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Abstract—The task of feature selection is to find the most
representative features from the original high-dimensional data.
Because of the absence of the information of class labels, selecting
the appropriate features in unsupervised learning scenarios is
much harder than that in supervised scenarios. In this paper,
we investigate the potential of Locally Linear Embedding (LLE),
which is a popular manifold learning method, in feature selection
task. It is straightforward to apply the idea of LLE to the graph-
preserving feature selection framework. However, we find that
this straightforward application suffers from some problems.
For example, it fails when the elements in the feature are all
equal; it does not enjoy the property of scaling invariance and
cannot capture the change of the graph efficiently. To solve these
problems, we propose a new filter-based feature selection method
based on LLE in this paper, which is named as LLE score. The
proposed criterion measures the difference between the local
structure of each feature and that of the original data. Our
experiments of classification task on two face image data sets,
an object image data set, and a handwriting digits data set show
that LLE score outperforms state-of-the-art methods including
data variance, Laplacian score, and sparsity score.

I. INTRODUCTION

In many real-world applications, the dimensionality of the
obtained feature is always very high. Such examples can be
found in face recognition [1], handwriting character recog-
nition [2], bioinformatics analysis [3], visual tracking [4],
[5], [6], [7], [8] and so on [9], [10], [11], [12]. The high
dimensionality of the data brings at least two difficulties for
the learning algorithm, 1) handling high-volume data increases
the computational burden of the algorithm; 2) it may degrade

This work was supported by the China Postdoctoral Science Foundation
funded project (Grant No. 154906), the Fundamental Research Funds for the
Central Universities (Grant No. 3102016ZY022), the Natural Science Foun-
dation of China (Grant Nos. 61473231, 11501298, 11671419 and 11688101),
the NSF of Jiangsu Province (BK20150965), and Priority Academic Program
Development of Jiangsu Higher Education Institutions. (Corresponding author:
Junwei Han.)

Chao Yao and Junwei Han are with School of Automation,
Northwestern Polytechnical University, Xi’an, 710072, China (e-mail:
yaochao@nwpu.edu.cn, junweihan2010@gmail.com).

Ya-Feng Liu is with the State Key Laboratory of Scientific and En-
gineering Computing, Institute of Computational Mathematics and Scien-
tific/Engineering Computing, Academy of Mathematics and Systems Sci-
ence, Chinese Academy of Sciences, Beijing, 100190, China (e-mail: yafli-
u@lsec.cc.ac.cn).

Bo Jiang is with School of Mathematical Sciences, Key Laboratory for
NSLSCS of Jiangsu Province, Nanjing Normal University, Nanjing 210023,
China (e-mail: jiangbo@njnu.edu.cn).

Jungong Han is with the School of Computing and Communication-
s, Lancaster University, Lancaster LA1 4YW, U. K. (email: jungong-
han77@gmail.com)

Manuscript received XX, 2017.

the performance of the learning algorithm due to the curse
of dimensionality [13]. To solve these problems, one always
adopts the dimension reduction techniques prior to feeding
data into the learning algorithm.

Feature selection [14] and feature extraction [15] are two
families of popular dimension reduction techniques. Feature
extraction algorithms reduce the dimensionality of data by
projecting the data to a lower-dimensional subspace, while
feature selection algorithms reduce the data’s dimensionality
by selecting a subset of the feature. From the principle point of
view, when required to extract features for a new application,
feature extraction methods are lack of meaningful interpre-
tations and there is no clear instruction for which features
should be extracted, despite the fact that its performance may
be better in most practical applications [16]. On the contrary,
the feature obtained by feature selection methods has distinct
interpretations, which is important for many applications, such
as gene classification [17], [18], text classification [19], [20]
and so on [21], [22], [23], [24]. As a result, we only focus on
feature selection in this paper.

Regarding the selection strategy, the existing feature selec-
tion methods can be categorized into three types [14]: filter,
wrapper, and embedded. The filter-based feature selection
algorithms rank the features in terms of a predefined criterion,
which is completely independent on the learning methods.
Wrapper-based methods choose the features through learning
methods, for which a predefined classifier is usually desired.
The embedded-based methods can be considered as the im-
provement of the wrapper ones in the sense that the feature
evaluation criterion is incorporated into the learning procedure.
Since both wrapper-based and embedded-based methods take
the learning model into consideration, they usually perform
better than filter-based ones. However, these methods are
computationally expensive, thereby impeding their uses in the
tasks where the dimensionality and the amount of the data are
large. In view of the above analysis, the filter-based methods
seem to be more attractive and practical, especially when the
volume of features is huge. In this paper, we are particularly
interested in the filter-based feature selection methods, in
which Fisher score [25], data variance [26], Laplacian score
[27], constraint score [28], Pearson correlation coefficients
[29], and sparsity score [30] are representatives.

Depending on whether the label information is available,
filter-based feature selection methods can be divided into un-
supervised ones and supervised ones. Fisher score and Pearson
correlation coefficients are two typical supervised methods,
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for both of which the key is to evaluate the importance of
each feature. Specifically, Fisher score evaluates the feature’s
importance according to its discriminative ability, whereas
Pearson correlation coefficients measure the importance of
each feature by looking at its correlation with the class label.
Alternatively, the unsupervised methods rank the feature based
on its ability of preserving certain characteristic of the data.
For example, data variance is a typical unsupervised feature
selection method, which sorts the features by their variances.
Differently, feature importance is determined with the aid
of its ability for preserving the sparsity structure in sparsity
score [30]. Generally speaking, designing unsupervised feature
selection algorithms is more difficult than the supervised ones
due to the lack of the label information.

Recently, inspired by the phenomenon that the data belong-
ing to the same class would locate nearly in the original space,
local features have gained great popularity in computer vision
[31], [32]. Some works show that the local structure of data
can help to seek relevant features in unsupervised situations.
Laplacian score is one of such methods, which starts with
learning the local structure of the original data followed by
evaluating each feature in terms of its capability of preserving
the learnt local structure. More recently, Liu et al. [30] present-
ed a general graph-preserving framework for the filter-based
feature selection method. Aforementioned methods, including
Fisher score, data variance, Laplacian score, sparsity score,
and constraint score are all unified into this framework. In such
methods, feature selection problem is formulated to evaluate
the feature’s ability of preserving the graph-structure which is
constructed by a predefined algorithm. The proposed graph-
preserving framework greatly improves the filter-based feature
selection methods theoretically. Moreover, with the proposed
framework, other graph-based methods can be easily employed
for feature selection task.

In spite of the success of filter-based unsupervised feature
selection algorithms in some applications, it can still be
further improved. In this paper, we incorporate Linear Locality
Embedding (LLE) [33], which is a well-known method in
manifold learning, into the graph-preserving feature selection
framework. The effectiveness of LLE has been proved by
lots of researchers [34], [35], [36]. Basically, LLE starts by
constructing a graph that retains the locality information of the
data, and on top of it, the lower-dimensional representation
preserving these information is found. Comparing with the
graph constructed by the existing unsupervised algorithms, the
graph constructed by LLE has the following advantages: 1)
comparing with the graph constructed by variance, the graph
constructed by LLE can model the local structure of the data;
2) comparing with the graph constructed by Laplacian score,
it only requires predefining the number of neighborhood to
construct the graph of LLE; 3) comparing with the graph
constructed by sparsity score, the graph constructed by LLE
is naturally sparse, which will be explained in Section 3.1.
However, we find that directly embedding LLE into the graph-
preserving framework comes with at least three weaknesses,
which will degrade the performance of LLE in feature selec-
tion. To address these weaknesses, a new unsupervised filter-
based feature selection with new measurement to evaluate the

graph-preserving ability of the feature is proposed, and we
name it LLE score. Experimental results on two face data sets
and an object recognition data set show the effectiveness of
the proposed method.

It is worth highlighting some contributions of this paper
here.

1) The relationship between embedding LLE into the
graph-preserving feature selection framework and spar-
sity score [30], which is a recently developed method,
is studied. Specifically, both embedding LLE into the
framework and sparsity score can efficiently reveal the
sparsity property of the features.However, comparing
with sparsity score, embedding LLE into the framework
determines the non-zeros positions of the reconstruction
vector by its nearest neighbors. In this way, the com-
putational complexity is significantly reduced. It is also
proved that reconstructing a sample by its K-nearest
neighbors can obtain better performance in classification
task [37], compared with that by sparse representation
of all the samples. Therefore, embedding LLE into the
graph-preserving framework is expected to outperform
sparsity score.

2) With careful analysis of embedding LLE into the graph-
preserving feature selection framework, we find it have
at least three weaknesses: 1) it fails when the elements of
all the samples are equal; 2) it lacks the scaling invariant
property; 3) it cannot well capture the change of the
graph for each element. These weaknesses will greatly
degrade its performance in feature selection.

3) To solve the problems of directly embedding LLE into
the graph-preserving framework, we propose a new
scheme for each element. In the new scheme, we first
calculate the reconstruction weights for each element.
Then the weights are used to evaluate the importance
of the feature. We show that in our new method, the
previously mentioned three weaknesses are solved.

The paper is organized as follows. Section 2 reviews the
graph-preserving framework for filter-based feature selection.
Then, we present the details of embedding LLE into the graph-
preserving framework, list its potential problems, and propose
the LLE score in Section 3. Section 4 shows the experimental
results. Section 5 draws our conclusions.

II. RELATED WORKS

In this section, we will first review some related filter-based
feature selection methods. We list some important notions in
Table I for ease of explanation. The capital and lower boldface
case in this paper denote matrix and vector, respectively.

Data variance [26] is the simplest evaluation criterion for
feature selection, reflecting its representative power. We denote
the variance of r-th feature as Varr, which is computed as
follows:

Varr =
1

n

n∑
i=1

(fri − µr)
2, (1)

where µr = 1
n

∑n
i=1 fri. The larger the Varr, the more

powerful representative ability of the feature.
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TABLE I
NOTATIONS

Notation Description
C number of classes
d feature’s dimensionality
xi the i-th sample, where xi ∈ Rd

X data matrix, where X = (x1,x2, . . . ,xn)
fr the r-th feature of all the data
fPr the r-th feature of the P -th class
fri the r-th feature of the i-th sample
fP
ri the r-th feature of the i-th sample in the P -th class
µr centroid of the r-th feature
µP
r centroid of the r-th feature in the P -th class
µ centroid of all samples
n number of samples
nP number of samples in the P -th class
I identity matrix
1 a vector with all elements equal to 1
eP eP (i) = 1 if the i-th sample belongs to the P -th class, otherwise eP (i) = 0
e e = (e1, e2, . . . , eC)

Fisher score [25] is a supervised feature selection method. It
measures the representative power of the feature by assessing
its ability of maximizing the distances of the sample from
different classes and minimizing the distances of the sample
from the same class simultaneously. Let FSr denote the Fisher
score of the r-th feature. The FSr is computed as follow:

FSr =

∑C
P=1(µ

P
r − µr)

2∑C
P=1

∑nP

i=1(f
P
ri − µP

r )
2
, (2)

where µP
r = 1

nP

∑nP

i=1 f
P
ri .

Laplacian score [27] is an unsupervised feature selection
method. The main idea of Laplacian score is that the data
points which locate nearby are probably related to the same
class. Therefore, the local structure of the data is more
important than the global structure. In this way, Laplacian
score evaluates the feature by its ability of preserving the
local structure. The measurement LSr of the r-th feature is
computed as follows:

LSr =

∑n
i=1

∑n
j=1(fri − frj)

2wij∑n
i=1(fri − µr)2dii

, (3)

where D is a diagonal matrix with elements dii =
∑n

j=1 wij

and wij is the neighborhood relationship between xi and xj .
It is defined as

wij =


e−

∥xi−xj∥
2

t2 if xi and xj are neighbors,

0 otherwise,

(4)

where t is a constant set manually. The local structure is
characterized by “if xi and xj are neighbors”. In practice,
δ-ball and K-nearest neighbors are two popular methods
of implementation. We denote the weight matrix W =
(w1,w2, . . . ,wn), then D = Diag(W1), where Diag(·)
denotes a diagonal matrix with the elements in the vector.

Constraint score [28] is a supervised feature selection
method which can work with partial label information. It
employs the pairwise constraints which specify whether a
pair of data samples belong to the same class (must-link

constraints) or different classes (cannot-link constraints). The
pairwise constraints use much less label information than other
supervised methods. Zhang et al. [28] presented two kinds of
constraint scores, CS1r and CS2r , to measure the importance of
the r-th feature. They are defined as

CS1r =

∑
(xi,xj)∈M(fri − frj)

2∑
(xi,xj)∈C(fri − frj)2

, (5)

CS2r =
∑

(xi,xj)∈M

(fri − frj)
2 − λ

∑
(xi,xj)∈C

(fri − frj)
2, (6)

where M = {(xi,xj)|xi and xj belong to the same class}
is the must-link constraints, C = {(xi,xj)|xi and xj belong
to different class} is the cannot-link constraints, and λ is a
parameter to balance the two terms in Eq. (6).

Much attention has been devoted to the sparsity linear
representation in these years. It is believed that the sparsity can
improve the robustness of the model against data noise. Based
on this observation, Liu et al. [30] proposed an unsupervised
filter-based feature selection method named as sparsity score.
They first construct a l1 graph S with the below method:

min
si

∥si∥1, s.t. xi = Xsi,
n∑

j=1

sij = 1, (7)

where si = (si,1, . . . , si,i−1, 0, si,i+1, . . . , si,n)
T and S =

(s1, s2, . . . , sn)
T . Then, the measurement SSr of the r-th

feature is computed as

SSr
1 =

∑n
i=1

(
fri −

∑n
j=1 sijfrj

)2

1
n

∑n
i=1(fri − µr)2

. (8)

In [30], Liu et al. also proposed a filter-based graph-
preserving feature selection framework as follows:

score1r =
fTr Afr
fTr Bfr

, (9)

1In [30], the authors proposed two SS formulae, namely, SS-1 and SS-2.
In this paper, we only consider SS-2 since its performance is generally better
than that of SS-1.
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score2r = fTr Afr − λfTr Bfr, (10)

where λ is a parameter to balance the two terms in Eq. (10).
Then, the aforementioned feature selection can be unified into
this framework. We list the definitions of A and B in Table
II. In this table, DM = Diag(WM1), DC = Diag(WC1)
and the elements in matrix WM and WC are computed as:

wM
ij =


1 if (xi,xj) ∈ M or (xj ,xi) ∈ M,

0 otherwise,

wC
ij =


1 if (xi,xj) ∈ C or (xj ,xi) ∈ C,

0 otherwise.

III. THE PROPOSED METHODS

A. Problem formulation

Among various manifold learning algorithms, LLE is one of
the most popular methods. LLE first learns the local structure
of the data in the original space, then finds their lower-
representations by preserving these structures. In the previous
work [38], LLE has been embedded into the graph framework
for feature extraction. Hence, extending LLE to filter-based
feature selection task does not seem to be complicated. How-
ever, to our best knowledge, we have not found any work using
LLE to rank the feature so far. In this paper, we first introduce
how to embed LLE into the graph-preserving framework. To
do so, we first model the local structure as what LLE does,
which is summarized as below.

For each data point xi,
1) Find the neighborhood set Ni = {xj , j ∈ Ji} using

K-nearest neighbors of xi.
2) Compute the reconstruction weights that minimize the

reconstructing error of xi using samples in Ni.
Step 1) is usually implemented by employing the Euclidean

distance to find the neighbors. Based on the obtained K nearest
neighbors, step 2) aims to find the best reconstruction weights.
The optimal weights are determined by solving the following
problem:

min
{mij, j∈Ji}

∥xi −
∑
j∈Ji

mijxj∥2, s.t.
∑
j∈Ji

mij = 1. (11)

Repeating steps 1) and 2) for all the samples, the reconstruc-
tion weights form a weighting matrix M = [mij ]n×n. In
matrix M, mij = 0, if xj /∈ Ni. It is worth noting that
the dimensionality of the sample d is usually larger than the
numbers of the neighborhoods K, which is d > K. So, the
least squares method is always adopted to solve Eq. (11).

Then, each feature is evaluated by its ability to preserving
these weights. We denote Scorer as the measurement of the
r-th feature, which should be minimized, as follows:

Scorer =
n∑

i=1

(
fri −

n∑
j=1

mijfrj

)2

= fTr (I−M−MT +MTM)fr. (12)

Then we rank the features according to their Scorer, and
choose the top d features with lowest scores. The detailed
procedure of the above method is presented in Algorithm 1.
Let A = I−M−MT +MTM, λ = 0, the proposed method
can be embedded into the aforementioned framework in Eq.
(10).

Algorithm 1 Embedding LLE into the graph-preserving fea-
ture selection framework
Input: The data matrix X.
Output: The ranked feature list.

1: Firstly, compute K-nearest neighbors of xi, then calculate
its reconstruction weights mij through Eq. (11). Do these
two procedures for all the data, and the weighting matrix
M is obtained;

2: Compute the importance of the d feature by Eq. (12);
3: Rank the d feature in ascending order according to its

score;
4: return The ranking list of the feature.

Embedding LLE into the graph-preserving feature selection
framework is summarized as Algorithm 1. Actually, the score
obtained by Algorithm 1 is related to sparsity score. At the
first step, both Algorithm 1 and sparsity score construct the
reconstruction matrix. Then the features are measured by their
abilities of preserving the obtained reconstruction matrix. In
Algorithm 1, each sample is reconstructed by its K-nearest
neighborhoods, which is a local method. Because the number
of nearest neighbor K is always far smaller than the total
number of training samples n (K ≪ n), the weighting matrix
M is also sparse. Therefore, compared with sparsity score,
Algorithm 1 provides a very different way to keep the sparsity.

Recalling Eq. (7) and Eq. (11), we can find that Algorithm
1 has two advantages over sparsity score. First, the computa-
tional cost of Algorithm 1 is much smaller than sparsity score.
In sparsity score, each sample is represented by all training
samples. It will be time-consuming when the size of training
samples becomes large. Since K is far smaller than the total
number of training samples n, the computational time of Algo-
rithm 1 will increase slowly, in contrast to sparsity score when
the size of training samples gets large. Second, Algorithm 1 is
expected to outperform sparsity score in classification tasks.
In sparsity score, each sample is represented by all training
samples. In this case, a sample is sparsely represented by the
training samples, but actually parts of the training samples
might be far away from the given sample. In Algorithm 1, the
sample is reconstructed by its K-nearest neighbors. It has been
proved in [37] that using the K-nearest neighbors to replace
the sparse representation to reconstruct a sample can get better
performance in classification tasks. The experimental results
in Section 4 also support our analysis.

It is a straightforward idea to embed LLE into the graph-
preserving feature selection framework. However, to our best
knowledge, we have not found any research on this issue. To
find out the reason, we analyze Algorithm 1 deeply. Recalling
the measurement of Algorithm 1 in Eq. (12), we find three
weaknesses in it which are listed below.
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TABLE II
THE DEFINITIONS OF A AND B FOR SEVERAL FILTER-BASED FEATURE SELECTION ALGORITHMS

Algorithm A and B definition Characteristics Graph-preserving form

Data variance [26] A = I; B = 1
n
11T Unsupervised Eq. (10) with λ = 1

Fisher score [25] A =
∑C

P=1
1

nP
eP eP

T − 1
n
eeT ; B = I− 1

nP
eP eP

T Supervised Eq. (9)

Laplacian score [27] A = D−W; B = D Unsupervised Eq. (9)
Constraint score [28] A = DM −WM ; B = DC −WC Semi-supervised Eq. (9) and Eq. (10)
Sparsity score [30] A = I− S− ST + SST ; B = I− 1

nP
eP eP

T Unsupervised Eq. (10) with λ = 0

• When the elements in the feature are all equal (take
fr = 1 for example), Scorer = 0 due to the constraint∑

j∈Ji
mij = 1, which means the given feature is among

one of the best choice (due to Scorer ≥ 0). However, we
know that the feature whose all elements are equal has
no discriminant information for classification.

• The measurement Scorer is not scaling invariant. For
example, let f1 = 2 × f2, then Score1 = 4 × Score2.
Nevertheless, we know that f1 and f2 share the same
graph structures. In other words, f1 and f2 should have
the same ranking score in the feature selection procedure.

• The measurement in Eq. (12) may not capture the change
of the graph efficiently. A toy example is shown in Fig. 1.
In the example, the 2-nearest neighbors are employed to
model the local structure of the data. We can see that the
2-nearest neighbors of sample 1 are samples 2 and 3 in
R2. When we measure the importance of element that lies
in X1, the 2-nearest neighbors of sample 1 are samples
4 and 5 in the subspace spanned by X1. However, the
measurement in Eq. (12) could not capture this change.
Ideally, the preserving ability of the feature should take
the change into consideration.

Because of these weaknesses, the score obtained by Algo-
rithm 1 may fail in some cases so that its performance will
degrade. To solve these problems, we propose a new criterion
in next subsection.

B. LLE score
In Section 3.1, the weaknesses of embedding LLE into

the graph-preserving framework are already presented. To
address these problems, we propose a new criterion to measure
the importance of the feature. In the new criterion, we first
compute the reconstruction weights for each element in fr as
follows:

min
{m̂r

ij ,j∈Ĵi}
∥fri −

∑
j∈Ĵi

m̂r
ijfrj∥2 + γ

∑
j∈Ĵi

(m̂r
ij)

2,

s.t.
∑
j∈Ĵi

m̂r
ij = 1,

(13)

where the neighborhood index set Ĵi := {j : if frj is one of
the K-nearest neighbors of fri}. The regularization term in
Eq. (13) is used to make its solution not too sparse, and we will
explain it later in this section. In practice, γ is set to be a small
positive value. Using Eq. (13), the reconstruction weighting
matrix M̂r = [m̂r

ij ] for the r-th feature is obtained. Then, we
use the difference between M̂r and M to evaluate the graph-
preserving ability of the r-th feature. Here, the Frobenius norm

Fig. 1. A toy example embedding LLE score into the graph-preserving
framework could not capture the true change of the structure of the graph.

of the matrix is employed in the proposed method. We denote
LLESr as the score of the r-th feature, which should be
minimized. It is computed as

LLESr = ∥M− M̂r∥2F . (14)

For each feature, we use the above criterion to evaluate its
ability to preserve the linear structure. The features with small
scores are preferred. We list the details of the proposed LLE
Score in Algorithm 2.

Algorithm 2 LLE score
Input: The data matrix X.
Output: The ranked feature list.

1: Firstly, perform Step 1 of Algorithm 1 to obtain the
weighting matrix M.

2: For each fr, recompute its K-nearest neighborhood set N̂i

and reconstruction matrix M̂r via Eq. (13). Then its LLE
score is calculated for each feature of using Eq. (14);

3: Rank the d feature in ascending order according to its LLE
score;

4: return The ranking list of the feature.

It is worth noting that when K > 2, problem (13) with
γ = 0 always has multiple solutions.
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Lemma 1. Problem (13) with γ = 0 always has multiple
solutions when K > 2.

Proof. Problem (13) with γ = 0 takes the form of the
following quadratic program

min
y∈RK

∥Gy − b∥2, s.t. 1Ty = 1, (15)

where y = [mij ]j∈Ĵi
,G = [frj ]j∈Ĵi

∈ R1,K , b = fri ∈ R.
Let Z ∈ RK,K−1 be the basis matrix of the null space of
1. With the transformation y = Zŷ, where ŷ ∈ RK−1 is a
feasible solution of problem (15), we obtain the equivalent
form of problem (15) as

min
ŷ∈RK−1

∥GZŷ − b∥2. (16)

Noting that GZ ∈ R1,K−1 and with K > 2, we conclude that
problem (16) must have multiple solutions, which immediately
implies that problem (15) has multiple solutions. The proof is
completed.

Consider problem (13) with γ > 0. In this case, the
objective function in problem (13) is strongly convex, and
hence Eq. (13) always has a unique solution.

Recalling the aforementioned weaknesses of Algorithm 1,
we can see that the improved method overcomes them effi-
ciently. When the elements are all equal, 1

K are assigned to
each neighbor when computing the weights m̂i of the i-th
sample, so that the measurement generally will not be 0. The
scaling problem is also solved because we use the weights to
measure the feature’s importance, and the computing method
for the reconstruction weights are scaling invariant. The last
weakness is also solved if we recompute the weights in LLE
score. As for the example in Fig. 1, when we evaluate the
importance of element in X1, the neighbors of sample 1 are
recalculated. In this way, the true structure in X1 is captured.

It should be noted that Laplacian score also takes the first
two weaknesses into consideration. In their method, the means
of the feature are first removed. By doing so, the first problem
becomes a trivial solution. The variance of each feature is also
used in their method, so the second problem of Algorithm 1 is
also solved. We do not use this method in LLE score because
the third problem of Algorithm 1 cannot be solved in this way.
In general, the proposed scheme in LLE score can solve the
three problems of Algorithm 1 simultaneously.

We can also understand the new measurement in LLE score
from another perspective. The metric in Eq. (12) calculates
the reconstruction error of fr, which is related to the graph-
structure preserving ability. In the new criterion, we directly
evaluate the difference of the two graphs, which is much closer
to the aim of the graph-structure preserving ability.

Now, we analyze the time complexity of LLE score.
In LLE score, we first compute the reconstruction matrix
M in Eq.(12). The cost of computing the Euclidean dis-
tances between the i-th sample and the other samples is
O(nd), then finding its K-nearest neighbors costs O(nK).
The cost of computing the reconstruction weights is O(K3).
Thus, the total computational complexity of computing M is
O(n2d+n2K+nK3). To rank each feature, the computational

complexity for M̂r is O(n2K + nK3), and for LLESr is
O(n2). So, to rank each feature, the computational complexity
is O(n2K + nK3). The total computational complexity for
ranking the d feature is O(n2d+n2K+nK3+n2dK+ndK3).
In most cases, d ≫ K, in this way, the computational
complexity can be written into O(n2d+ ndK3).

The computational complexity of Algorithm 1 is O(n2d +
ndK3). The computational cost for variation, Laplacian s-
core, and sparsity score are O(n2d), O(n2d), and O(n2d),
respectively. We can see the LLE score is the most time-
consuming one among the aforementioned algorithms, where
the procedure of computing the reconstruction weights costs
most of the extra time.

IV. EXPERIMENTAL RESULTS

In the experiments, we evaluate the performance of LLE
score and Algorithm 1 on UCI Iris data set and four image data
sets (Yale and ORL face image data sets, COIL20, which is
an object image database and MINST, which is a handwriting
digit image data set). The properties of them are summarized
in Table III. Because we are particularly interested in the
learning abilities of unsupervised methods in the classification
tasks, only unsupervised methods, such as Variance [26],
Laplacian score [27], and sparsity score [30], are included in
the experiments. In the experiments on image data sets, K-
nearest neighbors are used to construct graphs for Laplacian s-
core, sparsity score, and our two proposed algorithms. Without
otherwise specified, we set K = 5 in all the algorithms. The
regularization parameter γ is set to be 10−5, which follows the
conclusion in [39]. The parameter t in (4) is searched in the
set {1, 10, 50, 100, 200} in Laplacian score, and the best result
is presented. Because we mainly concern the performances of
these unsupervised learning methods on classification tasks,
the Nearest Class Mean (NCM) classifier and the Nearest
Neighbor (NN) classifier are adopted in all the tests for its
simplicity. NCM is based on Euclidean distance and could be
denoted as

disNCM = min
i

∥x− µi∥2, (17)

In this way, the sample is assigned to the class which has the
minimum distance disNCM.

NN is also based on Euclidean distance and could be
denoted as

disNN = min
i

∥x− xi∥2. (18)

The sample is classified to the class that the nearest sample
xi belonging to.

TABLE III
PROPERTIES OF DATASETS.

Data sets number of samples number of features number of classes
IRIS 150 4 3
Yale 165 1024 15
ORL 400 1024 40

COIL20 1440 1024 20
MNIST 70000 784 15
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A. Experiments on UCI Iris dataset

The UCI Iris dataset is a collection of 3 types of Iris plants,
we denote it to be the class in the following context. For
each class, there are 50 samples, in which we use the first 30
samples of each class as the training samples and the other
20 samples of each class as testing samples. Each sample
contains 4 features, which are sepal length, sepal width, petal
length, and petal width. We use the NCM classifier with each
feature, and the classification rates are 0.7333, 0.5833, 0.9667
and 0.9667, respectively. We can see that the discriminative
abilities of the 3rd feature and the 4th feature are better than
the ones of the 1st feature and the 2nd feature.

We first evaluate the judgement capabilities of the discrim-
inative power for each feature of variance, Laplacian score,
sparsity score, Algorithm 1, and LLE score. We set K = 5 for
Laplacian score, sparsity score, Algorithm 1, and LLE score.
For Laplacian score, we set t = 10. We list the indexes of
the ranked feature learnt by each algorithm in Table IV. From
the results, it is clear that LLE score and sparsity score can
evaluate the discriminative power of each feature perfectly. It
proves the effectiveness of our proposed scheme in Section
3.2.

We then check the impact of K on Laplacian score, sparsity
score, Algorithm 1, and LLE score when ranking the features.
We vary K from 2 to 20, and list several of them in Table V.
From the results, when K = 2, we find that the features are
ranked as 4, 3, 1, 2 by LLE score. This is also a good ranking
according to the classification rates of each feature. In other
situations, the features are all ranked as 3, 4, 1, 2. We can see
that the performance of LLE score is robust to the number of
neighbors K.

B. Experiments on Yale dataset

The Yale face image dataset [40] contains 165 gray scale
images from 15 individuals. There are 11 images per person
under different face expressions, illumination conditions, and
poses. The images are cropped to 32×32 pixels with 256 gray
levels per pixel.

In the experiments, we represent the image with its pixel
and no further preprocessing is done. In this way, each image
is represented by a 1024-dimensional feature vector. The data
set is divided into two parts, one used for training the classifier
and the rest for testing. A random subset with p (=2,3,4,5,6,7)
images per individual is taken with labels to form the training
set, and the rest of the database is considered to be the testing
set. For each given p, there are 50 randomly splits. The splits
are downloaded at http://www.cad.zju.edu.cn/home/dengcai/.

For a given p, we average the results over 50 random splits.
In all the experiments, we record the average classification
accuracies over 1024 subsets to see the overall performances
of each algorithm, and the best recognition rates and corre-
sponding dimensionalities to compare the potential of each
algorithm. The results from variance, Laplacian score, sparsity
score, Algorithm 1, and LLE score are listed in Table VI. The
recognition accuracies versus different subsets are shown in
Figs. 2 and 3.

From the results, we can see that Algorithm 1 has compa-
rable performance with sparsity score, and LLE score outper-
forms other algorithms in most of the cases. It clearly proves
that embedding LLE into the graph-preserving framework is
a special kind of sparsity score and shows the validity of the
proposed measurement in LLE score.

C. Experiments on ORL face image dataset

There are 400 face images in this dataset [41]. The images
are from 40 individuals with different illuminations, facial
expressions (open or closed eyes, smiling or not smiling), and
facial details (glasses or no glasses). The size of each image
is 112 × 92 with 256 grey levels per pixel.

In the experiments, the images are cropped into 32 × 32
with no preprocessing conducted. The experimental design
here is the same as before. We apply variance, Laplacian score,
sparsity score, LLE score, and Algorithm 1 to select the most
important features. The recognition is then carried out by using
the selected features. We list the classification results for these
methods in Table VII and show the classification accuracies
versus different dimensionalities in Figs. 4 and 5. As can be
seen, LLE score outperforms other algorithms in most of the
cases, and Algorithm 1 also outperforms sparsity score in these
experiments.

D. Experiments on COIL20 object images dataset

There are 1440 images from 20 objects in this dataset [42].
The size of each image is 128 × 128, with 256 grey levels per
pixel. The images are resized into 32 × 32 for convenience.
Thus, each image is represented by a 1024-dimensional vector.

In the experiments, we randomly select some samples from
each object for training and the others for testing. A random
subset with p (=20, 25, 30, 35, 40, 45) images per object are
taken as the training set. We repeat this procedure for 25 times.
The other experimental designs are the same as before. The
experimental results are shown in Table VIII and Figs. 6 and
7. From the results, we can see that LLE score outperforms
other algorithms in nearly all the experiments. It proves the
effectiveness of the proposed measurement in Eq. (13) and
(14).

E. Experiments on MNIST handwriting digital image dataset

Finally, we evaluate LLE score on MNIST, which is a well-
known handwriting digital image data set. There are 70,000
samples in MNIST, where 60,000 are used for training and
the other 10,000 are used for testing. These images are from
10 classes, which are 0-9 digits. The images in this data set
have been size-normalized and centered into 28 × 28. Thus,
each sample is represented by a 784-dimensional vector.

In the experiments, we use all the 60,000 samples in training
set to learn the importance of each feature, then use the other
10,000 samples to test the performances of the five algorithms.
The experimental results are presented in Table IX and Figs.
8(a) and 8(b). The results show the superiority of LLE score.
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TABLE IV
THE FEATURE INDEXES OF EACH ALGORITHM ON IRIS DATA SET.

Algorithms Variance Laplacian score Sparsity score Algorithm 1 LLE score
Feature indexes 3, 1, 4, 2 2, 1, 4, 3 4, 3, 1, 2 3, 1, 4, 2 3, 4, 1, 2

TABLE V
THE FEATURE INDEXES OF EACH ALGORITHM ON IRIS DATA SET WITH DIFFERENT NUMBER OF NEIGHBORS.

Algorithms Laplacian score Sparsity score Algorithm 1 LLE score

K

2 2, 1, 4, 3 4, 3, 1, 2 3, 1, 4, 2 4, 3, 1, 2
10 4, 3, 1, 2 3, 4, 1, 2 3, 4, 1, 2 3, 4, 1, 2
15 3, 4, 2, 1 4, 3, 1, 2 3, 4, 2, 1 3, 4, 1, 2
20 3, 4, 2, 1 4, 3, 1, 2 3, 1, 4, 2 3, 4, 1, 2

TABLE VI
THE AVERAGE CLASSIFICATION RESULTS ON YALE DATA SET.

2 3 4 5 6 7

NCM

Variance mean 36.02% 41.59% 44.98% 47.11% 49.92% 50.87%
max 43.90%(1022) 52.02%(1024) 56.53%(1023) 58.62%(1016) 62.56%(1020) 63.83%(1022)

Laplacian score mean 39.45% 46.15% 49.94% 53.26% 56.37% 57.82%
max 44.06%(874) 52.25%(1010) 56.61%(974) 59.26%(889) 62.64%(1017) 65.20%(964)

Sparsity score mean 39.30% 46.87% 49.96% 52.63% 54.33% 55.40%
max 42.97%(904) 52.10%(1001) 56.72%(957) 59.04%(927) 62.51%(1023) 63.90%(1018)

Algorithm 1 mean 38.17% 44.29% 48.02% 50.74% 53.78% 55.82%
max 43.91%(1020) 52.07%(1023) 56.51%(1024) 58.64%(1021) 62.56%(1023) 63.86%(1021)

LLE score mean 40.23% 47.36% 51.48% 55.07% 57.90% 60.17%
max 44.37%(849) 52.33%(967) 57.07%(965) 60.15%(799) 62.58%(931) 65.53%(789)

NN

Variance mean 38.72% 44.05% 47.17% 50.30% 52.74% 53.64%
max 45.98%(1004) 51.92%(1019) 54.95%(1020) 58.27%(1010) 61.01%(1010) 62.20%(981)

Laplacian score mean 41.11% 46.64% 49.00% 52.69% 55.00% 55.34%
max 46.58%(846) 52.37%(803) 55.26%(803) 59.22%(806) 61.49%(1017) 62.20%(1005)

Sparsity score mean 42.04% 46.50% 48.99% 51.87% 54.08% 54.87%
max 45.97%(1024) 51.85%(1022) 54.90%(1022) 58.20%(991) 60.80%(1003) 62.20%(1007)

Algorithm 1 mean 42.0303% 47.60% 50.02% 53.88% 56.25% 57.44%
max 45.97%(1023) 52.12%(1002) 55.14%(967) 58.91%(951) 61.17%(947) 62.47%(950)

LLE score mean 43.16% 48.85% 51.40% 54.84% 57.58% 58.17%
max 46.62%(838) 52.58%(824) 55.45%(877) 59.11%(998) 61.93%(853) 62.59%(993)
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Fig. 2. The average classification results when p = (a) 2, (b) 3, (c) 4, (d) 5, (e) 6, (f) 7 on Yale data set using NCM.
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Fig. 3. The average classification results when p = (a) 2, (b) 3, (c) 4, (d) 5, (e) 6, (f) 7 on Yale data set using NN.

TABLE VII
THE CLASSIFICATION RESULTS ON ORL DATASET.

2 3 4 5 6 7

NCM

Variance mean 61.52% 66.82% 69.95% 71.83% 73.04% 74.20%
max 70.61%(1024) 76.26%(1017) 79.98%(1023) 81.82%(1018) 83.51%(1024) 85.20%(1024)

Laplacian score mean 65.15% 69.44% 72.31% 73.52% 74.93% 79.43%
max 70.61%(1024) 76.35%(783) 80.35%(728) 81.58%(742) 83.18%(700) 85.20%(1024)

Sparsity score mean 60.12% 65.36% 68.68% 70.29% 71.72% 72.94%
max 70.61%(1024) 76.28%(1021) 80.01%(1021) 81.83%(1015) 83.51%(1024) 85.20%(1024)

Algorithm 1 mean 62.19% 67.20% 70.18% 72.39% 73.89% 73.18%
max 70.63%(1017) 76.28%(1014) 80.02%(1015) 81.91%(1003) 83.62%(975) 85.20%(1024)

LLE score mean 67.03% 72.83% 75.88% 77.69% 79.37% 80.33%
max 70.63%(1022) 76.37%(997) 80.04%(990) 81.82%(1008) 83.67%(1007) 85.20%(1024)

NN

Variance mean 63.01% 71.79% 76.89% 71.83% 83.66% 86.40%
max 70.45%(1023) 78.88%(1024) 84.52%(1023) 88.09%(1024) 90.29%(1023) 92.57%(866)

Laplacian score mean 60.93% 70.92% 78.51% 73.52% 85.33% 88.20%
max 70.50%(1003) 78.91%(1005) 84.54%(1022) 88.16%(1022) 90.38%(1018) 92.63%(991)

Sparsity score mean 61.37% 69.93% 75.14% 70.29% 81.61% 84.42%
max 70.45%(1017) 78.88%(1024) 84.49%(1024) 88.15%(874) 90.34%(1006) 92.72%(881)

Algorithm 1 mean 64.40% 73.52% 79.58% 72.39% 86.12% 89.00%
max 70.44%(1021) 78.94%(1014) 84.66%(995) 88.28%(997) 90.42%(970) 92.67%(897)

LLE score mean 67.84% 76.78% 82.28% 77.69% 88.20% 90.82%
max 70.69%(1001) 79.19%(917) 84.68%(970) 88.22%(1003) 90.51%(965) 93.03%(927)

TABLE IX
THE CLASSIFICATION RESULTS ON MNIST DATASET.

NCM NN
mean max mean max

Variance 43.01% 76.70%(775) 57.23% 90.40%(642)
Laplacian score 64.96% 77.20%(773) 60.99% 90.80%(783)
Sparsity score 58.39% 76.80%(649) 71.96% 90.40%(512)
Algorithm 1 70.28% 76.70%(427) 84.81% 91.80%(285)
LLE score 73.19% 77.30%(378) 87.38% 92.00%(247)

F. Conlusions on the experimental results
In general, we can draw conclusions from the experiments

as follows.

1) Nearly all the best performances of the listed algorithms
are not obtained by including all the features, which
validates the efficiency and necessity of the dimension
reduction procedure.

2) In all the experiments, Algorithm 1 has comparable or
better performance than sparsity score. It is consistent
with our analysis about the two algorithms in Section
3.1.

3) LLE score is superior to other methods in most of the
experiments, in terms of both the average and the best
classification accuracies. It shows the validity of the
proposed measurement in LLE score.
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Fig. 4. The average classification results for p = (a) 2, (b) 3, (c) 4, (d) 5, (e) 6, (f) 7 on ORL data set using NCM.
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Fig. 5. The average classification results for p = (a) 2, (b) 3, (c) 4, (d) 5, (e) 6, (f) 7 on ORL data set using NN.

V. CONCLUSION

In this paper, we have proposed a new filter-based unsu-
pervised feature selection method named LLE score, which
is based on LLE and the graph-preserving feature selection
framework. The proposed method can solve the problems
existed in directly embedding LLE into the graph-preserving
feature selection framework. Specifically, the difference be-

tween structures of the graphs constructed by each feature and
the original data was used to measure the importance of each
feature. Extensive experimental results have demonstrated the
validity of the proposed criterion.

The main concern of this paper is to investigate an efficient
measurement for the feature under the graph-preserving frame-
work. However, the local structure is actually consisted of both
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TABLE VIII
THE CLASSIFICATION RESULTS ON COIL20 DATA SET.

20 25 30 35 40 45

NCM

Variance mean 76.49% 77.33% 77.84% 78.30% 78.80% 79.11%
max 84.76%(914) 85.79%(918) 86.33%(923) 86.82%(932) 87.69%(799) 88.13%(797)

Laplacian score mean 74.82% 74.34% 74.78% 76.00% 76.51% 76.73%
max 85.00%(943) 85.27%(981) 86.50%(984) 87.09%(932) 87.91%(922) 88.27%(926)

Sparsity score mean 70.10% 71.54% 71.50% 71.72% 71.58% 71.86%
max 84.72%(1024) 85.77%(1024) 86.18%(1024) 86.61%(1022) 87.67%(1024) 88.16%(1005)

Algorithm 1 mean 76.45% 77.81% 77.82% 78.38% 79.03% 79.66%
max 84.76%(946) 86.04%(823) 86.33%(910) 81.91%(1003) 87.77%(879) 88.25%(857)

LLE score mean 77.43% 77.24% 78.96% 80.70% 79.37% 81.37%
max 85.09%(890) 86.26%(955) 86.81%(894) 87.39%(874) 88.18%(901) 88.68%(898)

NN

Variance mean 91.91% 93.17% 93.97% 93.97% 94.11% 95.87%
max 95.48%(1009) 96.94%(873) 97.88%(854) 97.88%(854) 99.09%(1024) 99.53%(813)

Laplacian score mean 87.85% 89.47% 90.81% 91.39% 91.91% 92.16%
max 95.79%(677) 97.19%(633) 98.08%(679) 98.81%(548) 99.26%(666) 99.53%(648)

Sparsity score mean 86.57% 88.50% 89.19% 90.18% 90.42% 91.31%
max 95.46%(1011) 96.85%(1022) 97.77%(1011) 98.52%(1022) 99.09%(1024) 99.44%(1007)

Algorithm 1 mean 91.75% 93.25% 94.03% 94.90% 95.62% 95.95%
max 95.56%(871) 97.10%(655) 98.33%(533) 98.65%(832) 99.17%(850) 99.45%(1001)

LLE score mean 91.92% 93.51% 95.34% 94.73% 95.42% 96.26%
max 95.92%(658) 97.53%(655) 98.91%(548) 99.28%(804) 99.56%(866) 88.68%(898)

Dimensionality
0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

ci
es

(%
)

0

10

20

30

40

50

60

70

80

90

Variance
Laplasian score
Sparsity score
Algorithm 1
LLE score

(a)

Dimensionality
0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

ci
es

(%
)

0

10

20

30

40

50

60

70

80

90

Variance
Laplasian score
Sparsity score
Algorithm 1
LLE score

(b)

Dimensionality
0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

ci
es

(%
)

0

10

20

30

40

50

60

70

80

90

Variance
Laplasian score
Sparsity score
Algorithm 1
LLE score

(c)

Dimensionality
0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

ci
es

(%
)

0

10

20

30

40

50

60

70

80

90

Variance
Laplasian score
Sparsity score
Algorithm 1
LLE score

(d)

Dimensionality
0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

ci
es

(%
)

0

10

20

30

40

50

60

70

80

90

Variance
Laplasian score
Sparsity score
Algorithm 1
LLE score

(e)

Dimensionality
0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

ci
es

(%
)

0

10

20

30

40

50

60

70

80

90

Variance
Laplasian score
Sparsity score
Algorithm 1
LLE score

(f)

Fig. 6. The average classification results for p = (a) 20, (b) 25, (c) 30, (d) 40, (e) 45, (f) 50 on COIL20 data set using NCM.

the reconstruction weights and the location of the neighbors.
The importance of the two terms might not be equal, and we
do not know the effects of them yet. Furthermore, evaluating
the subset-level score is proved to be an efficient way to select
more discriminative features [43]. We will work on these
issues and apply the proposed method to other applications
[44], [45] in the future.
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Fig. 7. The average classification results for p = (a) 20, (b) 25, (c) 30, (d) 40, (e) 45, (f) 50 on COIL20 data set using NN.
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Fig. 8. The average classification results with (a) NCM, (b) NN on MNIST
data set.
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