Michel Electron Reconstruction Using Cosmic-Ray Data from the MicroBooNE LArTPC

, MicroBooNE Collaboration (2017) Michel Electron Reconstruction Using Cosmic-Ray Data from the MicroBooNE LArTPC. Journal of Instrumentation, 12. ISSN 1748-0221

[img]
Preview
PDF (1704.02927v1)
1704.02927v1.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.

Download (1MB)

Abstract

The MicroBooNE liquid argon time projection chamber (LArTPC) has been taking data at Fermilab since 2015 collecting, in addition to neutrino beam, cosmic-ray muons. Results are presented on the reconstruction of Michel electrons produced by the decay at rest of cosmic-ray muons. Michel electrons are abundantly produced in the TPC, and given their well known energy spectrum can be used to study MicroBooNE's detector response to low-energy electrons (electrons with energies up to ~50 MeV). We describe the fully-automated algorithm developed to reconstruct Michel electrons, with which a sample of ~14,000 Michel electron candidates is obtained. Most of this article is dedicated to studying the impact of radiative photons produced by Michel electrons on the accuracy and resolution of their energy measurement. In this energy range, ionization and bremsstrahlung photon production contribute similarly to electron energy loss in argon, leading to a complex electron topology in the TPC. By profiling the performance of the reconstruction algorithm on simulation we show that the ability to identify and include energy deposited by radiative photons leads to a significant improvement in the energy measurement of low-energy electrons. The fractional energy resolution we measure improves from over 30% to ~20% when we attempt to include radiative photons in the reconstruction. These studies are relevant to a large number of analyses which aim to study neutrinos by measuring electrons produced by $\nu_e$ interactions over a broad energy range.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Instrumentation
Additional Information:
This is an author-created, un-copyedited version of an article accepted for publication/published in Nanotechnology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/1748-0221/12/09/P09014
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2600/2610
Subjects:
ID Code:
87793
Deposited By:
Deposited On:
15 Sep 2017 15:28
Refereed?:
Yes
Published?:
Published
Last Modified:
01 Dec 2020 04:35