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Abstract  

Measurement errors can play a pivotal role in geophysical inversion. Most inverse models 

require users to prescribe or assume a statistical model of data errors before inversion. Wrongly 

prescribed errors can lead to over- or under-fitting of data, however, the derivation of models of 

data errors is often neglected. With the heightening interest in uncertainty estimation within 

hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide 

improved image appraisal. Here we focus on the role of measurement errors in electrical resistivity 

tomography (ERT). We have analysed two time-lapse ERT datasets: one contains 96 sets of direct 

and reciprocal data collected from a surface ERT line within a 24h timeframe; the other is a two-

year-long cross-borehole survey at a UK nuclear site with 246 sets of over 50,000 measurements. 

Our study includes the characterisation of the spatial and temporal behaviour of measurement 

errors using autocorrelation and correlation coefficient analysis. We find that, in addition to well-

known proportionality effects, ERT measurements can also be sensitive to the combination of 

electrodes used, i.e. errors may not be uncorrelated as often assumed. Based on these findings, we 

develop a new error model that allows grouping based on electrode number in addition to fitting a 

linear model to transfer resistance. The new model explains the observed measurement errors better 

and shows superior inversion results and uncertainty estimates in synthetic examples. It is robust, 

because it groups errors together based on the electrodes used to make the measurements. The new 

model can be readily applied to the diagonal data weighting matrix widely used in common 

inversion methods, as well as to the data covariance matrix in a Bayesian inversion framework. We 

demonstrate its application using extensive ERT monitoring datasets from the two aforementioned 

sites. 
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Graphical abstract  

 

Probability density functions (PDF) of different ERT errors for 24h of surface ERT data collected at a 

wetland site in the UK. The mean repeatability errors generally increase with the period of time 

considered. Reciprocal errors generally agree with short-term repeatability errors. The PDF of 

stacking errors shows much lower mean and variance. Using stacking errors as a measure of 

measurement errors may lead to overfitting of data during inversion and underestimation of 

uncertainty. 

Highlights  

 Stacking, reciprocal and repeatability errors are compared using statistical analysis 

 Having common electrodes increase correlation between measurements 

 A new error model based on grouping the electrodes used is developed 

 The new model yields better inversion results and uncertainty estimates 

Keywords  

ERT, resistivity, measurement errors, uncertainty, linear mixed effects, inversion  

-7 -6 -5 -4 -3 -2 -1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

log
10

 (errors)

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

PDF of repeatability and reciprocal errors at Sellafield

 

 

stacking

reciprocal

14d repeatability

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2
0

1

2

3

4

5

log
10

 (errors)

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

PDF of repeatability and reciprocal errors at Boxford

 

 

stacking errors

1/2h repeatability

1h repeatability

2hrepeatability

24h repeatability

reciprocal



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Page 3 of 40 

 

 

1. Introduction 

Measurement errors are an integral part of scientific observations. Properly describing such 

errors is essential to harness the information about the observed behaviour contained in the 

measurements. Measurement errors may be random or systematic. In commonly used geophysical 

inverse methods, measurement errors are assumed to be uncorrelated and random.  In the context 

of an inversion, the total data error is given by the square root of the sum of squares of 

measurement errors and modelling errors. Sources of modelling errors include inaccuracy of the 

forward model (e.g. due to discretisation of a numerical model) and appropriateness of a forward 

model (e.g. representing a 3D problem using a 2D model). Modelling errors are relatively well 

understood because they can be studied by comparing forward modelling data of a homogeneous 

domain with analytical solutions (see Binley, 2015).  We, therefore, focus here on measurement 

errors, in particular within the context of electrical resistivity tomography (ERT). 

1.1. The role of ERT measurement errors 

Measurement error estimates play a critical role in ERT inversion (see more in section 2.3). 

They affect the amount of damping imposed on the data and also the point at which convergence is 

attained. Both of the above are achieved by weighting data in the objective function, and thus, 

measurement error estimates control whether there will be over-fitting or under-fitting of data 

during inversion. This concept can be illustrated by comparing various inverted images. Figure 1 

shows the results of inverting synthetic ERT experiments corrupted by 5% Gaussian noise. In the 

synthetic domain,  a resistive target is placed between x = 15 m and x = 20 m and the topsoil is 

relatively conductive (Figure 1a). Inverting the data with 10% assumed Gaussian noise leads to 

under-fitting and a very smooth resultant image (Figure 1b), while assuming 2% noise leads to 

over-fitting and a number of artefacts (Figure 1d). This simple example shows that inversion results 

can be sensitive to the assumed measurement error levels. Failure to prescribe them adequately can 

significantly change the resultant image. 

Attempts have been made to account for data errors in a more sophisticated manner. Robust 

inversion (Kemna, 2000; Morelli and LaBrecque, 1996)  adjusts error weights when there are 

apparent outliers. It is important, however, to notice that the outliers are linked to a specific error 

weight derived a priori by the error model—they may not be outliers anymore if a different error 

model is used. Similarly, in Bayesian inversion (e.g. Irving and Singha, 2010; Ramirez et al., 2005), 

one needs to prescribe the estimated data uncertainty in the likelihood function. While different 

inversion strategies handle measurement errors differently, a robust and accurate prescription of 

measurement errors is essential to obtain reliable and realistic inversion results.  

The impact of measurement errors is not limited to inversion—it is a natural extension of 

stochastic inversion where posterior models are estimates of uncertainty, whereas deterministic 

inversion results (or an ensemble of them) can further be used to estimate uncertainty via Monte 

Carlo approaches. Therefore, uncertainties in measurements would propagate to uncertainties of 

model estimates. Similarly, if the inversion results are used to detect or monitor subsurface 
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processes, or to infer hydrological properties, their associated errors can be traced back to 

measurement errors. It is apparent that measurement errors propagate through the various stages 

of a hydrogeophysics study workflow. With the heightening interest in uncertainty estimation 

within hydrogeophysics (Binley et al., 2015; Huisman et al., 2010; Linde et al., 2015; Rubin and 

Hubbard, 2005; Vereecken et al., 2006), better characterisation and treatment of measurement errors 

is necessary to provide better image appraisal. 

1.2. Measurement errors in ERT: a review 

The handling of measurement errors in ERT surveys, despite its importance as outlined 

above, is variable. The simplest (but not necessarily the most reliable) method of assessing a 

measurement error in an ERT measurement is through the use of stacking, i.e. the repeated 

measurement of transfer resistance through a number of cycles of current injection. Such stacking 

assessment offers valuable in-field data quality appraisal but, as shown later, may be of limited 

value in quantifying a data weight for ERT inversion.  Alternatively, repeatability errors can be 

obtained by multiple, seperate measurements of transfer resistance over time. Usually this involves 

a repetition of the entire ERT measurement sequence sometime after the first attempt. Reciprocity 

checks are another method of measurement error assessment.  Reciprocity is the general physical 

principle where the switching of source/sink and observation locations would yield the same 

response (Parasnis, 1988). It is, for example, utilised in groundwater hydrology (Barker, 1991; 

Bruggeman, 1972; Delay et al., 2011; Falade, 1981). Reciprocity checks for ERT are conducted by 

swapping the current and potential electrodes. Reciprocity breaks down when the ground response 

is non-linear (i.e. non-ohmic for ERT) or time-dependent (i.e. something changes between forward 

and reciprocal measurements). 

  As LaBrecque et al. (1996) point out, both repeated and reciprocal measurements are 

measures of precision not accuracy. Sources of systematic error are not accounted for explicitly in 

measurements of precision – some procedures may miss them entirely while others lump them as 

random errors. Reciprocal errors treat the swapping of electrodes as a way to account for some 

systematic errors while repeatability errors do not consider them at all. Therefore, reciprocal errors 

may be more useful to eliminate bias caused by using a particular pair of electrodes as transmitter 

and another as receiver. The most commonly used errors in ERT, however, are stacking errors and 

they are misreferred as repeatability errors (Day-Lewis et al., 2008). Modern ERT instruments are 

equipped with stacking capability and they automatically return stacking errors. In other words, 

stacking errors can be obtained without re-running the measurement procedure, which is very 

attractive in time-sensitive or time-consuming surveys.  

We surveyed a number of published ERT studies and report their description of error 

analysis in Table 1. From Table 1 we see that reciprocity is a commonly used measure, while a small 

fraction of field and experimental studies do not report their treatment of errors at all. Studies often 

attribute their exclusion of reciprocal errors to logistical constraints and argue that reporting 

stacking errors is sufficient. After errors are obtained, an error model (usually a linear relationship 

linking error to transfer resistance) is established (Binley et al., 1995). Once obtained, such a 
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relationship may be used to predict the errors of individual measurements and thus contribute to 

the data weight in the inverse modelling. Some authors, however, assign observed errors directly in 

the inverse modelling, although this is potentially flawed unless statistical robustness of the 

quantified error is established (recognising that for most surveys errors are only computed from 

two observations). This practice also makes it impossible to identify “disinformative data” (Beven 

and Westerberg, 2011). From the reported error models, it is observed that error levels are generally 

higher for cross-borehole surveys, largely due to more challenging electrode contact conditions 

(compared to most surface ERT array surveys). Prior to fitting the error model and carrying out 

inversion, measurements with high errors are often eliminated; sometimes more than 20% of the 

collected data are removed. For time-lapse studies, it is quite common that the entire time series of 

an individual resistance measurement is removed if any part of the time series is deemed to be an 

outlier. For recent work on time-lapse cross-borehole ERT, see Schmidt-Hattenberger et al. (2016) 

and Yang et al. (2014). 

 Error models are generally a function of average measured transfer resistance (i.e. the error 

in a transfer resistance increases with the magnitude of transfer resistance) because of the well-

known proportionality effects (Aster et al., 2005) in DC resistivity measurement errors (Binley, 2015; 

Binley et al., 1995). In studies where errors are accounted for, there is generally a preference to use 

model-predicted errors rather than individually observed errors since error assessment based on 

two observations is potentially unreliable. Some studies mitigate this potential issue by binning (or 

grouping) data with similar transfer resistance together before fitting an error model (Koestel et al., 

2008; Robinson et al., 2015; Wehrer and Slater, 2014). This practice should give more robust error 

estimates, although the error model may vary with the number of bins used.  

To better characterise measurement errors, more understanding of the factors that contribute 

to them is needed. Current practice leaves many of the assumptions in ERT measurement errors 

modelling unchallenged. For example, do measurement errors show temporal or spatial 

correlations? Can we improve from using linear measurement error models? Are stacking errors 

and reciprocal errors comparable indicators of measurement errors? ERT surveys typically use each 

of the electrodes for multiple measurements. Ramirez et al. (2005) notes that this may increase the 

probability that measurement errors are correlated, however, there has been no published work 

addressing this issue. 

1.3. Recent work on ERT measurement errors 

Attempts have been made to handle potential systematic effects of measurement errors. 

Zhou and Dahlin (2003) studied the effect of spacing errors for 8 types of common 2D resistivity 

arrays. They confirm the common observation that ERT error outliers are often correlated with high 

contact resistances for some of the electrodes used in a measurement. Wilkinson et al. (2008) 

developed an approach to filter out configurations that are highly sensitive to geometric error in 

crosshole ERT surveys. Similarly, Wilkinson et al. (2016, 2010a) developed techniques to recover 

movements of permanently installed electrodes so that active landslides can be monitored using 

time-lapse ERT data only. As the popularity of time-lapse surveys increases, specific methods to 
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handle and characterize measurement errors in large time-lapse datasets emerge. Deceuster et al. 

(2013) developed a method to automate the identification of changes in electrode contact during 

time-lapse ERT experiments. More recently, Mitchell and Oldenburg (2016) developed a 4-step data 

quality control methodology for very large ERT datasets. 

Recently, Kim et al. (2016) proposed a new measurement protocol in which self-potential (SP) 

data are obtained immediately prior to measuring DC. It involves swapping the polarities of the 

two current electrodes in each measurement to obtain a positive and a negative potential (i.e. thus a 

forward and backward resistance) for each measurement. This protocol claims to account for SP 

effects in DC measurements and eliminate distortions in the DC resistivity potential field caused by 

all unknown mechanisms including ambient noise.  

1.4. Outline of this work 

This paper addresses a number of practical issues related to the treatment of measurement 

errors in ERT inversion. We compare stacking, repeatability, and reciprocal errors in their utility to 

describe errors in measurements. We also study whether measurement errors are correlated in time 

and/or in space. We then hypothesize that measurement errors in ERT are not only linearly 

dependent on transfer resistances, but that the electrodes used in taking each measurement can be 

used as a grouping variable to improve error characterisation. We show that using the new error 

model leads to better inversion results and uncertainty estimates through synthetic and field 

experiments data. We first describe the datasets and analysis methods in section 2.1 and 2.2. Then 

we describe the ERT inversion and uncertainty estimation methods used in section 2.3 and 2.4. 

Section 3 reports results for the error analysis. We introduce a new error model based on linear 

mixed effects models and grouping of electrodes in section 4, and section 5 shows results of 

inversion and uncertainty quantification. We then discuss the implications of the results in section 6, 

and provide conclusions and recommendations in section 7. 

2. Approach 

With recent advances made in the development of automated ERT systems, ERT 

experiments can be conducted remotely, allowing the collection of a large volume of background 

ERT measurements for quality control purposes. These rich datasets can be exploited to investigate 

the behaviour of measurement errors through statistical analysis. They provide opportunities to 

explore errors in ERT datasets, including the assessment of temporal and spatial correlation of 

errors. We scrutinize two large field datasets through statistical analysis of different types of 

measurement errors.  

First, we examine the probability density functions for each error type, namely stacking, 

reciprocal and repeatability errors. This allows us to understand the mean and variance of their 

distributions. Next, we use autocorrelation and correlation coefficient analysis to study the 

sequential and spatial correlation of errors between measurements. Insights about the potential 

correlation in measurement errors can help in developing improved error models. We study the 
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validity of repeatability errors by computing the autocorrelation and correlation coefficient of the 

departure from the mean of repeated measurements instead of using the repeatability errors 

directly. If repeatability errors are purely random, using any subset of the set of repeats for each 

given measurement should give the same errors and thus the departure from the mean should 

exhibit little correlation. We compare inversion of ERT data using different error types and models 

on identical datasets to illustrate how they manifest in inversion results. Lastly, we obtain 

uncertainty estimates of inversion results using a Monte Carlo simulation procedure. This allows us 

to visualize how measurement errors propagate into uncertainty in model estimates (in this study 

we assume there are no other error sources). 

2.1. Dataset description 

A synthetic dataset, along with two field datasets collected by the British Geological Survey 

(BGS) are used for this work. 

2.1.1.  Synthetic Dataset 

A synthetic dataset was created for use as an illustrative example using the synthetic 

domain and array of Figure 1. The array consists of 25 2-m spaced surface electrodes. As seen in 

Figure1(a), the resistivity structure of the domain consists of a 1m thick, 100 Ωm top layer. Beneath 

it is a 200 Ωm formation, in which a 500 Ωm unit protrudes vertically.  

We created a forward model of dipole-dipole transfer resistances on the synthetic domain 

using R2 (http://www.es.lancs.ac.uk/people/amb/Freeware/R2/R2.htm) to obtain measurement 

error-free data. Two sets of synthetic data are generated by adding noise to these data: one with 2% 

Gaussian noise everywhere, and the other with 10% Gaussian noise on measurements involving 

three of the electrodes on the left (x = 6m, 14m, 22m) and 2% noise everywhere else.  The second 

noisy dataset was created to simulate the effect of a non-uniform error model that may be typical of 

surveys in areas with variable electrode contact or quality.   

2.1.2.  Boxford Dataset 

The first field dataset is from the Boxford Water Meadows Site of Special Scientific Interest in 

Berkshire, United Kingdom (Chambers et al., 2014; Musgrave and Binley, 2011; Uhlemann et al., 

2016). The collection of the data was automated using the BGS’s PRIME system. The ERT array is 

next  to the Northern Array used in Uhlemann et al. (2016), having 32 electrodes spaced at 0.6 m. A 

dipole-dipole type measurement configuration was chosen with dipole lengths (a) of 0.6 m to 2.4 m, 

and dipole separation multipliers (n) of 1 to 8. The measurement sequence includes 516 pairs of 

reciprocal measurements. Less than 15 minutes was needed to complete the measurement sequence 

and each of the measurements is obtained by stacking multiple readings from the same cycle of 

current injection to improve signal-to-noise ratio. The measurement sequence was repeated 96 times 

within a 24 hour period starting at 5:43 a.m. on 19th November 2015, yielding 96 independent 

repeats of full reciprocal data. Each of the repeats has 516 measurements (or pairs of reciprocals). 

During the 24-hour period, the air temperature in the area varied between 7 and 10 oC and there 

was no recorded precipitation. 
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2.1.3.  Sellafield Dataset 

A full-scale 3-D time lapse cross-borehole ERT trial to monitor simulated subsurface leakage 

was undertaken at a UK nuclear licensed site in Sellafield, Cumbria, United Kingdom (Kuras et al., 

2016). The data collection setup includes four 40m deep boreholes and 160 electrodes. The data 

collection cycle of each ERT frame is less than a day, and each day’s data includes 51,302 dipole-

dipole measurements, including 12,481 pairs of reciprocals. The monitoring spanned a 2-year 

period with 246 days of data collection during that time. The first nine months of monitoring 

includes three stages of conductive leak simulant injection, while the remainder was designed for 

long-term background monitoring. The collection of data was automated using BGS’s ALERT 

system. In order to be consistent with the autocorrelation analysis of the Boxford dataset, we divide 

the data into two subsets of 96 days (one encompasses all three injection periods while the other is 

during long-term background monitoring) for autocorrelation analysis. 

2.2. Analysis methods  

2.2.1. Definition of measurement error types 

 Stacking errors are given by the averaging of ‘stacks’ obtained by the ERT data collection 

equipment. Usually they can be output alongside the measured transferred resistance from the data 

collection console. 

For reciprocal errors, if 𝑅𝑓  is the forward (normal) transfer resistance for a particular 

quadrupole and 𝑅𝑟 is the reciprocal of that measurement where its current and potential dipoles are 

swapped with the forward measurement, then the mean absolute transfer resistance (|R|) and 

absolute errors (|e|) are simply: 

 |R| =
||𝑅𝑓|+|𝑅𝑟||

2
  and  |e| =

||𝑅𝑓|−|𝑅𝑟||

2
. (1)

  

As a proxy for repeatability errors, the departure from the mean of the j-th repeated reading for 

measurement number i (di,j) is given by: 

𝑒𝑖,𝑗 = 𝑑𝑖,𝑗 − 𝑑�̅�      (2) 

where 𝑑�̅� is the mean value for the i-th measurement. 

2.2.2.  Statistical analysis of measurement errors 

The probability density function of an error type for a dataset is obtained by fitting a Gaussian 

distribution to the population of errors.  Autocorrelation is defined as the correlation among a 

sequence of values at a given lag L : 

autocorr(L) =
𝐸[(𝑋𝑡−�̅�)(𝑋𝑡+𝐿−�̅�)]

𝑣𝑎𝑟(𝑋𝑡)
=

∑ (𝑋𝑡−�̅�)(𝑋𝑡+𝐿−�̅�)𝑞−𝐿
𝑖=1

𝑣𝑎𝑟(𝑋𝑡)
                                              (3) 
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where []E  is the expected value, tX  is a time-series, t LX   is a time-series shifted by lag L , and �̅� 

and var( tX ) are the mean and variance of the time series respectively. q  is the number of repeats for 

a measurement. 

Correlation analysis can be used to study the potential correlation between measurement errors. 

The correlation coefficient, r , for the correlation between arbitrary variables x and y is defined by 

the products of standard scores (also known as z-scores or standardized variables) as follows: 

𝑟 = 𝑟𝑥𝑦 =
1

𝑞−1
∑ (

𝑥𝑖−�̅�

𝑠𝑥
) (

𝑦𝑖−�̅�

𝑠𝑦
)

𝑞
𝑖=1                                 (4) 

For the purposes of our analysis of measurement error correlations, x and y are series of two 

measurements that we consider and q is the number of repeats. �̅� and �̅� are the means of x and y 

respectively, while sx and sy are the standard deviations. 

2.3. Inversion methods 

To obtain 2D tomograms from electrical measurements from the synthetic study and Boxford 

site, we use the finite-element based, Occam-type, two-dimensional electrical resistivity inversion 

program R2 (www.es.lancs.ac.uk/people/amb/Freeware/R2/R2.htm). The three-dimensional 

inversion (Sellafield dataset) was performed by using the commercial code Res3DInvx64 (Loke and 

Barker, 1996). The inverse problem is posed as a minimization problem, where the objective 

function is defined as 

 𝛷 = 𝛷𝑑 + 𝛷𝑚 = (d − 𝐅(𝐦))
𝑇

𝐖d
T𝐖d(𝐝 − 𝐅(𝐦)) + 𝛼𝐖m

T 𝐖m (5) 

 where d are the data vector (e.g. measured apparent resistivities), F(m) is the set of simulated data 

using the forward model and estimated parameters m. Wd is a data weight matrix, which, if we 

consider the uncorrelated measurement error case and ignore forward model errors, is a diagonal 

matrix with entries equal to the reciprocal of the standard deviation of each measurement. Forward 

modelling errors are also added to the diagonal of Wd. Usually a forward model is run for the 

computational grid using a known homogeneous domain. Any discrepancy between the computed 

and known apparent resistivity values (i.e. data errors) will be added to the reciprocal of Wd by 

means of square root of sum of squares. In this study, we assume measurements errors are the only 

source of data errors while other sources, such as forward modelling errors and field procedural 

errors, are negligible. To regularize the minimization problem, a model penalty term 𝛷𝑚 = 𝛼𝐖m
T 𝐖m 

is added to impose the spatial connectedness of the parameter cell values.   is a scalar that 

controls the emphasis of smoothing.  

We can state a desired level of data misfit as 𝛷𝑑 = 𝑁  , where N is the number of 

measurements (Binley, 2015). In an Occam’s solution, we seek to achieve this desired data misfit 

subject to the largest possible value of α. The process is achieved by utilizing the Gauss–Newton 

approach, which results in the iterative solution of 
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 (𝐉T𝐖d
T𝐖d𝐉 + 𝛼𝐖m

T 𝐖m)∆𝐦 = 𝐉T𝐖d
T(𝐝 − 𝐅(𝐦) − 𝛼𝐖m

T 𝐖m (6) 

𝐦𝑘+1 = 𝐦𝑘 + ∆𝐦 

where J is the Jacobian (or sensitivity) matrix, given by , /i j i jJ d m   ; 𝐦𝑘  is the parameter set at 

iteration k; and  ∆𝐦 is the parameter update at iteration k. For the DC resistivity case, the inverse 

problem is typically parameterized using log-transformed resistivities. 

  The resolution matrix for the inversion is given by:  

 (𝐉T𝐖d
T𝐖d𝐉 + 𝛼𝐖m

T 𝐖m)∆𝐦 = 𝐉T𝐖d
T(𝐝 − 𝐅(𝐦) − 𝛼𝐖m

T 𝐖m (7) 

2.4. Error propagation and uncertainty quantification methods 

We follow the Monte Carlo uncertainty propagation procedure of Aster et al. (2005) outlined 

below. The goal is to simulate a collection of noisy data vectors and then examine the statistics of 

the corresponding models. The advantage of this method is that it can readily applied to field data 

where no repeats are available. The procedure is achieved by the following steps: 

1. Propagate the inverse solution �̅� into an assumed noise-free baseline jx1 data vector d

(where j is the size of number of measurements) using the forward model G: 

𝐆�̅� = 𝐝                              (8) 

2. Generate q realizations (i = 1, …, q) of noisy data about �̅� using the error model 

 𝐝i = 𝐝b + 𝛆.∗ 𝐙                                                                         (9)  

where 𝜺 is the jx1 vector of error levels predicted by the error model and Z is the standard 

normal distribution variable and .* is element-wise multiplication. 

3. Invert the q realizations (i = 1, …, q) of noisy data using the inverse model  

      𝐆𝐦i = 𝐝b + 𝛆i                                                             (10) 

4. Let A be a q x m matrix where the i-th row contains the departure of the i-th model from the 

baseline inverse solution �̅� 

   𝐀i = 𝐦i
T − �̅�T                                      (11) 

5. An empirical estimate of the model covariance matrix is given by 

         cov(�̅�) =
𝐀T𝐀

𝑞
                                                                            (12) 

6. 95% confidence interval about �̅� is given by 

         �̅� ± 1.96 ∙ diag(cov(�̅�))1/2                                                        (13) 

7. Similarly, the coefficient of variation of the estimate is given by 
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 diag(cov(�̅�))1/2./�̅�𝑇                                                               (14) 

where ./ is element-wise division.                                       

3. Analysis of Errors in Field Datasets 

In this section, we report results from the statistical analysis of different types of errors with 

the methods outlined in section 2.1 and 2.2. Probability density functions (PDFs) show the ranges of 

these errors, while autocorrelation and correlation coefficient analysis reveals the potential 

autocorrelation of errors for successive repeated measurements and correlation of errors between 

pairs of measurements, respectively. 

3.1. Probability density function of reciprocal and repeatability errors 

Before detailed statistical analysis of measurement errors is performed, we first examine the 

probability density function of errors obtained from the Boxford dataset. Since the measurements 

are repeated 96 times, we can define repeatability errors based on averaging different numbers of 

repeats. Figure 2 shows the repeatability errors based on measurements obtained with a 30 minute, 

1 hour, 2 hour, and 24 hour window. They correspond to averaging 2, 4, 8, and 96 repeats. The 

mean of the PDF increases with greater time windows while the variance first decreases, then 

increases for the 24 hour repeatability error. When large windows of averaging are used, changes in 

the subsurface condition such as diurnal changes in temperature can be mistaken as errors. This is 

supported by the observed increase in the mean. For the 24 hour sampled PDF, the lower tail 

overlaps that of the 1 hour and 2 hour PDFs while having a much greater spread. Clearly some 

measurements do not vary much during the 24 hours monitoring period while others do: 

measurements sensitive to the shallower subsurface will be more susceptible to external influences 

(e.g. temperature, evaporation, etc.). 

Figure 2 also shows the PDF for stacking errors for each of the measurements as well as the 

reciprocal errors from individual datasets. The reciprocal errors PDF essentially overlay that of the 

30 minute repeatability errors. Their similarities may be explained by the fact that both of them are 

obtained from averaging pairs of measurements. It is noteworthy, however, that both the mean and 

variance of the PDF for reciprocal errors (which is collected in a 15 minute timeframe) is slightly 

higher—which is opposite to our general observation that repeatability errors increases with the 

size of the averaging window. Reciprocal errors may be sensitive to other error contributions not 

registered by repeatability errors, or the process of taking a reciprocal measurement introduces an 

additional source of error.  

The stacking errors PDF overlays the low-end of the PDFs of repeatability errors while 

having a very small variance. In other words, stacking errors do not register any of the high-error 

measurements that appear in the true assessment of repeatability or in reciprocal errors. For 

instance, the PDF shows that almost none of the stacking errors are higher than 10-4 Ω, which covers 

a majority of the area under the other PDFs. This shows that stacking errors are potentially an 

inadequate measure for describing the true quality of ERT measurements.  
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The second portion of Figure 2 shows the PDF of stacking, reciprocal, and 2-week (which 

correspond to six frames) repeatability errors for the Sellafield dataset. In general, the ranges of 

magnitude of the errors are greater due to ground conditions and contact resistances. Similar to the 

Boxford results, we find that the stacking errors are an order of magnitude smaller than reciprocal 

errors. Since a larger time window (i.e. days) is used to obtain the repeatability errors, they are 

significantly greater than the reciprocal errors.  

3.2. Autocorrelation analysis 

Autocorrelation analysis is used to investigate whether there is “memory” (i.e. correlation in 

time) in ERT measurement errors. We compare autocorrelation plots between the (i) departure from 

the mean and (ii) reciprocal errors of individual measurements  for the Boxford dataset in Figure 3. 

Each grey translucent line represents the autocorrelation function of a measurement, while the red 

line is the mean averaged across all measurements. The red hased regions highlights the area with a 

autocorrelation value below the critical Pearson’s correlation coefficient (Pearson and Hartley, 1970), 

which is around 0.2 for 96 timesteps. For the departure from the mean, the autocorrlation drops to 

0.5 on average at lag 1 and then decreases steadily. This is likely to be due to the presence of diurnal 

temperature effects within the 24 hour data collection cycle. Individual reciprocal errors, show 

negligible autocorrelation for all lag numbers (i.e. within the hashed region). Thus, we can conclude 

the individual reciprocal errors between any two repeated measurements are independent from one 

another for this survey. From the above, we see that the assumption of uncorrelated errors is 

appropriate for reciprocal errors but not so much for long-term repeatability errors. 

Figure 4 shows the autocorrelation of (a) departure from the mean and (b) reciprocal errors 

for the 96 datasets collected continuously at the Sellafield site encompassing the three injection 

periods (22th Jan 2013 – 3rd Nov 2013) and those for another 96 datasets during the long-term 

background monitoring period (i.e. no injection, 5th Nov 2013 – 31st Mar 2014). We can see much 

greater autocorrelation of errors at Sellafield than at Boxford. Like in the Boxford dataset, the 

departure from the mean shows greater autocorrelation than individual reciprocal errors, both for 

injection and long-term background monitoring. In general, however, the departure from the mean 

and reciprocal errors during background mointoring reach insignificant autocorrelation sooner than 

during injections. While the 96 datasets at Boxford were collected in less than 24 hours, the two 

groups of 96 datasets examined above were collected over a period of months. It is certain that the 

subsurface condition had changed during the monitoring period due to injection, dilution and 

dispersal of tracer, as well as regional groundwater and vadose zone changes (see Kuras et al. (2016) 

for details). 

3.3. Correlation coefficient analysis  

Although measurement errors are commonly assumed to be uncorrelated in ERT, previous 

studies have highlighted the potential of correlation in measurement errors because ERT surveys 

typically use the same electrodes for multiple measurements (Ramirez et al., 2005). We have 

computed the correlation coefficient matrix for departure from the mean and reciprocal errors for 

the Boxford dataset. We subdivide all the correlation coefficients into two groups: one group 
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consists of pairs of measurements that share one or more electrodes and the other consists of all 

measurement pairs. Next, we grouped departure from the mean or reciprocal errors as a function of 

dipole-dipole separation multiplier n and plot the mean of each group. We show in Figure 5 that for 

all n used for the Boxford dataset, the mean correlation coefficients for measurement pairs that 

share one or more electrodes are always higher than the means for all pairs. The mean correlation 

coefficients for reciprocal errors are orders of magnitude smaller than those of departure from the 

mean. The effect of electrode sharing is also pronounced for reciprocal errors—the mean 

correlations of all reciprocal errors pairs are negligible while those for pairs that share one or more 

electrodes are consistently higher. Note that electrode sharing only occurs in ~10% of all pairs.  

Figure 5 shows that by taking into account the correlation of the electrodes used to make multiple 

measurements, ERT measurement errors may be better modelled. With the autocorrelation results, 

we also show that the departure from the mean exhibits more spatial and temporal correlation than 

the reciprocal errors.  

4. A New Error Model 

4.1. Model definition and implementation 

Our error analysis reported in section 3 revealed that the combination of electrodes used 

appears to influence ERT measurement errors. Therefore, we developed a new error model based 

on linear mixed effects (LME) models to group measurement errors by the electrodes used to obtain 

them, which allows us to incorporate the effects of electrode combinations. 

The linear mixed effect model is a powerful statistical tool in settings where repeated 

measurements are made on the same statistical units (longitudinal study), or where measurements 

are made on clusters of related statistical units (Bates et al., 2015; Diggle et al., 2015; Pinheiro and 

Bates, 1988; West et al., 2007). It is especially useful to group qualitative variables that influence the 

data. In general, a mixed effect model is given by  

 𝐲 = 𝐗𝛃⏟
𝑓𝑖𝑥𝑒𝑑

+ 𝐙𝐛⏟
𝑟𝑎𝑛𝑑𝑜𝑚

+ 𝛆⏟
𝑒𝑟𝑟𝑜𝑟

 (15) 

where y is the n-by-1 response vector, and n is the number of observations; X is an n-by-p fixed-

effects design matrix, and p is the number of fixed effect vairables; β is a p-by-1 fixed-effects vector 

and q is the number of random effect vairables; Z is an n-by-q random-effects design matrix; and b is 

a q-by-1 random-effects vector. ε is an n-by-1 unknown vector of random, independent and 

identically distributed errors. 

Linear mixed effect models can now be readily implemented using the MATLAB® statistics 

and machine learning toolbox and the lme4 package for R (Bates et al., 2015). In this paper, we 

model measurement errors in ERT by treating transfer resistances as fixed effects and each of the 

electrodes used (A, B, M, N) as grouping variables. The above model was implemented in 

MATLAB® (see supplementary information for more details).  
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The linear mixed effect model essentially establishes a hierarchy or grouping when fitting 

the measurement errors. Fitting is achieved by both optimizing fit within each cluster, while the 

covariate vectors link the fixed and random effects between clusters. The clustering introduces 

additional degrees of freedom that allow a better fit of measurement errors than commonly used 

linear models. An illustrative example of the LME grouping formulation can be found in the 

supplementary information, along with details for fitting the LME error model to the Boxford and 

Sellafield field datasets. The evolution of the error model coefficients with time is also described.  

4.2. LME error model behaviour for time-lapse ERT measurements 

A longitudinal survey is a correlational research study that involves repeated observations 

of the same variables over long periods of time. One of the original uses of LME models is to handle 

longitudinal data in tracking studies to eliminate potential bias of using the same samples. For 

example, in a drug study the health indicators of the same group of patients are sampled multiple 

times during a long period. The times at which they are sampled can be used as an additional 

grouping variable in the LME model. With the increased popularity of long-term monitoring using 

ERT and other geophysical methods, it may be beneficial to treat measurement errors as 

longitudinal data too. In Figure 6, we compare fitting observed measurement errors in the 96 repeat 

datasets from Boxford individually (i.e. obtaining 96 LME equations) and as longitudinal data (i.e. 

obtaining one LME equation, with the repeat number as an additional grouping variable). The 

scatter plots show that a much better fit is obtained by fitting each of the 96 datasets individually. In 

other words, treating ERT measurement errors as longitudinal data does not better characterise 

them. Measurement errors should instead be characterised on a frame-by-frame basis for long-term 

geophysical monitoring. 

5. Comparison of Error Models using Image Appraisal  

Improvements in the measurement error model are only useful if they can lead to better 

inversion results. We applied the new error model to the synthetic data and field data from the 

Boxford and Sellafield sites. Also, we will consider the resolution matrix and model variance from 

Monte Carlo simulations to see whether using the new error model can give additional insight to 

data and reduce uncertainty. 

5.1. Synthetic data  

Using the synthetic domain introduced in section 2.1.1, we compared the inversion results 

and the corresponding resolution matrices and uncertainty estimates using different error models. 

Note that since Figure 1 and Figure 7 use the same domain and have the same resistivity structure, 

Figure 1(c) can be seen as a benchmark case where the data is inverted with perfect knowledge of 

measurement errors. 

Figure 7 (a – c) shows inversion results for synthetic data where measurements involving 

three “bad electrodes” are corrupted by 10% noise and others by 2% noise. We first compare the 

inversion with two linear error model—one assumes there are no bad electrodes (i.e. the 2% error 
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model), while the other is obtained by fitting the corrupted data with the Koestel et al. (2008) model 

(i.e. the 4.52% linear model). We see that the resultant resistivity model from assuming the 2% linear 

error model is very noisy while that from assuming 4.52% linear error model is smoother. With the 

LME error model, however, the inversion result is the most similar to that of the benchmark case 

(Figure 1c) (see also rms errors printed on plots). The effect of better characterisation of 

measurement errors by the LME model is manifested in the inversion results.  

Figure 8 (a – c) shows the diagonal terms of the resolution matrices for the inversion using (a) 

2% linear, (b) 4.52% linear, and (c) LME error models. In general, the resolution patterns are 

uniform laterally yet decreases with depth. For the 2% linear error model, we see that some of the 

artefacts from the inversion results is also shown on the resolution pattern. For the LME error 

model, the resolution on the right is somewhat higher than on the left for the top layer, where the 

bad electrodes are located. The resolution values are between that of (a) and (b) in most of the cells, 

although some of the cells near the surface show very high resolution. The above shows that while 

the resolution from the linear error model is purely a function of distance away from sources and 

sensors and therefore cannot distinguish quality between measurements, the LME error model 

allows the inversion to resolve areas unaffected by the bad electrodes better. 

 Subsequently, we ran Monte Carlo experiments using the procedure in section 2.4 to 

understand how uncertainty in measurement errors propagates to affect uncertainty in the 

parameter estimates. The Monte Carlo experiment results can be used to form empirical model 

covariance matrices. This matrix shows how information is shared between parameters (i.e. model 

estimate of different elements). In the ideal, noise-free and well-defined case, the model covariance 

matrix should be a zero matrix, meaning the parameter is deterministically known and the 

parameters are not correlated with one another. Figure 9 (a – b) show that assuming a 2% linear 

error model yields lower model covariances than the 4.52% model, which is expected because lower 

percentage error implies less sharing of data. Also, the band of high covariances is also narrower. 

With the LME model (Figure 9c), however, we notice that the model covariances values are lower 

than those of the 2% and 4.52% models. More importantly, the spread of the high covariance region 

is less uniform than the linear models, meaning that only measurements affected by the bad 

electrodes share information heavily with others. The above agrees with the comparison of 

resolution matrices—the new error model is able to exploit information in noisy data without 

increasing the overall noise level.  

 The diagonal term of the empirical model covariance matrix (i.e. variance) shows the 

variability among parameter estimates from multiple Monte Carlo simulation realizations. 

Specifically , the higher a diagonal term, the more uncertain is the estimate. We plot their ranges in 

Figure 8 (d – f). For all three error models, the variability is always the smallest at depths because 

deeper regions are less well resolved for surface arrays. As a result, the model estimates at greater 

depths are closer to the initial guess values and therefore, there is less difference between the 

realizations of Monte Carlo model estimates. In Figure 8 (g – i), we plot the model-averaged 

parameter estimates. The transparency of each element is inversely proportional to its model 
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variance, as shown in Figure 8 (d – f). In other words, the elements that have more variable or 

uncertain estimates have greater transparency. The inversion results from assuming a 2% error 

model are less variable than for the 4.52% model. Model averaging also smooths out the noisy 

artefacts from deterministic inversion (compare Figure 8g and Figure 7a). The LME error model 

gives the most reliable model estimates among the three error models tested. Also, it is worth 

noting that the model-averaged parameter estimates are comparable to that obtained from 

deterministic inversion. This means that with the LME error model, there is no need to run many 

realizations of the inverse model in order to obtain reliable parameter estimates. Importantly, 

inversion using the LME error model gives the highest resolution and the least model variance 

(Figure 8), and reduces uncertainty in inversion results. 

5.2. Boxford field data 

In Figure 10, we compare the inversion results of field data for the Boxford datasets. When 

using reciprocal data, we only consider one of the 96 available datasets (i.e. the first of the 96 

repeats). The resultant image from using linear or LME error models for reciprocal or 24-h 

repeatability errors (not shown) for the Boxford dataset are effectively identical. When the linear 

model is applied to the stacking errors, the resultant image becomes quite noisy. Surprisingly, when 

the LME model is applied to the stacking errors, there is no distinguishable difference between its 

result and those using reciprocal or 24-h repeatability errors. This shows that although we have 

shown above and warn against the potential underestimation of measurement errors caused by 

using the stacking errors, the LME error model is capable of minimizing such effects. We suspect 

that because of the low mean and low variance of the stacking errors, the linear error model is 

forced to assign very low errors across the dataset. The LME error model, in contrast, has more 

degrees of freedom to better fit the observed stacking errors. 

This finding has significant implications because all modern ERT equipments output 

stacking errors and these do not require additional data collection time. For many existing datasets 

where only stacking errors are available or in applications where the collection of repeats and 

reciprocal is prohibitive, we recommend using a LME error model instead of a linear model for the 

stacking errors.  

5.3. Sellafield field data 

We inverted the Sellafield data collected on 5th February 2013, which was two days before 

the first tracer injection (Kuras et al., 2016). Of the 51,302 measurements in the sequence, there are 

12,412 pairs of valid reciprocal measurements. We fitted them with the LME error model. Note that 

we have not removed any high-error outliers. Figure 11 shows the resultant 3-D static inversion 

image and its associated uncertainty estimates (model standard deviation and model coefficient of 

variation) derived from Monte Carlo simulations. The resultant model clearly delineates zones of 

high and low resistivities. In terms of uncertainty, regions next to the borehole and towards the top 

of the monitoring array have significantly higher model standard deviation. Compared with the 

absolute images of resistivity reported in Kuras et al. (2016) (note that we use the same mesh and 
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inversion code), Figure 11a shows similar patterns but with a smaller range and variations in 

resistivities.   

6. Discussion  

In the present study, we have used statistical methods to explore ways to improve the 

current practice of modelling measurement errors in ERT. Among them, we have found that the 

correlation coefficients of measurement pairs that share some of the electrodes are consistently 

higher than average. Therefore, we have developped a new error model that consider such effects in 

ERT surveys by adding electrode-specific fitting terms (i.e. the LME error model). 

The proposed error model based on the linear mixed effect (LME) model shows superior 

performance in terms of characterising errors when compared against a unknown linear error 

model. The LME model assumes that errors are linearly dependent on transfer resistances and 

employs the electrodes used to make each measurement as grouping variables. The LME error 

model can more accurately predict observed measurement errors. However, as we have already 

argued in section 4.2, individual errors should not be used directly for inversion because in most 

practical situations they are only averages between two points. To improve the robustness of the 

linear error models, errors can be grouped by the magnitude of transfer resistances (Koestel et al., 

2008). Such binning, however, is arbitrary and the resultant error models can be sensitive to the 

number of bins used. The LME error model is based on the same idea of grouping, yet it considers 

all of the four electrodes that are used to make each dipole-dipole quadrupole measurement and 

uses them as the grouping variable. Electrode number is a qualitative variable and it is a reasonable 

assumption that each electrode has slightly different quality. 

The patterns of resolution matrix and model covariance matrix associated with using the 

LME error model are different from those using the linear model. This has important implications 

for inversion and uncertainty estimation because it shows that the LME model is capable of 

detecting poorer measurements and downweighting them in an inversion. Most inversion schemes 

are capable of weighting data according to their quality. Yet in common ERT practice, either 

uniform percentage errors (i.e. a linear model) are assumed or the errors are not characterised at all. 

The LME error model is one of the first statistical tools to characterise the variable quality of ERT 

measurements (while not using individual errors directly) so that the data weighting schemes in 

inverse models can be fully utilized.  

 While fitting a LME model for each set of reciprocal errors gives promising estimates, fitting 

time series of reciprocal errors with a single LME model and using the sequence of data collection 

as an additional grouping variable (i.e. as longitudinal data) can yield inferior results. Evaluation of 

the individual resultant LME error models reveals that, for the dataset considered here, the fixed 

and random effects coefficients vary over the 24-hour period. Such results challenge our common 

assumption that electrode quality is extremely stable. The laboratory study by LaBrecque and Daily 

(2008) on the measurement errors of 15 electrode materials showed many possibilities for electrode 
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quality to evolve during the course of a ERT experiment, some even in the timescale of minutes. 

Therefore, taking many repeats for measurements probably will not provide better error estimates 

because electrode quality may evolve during the process. In summary, we recommend the 

collection of reciprocal measurements at each timeframe and fit a LME model based on the 

measured transfer resistance and electrodes used to capture the minor variations in electrode 

quality during ERT experiments.   

We have found in the Boxford inversion results that there is no distinguishable difference 

between using repeatability and reciprocal errors in inversions (figures not shown). From the PDFs, 

the stacking errors are much smaller and much less variable than the repeatability or reciprocal 

errors at Boxford. With the linear error model, the resultant image for using stacking errors is noisy. 

With the LME error model, however, the inversion image is comparable to that obtained from using 

repeatability or reciprocal errors. We attributed its better results to the better handling of spurious 

and overly optimistic estimates of errors by the LME error model. 

For the Sellafield dataset, we demonstrated the application of the new LME error model to 

model reciprocal errors and used its predicted errors for 3-D inversion and uncertainty 

quantification (i.e. model variance). Such uncertainty estimates are useful as they visualize how 

uncertainties in measurements propagate to uncertainties in the inverse model estimate. 

We have highlighted in the previous section that the new LME error model can be widely 

applied to essentially any ERT inversion algorithms. It better predicts errors that are used to 

prescribe weights of the data weighting or covariance matrix. The resultant matrix remains diagonal 

so that it does not increase computation costs during inversion. Unlike the data quality control 

strategies recently proposed by Deceuster et al. (2013) and Mitchell and Oldenburg (2016), the new 

LME error model can be applied to any static and time-lapse ERT problems regardless of their size. 

Since the model considers the effect of the variable quality of electrodes, it requires minimum 

culling of data or re-inversion. Alternatively, the new LME error model can be used alongside with 

other data quality control strategies. 

The flexibility of the LME model allows it to be applied to characterisation of errors in other 

geophysical measurements. For example, geophones used in seismic tomography can be used as 

grouping variables for their errors. A straightforward next step for future study would be to extend 

the LME error model to induced polarisation (IP) studies. It has been reported in the literature that 

IP surveys are even more sensitive to electrode configuration than ERT. Much recent work has been 

done to improve quality of IP measurements. For example, Dahlin et al. (2013) conducted a 

duplicate IP survey for a planned tunnel using two types of cable spreads: one with standard multi-

core cables and the other with separate cable spreads for transmitting current and measuring 

potentials. They suggest that the single cable spread is sufficient to give good IP data but suggest 

the use of separate cable spread for spectral IP inversion and recovery of Cole-Cole parameters. 

Flores-Orozco et al. (2012) quantified the  measurement errors in spectral IP imaging and 

established a new phase error model. It is an extension of previous models where the discrepancy 
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between normal and reciprocal measurements is analysed (Binley et al., 1995; LaBrecque et al., 1996; 

Slater and Binley, 2006). They also conducted a bin analysis to ensure the assumption of a normal 

distribution of errors is valid and showed that, for spectral IP measurements, phase error 

discrepancies show a consistent behaviour for all frequencies. They proposed an inverse power-law 

relationship between the error on phase and the corresponding resistance. This brief review 

highlights the similarities between ERT and IP measurement error models and we believe that the 

proposed LME model can improve IP measurement errors characterisation, too. Future studies 

should consider applying the LME error model. 

 Finally, the proposed LME models can be used readily in Bayesian formulations for ERT 

inversion. The LME error model can be used to prescribe entries of the data covariance matrix in 

their likelihood functions, which are usually assumed to be diagonal for computational convenience. 

Note that the LME method considers errors due to electrodes used as a grouping variable rather 

than enforcing a correlation function, which would lead to a full data covariance that is 

computationally difficult to invert. By treating the potential correlation of electrode effects as 

grouping variables instead, the data weighting or covariance matrix remains diagonal; furthermore, 

strict and unnecessary assumptions on the correlation between measurements are avoided.  

7. Conclusion and recommendations 

Our analysis of field datasets shows that short-term repeatability and reciprocal errors are 

very comparable, while stacking errors are significantly lower. Repeatability errors, however, may 

increase over time because of subsurface changes between repeats. Repeatability errors also tend to 

show greater autocorrelation in time for the same measurements, as well as correlation between 

measurements, than reciprocal errors. Stacking errors are found to have significantly lower 

magnitude and variability, indicating it may be an overly optimistic measure of measurement error. 

Correlation coefficients between pairs of measurements that share some of the electrodes used are 

higher than pairs that use completely different electrodes. This confirms speculations from previous 

studies that the common use of electrodes may contribute to some correlation in errors (Ramirez et 

al., 2005).  

Based on our error analysis, we confirm the value of collecting reciprocal data in ERT 

studies, although when making reciprocal measurements, care should be taken to avoid electrode 

charge-up effects (Dahlin, 2000; Wilkinson et al., 2012). If it is too difficult to set up reciprocal 

measurements, we recommend running a duplicate survey immediately after the completion of the 

original survey. Long-term repeatability data does not bring extra benefits for fitting error models 

because subsurface conditions may change over time. But they may be very useful for long-term 

quality assurance, for example, detecting instrument drift or abnormal system behaviour. Stacking 

errors should be avoided when assigning error weights because of their low magnitude and low 

variability. For modelling the measurement errors, we recommend fitting a linear mixed effect 

(LME) model over the commonly used linear model. The new LME error model uses both the 

combination of electrodes used for making ERT measurements and the proportional relationship 
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between errors and transferred resistance in order to better characterize measurement errors. Our 

synthetic example shows that the LME error model is capable of picking up errors due to the 

varying quality of electrodes and adjusts resolutions in the inverse model accordingly. This is 

different from the traditional linear model approach where the resolution everywhere in the entire 

inverse model domain has to reduce. The new LME model not only improves the inversion results, 

but also reduces the uncertainty (i.e. variance) in the model estimates. For time-lapse data, we 

recommend fitting a LME model for each time step because its coefficients change over time and 

fitting all the data from the different time steps with a single LME model (i.e. as longitudinal data) 

yields inferior results. We have demonstrated the applicability of the above-recommended 

procedure by fitting the LME model to errors observed in two field datasets and inverting the data. 

This procedure is easy to implement and requires minimal changes to the current practice. Widely 

implementing this procedure in future geophysical studies can greatly improve their overall 

reliability—a necessary step towards obtaining more quantitative information from geophysical 

methods across a range of disciplines and applications.  

8. Acknowledgements 

This work is supported by a Nuclear Decommissioning Authority PhD Bursary awarded to 

the first author and an accompanying PhD studentship provided by Lancaster University. This 

paper is published with the permission of the Nuclear Decommissioning Authority, Sellafield Ltd., 

and the Executive Director of the British Geological Survey (NERC). We thank Paul Mclachlan 

(Lancaster University) for assistance on using R. We are grateful to two anonymous reviewers for 

the contructive reviews of the manuscript. 

9. References 

Aster, R., Borchers, B., Thurber, C.H., 2005. Parameter estimation and inverse problems. Elsevier, 

Burlington, Massachusetts, USA. 

Barker, J.A., 1991. The reciprocity principle and an analytical solution for Darcian flow in a network. 

Water Resour. Res. 27, 743–746. doi:10.1029/91WR00258 

Bates, D., Maechler, M., Bolker, B.M., Walker, S., 2015. Fitting Linear Mixed-Effects Models using 

{lme4}. J. Stat. Softw. 67, 1–48. doi:10.18637/jss.v067.i01 

Beven, K., Westerberg, I., 2011. On red herrings and real herrings: disinformation and information 

in hydrological inference. Hydrol. Process. 25, 1676–1680. doi:10.1002/hyp.7963 

Binley, A., 2015. Tools and techniques: Electrical methods. Treatise Geophys. doi:10.1016/B978-0-

444-53802-4.00192-5 

Binley, A., Ramirez, A.L., Daily, W., 1995. Regularised image reconstruction of noisy electrical 

resistance data, in: Proceedings of the 4th Workshop of the European Concerted Action on 

Process Tomography,. Bergen, pp. 401–410. 

Binley, A.M., Hubbard, S.S., Huisman, J.A., Revil, A., Robinson, D.A., Singha, K., Slater, L.D., 2015. 

The emergence of hydrogeophsyics for improved understanding of subsurface processes over 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Page 21 of 40 

 

 

multiple scales. Water Resour. Res. 51, 3837–3866. doi:10.1002/2015WR017016 

Bruggeman, G.A., 1972. The reciprocity principle in flow through heterogeneous porous media, in: 

Fundamentals of Transport Phenomena in Porous Media,. Elsevier, New York, p. 136. 

Cassiani, G., Bruno, V., Villa, A., Fusi, N., Binley, A.M., 2006. A saline tracer test monitored via 

time-lapse surface electrical resistivity tomography. J. Appl. Geophys. 59, 244–259. 

doi:10.1016/j.jappgeo.2005.10.007 

Chambers, J.E., Wilkinson, P.B., Uhlemann, S., Sorensen, J.P.R., Roberts, C., Newell, A.J., Ward, 

W.O.C., Binley, A., Williams, P.J., Gooddy, D.C., Old, G., Bai, L., 2014. Derivation of lowland 

riparian wetland deposit architecture using geophysical image analysis and interface detection. 

Water Resour. Res. 50, 5886–5905. doi:10.1002/2014WR015643 

Crook, N., Binley, A., Knight, R., Robinson, D.A., Zarnetske, J., Haggerty, R., 2010. Electrical 

resistivity imaging of the architecture of substream sediments. Water Resour. Res. 46, W00D13. 

doi:10.1029/2008WR006968 

Dahlin, T., 2000. Short note on electrode charge-up effects in DC resistivity data acquistiion using 

multi-electrode arrays. Geophys. Prospect. 48, 181–187. doi:10.1046/j.1365-2478.2000.00172.x 

Dahlin, T., Dalsegg, E., Sandstrom, T., 2013. Data quality quantification for time domain IP data 

acquired along a planned tunnel near Oslo, Norway, in: Near Surface Geoscience 2013--19th 

European Meeting of Environmental and Engineering Geophysics. Bochum, Germany. 

Day-Lewis, F.D., Johnson, C.D., Singha, K., Lane Jr, J.W., 2008. Best practices in electrical resistivity 

imaging: Data collection and processing, and application to data from Corinna, Maine. EPA 

report, Boston, MA. 

Deceuster, J., Kaufmann, O., Camp, M. Van, 2013. Automated identification of changes in electrode 

contact properties for long-term permanent ERT monitoring experiments. Geophysics 78, E79–

E94. doi:10.1190/GEO2012-0088.1 

Delay, F., Ackerer, P., Guadagnini, A., 2011. Theoretical analysis and field evidence of reciprocity 

gaps during interference pumping tests. Adv. Water Resour. 34, 592–606. 

doi:10.1016/j.advwatres.2011.02.006 

Diggle, P.J., Heagerty, P., Liang, K.-Y., Zeger, S., 2015. Analysis of Longitudinal Data, 2nd ed. 

Oxford University Press. 

Falade, G.K., 1981. Analysis of the reciprocity concept in a porous medium. Water Resour. Res. 17, 

918–920. doi:10.1029/WR017i004p00918 

Flores-Orozco, A., Kemna, A., Zimmermann, E., 2012. Data error quantification in spectral induced 

polarization imaging. Geophysics 77, E227. doi:10.1190/geo2010-0194.1 

Flores-Orozco, A., Williams, K.H., Long, P.E., Hubbard, S.S., Kemna, A., 2011. Using complex 

resistivity imaging to infer biogeochemical processes associated with bioremediation of an 

uranium-contaminated aquifer. J. Geophys. Res. Biogeosciences 116, 1–17. 

doi:10.1029/2010JG001591 

French, H.K., Hardbattle, C., Binley, A., Winship, P., Jakobsen, L., 2002. Monitoring snowmelt 

induced unsaturated flow and transport using electrical resistivity tomography. J. Hydrol. 267, 

273–284. doi:10.1016/S0022-1694(02)00156-7 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Page 22 of 40 

 

 

Gélis, C., Revil, A., Cushing, M.E., Jougnot, D., Lemeille, F., Cabrera, J., de Hoyos, A., Rocher, M., 

2010. Potential of electrical resistivity tomography to detect fault zones in limestone and 

argillaceous formations in the experimental platform of Tournemire, France. Pure Appl. 

Geophys. 167, 1405–1418. doi:10.1007/s00024-010-0097-x 

Haarder, E.B., Jensen, K.H., Binley, A.M., Nielsen, L., Uglebjerg, T.B., Looms, M.C., 2015. Estimation 

of recharge from long-term monitoring of saline tracer transport using electrical resistivity 

tomography. Vadose Zo. J. doi:10.2136/vzj2014.08.0110 

Hayley, K., Bentley, L.R., Gharibi, M., 2009. Time-lapse electrical resistivity monitoring of salt-

affected soil and groundwater. Water Resour. Res. 45, 1–14. doi:10.1029/2008WR007616 

Henderson, R.D., Day-Lewis, F.D., Abarca, E., Harvey, C.F., Karam, H.N., Liu, L., Lane, J.W.J., 2010. 

Marine electrical resistivity imaging of submarine groundwater discharge: sensitivity analysis 

and application in Waquoit Bay, Massachusetts, USA. Hydrogeol. J. 18, 173–185. 

doi:10.1007/s10040-009-0498-z 

Hermans, T., Vandenbohede, A., Lebbe, L., Nguyen, F., 2012. A shallow geothermal experiment in a 

sandy aquifer monitored using electric resistivity tomography. Geophysics 77, B11. 

doi:10.1190/geo2011-0199.1 

Huisman, J.A., Rings, J., Vrugt, J.A., Sorg, J., Vereecken, H., 2010. Hydraulic properties of a model 

dike from coupled Bayesian and multi-criteria hydrogeophysical inversion. J. Hydrol. 380, 62–

73. doi:10.1016/j.jhydrol.2009.10.023 

Irving, J., Singha, K., 2010. Stochastic inversion of tracer test and electrical geophysical data to 

estimate hydraulic conductivities. Water Resour. Res. 46, W11514. doi:10.1029/2009WR008340 

Johnson, T.C., Slater, L.D., Ntarlagiannis, D., Day-Lewis, F.D., Elwaseif, M., 2012. Monitoring 

groundwater-surface water interaction using time-series and time-frequency analysis of 

transient three-dimensional electrical resistivity changes. Water Resour. Res. 48, 1–13. 

doi:10.1029/2012WR011893 

Johnson, T.C., Versteeg, R.J., Thomle, J., Hammond, G., Chen, X., Zachara, J., 2015. Four-

dimensional electrical conductivitymonitoring of stage-driven river water intrusion: 

Accounting for water table effects using a transient mesh boundary and conditional inversion 

constraints. Water Resour. Res. 51, 6177–6196. doi:10.1002/2014WR016259 

Kemna, A., 2000. Tomographic inversion of complex resistivity. Ruhr-Universität Bochum. 

Kim, J., Supper, R., Ottowitz, D., Jochum, B., Yi, M., 2016. A new measurement protocol of direct 

current resistivity data. Geophysics 81. 

Koestel, J., Kemna, A., Javaux, M., Binley, A., Vereecken, H., 2008. Quantitative imaging of solute 

transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR. Water 

Resour. Res. 44, 1–17. doi:10.1029/2007WR006755 

Kuras, O., Wilkinson, P.B., Meldrum, P.I., Oxby, L.S., Uhlemann, S., Chambers, J.E., Binley, A., 

Graham, J., Smith, N.T., Atherton, N., 2016. Geoelectrical monitoring of simulated subsurface 

leakage to support high-hazard nuclear decommissioning at the Sellafield Site, UK. Sci. Total 

Environ. 566–567, 350–359. doi:10.1016/j.scitotenv.2016.04.212 

LaBrecque, D.J., Mletto, M., Daily, W., Ramirez, A.L., Owen, E., 1996. The effects of noise on 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Page 23 of 40 

 

 

Occam’s inversion of resistivity tomography data. Geophysics 61, 538. doi:10.1190/1.1443980 

Lesparre, N., Boyle, A., Grychtol, B., Cabrera, J., Marteau, J., Adler, A., 2016. Electrical resistivity 

imaging in transmission between surface and underground tunnel for fault characterization. J. 

Appl. Geophys. doi:10.1016/j.jappgeo.2016.03.004 

Linde, N., Renard, P., Mukerji, T., Caers, J., 2015. Geological Realism in Hydrogeological and 

Geophysical Inverse Modeling: a Review. Adv. Water Resour. 86, 86–101. 

doi:10.1016/j.advwatres.2015.09.019 

Loke, M.H., Barker, R.D., 1996. Practical techniques for 3D resistivity surveys and data inversion. 

Geophys. Prospect. 44, 499–523. doi:10.1111/j.1365-2478.1996.tb00162.x 

Meyerhoff, S.B., Maxwell, R.M., Revil, A., Martin, J.B., Karaoulis, M., Graham, W.D., 2014. 

Characterization of groundwater and surface water mixing in a semiconfined karst aquifer 

using time-lapse electrical resistivity tomography. Water Resour. Res. 50, 2566–2585. 

doi:10.1002/2013WR013991 

Mitchell, M.A., Oldenburg, D.W., 2016. Data quality control methodology for large , non-

conventional DC resistivity datasets. J. Appl. Geophys. 3, 948–953. 

doi:10.1016/j.jappgeo.2016.09.018 

Morelli, G., LaBrecque, D.J., 1996. Advances in ERT inverse modeling. Eur. J. Environ. Eng. 

Geophys. 1, 171–186. 

Musgrave, H., Binley, A., 2011. Revealing the temporal dynamics of subsurface temperature in a 

wetland using time-lapse geophysics. J. Hydrol. 396, 258–266. doi:10.1016/j.jhydrol.2010.11.008 

Nimmer, R.E., Osiensky, J.L., Binley, A.M., Sprenke, K.F., Williams, B.C., 2007. Electrical resistivity 

imaging of conductive plume dilution in fractured rock. Hydrogeol. J. 15, 877–890. 

doi:10.1007/s10040-007-0159-z 

Parasnis, D.S., 1988. Reciprocity theorems in geoelectric and geoelectromagnetic work. 

Geoexploration 25, 177–198. doi:10.1016/0016-7142(88)90014-2 

Pearson, E.S., Hartley, H.O. (Eds.), 1970. Biometrika tables for statisticians. Cambridge University 

Press. 

Perri, M.T., Cassiani, G., Gervasio, I., Deiana, R., Binley, A., 2012. A saline tracer test monitored via 

both surface and cross-borehole electrical resistivity tomography: Comparison of time-lapse 

results. J. Appl. Geophys. 79, 6–16. doi:10.1016/j.jappgeo.2011.12.011 

Pinheiro, J., Bates, D., 1988. Unconstrained parameterizations for variance-covariance matrices. Stat. 

Comput. 6, 289–296. 

Ramirez, A., Daily, W., Binley, A., Labrecque, D., Roelant, D., 1996. Detection of leaks in 

underground storage tanks using electrical resistance methods. J. Environ. Eng. Geophys. 1, 

189–203. doi:10.4133/JEEG1.3.189 

Ramirez, A.L., Nitao, J.J., Hanley, W.G., Aines, R., Glaser, R.E., Sengupta, S.K., Dyer, K.M., Hickling, 

T.L., Daily, W.D., 2005. Stochastic inversion of electrical resistivity changes using a Markov 

Chain Monte Carlo approach. J. Geophys. Res. 110, B02101. doi:10.1029/2004JB003449 

Revil, A., Johnson, T.C., Finizola, A., 2010. Three-dimensional resistivity tomography of Vulcan’s 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Page 24 of 40 

 

 

forge, Vulcano Island, southern Italy. Geophys. Res. Lett. 37, 1–5. doi:10.1029/2010GL043983 

Robert, T., Dassargues, A., Brouyère, S., Kaufmann, O., Hallet, V., Nguyen, F., 2011. Assessing the 

contribution of electrical resistivity tomography (ERT) and self-potential (SP) methods for a 

water well drilling program in fractured/karstified limestones. J. Appl. Geophys. 75, 42–53. 

doi:10.1016/j.jappgeo.2011.06.008 

Robinson, J., Johnson, T., Slater, L., 2015. Challenges and opportunities for fractured rock imaging 

using 3D cross borehole electrical resistivity. Geophysics 80, E49–E61. doi:10.1190/GEO2014-

0138.1 

Rubin, Y., Hubbard, S.S. (Eds.), 2005. Hydrogeophysics. Springer. 

Schmidt-Hattenberger, C., Bergmann, P., Labitzke, T., Wagner, F., Rippe, D., 2016. Permanent 

crosshole electrical resistivity tomography (ERT) as an established method for the long-term 

CO2 monitoring at the Ketzin pilot site. Int. J. Greenh. Gas Control 52, 432–448. 

doi:10.1016/j.ijggc.2016.07.024 

Singha, K., Gorelick, S.M., 2006. Effects of spatially variable resolution on field-scale estimates of 

tracer concentration from electrical inversions using Archie’s law. Geophysics 71, G83. 

doi:10.1190/1.2194900 

Slater, L., Binley, A., 2006. Synthetic and field-based electrical imaging of a zerovalent iron barrier: 

Implications for monitoring long-term barrier performance. Geophysics 71, B129–B137. 

doi:10.1190/1.2235931 

Slater, L., Binley, A., 2003. Evaluation of permeable reactive barrier (PRB) integrity using electrical 

imaging methods. Geophysics 68, 911–921. doi:10.1190/1.1581043 

Slater, L., Binley, A.M., Daily, W., Johnson, R., 2000. Cross-hole electrical imaging of a controlled 

saline tracer injection. J. Appl. Geophys. 44, 85–102. doi:10.1016/S0926-9851(00)00002-1 

Slater, L.D., Ntarlagiannis, D., Day-Lewis, F.D., Mwakanyamale, K., Versteeg, R.J., Ward, A., 

Strickland, C., Johnson, C.D., Lane, J.W., 2010. Use of electrical imaging and distributed 

temperature sensing methods to characterize surface water-groundwater exchange regulating 

uranium transport at the Hanford 300 Area, Washington. Water Resour. Res. 46, 1–13. 

doi:10.1029/2010WR009110 

Uhlemann, S., Wilkinson, P., Chambers, J., Maurer, H., Merritt, A., Gunn, D., Meldrum, P., 2015. 

Interpolation of landslide movements to improve the accuracy of 4D geoelectrical monitoring. J. 

Appl. Geophys. 121, 93–105. doi:10.1016/j.jappgeo.2015.07.003 

Uhlemann, S.S., Sorensen, J.P.R., House, A.R., Wilkinson, P.B., Roberts, C., Gooddy, D.C., 2016. 

Integrated time-lapse geoelectrical imaging of wetland hydrological processes. Water Resour. 

Res. 52, 1607–1625. doi:10.1002/2015WR017932 

Vereecken, H., Binley, A., Cassiani, G., Revil, A., Titov, K. (Eds.), 2006. Applied Hydrogeophysics, 

NATO Science Series. Springer Netherlands, Dordrecht. doi:10.1007/978-1-4020-4912-5 

Wagner, F.M., Möller, M., Schmidt-Hattenberger, C., Kempka, T., Maurer, H., 2013. Monitoring 

freshwater salinization in analog transport models by time-lapse electrical resistivity 

tomography. J. Appl. Geophys. 89, 84–95. doi:10.1016/j.jappgeo.2012.11.013 

Wallin, E.L., Johnson, T.C., Greenwood, W.J., Zachara, J.M., 2013. Imaging high stage river-water 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Page 25 of 40 

 

 

intrusion into a contaminated aquifer along a major river corridor using 2-D time-lapse surface 

electrical resistivity tomography. Water Resour. Res. 49, 1693–1708. doi:10.1002/wrcr.20119 

Wehrer, M., Slater, L.D., 2014. Characterization of water content dynamics and tracer breakthrough 

by electrical resistivity tomography (ERT) under transient unsaturated conditions. Water 

Resour. Res. 51. doi:10.1002/2014WR016131 

West, B., Welch, K.E., Galecki, A.T., 2007. Linear Mixed Models: a practical guide using statistical 

software, 2nd ed. Chapman and Hall/CRC. 

Wilkinson, P., Chambers, J., Uhlemann, S., Meldrum, P., Smith, A., Dixon, N., Loke, M.H., 2016. 

Reconstruction of landslide movements by inversion of 4-D electrical resistivity tomography 

monitoring data. Geophys. Res. Lett. 43, 1166–1174. doi:10.1002/2015GL067494 

Wilkinson, P.B., Chambers, J.E., Lelliott, M., Wealthall, G.P., Ogilvy, R.D., 2008. Extreme sensitivity 

of crosshole electrical resistivity tomography measurements to geometric errors. Geophys. J. 

Int. 173, 49–62. doi:10.1111/j.1365-246X.2008.03725.x 

Wilkinson, P.B., Chambers, J.E., Meldrum, P.I., Gunn, D.A., Ogilvy, R.D., Kuras, O., 2010a. 

Predicting the movements of permanently installed electrodes on an active landslide using 

time-lapse geoelectrical resistivity data only. Geophys. J. Int. 183, 543–556. doi:10.1111/j.1365-

246X.2010.04760.x 

Wilkinson, P.B., Loke, M.H., Meldrum, P.I., Chambers, J.E., Kuras, O., Gunn, D.A., Ogilvy, R.D., 

2012. Practical aspects of applied optimized survey design for electrical resistivity tomography. 

Geophys. J. Int. 189, 428–440. doi:10.1111/j.1365-246X.2012.05372.x 

Wilkinson, P.B., Meldrum, P.I., Kuras, O., Chambers, J.E., Holyoake, S.J., Ogilvy, R.D., 2010b. High-

resolution Electrical Resistivity Tomography monitoring of a tracer test in a confined aquifer. J. 

Appl. Geophys. 70, 268–276. doi:10.1016/j.jappgeo.2009.08.001 

Williams, M.R., Buda, A.R., Singha, K., Folmar, G.J., Elliott, H.A., Schmidt, J.P., 2016. Imaging 

Hydrological Processes in Headwater Riparian Seeps with Time-Lapse Electrical Resistivity. 

Groundwater 1–13. doi:10.1111/gwat.12461 

Yang, X., Chen, X., Carrigan, C.R., Ramirez, A.L., 2014. Uncertainty quantification of CO2 saturation 

estimated from electrical resistance tomography data at the Cranfield site. Int. J. Greenh. Gas 

Control 27, 59–68. doi:10.1016/j.ijggc.2014.05.006 

Yeh, T.-C.J., Zhu, J., Englert, A., Guzman, A., Flaherty, S., 2006. A successive linear estimator for 

electrical resistivity tomography, in: Vereecken, H., Binley, A.M., Cassini, G., Revil, A., Titov, K. 

(Eds.), Applied Hydrogeophysics. Springer Netherlands, pp. 45–74. doi:10.1007/978-1-4020-

4912-5_3 

Zhou, B., Dahlin, T., 2003. Properties and effects of measurement errors on. Near Surf. Geophys. 

105–117. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Page 26 of 40 

 

 

10. Tables 
Table 1 Table of error models reported in the literature 

Note: Outliers are measurements that are not used for inversion. If the error type is reciprocal, reciprocal pairs are counted as one measurement. 

Source Error model Error Type Survey type Outliers/measurements Outlier rule Other description of errors 

(Cassiani et al., 2006) Linear model Reciprocal  12 surface lines, 
tracer 

244 of 744 pairs (long) 
44 of 744 (high-
resolution) 

reciprocal error >5% 

 
 

(Chambers et al., 2014) Not reported Reciprocal 
 

21 and 15 parallel 
survey lines 

5% of 20563 
0.5% of 23164 

|e|>0.05|R| 
 

 

(Crook et al., 2010) Not reported Reciprocal  A line and 2 boreholes 
3 surface lines 

~25% of 6022 
~10% of 750 

|e|>0.05|R| 
|e|>0.04|R| 

 

(Flores-Orozco et al., 
2011) 

Linear model Reciprocal  2 surface lines Not reported Not reported See also (Flores-Orozco et 
al., 2012) 

(French et al., 2002) 
 

Direct use  Reciprocal 2 boreholes, 
snowmelt, tracer 

? of 1172 pairs |e|>10% |R| are removed  

(Gélis et al., 2010) Not reported (probably 
direct use) 

Repeatability and 
Reciprocal 

3 2.5-km long 
profiles, tunnel 

 1777 pairs retained stacked |e| > 5% Reciprocity of Wenner 
array was always better 
than 10%. Reciprocity in 
dipole-dipole arrays was 
not reported. 

(Haarder et al., 2015) Direct use Reciprocal 5 boreholes, tracer Not reported Not reported  

(Hayley et al., 2009) 
 

Not reported (probably 
direct use)  

Repeatability  15 surface lines  Keep only measurements 
repeatable better than 1% 

“It was deemed infeasible to 
include a reciprocal survey because 
of the added time and cost.” 

(Hermans et al., 2012) 
 

|e|=0.01+0.025|R| Reciprocal 
(200/823) 

Surface (W-S) 0/823 N/A Mean (|erepeat|) < 0.1% 

 

(Henderson et al., 2010) 
 

Direct use: 
If |e|>10%|R|, |e| = 200|e|, 
else |e| = 2.5|e|, 

Reciprocal Marine surface None None Stacked data error during 
acquisition did not exist 2% 

(Johnson et al., 2012) 
 

|e|=0.001+0.05|R| Reciprocal  4 parallel surface 
lines next to river 

715 of 8660 (first 20d) 
5021 of 8660 (all) 

(i) injected current < 0.01A 

(ii) having reciprocal error >5% 
at any timeframe during monitoring 

 

(Johnson et al., 2015) 
 

|e|=0.01+0.05|R| Look up error model 
values from the 
literature 

11 surface lines 200 (~0.5%) of 40454 
nonreciprocal 
measurements 

(i) apparent resistivities > 
100 Ωm 

(ii) injected current < 0.01A 
If any of the above is found a 
measurement in the first five surveys, it is 
removed in the entire dataset 

 

(Kuras et al., 2016) Not reported Reciprocal AND 
stacked 

TL 3D, 4 boreholes 0.79% of ~13400 each 
day  

|e|>0.01|R| 
(log10 scale) 
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9.2% of ~53100 

(Koestel et al., 2008) |e|=0.026+0.003|R| Reciprocal, 
binned 

TL 3D soil column ?/23130 obvious  

(Lesparre et al., 2016) Direct use Reciprocal Surface and 
borehole, tunnel 

8022 or 90% retained (i) |e|>0.05|R|  

(Meyerhoff et al., 2014) 
 

Not reported Repeatability 2 surface lines Not reported (ii) stacked |e| > 0.1% 

(iii) active time-constrained inversion: 
“The first-order operator applied to 
the sequence of snapshots filters out 
noisy data that are not correlated in 
time and is flexible enough to allow 
relatively abrupt changes to occur on 
the sequence of inverted tomograms 
if supported by the data” 

 

 

(Nimmer et al., 2007) Individual difference Reciprocal Surface 
2D*field 

735/2940 
557/2830 

|e|>0.05|R| 
 

 

(Perri et al., 2012) Linear Reciprocal Surface and 
borehole tracer test 

? / 2262 (surface) 
? / 5179 (borehole) 

Not reported  

(Ramirez et al., 1996) Direct use Reciprocal 2D*field 
3D*field 

Not reported Not reported Inversions are condcuted with 
both direct and reciprocal 
measurements are conducted. 
It was found that change due 
to using the either of the two is 
much smaller than changes 
due to the leak. 

(Revil et al., 2010) 
 

Direct use stacked 9 surface lines, 
volcano 

? / 9525 Not reported Each of the resistivity 
measurements represents the 
mean of 8 to 16 distinct 
measurements stacked together 
with the same set of electrodes. 

(Robert et al., 2011) 
 

N(6.3e-4 - 1.37e-3, 3.2e-4 – 1.1e-3) 
|e|=a+b|R| 
a = 0 – 0.0026 
b = 0.0031-0.016 

Reciprocal 
binned 

6 surface surveys ?/ 490-760 per site |erepeat|>0.01 
Outside ±2σ 

“ …ERT reciprocal errors are 
approximately 20 times larger than 
repetition errors” 

(Robinson et al., 2015) Binned log-linear 
|e|=0.131|R|0.48 

Reciprocal  8 boreholes, 
fracture 

153 of 4810 |e|>5% |R| are removed  

(Singha and Gorelick, 2006) |e|=0.01+0.05|R| Reciprocal 
 

TL 3D field 20-50/3150 per day |e|>0.05|R| 
 

 

(Slater et al., 2000) |e|=0.1+0.01|R| Reciprocal 2D* tank, tracer ?/660 |e|>0.1|R|  

(Slater et al., 2010) Not reported Apparent outliers 1-line continuous 
waterborne survey 

~3.2% out of ~65000  (i) Very small resistivity close 
to 0 Ωm 

(ii) Negative apparent chargeability 
(iii) Further processing  

 

(Slater and Binley, 2003) Not reported Reciprocal Surface, IP 
2D*field, IP 

~25% of 772 
0/770*6 

|e|>0.08|R| 
|e|>0.03|R| 

 

(Slater and Binley, 2006) N(5e-4,8e-3) 
N(8e-4,6e-3) 

Reciprocal 2D*field, IP 1521/3744 |e|>0.05|R| 
& enumerical> 2% 
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(Uhlemann et al., 2015) N/A Reciprocal TL surface (// x5) 8-9% of 4285 |e|>0.05|R| 
 

 

(Uhlemann et al., 2016) |e|=a+b|R| 
a = 1e-5 - 5e-4 
b = 0.001-0.01 
a>0.001Ω(system malfunction) 

Reciprocal 
Binned 
OR 
individual 

TL surface (x2) <5%-10% of 
(1528+516) for 
|e|>0.05|R| 
 

|e|>0.10|R| 
(replaced by values derived from their 
respective time-series, using an inverse 
distance weighting interpolation) 

 

(Wagner et al., 2013) |e|=0.01+0.039|R| CV from stacked V TL 3D field ~4% of 258947 CV > 0.05 
|R|>1700 Ω  

 

(Wallin et al., 2013) 
 

|e|=0.001+0.05|R| Reciprocal 3 surface lines 851 out of 12359 
pairs 

(i) injected current < 0.01A 

(ii) having reciprocal error >5% 
at any timeframe during monitoring 

 

(Wehrer and Slater, 
2014) 

Binned quadratic-log10 
|e| = -8e-6|R|2 

+0.062|R|+0.0182 

reciprocal 36 electrodes on 
each of the four 
vertical sides of the 
lysimeter core 

? of 4200 pairs Not reported  

(Williams et al., 2016) Direct Use Stacking Surface Not reported Not reported Up to three stacks were 
collectedduring surveys, 
with a mean stacking error 
of 0.2% 

(Wilkinson et al., 2010a) Not reported Reciprocal  4 surface lines 516 pairs Not reported Over 90% of data has 
reciprocal errors < 1% 

(Wilkinson et al., 2010b) Direct use Reciprocal 14 boreholes Not reported Not reported 98.7% of the data had 
errors of <0.3% and 
maximum error recorded 
was only 2.7% 

(Wilkinson et al., 2016) 
 

Direct use Reciprocal 5 surface lines 12% of 2580 pairs (i) having negative apparent resistivity 

(ii) having reciprocal error >5% 

(iii) having contact resistance >2000 Ω 

(iv) having positive/negative pulse 
amplitude ratios <0.75 or >1.33 (a 
measure of waveform symmetry) 

 

(Yeh et al., 2006) 
 

N/A Compare with 
homogeneous 
resistivity field (i.e. 
only diagnose for 
possible systematic 
errors regarding the 
estimated mean 
resistivity field) 

34 boreholes, 
leachate injection 

? of 2700 for each 
timeframe 

Measurements outside the 
theorectical voltage variance are 
removed 

N/A 
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11.  Figures 

 

 

Figure 1 Synthetic problem for demonstration (a) Synthetic domain with a more conductive layer near the surface and 

a resistive area between x = 15m and x = 20m. The synthetic data from running a forward model in (a) is perturbed with 

5% Gaussian noise and then inverted by assuming (a) 10% linear error model (b) 5% linear error model (c) 2% linear 

error model. Note that rms error is defined as √∑ (𝒐𝒃𝒔 − 𝒔𝒊𝒎)𝟐𝒏
𝒊=𝟏 /𝒏, where obs and sim are vectors of observed/true 

and simulated transferred resistances of length n respectively. Note that the convergence target for all the inversions is 

a chi-squared statistic of 1. 
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Figure 2 (a) Comparison of stacking errors, repeatability errors, and reciprocal errors for the Boxford dataset by 

plotting probability density functions. The PDFs of reciprocal errors and repeatability errors are comparable to each 

other. The stacking errors PDF, however, show very low mean and low variance. Using stacking errors for 

measurement errors characterisation may lead to significant underestimation of uncertainty and over-fitting of data. (b) 

Comparison of stacking errors, repeatability errors, and reciprocal errors for the Sellafield dataset. The PDFs for 

Sellafield show greater variances than those for Boxford. Since a two-week repeatability cycle is used, the repeatability 

errors are much greater than reciprocal errors. In general, the stacking errors are more than an order-of-magnitude 

smaller than the reciprocal errors, indicating there may be significant underestimation of errors if they are used as 

error weights.  The mean and standard deviation of each fitted normal distribution is shown next to the legend. 

 

 

Figure 3 Autocorrelation of (a) departure from the mean (as a measure of repeatability errors) and (b) reciprocal errors 

for the 96 datasets collected continuously continuously within 24h at the Boxford site. The number of lags is on the 

horizontal axis (here 1 lag = 15 minutes). Each grey translucent line plots the autocorrelation of one of the 516 ERT 

measurements as a function of lag. The red line denotes the mean autocorrelation. For each autocorrelation plot, 96 

datasets are considered. The hashed region has insignificant correlation according to the critical Pearson’s test (around 

±0.2). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Page 31 of 40 

 

 

 

 

Figure 4 Autocorrelation of (a) departure from the mean (as a measure of repeatability errors) and (b) reciprocal errors 

for the 96 datasets collected continuously at the Sellafield site encompassing the three injection periods (22/1/2013 – 

3/11/2013). The number of lags is on the horizontal axis (here 1 lag = ~2 to 3 days). Each grey translucent line plots the 

autocorrelation of one of the 12481 ERT measurements as a function of lag. The red line denotes the mean 

autocorrelation. For each autocorrelation plot, 96 datasets are considered. The hashed region has insignificant 

correlation according to the critical Pearson’s test (around ±0.2). Similarly, (c) and (d) show the same for the long-term 

background monitoring period (i.e. no injection, 5/11/2013 – 31/3/2014).  

 

Figure 5 Mean correlation coefficient of departure from the mean (as a measure of measurement errors) and reciprocal 

errors for measurement pairs from the Boxford dataset as a function of dipole seperation multiplier n. For both 
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departure from the mean and reciprocal errors, mean correlation coefficients are distinctively higher for measuremnts 

that share electrode(s) in their quadrupoles than the mean correlation coefficients for all measurements, indiciating by 

considering the effect of using each electrode to make multiple measurments may improve error models. Also, note 

that the reciprocal errors have strikingly lower correlation coefficients than the departure from the mean. Note that 

electrode sharing only occurs in ~10% of all pairs.   

 

 

Figure 6 Comparison of fitting reciprocal errors of time-lapse data as (a) individual datasets,fitting each dataset 

individually with a different LME model and (b) longitudinal data, fitting all data with one LME model. The above 

shows that it is much better not to treat errors as longitudinal data.   
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Figure 7 Synthetic surface ERT experiments to demonstrate the performance of the error models. For data involving 3 

bad electrodes(marked by “X”), data is corrupted by 10% white noise while for the rest of the data 2% white noise is 

added.  (a) Inverted resistivity distribution using the 2% linear error model (a) Inverted resistivity distribution using a 

4.52% (obtained from the Koestel et al. (2008) method) linear error model (c) Inverted resistivity distribution using the 

LME error model. Note that the convergence target for all the inversions is a chi-squared statistic of 1. 
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Figure 8 (a – c) Diagonal of resolution matrix for inversion using the following error models for inverting the synthetic data corrupted by “bad electrodes”: (a) 2% linear 

model (b) 4.52% linear model (c) LME model. (d - f) variance of element-wise log-resistivity estimates using each of the error models obtained from Monte Carlo 

experiments. The colour scale is the same for all three error models.  Darker cells indicate more similar model estimates between Monte Carlo estimates. (g - i) mean 

model estimates from Monte Carlo experiments. The transparency is controlled linearly the variance shown in (d – f). With model averaging, the mean estimates of the 

three error models agree.  It is noted, however, the deterministic results from the LME model agrees the best with its model-averaged results.  
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Figure 9 Empirical model covariance matrix using the Monte Carlo uncertainty propagation procedure and the 

following error models: (a) 2% linear model (b) 4.52% linear model (c) LME model. The size of the matrix is m x m, 

where m is the number of model parameters. By comparing (a) and (b), it is shown that assuming higher error levels, 

there is higher covariance between model parameters. With the LME error model, the model covariance is the lowest. 

While the spread of high covariance entries are quite even throughout the matrix, we can see that the spread for (c) is 

quite uneven: generally, elements on the left of the domain have higher spread. 
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Figure 10 Inversion results from Boxford using (a) linear error model for stacking errors, (b) LME error model for 

stacking errors, (c) linear error model for reciprocal errors.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Page 37 of 40 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Page 38 of 40 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Page 39 of 40 

 

 

 

 

Figure 11 (a) 3-D static deterministic inversion results from Sellafield on 5th February, 2013. Error weights are 

prescribed by fitting an LME error model. Black lines are boreholes installed with electrodes. (b) The corresponding 

uncertainty estimates obtained from Monte Carlo simulations, given by model standard deviation from Monte Carlo 

experiments.  (c) The corresponding coefficient of variation of Monte Carlo model estimates.  
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Highlights  

 Stacking, reciprocal and repeatability errors are compared using statistical analysis 

 Having common electrodes increase correlation between measurements 

 A new error model based on grouping the electrodes used is developed 

 The new model yields better inversion results and uncertainty estimates 


