Action Recognition Using 3D histograms of Texture and A Multi-class Boosting Classifier

Zhang, Baochang and Yang, Yu and Chen, Chen and Yang, Linlin and Han, Jungong and Shao, Ling (2017) Action Recognition Using 3D histograms of Texture and A Multi-class Boosting Classifier. IEEE Transactions on Image Processing, 26 (10). pp. 4648-4660. ISSN 1057-7149

Full text not available from this repository.

Abstract

Human action recognition is an important yet challenging task. This paper presents a low-cost descriptor called 3D histograms of texture (3DHoTs) to extract discriminant features from a sequence of depth maps. 3DHoTs are derived from projecting depth frames onto three orthogonal Cartesian planes, i.e., the frontal, side, and top planes, and thus compactly characterize the salient information of a specific action, on which texture features are calculated to represent the action. Besides this fast feature descriptor, a new multi-class boosting classifier (MBC) is also proposed to efficiently exploit different kinds of features in a unified framework for action classification. Compared with the existing boosting frameworks, we add a new multi-class constraint into the objective function, which helps to maintain a better margin distribution by maximizing the mean of margin, whereas still minimizing the variance of margin. Experiments on the MSRAction3D, MSRGesture3D, MSRActivity3D, and UTD-MHAD data sets demonstrate that the proposed system combining 3DHoTs and MBC is superior to the state of the art.

Item Type:
Journal Article
Journal or Publication Title:
IEEE Transactions on Image Processing
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1700/1712
Subjects:
ID Code:
87885
Deposited By:
Deposited On:
20 Sep 2017 14:16
Refereed?:
Yes
Published?:
Published
Last Modified:
20 Sep 2020 04:24