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Summary of Changes and Responses to Reviews

We appreciate very much the handling editor and all re-
viewers for their time and efforts devoted to the peer-review
of this paper. Their constructive comments have guided us to
further improve it.

We have conducted a “minor revision” for the manuscript
to address the editor’s and reviewers’ comments. And we
believe that all the comments raised in the review report have
been carefully accommodated. Below we will firstly list the
changes we have made in this revision, and then respond to
each comment in turn.

I. SUMMARY OF CHANGES

The main changes made in this revision include:

1) In the “Introduction” of the revision, we have stated
more clearly about the connection between our work and
the community of neural networks and related learning
systems, as well as our contributions to the community.
Moreover, we have improved the language presentation
of our manuscript with the help of a native speaker to
make it more clear and easier to follow.

2) To make our manuscript more focused on the key points,
we have moved the following content to a supplementary
material: 1) proofs of Lemma 1 and Lemma 3, 2)
overmuch details of the experiment for significance tests,
and 3) overmuch details of the experiment for vali-
dating the orthonormality assumption in our proposed
method. Particularly, for 2) and 3), we mainly present
the corresponding experimental results and analysis in
the manuscript. And for more details, one can refer to
the supplementary material.

II. RESPONSES TOREVIEWS

1) Comment: The language presentation in this paper
needs to be improved. The authors are encouraged
to have a native speaker or use a professional
editing service (see TNNLS website for more
information, section ”Professional Editing Services”
under ”Information for Authors”) to help to improve
the language presentation.

Response: Thanks for the suggestion. In the revision,
we have invited our colleague, who is a native
speaker and familiar with the topic, to help polish our
manuscript and improve the language presentation.

2) Comment: The authors should clearly state the key
contributions to the core of neural networks and related
learning systems to show a strong connection to the
NNLS community. The authors might want to take a
look of the recently published papers in TNNLS on this

topic as well.

Response: Thanks for the suggestion. In the “Introduc-
tion” of the revision, we have stated more clearly about
the connection between our work and the NNLS com-
munity, as well as our contributions to the community.
Please refer to the first two paragraphs of “Introduction”
(Page 1) and the 5th paragraph of Page 2.
Specifically, multi-label classification, especially large-
scale multi-label classification, is an important topic for
the machine learning community, with many research
works like [1]–[7] dedicated to it for tackling challenges.
Similar to the previous publications like [3], our work
also focuses on tackling the challenge of large label sets
in large-scale multi-label classification problems. To do
so, we propose an effective method termed E2FE to
perform label space dimension reduction (LSDR), which
aims to yield acceptable classification performance with
substantially lower costs. Extensive experiments show
that E2FE gains performance improvements over other
state-of-the-art LSDR methods. Moreover, since the pre-
dictive model used in E2FE is open for any effective one,
including neural networks, E2FE can also be applied
with existing predictive models or feature dimension
reduction approaches in the community to better handle
large-scale multi-label classification problems.
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End-to-End Feature-aware Label Space Encoding
for Multi-label Classification with Many Classes

Zijia Lin, Student Member, IEEE,Guiguang Ding,Member, IEEE,
Jungong Han, Ling Shao,Senior Member, IEEE,

Abstract—To make the problem of multi-label classification
with many classes more tractable, in recent years academia
has seen efforts devoted to performing label space dimension
reduction (LSDR). Specifically, LSDR encodes high-dimensional
label vectors into low-dimensional code vectors lying in a latent
space, so as to train predictive models at much lower costs. With
respect to the prediction, it performs classification for any unseen
instance by recovering a label vector from its predicted code
vector via a decoding process. In this paper, we propose a novel
method, namely End-to-End Feature-aware label space Encoding
(E2FE), to perform LSDR. Instead of requiring an encoding
function like most previous works, E2FE directly learns a code
matrix formed by code vectors of the training instances in anend-
to-end manner. Another distinct property of E2FE is its feature
awareness attributable to the fact that the code matrix is learnt
by jointly maximizing the recoverability of the label space and the
predictability of the latent space. Based on the learnt code matrix,
E2FE further trains predictive models to map instance features
into code vectors, and also learns a linear decoding matrix for
efficiently recovering the label vector of any unseen instance from
its predicted code vector. Theoretical analyses show that both
the code matrix and the linear decoding matrix in E2FE can
be efficiently learnt. Moreover, similar to previous works, E2FE
can be specified to learn an encoding function. And it can also
be extended with kernel tricks to handle non-linear correlations
between the feature space and the latent space. Comprehensive
experiments conducted on diverse benchmark datasets with many
classes show consistent performance gains of E2FE over the state-
of-the-art methods.

Index Terms—End-to-end feature-aware label space encoding,
Label space dimension reduction, Multi-label classification.

I. I NTRODUCTION

A S a generalized version of multi-class classification [1],
[2], where each instance is restricted to having only

one class label, multi-label classification [3]–[20] allows an
instance to be associated with several class labels to describe
its semantic content or attributes more clearly. Multi-label
classification methods are increasingly demanded by modern
applications, like multi-label text classification [3], music emo-
tion categorization [4], and semantic image annotation [18]–
[20]. In addition, many researches on neural networks and
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Fig. 1. Illustration of the principles behind traditional multi-label classification
methods (red) and those with label space dimension reduction (blue).

other learning approaches are also dedicated to the field, like
the tree-structure based method ML-TREE [17], the multiview
vector-valued manifold regularization method MV3MR [18],
and the label inference method LI-MLC [21],etc.

Recently, due to the emergence of web-based applications,
multi-label classification problems tend to be large-scale, with
new challenges of numerous instances and large label sets (i.e.
high-dimensional label spaces) coming up. For instance, inthe
picture sharing community Flickr, there are billions of images
and each can be annotated with textual labels selected from
millions of candidates. In the community of neural networks
and related learning systems, to handle the challenges, some
works like [22]–[26] focus on feature dimension reduction or
model simplification, while others like LI-MLC [21] focus on
shrinking the label space. Here we follow the latter one.

As advocated by Kapooret al. in [5], large label sets cause
many existing effective multi-label classification methods [6]–
[15] to be infeasible, since generally they need to learn a
predictive model for each label independently or with inter-
label correlations, and then combine them in a certain manner
for prediction. Specifically, for a multi-label classification
problem with many classes (i.e. a large label set, or a high-
dimensional label space), the number of needed predictive
models would generally be large, thus making the training
costs, if not unaffordable, extremely high. To tackle this issue,
researchers have recently proposed to perform label space
dimension reduction (LSDR) [5], [27]–[32], which aims to
reduce the training costs while maintaining acceptable clas-
sification performance. Specifically, for LSDR, as illustrated
in Fig. 1, the high-dimensional label vector of any training
instance is encoded into a low-dimensional code vector in a
latent space. Afterwards, predictive models are trained tomap
instance features into low-dimensional code vectors, whose
quantity is much smaller and thus can significantly reduce the
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training costs. As for performing prediction for any unseen
instance, a low-dimensional code vector is firstly obtained
with the learnt predictive models from its features, and then
decoded for recovering its label vector. Generally speaking,
if the learnt predictive models and the decoding process are
effective and efficient enough, LSDR usually yields acceptable
classification performance with much lower costs, making
the multi-label classification problem with many classes more
tractable.

Prior methods dedicated to LSDR mostly require an encod-
ing function (function-based),e.g. a linear one, to map label
vectors of training instances into code vectors lying in the
latent space. However, due to the following observations, we
argue that learning the code vectors of training instances in
an end-to-end manner,i.e. directly learning them without any
encoding functions, can be feasible and even preferable.

• From Fig. 1 it can be seen that, to perform prediction,
the encoding process is totally redundant, and thus any
encoding function is useless during prediction. Moreover,
even for training, it is the encoding result (i.e. code
vectors of training instances) that will affect the learning
of predictive models, no matter whether an encoding
function is required or not.

• Defining an encoding function may limit the searching
space of the to-be-learnt code vectors of training in-
stances. For example, given the tagging matrixY of
training instances, using a linear encoding functionP

can limit the to-be-learnt code vectors in the spaceYP,
thereby preventing them from being searched in the whole
real space that could potentially minimize the loss of
classification performance.

• In some cases, code vectors of training instances are re-
quired to have specific properties, like the orthonormality
between code dimensions in this paper. Although those
property requirements can somehow be transferred to the
encoding function, it will inevitably make the objective
function much more complex for optimization.

In fact, compared to a function-based encoding, an end-
to-end encoding requires no encoding function, and thus
can search the whole real space for the optimal to-be-learnt
code vectors. Moreover, for an end-to-end encoding, it would
be direct to add property requirements for the to-be-learnt
code vectors, making the objective function less complex for
optimization. To the best of our knowledge, MLC-BMaD [31]
is the only previous research that pioneered end-to-end label
space encoding via boolean matrix decomposition. However,
as will be shown later, its training is not efficient enough
and as a result it may not fully accomplish the goal of
LSDR. Moreover, MLC-BMaD learns the code vectors of
training instances in afeature-unawaremanner, meaning that
the correlations between the latent space and the feature space
are not considered. That, as advocated by Chen and Lin [30],
can probably make the learnt latent space less predictable and
thus degrade the final classification performance. Therefore,
further researches on end-to-end label space encoding are
highly expected.

In this paper, we propose a novel method termed E2FE

to perform LSDR viaEnd-to-End Feature-aware label space
Encoding. Specifically, E2FE directly learns a code matrix
formed by code vectors of training instances via jointly
maximizing the recoverability of the label space and the
predictability of the latent space, with the latter considering
the correlations between the latent space and the feature space.
And thus E2FE is feature-aware. Based on the learnt code
matrix, predictive models are trained as other LSDR methods,
to predict code vectors from instance features. Meanwhile,
E2FE further learns a linear decoding matrix that can recover
the predicted label vector of any unseen instance from its code
vector generated by the trained predictive models.

Since the predictive models in the proposed E2FE are
open for any effective ones, including neural networks, E2FE
can actually be applied with existing predictive models or
feature dimension reduction approaches in the community to
better tackle the large-scale multi-label classification problem.
Particularly for LSDR, below are three highlighted properties
of E2FE, which are in line with our contributions.

• We propose an effective LSDR method termed E2FE for
tackling (large-scale) multi-label classification problems
with many classes. To the best of our knowledge, it is the
first to make LSDR both end-to-end and feature-aware.

• We jointly maximize therecoverabilityof the label space
and thepredictability of the latent space for performing
LSDR in E2FE. The objective functionw.r.t the to-be-
learnt code matrix can be transformed to an eigenvalue
problem, and is sufficiently flexible in the sense that
different optimization strategies can be used depending
on the applications for efficient optimization.

• We show that E2FE is a generic approach that covers
previous LSDR researches, and it can also be specified
to learn an encoding function. Moreover, it can be ex-
tended with kernel tricks to handle non-linear correlations
between the feature space and the latent space.

This paper is based on our previous work presented in [33],
which was termed FaIE, but it substantially extends that work
by enhancing the proposed method to be more efficient and
effective. Below are the summarized extensions.

• We propose a more efficient optimization method for
the proposed method to learn the code matrix in cases
wheren≫ dx+dy, with n, dy, dx respectively denoting
the number of training instances, the dimensionality of
the label space and that of the feature space. This is
helpful for practical applications, as such cases are quite
common. Specifically, the newly proposed optimization
method transforms the size of the eigenvalue problem
w.r.t the objective function of E2FE from R

n×n to
R

(dx+dy)×(dx+dy), which can be solved more efficiently
and can substantially reduce space costs.

• We further proposeπE2FE, πLinearE2FE and kernel-
πE2FE, to consider the priori knowledge provided by the
eigenvalue problemw.r.t the to-be-learnt code matrix for
learning an enhanced decoding matrix. Experiments com-
paring πE2FE, πLinearE2FE, kernel-πE2FE with their
corresponding counterparts,i.e. E2FE, LinearE2FE and
kernel-E2FE, show that enhancing the decoding matrix
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with such priori knowledge can help to gain significant
performance improvements (on average48.1% for label-
based macroF1and33.9% for example-based Accuracy).

• In this paper, we provide a thorough discussion and exper-
imental validation for that the orthonormality assumption
for columns of the to-be-learnt code matrix in E2FE is
reasonable. We also make error analyses for the proposed
E2FE, and derive its error bound. Additionally, more
theoretical analyses, like those regarding time complexity
and parameter settings, are also presented here.

• To better validate the effectiveness of E2FE, we utilize
more widely-used benchmark datasets for experiments.
We also conduct the experiments on the full datasets
instead of the sampled ones in [33], so as to demonstrate
the applicability of E2FE for handling larger datasets.
More experimental results are also reported, like the sig-
nificance tests for the improvements gained by E2FE over
compared baselines, and the comparison of computational
costs between the newly proposed optimization method
here and that presented in [33].

The remainder of this paper is organized as follows. Section
II gives an overview of related works. Section III elaborates
on the proposed E2FE. Section IV shows the proposed opti-
mization methods and its corresponding theoretical analyses.
Section V describes details about enhancing the linear decod-
ing matrix with priori knowledge. Then Section VI presents
the extensions of E2FE, and analyses its relations to previous
works. Experimental settings, results and analyses are given
in Section VII. Finally we present discussions regarding E2FE
in Section VIII and conclude the paper in Section IX.

II. RELATED WORK

With the explosion of label spaces in real-world appli-
cations, many remarkable effective multi-label classification
methods tend to be infeasible due to the high training costs.
To tackle such multi-label classification problems with many
classes, a lot of effective methods were proposed, like con-
structing a hierarchy of multi-label classifiers [34], refining the
output of heuristic efficient classifiers [35], performing label
selection to recover the vocabulary with only a subset [36],or
using label inference method based on the use of association
rules to discover label dependencies [21],etc. Recently, LSDR
was also proposed and is attracting more and more attention.

To the best of our knowledge, Hsuet al. [27] are the first to
propose LSDR. Specifically, Hsuet al. exploited the sparsity
of the label space, and proposed to linearly encode it to a low-
dimensional latent space as compressed sensing (CS) and then
train linear regression modelsw.r.t the derived codes. As for
performing classification for an unseen instance, a code vector
is firstly obtained with the learnt regression models from its
features and then decoded with standard recovery algorithms
like CoSaMP [37] to derive the predicted label vector. Kapoor
et al. [5] further considered both label space compression and
predictive model learning in a single probabilistic model,and
derived a Bayesian framework termed BML-CS for multi-label
classification via jointly optimizing over both.

Apart from compressed sensing based methods, Tai and Lin
[28] proposed to perform principle label space transformation

TABLE I
CATEGORIZATION OF EXISTINGLSDR METHODS AND E2FE

feature-unaware feature-aware

function-based CS [27], PLST [28], BML-CS [5],
CL [29], ML-CSSP [32] CPLST [30]

end-to-end MLC-BMaD [31] E2FE

(PLST) for seeking important correlations between labels,
which is essentially PCA [38] for the label space. Chen and
Lin [30] further enhanced it by proposing feature-aware con-
ditional principal label space transformation (CPLST), which
actually integrates orthogonally constrained canonical corre-
lation analysis into the framework of PLST for considering
the predictability of the latent space. Both PLST and CPLST
performed LSDR via linear encoding and linear decoding.
Zhouet al. [29] proposed another method termed “Compressed
Labelling (CL)”, which takes the signs of the linear Gaussian
random projection results on the original label vectors as the
derived code vectors and utilizes a series of Kullback-Leibler
divergence based hypothesis tests for decoding. Alternatively,
Wicker et al. [31] proposed MLC-BMaD for LSDR via
boolean matrix decomposition on the binary tagging matrix,
factorizing it as the product of a binary code matrix and a
binary linear decoding matrix. Bi and Kwok [32] presented
an efficient randomized sampling procedure termed ML-CSSP
for selecting a column subset of the tagging matrix that can
well span it, which is a special case of linear encoding.

Actually, the majority of existing methods perform LSDR
in a function-based manner and require an encoding function.
Such approaches, as analysed in section I, carry several
drawbacks. To avoid those, performing LSDR in an end-
to-end manner with no need for any encoding function is
highly desired. MLC-BMaD seems to be the only existing
LSDR method that supports end-to-end label space encoding
via boolean matrix factorization. However, MLC-BMaD is
feature-unaware, and thus the learnt latent space could be
less predictable, which can result in performance deterioration.
Therefore, in this paper we propose E2FE, which performs
LSDR in an end-to-end manner and is also feature-aware.

To sum up, Table I categorizes the remarkable existing
LSDR methods and the proposed E2FE into different combi-
nations of{function-based, end-to-end} and{feature-unaware,
feature-aware}, which well highlights the distinctness of E2FE.

III. PROPOSEDAPPROACH

A. Preliminaries

Generally in the case of multi-label classification, the fea-
tures of an instance are represented as adx-dimensional feature
vector x in the feature spaceX , i.e. x ∈ X ⊂ R

dx , and
its labels are represented as ady-dimensional binary label
vector y in the label spaceY, i.e. y ∈ Y ⊂ {0, 1}dy.
Here theith entry of the label vectory is set as1 if the
instance is associated with theith label and0 otherwise.
Suppose that we are givenn labelled instances for training,
denoted as{(x(i),y(i))}ni=1, with x(i) and y(i) being the
feature vector and the label vector of theith training instance.
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Multi-label classification will utilize them to learn the mapping
F : X → Y from the feature spaceX to the label spaceY, as
illustrated in Fig. 1, and then utilizeF for predicting the label
vector of any unseen instance based on its feature vector.

As mentioned before, to derive the mappingF , many
existing effective multi-label classification methods will learn
a predictive model for each label independently or with inter-
label correlations, and then combine them in a certain manner
for prediction. In that case, the number of the to-be-learnt
predictive models will be at leastdy, and even much larger
for methods using label powerset [39]. Then for a multi-
label classification problem with many classes,dy will become
quite large and the training costs of the to-be-learnt predictive
models will be extremely high and even unaffordable. To
tackle such a challenge, LSDR was recently proposed and is
attracting more and more attention. With LSDR, the training
process to learnF is transformed into a two-step learning
process. That is, firstly the label vectors of training instances
are encoded into low-dimensional code vectors in a latent
spaceZ ⊂ R

dz with an encoding processP : Y 7→ Z,
and then a mappingG : X 7→ Z w.r.t the code vectors
is learnt. Heredz is the dimensionality of the latent space
Z, and generallydz ≪ dy. Moreover, as illustrated in Fig.
1, P can be performed in a function-based manner (e.g.
linear encoding function) or an end-to-end manner (e.g.matrix
decomposition). Similar to learningF , learningG can be based
on trainingdz predictive models, one for a dimension ofZ.
As for predicting the labels of any unseen instance, adz-
dimensional code vector inZ will firstly be derived using the
learnt G with its feature vector, and then ady-dimensional
predicted label vector will be recovered through a decoding
processQ : Z 7→ Y. For LSDR methods, withdz ≪ dy,
the number of the to-be-learnt predictive models is generally
much smaller and thus the training costs are substantially
lowered, making the multi-label classification problem with
many classes more tractable. Meanwhile, if the mappingG and
the decoding processQ are effective enough, the classification
performance using LSDR is expected to be acceptable.

It should be noticed that for LSDR, the latent spaceZ
is supposed to be derived from the label spaceY rather
than the feature spaceX , even thoughX can sometimes be
considered for increasing thepredictability of Z. And thus
the dimensionality of the latent space (i.e. dz) can either be
higher or lower than that of the feature space (i.e. dx), but
will always be lower than that of the label space (i.e. dy).
Moreover, for LSDR methods, the mappingG from X to Z is
open for any effective mapping algorithm afterZ is derived.
Meanwhile, the decoding processQ generally needs to be
specified before derivingZ, which, from the perspective of
efficiency in prediction, is preferred to be linear, like those in
PLST, CPLST, MLC-BMad and ML-CSSP.

B. End-to-End Feature-aware Label Space Encoding

Before elaborating on the proposed E2FE, to make it more
clear, Table II summarizes the important symbols in this paper.

As mentioned previously, E2FE performs LSDR in an end-
to-end manner and directly learns a code matrixZ ∈ R

n×dz

TABLE II
IMPORTANT SYMBOLS IN THE PROPOSEDE2FE.

n the number of training instances
dx the dimensionality of the feature spaceX
dy the dimensionality of the label spaceY
dz the dimensionality of the latent spaceZ, dz ≪ dy
X the feature matrix of training instances,X ∈ R

n×dx

Y the tagging matrix of training instances,Y ∈ {0, 1}n×dy

Z the code matrix of training instances,Z ∈ R
n×dz

Q the linear decoding matrix,Q ∈ R
dz×dy

H notation forX(XTX)−1XT , H ∈ R
n×n

M·,i the ith column of a matrixM

formed by code vectors of training instances. Generally, the
classification performance of LSDR methods depends on both
the predictive mappingG and the decoding processQ. There-
fore, it is crucial for code vectors to be predictable, having a
strong correlation with instance features, as revealed in [40].
Meanwhile, the label vectors should also be highly recoverable
via decoding the corresponding code vectors. Therefore, to
learnZ, E2FE jointly maximizes therecoverabilityof the label
space and thepredictability of the latent space. The former
is denoted asΨ1(Y,Z) and the latter asΨ2(X,Z), where
Y ∈ {0, 1}n×dy is the tagging matrix of training instances
formed by their label vectors row by row andX ∈ R

n×dx is
the feature matrix formed by their feature vectors in the same
way. Then the objective functionw.r.t Z is as follows.

Ψ = max
Z

Ψ1(Y,Z) + αΨ2(X,Z) (1)

whereα ≥ 0 is a parameter for balancingrecoverabilityand
predictability. When α = 0, Z will be derived via merely
maximizing recoverability, implying thatZ is just dependent
on Y. On the contrary, whenα > 0, correlations between
instance features and code vectors will be further considered
for makingZ feature-aware and more predictable.

1) Recoverability of Label Space:To improve therecover-
ability of the label space, the difference between the tagging
matrix Y and the recovered one, which is based on the to-
be-learnt code matrixZ, is expected to be minimized. Here
we denote the difference asL. As mentioned previously, for
efficient decoding, the proposed E2FE learns a linear decoding
matrixQ ∈ R

dz×dy to recover label vectors from code vectors,
following PLST, CPLST, MLC-BMad and ML-CSSP. ThenL
is formulated as follows.

L = min ‖Y − ZQ‖2fro (2)

where‖ · ‖fro is the Frobeniusnorm of a matrix. GivenZ,
the optimalQ to minimizeL can be derived as the following
closed-form expression by solving∂L

∂Q
= 0.

Q = (ZTZ)−1ZTY (3)

To mitigate redundant information in the latent space and then
encode the label space more compactly, we assume that the
dimensions of the latent space are uncorrelated and thus the
columns ofZ are orthonormal, as shown in formula (4).

ZTZ = I (4)
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whereI ∈ R
dz×dz is an identity matrix. Actually, as analysed

later, although such an orthonormality assumption may seem
to be strong, it is still reasonable and important for E2FE. With
formula (4), the optimalQ can be simplified asQ = ZTY,
and then formula (2) can be reformulated as follows.

L = Tr[YTY −YTZZTY] (5)

whereTr[·] refers to thetrace of a matrix. WithTr[YTY]
being a constant, minimizingL is identical to maximizing
Tr[YTZZTY], which can be seen as an expression of the
recoverabilityof the label space,i.e. Ψ1(Y,Z). We can thus
derive the following formula.

Ψ1(Y,Z) = Tr[YTZZTY] = Tr[ZTYYTZ]

s.t. ZTZ = I
(6)

2) Predictability of Latent Space:As advocated in [40], to
improve thepredictabilityof the latent space, the code matrix
Z is supposed to be strongly correlated with the instance
features. Here we firstly consider linear correlations, andwill
later handle non-linear ones with kernel tricks. Considering a
linear projectionw for the feature space and a dimensionz of
the latent space,i.e. a column ofZ, the correlation between
features andz, denoted asr(X, z), can be defined as follows.

r(X, z) =
(Xw)T z

√

(Xw)T (Xw)
√
zT z

(7)

Due to the orthonormality assumption forZ, i.e. formula (4),
zT z = 1 will hold for any column ofZ. Moreover, linearly
rescalingw by a non-zero multiplier will not changer(X, z).
Then maximizingr(X, z) equals the following formula.

max (Xw)T z s.t. (Xw)TXw = 1 (8)

Given a dimensionz of the latent space, the maximalr(X, z)
reflects its potential maximal correlation with the feature
space, and thus the maximalr(X, z) can be seen as an
expression of thepredictabilityof z. Specifically, withz fixed,
the optimalw for formula (8), denoted asw∗, can be derived
as follows with the method of Lagrange multipliers.

w∗ =
(XTX)−1XT z

√

zTX(XTX)−1XT z
(9)

Note that following CPLST, here we assumeA = XTX to
be invertible. Actually, this assumption usually holds when
n > dx, but it will fail in cases withn < dx, as A will
not be full-rank then. To handle the latter cases, we propose
to ensureA to be invertible via: 1) performing dimensionality
reduction for the feature space via PCA or alternative methods
to makedx small enough for obtaining a full-rankXTX, or
2) adding a tiny value to the entries on the diagonal ofXTX,
i.e. A = XTX + εI1 with I1 ∈ R

dx×dx being an identity
matrix andε being a tiny value,e.g.10−6.

By substitutingw∗ into formula (7), thepredictabilityof z,
denoted asψ2(X, z), can be derived as follows.

ψ2(X, z) =
(Xw∗)T z√

(Xw∗)T (Xw∗)
√
zT z

= (Xw∗)T z =
√
zTHz

(10)

Algorithm 1 Overview of E2FE
Input: Feature matrixXtr and tagging matrixYtr of the training

instances, feature matrixXts of the test instances, predefined
model parameterα, and latent space dimensionalitydz

Output: Predicted binary tagging matrixYts of the test instances
Training Process:

1: derive code matrixZtr via optimizing formula (12)
2: learn predictive models:G(Xtr) → Ztr

3: derive linear decoding matrix:Q = ZT
trYtr

Predicting Process:
4: predict code vectors of test instances:Zts = G(Xts)
5: recover the predicted tagging matrix:Yts = round(ZtsQ)

where H = X(XTX)−1XT ∈ R
n×n. To improve the

predictability of the latent space, each columnz of the code
matrix Z is supposed to maximizeψ2(X, z). As maximizing
ψ2(X, z) can be guaranteed by maximizingzTHz, the overall
predictability of Z can be formulated as follows.

Ψ2(X,Z) =

dz
∑

i=1

ZT
·,iHZ·,i = Tr[ZTHZ]

s.t. ZTZ = I

(11)

whereZ·,i(i ∈ {1, 2, . . . , dz}) denotes theith column ofZ.
3) Detailed Objective Function: With Ψ1(Z,Y) and

Ψ2(X,Z) derived, the objective functionw.r.t the to-be-learnt
code matrixZ, i.e. formula (1), can be detailed as follows.

Ψ = max
Z

Tr[ZTYYTZ] + αTr[ZTHZ]

= max
Z

Tr[ZT (YYT + αH)Z]

s.t. ZTZ = I

(12)

whereH = X(XTX)−1XT . As analysed in section IV,Ψ can
be transformed to an eigenvalue problemw.r.t YYT + αH,
andZ is derived by concatenating the normalized eigenvectors
corresponding to the topdz largest eigenvalues column by
column. With the code matrixZ derived, predictive models
can be trained for mapping instance features into code vectors.

4) Deriving Linear Decoding Matrix:According to for-
mula (2) and (3), givenZ with ZTZ = I, the optimal linear
decoding matrixQ can be derived as follows.

Q = (ZTZ)−1ZTY = ZTY (13)

And its computational complexity isO(ndydz).
An overview of E2FE is given in Algorithm 1.

C. Error Analysis

As shown in Algorithm 1, following PLST, CPLST and ML-
CSSP, the proposed E2FE roundseach entry of the decoding
results into its nearest0 and 1, so as to derive binary label
vectors. Considering that, we proceed to analyse the root mean
square error (RMSE) of E2FE on the training instances.

Specifically, RMSE is defined as follows.

RMSE =
1√
n
‖round (G(X)Q)−Y‖fro (14)

whereG denotes the learnt predictive models for mapping in-
stance features into code vectors, andround(G(X)Q) denotes
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the recovered binary tagging matrix. Then we can derive the
following lemma regarding the error bound of E2FE.

Lemma 1. For E2FE, its RMSE is bounded by

RMSE ≤ 2√
n

(√
dz‖Y‖fro‖Z − G (X) ‖fro + ‖Y − ZQ‖fro

)

For a detailed proof, one can refer to the supplementary
material. Actually, the error bound for E2FE is similar to those
of PLST and ML-CSSP. Namely, it also consists of two parts.
The first part,i.e.

√
dz‖Y‖fro‖Z − G (X) ‖fro denotes the

weighted training error of predictive models, and the second
part, i.e. ‖Y − ZQ‖fro, denotes the loss of encoding label
vectors into low-dimensional code vectors.

IV. OPTIMIZATION METHODS

For optimizing the objective functionΨ w.r.t the to-be-learnt
code matrixZ, any columnZ·,i(i ∈ {1, 2, . . . , dz}) can be
derived with the following optimization sub-problem.

Ψ(i) = max
Z·,i

ZT
·,i(YYT + αH)Z·,i

s.t. ZT
·,iZ·,i = 1, ZT

·,jZ·,i = 0 (∀j < i)
(15)

With the method of Lagrange multipliers, the optimalZ·,i
should satisfy the following optimality condition.

(YYT + αH)Z·,i = λiZ·,i (16)

whereλi is the introduced Lagrange multiplier and will also
be the optimal value of the sub-problem. It can be seen that
the optimization forZ can be transformed to an eigenvalue
problem. Then by normalizing the eigenvectors ofU =
YYT +αH that correspond to the topdz largest eigenvalues,
we can derive the optimal code matrixZ formed of these
eigenvectors column by column, which satisfiesZTZ = I.

As described in our previous work [33], we can directly
calculateU and then utilize effective methods to derive its
eigenvectors. However, considering thatU ∈ R

n×n, for cases
with n≫ dx+dy, which are common in practical applications,
calculatingU will result in high space costs. To avoid that,
we derive the following lemma and further propose a more
efficient optimization method for such cases.

Lemma 2. Given H = X(XTX)−1XT , the matrixU =
YYT + αH can be decomposed asU = VVT with V ∈
R

n×(dy+dx). Also, the eigenvectors ofU can be derived from
those ofVTV, meaning that the size of the eigenvalue problem
w.r.t U can be transformed fromRn×n to R

(dx+dy)×(dx+dy).

Proof. SupposeA = XTX is invertible. SinceA ∈ R
dx×dx

is a real symmetric and positive-semidefinite matrix,A−1 will
be real symmetric and positive semi-definite, and thusA−1 is
diagonalizable by orthogonal matrices [41]. Namely,A−1 =
BΛBT , with Λ being a diagonal matrix having non-negative
diagonal entries andB being an orthonormal matrix. Then

A−1 = BΛ
1

2Λ
1

2BT =
(

BΛ
1

2

)(

BΛ
1

2

)T

, whereΛ
1

2 is a
diagonal matrix with each diagonal entry being the square root
of the corresponding diagonal entry inΛ. Furthermore, with
G = XBΛ

1

2 ∈ R
n×dx , H = GGT . Finally, U = YYT +

Algorithm 2 Optimization for E2FE

Input: Feature matrixXtr ∈ R
n×dx and tagging matrixYtr ∈

R
n×dy of training instances, predefined model parameterα,

latent space dimensionalitydz
Output: Learnt code matrixZtr of training instances

1: if XT
trXtr is NOT invertiblethen

2: Option 1:{dimension reduction for feature space}
3: Xtr = DimReduce(Xtr)
4: Option 2:{adding a tiny value to diagonal entries}
5: XT

trXtr = XT
trXtr + εI1

6: end if
7: if n ≫ dy + dx then
8: A = XT

trXtr

9: [B,Λ] = diagonalize(A−1) {A−1 = BΛBT }
10: G = XtrBΛ

1

2

11: V = [Ytr,
√
αG]

12: E = eigenvector(VTV, dz) {eigenvectors ofVTV corre-
sponding to the topdz largest eigenvalues}

13: Ztr = normalize(VE) {normalizing each column ofVE
into a unit vector}

14: else
15: H = Xtr(X

T
trXtr)

−1XT
tr

16: U = YtrY
T
tr + αH

17: Ẽ = eigenvector(U, dz) {eigenvectors ofU corresponding
to the topdz largest eigenvalues}

18: Ztr = normalize(Ẽ) {normalizing each column of̃E into a
unit vector}

19: end if

αH = YYT + (
√
αG) (

√
αG)

T
= [Y,

√
αG][Y,

√
αG]T =

VVT , with V = [Y,
√
αG] ∈ R

n×(dy+dx).
Suppose{λ,p} and {σ,q} are respectively the paired

eigenvalue/eigenvector ofVVT andVTV. According to 1)
VVTp = λp → (VTV)VTp = VT (VVTp) = λVTp and
2) VTVq = σq → (VVT )Vq = V(VTVq) = σVq, we
can see thatVVT andVTV share identical eigenvalues, and
the eigenvectors ofU = VVT can be derived from those
of VTV based on the second derivation above. Considering
VTV ∈ R

(dx+dy)×(dx+dy), the size of the eigenvalue problem
w.r.t U can be transformed fromRn×n to R

(dx+dy)×(dx+dy).

With Lemma 2, in different cases we can utilize different
optimization methods to obtain the eigenvectors ofU =
YYT +αH and then derive the code matrixZ, as summarized
below and illustrated in Algorithm 2.

1) If n≫ dy+dx, it is preferable to firstly derive the matrix
V satisfyingU = VVT , then calculate the eigenvectors
of VTV corresponding to the topdz largest eigenvalues,
and finally utilize them to derive the eigenvectors ofU.
Sincedz ≪ dy andVTV is a real symmetric matrix, the
eigenvalue problemw.r.t VTV can be solved efficiently
using iterative methods like Arnoldi iteration [42], which
can achieve an optimal computational complexity of
O(dxdz

2 + dydz
2). Here the computational complexity

of deriving V is O
(

nd2x
)

, while that of calculating
VTV and deriving the eigenvectors ofU from those
of VTV is O

(

n(dx + dy)
2
)

.
2) Otherwise, it is preferable to directly calculateU and

then perform an eigenvalue decomposition on it. The
computational complexity for calculatingU is at most
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O(min{n2dx, nd
2
x}) + O(n2dx + n2dy). Considering

that generallydz ≪ n and U is a real symmetric
matrix, the eigenvalue problemw.r.t U can also be
solved efficiently using Arnoldi iteration with an optimal
computational complexity ofO(ndz

2).

V. πE2FE: ENHANCING L INEAR DECODING MATRIX WITH

PRIORI KNOWLEDGE

As analysed in formula (16), each column of the code matrix
Z corresponds to an eigenvalue ofU = YYT + αH, which
is also the optimal value for its corresponding optimization
sub-problem (i.e. formula (15)). Knowing that each column
denotes one dimension of the latent space, for each column,
the eigenvaluew.r.t it actually reflects 1) how predictable its
corresponding dimension of the latent space is and 2) from the
dimension how recoverable the label space is. Specifically,a
higher eigenvaluew.r.t a column ofZ means that its corre-
sponding dimension of the latent space is more predictable
and the label space is more recoverable from the dimension.

Here we propose to consider such priori knowledge to derive
an enhanced linear decoding matrix for E2FE. We denote it
asπE2FE. Essentially, for a linear decoding matrixQ, its ith
columnQ·,i(i ∈ {1, 2, . . . , dy}) acts as a weighting vector to
linearly combine dimensions of the latent space for recovering
the ith dimension of the label space. Then for dimensions
of the latent space that are more predictable and make the
label space more recoverable,i.e. with higher corresponding
eigenvalues, they are expected to be assigned with higher
weights in the decoding process. Therefore, we derive the
objective function forQ·,i as follows.

L̃(i) = min
Q·,i

‖Y·,i − ZQ·,i‖2fro − η

dz
∑

j=1

λjQ
2
j,i (17)

whereY·,i is the ith column of the tagging matrixY, λj
is the eigenvalue corresponding to thejth column ofZ and
η is a non-negative weighting factor. It can be seen that, by
considering the priori knowledge as a regularizer inL̃(i), a
larger λj can help to leadQ2

j,i to be larger, meaning that
as expected thejth dimension of the latent space is assigned
with a higher weight for decoding. For model simplicity, here
η is shared by allQ·,i(i ∈ {1, 2, . . . , dy}). Then the objective
function for deriving the linear decoding matrixQ of πE2FE
can be formulated as follows with matrix notations.

L̃ = min
Q

‖Y − ZQ‖2fro − ηTr[QT Λ̃Q] (18)

whereΛ̃ is a diagonal matrix with̃Λj,j = λj . If η is properly
set to makeL̃ non-trivial, as discussed later, the optimal
decoding matrix forπE2FE can be derived as follows.

Q = (I− ηΛ̃)−1ZTY (19)

where(I−ηΛ̃) is a diagonal matrix and thus its inverse can be
efficiently calculated. Actually, asdz ≪ dy, the computational
complexity of derivingQ in πE2FE is alsoO(ndydz).

Note that in formula (18), a largeη can leadL̃ to become
trivial and achieve an optimum of negative infinity. To cope

with that, we derive the following lemma for properly setting
η, where~λ = [λ1, λ2, . . . , λdz

].

Lemma 3. For any η ∈ [0, 1

max(~λ)
] with max(~λ) being the

maximal value of~λ, L̃ will be non-trivial for optimization.

For a detailed proof, one can refer to the supplementary
material.

VI. EXTENSIONS AND ANALYSES

A. Function-based Encoding: a Linear Encoding Case

Though the proposed E2FE requires no encoding function,
it can still be specified to learn an encoding function as
most previous works, given that the encoding function can
be optimized,e.g.a linear one, as described below.

Following PLST and CPLST, we use an encoding matrix
P ∈ R

dy×dz to denote the linear encoding function. Then the
code matrixZ can be expressed asZ = YP. SubstitutingZ
with YP in the objective function of E2FE, i.e. formula (12),
we can derive the following objective function forP.

Ψ = max
P

Tr
[

PT
(

YTYYTY + αYTHY
)

P
]

s.t. PTYTYP = I
(20)

Similarly, we use the method of Lagrange multipliers and
decomposeΨ into dz optimization sub-problemsw.r.t each
columnP·,i of the to-be-learntP. Then we derive thatP·,i
should satisfy the following optimality condition.

(

YTYYTY + αYTHY
)

P·,i = λi(Y
TY)P·,i (21)

where λi is a Lagrange multiplier and will be the optimal
value of the optimization sub-problemw.r.t P·,i. It can be seen
that the optimization ofP is essentially a general eigenvalue
problem. And the normalized eigenvectors corresponding to
the topdz largest eigenvalues will form the optimalP.

Denoting this case of linear function-based encoding as
LinearE2FE, the linear decoding matrixQ without considering
priori knowledge isQ = (YP)TY. Meanwhile, for the
case of utilizing the eigenvaluesw.r.t P as priori knowledge,

Q =
(

I− ηΛ̃
)−1

(YP)TY with Λ̃ being a diagonal matrix

consisting of the eigenvalues, which is termedπLinearE2FE.

B. Kernel Version

The proposed E2FE, thanks to kernel tricks, can be extended
to deal with non-linear correlations between the feature space
and the latent space, which is termedkernel-E2FE.

In kernel-E2FE, each feature vectorx(i) is mapped to the
Reproducing Kernel Hilbert Space (RKHS) asφ(x(i)). In
RKHS, the inner product betweenφ(x(i)) and φ(x(j)) is
equal toκ(x(i),x(j)), whereκ(·, ·) is the introduced kernel
function. Using a non-linearκ(·, ·), the linear correlations
between the RKHS and the latent space actually reflect the
non-linear correlations between the original feature space and
the latent space. Similar to formula (7), we measure the
correlationr(Φ, z) by considering a linear projectionw1 for
kernel features in RKHS and a columnz of the code matrix.
Following [43], herew1 is assumed to be in the span of
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sampled kernel feature vectors,i.e. w1 = ΦT
∗ w̃ whereΦ∗

is a matrix built by the sampled kernel feature vectors row by
row andw̃ is ans-dimensional weighting vector withs being
the sampling size. Thenr(Φ, z) can be measured as follows.

r(Φ, z) =
(ΦΦT

∗
w̃)T z√

(ΦΦT
∗
w̃)T (ΦΦT

∗
w̃)

√
zT z

= (Kw̃)T z√
(Kw̃)T (Kw̃)

√
zT z

(22)

whereK = ΦΦT
∗ ∈ R

n×s is a kernel matrix and can be
efficiently derived using the kernel function with the original
feature vectors. Similar to subsection III-B2, thepredictability
of z based on non-linear correlations can be derived from
the maximalr(Φ, z) and measured asψ2(Φ, z) =

√

zT H̃z

with H̃ = K(KTK)−1KT . Then the objective function of
kernel-E2FE is as follows, which can also be transformed to
an eigenvalue problem.

Ψ = max
Z

Tr[ZT (YYT + αH̃)Z] s.t. ZTZ = I (23)

Like E2FE, the linear decoding matrixQ for kernel-E2FE
is Q = ZTY. Meanwhile, when eigenvaluesw.r.t Z are

considered as priori knowledge,Q =
(

I− ηΛ̃
)−1

ZTY,

whereΛ̃ is a diagonal matrix consisting of eigenvalues. Here
we denote this case askernel-πE2FE.

C. Relations to Previous Works

If the mean values of the label vectors are shifted as zeros,
the proposed E2FE will degenerate to PLST [28] when only
the recoverabilityof the label space is considered (i.e. α = 0
in formula (12)). Here, we denote this case as R-E2FE and its
corresponding objective function is given as follows.

Ψ = max
Z

Tr[ZTYYTZ], s.t. ZTZ = I (24)

The code matrixZ consists of the normalized eigenvectors of
YYT corresponding to the topdz largest eigenvalues, and the
linear decoding matrix without considering priori knowledge
is ZTY. Meanwhile, the linear encoding matrixP of PLST is
formed with normalized eigenvectors ofYTY corresponding
to the topdz largest eigenvalues, with the derived code matrix
beingYP and the linear decoding matrix beingPT . As in the
proof of Lemma 2, we can derive thatYYT andYTY are
positive semi-definite and share the same positive eigenvalues.
Specifically, provided thatλi is the ith largest eigenvalue,
we can derive that: 1)YTYP·,i = λiP·,i; 2) YYTZ·,i =
λiZ·,i; 3) (YYT )[YP]·,i = Y(YTYP·,i) = λi[YP]·,i; 4)
(YTY)[YTZ]·,i = YT (YYTZ·,i) = λi[Y

TZ]·,i. Then for
R-E2FE and PLST, we can find one-to-one correspondences
between theith columns of their encoding results (i.e. Z·,i =
[YP]·,i√

λi
), and between theith rows of their linear decoding

matrices (i.e. [ZTY]i,· =
√
λi[P

T ]i,·). Therefore, R-E2FE is
equivalent to PLST, withZ(ZTY) = (YP)PT . However,
whenα > 0, the code matrixZ in E2FE will be associated to
instance features and will then differ from PLST.

When coping with linear function-based encoding,i.e. for-
mula (20), given the mean values of label vectors and those
of feature vectors shifted as zeros, E2FE is closely connected

to CPLST [30] if only thepredictability of the latent space
is considered. We denote this case as P-LinearE2FE, with its
corresponding objective function defined as follows.

Ψ = max
P

Tr[PTYTHYP], s.t. PTYTYP = I (25)

Meanwhile, the objective function of CPLST is as follows.

Ψ̃ = max
P

Tr[PTYTHYP], s.t. PTP = I (26)

It can be seen that P-LinearE2FE and CPLST share an identical
objective function but with different constraints. Namely, the
former requires dimensions of the code matrix (i.e.YP) to be
orthonormal while the latter requires dimensions of the linear
encoding matrix (i.e. P) to be orthonormal.

Another useful observationw.r.t E2FE is that E2FE actually
performs dimensionality reduction for both the label spaceand
the feature space when thepredictability of the latent space
is over-emphasized with an assumption that the code matrix
can be directly expressed by the feature matrix,i.e.Z = XW

whereW ∈ R
dx×dz is a regression matrix. This case is termed

OP-E2FE. As thepredictabilityof the latent space is constant
in OP-E2FE, its objective function is formulated as follows.

Ψ = max
W

Tr[WTXTYYTXW]

s.t. WTXTXW = I
(27)

The optimization forW can again be interpreted as a general
eigenvalue problem,i.e. (XTYYTX)W·,i = λi(X

TX)W·,i,
but it requiresdz ≤ dx. HereZ can be seen as the dimensional-
ity reduction result learnt from the label space in an end-to-end
manner, or the linear dimensionality reduction result fromthe
feature space withW. However, for OP-E2FE, we can observe
the following weak points. 1) The dimensionality of the to-
be-learnt latent space cannot be larger than the dimensionality
of the feature space, which can sometimes be too small to
keep enough information of the label space, especially when
dx ≪ dy. 2) The predictive models from the feature space to
the latent space are limited to be linear regression whereasfor
LSDR they are expected to be open for any effective model.

VII. E XPERIMENTS

A. Experimental Settings

To validate the proposed E2FE, we use in our experiments
five widely-used benchmark datasets with relatively large vo-
cabularies from Mulan [44],i.e. delicious, CAL500, mediamill,
bibtex and bookmarks. They belong to one of the following
domains: text, music and video. Moreover, following CS [27],
we also conduct experiments on the image datasetESPGame
[45], and take those tags appearing at least 20 times in the
dataset to form a large vocabulary, which almost doubles the
size of that used in the experiments of CS. Each instance in
ESPGameis represented by a 516-D feature vector1 extracted
with Lire [46], and it is removed if no tags are associated. The
original statistics of the datasets are given in Table III.

For performance comparison, we select Binary Relevance
(BR) [47], CS [27], PLST [28], CPLST andkernel-CPLST

1516-D feature vector: 60-D Gabor, 192-D FCTH, 80-D Edge Histogram,
120-D Color Layout and 64-D RGB Color Histogram
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TABLE III
STATISTICS OF DATASETS

domain instances labels features

delicious text 16,105 983 500
CAL500 music 502 174 68
mediamill video 43,907 101 120
ESPGame image 65,065 1,718 516
bibtex text 7,395 159 1,836
bookmarks text 87,856 208 2,150

[30], MLC-BMaD [31] and ML-CSSP [32] as baselines, where
BR is a widely-used multi-label classification method that
trains a separate binary relevance model for each label. In our
experiments, we use both linear SVM (L-SVM) [48] and linear
ridge regression (L-RR) for BR. And for the latter, we use
0.5 as a threshold to decide the binary (0 or 1) classification
results. To reduce the computational costs of L-SVM onbibtex
and bookmarks, we perform feature dimensionality reduction
for both datasets via PCA. We also follow the reported
preprocessing steps of baselines, like shifting the mean values
of feature vectors to be zeros,etc. Note that BR in fact does
not perform LSDR and thus its performance is a reference
for other algorithms. BML-CS [5] is not included since it is
sophisticated with numerous parameters to tune.

For E2FE, we evaluate the following variants. 1) R-E2FE:
considering only therecoverabilityof the label space (i.e. for-
mula (24)), theoretically equivalent to PLST; 2) P-LinearE2FE:
considering only thepredictabilityof the latent space for linear
function-based encoding (i.e. formula (25)), similar to CPLST;
3) OP-E2FE: over-emphasizing thepredictability of the latent
space (i.e. formula (27)); 4) LinearE2FE: linear function-based
encoding (i.e. formula (20)); 5) πLinearE2FE: identical to
LinearE2FE except that the linear decoding matrix is learnt
with priori knowledge; 6) E2FE: end-to-end feature-aware
label space encoding (i.e. formula (12)); 7)πE2FE: identical
to E2FE except that the linear decoding matrix is learnt with
priori knowledge; 8)kernel-E2FE: kernel version of E2FE
(i.e. formula (23)); 9)kernel-πE2FE: identical tokernel-E2FE
except that the linear decoding matrix is learnt with priori
knowledge.

In our experiments, each dataset is evenly and randomly
divided into 5 parts. Five runs of each algorithm are then per-
formed on the dataset, taking each time one part for testing and
the rest for training without duplication. Experimental results
are measured with widely-used metrics in the field of multi-
label classification,i.e. label-based macroF1and example-
based Accuracy[49], and then averaged over the 5 runs.
Higher label-based macroF1and example-based Accuracy
means better performance. Specifically, for each run,label-
based macroF1is calculated as follows.

macroF1 = 1
dy

∑dy

i=1
2piri
pi+ri

s.t. pi =
|Gi∩Pi|

|Pi| , ri =
|Gi∩Pi|
|Gi|

(28)

wheredy is the number of all labels,Gi andPi are respectively
the sets of the ground-truth and the predicted positive instances
for the ith label, and∩, ∪ are operations of intersection and

union between two sets. Meanwhile,example-based Accuracy
is given by the following formula.

Accuracy = 1
nt

∑nt

j=1

|G′

j∩P ′

j |
|G′

j
∪P ′

j
| (29)

wherent is the test set size,G′
j andP ′

j are respectively the
ground-truth and the predicted label set of thejth test instance.

Moreover, for each run of any algorithm, we conduct 5-
fold cross-validation on the training set for selecting model
parameters via grid search in predefined value ranges. Specif-
ically, α in the proposed E2FE and its variants is selected
from {10−1, 100, . . . , 104}, τ for MLC-BMaD is chosen from
{0.1, 0.2, . . . , 1.0}, and the predefined sparsity level in CS
is selected from{1, 2, . . . ,M} with M being the maximal
number of labels in an instance,etc. Additionally, for η in
πE2FE/πLinearE2FE/kernel-πE2FE, we setη = ξ 1

max(~λ)
for

each dataset and selectξ from {0, 2−10, 2−9, . . . , 2−1, 1} via
cross-validation. Following most previous works, like [5], [28],
[30], [32], we utilize linear ridge regression as predictive mod-
els to learn the mappings from instance features to code vec-
tors. As for kernel-CPLST, kernel-E2FE andkernel-πE2FE,
we empirically utilize the Gaussian kernel function and setthe
smoothing parameterσ as twice the mean Euclidean distance
between feature vectors for each dataset. Accordingly, we
utilize kernel ridge regression as predictive models for them to
learn the non-linear mappings from instance features to code
vectors. Moreover, following PLST, CPLST and ML-CSSP, we
round each continuous entry of the decoding results into its
nearest0 or 1 to get the binary label vectors for test instances.

B. Experimental Results of LSDR

We run all algorithms on the six datasets with different
values ofdz/dy (mostly from 10% to 50%) where dz and
dy are respectively the dimensionality of the latent space and
that of the label space. Particularly, forESPGame, dz/dy is
varied from5% to 25%, as it has a much larger vocabulary.

1) Performance Comparison with Baselines:The exper-
imental results of compared baselines and variants of the
proposed E2FE are reported in Table IV and V.

A close look at the achieved results reveals: 1) The proposed
E2FE as well as its linear function-based variant LinearE2FE
generally outperform the compared baselines on each dataset,
which clearly demonstrates their effectiveness. 2) E2FE out-
performs LinearE2FE on all datasets, reflecting the superiority
of learning code vectors in an end-to-end manner rather than
a function-based manner. 3) E2FE outperforms R-E2FE and
LinearE2FE outperforms P-LinearE2FE, which implies that
jointly consideringpredictabilityandrecoverabilitywill obtain
better performance. 4) OP-E2FE yields inferior performance
to E2FE and cannot even perform LSDR onCAL500 when
dz/dy ≥ 40%, as the dimensionality of the feature space
will be smaller thandz. That points out the weakness of OP-
E2FE and further validates the superiority of keeping a good
trade-off betweenpredictabilityandrecoverability. 5) R-E2FE
yields nearly the same performance as PLST, as predicted
by our theoretical analyses about their equivalence. 6) With
an identical objective function but different orthogonality
constraints, P-LinearE2FE seems to be slightly superior to
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TABLE IV
EXPERIMENTAL RESULTS: label-based macroF1 ON delicious, CAL500, mediamill, ESPGame, bibtexAND bookmarks, WITH VARYING dz/dy

Datasets delicious CAL500 mediamill
dz/dy 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

BR [47]
L-SVM 0.0951 0.1397 0.0866
L-RR 0.0377 0.0569 0.0447

CS [27] 0.0063 0.0208 0.0422 0.0466 0.0415 0.0677 0.0820 0.0906 0.0976 0.1142 0.0052 0.0144 0.0138 0.0319 0.0304
PLST [28] 0.0234 0.0256 0.0271 0.0278 0.0284 0.0604 0.0605 0.0606 0.0609 0.0608 0.0422 0.0439 0.0448 0.0447 0.0447

CPLST [30] 0.0339 0.0341 0.0341 0.0341 0.0341 0.0640 0.0643 0.0644 0.0645 0.0645 0.0432 0.0446 0.0447 0.0447 0.0447
MLC-BMaD [31] 0.0238 0.0259 0.0297 0.0344 0.0347 0.0485 0.0444 0.0420 0.0472 0.0468 0.0398 0.0408 0.0408 0.0408 0.0408
ML-CSSP [32] 0.0160 0.0216 0.0277 0.0324 0.0319 0.0453 0.0498 0.0507 0.0528 0.0543 0.0354 0.0395 0.0426 0.0433 0.0427

R-E2FE (∼PLST) 0.0234 0.0257 0.0271 0.0278 0.0285 0.0592 0.0590 0.0592 0.0593 0.0593 0.0422 0.0439 0.0448 0.0447 0.0447
P-LinearE2FE (∼CPLST) 0.0391 0.0398 0.0399 0.0399 0.0400 0.0795 0.0954 0.1008 0.1003 0.1003 0.0420 0.0437 0.0446 0.0446 0.0447

OP-E2FE 0.0449 0.0470 0.0476 0.0478 0.0475 0.1034 0.1080 0.1088 - - 0.0433 0.0447 0.0448 0.0449 0.0448
LinearE2FE 0.0413 0.0417 0.0416 0.0416 0.0416 0.1061 0.1115 0.1110 0.1101 0.1101 0.0440 0.0449 0.0451 0.0449 0.0448

E2FE 0.0530 0.0569 0.0577 0.0578 0.0578 0.1198 0.1247 0.1263 0.1258 0.1256 0.0549 0.0575 0.0577 0.0577 0.0577

kernel-CPLST [30] 0.0354 0.0377 0.0383 0.0389 0.0393 0.0754 0.0774 0.0774 0.0774 0.0774 0.0594 0.0688 0.0720 0.0751 0.0756
kernel-E2FE 0.0500 0.0569 0.0591 0.0599 0.0599 0.1160 0.1208 0.1215 0.1272 0.1307 0.0692 0.0814 0.0945 0.0997 0.1003

Datasets ESPGame bibtex bookmarks
dz/dy 5% 10% 15% 20% 25% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

BR [47] L-SVM 0.0688 0.3023 0.1860
L-RR 0.0017 0.0613 0.0415

CS [27] 0.0005 0.0011 0.0014 0.0022 0.0022 0.0170 0.0377 0.0916 0.1010 0.1017 0.0090 0.0248 0.0271 0.0582 0.0611
PLST [28] 0.0017 0.0017 0.0017 0.0017 0.0017 0.0365 0.0503 0.0540 0.0553 0.0557 0.0248 0.0357 0.0397 0.0403 0.0406

CPLST [30] 0.0017 0.0017 0.0017 0.0017 0.0017 0.0443 0.0560 0.0581 0.0588 0.0588 0.0384 0.0400 0.0401 0.0402 0.0403
MLC-BMaD [31] 0.0017 0.0017 0.0017 0.0017 0.0017 0.0341 0.0505 0.0524 0.0550 0.0582 0.0325 0.0354 0.0385 0.0416 0.0415
ML-CSSP [32] 0.0011 0.0016 0.0014 0.0014 0.0015 0.0281 0.0330 0.0439 0.0480 0.0471 0.0184 0.0292 0.0300 0.0302 0.0339

R-E2FE (∼PLST) 0.0017 0.0017 0.0017 0.0017 0.0017 0.0358 0.0498 0.0538 0.0552 0.0556 0.0249 0.0358 0.0398 0.0404 0.0407
P-LinearE2FE (∼CPLST) 0.0017 0.0017 0.0017 0.0017 0.0017 0.0443 0.0548 0.0574 0.0593 0.0601 0.0389 0.0404 0.0417 0.0421 0.0422

OP-E2FE 0.0021 0.0021 0.0021 0.0021 0.0024 0.0536 0.0810 0.0906 0.0958 0.0981 0.0400 0.0434 0.0451 0.0454 0.0459
LinearE2FE 0.0018 0.0017 0.0017 0.0017 0.0017 0.0440 0.0564 0.0604 0.0602 0.0601 0.0397 0.0419 0.0423 0.0424 0.0425

E2FE 0.0026 0.0025 0.0025 0.0025 0.0025 0.0595 0.0888 0.1169 0.1286 0.1369 0.0472 0.0706 0.0752 0.0764 0.0775

kernel-CPLST [30] 0.0019 0.0019 0.0019 0.0019 0.0019 0.0503 0.0698 0.0728 0.0742 0.0744 0.0410 0.0448 0.0462 0.0472 0.0477
kernel-E2FE 0.0040 0.0043 0.0043 0.0044 0.0045 0.0629 0.0930 0.1247 0.1396 0.1472 0.0492 0.0699 0.0738 0.0756 0.0770

TABLE V
EXPERIMENTAL RESULTS: example-based Accuracy ON delicious, CAL500, mediamill, ESPGame, bibtexAND bookmarks, WITH VARYING dz/dy

Datasets delicious CAL500 mediamill
dz/dy 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

BR [47]
L-SVM 0.1500 0.2436 0.3621
L-RR 0.0958 0.1995 0.4188

CS [27] 0.0254 0.0540 0.0890 0.0974 0.0964 0.1130 0.1299 0.1626 0.1904 0.1835 0.0115 0.0304 0.0352 0.1425 0.1426
PLST [28] 0.0870 0.0898 0.0907 0.0911 0.0912 0.2099 0.2103 0.2103 0.2106 0.2104 0.4160 0.4184 0.4187 0.4188 0.4187

CPLST [30] 0.0954 0.0955 0.0955 0.0955 0.0955 0.2003 0.2007 0.2009 0.2010 0.2010 0.4167 0.4187 0.4187 0.4188 0.4187
MLC-BMaD [31] 0.0593 0.0700 0.0855 0.0873 0.0875 0.1286 0.1215 0.1194 0.1244 0.1255 0.3989 0.3995 0.3995 0.3995 0.3995
ML-CSSP [32] 0.0684 0.0785 0.0851 0.0893 0.0904 0.1806 0.1880 0.1913 0.1958 0.1966 0.3466 0.4053 0.4073 0.4140 0.4081

R-E2FE (∼PLST) 0.0870 0.0898 0.0908 0.0911 0.0913 0.2100 0.2098 0.2099 0.2101 0.2100 0.4159 0.4183 0.4188 0.4188 0.4187
P-LinearE2FE (∼CPLST) 0.0984 0.1007 0.1011 0.1011 0.1011 0.2084 0.2189 0.2226 0.2223 0.2223 0.4137 0.4162 0.4182 0.4182 0.4186

OP-E2FE 0.1085 0.1091 0.1093 0.1094 0.1073 0.2283 0.2262 0.2251 - - 0.4172 0.4186 0.4189 0.4189 0.4189
LinearE2FE 0.1068 0.1055 0.1049 0.1048 0.1048 0.2318 0.2301 0.2291 0.2281 0.2281 0.4182 0.4190 0.4191 0.4190 0.4189

E2FE 0.1187 0.1196 0.1197 0.1196 0.1184 0.2405 0.2411 0.2421 0.2396 0.2392 0.4353 0.4379 0.4378 0.4378 0.4378

kernel-CPLST [30] 0.1116 0.1162 0.1175 0.1181 0.1186 0.2139 0.2148 0.2148 0.2148 0.2148 0.4489 0.4561 0.4572 0.4579 0.4580
kernel-E2FE 0.1281 0.1291 0.1311 0.1312 0.1293 0.2421 0.2414 0.2397 0.2399 0.2398 0.4606 0.4647 0.4681 0.4685 0.4686

Datasets ESPGame bibtex bookmarks
dz/dy 5% 10% 15% 20% 25% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

BR [47] L-SVM 0.0628 0.2827 0.1679
L-RR 0.0572 0.1816 0.1597

CS [27] 0.0053 0.0057 0.0048 0.0107 0.0106 0.0771 0.0964 0.1435 0.1520 0.1553 0.0155 0.0629 0.0643 0.0940 0.0963
PLST [28] 0.0576 0.0576 0.0576 0.0576 0.0576 0.1434 0.1657 0.1760 0.1768 0.1772 0.1472 0.1530 0.1572 0.1575 0.1578

CPLST [30] 0.0578 0.0578 0.0578 0.0578 0.0578 0.1639 0.1768 0.1793 0.1802 0.1800 0.1542 0.1570 0.1572 0.1572 0.1573
MLC-BMaD [31] 0.0574 0.0573 0.0573 0.0575 0.0573 0.1365 0.1757 0.1767 0.1746 0.1799 0.1494 0.1538 0.1576 0.1597 0.1596
ML-CSSP [32] 0.0409 0.0548 0.0478 0.0541 0.0499 0.1212 0.1205 0.1433 0.1563 0.1573 0.1053 0.1493 0.1249 0.1063 0.1438

R-E2FE (∼PLST) 0.0575 0.0575 0.0575 0.0575 0.0575 0.1429 0.1653 0.1756 0.1766 0.1769 0.1473 0.1532 0.1574 0.1577 0.1580
P-LinearE2FE (∼CPLST) 0.0574 0.0577 0.0578 0.0578 0.0579 0.1598 0.1726 0.1756 0.1783 0.1792 0.1552 0.1574 0.1582 0.1588 0.1590

OP-E2FE 0.0622 0.0621 0.0621 0.0621 0.0694 0.1751 0.2041 0.2126 0.2167 0.2181 0.1565 0.1616 0.1623 0.1625 0.1626
LinearE2FE 0.0597 0.0593 0.0588 0.0586 0.0584 0.1618 0.1768 0.1820 0.1816 0.1813 0.1559 0.1592 0.1591 0.1590 0.1589

E2FE 0.0701 0.0701 0.0700 0.0701 0.0701 0.1835 0.2149 0.2356 0.2440 0.2493 0.1659 0.1913 0.1933 0.1937 0.1939

kernel-CPLST [30] 0.0646 0.0645 0.0645 0.0645 0.0645 0.1739 0.1976 0.2005 0.2006 0.2011 0.1588 0.1638 0.1641 0.1643 0.1645
kernel-E2FE 0.0832 0.0834 0.0834 0.0834 0.0834 0.1910 0.2232 0.2485 0.2596 0.2640 0.1685 0.1937 0.1952 0.1958 0.1961

CPLST, which validates the reasonableness of assuming the
columns of the code matrix to be orthonormal. 7)kernel-

E2FE outperforms E2FE on nearly all datasets, showing its
effectiveness to handle the non-linear correlations between
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TABLE VI
PERFORMANCECOMPARISONS BETWEENL INEARE2FE, E2FE,kernel-E2FE AND πL INEARE2FE,πE2FE,kernel-πE2FE ON delicious, CAL500,

mediamill, ESPGame, bibtexAND bookmarksWITH VARYING dz/dy , IN TERMS OF label-based macroF1

Datasets delicious CAL500 mediamill
dz/dy 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

LinearE2FE 0.0413 0.0417 0.0416 0.0416 0.0416 0.1061 0.1115 0.1110 0.1101 0.1101 0.0440 0.0449 0.0451 0.0449 0.0448
πLinearE2FE 0.0590 0.0595 0.0594 0.0593 0.0593 0.1415 0.1457 0.1479 0.1477 0.1478 0.0580 0.0605 0.0607 0.0604 0.0603

Relative Improvement 43.0% 42.7% 42.5% 42.6% 42.6% 33.3% 30.8% 33.2% 34.1% 34.1% 31.8% 34.7% 34.7% 34.7% 34.7%

E2FE 0.0530 0.0569 0.0577 0.0578 0.0578 0.1198 0.1247 0.1263 0.1258 0.1256 0.0549 0.0575 0.0577 0.0577 0.0577
πE2FE 0.0698 0.0727 0.0735 0.0738 0.0717 0.1841 0.1874 0.1883 0.1925 0.1923 0.0685 0.0718 0.0720 0.0721 0.0721

Relative Improvement 31.8% 27.8% 27.5% 27.8% 24.0% 53.7% 50.3% 49.0% 53.0% 53.1% 24.9% 24.8% 24.8% 24.9% 24.8%

kernel-E2FE 0.0500 0.0569 0.0591 0.0599 0.0599 0.1160 0.1208 0.1215 0.1272 0.1307 0.0692 0.0814 0.0945 0.0997 0.1003
kernel-πE2FE 0.0768 0.0820 0.0834 0.0838 0.0843 0.1827 0.1864 0.1927 0.2000 0.2024 0.0838 0.0975 0.1117 0.1172 0.1177

Relative Improvement 53.4% 44.0% 41.1% 39.8% 40.6% 57.4% 54.3% 58.6% 57.3% 54.9% 21.1% 19.8% 18.2% 17.5% 17.3%

Datasets ESPGame bibtex bookmarks
dz/dy 5% 10% 15% 20% 25% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

LinearE2FE 0.0018 0.0017 0.0017 0.0017 0.0017 0.0440 0.0564 0.0604 0.0602 0.0601 0.0397 0.0419 0.0423 0.0424 0.0425
πLinearE2FE 0.0029 0.0028 0.0028 0.0028 0.0028 0.0801 0.1076 0.1186 0.1217 0.1216 0.0518 0.0569 0.0582 0.0593 0.0592

Relative Improvement 64.4% 63.5% 64.0% 64.0% 64.0% 81.9% 90.9% 96.4% 102.2% 102.3% 30.4% 35.8% 37.6% 39.9% 39.4%

E2FE 0.0026 0.0025 0.0025 0.0025 0.0025 0.0595 0.0888 0.1169 0.1286 0.1369 0.0472 0.0706 0.0752 0.0764 0.0775
πE2FE 0.0037 0.0037 0.0038 0.0038 0.0038 0.1204 0.1874 0.2264 0.2458 0.2583 0.0751 0.0883 0.0948 0.0976 0.0989

Relative Improvement 43.5% 46.5% 48.3% 48.2% 48.0% 102.1% 111.0% 93.7% 91.2% 88.7% 59.1% 25.1% 26.0% 27.7% 27.6%

kernel-E2FE 0.0040 0.0043 0.0043 0.0044 0.0045 0.0629 0.0930 0.1247 0.1396 0.1472 0.0492 0.0699 0.0738 0.0756 0.0770
kernel-πE2FE 0.0054 0.0057 0.0058 0.0059 0.0060 0.1252 0.1936 0.2346 0.2575 0.2740 0.0764 0.0876 0.0936 0.0974 0.0990

Relative Improvement 36.4% 33.8% 34.4% 33.6% 33.6% 99.0% 108.2% 88.2% 84.5% 86.1% 55.4% 25.5% 26.9% 28.7% 28.6%

TABLE VII
PERFORMANCECOMPARISONS BETWEENL INEARE2FE, E2FE,kernel-E2FE AND πL INEARE2FE,πE2FE,kernel-πE2FE ON delicious, CAL500,

mediamill, ESPGame, bibtexAND bookmarksWITH VARYING dz/dy , IN TERMS OFexample-based Accuracy

Datasets delicious CAL500 mediamill
dz/dy 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

LinearE2FE 0.1068 0.1055 0.1049 0.1048 0.1048 0.2318 0.2301 0.2291 0.2281 0.2281 0.4182 0.4190 0.4191 0.4190 0.4189
πLinearE2FE 0.1465 0.1457 0.1453 0.1453 0.1453 0.2555 0.2495 0.2500 0.2497 0.2497 0.4256 0.4278 0.4277 0.4275 0.4274

Relative Improvement 37.2% 38.0% 38.6% 38.6% 38.6% 10.2% 8.4% 9.1% 9.5% 9.5% 1.8% 2.1% 2.0% 2.0% 2.0%

E2FE 0.1187 0.1196 0.1197 0.1196 0.1184 0.2405 0.2411 0.2421 0.2396 0.2392 0.4353 0.4379 0.4378 0.4378 0.4378
πE2FE 0.1971 0.1975 0.1974 0.1974 0.1980 0.3121 0.3044 0.3039 0.3042 0.3040 0.4280 0.4303 0.4304 0.4305 0.4305

Relative Improvement 66.0% 65.1% 64.9% 65.0% 67.2% 29.8% 26.2% 25.5% 27.0% 27.1% -1.7% -1.7% -1.7% -1.6% -1.7%

kernel-E2FE 0.1281 0.1291 0.1311 0.1312 0.1293 0.2421 0.2414 0.2397 0.2399 0.2398 0.4606 0.4647 0.4681 0.4685 0.4686
kernel-πE2FE 0.2230 0.2244 0.2246 0.2246 0.2247 0.3221 0.3187 0.3166 0.3103 0.3050 0.4533 0.4605 0.4629 0.4633 0.4632

Relative Improvement 74.1% 73.8% 71.3% 71.2% 73.7% 33.1% 32.0% 32.1% 29.3% 27.2% -1.6% -0.9% -1.1% -1.1% -1.1%

Datasets ESPGame bibtex bookmarks
dz/dy 5% 10% 15% 20% 25% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

LinearE2FE 0.0597 0.0593 0.0588 0.0586 0.0584 0.1618 0.1768 0.1820 0.1816 0.1813 0.1559 0.1592 0.1591 0.1590 0.1589
πLinearE2FE 0.1024 0.1018 0.1015 0.1013 0.1012 0.2000 0.2276 0.2358 0.2399 0.2407 0.1756 0.1833 0.1835 0.1835 0.1832

Relative Improvement 71.4% 71.7% 72.5% 72.8% 73.2% 23.6% 28.7% 29.5% 32.1% 32.8% 12.6% 15.1% 15.3% 15.4% 15.3%

E2FE 0.0701 0.0701 0.0700 0.0701 0.0701 0.1835 0.2149 0.2356 0.2440 0.2493 0.1659 0.1913 0.1933 0.1937 0.1939
πE2FE 0.1223 0.1303 0.1303 0.1303 0.1302 0.2449 0.2973 0.3219 0.3296 0.3333 0.2089 0.2256 0.2285 0.2294 0.2295

Relative Improvement 74.4% 86.0% 86.0% 85.9% 85.8% 33.4% 38.4% 36.6% 35.1% 33.7% 26.0% 18.0% 18.2% 18.4% 18.3%

kernel-E2FE 0.0832 0.0834 0.0834 0.0834 0.0834 0.1910 0.2232 0.2485 0.2596 0.2640 0.1685 0.1937 0.1952 0.1958 0.1961
kernel-πE2FE 0.1334 0.1335 0.1336 0.1336 0.1336 0.2490 0.3045 0.3296 0.3398 0.3463 0.2138 0.2273 0.2296 0.2308 0.2311

Relative Improvement 60.4% 60.1% 60.3% 60.2% 60.2% 30.4% 36.4% 32.6% 30.9% 31.2% 26.9% 17.3% 17.6% 17.9% 17.9%

the feature space and the latent space. Moreover,kernel-
E2FE achieves superior performance tokernel-CPLST, which
outperforms CPLST. 8) On all datasets, asdz/dy increases, the
performance of E2FE does not vary dramatically due to the
orthonormality constraint in formula (4), which leads E2FE to
compactly encode the label space with a smallerdz . Similar
phenomenon occurs when applying PLST and CPLST, because
both are also orthogonally constrained. Actually, we find that
this phenomenon still remains whendz/dy > 50%.

Actually, to evaluate the significance of the performance
improvements gained by E2FE over the baselines, we also per-
form paired-sample t-test[50] for both label-based macroF1
and example-based Accuracyon all datasets with varying

dz/dy. Experimental results show that nearly allP-valuesin
significance tests are less than the typical significance level
0.01, and thus the performance improvements gained by E2FE
over baselines are statistically significant. For details about
the experiments of significance tests, one can refer to the
supplementary material.

2) Experimental Validation for Enhancing Decoding Matrix
with Priori Knowledge : Here on each dataset we compare
LinearE2FE, E2FE, kernel-E2FE with their counterparts that
learn the linear decoding matrix with priori knowledge,i.e.
πLinearE2FE,πE2FE andkernel-πE2FE, as presented in Table
VI and VII. Note that in all pairwise comparisons, we also
present the relative performance improvements gained by
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TABLE VIII
AVERAGE TRAINING COSTS(IN SECONDS) OF COMPARED ALGORITHMS(“ PERFORMINGLSDR + TRAINING PREDICTIVE MODELS”) WITH dz/dy = 10%.

delicious ESPGame bookmarks

BR [47] L-SVM 187.400 (0.000 + 187.400) 20, 487.185 (0.000 + 20, 487.185) 24, 809.120 (0.000 + 24, 809.120)
L-RR 15.428 (0.000 + 15.428) 54.666 (0.000 + 54.666) 13.310 (0.000 + 13.310)

CS [27] 1.782 (0.150+ 1.632) 7.235 (1.229+ 6.006) 2.316 (0.169+ 2.147)
PLST [28] 2.271 (0.637 + 1.635) 11.341 (5.310 + 6.031) 2.360 (0.190 + 2.170)
CPLST [30] 2.799 (1.033 + 1.766) 11.594 (5.563 + 6.031) 3.570 (1.426 + 2.143)
MLC-BMaD [31] 68.625 (66.937 + 1.688) 585.494 (579.388 + 6.106) 14.475 (12.344 + 2.131)
ML-CSSP [32] 2.574 (0.780 + 1.794) 11.074 (5.061 + 6.013) 2.328 (0.188 + 2.140)
E2FE 3.787 (1.984 + 1.803) 16.936 (10.877 + 6.059) 7.039 (4.877 + 2.162)

TABLE IX
T IME COMPLEXITY OF COMPAREDALGORITHMS TO PERFORMLSDR

Time Complexity

CS [27] O(ndydz)
PLST [28] O(ndydz)
CPLST [30] O(min{n2dx, nd2x}) +O(2ndxdy + dxd2y) +O(d3y)

MLC-BMaD [31] O(nd2ydz)
ML-CSSP [32] O(ndydz) +O(dz log dz)

E2FE
min{O(nd2x) +O(n(dx + dy)2) +O(dxd2z + dyd2z),
O(min{n2dx, nd2x}) +O(n2dx + n2dy) +O(nd2z)}

πLinearE2FE/πE2FE/kernel-πE2FE.
From the comparisons, we can see that in nearly all cases,

πLinearE2FE outperforms LinearE2FE, πE2FE outperforms
E2FE, andkernel-πE2FE outperformskernel-E2FE. Specifi-
cally, on average, considering priori knowledge for learning
the decoding matrix can achieve a relative improvement of
48.1% for label-based macroF1and 33.9% for example-
based Accuracy. Meanwhile, the maximal gained relative
improvement for the former is111.0%, and that for the
latter is 86.0%. Such significant performance improvements
well demonstrate the effectiveness of our proposal to further
consider the eigenvalues corresponding to each column of
the code matrix as priori knowledge to enhance the linear
decoding matrix in E2FE and its variants.

C. Analyses of Training Costs

1) Comparison with Baselines:For E2FE and compared
baselines, apart from classification performance, here we also
compare their training costs theoretically and experimentally.

Considering that the training costs of all algorithms mainly
differ in those of performing LSDR,i.e. learning the code
vectors of training instances and the decoding process, here we
summarize the time complexity of each algorithm, as presented
in Table IX. From the time complexity analysis, it can be seen
that MLC-BMaD has the highest time complexity, while CS,
PLST and ML-CSSP have the lowest.

Moreover, in Table VIII we also report the average time
costs for E2FE and the compared baselines on performing
LSDR and training predictive models over 5 runs ondelicious,
ESPGameand bookmarks, which have the largest label sets,
with dz/dy = 10%. As a reference, the time costs of BR
are also provided. All algorithms are conducted with Matlab
R2013a on a server with two Intel Xeon E5-2430 CPUs and
64G RAM, except that BR with L-SVM is conducted using
LIBLINEAR [48]. Looking at the results of this comparison,

TABLE X
AVERAGE TIME COSTS(IN SECONDS) FOR THE NEWLY PROPOSED

OPTIMIZATION METHOD (E2FE) AND THAT PRESENTED IN OUR PREVIOUS

CONFERENCE PAPER(FA IE) TO PERFORMLSDR WITH dz/dy = 10%.

deliciouss ESPGames bookmarkss

E2FE 1.077 2.646 0.683
FaIE [33] 3.869 7.800 2.153

we can draw the following conclusions. 1) Compared with BR,
nearly all LSDR methods can help to reduce the total training
costs. 2) For performing LSDR, E2FE generally needs slightly
higher costs than CS, PLST, CPLST and ML-CSSP, though
with superior classification performance. Also, its training
cost is much lower than MLC-BMaD. 3) Like the previous
theoretical analysis, the training cost of MLC-BMaD is the
highest while those of CS, PLST and ML-CSSP are the lowest.

2) Evaluation of the Newly Proposed Optimization Method:
To evaluate the optimization method proposed in this paper for
efficiently learning the code matrix in cases withn≫ dx+dy,
we also conduct experiments ondelicious, ESPGameand
bookmarksto compare its efficiency with that of the optimiza-
tion method presented in our conference paper [33]. Here we
respectively denote the former as E2FE and the latter as FaIE.

Considering that FaIE needs to calculate the matrixU ∈
R

n×n and thus needs much memory space for large datasets, to
avoid biases brought by high memory space costs, here we fol-
low the experimental settings in [33] and sample5, 000 train-
ing instances for evaluating the time costs of both optimization
methods to perform LSDR. Note that heren ≫ dx + dy is
still ensured for the sampled training instances. Experimental
results on the three datasets withdz/dy = 10% are reported
in Table X. It can be seen that the time costs of the newly
proposed optimization method are significantly lower than
those of the one presented in [33]. That clearly demonstrates
the effectiveness of the newly proposed optimization method
for cases withn≫ dx + dy.

D. Parameter Sensitivity Analyses

For a more detailed view, we also conduct experiments to
see the effects ofα (i.e. formula (12)) on the performance of
the proposed E2FE. Fig. 2 presents how the performance of
E2FE changes asα varies in{10−2, 10−1, · · · , 104, 105} in a
run on the largestdelicious, ESPGameand bookmarkswith
dz/dy = 10%. It can be seen that on these three datasets the
performance of E2FE, in terms oflabel-based macroF1and
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Fig. 2. Effects ofα on the performance of E2FE ondelicious (left), ESPGame(middle) andbookmarks(right), with dz/dy = 10%.
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Fig. 3. Effects ofη = ξ 1

max(~λ)
on the performance ofπE2FE ondelicious (left), ESPGame(middle) andbookmarks(right), with dz/dy = 10%.

example-based Accuracy, firstly increases and then decreases
as α increases from10−2 to 105. That further demonstrates
the reasonableness of jointly considering therecoverabilityof
the label space and thepredictability of the latent space, as
a good trade-off between both yields superior performance.
Moreover, we can observe that for these three datasets the
optimalα for E2FE is near

[

103, 104
]

.
By fixing α = 103, we further analyse the effects ofη

(i.e. formula (18)) on the performance ofπE2FE. Specif-
ically, on the largestdelicious, ESPGameand bookmarks
with dz/dy = 10%, we rewrite η = ξ 1

max(~λ)
and vary

ξ in {0, 2−10, 2−9, . . . , 2−1, 1} based on Lemma 3 to see
how the corresponding learnt linear decoding matrix affects
the performance ofπE2FE, as shown in Fig. 3. It can be
seen that on the three datasets, asη increases from0 (i.e.
ξ = 2−inf = 0) to 1

max(~λ)
(i.e. ξ = 20 = 1), the performance

of πE2FE, in terms of label-based macroF1and example-
based Accuracy, tends to firstly increase and then decrease
in most cases, with the optimalη being near 0.5

max(~λ)
(i.e.

ξ = 2−1). Actually, η = 0 makesπE2FE degenerate to
E2FE, and it generally yields inferior performance thanη > 0,
which further demonstrates the reasonableness of considering
the eigenvaluesw.r.t columns of the code matrix as priori
knowledge to learn an enhanced linear decoding matrix.

VIII. D ISCUSSIONS

The proposed E2FE assumes that columns of the to-be-
learnt code matrixZ are orthonormal. Though this assumption
seems to be strong, it is still reasonable and brings useful prop-
erties to E2FE. 1) As each column ofZ denotes one dimension

of the latent space, adding an orthonormality assumption, sim-
ilar to PLST and CPLST, allows us to mitigate the redundant
information among dimensions of the latent space and then
enable E2FE to encode the label space more compactly. 2) As
can be seen in formula (2) - (6), adding the orthonormality
assumption can simplify the objective function of E2FE and
enable it to be transformed into an eigenvalue problem for
efficient optimization. 3) By enabling the objective function to
be transformed into an eigenvalue problem, from formula (15)
and (16) we can see that adding the orthonormality assumption
actually helps to ensure E2FE obtaining global optima.

Here we also try dropping the orthonormality assumption
from the objective function of E2FE and conduct experiments
on all datasets to evaluate it. We denote it as E2FENoOrth,
with its objective function given as follows.

Ψ = maxZ,Q −‖Y − ZQ‖2fro + αTr[ZTHZ]

= minZ,Q ‖Y − ZQ‖2fro − αTr[ZTHZ]

s.t. ∀i ∈ {1, 2, . . . , dz}, ZT
·,iZ·,i = 1

(30)

Note thatZT
·,iZ·,i = 1 is still required due to formula (7).

Like other matrix factorization methods [51], we can derive
the code matrixZ and the linear decoding matrixQ by
using gradient descent methods to iteratively and alternatively
optimize one while keeping the other fixed until convergence.
For more details, one can refer to the supplementary material.

The performance of E2FENoOrth on all datasets, using
random initial values forZ andQ to perform optimization,
is presented in Table XI. It can be seen that E2FENoOrth

is inferior to E2FE. In fact, even using the derivedZ and
Q of E2FE as initial values, E2FENoOrth can hardly gain
performance improvement over E2FE. It is mainly attributed
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TABLE XI
PERFORMANCECOMPARISONS BETWEENE2FE AND E2FENoOrth ON
ALL DATASETS, WITH p = 5 FORESPGameAND p = 10 FOR OTHERS.

dz/dy p% 2p% 3p% 4p% 5p%

la
b
el

-b
a
se

d
m

a
cr

o
F

1

delicious
E2FE 0.0530 0.0569 0.0577 0.0578 0.0578

E2FENoOrth 0.0336 0.0401 0.0444 0.0462 0.0438

CAL500
E2FE 0.1198 0.1247 0.1263 0.1258 0.1256

E2FENoOrth 0.0966 0.1086 0.1074 0.1122 0.1120

mediamill
E2FE 0.0549 0.0575 0.0577 0.0577 0.0577

E2FENoOrth 0.0436 0.0448 0.0459 0.0451 0.0453

ESPGame
E2FE 0.0026 0.0025 0.0025 0.0025 0.0025

E2FENoOrth 0.0018 0.0018 0.0017 0.0018 0.0018

bibtex
E2FE 0.0595 0.0888 0.1169 0.1286 0.1369

E2FENoOrth 0.0420 0.0727 0.0847 0.0929 0.1000

bookmarks
E2FE 0.0472 0.0706 0.0752 0.0764 0.0775

E2FENoOrth 0.0298 0.0455 0.0459 0.0471 0.0488

ex
a
m

p
le

-b
a
se

d
A

cc
u
ra

cy delicious
E2FE 0.1187 0.1196 0.1197 0.1196 0.1184

E2FENoOrth 0.1037 0.1073 0.1082 0.1093 0.1045

CAL500
E2FE 0.2405 0.2411 0.2421 0.2396 0.2392

E2FENoOrth 0.2261 0.2294 0.2256 0.2267 0.2250

mediamill
E2FE 0.4353 0.4379 0.4378 0.4378 0.4378

E2FENoOrth 0.4192 0.4201 0.4204 0.4192 0.4199

ESPGame
E2FE 0.0701 0.0701 0.0700 0.0701 0.0701

E2FENoOrth 0.0613 0.0635 0.0605 0.0585 0.0590

bibtex
E2FE 0.1835 0.2149 0.2356 0.2440 0.2493

E2FENoOrth 0.1501 0.2018 0.2121 0.2167 0.2233

bookmarks
E2FE 0.1659 0.1913 0.1933 0.1937 0.1939

E2FENoOrth 0.1521 0.1627 0.1636 0.1645 0.1660

TABLE XII
AVERAGE TIME COSTS(IN SECONDS) FOR PERFORMINGLSDR IN E2FE

AND E2FENoOrth WITH dz/dy = 10%.

delicious ESPGame bookmarks

E2FE 1.984 10.877 4.877
E2FENoOrth 145.253 215.199 41.434

to that, without the orthonormality assumption, 1) more re-
dundant information rather than complementary information
exists between dimensions of the latent space, and 2) global
optima cannot be ensured forZ.

Moreover, we also evaluate the time costs for E2FENoOrth

to perform LSDR on the largestdelicious, ESPGameand
bookmarkswith dz/dy = 10%, as reported in Table XII.
We can see that E2FENoOrth costs much more time than
E2FE, because its objective function is more complex for
optimization. Its time costs are even higher than those of the
binary relevance model L-RR (Table VIII).

Therefore, dropping the orthonormality assumption does
not bring substantial performance improvements and instead
will increase the time costs for optimization. On the contrary,
keeping the orthonormality assumption gains a good trade-off
between efficiency and effectiveness for LSDR.

IX. CONCLUSION

Aiming to address the multi-label classification problem
with many classes, in this paper we have proposed an effective
method termed E2FE to perform LSDR via end-to-end feature-
aware label space encoding. In contrast to most previous
works, E2FE requires no encoding functions, and it directly
learns a feature-aware code matrix via jointly maximizing the
recoverabilityof the label space and thepredictability of the
latent space. Subsequently, a linear decoding matrix is further
learnt for efficiently recovering the predicted label vectors
of unseen instances from their corresponding code vectors

generated by trained predictive models. The proposed E2FE
has close connections to several previous works. It can also
be specified to learn an encoding function as previous works,
or extended with kernel tricks to handle non-linear correlations
between the feature space and the latent space.
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I. PROOFS FORLEMMA 1 AND LEMMA 3

Lemma 1. For E2FE, its RMSE is bounded by

RMSE ≤ 2√
n

(√
dz‖Y‖fro‖Z − G (X) ‖fro + ‖Y − ZQ‖fro

)

Proof. RMSE for E2FE is defined as follows.

RMSE =
1√
n
‖round (G(X)Q) −Y‖fro (1)

whereG denotes the learnt predictive models for mapping in-
stance features into code vectors, andround(G(X)Q) denotes
the recovered binary tagging matrix.

For clarification, we introduce a matrixR defined as fol-
lows.

R = round (G(X)Q) −Y (2)

Then for any entryRi,j , we haveRi,j ∈ {−1, 0, 1} and thus
R2

i,j ∈ {0, 1}.
According to theround(·) operation, there are two cases

makingR2
i,j = 1, i.e. 1) (G(X)Q)i,j ≥ 1

2 while Yi,j = 0,
and 2) (G(X)Q)i,j < 1

2 while Yi,j = 1. In both cases, we
have the following inequality.

(

(G(X)Q)i,j −Yi,j

)2

≥
(

1

2

)2

=
1

4
R2

i,j (3)

Actually, whenR2
i,j = 0, the inequality above still holds.

Then, we have
∑

i,j R
2
i,j ≤ 4

∑

i,j

(

(G(X)Q)i,j −Yi,j

)2

.
With matrix notations, we can further derive:

‖R‖fro ≤ 2‖G(X)Q−Y‖fro (4)

With the triangle inequality and the Cauchy Schwarz inequal-
ity, we can derive that: 1)∀A,B, ‖A + B‖fro ≤ ‖A‖fro +
‖B‖fro, and 2)∀A,B, ‖AB‖fro ≤ ‖A‖fro‖B‖fro. More-
over, withZTZ = I, we have‖Z‖fro =

√
dz. Then we can

utilize them withQ = ZTY to have the following derivations.

‖G(X)Q−Y‖fro
= ‖ (G(X)Q− ZQ) + (ZQ −Y) ‖fro
≤ ‖G(X)Q− ZQ‖fro + ‖ZQ−Y‖fro
≤ ‖G(X) − Z‖fro‖Q‖fro + ‖ZQ−Y‖fro
= ‖Z− G(X)‖fro‖ZTY‖fro + ‖Y − ZQ‖fro
≤ ‖Z− G(X)‖fro‖Z‖fro‖Y‖fro + ‖Y − ZQ‖fro
=

√

dz‖Y‖fro‖Z− G(X)‖fro + ‖Y − ZQ‖fro

(5)

Combining formula (1), (2), (4) and (5), we can derive:

RMSE ≤ 2√
n

(√
dz‖Y‖fro‖Z− G(X)‖fro + ‖Y − ZQ‖fro

)

Lemma 3. For any η ∈ [0, 1

max(~λ)
] with max(~λ) being the

maximal value of~λ, L̃ will be non-trivial for optimization.

Proof. In πE2FE, the objective function for the enhanced
linear decoding matrixQ is defined as follows.

L̃ = min
Q

‖Y − ZQ‖2fro − ηTr[QT Λ̃Q] (6)

whereΛ̃ is a diagonal matrix with̃Λj,j = λj , andλj is the
eigenvalue corresponding to thejth column of the code matrix
Z. Moreover, here~λ = [λ1, λ2, . . . , λdz

].
Then L̃ can be rewritten as the following Quadratic Pro-

gramming form.

L̃ = min
Q

Tr[QT (ZTZ− ηΛ̃)Q− 2YTZQ]

= min
Q

Tr[QT (I− ηΛ̃)Q− 2YTZQ]
(7)

where I is an identity matrix. To makeL̃ non-trivial for
optimization, (I − ηΛ̃) needs to be positive semi-definite.
Knowing thatΛ̃ is a diagonal matrix with its diagonal entries
being~λ, (I− ηΛ̃) is also diagonal, and all its diagonal entries
are non-negative whenη ∈ [0, 1

max(~λ)
] with max(~λ) being the

maximal value of~λ. In that case(I − ηΛ̃) is positive semi-
definite, makingL̃ non-trivial for optimization.

II. SUPPLEMENTARY EXPERIMENTAL RESULTS

A. Statistical Significance of the Superiority of E2FE

As mentioned in the paper (section VII-B1), to evaluate the
significance of the performance improvements gained by E2FE
over the baselines, we further performpaired-sample t-test[1]
for both label-based macroF1andexample-based Accuracyon
all datasets with varyingdz/dy.

For label-based macroF1, we take the correspondingF1
values (i.e. 2piri

pi+ri
in formula (28)) of all labels for each algo-

rithm as the samples from itsF1 distribution. Meanwhile, for
example-based Accuracy, we take the correspondingaccuracy

values (i.e.
|G′

j∩P ′

j |

|G′

j
∪P ′

j
| in formula (29)) of all test instances for

each algorithm as the samples from itsaccuracydistribution.
Then for each performance metric, we compare the samples of
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TABLE I
RESULTS OF SIGNIFICANCE TEST(i.e. P-value) FOR label-based macroF1 BETWEEN E2FE AND THE COMPARED BASELINES ON ALL DATASETS WITH

VARYING dz/dy

Datasets delicious CAL500 mediamill
dz/dy 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

CS ǫ ǫ ǫ ǫ ǫ ǫ ǫ 3.57e-08 4.19e-08 2.25e-06 1.73e-10 2.11e-08 8.27e-09 6.87e-05 1.76e-05
PLST ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

CPLST ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ
MLC-BMaD ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ
ML-CSSP ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ 2.61e-09 6.16e-10 ǫ ǫ ǫ

Datasets ESPGame bibtex bookmarks
dz/dy 5% 10% 15% 20% 25% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

CS ǫ 3.41e-05 0.0015 0.206 0.181 ǫ ǫ 9.1e-05 4.16e-05 4.65e-07 ǫ ǫ ǫ 0.000371 0.00152
PLST ǫ ǫ ǫ ǫ ǫ 1.19e-10 ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

CPLST ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ 4.3e-05 ǫ ǫ ǫ ǫ
MLC-BMaD ǫ ǫ ǫ ǫ ǫ 1.87e-09 ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ
ML-CSSP ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

TABLE II
RESULTS OF SIGNIFICANCE TEST(i.e. P-value) FORexample-based Accuracy BETWEEN E2FE AND THE COMPARED BASELINES ON ALL DATASETS WITH

VARYING dz/dy

Datasets delicious CAL500 mediamill
dz/dy 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

CS ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ
PLST ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

CPLST ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ
MLC-BMaD ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ
ML-CSSP ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

Datasets ESPGame bibtex bookmarks
dz/dy 5% 10% 15% 20% 25% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

CS ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ
PLST ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

CPLST ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ
MLC-BMaD ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ
ML-CSSP ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

the proposed method against those of any compared baseline,
and calculate the differences between pairwise samples for
significance tests. Thenull hypothesisH0 here is that the
mean value of such differences equals zero, and thealternative
hypothesisHα is that the mean value of such differences
does not equal zero and the mean value of theF1/accuracy
values yielded by E2FE is larger than that yielded by the
compared baseline. We set the significance level as a typical
value 0.01. Then if a P-value generated by the significance
test satisfies thatP-value≤ 0.01, the null hypothesisH0 will
be rejected and thealternative hypothesisHα is considered to
be statistically significant.

Here Table I and II report all theP-valuesof the significance
tests between E2FE and each baseline for bothlabel-based
macroF1 and example-based Accuracyon all datasets with
varying dz/dy. For clarity, here aP-value less than10−10

is denoted as a tiny valueǫ. From the results of signifi-
cance tests, we can find that: 1) forlabel-based macroF1,
except the cases where E2FE is compared against CS with
dz/dy ∈ {20%, 25%} on ESPGame, the maximalP-value in
all significance tests between E2FE and the compared base-
lines is around1.5×10−3, 2) for example-based Accuracy, all
P-valuesin significance tests are less than10−10. Therefore,
considering that nearly allP-valuesin the significance tests
are less than the significance level,i.e. 0.01, the performance
improvements gained by E2FE over the compared baselines
are statistically significant.

B. Experimental Validation for the Orthonormality Assump-
tion in E2FE

As mentioned in the paper (section VIII), to further demon-
strate the reasonableness of introducing the orthonormality as-
sumption into the proposed E2FE, we also try dropping it from
the objective function and conduct experiments to see how it
affects the classification performance and the computational
costs of E2FE. We denote this case as E2FENoOrth. Specif-
ically, without the orthonormality assumption, the objective
function of E2FENoOrth will be as follows.

Ψ = maxZ,Q−‖Y − ZQ‖2fro + αTr[ZTHZ]

= minZ,Q ‖Y − ZQ‖2fro − αTr[ZTHZ]

s.t. ∀i ∈ {1, 2, . . . , dz}, ZT
·,iZ·,i = 1

(8)

whereY is the tagging matrix of training instances,Z and
Q are respectively the to-be-learnt code matrix and the linear
decoding matrix, andH = X(XTX)−1XT with X being the
feature matrix of training instances. Note thatZT

·,iZ·,i = 1
is still required here as it is the precondition forTr[ZTHZ]
being an expression of predictability, as described in section
III-B2. Like other matrix factorization methods [2], [3], we
can derive the code matrixZ and the linear decoding matrix
Q via iteratively and alternatively optimizing one with the
other fixed, though that cannot ensure to obtain the global
optima. Specifically, withZ fixed, Q can be optimized as
Q = (ZTZ)−1ZTY. Meanwhile, withQ fixed, the gradient
w.r.t Z can be calculated as∂Ψ

∂Z
= −2(Y−ZQ)QT − 2αHZ.

Considering the constraints for each column ofZ, it is infea-
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TABLE III
PERFORMANCECOMPARISONS BETWEENE2FE AND E2FENoOrth ON
ALL DATASETS, WITH p = 5 FORESPGameAND p = 10 FOR OTHERS.

dz/dy p% 2p% 3p% 4p% 5p%

la
b
el

-b
a
se

d
m

a
cr

o
F

1

delicious
E2FE 0.0530 0.0569 0.0577 0.0578 0.0578

E2FENoOrth 0.0336 0.0401 0.0444 0.0462 0.0438

CAL500
E2FE 0.1198 0.1247 0.1263 0.1258 0.1256

E2FENoOrth 0.0966 0.1086 0.1074 0.1122 0.1120

mediamill
E2FE 0.0549 0.0575 0.0577 0.0577 0.0577

E2FENoOrth 0.0436 0.0448 0.0459 0.0451 0.0453

ESPGame
E2FE 0.0026 0.0025 0.0025 0.0025 0.0025

E2FENoOrth 0.0018 0.0018 0.0017 0.0018 0.0018

bibtex
E2FE 0.0595 0.0888 0.1169 0.1286 0.1369

E2FENoOrth 0.0420 0.0727 0.0847 0.0929 0.1000

bookmarks
E2FE 0.0472 0.0706 0.0752 0.0764 0.0775

E2FENoOrth 0.0298 0.0455 0.0459 0.0471 0.0488

ex
a
m

p
le

-b
a
se

d
A

cc
u
ra

cy delicious
E2FE 0.1187 0.1196 0.1197 0.1196 0.1184

E2FENoOrth 0.1037 0.1073 0.1082 0.1093 0.1045

CAL500
E2FE 0.2405 0.2411 0.2421 0.2396 0.2392

E2FENoOrth 0.2261 0.2294 0.2256 0.2267 0.2250

mediamill
E2FE 0.4353 0.4379 0.4378 0.4378 0.4378

E2FENoOrth 0.4192 0.4201 0.4204 0.4192 0.4199

ESPGame
E2FE 0.0701 0.0701 0.0700 0.0701 0.0701

E2FENoOrth 0.0613 0.0635 0.0605 0.0585 0.0590

bibtex
E2FE 0.1835 0.2149 0.2356 0.2440 0.2493

E2FENoOrth 0.1501 0.2018 0.2121 0.2167 0.2233

bookmarks
E2FE 0.1659 0.1913 0.1933 0.1937 0.1939

E2FENoOrth 0.1521 0.1627 0.1636 0.1645 0.1660

TABLE IV
AVERAGE TIME COSTS(IN SECONDS) FOR PERFORMINGLSDR IN E2FE

AND E2FENoOrth WITH dz/dy = 10%.

delicious ESPGame bookmarks

E2FE 1.984 10.877 4.877
E2FENoOrth 145.253 215.199 41.434

sible to derive a closed-form solution for the optimalZ. And
thus in our experiments we utilize a gradient descent based
method for optimizingZ, which always takes one appropriate
step to make the objective function decrease while keeping the
constraints satisfied. By iteratively optimizingZ andQ until
convergence (i.e. the relative change of the objective function
is less than0.1% in our experiments), we utilize them to train
predictive models and then perform classification for unseen
instances.

The performance of E2FENoOrth on all datasets, using
random initial values forZ andQ to perform optimization,
is presented in Table III. It can be seen that E2FENoOrth

is inferior to E2FE. In fact, even using the derivedZ and
Q of E2FE as initial values, E2FENoOrth can hardly gain
performance improvement over E2FE. It is mainly attributed
to that, without the orthonormality assumption, 1) more re-
dundant information rather than complementary information
exists between dimensions of the latent space, and 2) global
optima cannot be ensured forZ.

Moreover, we also evaluate the time costs for E2FENoOrth

to perform LSDR on the largestdelicious, ESPGameand
bookmarkswith dz/dy = 10%, as reported in Table IV.
We can see that E2FENoOrth costs much more time than
E2FE, because its objective function is more complex for
optimization. Its time costs are even higher than those of the
binary relevance model L-RR (see Table VIII in the paper),
which means that E2FENoOrth may be unsuitable for LSDR.

Therefore, dropping the orthonormality assumption does

not bring substantial performance improvements and instead
will increase the time costs for optimization. On the contrary,
keeping the orthonormality assumption gains a good trade-off
between efficiency and effectiveness for LSDR.
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