 1: {dimension reduction for feature spgce
For a detailed proof, one can refer to the supplementary. X¢r = DimReduce(Xr) _
material. Actually, the error bound fo”EE is similar to those 4:  Option 2: {adding a tiny value to diagonal entries
of PLST and ML-CSSP. Namely, it also consists of two partsgj ond i XerXir = Xy Xer + €y
Th_e first part,i.e. \/dz||Y||fm||Z_ - G (X)|lfro denotes the .. ¢ d, + d, then
weighted training error of predictive models, and the secong. A = X”X,,
part,i.e. |[Y — ZQ)|| ., denotes the loss of encoding labelo:  [B, A] = diagonalize(A™") {A~!' = BAB"}

vectors into low-dimensional code vectors. 100 G =X, BAZ
11: V= [Yu,/aG]
12 E = eigenvector(VTV,d,) {eigenvectors oV7V corre-

IV. OPTIMIZATION METHODS sponding to the topl. largest eigenvalugs
For optimizing the objective functio w.r.t the to-be-learnt ** .?&6 a:uﬁfcé‘éltff(VE) {normalizing each column oVE
code matrixZ, any columnZ.;(i € {1,2,...,d.}) can be 14 else
derived with the following optimization sub-problem. 15:  H = X (X5 X4 ) 'XE
_ 16:. U=Yu,Y{ +aH
U = max ZL(YY" + aH)Z.; 17 B = eigenvector(U, d.) {eigenvectors olU corresponding
Zi (15) to the topd. largest eigenvalués
st. ZNZ.;=1, 21,7, ;=0 (Vj <) 18:  Zi, = normalize(E) {normalizing each column d& into a
unit vector

With the method of Lagrange multipliers, the optimél; 19: end if
should satisfy the following optimality condition.

(YYT + OLI‘I)ZZ =NZ.; (26) aH=YYT + (\/&G) (\/&G)T _ [Y, \/aG] [Y, \/EG]T —

T i _ nx (dy+dz)
where ); is the introduced Lagrange multiplier and will alsoVV With V=Y, /oG] € R T .
Suppose{\,p} and {o,q} are respectively the paired

be the optimal value of the sub-problem. It can be seen that

g T - .
the optimization forZ can be transformed to an eigenvalu%genvalue/elgenvector V" and V' V. According to 1)

T, T T, _ T T _ T
problem. Then by normalizing the eigenvectors ©Of = 5 \;TPV_ )E) - (V ‘XC)VVT I{,—_Y\E—V\x\?) _7/\va and
YY7” 4 oH that correspond to the tafy, largest eigenvalues, ) 4= cqu—> ( T )Va = . ( . q)_— ova, We
we can derive the optimal code matri& formed of these can = Ry V- andv'v 52"’“9 identical ggenvalues, and
eigenvectors column by column, which satisf@§Z = 1. the eTlgenvectors oU = VvV can be. derived from thpse_
As described in our previous work [33], we can direct of V'V based on the second derivation above. Considering

DI / reciyr (dotdy) X (de+dy) ; ;
calculateU and then utilize effective methods to derive |t§/ VER ! »), the size of the eigenvalue problem

. . A nxn (de+dy) X (de+dy)
eigenvectors. However, considering tiéte R™*™, for cases w.rt U can De gyjormed froR o R ’ yD'
with n > d,+d,,, which are common in practical applications,

caIcuIa’FingU will res_ult in high space costs. To avoid that, \with Lemma 2, in different cases we can utilize different
we derive the following lemma and further propose a MOkhtimization methods to obtain the eigenvectors 6f =

efficient optimization method for such cases. YY? +aH and then derive the code mati# as summarized

Lemma 2. Given H = X(X7X)~!X7, the matrix U = below and illustrated in Algorithm 2.
YY” + aH can be decomposed d§ = VVT with V ¢ 1) If n>> d,+d,, itis preferable to firstly derive the matrix

R™*(dytd=) - Also, the eigenvectors & can be derived from V satisfyingU = V'V, then calculate the eigenvectors
those ofV 7'V, meaning that the size of the eigenvalue problem  of VIV corresponding to the tog, largest eigenvalues,
w.r.t U can be transformed froR™*" to R(%e+dy)x(detdy) and finally utilize them to derive the eigenvectorslaf

Sinced, < d, andV”'V is a real symmetric matrix, the
eigenvalue problema.r.t VIV can be solved efficiently
using iterative methods like Arnoldi iteration [42], which
can achieve an optimal computational complexity of
(’)(dmdz2 + dydzg). Here the computational complexity
of deriving V is O (nd2), while that of calculating
VTV and deriving the eigenvectors & from those

Proof. SupposeA = X”X is invertible. SinceA € R *d-

is a real symmetric and positive-semidefinite matax;* will

be real symmetric and positive semi-definite, and tAus is
diagonalizable by orthogonal matrices [41]. Namely; ! =
BAB”, with A being a diagonal matrix having non-negative
diagonal entries an@ being an orthonormal matrix. Then

T
A~' = BA:A:B”T = (BA:z) (BAz) , whereA: is a of VIV is O (n(d, + d,)?).
diagonal matrix with each diagonal entry being the squaoé ro 2) Otherwise, it is preferable to directly calculaté and
of the corresponding diagonal entry . Furthermore, with then perform an eigenvalue decomposition on it. The

G = XBA? € R"*% H = GGT. Finally, U = YY7 + computational complexity for calculatiny/ is at most
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O(min{n?d,,nd2}) + O(n*d, + n*d,). Considering with that, we derive the following lemma for properly segin

that generallyd, < n and U is a real symmetric 7, whereX = A1, A2, .oy AdL]

matrix, the eigenvalue problem.rt U can also be 1 . - :
solved efficiently using Arnoldi iteration with an optimaILemma 3. For arly7z €[ max(X)] with max(}) being the
computational complexity of)(nd.?). maximal value ofp, £ will be non-trivial for optimization.

For a detailed proof, one can refer to the supplementary
V. 7E2FE: ENHANCING LINEAR DECODING MATRIX WITH  material.
PRIORI KNOWLEDGE

As analysed in formula (16), each column of the code matrix VI. EXTENSIONS AND ANALYSES
Z corresponds to an eigenvalue 0f = YY7 + oH, which A. Function-based Encoding: a Linear Encoding Case

is also the optimal value for its corresponding optimizatio Though the proposed2EE requires no encoding function,
sub-problem i(e. formula (15)). Knowing that each columnijt can still be specified to learn an encoding function as
denotes one dimension of the latent space, for each columhst previous works, given that the encoding function can
the eigenvaluev.rt it actually reflects 1) how predictable itspe optimizede.g. a linear one, as described below.
corresponding dimension of the latent space is and 2) fr@m th Following PLST and CPLST, we use an encoding matrix
dimension how recoverable the label space is. Specificallyp < rd,xd- tg denote the linear encoding function. Then the
higher eigenvaluav.r.t a column ofZ means that its corre- code matrixZ can be expressed &= YP. SubstitutingZ
sponding dimension of the latent space is more predictallh YP in the objective function of BFE, i.e. formula (12),

and the label space is more recoverable from the dimensiafe can derive the following objective function fat.
Here we propose to consider such priori knowledge to derive

an enhanced linear decoding matrix fofFE. We denote it ¥ =max Tr [PT (Y'YYTY +aY'HY) P]
asTE?FE. Essentially, for a linear decoding ma}th its ith st. PIYIYP =1
columnQ.;(i € {1,2,...,d,}) acts as a weighting vectorto o
linearly combine dimensions of the latent space for redager  Similarly, we use the method of Lagrange multipliers and
the ith dimension of the label space. Then for dimensiorfcomposel into d. optimization sub-problemsv.r.t each
of the latent space that are more predictable and make ffdumnP.; of the to-be-learn. Then we derive thaP. ;
label space more recoverablee. with higher corresponding Should satisfy the following optimality condition.
eigenvalues, they are expected to be assigned with higher T~ T T . T
weights in the decoding process. Therefore, we derive the (Y YY' Y +aY HY) Pi=M(YTY)P.; (1)
objective function forQ.; as follows. where )\; is a Lagrange multiplier and will be the optimal
i value of the optimization sub-problemr.t P_ ;. It can be seen
£ — min Y. — ZQ. z‘H?'m _ "Z A Q2, (17) that the optimization oP i_s esse_ntially a general eigenvglue
Q.. " " = 7 problem. And the normalized eigenvectors corresponding to
the topd, largest eigenvalues will form the optimBR!.
whereY.; is theith column of the tagging matrixy, \; Denoting this case of linear function-based encoding as
is the eigenvalue corresponding to tfh column ofZ and | jnearEFE, the linear decoding matri® without considering
7 IS a non-negative weighting factor. It can be seen that, thiori knowledge isQ = (YP)TY. Meanwhile, for the
considering the priori knowledge as a regularizerdf, a case of utilizing the eigenvalugrt P as priori knowledge,
larger ); can help to leadQ?; to be larger, meaning that , _ (I—m'i)il (YP)TY with A being a diagonal matrix
as expected thgth dimension of the latent space is assigne AN ] o
with a higher weight for decoding. For model simplicity, aer Consisting of the eigenvalues, which is termeldnearEFE.
n is shared by alQ. ;(i € {1,2,...,d,}). Then the objective
function for deriving the linear decoding mat@ of 7E2FE B. Kernel Version

(20)

can be formulated as follows with matrix notations. The proposed EFE, thanks to kernel tricks, can be extended
7 —minlY — ZOI2. — nTrloTA 1g) !o deal with non-linear correlations between the featusesp
Q" | Qllgro = nTr(Q°AQ] (18) and the latent space, which is termiegrnetE2FE.

- . o . In kernetE?FE, each feature vector!”) is mapped to the
whereA is a diagonal matrix withh; ; = A;. If 1 is properly gopoqycing Kernel Hilbert Space (RKHS) agx(). In
set to makeL_ non—tn;nal, as d|scus§ed later, the optim KHS, the inner product between(x()) and ¢(x)) is
decoding matrix forrE*FE can be derived as follows. equal tox(x®,x(), wherex(-,-) is the introduced kernel
Q=(1-pA)'Z2TY (19) function. Using a non-lineak(-,-), the linear correlations
_ between the RKHS and the latent space actually reflect the
where(I-nA) is a diagonal matrix and thus its inverse can beon-linear correlations between the original feature spetd
efficiently calculated. Actually, ag, < d,, the computational the latent space. Similar to formula (7), we measure the
complexity of derivingQ in 7E*FE is alsoO(nd,d.). correlationr(®, z) by considering a linear projectiow; for
Note that in formula (18), a large can lead to become kernel features in RKHS and a colurarof the code matrix.
trivial and achieve an optimum of negative infinity. To cop&ollowing [43], herew; is assumed to be in the span of
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sampled kernel feature vectoiisg. w; = ®Iw where ®, to CPLST [30] if only thepredictability of the latent space
is a matrix built by the sampled kernel feature vectors row by considered. We denote this case as P-Lin&aEE: with its
row andw is ans-dimensional weighting vector with being corresponding objective function defined as follows.

the sampling size. Then(®,z) can be measured as follows. v max Te[PTYTHYP], st. PTYTYP =1 (25)

_ (22I%) "z

r(®,2) = V(2@Tw)T (28T W) VT2 22) Meanwhile, the objective function of CPLST is as follows.
_ (K#) "'z -
T V(K®)T (Kw)VaTa ¥ = max Te[PTYTHYP], st. PTP=1 (26)

whereK = ®®[ ¢ R™** is a kernel matrix and can be|tcan be seen that P-Line&iEE and CPLST share an identical
efficiently derived using the kernel function with the origl  gpjective function but with different constraints. Nametlye
feature vectors. Similar to subsection ”l'BZ, tpEdlctablllty former requires dimensions of the code matng(YP) to be
of z based on non-linear correlations can be derived frogithonormal while the latter requires dimensions of thedin
the maximalr(®,z) and measured ag:(®,z) = Vz'Hz encoding matrixi(e. P) to be orthonormal.
with H = K(K"K) 'K". Then the objective function of  Another useful observation.r.t E2FE is that BFE actually
kernel'EQFE is as fO”OWS, which can also be transformed tgerforms dimensiona”ty reduction for both the label Sm@é
an eigenvalue problem. the feature space when tpeedictability of the latent space
_ T T % T is over-emphasized with an assumption that the code matrix
V= g T[22 (YY" +aH)Z] st Z7Z=1 (23) can be directly expressed by the feature matrex,Z = XW
Like E2FE, the linear decoding matriQ for kernetE2FE whereW € Ré=*: jg a reg_r_ession matrix. This case is termed
is Q = ZT'Y. Meanwhile, when eigenvalues.rt Z are _OP-EZFE. As_thepr_edm_:tabllltyo_f th\_e latent space is constant
i . -\ 1 in OP-BFE, its objective function is formulated as follows.
considered as priori knowledg&) = (I — nA) ZTY,
- . . - . ¥ = max Tr[W XTYYTXW]
where A is a diagonal matrix consisting of eigenvalues. Here w 27)
we denote this case &ernelrE2FE. st. WIXTXW =1

The optimization forW can again be interpreted as a general
C. Relations to Previous Works eigenvalue problem,e. (X" YYTX)W_; = ,;(XTX)W._,,

If the mean values of the label vectors are shifted as zer®4lt it requiresi, < d,. HereZ can be seen as the dimensional-
the proposed B E will degenerate to PLST [28] when onlyity reduction result learnt from the label space in an endtd
the recoverabilityof the label space is considereide(ow = 0 manner, or the linear dimensionality reduction result friw
in formula (12)). Here, we denote this case as¥Eand its feature space witW. However, for OP-EFE, we can observe

corresponding objective function is given as follows. the following weak points. 1) The dimensionality of the to-
be-learnt latent space cannot be larger than the dimergjona

v = max Te([Z2"YY"Z], st Z'Z=1 (24) of the feature space, which can sometimes be too small to

Th d "z . f th lized ei l§eep enough information of the label space, especially when
e code matrbZ consists of the normalized eigenvectors O, < dy. 2) The predictive models from the feature space to

T . .
YY" corresponding to the tog, largest eigenvalues, and thethe latent space are limited to be linear regression whéoeas

linear decoding matrix without considering priori knowtgd LSDR they are expected to be open for any effective model.
is ZTY. Meanwhile, the linear encoding mati of PLST is

formed with normaliz.ed eigenvectqrs ¥y c_orresponding . VII. EXPERIMENTS
to the topd, largest eigenvalues, with the derived code matrix _ :

beingYP and the linear decoding matrix beilf. As in the A Experimental Settings

proof of Lemma 2, we can derive thAY” and Y'Y are To validate the proposed®EE, we use in our experiments
positive semi-definite and share the same positive eigeesal five widely-used benchmark datasets with relatively large v
Specifically, provided thaf\; is the ith largest eigenvalue, cabularies from Mulan [44],e. delicious CAL50Q mediamil|

we can derive that: I¥7YP.; = \,P.;; 2) YYTZ., = bibtexand bookmarks They belong to one of the following
NZ. i3 3) (YYT)[YP].: = Y(YTYP. ;) = \[YP].;; 4) domains: text, music and video. Moreover, following CS [27]
(YIY)[YTZ)., = YI(YYTZ. ;) = \[YTZ)]. ;. Then for we also conduct experiments on the image datBSRGame
R-E’FE and PLST, we can find one-to-one correspondendd$], and take those tags appearing at least 20 times in the
between theth columns of their encoding resultsg Z.; = dataset to form a large vocabulary, which almost doubles the
[YP]-J), and between théth rows of their linear decoding size of that used in the experiments of CS. Each instance in
matrices {e. [Z7Y];. = VN [PT];.). Therefore, R-BFE is E_SPG_ames repres_er_1ted by a 516-D feature ve?:text_racted
equivalent to PLST, withiZ(Z”Y) = (YP)PZ. However, with Lire [46], and it is removed if no tags are associatece Th
whena > 0, the code matri in E2FE will be associated to original statistics of the datasets are given in Table Il
instance features and will then differ from PLST. For performance comparison, we select Binary Relevance

When coping with linear function-based encoding, for- (BR) [47], CS [27], PLST [28], CPLST anéernetCPLST

mula (20), given the_mean values of I_abel vectors and thoses6.p feature vector: 60-D Gabor, 192-D FCTH, 80-D Edge dtjsam,
of feature vectors shifted as zerogHE is closely connected 120-D Color Layout and 64-D RGB Color Histogram
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TABLE Il union between two sets. Meanwhikxample-based Accuracy
STATISTICS OF DATASETS is given by the following formula.
. . 1 ny ‘G}ﬂpﬂ
| domain | instances| labels | features Accuracy = o ijl reavyzil (29)
delicious text 16,105 | 983 500 . o b .
CAL500 music 502 174 68 wheren, is the test set size;; and P are respectively the
mediamill | video | 43907 | 101 | 120 ground-truth and the predicted label set of jifetest instance.
ESPGame | image 65,065 1,718 516 M f h f | ith d 5
bibtex text 7.395 159 | 1.836 oreover, for each run of any algorithm, we conduct 5-
bookmarks| text 87,856 | 208 2,150 fold cross-validation on the training set for selecting mlod

parameters via grid search in predefined value ranges.fSpeci
ically, o in the proposed #E and its variants is selected

-1 100 4 i
[30], MLC-BMaD [31] and ML-CSSP [32] as baselines, Wherfrgrln 3120 01 {F‘T for '\O’I”f'BdMaD 'S.fhcl’senl f.ro”c‘:s
BR is a widely-used multi-label classification method thallS .séle.c{éd. ’fréni{’ 1a2n ?\/[T?Nifhm]\i/ bS;%SIt?]/eer\r/;xieral
trains a separate binary relevance model for each labelin O imber of labels i7n ’éh' instancetc Additionally, for 7 in
experiments, we use both linear SVM (L-SVM) [48] and linear E2EE/rLi EFEk L E2FE i — " 77f
ridge regression (L-RR) for BR. And for the latter, we usé riinear ernetm » WE Sely = 5max(X) (.)r
0.5 as a threshold to decide the binary (0 or 1) classificatiiach dataset and selecfrom {0,271,279,..., 2711} via
results. To reduce the computational costs of L-SVMbistex  Cross-validation. Following most previous works, like, [£38],
and bookmarkswe perform feature dimensionality reductiod30], [32], we utilize linear ridge regression as predietimod-
for both datasets via PCA. We also follow the reporte@ls to learn the mappings from instance features to code vec-
preprocessing steps of baselines, like shifting the mearesa tors. As for kernetCPLST, kemetE’FE andkernetrE’FE,
of feature vectors to be zerostc Note that BR in fact does W€ empirically utilize the Gaussian kernel function andthet
not perform LSDR and thus its performance is a referengg100thing parameter as twice the mean Euclidean distance
for other algorithms. BML-CS [5] is not included since it isP€tween feature vectors for each dataset. Accordingly, we
sophisticated with numerous parameters to tune. utilize kernel ridge regression as predictive models fentto

For E2FE, we evaluate the following variants. 1) RFE: learn the non-linear map_pings from instance features t@ cod
considering only theecoverabilityof the label space.¢. for- Vectors. Moreover, following PLST, CPLST and ML-CSSP, we
mula (24)), theoretically equivalent to PLST; 2) P-Line3fE: round each continuous entry of the decoding resglts into its
considering only theredictability of the latent space for linear nearest or 1 to get the binary label vectors for test instances.
function-based encoding€. formula (25)), similar to CPLST;

3) OP-BFE: over-emphasizing theredictability of the latent B. Experimental Results of LSDR

spacei(e.formula (27)); 4) LinearBFE: linear function-based ~We run all algorithms on the six datasets with different
encoding {.e. formula (20)); 5) rLinearPFE: identical to values ofd,/d, (mostly from 10% to 50%) whered, and
LinearE’FE except that the linear decoding matrix is learnt, are respectively the dimensionality of the latent space and
with priori knowledge; 6) EFE: end-to-end feature-awarethat of the label space. Particularly, f&SPGamed. /d, is
label space encoding.€. formula (12)); 7)7E*FE: identical varied from5% to 25%, as it has a much larger vocabulary.

to E?FE except that the linear decoding matrix is learnt with 1) Performance Comparison with Baseline$he exper-
priori knowledge; 8)kernetE*FE: kernel version of BFE imental results of compared baselines and variants of the
(i.e. formula (23)); 9)kernetrE2FE: identical tokernetE?FE  proposed BFE are reported in Table IV and V.

except that the linear decoding matrix is learnt with priori A close look at the achieved results reveals: 1) The proposed
knowledge. E2FE as well as its linear function-based variant Liné&iE

In our experiments, each dataset is evenly and randonggnerally outperform the compared baselines on each datase
divided into 5 parts. Five runs of each algorithm are then pewhich clearly demonstrates their effectiveness. 2fFEE out-
formed on the dataset, taking each time one part for testidg gperforms LinearBFE on all datasets, reflecting the superiority
the rest for training without duplication. Experimentasuéis of learning code vectors in an end-to-end manner rather than
are measured with widely-used metrics in the field of multa function-based manner. 3fEE outperforms R-B-E and
label classificationj.e. label-based macroFhand example- LinearEFE outperforms P-LineadEE, which implies that
based Accuracy{49], and then averaged over the 5 rungointly consideringpredictabilityandrecoverabilitywill obtain
Higher label-based macroFland example-based Accuracybetter performance. 4) OP2EE yields inferior performance
means better performance. Specifically, for each tabel- to E?FE and cannot even perform LSDR @AL500when

based macroF1s calculated as follows. d./d, > 40%, as the dimensionality of the feature space
L ody 2 will be smaller thand,. That points out the weakness of OP-
macroF'l = a, > it pf)iﬁi 28) E?FE and further validates the superiority of keeping a good
s.t. p;i= 'G‘Qf” = % trade-off betweemredictability andrecoverability 5) R-E2FE

yields nearly the same performance as PLST, as predicted
whered, is the number of all label€;; and P; are respectively by our theoretical analyses about their equivalence. 6j Wit
the sets of the ground-truth and the predicted positivaires#ts an identical objective function but different orthogomali
for the ith label, andn, U are operations of intersection anctonstraints, P-LineadEE seems to be slightly superior to
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1
2 TABLE IV
3 EXPERIMENTAL RESULTS label-based macroF1 on delicious CAL50Q mediamill ESPGamebibtexAND bookmarksWITH VARYING d. /dy
4
5 [ Datasets [ delicious I CAL500 [ mediamill |
[ d-/dy [ 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50% |
6 BR [47] [ _LSVM 0.0951 0.1397 0.0866
7 | L-RR 0.0377 0.0569 0.0447
8 CS [27] 0.0063 | 0.0208 | 0.0422 | 0.0466 | 0.0415 | 0.0677 | 0.0820 [ 0.0906 | 0.0976 | 0.1142 | 0.0052 [ 0.0144 [ 0.0138 [ 0.0319 [ 0.0304
PLST [28] 0.0234 | 0.0256 | 0.0271 | 0.0278 | 0.0284 | 0.0604 | 0.0605 | 0.0606 | 0.0609 | 0.0608 | 0.0422 | 0.0439 | 0.0448 | 0.0447 | 0.0447
9 CPLST [30] 0.0339 | 0.0341 | 0.0341 | 0.0341 | 0.0341 | 0.0640 | 0.0643 | 0.0644 | 0.0645 | 0.0645 | 0.0432 | 0.0446 | 0.0447 | 0.0447 | 0.0447
10 MLC-BMaD [31] 0.0238 | 0.0259 | 0.0297 | 0.0344 | 0.0347 | 0.0485 | 0.0444 | 0.0420 | 0.0472 | 0.0468 | 0.0398 | 0.0408 | 0.0408 | 0.0408 | 0.0408
ML-CSSP [32] 0.0160 | 0.0216 | 0.0277 | 0.0324 | 0.0319 | 0.0453 | 0.0498 | 0.0507 | 0.0528 | 0.0543 | 0.0354 | 0.0395 | 0.0426 | 0.0433 | 0.0427
11 R-E’FE (~PLST) 0.0234 [ 0.0257 | 0.0271] 0.0278] 0.0285 ] 0.0592 [ 0.0590 | 0.0592 | 0.0593 | 0.0593 | 0.0422 | 0.0439 [ 0.0448 [ 0.0447 [ 0.0447
12 P-LinearBFE (~CPLST) | 0.0391 | 0.0398 | 0.0399 | 0.0399 | 0.0400 | 0.0795 | 0.0954 | 0.1008 | 0.1003 | 0.1003 [ 0.0420 [ 0.0437 [ 0.0446 | 0.0446 | 0.0447
OP-EPFE 0.0449 | 0.0470 | 0.0476 | 0.0478| 0.0475| 0.1034 | 0.1080 | 0.1088 - - 0.0433 | 0.0447 | 0.0448 | 0.0449 | 0.0448
13 LinearPFE 0.0413| 0.0417 | 0.0416 | 0.0416 | 0.0416 | 0.1061 | 0.1115| 0.1110 | 0.1101 | 0.1101 | 0.0440 | 0.0449 | 0.0451 | 0.0449 | 0.0448
14 E’FE 0.0530 | 0.0569 | 0.0577 | 0.0578 | 0.0578 | 0.1198 | 0.1247 | 0.1263 | 0.1258 | 0.1256 | 0.0549 | 0.0575 | 0.0577 | 0.0577 | 0.0577
15 [ kernelCPLST [30] | 0.0354 ] 0.0377 | 0.0383 ] 0.0389 | 0.0393 [ 0.0754 [ 0.0774 [ 0.0774] 0.0774 ] 0.0774 ] 0.0594 | 0.0688 [ 0.0720 [ 0.0751 [ 0.0756 |
16 [ kernetEZFE | 0.0500 | 0.0569 | 0.0591 | 0.0599 | 0.0599 | 0.1160 | 0.1208 | 0.1215| 0.1272 | 0.1307 | 0.0692 | 0.0814 | 0.0945 | 0.0997 [ 0.1003 |
[ Datasets [ ESPGame [ bibtex [ bookmarks |
17 | d./dy | 5% [ 10% | 15% | 20% | 25% | 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50% |
18 BR [47] [ L-SUM 0.0688 0.3023 0.1860
19 | L-RR 0.0017 0.0613 0.0415
20 CS[27] 0.0005 | 0.0011 | 0.0014 | 0.0022 ] 0.0022 | 0.0170[ 0.0377 | 0.0916 | 0.1010 | 0.1017 | 0.0090 [ 0.0248 [ 0.0271] 0.0582 [ 0.0611
PLST [28] 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0365 | 0.0503 | 0.0540 | 0.0553 | 0.0557 | 0.0248 | 0.0357 | 0.0397 | 0.0403 | 0.0406
21 CPLST [30] 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0443 | 0.0560 | 0.0581 | 0.0588 | 0.0588 | 0.0384 | 0.0400 | 0.0401 [ 0.0402 | 0.0403
29 MLC-BMaD [31] 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0341 | 0.0505 | 0.0524 | 0.0550 | 0.0582 | 0.0325 | 0.0354 | 0.0385 | 0.0416 | 0.0415
ML-CSSP [32] 0.0011 | 0.0016 | 0.0014 | 0.0014 | 0.0015 | 0.0281 | 0.0330 | 0.0439 | 0.0480 | 0.0471 | 0.0184 | 0.0292 | 0.0300 | 0.0302 | 0.0339
23 R-E’FE (~PLST) 0.0017 [ 0.0017 [ 0.0017 | 0.0017 | 0.0017 | 0.0358 | 0.0498 | 0.0538 | 0.0552 | 0.0556 | 0.0249 [ 0.0358 | 0.0398 [ 0.0404 [ 0.0407
24 P-LinearBFE (~CPLST) | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0443 | 0.0548 | 0.0574 | 0.0593 | 0.0601 | 0.0389 | 0.0404 | 0.0417 | 0.0421 | 0.0422
OP-EPFE 0.0021 | 0.0021 | 0.0021 | 0.0021 | 0.0024 | 0.0536 | 0.0810 | 0.0906 | 0.0958 | 0.0981 | 0.0400 | 0.0434 | 0.0451 | 0.0454 | 0.0459
25 LinearBFE 0.0018 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0440 | 0.0564 | 0.0604 | 0.0602 | 0.0601 | 0.0397 | 0.0419 | 0.0423 | 0.0424 | 0.0425
26 E°FE 0.0026 | 0.0025 | 0.0025 | 0.0025 | 0.0025 | 0.0595 | 0.0888 | 0.1169 | 0.1286 | 0.1369 | 0.0472 | 0.0706 | 0.0752 | 0.0764 | 0.0775
27 [ kernefCPLST [30] | 0.0019 [ 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0503 | 0.0698 [ 0.0728 0.0742 | 0.0744 | 0.0410 | 0.0448 ] 0.0462 [ 0.0472 [ 0.0477 |
o8 | kernetE?FE | 0.0040 | 0.0043 | 0.0043 | 0.0044 | 0.0045 | 0.0629 | 0.0930 | 0.1247 | 0.1396 | 0.1472 | 0.0492| 0.0699 | 0.0738 | 0.0756 | 0.0770 |
29
30 TABLE V
31 EXPERIMENTAL RESULTS example-based Accuracy oN delicious CAL50Q mediamill ESPGamebibtexAND bookmarksWiTH VARYING d. /dy
32
33 [ Datasets [ delicious I CAL500 [ mediamill |
34 [ d./dy | 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50% |
BR [47] [ L-SUM 0.1500 0.2436 0.3621
35 | L-RR 0.0958 0.1995 0.4188
36 CS[27] 0.0254 [ 0.0540 | 0.0890 | 0.0974 | 0.0964 | 0.1130 [ 0.1299 [ 0.1626 | 0.1904 | 0.1835| 0.0115[ 0.0304 [ 0.0352[ 0.1425 [ 0.1426
PLST [28] 0.0870 | 0.0898 | 0.0907 | 0.0911 | 0.0912 | 0.2099 | 0.2103 | 0.2103 | 0.2106 | 0.2104 | 0.4160 | 0.4184 | 0.4187 | 0.4188 | 0.4187
37 CPLST [30] 0.0954 | 0.0955 | 0.0955 | 0.0955 | 0.0955 | 0.2003 | 0.2007 | 0.2009 | 0.2010 | 0.2010 | 0.4167 | 0.4187 | 0.4187 | 0.4188 | 0.4187
38 MLC-BMaD [31] 0.0593 | 0.0700 | 0.0855 | 0.0873 | 0.0875 | 0.1286 | 0.1215 | 0.1194 | 0.1244 | 0.1255| 0.3989 | 0.3995 | 0.3995 | 0.3995 | 0.3995
ML-CSSP [32] 0.0684 | 0.0785 | 0.0851 | 0.0893 | 0.0904 | 0.1806 | 0.1880 | 0.1913 | 0.1958 | 0.1966 | 0.3466 | 0.4053 | 0.4073 | 0.4140 | 0.4081
39 R-E’FE (~PLST) 0.0870 [ 0.0898 | 0.0908 | 0.0911 [ 0.0913 | 0.2100 [ 0.2098 | 0.2099 | 0.2101 | 0.2100 | 0.4159 | 0.4183 [ 0.4188 [ 0.4188 [ 0.4187
40 P-LinearBFE (~CPLST) | 0.0984 | 0.1007 | 0.1011 ] 0.1011| 0.1011 | 0.2084 | 0.2189 | 0.2226 | 0.2223 | 0.2223 | 0.4137 [ 0.4162 | 0.4182 | 0.4182 | 0.4186
41 OP-EPFE 0.1085 | 0.1091 | 0.1093 | 0.1094 | 0.1073 | 0.2283 | 0.2262 | 0.2251 - - 0.4172 | 0.4186 | 0.4189 | 0.4189 | 0.4189
LinearPFE 0.1068 | 0.1055 | 0.1049 | 0.1048 | 0.1048 | 0.2318 | 0.2301 | 0.2291 | 0.2281 | 0.2281 | 0.4182 | 0.4190 | 0.4191 | 0.4190 | 0.4189
42 E’FE 0.1187 | 0.1196 | 0.1197 | 0.1196 | 0.1184 | 0.2405 | 0.2411| 0.2421| 0.2396 | 0.2392 | 0.4353 | 0.4379 | 0.4378 | 0.4378 | 0.4378
43 [ kernefCPLST [30] | 0.1116] 0.1162 | 0.1175] 0.1181] 0.1186 | 0.2139 [ 0.2148 | 0.2148 0.2148 0.2148] 0.4489 [ 0.4561 [ 0.4572] 0.4579 [ 0.4580 |
m [ kernetE?FE | 01281 0.1291 | 0.1311 | 0.1312| 0.1293 | 0.2421 | 0.2414 | 0.2397 | 0.2399 | 0.2398 | 0.4606 | 0.4647 | 0.4681 | 0.4685 | 0.4686 |
45 [ Datasets [ ESPGame [ bibtex [ bookmarks |
46 | d./dy | 5% [ 10% | 15% | 20% | 25% | 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50% |
47 BR [47] [ L-SUM 0.0628 0.2827 0.1679
[ L-RR 0.0572 0.1816 0.1597
48 CS [27] 0.0053 [ 0.0057 | 0.0048 ] 0.0107 | 0.0106 | 0.0771 [ 0.0964 | 0.1435] 0.1520 | 0.1553 | 0.0155 ] 0.0629 | 0.0643 | 0.0940 | 0.0963
PLST [28] 0.0576 | 0.0576 | 0.0576 | 0.0576 | 0.0576 | 0.1434 | 0.1657 | 0.1760 | 0.1768 | 0.1772 | 0.1472 | 0.1530 | 0.1572 | 0.1575 | 0.1578
49 CPLST [30] 0.0578 | 0.0578 | 0.0578 | 0.0578 | 0.0578 | 0.1639 | 0.1768 | 0.1793 | 0.1802 | 0.1800 | 0.1542 | 0.1570 | 0.1572 | 0.1572 | 0.1573
50 MLC-BMaD [31] 0.0574 | 0.0573 | 0.0573 | 0.0575| 0.05/3 | 0.1365 | 0.1757 | 0.1767 | 0.1746 | 0.1799 | 0.1494 | 0.1538 | 0.1576 | 0.1597 | 0.1596
ML-CSSP [32] 0.0409 | 0.0548 | 0.0478 | 0.0541 [ 0.0499 | 0.1212| 0.1205 | 0.1433| 0.1563 | 0.1573 | 0.1053 | 0.1493 | 0.1249 [ 0.1063 | 0.1438
o1 R-EFE (~PLST) 0.0575 [ 0.0575 | 0.0575 0.0575[ 0.0575] 0.1429 [ 0.1653 | 0.1756 | 0.1766 | 0.1769 | 0.1473 [ 0.1532[ 0.1574 [ 0.1577 | 0.1580
52 P-LinearBFE (~CPLST) | 0.0574 | 0.0577 | 0.0578 | 0.0578 | 0.0579 | 0.1598 | 0.1726 | 0.1756 | 0.1783 | 0.1792 | 0.1552 | 0.1574 | 0.1582 | 0.1588 | 0.1590
53 OP-EPFE 0.0622 | 0.0621 | 0.0621 | 0.0621 | 0.0694 | 0.1751 | 0.2041 | 0.2126 | 0.2167 | 0.2181 | 0.1565 | 0.1616 | 0.1623 | 0.1625 | 0.1626
LinearBFE 0.0597 | 0.0593 | 0.0588 | 0.0586 | 0.0584 | 0.1618 | 0.1768 | 0.1820 | 0.1816 | 0.1813 | 0.1559 | 0.1592 | 0.1591 | 0.1590 | 0.1589
54 E°FE 0.0701 | 0.0701 | 0.0700 | 0.0701 | 0.0701 | 0.1835| 0.2149 | 0.2356 | 0.2440 | 0.2493 | 0.1659 | 0.1913 | 0.1933 | 0.1937 | 0.1939
55 [ kernefCPLST [30] | 0.0646 | 0.0645 | 0.0645 ] 0.0645 [ 0.0645 ] 0.1739 | 0.1976 | 0.2005] 0.2006 | 0.2011[ 0.1588 ] 0.1638 ] 0.1641] 0.1643 [ 0.1645 |
56 | kernetEZFE | 0.08327] 0.0834 | 0.0834 | 0.0834 | 0.0834 | 0.1910 | 0.2232 | 0.2485| 0.2596 | 0.2640 | 0.1685 | 0.1937 | 0.1952 | 0.1958 | 0.1961 |
57
58
59 CPLST, which validates the reasonableness of assuming BRE outperforms BFE on nearly all datasets, showing its

60 columns of the code matrix to be orthonormal. kBrnel effectiveness to handle the non-linear correlations betwe
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TABLE VI
PERFORMANCECOMPARISONS BETWEENL INEARE2FE, E2FE,kernetE2FE AND wLINEARE2FE, rE2FE, kernelwE2FE oN delicious CAL50Q
mediamil|] ESPGamebibtexAND bookmarkswITH VARYING d /dy, IN TERMS OFlabel-based macroF1

\ Datasets delicious CAL500 [ mediamill |
\ . /dy [ 10% | 20% [ 30% | 40% [ 50% | 10% [ 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% [ 50% |
LinearEFE 0.0413 | 0.0417 | 0.0416 | 0.0416| 0.0416 | 0.1061 | 0.1115 | 0.1110] 0.1101 | 0.1101 | 0.0440 | 0.0449 | 0.0451 | 0.0449 | 0.0448
wLinearEFE 0.0590 | 0.0595 | 0.0594 | 0.0593 | 0.0593 | 0.1415 | 0.1457 | 0.1479| 0.1477 | 0.1478 | 0.0580 | 0.0605 | 0.0607 | 0.0604 | 0.0603
Relative Improvement| 43.0% | 42.7% | 42.5% | 42.6% | 42.6% | 33.3% [ 30.8% | 33.2% [ 34.1% | 34.1% [ 31.8% | 34.7% [ 34.7% | 34.7% [ 34.7%
E?FE 0.0530 | 0.0569 | 0.0577 | 0.0578 | 0.0578 | 0.1198 | 0.1247 | 0.1263 | 0.1258 | 0.1256 | 0.0549 | 0.0575 | 0.0577 | 0.0577 | 0.0577
~EZFE 0.0698 | 0.0727 | 0.0735| 0.0738 | 0.0717 | 0.1841 | 0.1874 | 0.1883 | 0.1925 | 0.1923 | 0.0685 | 0.0718 | 0.0720 | 0.0721 | 0.0721
Relative Improvement] 31.8% | 27.8% [ 27.5% | 27.8% [ 24.0% | 53.7% [ 50.3% [ 49.0% | 53.0% [ 53.1% | 24.9% [ 24.8% | 24.8% | 24.9% | 24.8%
kernetEZFE 0.0500 | 0.0569 | 0.0591 | 0.0599 | 0.0599 | 0.1160 | 0.1208 | 0.1215] 0.1272 | 0.1307 | 0.0692 | 0.0814 | 0.0945 | 0.0997 | 0.1003
kernetrE2FE 0.0768 | 0.0820 | 0.0834 | 0.0838 | 0.0843 | 0.1827 | 0.1864 | 0.1927 | 0.2000 | 0.2024 | 0.0838 | 0.0975| 0.1117 | 0.1172 | 0.1177
Relative Improvement| 53.4% | 44.0% | 41.1% | 39.8% | 40.6% | 57.4% [ 54.3% | 58.6% [ 57.3% | 54.9% [ 21.1% | 19.8% [ 182% | 17.5% [ 17.3%

I Datasets [ ESPGame [ bibtex [ bookmarks
\ d./dy, [ 5% [ 10% [ 15% | 20% [ 25% | 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50% |
LinearEFE 0.0018 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0440 | 0.0564 | 0.0604 | 0.0602 | 0.0601 | 0.0397 | 0.0419 | 0.0423 | 0.0424 | 0.0425
wLinearEPFE 0.0029 | 0.0028 | 0.0028 | 0.0028 | 0.0028 | 0.0801 | 0.1076 | 0.1186| 0.1217 | 0.1216 | 0.0518 | 0.0569 | 0.0582 | 0.0593 | 0.0592
Relative Improvement| 64.4% | 63.5% | 64.0% | 64.0% | 64.0% | 81.9% | 90.9% | 96.4% | 102.2% | 102.3% | 30.4% | 35.8% | 37.6% | 39.9% | 39.4%
E°FE 0.0026 | 0.0025 | 0.0025 | 0.0025 | 0.0025 | 0.0595 | 0.0888 | 0.1169 | 0.1286 | 0.1369 | 0.0472 | 0.0706 | 0.0752 | 0.0764 | 0.0775
mE2FE 0.0037 | 0.0037 | 0.0038 | 0.0038 | 0.0038 | 0.1204 | 0.1874 | 0.2264 | 0.2458 | 0.2583 | 0.0751 | 0.0883 | 0.0948 | 0.0976 | 0.0989
Relative Improvement| 43.5% | 46.5% | 48.3% | 48.2% | 48.0% | 102.1% | 111.0% | 93.7% | 91.2% | 88.7% | 59.1% | 25.1% | 26.0% | 27.7% | 27.6%
kernetEZFE 0.0040 | 0.0043 | 0.0043 | 0.0044 | 0.0045| 0.0629 | 0.0930 | 0.1247 | 0.1396 | 0.1472 | 0.0492 | 0.0699 | 0.0738 | 0.0756 | 0.0770
kernetrEZFE 0.0054 | 0.0057 | 0.0058 | 0.0059 | 0.0060 | 0.1252 | 0.1936 | 0.2346 | 0.2575 | 0.2740 | 0.0764 | 0.0876 | 0.0936 | 0.0974 | 0.0990

Relative Improvement| 36.4% | 33.8% | 34.4% | 33.6% | 33.6% | 99.0% | 108.2% | 88.2% | 84.5% 86.1% | 55.4% | 25.5% | 26.9% | 28.7% | 28.6%

TABLE VII
PERFORMANCECOMPARISONS BETWEENL INEARE2FE, E2FE, kernelE2FE AND wLINEAREZFE, 7E2FE, kernelwE2FE on delicious CAL50Q
mediamil| ESPGamegbibtexAND bookmarkswvITH VARYING d /dy, IN TERMS OFexample-based Accuracy

[ Datasets [ delicious [ CAL500 [ mediamill |
| a-/dy | 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50% |
LinearE2FE 0.1068 | 0.1055 | 0.1049 | 0.1048 | 0.1048 | 0.2318 | 0.2301 | 0.2291 | 0.2281 | 0.2281 | 0.4182 | 0.4190 | 0.4191 | 0.4190 | 0.4189
nLinearBPFE 0.1465 | 0.1457 | 0.1453 | 0.1453 | 0.1453 | 0.2555 | 0.2495 | 0.2500 | 0.2497 | 0.2497 | 0.4256 | 0.4278 | 0.4277 | 0.4275| 0.4274
Relative Improvement| 37.2% | 38.0% | 38.6% | 38.6% | 38.6% | 10.2% | 8.4% 9.1% 9.5% 9.5% 1.8% 2.1% 2.0% 2.0% 2.0%
E°FE 0.1187 | 0.1196 | 0.1197 | 0.1196 | 0.1184 | 0.2405 | 0.2411 | 0.2421 | 0.2396 | 0.2392 | 0.4353 | 0.4379 | 0.4378 | 0.4378 | 0.4378

~E’FE 0.1971 | 0.1975] 0.1974 | 0.1974 | 0.1980 | 0.3121 | 0.3044 | 0.3039 | 0.3042 | 0.3040 | 0.4280 | 0.4303 | 0.4304 | 0.4305 | 0.4305
Relative Improvement| 66.0% | 65.1% | 64.9% | 65.0% | 67.2% | 29.8% | 26.2% | 25.5% | 27.0% | 27.1% | -1.7% | -1.7% | -1.7% | -1.6% | -1.7%
kernetEZFE 0.1281 | 0.1291 | 0.1311 | 0.1312 | 0.1293 | 0.2421 | 0.2414 | 0.2397 | 0.2399 | 0.2398 | 0.4606 | 0.4647 | 0.4681 | 0.4685 | 0.4686
kernetrE2FE 0.2230 | 0.2244 | 0.2246 | 0.2246 | 0.2247 | 0.3221 | 0.3187 | 0.3166 | 0.3103 | 0.3050 | 0.4533 | 0.4605 | 0.4629 | 0.4633 | 0.4632
Relative Improvement| 74.1% | 73.8% | 71.3% | 71.2% | 73.7% | 33.1% | 32.0% | 32.1% | 29.3% | 27.2% | -1.6% | -0.9% | -1.1% | -1.1% | -1.1%

[ Datasets [ ESPGame [ bibtex [ bookmarks \
| d-/dy [ 5% [ 10% [ 15% | 20% [ 25% | 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50% |
LinearEFE 0.0597 | 0.0593 | 0.0588 | 0.0586 | 0.0584 | 0.1618 | 0.1768 | 0.1820 | 0.1816 | 0.1813 | 0.1559 | 0.1592 | 0.1591 | 0.1590 | 0.1589
wLinearEFE 0.1024 | 0.1018 | 0.1015| 0.1013 | 0.1012 | 0.2000 | 0.2276 | 0.2358 | 0.2399 | 0.2407 | 0.1756 | 0.1833 | 0.1835| 0.1835| 0.1832
Relative Improvement| 71.4% | 71.7% | 72.5% | 72.8% | 73.2% | 23.6% | 28.7% | 29.5% | 32.1% | 32.8% | 12.6% | 15.1% | 15.3% | 15.4% | 15.3%
E“FE 0.0701 | 0.0701 | 0.0700 | 0.0701 | 0.0701 | 0.1835| 0.2149 | 0.2356 | 0.2440 | 0.2493 | 0.1659 | 0.1913 | 0.1933 | 0.1937 | 0.1939

mEZFE 0.1223 | 0.1303 | 0.1303 | 0.1303 | 0.1302 | 0.2449 | 0.2973 | 0.3219 | 0.3296 | 0.3333 | 0.2089 | 0.2256 | 0.2285 | 0.2294 | 0.2295
Relative Improvement| 74.4% | 86.0% | 86.0% | 85.9% [ 85.8% | 33.4% | 38.4% | 36.6% | 35.1% | 33.7% [ 26.0% | 18.0% | 18.2% | 18.4% | 18.3%
kernetEZFE 0.0832 | 0.0834 | 0.0834 | 0.0834 | 0.0834 | 0.1910 | 0.2232 | 0.2485 | 0.2596 | 0.2640 | 0.1685 | 0.1937 | 0.1952 | 0.1958 | 0.1961
kernetrEZFE 0.1334 | 0.1335| 0.1336 | 0.1336 | 0.1336 | 0.2490 | 0.3045 | 0.3296 | 0.3398 | 0.3463 | 0.2138 | 0.2273 | 0.2296 | 0.2308 | 0.2311

Relative Improvement| 60.4% | 60.1% | 60.3% | 60.2% | 60.2% | 30.4% | 36.4% | 32.6% | 30.9% | 31.2% | 26.9% | 17.3% | 17.6% | 17.9% | 17.9%

the feature space and the latent space. Moredwemel d./d,. Experimental results show that nearly BHvaluesin
E2FE achieves superior performancekernetCPLST, which significance tests are less than the typical significancel lev
outperforms CPLST. 8) On all datasetsdagd, increases, the 0.01, and thus the performance improvements gained ¥Ee
performance of BFE does not vary dramatically due to theover baselines are statistically significant. For detaleu
orthonormality constraint in formula (4), which lead3AE to the experiments of significance tests, one can refer to the
compactly encode the label space with a smallerSimilar supplementary material.
phenomenon occurs when applying PLST and CPLST, because
both are also orthogonally constrained. Actually, we finatth 2) Experimental Validation for Enhancing Decoding Matrix
this phenomenon still remains whel/d, > 50%. with Priori Knowledge : Here on each dataset we compare
LinearEFE, BEFE, kernetE2FE with their counterparts that
Actually, to evaluate the significance of the performandearn the linear decoding matrix with priori knowledges.
improvements gained by?EE over the baselines, we also persLinear2FE, rE2FE andkernetrE2FE, as presented in Table
form paired-sample t-test50] for both label-based macroF1 VI and VII. Note that in all pairwise comparisons, we also
and example-based Accuracyn all datasets with varying present the relative performance improvements gained by
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TABLE VI
AVERAGE TRAINING COSTS(IN SECONDS) OF COMPARED ALGORITHMS(“ PERFORMINGLSDR + TRAINING PREDICTIVE MODELS") WITH d; /dy = 10%.

| delicious | ESPGame | bookmarks

BR [47] | L-SVM | 187.400  (0.000 + 187.400) \ 20,487.185  (0.000 + 20, 487.185) \ 24,809.120  (0.000 + 24, 809.120)

| L-RR | 15.428 (0.000 + 15.428) \ 54.666 (0.000 + 54.666) \ 13.310 (0.000 + 13.310)
CS [27] 1.782 (0.150 + 1.632) 7.235 (1.229 + 6.006) 2.316 (0.169 + 2.147)
PLST [28] 2.271 (0.637 + 1.635) 11.341 (5.310 + 6.031) 2.360 (0.190 + 2.170)
CPLST [30] 2.799 (1.033 + 1.766) 11.504 (5.563 + 6.031) 3.570 (1.426 T+ 2.143)
MLC-BMaD [31] 68.625 (66.937 + 1.688) 585.494 (579.388 + 6.106) 14.475 (12.344 + 2.131)
ML-CSSP [32] 2.574 (0.780 + 1.794) 11.074 (5.()61 + 6.013) 2.328 (0.188 + 2.140)
E’FE 3.787 (1.984 + 1.803) 16.936 (10.877 + 6.059) 7.039 (4.877 + 2.162)

TABLE IX TABLE X
TIME COMPLEXITY OF COMPAREDALGORITHMS TO PERFORMLSDR AVERAGE TIME COSTS(IN SECONDQ FOR THE NEWLY PROPOSED

OPTIMIZATION METHOD (E2FE) AND THAT PRESENTED IN OUR PREVIOUS
CONFERENCE PAPERFAIE) TO PERFORMLSDRWITH d. /dy = 10%.

Time Complexity

CS [27] O(ndyd,)
EIF;SL;'I['ZE’;]O g(n(?ydz)zd e Bondd - 57d | delicious® | ESPGame® \ bookmarks®
MLC—BN[IaE} &) 022“533") o, ndy}) + O@ndsdy +dady) + O(dy) EFE_ [ 1077 [ 2.646 [ 0.683

uz FalE [33] | 3.869 | 7.800 [ 2153

ML-CSSP [32] | O(ndyd.) + O(d, logd.)
E2FE

min{O(nd2) + O(n(ds + dy)?) + O(ded? + dyd2),
O(min{n?dy,nd2}) + O(n?d, + n?dy) + O(nd?)}

we can draw the following conclusions. 1) Compared with BR,

) nearly all LSDR methods can help to reduce the total training
rLinearE’FE/E*FEkemetrE*FE. costs. 2) For performing LSDR,%EE generally needs slightly

From the comparisons, we can see that in nearly all casfgjher costs than CS, PLST, CPLST and ML-CSSP, though
rLinearE’FE outperforms LineartFE, 7E*FE outperforms ity superior classification performance. Also, its tragi
E’FE, andkemetrE’FE outperformskemnetE*FE. Specifi- ¢ost is much lower than MLC-BMaD. 3) Like the previous
cally, on average, considering priori knowledge for leagni theoretical analysis, the training cost of MLC-BMaD is the
the decoding matrix can achieve a relative improvement gfyhest while those of CS, PLST and ML-CSSP are the lowest.
48.1% for label-based macroFland 33.9% for example-  2) Evaluation of the Newly Proposed Optimization Method:
pased Accuracy Meanwhile, the maximal gained relativery eyaluate the optimization method proposed in this pamer f
improvement for the former isl11.0%, and that for the efficiently learning the code matrix in cases with> d, +d,,
latter is 86.0%. Such significant performance improvementge also conduct experiments atelicious ESPGameand
well demonstrate the effectiveness of our proposal to &irthygokmarkgo compare its efficiency with that of the optimiza-
consider the eigenvalues corresponding to each columngf method presented in our conference paper [33]. Here we
the code matrix as priori knowledge to enhance the linegdspectively denote the former a2RE and the latter as FalE.

decoding matrix in BFE and its variants. Considering that FalE needs to calculate the matfixe
R™*™ and thus needs much memory space for large datasets, to
C. Analyses of Training Costs avoid biases brought by high memory space costs, here we fol-

1) Comparison with BaselinesEor E2FE and compared !owlthe experimental set_tlngs |n.[33] and samp|e00 t.ra.u.n-
. e ing instances for evaluating the time costs of both optitioza
baselines, apart from classification performance, herelse a

compare their training costs theoretically and experimignt m_ethods to perform LSDR. Not_e _tha’g hewe> d; + dy is
o - . . still ensured for the sampled training instances. Expeantale
Considering that the training costs of all algorithms mginl

differ in those of performing LSDRj.e. learning the code results on the three datasets with/d, = 10% are reported

vectors of training instances and the decoding process vher in Table X. It can be seen that the time costs of the newly

summarize the time complexity of each alorithm. as preskn roposed optimization method are significantly lower than
) mpiexity i gorithm, as p hose of the one presented in [33]. That clearly demonstrate
in Table IX. From the time complexity analysis, it can be seel

that MLC-BMaD has the highest time complexity, while CSP'e effectiveness of the newly proposed optimization metho

PLST and ML-CSSP have the lowest. for cases wittn > d; + d.

Moreover, in Table VIII we also report the average time o
costs for EFE and the compared baselines on performirfg- Parameter Sensitivity Analyses
LSDR and training predictive models over 5 runsdsicious For a more detailed view, we also conduct experiments to
ESPGamend bookmarks which have the largest label setssee the effects of (i.e. formula (12)) on the performance of
with d./d, = 10%. As a reference, the time costs of BRhe proposed BE. Fig. 2 presents how the performance of
are also provided. All algorithms are conducted with MatlaB>FE changes as varies in{1072,10~!,-.. /10%,10°} in a
R2013a on a server with two Intel Xeon E5-2430 CPUs amdn on the largestlelicious ESPGameand bookmarkswith
64G RAM, except that BR with L-SVM is conducted usingi./d, = 10%. It can be seen that on these three datasets the
LIBLINEAR [48]. Looking at the results of this comparison,performance of BFE, in terms oflabel-based macroFhand
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Fig. 2. Effects ofa on the performance of ¥FE ondelicious (left), ESPGamemiddle) andbookmarkg(right), with d.. /d, = 10%.
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Fig. 3. Effects ofp = gmai(X) on the performance ofE2FE ondelicious (left), ESPGamegmiddle) andbookmarks(right), with d. /d, = 10%.

example-based Accuraciirstly increases and then decreasesf the latent space, adding an orthonormality assumption, s
as « increases from0~2 to 10°. That further demonstratesilar to PLST and CPLST, allows us to mitigate the redundant
the reasonableness of jointly considering teeoverabilityof information among dimensions of the latent space and then
the label space and tharedictability of the latent space, asenable BFE to encode the label space more compactly. 2) As
a good trade-off between both yields superior performanaan be seen in formula (2) - (6), adding the orthonormality
Moreover, we can observe that for these three datasets #issumption can simplify the objective function ofFE and
optimal o for E2FE is near[103, 104]. enable it to be transformed into an eigenvalue problem for
By fixing o = 103, we further analyse the effects gf efficient optimization. 3) By enabling the objective furctito
(i.e. formula (18)) on the performance ofE2FE. Specif- be transformed into an eigenvalue problem, from formulg (15
ically, on the largestdelicious ESPGameand bookmarks and (16) we can see that adding the orthonormality assumptio

with d,/d, = 10%, we rewriten = gmai(x) and vary actually helps to ensure’EE obtaining global optima.
¢in {0,270,27° . 271 1} based on Lemma 3 to see Here we also try dropping the orthonormality assumption

how the corresponding learnt linear decoding matrix agfeciom the objective function OTE:E and conduct experiments
the performance ofrE2FE, as shown in Fig. 3. It can beOn all datasets to evaluate it. We denote it @ Ey,0.th,

seen that on the three datasets,jagicreases fromn (i.e. With its objective function given as follows.

¢=2""f =0)to mai(x) (i.e. ¢ = 20 = 1), the performance U = maxz,q —||Y — Z2Q|3,, + oTr[Z"HZ]

of 7E2FE, in terms oflabel-based macroFiand example- =ming q [[Y - ZQl},, — o Tr[Z"HZ] (30)
based Accuracytends to firstly increase and then decrease st. Vie{l,2,...,d.}, ZEZ,J- =1

: ) ) . 05 o

in most cases, with the optimaj being near — (18- \ote thatz?,Z., = 1 is still required due to formula (7).

§ = 27). Actually, n = 0 makes7E*FE degenerate t0 Like other matrix factorization methods [51], we can derive
E°FE, and it generally yields inferior performance thar 0, the code matrixZ and the linear decoding matriQ by
which further demonstrates the reasonableness of comside;sing gradient descent methods to iteratively and altameigt
the eigenvaluesv.r.t columns of the code matrix as prioripptimize one while keeping the other fixed until convergence
knowledge to learn an enhanced linear decoding matrix. For more details, one can refer to the supplementary mhteria
The performance of #Ey,0.:, On all datasets, using
VIII. DISCUSSIONS random initial values foiZ and Q to perform optimization,
The proposed HE assumes that columns of the to-bes presented in Table XI. It can be seen th&FEy,o.n
learnt code matriZ are orthonormal. Though this assumptiotis inferior to EFE. In fact, even using the derived and
seems to be strong, it is still reasonable and brings usedpkp Q of E2FE as initial values, BFEx,o0-:» can hardly gain
erties to EFE. 1) As each column d denotes one dimensionperformance improvement oveEE. It is mainly attributed
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TABLE XI
PERFORMANCECOMPARISONS BETWEENE2FE AND E2FEpn o0t ON
ALL DATASETS, WITH p = 5 FORESPGamenND p = 10 FOR OTHERS

14

generated by trained predictive models. The proposteEE
has close connections to several previous works. It can also
be specified to learn an encoding function as previous works,
or extended with kernel tricks to handle non-linear cotietes

d./dy p% 2p% 3p% 4p% 5p%
delicious | . _EFE 0.0530 | 0.0569 | 0.0577 | 0.0578 | 0.0578
o E2FEno,oren | 0.0336 | 0.0401 | 0.0444 | 0.0462 | 0.0438
s CALE00 E?FE 0.1198 | 0.1247 | 0.1263 | 0.1258 | 0.1256
g E2FEno,0ren | 0.0966 | 0.1086 | 0.1074 | 0.1122 | 0.1120
£ diamill E?FE 0.0549 | 0.0575 | 0.0577 | 0.0577 | 0.0577
3 mediamil | E2FEy oren | 0.0436 | 0.0448 | 0.0459 | 0.0451 | 0.0453
@ E?FE 0.0026 | 0.0025 | 0.0025 | 0.0025 | 0.0025
¢ | ESPGame| oo .. | 0.0018| 0.0018| 0.0017 | 0.0018 | 0.0018 (1]
5 bibtex —E°FE 0.0595 | 0.0888 | 0.1169 | 0.1286 | 0.1369
= E2FEno,oren | 0.0420 | 0.0727 | 0.0847 | 0.0929 | 0.1000
bookmarks E?FE 0.0472 | 0.0706 | 0.0752 | 0.0764 | 0.0775
E2FEnooren | 0.0298 | 0.0455 | 0.0459 | 0.0471 | 0.0488 2]
> | delicious E?FE 0.1187 | 0.1196 | 0.1197 | 0.1196 | 0.1184
] E2FEno,oren | 0.1037 | 0.1073 | 0.1082 | 0.1093 | 0.1045
3 | caLsoo E?FE 0.2405 | 0.2411 | 0.2421 | 0.2396 | 0.2392
O 2
£ E2FEnooren | 0.2261 | 0.2294 | 0.2256 | 0.2267 | 0.2250
B | mediamil E?FE 0.4353 | 0.4379 | 0.4378 | 0.4378 | 0.4378 (3]
@ E2FEno,orn | 0.4192 | 0.4201 | 0.4204 | 0.4192 | 0.4199
2 [ Espcame E?FE 0.0701 | 0.0701 | 0.0700 | 0.0701 | 0.0701
2 E2FEno,oren | 0.0613 | 0.0635 | 0.0605 | 0.0585 | 0.0590 [4]
E bibtex E2FE 0.1835 | 0.2149 | 0.2356 | 0.2440 | 0.2493
3 E2FEno,oren | 0.1501 | 0.2018 | 0.2121 | 0.2167 | 0.2233
bookmarks E?FE 0.1659 | 0.1913 | 0.1933 | 0.1937 | 0.1939
E2FEnoomn | 0.1521 | 0.1627 | 0.1636 | 0.1645 | 0.1660 [5]
TABLE Xll (6]
AVERAGE TIME COSTS(IN SECONDS FOR PERFORMINGALSDRIN E2FE 7
AND E2FEN,0rth WITH d- /dy = 10%. (7]
(8]
| delicious | ESPGame | bookmarks
E2FE [ 1984 [ 10877 [ 4877
E2FEnoorin | 145253 | 215.199 | 41.434 [9]

to that, without the orthonormality assumption, 1) more rel0]
dundant information rather than complementary infornratio
exists between dimensions of the latent space, and 2) glohaj
optima cannot be ensured fér.

Moreover, we also evaluate the time costs f6FEx,orth
to perform LSDR on the largesielicious ESPGameand
bookmarkswith d./d, = 10%, as reported in Table XII. [13]
We can see that FEx,0.-, COSts much more time than
E?FE, because its objective function is more complex fQi4)
optimization. Its time costs are even higher than those ef th
binary relevance model L-RR (Table VIII). (5]

Therefore, dropping the orthonormality assumption does
not bring substantial performance improvements and idsteas)
will increase the time costs for optimization. On the confra
keeping the_o_rthonormality as_sumption gains a good trffble-ﬂn
between efficiency and effectiveness for LSDR.

[12]

IX. CONCLUSION (18]

Aiming to address the multi-label classification problem
with many classes, in this paper we have proposed an eﬂaect[iygl
method termed B-E to perform LSDR via end-to-end feature-
aware label space encoding. In contrast to most previous
works, EEFE requires no encoding functions, and it direct{?%
learns a feature-aware code matrix via jointly maximizihg t
recoverabilityof the label space and th@edictability of the
latent space. Subsequently, a linear decoding matrix tedur [21]
learnt for efficiently recovering the predicted label vesto
of unseen instances from their corresponding code vectors

between the feature space and the latent space.
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13
14
15 I. PROOFS FORLEMMA 1 AND LEMMA 3 Combining formula (1), (2), (4) and (5), we can derive:
16 . .
Lemma 1. For E*FE, its RMSE is bounded b 2
17 2 y RMSE < — (VAN frollZ = GX) |0 + Y = ZQ1 510 )
18 2 _ _
o RMSE < = (VENY o7 =G (%) | 1eo + 1Y = 2Qll570) -
3(1) Proof. RMSE for EFE is defined as follows. Lemma 3. For anyn € [0, m] with max(X) being the
1 maximal value of\, £ will be non-trivial for optimization.
= RMSE = —=lround (@(X)Q) = Ylro (@) ] - j
y Proof. In 7E*FE, the objective function for the enhanced
35 whereG denotes the learnt predictive models for mapping idinear decoding matrixQ is defined as follows.
stance features into code vectors, andnd(G(X)Q) denotes A B 2 TR
26 the recovered binary tagging matrix. £= m(in IY = 2Ql7o = nTr[Q7AQ] ©)
27 For clarification, we introduce a matriR defined as fol- <. ; o .
28 lows ' where A is a diagonal matrix withA; ; = A;, and ); is the
29 ' eigenvalue corresponding to thith column of the code matrix
30 R =round (§(X)Q) =Y @) 7z Moreover, here\ = [A1, A2, ..., Aq_].
31 Then for any entnR, ;, we haveR,; € {—1,0,1} and thus Then £ can be rewritten as the following Quadratic Pro-
32 R2. € {0,1} ’ ’ gramming form.
1,7 ? "
22 Agcordigg to thground(-) operation, '{here_ are two cases £ =minTr[QT(ZTZ — nA)Q — 2YTZQ]
35 makingR7; = 1, i.e. 1) (6(X)Q),; > 5 while Y;; = 0, Q _ @)
36 and 2)(G(X)Q),; < 3 while Y, ; = 1. In both cases, we > mén Tr[QT (I - nA)Q - 2YTZQ]
37 have the following inequality. ~
38 ) 5 where I is an identity matrix. To makeC non-trivial for
39 ((g(X)Q)i }_YM_) > <l) _ lezj (3) optimization, (I — nA) needs to be positive semi-definite.
40 7 2 4" Knowing thatA is a diagonal matrix with its diagonal entries
41 Actually, whenR?, = 0, the inequality above still holds. P€ingA. (I —nA)is also d|agon1a|, and all its diagonal entries
' 2 are non-negative whem € [0, — ] with max eing the
42 7 gat heme [0 =] with (\) being th
Then, we have). R?. < 4. ((Q(X)Q) .—Yij) . . - max()) - . .
43 With matri notat'%s Je can f Lf%her deri e_” § maximal value ofX. In that casg(I — nA) is positive semi-
44 ! X lons, w u Ve definite, makingl non-trivial for optimization. O
45 IR[[fro < 2[G(X)Q = Yl fro (4)
46 [l. SUPPLEMENTARY EXPERIMENTAL RESULTS
47 With the triangle inequality and the Cauchy Schwarz inequ - - _
48 ity, we can defive that: 1A, B, [|A + B o < ||Al|;ro + aA Statlstléal S|gln|f|cance of the Superlorlty ojia:=
49 IB||fro, and 2)VA, B, [|AB|| 0 < ||A||frlo||B||fro- More- As mentioned in the paper (section VII-B1), to evaluate the
50 over, with ZTZ — 1, we haVéHZHf_'m — \/Z.. Then we can Significance of the performance improvements gained #EE
51 utilize them withQ = Z7'Y to have the following derivations. OVer the baselines, we further perfopaired-sample t-tedt]
52 for bothlabel-based macroFandexample-based Accuraon
53 16(X)Q = Y[ ro all datasets with varying.. /d,.
y =1(G(X)Q-ZQ)+ (ZQ - Y For label-based macroFlwe take the correspondinigl
5 @(X)Q-2Q)+(ZQ—-Y) [|fro p
55 < 16(X)Q = ZQl| 1o + 1ZQ — Y] ro values {.e. prT: in formula (28)) of all labels for each algo-
56 ; X)_ 7 7 Y ' rithm as the samples from i1 distribution. Meanwhile, for
57 < 1g(X) ~ ”f“’”Qﬂfm +112Q = Yllsro (®) example-based Accuraoye take the correspondirgcuracy
58 =1Z = GX)lrollZ" Y1l fro + Y — ZQ]| fro values {e. % in formula (29)) of all test instances for
2(9) <NZ = GX) ol Zll ol Yl fro + 1Y = ZQ| 1o each algorithm as the samples from discuracydistribution.

= VA Y| froll Z — GX) || fro + [ Y — ZQ| 1o Then for each performance metric, we compare the samples of
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TABLE |
RESULTS OF SIGNIFICANCE TESTi.e. P-valu@ Forlabel-based macroF1 BETWEEN E2FE AND THE COMPARED BASELINES ON ALL DATASETS WITH
VARYING d /dy

[ Datasets | delicious I CAL500 I mediamill |
I d./dy | 10% [ 20% | 30% [ 40% | 50% | 10% [ 20% | 30% [ 40% [ 50% | 10% [ 20% | 30% [ 40% [ 50% |
CS € € € € € € € 35708 | 419¢08 | 2.25e-06 | 1.73e-10| 2.11e08 | 8.27e-09 | 6.87e-05 | 1.76e-05
PLST € € € € € € € € € € € € € €
CPLST € € € 3 € € € € 3 € € € € € €
MLC-BMaD € € € € € € € € € € € € € € €
ML-CSSP € € € € € € € € € € 2.61e-09 | 6.16e-10 € € €
[ Datasets ]| ESPGame I bibtex I bookmarks |
| d. [dy | 5% [ 10% | 15% [ 20% | 25% | 10% [ 20% | 30% [ 40% [ 50% | 10% [ 20% | 30% [ 40% [ 50% |
CS € 3.41e-05 0.0015 0.206 0.181 € 3 9.1e-05 | 4.16e-05 | 4.65e-07 € 3 3 0.000371 | 0.00152
PLST € € € € € 1.19e-10 € € € € € € € € €
CPLST € € € € € € € € € € 4.3e-05 € € € €
MLC-BMaD € € 3 3 € 1.87e-09 € € 3 € € € € 3 €
ML-CSSP € € € € € € € € € € € € € € €
TABLE Il

RESULTS OF SIGNIFICANCE TESTi.e. P-valu@ FORexample-based Accuracy BETWEEN E2FE AND THE COMPARED BASELINES ON ALL DATASETS WITH
VARYING d /dy

[ Datasets ]| delicious I CAL500 I mediamill |
| d. [dy | 10% [ 20% ]| 30% [ 40% | 50% | 10% [ 20% | 30% [ 40% [ 50% | 10% [ 20% | 30% [ 40% [ 50% |
CS € € € 3 € € € € 3 € € € € € €
PLST €
CPLST €
MLC-BMaD €
ML-CSSP €

ala|ala
ala|ala
ala|ala
ala|a|a

€
€
€
€

ala|ala

€
€
€
€

alo|a|a

€
€
€
€

ala|ala

€ € €
€ € €
€ € €
€ € €

ala|a|a

[ Datasets | ESPGame I bibtex I bookmarks |
[ d:/d, | 5% [ 10% | 15% | 20% | 25% | 10% | 20% | 30% | 40% | 50% | 10% | 20% | 30% | 40% | 50% |
CS € € € € € € € € € € € € € € €
PLST
CPLST
MLC-BMaD
ML-CSSP

ala]a
ala]a
ala|e

alala]a
alo|a]a

€
€
€
€

,\
alafala
ala|a]a
alala|a

€
€
€
€

,\
alala|a
alala|a
alala|a

€
€
€
€

o~
alo|ale

o
o
o

the proposed method against those of any compared baselBeExperimental Validation for the Orthonormality Assump-
and calculate the differences between pairwise samples fion in E2FE

significance tests. Theull hypothesisH, here is that.the As mentioned in the paper (section VIII), to further demon-
mean value of such differences equals zero, analieenative  sirate the reasonableness of introducing the orthondyesi
hypothesisH,, is that the mean value of such d|ﬁerence§umption into the proposec?EE, we also try dropping it from
does not equal zero and the mean value of Rlifaccuracy the objective function and conduct experiments to see how it
values yielded by BFE is larger than that yielded by theaffects the classification performance and the computattion
compared baseline. We set the significance level as a typiggkts of BFE. We denote this case a@REy ,orth. SPECif-

value 0.01. Then if aP-value generated by the significancqca"y’ without the orthonormality assumption, the objeet
test satisfies tha®-value< 0.01, the null hypothesisty Will  fynction of BFEx 0., Will be as follows.

be rejected and thalternative hypothesi#l,, is considered to

_ 2 T
be statistically significant. V¥ =maxz,q—|Y - ZQl|%,, + oTr[Z" HZ|

= minz q [Y — ZQ|f%,, — oTx[Z"HZ]  (8)

Here Table I and Il report all the-valuesof the significance st. Vi€{l2,... d:}, ZTiZ"i =1
tests between IFE and each baseline for bothbel-based whereY is the tagging matrix of training instances, and
macroF1 and example-based Accuragyn all datasets with Q are respectively the to-be-learnt code matrix and the tinea
varying d./d,. For clarity, here aP-valueless than10~* decoding matrix, and = X(X”'X)~'X” with X being the
is denoted as a tiny value. From the results of signifi- feature matrix of training instances. Note tHaf;Z.; = 1
cance tests, we can find that: 1) fabel-based macroF1 is still required here as it is the precondition flr[Z” HZ]
except the cases wherélEE is compared against CS withbeing an expression of predictability, as described inisect
d./d, € {20%,25%} on ESPGamethe maximalP-valuein 1lI-B2. Like other matrix factorization methods [2], [3], ev
all significance tests betweerfEE and the compared basecan derive the code matriZ and the linear decoding matrix
lines is around.5 x 10~3, 2) for example-based Accuracgll Q via iteratively and alternatively optimizing one with the
P-valuesin significance tests are less thad'°. Therefore, other fixed, though that cannot ensure to obtain the global
considering that nearly alP-valuesin the significance tests optima. Specifically, withZ fixed, Q can be optimized as
are less than the significance levied, 0.01, the performance Q = (Z7Z)~'Z”Y. Meanwhile, withQ fixed, the gradient
improvements gained byZEE over the compared baselinesv.r.t Z can be calculated a%% = -2(Y-ZQ)Q" —2aHZ.
are statistically significant. Considering the constraints for each columnZofit is infea-



Page 19 of 19

P OO~NOUILAWNPE

U OO OB DMBEMDIAMDIAMBEADIAMDIMDNWOWWWWWWWWWWNDNNNNNNMNNNNRPRPRPERPRERPERRER
QUOWONOUPRARWNRPOOO~NOUOPRRWNPRPOOONOOUOPRARWNRPFPOOONOODURAWNPOOO~NOOUUDMWNEO

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE Il not bring substantial performance improvements and idstea

PERFORMANCECOMPARISONS BETWEENE2FE AND E2FEpn o0t ON will
ALL DATASETS, WITH p = 5 FORESPGamenND p = 10 FOR OTHERS

d./dy p% 2p% 3p% 4p% 5p%
Jelcous | EFE 0.0530 | 0.0569 | 0.0577 | 0.0578 | 0.0578
o E2FExoon | 0.0336 | 0.0401 | 00444 | 0.0462 | 00438
§ CALS00 EZFE 0.1108 | 0.1247 | 0.1263 | 0.1258 | 0.156
£ J— 0.0549 | 0.0575 | 0.0577 | 0.0577 | 0.0577
g | Medaml |\ e oo | 0.0436 | 0.0448 | 0.0459 | 0.0451 | 0.0453
& [ EspGame EZFE 0.0026 | 0.0025 | 0.0025 | 0.0025 | 0.0025 [2]
s E2FEnooren | 0.0018 | 0.0018 | 0.0017 | 0.0018 | 0.0018
g — —E7FE 0.0505 | 0.0888 | 0.1160 | 0.1286 | 0.1369
< E2FEnooren | 0.0420 | 0.0727 | 0.0847 | 0.0929 | 0.1000 3]
A EZFE 0.0472 | 0.0706 | 0.0752 | 0.0764 | 0.0775
E2FEnooren | 0.0298 | 0.0455 | 0.0459 | 0.0471 | 0.0488
> | delcious E2FE 0.1187 | 0.1106 | 0.1107 | 0.1196 | 0.1184
8 E2FEnooren | 0.1037 | 0.1073 | 0.1082 | 0.1093 | 0.1045
2 | caLsoo EZFE 0.2405 | 0.2411 | 0.2421 | 0.2396 | 0.2392
g E2FEnooren | 0.2261 | 0.2294 | 0.2256 | 0.2267 | 0.2250
R —— EZFE 04353 | 04379 | 04378 | 04378 | 04378
2 E2FEnooren | 04192 | 0.4201| 0.4204 | 0.4192 | 0.4199
o EZFE 0.0701 | 0.0701 | 0.0700 | 0.070L | 0.0701
S | ESPGame| porp .. | 00613 | 0.0635| 0.0605 | 0.0585 | 0.0590
£ — EZFE 0.1835 | 0.2140 | 0.2356 | 0.2440 | 0.2493
% E2FEnooren | 0.1501 | 0.2018 | 0.2121 | 0.2167 | 0.2233
bookmarks EZFE 0.1659 | 0.1913 | 0.1933 | 0.1937 | 0.1939
E2FEnooren | 0.1521 | 0.1627 | 0.1636 | 0.1645 | 0.1660

TABLE IV
AVERAGE TIME COSTS(IN SECONDS FOR PERFORMINGLSDRIN E2FE
AND E2FEN,0rth WITH d- /dy = 10%.

| delicious | ESPGame | bookmarks

E’FE [ 1.984 [ 10.877 [ 4.877
E’FEnooren | 145253 | 215.199 | 41.434

sible to derive a closed-form solution for the optinZal And
thus in our experiments we utilize a gradient descent based
method for optimizingZ, which always takes one appropriate
step to make the objective function decrease while keepiag t
constraints satisfied. By iteratively optimizirfyand Q until
convergenceie. the relative change of the objective function
is less thar0.1% in our experiments), we utilize them to train
predictive models and then perform classification for unsee
instances.

The performance of BEy,0.:, On all datasets, using
random initial values foiZ and Q to perform optimization,
is presented in Table lll. It can be seen th&FEx.o,tx
is inferior to EFE. In fact, even using the deriveéd and
Q of E2FE as initial values, BFEx,0.¢, can hardly gain
performance improvement overEE. It is mainly attributed
to that, without the orthonormality assumption, 1) more re-
dundant information rather than complementary infornratio
exists between dimensions of the latent space, and 2) global
optima cannot be ensured f@r.

Moreover, we also evaluate the time costs f6FEx,0r¢h
to perform LSDR on the largedielicious ESPGameand
bookmarkswith d./d, = 10%, as reported in Table IV.
We can see that FEx,o-, COSts much more time than
E%FE, because its objective function is more complex for
optimization. Its time costs are even higher than those ef th
binary relevance model L-RR (see Table VIII in the paper),
which means that #Ey,0.+;, May be unsuitable for LSDR.

Therefore, dropping the orthonormality assumption does

increase the time costs for optimization. On the contra

keeping the orthonormality assumption gains a good trdfle-o
between efficiency and effectiveness for LSDR.
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